Page 6

Oil Conservation Division

Incident ID	napp2200343814
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following in	tems must be included in the closure report.
\checkmark A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rer human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the O	nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in
V	
email: rob.kirk@ariswater.com	Telephone: (469) 978-5620
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date: 08/24/2022
Printed Name: Jennifer Nobui	Title:Environmental Specialist A

Remediation Summary & Soil Closure Request

Solaris Water Midstream, LLC Speedy Booster

Lea County, New Mexico Unit Letter O, Section 14, Township 22 South, Range 32 East Latitude 32.387155 North, Longitude 103.645147 West NMOCD Reference No. nAPP2200343814

Prepared By:

Etech Environmental & Safety Solutions, Inc. 2617 W. Marland Hobbs, New Mexico 88240

Matthew Grieco

20

Joel W. Lowry

Midland • San Antonio • Lubbock • Hobbs • Lafayette

TABLE OF CONTENTS

Section

PROJECT INFORMATION	1.0
SITE CHARACTERIZATION.	
CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE	
INITIAL SITE ASSESSMENT.	
PROPOSED REMEDIATION PLAN.	
REGULATORY APPROVALS.	6. 0
REMEDIATION ACTIVITIES SUMMARY.	
RESTORATION, RECLAMATION, AND RE-VEGETATION PLAN.	
SOIL CLOSURE REQUEST.	
LIMITATIONS.	10.0
DISTRIBUTION	11.0

FIGURES

Figure	1 -	Topographic Map
Figure	2 -	Aerial Proximity Map
Figure	3a -	Site and Sample Location Map - Delineation
Figure	3b -	Site and Sample Location Map - Confirmation

TABLES

Table 1 - Concentrations of BTEX, TPH, and Chloride in Soil

APPENDICES

- Appendix A Depth to Groundwater Information
- Appendix B Field Data and Soil Profile Logs
- Appendix C Laboratory Analytical Reports
- Appendix D Photographic Log

1.0 **PROJECT INFORMATION**

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Solaris Water Midstream, LLC, has prepared this *Remediation Summary and Soil Closure Request* for the release site known as the Speedy Booster (henceforth, "Site"). Details of the release are summarized below:

		Locatio	on of Release Sou	irce			
Latitude:	32.38	7155	Longitude:	-103.64	45147		
		Provide	ed GPS are in WGS84 forma				
Site Name: Speedy Booster Site Type: Booster Pump							
Date Release Discove	ered:	1/2/2022	API # (if applica	ble):	N/A		
Unit Letter S	Section	Township	Range	County			
0	14	228	32E	Lea			
Surface Owner:	State X F	ederal Tribal Nature a	Private (Nam				
Crude Oil	Volume	Released (bbls)		Volume Recovered (bb	ls)		
X Produced Water	Volume	Released (bbls)	87	Volume Recovered (bb	ls) 36		
Is the concentration of dissolved chloride in the produced water > 10,000 mg/L?							
Condensate Volume Released (bbls) Volume Recovered (bbls)							
Natural Gas	Volume	Released (Mcf)		Volume Recovered (Me	ef)		
Other (describe) Volume/	Weight Released		Volume/Weight Recove	red		
Cause of Release: Equipment failure -	Coupling			I			
		Iı	nitial Response				
X The source of the	e release has	been stopped.					
X The impacted ar	ea has been s	ecured to protect hur	man health and the env	vironment.			
X Release material	s have been o	contained via the use	of berms or dikes, ab	sorbent pad, or other contai	nment devices		
X All free liquids a	nd recoveral	la matariale have he	en removed and mana	and appropriately			

Previously submitted portions of the NMOCD Form C-141 are available on the NMOCD Imaging System.

2.0 SITE CHARACTERIZATION

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a halfmile radius of the Site. Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. Depth to groundwater information is provided as Appendix A.

What is the shallowest depth to groundwater beneath the area affected by the release?	340) Feet
Did the release impact groundwater or surface water?	Yes	X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes	X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark?	Yes	X No
Are the lateral extents of the release within 300 feet of any occupied permanent residence, school, hospital, institution or church?	Yes	X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes	X No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes	X No
Are the lateral extents of the release within the incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes	X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes	X No
Are the lateral extents of the release overlying a subsurface mine?	Yes	X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes	X No
Are the lateral extents of the release within a 100-year floodplain?	Yes	X No
Did the release impact areas not on an exploration, development, production or storage site?	X Yes	No

NMOCD Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) and Fish and Wildlife Services (FWS) shapefiles; topographic maps; NMOSE and USGS databases; and aerial imagery. The results are depicted on Figures 1, 2, 4, and 5.

