www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240

13667G	Golden Tee 301	Golden Tee 301
Sample Point Code	Sample Point Name	Sample Point Location

Laboratory Services		2022051623 0889			B Longoria - Spot		
Source L	aboratory	Lab File No	Container Ide	ntity	Sampler		
USA		USA	USA		New Mexico		
District		Area Name	Field Name		Facility Name		
Feb 23,	2022	Feb 23, 2022		Feb 24, 2022 08:	reb 24, 2022		
Date Sam	npled	Date Effective		Date Received	Date Reported		
		System Administrator	@	73			
Ambient Temp (°F)	Flow Rate (Mcf)	Analyst		@ Temp °F Conditions			
Innos	spec				Avant		
Opera	ator	_			Lab Source Description		

Component	Normalized Mol %	Un-Normalized Mol %	GPM
H2S (H2S)	0.1800	0.18	
Nitrogen (N2)	2.7180	2.723	
CO2 (CO2)	12.6440	12.667	
Methane (C1)	66.1500	66.267	
Ethane (C2)	8.9210	8.937	2.3850
Propane (C3)	4.7520	4.761	1.3090
I-Butane (IC4)	0.6020	0.603	0.1970
N-Butane (NC4)	1.4940	1.497	0.4710
I-Pentane (IC5)	0.4280	0.429	0.1560
N-Pentane (NC5)	0.4340	0.435	0.1570
Hexanes Plus (C6+)	1.6770	1.68	0.7280
TOTAL	100.0000	100.1790	5.4030

Method(s): Gas C6+ - GPA 2261, Extended Gas - GPA 2286, Calculations - GPA 2172

Analyzer Information				
Device Type:	Gas Chromatograph	Device Make:	Shimadzu	
Device Model:	GC-2014	Last Cal Date:	Jan 24, 2022	

Gross Heating Values (Real, BTU/ft³)							
14.696 PSI @ 60.00 °F 14			3 PSI @ 60.00 °F				
Dry	Saturated	Dry	Saturated				
1,139.6	1,121.1	1,142.2	1,123.7				
Ca	Calculated Total Sample Properties						
GF	PA2145-16 *Calculat	ed at Contract Con	ditions				
Relative Density Real Relative Density Ideal							
0.8728 0.8694							
Molecular '	Weight						
25.18	303						
	C6+ Grou	p Properties					
	Assumed	Composition					
C6 - 60.000%	C7 - 3	0.000%	C8 - 10.000%				
	Fie	ld H2S					
	180	0 PPM					

PROTREND STATUS: DATA SOURCE: Passed By Validator on Feb 25, 2022 Imported

PASSED BY VALIDATOR REASON:

First sample taken @ this point, composition looks reasonable

VALIDATOR:

Luis Cano

VALIDATOR COMMENTS:

ok

13670G	Golden Tee 501	Golden Tee 501
Sample Point Code	Sample Point Name	Sample Point Location

Laboratory Services		2022051626	2022051626 1348		B Longoria - Spot		
Source L	aboratory	Lab File No	Container Ide	entity	Sampler		
USA		USA	USA		New Mexico		
District		Area Name	Field Name		Facility Name		
Feb 23,	2022	Feb 23, 2022		Feb 24, 2022 08:3	Feb 24, 2022		
Date Sam	npled	Date Effective		Date Received	Date Reported		
		System Administrator	0	23			
Ambient Temp (°F)	Flow Rate (Mcf)	Analyst		@ Temp °F Conditions			
Innos	pec	_			Avant		
Opera	ator				Lab Source Description		

Component	Normalized Mol %	Un-Normalized Mol %	GPM
H2S (H2S)	0.0010	0.001	
Nitrogen (N2)	1.3970	1.397	
CO2 (CO2)	2.7870	2.787	
Methane (C1)	72.9150	72.916	
Ethane (C2)	9.4690	9.469	2.5320
Propane (C3)	5.4330	5.433	1.4960
I-Butane (IC4)	0.8590	0.859	0.2810
N-Butane (NC4)	1.9970	1.997	0.6290
I-Pentane (IC5)	0.7530	0.753	0.2750
N-Pentane (NC5)	0.7240	0.724	0.2620
Hexanes Plus (C6+)	3.6650	3.665	1.5900
TOTAL	100.0000	100.0010	7.0650