3.0 CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE

Based on the volume and nature of the release, inferred depth to groundwater, and NMOCD Siting Criteria, the NMOCD Closure Criteria and NMOCD Reclamation Standards for the Site are as follows:

Probable Depth to Groundwater	Constituent	Laboratory Analytical Method	Closure Criteria*†	Reclamation Standard*‡
	Chloride (Cl-)	EPA 300.0 or SM4500 Cl B	20,000	600
	Total Petroleum Hydrocarbons (TPH)	EPA SW-846 Method 8015M Ext	2,500	100
340 Feet	Gas Range Organics + Diesel Range Organics (GRO + DRO)	EPA SW-846 Method 8015M	1,000	-
	Benzene	EPA SW-846 Methods 8021b or 8260b	10	10
	Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA SW-846 Methods 8021b or 8260b	50	50

* Measured in milligrams per kilogram (mg/kg)

† Table I, Section 19.15.29.12 of the New Mexico Administrative Code (NMAC).

‡ The NMOCD Reclamation Standards apply only to the top 4' of soil in non-production areas. Section 19.15.29.13 D.(1) NMAC.

4.0 INITIAL SITE ASSESSMENT

On January 26, 2022, Etech conducted an initial site assessment. During the initial site assessment, a series of hand-augered soil bores were advanced within the release margins in an effort to determine the vertical extent of impacted soil. In addition, hand-augered soil bores were advanced at the inferred edges of the affected area in an effort to determine the horizontal extent of impacted soil. During the advancement of the hand-augered soil bores, field soil samples were collected and field-screened for the presence of volatile organic compounds utilizing visual/olfactory senses and concentrations of chloride utilizing a Hach Quantab® chloride test kit. A delineation sample location map is provided as Figure 3a. Field data and soil profile logs are provided as Appendix B.

Based on field observations and field test data, sixteen (16) horizontal delineation soil samples (EH1 through EH3, WH1 through WH3, NH1, and SH1, all at 0' and 1'), four (4) overspray delineation soil samples (OS1 and OS2, both at 0' and 1'), and eight (8) vertical delineation soil samples (V1 through V4, all at 0'; V1 @ 4'; V2 @ 1'; V3 @ 2'-R; and V4 @ 1') were submitted to a certified, commercial laboratory for analysis of BTEX, TPH, and chloride. Based on laboratory analytical results, soil was not affected above the NMOCD Closure Criteria beyond four (4) feet below ground surface (bgs) in the area characterized by sample point V1. Soil was not affected above the NMOCD Reclamation Standards beyond one (1) foot bgs in the areas characterized by sample points V2 and V4 or two (2) feet bgs in the area characterized by sample point V3. The horizontal extent of affected soil impacted above the NMOCD Closure Criteria and NMOCD Reclamation Standards was adequately defined. A soil chemistry table is provided as Table 1. Laboratory analytical reports are provided in Appendix C.

5.0 PROPOSED REMEDIATION PLAN

Based on laboratory analytical results, site characteristics, and field observations made during the initial site assessment, Solaris Water Midstream, LLC, proposed the following remediation activities designed to advance the Site toward an approved closure:

- Utilizing mechanical equipment, excavate impacted soil affected above the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards within the approximate 5,200-square-foot area characterized by sample point V1 to an estimated depth of 4 feet bgs, or until laboratory analytical results from confirmation soil samples indicate concentrations of BTEX, TPH, and chloride are below the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards.
- Excavate impacted soil affected above the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards within the approximate 2,400-square-foot area characterized by sample points V2 through V4 (consisting of the road and narrow flow path) to an estimated average depth of 1.5 feet bgs, or until laboratory analytical results from confirmation soil samples indicate concentrations of BTEX, TPH, and chloride are below the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards.
- Temporarily stockpile impacted soil on-site, then transport it to an NMOCD-approved disposal facility.
- Upon completion of excavation activities, collect confirmation soil samples for laboratory analysis of BTEX, TPH, and chloride concentrations. Collect representative five-point composite confirmation soil samples from the excavation sidewalls in each cardinal direction, representing no more than fifty (50) linear feet; a minimum of one (1) representative five-point composite confirmation soil sample from the base of the excavated area representing every 200 square feet; and additional, discrete grab samples from wet or visibly stained areas inferred to have been affected by the release, as necessary.
- Upon receiving laboratory analytical results from confirmation soil samples, backfill the excavated area with locally sourced, non-impacted "like" material.
- Upon completion of remediation activities, prepare a Remediation Summary and Soil Closure Request detailing field activities and laboratory analytical results from confirmation sampling.

6.0 **REGULATORY APPROVALS**

On June 22, 2022, a *Site Assessment Report and Proposed Remediation Workplan* was submitted to the NMOCD proposing remediation activities designed to advance the Site toward regulatory closure. The *Site Assessment Report and Proposed Remediation Workplan* was subsequently approved.

Please reference the *Site Assessment Report and Proposed Remediation Workplan* for additional details regarding site characterization and proposed remediation activities.