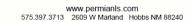
Method(s): Gas C6+ - GPA 2261, Extended Gas - GPA 2286, Calculations - GPA 2172

Analyzer Information					
Device Type:	Gas Chromatograph	Device Make:	Shimadzu		
Device Model:	GC-2014	Last Cal Date:	Jan 24, 2022		

Gross Heating Values (Real, BTU/ft³)					
14.696 PSI @ 60.00 °F			73 PSI @ 60.0	00 °F	
Dry	Saturated	Dry		Saturated	
1,385.8	1,363.1	1,389.00	000	1,366.3	
C	alculated Tota	ıl Sample Pro	perties		
GPA2145-16 *Calculated at Contract Conditions					
Relative Density Real Relative Density Ideal					
0.85		0.8527	ı		
Molecular Weight					
24.6	995				
	C6+ Gro	up Properties			
	Assume	d Composition			
C6 - 60.000%	6 C7 - 3	30.000%	C8 - 1	0.000%	
	Fi	eld H2S			
	10	0 PPM			
				_	

PROTREND STATUS: DATA SOURCE: Passed By Validator on Feb 25, 2022 Imported

PASSED BY VALIDATOR REASON:


First sample taken @ this point, composition looks reasonable

VALIDATOR:

Luis Cano

VALIDATOR COMMENTS:

ok

13669G	Golden Tee 502	Golden Tee 502
Sample Point Code	Sample Point Name	Sample Point Location

Laboratory Services		2022051625	2022051625 1495		B Longoria - Spot		
Source L	aboratory	Lab File No	Container Ide	ntity	Sampler		
USA		USA	USA		New M	1exico	
District		Area Name	Field Name		Facility Name		
Feb 23,	2022	Feb 23, 2022		Feb 24, 2022 08	3:28	Feb 24, 2022	
Date San	npled	Date Effective		Date Received	•	Date Reported	
		Luis	@	23			
Ambient Temp (°F)	Flow Rate (Mcf)	Analyst		@ Temp °F Conditions			
Innos	spec	_			Ava	nt	
Opera	ator				Lab Source [Description	

Component	Normalized Mol %	Un-Normalized Mol %	GPM
H2S (H2S)	0.0010	0.001	
Nitrogen (N2)	1.4750	1.47551	
CO2 (CO2)	3.2840	3.28381	
Methane (C1)	76.3210	76.32292	
Ethane (C2)	9.4980	9.49804	2.5390
Propane (C3)	4.8900	4.89013	1.3470
I-Butane (IC4)	0.7230	0.72264	0.2370
N-Butane (NC4)	1.5430	1.54254	0.4860
I-Pentane (IC5)	0.5220	0.52154	0.1910
N-Pentane (NC5)	0.4330	0.43286	0.1570
Hexanes Plus (C6+)	1.3100	1.31001	0.5680
TOTAL	100.0000	100.0010	5.5250

Method(s): Gas C6+ - GPA 2261, Extended Gas - GPA 2286, Calculations - GPA 2172

	Analyzer Information		
Device Type:	Gas Chromatograph	Device Make:	Shimadzu
Device Model:	GC-2014	Last Cal Date:	Jan 24, 2022

Gross Heating Values (Real, BTU/ft³)				
14.696 PSI @ 60.00 °F		14.73 F	PSI @ 60.00 °F	
Dry	Saturated	Dry	Saturated	
1,245.7	1,225.3	1,248.6	1,228.1	
Calcu	lated Total	Sample Prope	rties	
GPA21	145-16 *Calculat	ed at Contract Condi	tions	
Relative Density	Real	Relativ	e Density Ideal	
0.7742	0.7742		0.7715	
Molecular Weight				
22.3417				
C6+ Group Properties				
	Assumed	Composition		
C6 - 60.000%	C7 - 3	0.000%	C8 - 10.000%	
	Fie	d H2S		
	10	PPM		
PROTREND STATUS:		DATA	SOURCE:	