7.0 **REMEDIATION ACTIVITIES SUMMARY**

On July 22, 2022, remediation activities commenced at the Site. In accordance with the approved workplan, impacted soil affected above the NMOCD Closure Criteria and NMOCD Reclamation Standards was excavated and stockpiled on-site, pending transfer to an NMOCD-approved surface waste facility for disposal. The floor and sidewalls of the excavation were advanced until field observations and field test data suggested BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria and NMOCD Reclamation Standards.

On July 25, 2022, Etech collected sixteen (16) confirmation soil samples (FL 1 @ 6" through FL 5 @ 6", EW 1 through EW 5, WW 1 through WW 5, and SW 1) from the floor and sidewalls of the excavated area. The collected soil samples were submitted to a certified, commercial laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples.

On July 26, 2022, Etech collected five (5) confirmation soil samples (FL 6 @ 1' through FL 8 @ 1', EW6, and WW6) from the floor and sidewalls of the excavated area. The collected soil samples were submitted to a certified, commercial laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples.

On July 27, 2022, Etech collected five (5) confirmation soil samples (FL 9 @ 4' through FL 11 @ 4', EW7, and NW1) from the floor and sidewalls of the excavated area. The collected soil samples were submitted to a certified, commercial laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples.

On July 28, 2022, Etech collected nineteen (19) confirmation soil samples (FL 12 @ 4' through FL 25 @ 4', WW7 through WW9, EW8, and EW9) from the floor and sidewalls of the excavated area. The collected soil samples were submitted to a certified, commercial laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples.

A confirmation sample location map is provided as Figure 3b. A soil chemistry table is provided as Table 1. Laboratory analytical reports are provided as Appendix C.

The final dimensions of the excavated area were 472 feet in length, seven (7) to 75 feet in width, and six (6) inches to four (4) feet in depth. During the course of remediation activities, approximately 720 cubic yards of impacted soil were transported to an NMOCD-approved surface waste facility for disposal.

8.0 **RESTORATION, RECLAMATION, AND RE-VEGETATION PLAN**

Upon receiving laboratory analytical results from confirmation soil samples, excavated areas were backfilled with approximately 720 cubic yards of locally sourced, non-impacted "like" material placed at or near original relative positions. The affected area was contoured and/or compacted to achieve erosion control, stability, preservation of surface water flow, and to meet the needs of the facility, to the extent practicable. Affected areas not on production pads and/or lease roads will be reseeded with an agency and/or landowner-approved seed mixture free of noxious weeds during the first favorable growing season following closure of the Site.

9.0 SOIL CLOSURE REQUEST

Remediation activities were conducted in accordance with an NMOCD-approved workplan. Impacted soil affected above the NMOCD Closure Criteria and/or NMOCD Reclamation Standards was excavated and transported to an NMOCD-approved disposal facility. Laboratory analytical results from confirmation soil samples indicate in-situ concentrations of BTEX, TPH, and chloride are below the NMOCD Closure Criteria and NMOCD Reclamation Standards.

Based on laboratory analytical results and field activities conducted to date, Etech recommends Solaris Water Midstream, LLC, provide copies of this *Remediation Summary & Soil Closure Request* to the appropriate agencies and request closure be granted to the Speedy Booster site.

10.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this *Remediation Summary & Soil Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Solaris Water Midstream, LLC. Use of the information contained in this report is prohibited without the consent of Etech and/or Solaris Water Midstream, LLC.

11.0 DISTRIBUTION

Solaris Water Midstream, LLC 907 Tradewinds Blvd Ste B Midland, TX 79706

New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 1 1220 South St. Francis Drive Santa Fe, NM 87505

United States Department of the Interior Bureau of Land Management 620 E. Greene Street Carlsbad, NM 88220

(Electronic Submission)