Passed By Validator on Feb 25, 2022

Imported

PASSED BY VALIDATOR REASON:

First sample taken @ this point, composition looks reasonable

VALIDATOR:

Luis Cano

VALIDATOR COMMENTS:

ok

			023 Container USA		E	Sample Poi B Longoria - S Sampler	ont Location
	Lab File N USA Area Name Feb 2		Container		E		ipot
	USA Area Name Feb 2	No		Identity		Sampler	
	Area Name Feb 2		LICA				
	Feb 2		USA		New Mexico)
			Field Name			Facility Name	
	. .	25, 2022			022 09:09		28, 2022
	Date	e Effective		Date F	Received	Dat	te Reported
	System Admir			@ 45	_		
te (Mcf)	Analyst			SI @ Temp °F ce Conditions			
						Avant	
					Lal		tion
lormalized	Un-Normalized	GPM		Gross	Heating Values	(Real, BTU/i	ft³)
Mol %	Mol %	0111	_	_			@ 60.00 °F
0.1300	0.13		_		1,149.7	1,171.4	Saturated 1,152.4
2.1540	2.157		Calculated Total Sample Properties GPA2145-16 *Calculated at Contract Conditions Relative Density Real Relative Density I 0.8752 0.8717 Molecular Weight		es		
12.0270	12.043						
64.9880	65.073				•		
10.2360	10.25	2.7370			5717		
5.7370	5.745	1.5800		25.243	/		
0.7350	0.736	0.2400			•	•	
1.8670	1.869	0.5880		C6 - 60.000%			8 - 10.000%
0.5360	0.537	0.1960					
0.5280	0.529	0.1910			1300 PI	PM	
1.0620	1.063	0.4610	PROTE	FND STATUS:		DATA SO	
100.0000	100.1320	5.9930			n Feb 28, 2022		
	Mol % 0.1300 2.1540 12.0270 64.9880 10.2360 5.7370 0.7350 1.8670 0.5360 0.5280 1.0620 00.0000	Mol % Mol % 0.1300 0.13 2.1540 2.157 12.0270 12.043 64.9880 65.073 10.2360 10.25 5.7370 5.745 0.7350 0.736 1.8670 1.869 0.5360 0.537 0.5280 0.529 1.0620 1.063	Mol % Mol % 0.1300 0.13 2.1540 2.157 12.0270 12.043 64.9880 65.073 10.2360 10.25 2.7370 5.7370 5.745 1.5800 0.7350 0.736 0.2400 1.8670 1.869 0.5880 0.5360 0.537 0.1960 0.5280 0.529 0.1910 1.0620 1.063 0.4610 00.0000 100.1320 5.9930	ormalized Mol % Mol % GPM 0.1300 0.13 2.1540 2.157 12.0270 12.043 64.9880 65.073 10.2360 10.25 2.7370 5.7370 5.745 1.5800 0.7350 0.736 0.2400 1.8670 1.869 0.5880 0.5280 0.529 0.1910 1.0620 1.063 0.4610 PROTR Passed PA 2286, Calculations - GPA 2172 PASSEI	Mol % Mol % 14.696 PSI @ 60. Dry 1,168.7 Calcumate	Ormalized Mol % Un-Normalized Mol % GPM Gross Heating Values 14.696 PSI @ 60.00 ŰF Dry Saturated 1,168.7 1,149.7 0.1300 0.13 2.1540 2.157 Calculated Total Sar GPA2145-16 *Calculated at Relative Density Real 0.8752 Molecular Weight 25.2437 0.8752 Molecular Weight 25.2437 Molecular Weight 25.2437 25.2437 C6+ Group Properties Group Prope	Avant Lab Source Descript