Figure 1 Topographic Map

Released to Imaging: 8/24/2022 11:52:12 AM

Figure 2 Aerial Proximity Map

Received by OCD: 8/19/2022 7:09:47 AM

Released to Imaging: 8/24/2022 11:52:12 AM

Figures 3a and 3b Site and Sample Location Maps

Page 15 of 168

Released to Imaging: 8/24/2022 11:52:12 AM

Page 16 of 168

Released to Imaging: 8/24/2022 11:52:12 AM

Table 1Concentrations of BTEX, TPH, and Chloride in Soil

Table 1 Concentrations of BTEX, TPH, and Chloride in Soil											
			Concer					n Soil			
				Solaris	s Water M		LLC				
				NMOCI	Speedy I D Ref. #: n		343814				
NMO	CD Closure C	riteria		10	50	-	-	1,000	-	2,500	20,000
NMOCD	Reclamation	Standard		10	50	-	-	-	-	100	600
				SW 840	5 8021B		SW	846 8015M	Ext.		4500 Cl
Sample ID	Date	Depth (Feet)	Soil Status	Benzene BTEX (mg/kg) (mg/kg)		GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C ₆ -C ₂₈ (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)
Delineation Samples											
EH1 @ 0'	1/26/2022	0	In-Situ	< 0.00199	< 0.00398	<50.0	<50.0	< 50.0	< 50.0	<50.0	23.3
EH1 @ 1'	1/26/2022	1	In-Situ	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	34.2
EH2 @ 0'	1/26/2022	0	In-Situ	< 0.00199	< 0.00398	<50.0	<50.0	< 50.0	< 50.0	<50.0	80.0
EH2 @ 1'	1/26/2022	1	In-Situ	< 0.00201	< 0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	345
EH3 @ 0'	1/26/2022	0	In-Situ	< 0.00198	< 0.00396	<49.9	<49.9	<49.9	<49.9	<49.9	77.8
EH3 @ 1'	1/26/2022	1	In-Situ	0.00303	0.0414	<50.0	<50.0	<50.0	<50.0	<50.0	48.1
NH1 @ 0'	1/26/2022	0	In-Situ	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	38.9
NH1 @ 1'	1/26/2022	1	In-Situ	< 0.00200	< 0.00401	<49.9	<49.9	<49.9	<49.9	<49.9	28.5
SH1 @ 0'	1/26/2022	0	In-Situ	< 0.00200	< 0.00401	<49.8	<49.8	<49.8	<49.8	<49.8	27.1
SH1 @ 1'	1/26/2022	1	In-Situ	< 0.00200	< 0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	<4.95
WH1 @ 0'	1/26/2022	0	In-Situ	0.0128	0.0845	<49.9	<49.9	<49.9	<49.9	<49.9	26.7
WH1 @ 1'	1/26/2022	1	In-Situ	< 0.00202	< 0.00403	<50.0	<50.0	<50.0	<50.0	<50.0	26.5
WH2 @ 0'	1/26/2022	0	In-Situ	< 0.00200	< 0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	71.9
WH2 @ 1'	1/26/2022	1	In-Situ	< 0.00200	0.0610	<49.9	<49.9	<49.9	<49.9	<49.9	32.8
WH3 @ 0'	1/26/2022	0	In-Situ	0.0713	0.191	<50.0	<50.0	<50.0	<50.0	<50.0	<4.95
WH3 @ 1'	1/26/2022	1	In-Situ	< 0.00200	< 0.00400	<49.9	<49.9	<49.9	<49.9	<49.9	< 5.05
OS1 @ 0'	1/26/2022	0	In-Situ	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	8.80
OS1 @ 1'	1/26/2022	1	In-Situ	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	26.1
OS2 @ 0'	1/26/2022	0	In-Situ	< 0.00200	< 0.00400	<50.0	<50.0	<50.0	<50.0	<50.0	39.6
OS2 @ 1'	1/26/2022	1	In-Situ	< 0.00202	< 0.00404	<50.0	<50.0	<50.0	<50.0	<50.0	12.0
V1 @ 0'	1/26/2022	0	Excavated	< 0.202	83.1	1,960	5,640	7,600	<49.9	7,600	6,320
V1 @ 4'	1/26/2022	4	In-Situ	< 0.00199	0.210	<50.0	604	604	< 50.0	604	2,640
V2 @ 0'	1/26/2022	0	Excavated	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	2,320
V2 @ 1'	1/26/2022	1	In-Situ	< 0.00201	< 0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	321
V3 @ 0'	1/26/2022	0	Excavated	< 0.00200	< 0.00400	<50.0	<50.0	<50.0	<50.0	<50.0	7,060
V3 @ 2'-R	1/26/2022	2	In-Situ	< 0.00198	< 0.00396	<49.9	<49.9	<49.9	<49.9	<49.9	446
V4 @ 0'	1/26/2022	0	Excavated	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	669
V4 @ 1'	1/26/2022	1	In-Situ	< 0.00202	< 0.00404	<49.9	<49.9	<49.9	<49.9	<49.9	39.9
					Confirmatio	n Samples		-			
FL 1 @ 6"	7/25/2022	0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
FL 2 @ 6"	7/25/2022	0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
FL 3 @ 6"	7/25/2022	0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
FL 4 @ 6"	7/25/2022	0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
FL 5 @ 6"	7/25/2022	0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
FL 6 @ 1'	7/26/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	448
FL 7 @ 1'	7/26/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	480
FL 8 @ 1'	7/26/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	416
FL 9 @ 4'	7/27/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	672
FL 10 @ 4'	7/27/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	576
FL 11 @ 4'	7/27/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	736

Dash (-): Sample not analyzed for that constituent. **Bold:** NMOCD Closure Criteria exceedance. Red: NMOCD Reclamation Standard exceedance.