Anal	/70r	Inform	ation
Allal	vzei	Inform	Ialion

Device Type: Gas Chromatograph Device Make: Shimadzu Device Model: GC-2014 Last Cal Date: Jan 24, 2022

VALIDATOR:

Dustin Armstrong

VALIDATOR COMMENTS:

OK

Received by OCD: 8/23/2022 3:58:10 PM

Device Display Name	Date	24 Hour Gas (mcf)	HP Knockout Gas (mcf)	LP Knockout Gas (mc	f)	
Golden Tee #31 CTB	8/19/2022		2277	•	55	2332
Test Separator 1 (Well 302H)	8/19/2022	2184				
Test Separator 2 (Well 301H)	8/19/2022	1310				
Test Separator 3 (Well 502H)	8/19/2022	1349				
Test Separator 4 (Well 501H)	8/19/2022	1056				

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

DEFINITIONS

Action 137200

DEFINITIONS

Operator:	OGRID:
Avant Operating, LLC	330396
1515 Wynkoop Street	Action Number:
Denver, CO 80202	137200
	Action Type:
	[C-129] Venting and/or Flaring (C-129)

DEFINITIONS

For the sake of brevity and completeness, please allow for the following in all groups of questions and for the rest of this application:

- this application's operator, hereinafter "this operator";
- · venting and/or flaring, hereinafter "vent or flare";
- any notification or report(s) of the C-129 form family, hereinafter "any C-129 forms";
- the statements in (and/or attached to) this, hereinafter "the statements in this";
- and the past tense will be used in lieu of mixed past/present tense questions and statements.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 137200

Prione:(505) 476-3470 Fax:(505) 476-3462	HECTIONS
Operator:	UESTIONS OGRID:
Avant Operating, LLC	330396
1515 Wynkoop Street Denver, CO 80202	Action Number: 137200
	Action Type: [C-129] Venting and/or Flaring (C-129)
QUESTIONS	
Prerequisites	
Any messages presented in this section, will prevent submission of this application. Please resolve	these issues before continuing with the rest of the questions.
Incident Well	Not answered.
Incident Facility	[fAPP2208437966] Golden Tee 31 Fed Com CTB
Determination of Reporting Requirements	
Answer all questions that apply. The Reason(s) statements are calculated based on your answers at	nd may provide addional guidance.
Was this vent or flare caused by an emergency or malfunction	No
Did this vent or flare last eight hours or more cumulatively within any 24-hour period from a single event	Yes
Is this considered a submission for a vent or flare event	Yes, major venting and/or flaring of natural gas.
An operator shall file a form C-141 instead of a form C-129 for a release that, includes liquid during v	enting and/or flaring that is or may be a major or minor release under 19.15.29.7 NMAC
Was there at least 50 MCF of natural gas vented and/or flared during this event	Yes
Did this vent or flare result in the release of ANY liquids (not fully and/or completely flared) that reached (or has a chance of reaching) the ground, a surface, a watercourse, or otherwise, with reasonable probability, endanger public health, the environment or fresh water	No
Was the vent or flare within an incorporated municipal boundary or withing 300 feet from an occupied permanent residence, school, hospital, institution or church in existence	No
Equipment Involved	
Primary Equipment Involved	Separator
Additional details for Equipment Involved. Please specify	Not answered.
Representative Compositional Analysis of Vented or Flared Natural Gas	
Please provide the mole percent for the percentage questions in this group.	
Methane (CH4) percentage	70
Nitrogen (N2) percentage, if greater than one percent	2
Hydrogen Sulfide (H2S) PPM, rounded up	780
Carbon Dioxide (C02) percentage, if greater than one percent	8
Oxygen (02) percentage, if greater than one percent	0
Oxygen (62) personage, it greater than one person	<u> </u>
If you are venting and/or flaring because of Pipeline Specification, please provide the required spec	ifications for each gas.
Methane (CH4) percentage quality requirement	Not answered.
Nitrogen (N2) percentage quality requirement	Not answered.
Hydrogen Sufide (H2S) PPM quality requirement	Not answered.
Carbon Dioxide (C02) percentage quality requirement	Not answered.
Oxygen (02) percentage quality requirement	Not answered.