Released to Imaging: 8/24/2022 11:52:12 AM

.

	Table 1 Concentrations of BTEX, TPH, and Chloride in Soil												
					s Water M								
					Speedy 1	Booster							
	NMOCD Ref. #: nAPP2200343814												
NMO	NMOCD Closure Criteria 10 50 - 1,000 - 2,500										20,000		
NMOCE	Reclamation	Standard		10	50	-	-	-	-	100	600		
				SW 840	5 8021B		SW 846 8015M Ext.						
Same la D	Date	Depth	Soil			GRO	DRO	GRO +	ORO	ТРН			
Sample ID	Date	(Feet)	Status	Benzene (mg/kg)	BTEX (mg/kg)	C ₆ -C ₁₀ (mg/kg)	C ₁₀ -C ₂₈ (mg/kg)	DRO C ₆ -C ₂₈ (mg/kg)	C ₂₈ -C ₃₆ (mg/kg)	C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)		
FL 12 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	2,000		
FL 13 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,760		
FL 14 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,840		
FL 15 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	2,600		
FL 16 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,800		
FL 17 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	61.2	61.2	18.8	80.0	1,800		
FL 18 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,150		
FL 19 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	2,960		
FL 20 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	14.6	14.6	<10.0	14.6	1,060		
FL 21 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	12.6	12.6	<10.0	12.6	1,340		
FL 22 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,800		
FL 23 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	720		
FL 24 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	84.2	84.2	32.9	117	1,600		
FL 25 @ 4'	7/28/2022	4	In-Situ	< 0.050	< 0.300	<10.0	40.6	40.6	14.0	54.6	1,800		
EW 1	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	16.0		
EW 2	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	176		
EW 3	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	416		
EW 4	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	176		
EW 5	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0		
EW6	7/26/2022	0-1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	368		
EW7	7/27/2022	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	192		
EW8	7/28/2022	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	368		
EW9	7/28/2022	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160		
NW1	7/27/2022	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	256		
SW 1	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0		
WW 1	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0		
WW 2	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	144		
WW 3	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	176		
WW 4	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0		
WW 5	7/25/2022	0-0.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0		
WW6	7/26/2022	0-1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	224		
WW7	7/28/2022	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	224		
WW8	7/28/2022	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160		
WW9	7/28/2022	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160		

.

Appendix A Depth to Groundwater Information

Page 21 of 168

Released to Imaging: 8/24/2022 11:52:12 AM

Recraiged, by QGP: 8/19/2022r.5:09:447.4.1.us//nmwrrs/ReportProxy?queryData=%7B"report"%3A"waterColumn"%2C%0A"BasinDiv"%3A"tree%22% of 168

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orphan C=the file closed)	ned,	1						V 2=NE 2	3=SW 4=SI	E) NAD83 UT	Minm	ators)	(In feet		
,	,	POD Sub-		Q	Q	Q			·	gest) (,	X	, ,	Water
POD Number	Code		County	64					-	X		Y		pthWellDepth		
<u>C 02096</u>		CUB	ED		2	3	14	22S	32E	627204	3584464	4*	385	435	360	7
<u>C 02821</u>		С	LE	2	2	3	14	22S	32E	627303	3584563	3*	427	540	340	200
												Averag	e Depth to Wat	er:	350 fe	et
													Minimum De	epth:	340 fe	et
													Maximum De	pth:	360 fe	et
<u>Record Count:</u> 2 <u>UTMNAD83 Radi</u>	us Search <u>(i</u>	n meters	<u>s):</u>													
Easting (X): 62	7437 55		Nort	hino	(\mathbf{x})	•	3584	157.3	7		Radius:	804.67				

1/13/22 7:04 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

		w Mexico i nt of [v		U	
		(quarters are 1 (quarters are				(NAD83 U	TM in meters)	
Well Tag	POD Number	Q64 Q16 Q	Q4 Se	c Tws	Rng	Χ	Y	
	C 02096	2	3 14	228	32E	627204	3584464* 🦲	

^x Driller License:		Driller Company:			
Driller Name:	JOHN H. TRIGO	GCO.			
Drill Start Date	:	Drill Finish Date:	12/31/1963	Plug Date:	
Log File Date:		PCW Rcv Date:		Source:	
Pump Type:		Pipe Discharge Size:		Estimated Yield:	25 GPM
Casing Size:	7.00	Depth Well:	435 feet	Depth Water:	360 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

1/13/22 7:12 AM

POINT OF DIVERSION SUMMARY

.

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(1	s are 1=N rs are sm				(NAD83 U	TM in meters)	
Well Tag	POD	Number	Q64 Q	216 Q4	Sec	Tws	Rng	X	Ŷ	
-	C 02	2821	2	2 3	14	22S	32E	627303	3584563* 🌍	
Driller Lic	ense:	1348	Driller	Compa	ny:	TAY	LOR W	ATER WE	LL SERVICE	
Driller Nai	me:									
Drill Start	Date:	06/12/2001	Drill Fi	nish Da	te:	00	5/23/2001	1 Pl	ug Date:	
Log File D	ate:	10/04/2001	PCW R	cv Date	:			So	urce:	Shallow
Pump Type: Casing Size: 5.00		Pipe Dis	Pipe Discharge Size:				Es	Estimated Yield:	2 GPM	
		Depth V	Depth Well:		540 feet		De	Depth Water:		
<u>(</u>	Wate	er Bearing Stratif	fications:	То	p B	ottom	Descri	ption		
				41	0	540	Sandst	one/Gravel	/Conglomerate	
<u>(</u>		Casing Per	forations:	To	p B	ottom				
				41	0	430				
				44	0	540				

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

1/13/22 7:10 AM

POINT OF DIVERSION SUMMARY

Received by OCD: 8/19/2022 7:09:47 AM

Released to Imaging: 8/24/2022 11:52:12 AM

V

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category: Groundwater Geographic Area: United States

GO

GO

V

Click forNews Bulletins

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list = • 322314103384301

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 322314103384301 22S.32E.14.32322

Available data for this site Groundwater: Field measurements 🗸

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°23'23", Longitude 103°38'53" NAD27 Land-surface elevation 3,717.00 feet above NGVD29 The depth of the well is 435 feet below land surface. This well is completed in the Other aquifers (N99990THER) national aquifer. This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

Output formats

<u>Table of data</u>

Tab-separated data

Graph of data

Reselect period

Breaks in the plot represent a gap of at least one year between field measurements. <u>Download a presentation-quality graph</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2022-01-12 09:25:29 EST 0.55 0.5 nadww01

V

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category: Site Information Geographic Area: United States

GO

Click forNews Bulletins

USGS 322314103383601 22S.32E.14.32422

Available data for this site SUMMARY OF ALL AVAILABLE DATA 🗸 GO

Well Site

DESCRIPTION:

Latitude 32°23'14", Longitude 103°38'36" NAD27 Lea County, New Mexico , Hydrologic Unit 13070007 Well depth: 380 feet Land surface altitude: 3,740 feet above NAVD88. Well completed in "Other aquifers" (N99990THER) national aquifer. Well completed in "Santa Rosa Sandstone" (231SNRS) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1972-09-13	1972-09-13	1
Revisions	Unavailable (site:0) (timese	eries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data</u> <u>Inquiries</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?

V

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category: Groundwater Geographic Area: United States

GO

V

Click forNews Bulletins

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list = • 322314103383601

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 322314103383601 22S.32E.14.32422

Available data for this site Groundwater: Field measurements
GO

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°23'14", Longitude 103°38'36" NAD27 Land-surface elevation 3,740 feet above NAVD88 The depth of the well is 380 feet below land surface. This well is completed in the Other aquifers (N99990THER) national aquifer. This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

Output formats

<u>Table of data</u>

Tab-separated data

Graph of data

Reselect period

Breaks in the plot represent a gap of at least one year between field measurements. <u>Download a presentation-quality graph</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: USGS Water Data Support Team Page Last Modified: 2022-01-12 09:25:29 EST 0.62 0.51 nadww01

agency_code=USGS&site_no=322314103383601

Page Contact Information: <u>New Mexico Water Data Support Team</u> Page Last Modified: 2022-01-12 09:28:28 EST 0.28 0.26 caww01

Appendix B Field Data and Soil Profile Logs

Sample Log

10 108

Date:

1/26/22

Project:	Speedy Booster	
Project Nu	mber:	15509

32.387155 L

Longitude: -103.645147

Sample ID	PID/Odor	Chloride Conc.	GPS
WHI C D'	-	2,4 268	
WHIE I')	2,4 268 2.2 236	
ATHI CO'	-	2,8 344	
NH(@ 1'	1	2.8 344	
EAL CO'	-	2.4 7.68 2.8 344	
EH CI'	-		
WHZ @ 01	Manual -	2.4 268	
WHZ CIL	-	3,9 468	
EHZ Co'	-	5.8 1240	×
EHZ CI'	-	2.4 268	
	-	0.8 6 120	
sti er	-	24 268	
CHZB C O'	-	3,0 384	
2H3 CO'	-	3,0 384	
EH3 EII		3.2 384	·
WH3 Col	-	2,6 304	
WH3 CI	-	2,0 204	
OSTEON		2,6 304 1.4 \$ 120	
QSI @ i		1.4 \$ 120	
052 e 0'		2.2 236	
052 @ j'		1.8 172	
V2 @ 0'		8.6 77572	
VLEI-K		4.6 792	~
VI @ O'		0779.0 >2572	
V3 0 0		7910 72572	
V4 @ 0'		5.4 1977	
VIEI		8.2 72572	
VSCI		7.4 72.04	
		2.8 344 4.7 72572	
$V_1 \stackrel{\frown}{=} 2^i$ $V_3 \stackrel{\frown}{=} 2^i - R$ $V_1 \stackrel{\frown}{=} 3^i$		47 72572	
V3 @ 2'-R		3.6 516 7,7 2572 7,4 2204	
VIC 3'		7.4 2204	
VIEY		17 6407	