QUESTIONS, Page 2

Action 137200

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410
Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIC	ONS (continued)			
Operator:	OGRID:			
Avant Operating, LLC 1515 Wynkoop Street	330396 Action Number:			
Denver, CO 80202	137200			
	Action Type: [C-129] Venting and/or Flaring (C-129)			
QUESTIONS	[0-125] Volumy and/or Harmy (0-125)			
Date(s) and Time(s)				
Date vent or flare was discovered or commenced	08/18/2022			
Time vent or flare was discovered or commenced	12:00 AM			
Time vent or flare was terminated	11:59 PM			
Cumulative hours during this event	24			
Measured or Estimated Volume of Vented or Flared Natural Gas				
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Cause: Midstream Scheduled Maintenance Separator Natural Gas Flared Released: 2,332 Mcf Recovered: 0 Mcf Lost: 2,332 Mcf			
Other Released Details	Not answered.			
Additional details for Measured or Estimated Volume(s). Please specify	Not answered.			
Is this a gas only submission (i.e. only significant Mcf values reported)	Yes, according to supplied volumes this appears to be a "gas only" report.			
Venting or Flaring Resulting from Downstream Activity				
Was this vent or flare a result of downstream activity	No			
Was notification of downstream activity received by this operator	Not answered.			
Downstream OGRID that should have notified this operator	Not answered.			
Date notified of downstream activity requiring this vent or flare				
Time notified of downstream activity requiring this vent or flare	Not answered. Not answered.			
Time floatined of downstream activity requiring this vent of hare	Not answered.			
Steps and Actions to Prevent Waste				
For this event, this operator could not have reasonably anticipated the current event and it was beyond this operator's control.	True			
Please explain reason for why this event was beyond this operator's control	As production is decreasing, we are seeing more gas break out of solution, so the VRU we currently have at the facility cannot keep up.			
Steps taken to limit the duration and magnitude of vent or flare	We are in the process of getting an additional VRU installed so that we are flaring less than 90 mcf/day.			
Corrective actions taken to eliminate the cause and reoccurrence of vent or flare	We are in the process of getting an additional VRU installed so that we are flaring less than 90 mcf/day.			

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

ACKNOWLEDGMENTS

Action 137200

ACKNOWLEDGMENTS

Operator:	OGRID:
Avant Operating, LLC	330396
1515 Wynkoop Street	Action Number:
Denver, CO 80202	137200
	Action Type:
	[C-129] Venting and/or Flaring (C-129)

ACKNOWLEDGMENTS

✓	I acknowledge that I am authorized to submit a <i>Venting and/or Flaring</i> (C-129) report on behalf of this operator and understand that this report can be a complete C-129 submission per 19.15.27.8 and 19.15.28.8 NMAC.
V	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to this operator) to track any C-129 forms, pursuant to 19.15.27.7 and 19.15.28.8 NMAC and understand that this submission meets the notification requirements of Paragraph (1) of Subsection G and F respectively.
⋉	I hereby certify the statements in this report are true and correct to the best of my knowledge and acknowledge that any false statement may be subject to civil and criminal penalties under the Oil and Gas Act.
V	I acknowledge that the acceptance of any C-129 forms by the OCD does not relieve this operator of liability should their operations have failed to adequately investigate, report, and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment.
V	I acknowledge that OCD acceptance of any C-129 forms does not relieve this operator of responsibility for compliance with any other applicable federal, state, or local laws and/or regulations.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 137200

CONDITIONS

Operator:	OGRID:
Avant Operating, LLC	330396
1515 Wynkoop Street	Action Number:
Denver, CO 80202	137200
	Action Type:
	[C-129] Venting and/or Flaring (C-129)

CONDITIONS

Created By	Condition	Condition Date
tsarantinos	If the information provided in this report requires an amendment, submit a [C-129] Amend Venting and/or Flaring Incident (C-129A), utilizing your incident number from this event.	8/23/2022