Latitude:

Sample Point = SP #1 @ ## etc

Test Trench = TT #1 @ ## Refusal = SP #1 @ 4'-R Resamples= SP #1 @ 5b or SW #1b

Floor = FL #1 etc

Sidewall = SW #1 etc

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

Stockpile = Stockpile #1 GPS Sample Points, Center of Comp Areas

Released to Imaging: 8/24/2022 11:52:12 AM

Sample Log

Date:

Longitude:

7/25/22

Project:	Speedy Booster	
Project Nu	mber:	15509

Latitude:

32.387155

-103.645147

Sample ID	PID/Odor	Chloride Conc.	GPS
SWI	-	2.0 180	
EWI	-	2.4 294	
Ewa	-	2.2 212	
EW3		2.0 180	
Ēwy .	-	2.0 180	
Ews	-	2.2 7/2	
WWI	-	3.0 356	
WW2	-	2.4 244	
WW3	-	2.0 180	
WWY	~	2.4 244	
WW5	-	2.6 280	
FLIQL"	-	2.0 180	
FLZQL"	-	2.4 244	
FL3Q6"	-	2.0 180	
	-	2.2 212	
FL4@6" FL5@6"		2.6 280	
FL601	-	3.0 356	
FLTEI	-	3.4 444	
FLBQ'	-	3.4 444	
EW6	-	3.2 400	
WW6	-	3.2 400	
DW7	-	2.0 80	
NIAI	-	2.2 2/2	
FL9A1'	~	6.0 1260	5.5
FI 4 Q 4'	~	4.0 588	
FLIDGH	/	4.2 640	
FLIQU	-	4.4 694	
FL 12 P. 1'	-	4.6 756	
FL 12/22'	-	5.2 948	
FL /2@4'	-	4.2 646	
F1 13 P 4'	-	4.0 588	
FI 14/241	-	4.6 756	
5115@41	-	4.6 756	
FL16 P4	-	4.2 640	
FW &	-	400 2.0 180	
FING	-	2.2 212	
Sample Point - SP #1 @ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5h or SW #1b

Sample Point = SP #1 @ ## etc

Test Trench = TT #1 @ ##

Resamples= SP #1 @ 5b or SW #1b

Floor = FL #1 etc

Sidewall = SW #1 etc

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

Refusal = SP #1 @ 4'-R

Stockpile = Stockpile #1 GPS Sample Points, Center of Comp Areas

Sample Log

					Date:		
Project:	Speedy Booster						
Project Num	nber:	15509	Latitude:	32.387155	Longitude:	-103.645147	

Sample ID	PID/Odor	Chloride Conc.	GPS
WW7	1	2.0 180	
WW8		22 102 212	
NWW9	1	29, 212	
FL 1704'	/	4.0 538 4.2 640	
FL 1804'		4.2 640	
FLI9QU'	/	4.6 756	
FL 20@4'		4.0 1588	
FLƏLQU	1	4.0 588 4.2 640 4.0 588	
FL 29 @ 4'	1	4.2 640	
FL 23 Q4'	1	4.0 588	
FLZYQYL	1	4.2 640	
FI 26@4'	1	4.6 79	

Sample Point = SP #1 @ ## etc

Test Trench = TT #1 @ ## Refusal = SP #1 @ 4'-R Resamples= SP #1 @ 5b or SW #1b

Floor = FL #1 etc

Sidewall = SW #1 etc

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

Stockpile = Stockpile #1 GPS Sample Points, Center of Comp Areas

Field Map

Project Number: 15509

Project: Speedy Booster

Date:

Received by	OCD:	8/19/2022	7:09:47 AM	
÷	5			

STATE ENGINEER OFFICE WELL RECORD

CENERAL INFORMATION

	10	Milla D		I. GENERA						
(A) Owner of Street or	well Post Office Ad	Mills R		• •			Owne	r's Well No.		
City and	StateLOV	ing, NM	88256							
Well was drilled	l under Permit	No. C- 28	21	1	and	is located i	n the:			
aNE	<u> % NE</u> %	<u>SW %</u>	¼ of S	Section]	4 To	wnship	22S Ra	nge_32E		N.M.P.M.
b. Tract	No	of Map No)	0	f the					
	o vision, recorded									
		_ feet, Y=		fee	t, N.M. Co	ordinate S	ystem			
(B) Drilling C	Contractor . <u>T</u>	aylor W	ater We	11 Serv	vice		_ License No	WD-1348	}	
Address73	17 Etche	verry R	d., Car	lsbad,	NM 882	220				
Drilling Began	6/12/01	Con	pleted <u>6</u>	/23/01	Тур	e tools <u>A</u>	ir Rotary	Size of	hole	7 7/8 in.
Elevation of la	ad surface or _			a	t well is[JK	ft. Total depth	of well	540	ft.
Completed wel	lis 🖾 sl	hallow 🗔	artesian.		Depth	to water	upon completio	n of well	340	ft.
		Se	ction 2. PRI	INCIPAL W	ATER-BEA	RING ST	RATA			
Erom	in Feet To	Thicknes in Fect		Description	n of Water-	Bearing Fe	ormation		nated is per r	Yield ninute)
410	540	130		y thin	silt :	stone+	sand stor	e 1.	. 5	
				tion 3. REC					Perfo	rations
Diameter (inches)	Pounds per foot	Threads per in.	Тор	th in Feet Botto		ength (feet)	Type of Sh	oe F	rom	To
5	SCH 40	PVC	+2	540		542	Cap		10	430
								4		S1540
							-		,	
		See	tion 4. REC	CORD OF M	UDDING /	AND CEM	ENTING			ŻĞ
	in Feet	Hole	S	acks	Cubic I	Feet	Metl	od of Place	ment	ão:
From	То	Diameter	of	Mud	of Cem	hent		,	л Л	8 <u>2</u>
					L			-(
Duraning Court	taclor			ction 5. PLU	GGING R	ECORD				
	ractor						Depth i	n Feet		ubic Feet
Plugging Meth	od					No.	Тор	Bottom		of Cement
Date Well Plug Plugging appr	gged					$-\frac{1}{2}$				

FOR USE OF STATE ENGINEER ONLY

State Engineer Representative

Date Received 10-04-2001

Released to Imaging: 8/24/2022 11:52:12 AM

_____ FWL _____ FSL___ Quad

3

4

Use Domestic/Stock Location No. 225.32E.14.322

1/

Received by OCD

		2.0		0 4	10
\mathbf{p}	age	$\prec x$	0	t I	hХ
	ucc	50	U	1 1	00

8/19/2022	7:09:47 AM	[Section 6, LOG OF HOLE
Depth From	in Feet To	Thickness in Feet	Color and Type of Material Encountered
0	4	4	Sandy Soil
4	14	10	Caliche+Pnk Shdy Congl
14	26	12	Clay:pnk,rd,sndy
26	30	4	Limestone:yel brn,dns
30	36	6	Conglomerate:wht,pnk,sndy,lmy
36	68	32	Clay:rd,sndy
68	72	4	Conglomerate:rd,sndy,vfn-fn grn,wl consl
72	166	94	Clay:rd,smth,stky
166	170	4	Siltstone:gry,fria,calc
170	184	14	Clay:rd,smth,stky
184	188	4	Siltstone:gry,fria,calc
188	194	6	Clay:rd,sft
194	238	44	Shale:rd,blky,sme rd sandstone
238	266	28	Sandstone:rd,gry,frstd,fn-med grn,shly in prt
266	290	24	Conglomerate:rd,gry,vfn grn ss+sh gravel,calc
290	302	12	Sh:rd,blky,slty,sndy
302	310	8	Conglomerate:yel brn,vry sndy,lmy
310	386	76	Shale:rd, sme lt gn+bent, blky-tblr, slty
386	390	4	Clay:rd,vry stky
390	476	86	Shale:rd, blky, slty, thin layers of sandstone
476	482	6	Sandstone:gry,vfn grn,slty,fria
482	518	36	Shale:rd,blky,slty,sme gry ss
518	522	4	Sandstone:gry,vfn grn,slty,fria,calc
522	532	10	Sh:rd, blky, slty
532	538	6	Sandstone:gry,vfn grn,slty,fria,calc
538	540	2	SH:rd, blky, slty
		Sectio	n 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

ר Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When the the is used as a plugging record, only Section and Section 5 need be completed.

Appendix C Laboratory Analytical Reports

Received by OCD: 8/19/2022 7:09:47 AM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-10650-1

Laboratory Sample Delivery Group: Rural Eddy Co, NM Client Project/Site: Speedy Booster

For:

Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Attn: PM List

KRAMER

Authorized for release by: 2/2/2022 6:24:19 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Ask The Expert Visit us at: www.eurofinsus.com/Env

LINKS

Review your project results through

Total Access

Have a Question?

Released to Imaging: 8/24/2022 11:52:12 AM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	28
QC Sample Results	31
QC Association Summary	44
Lab Chronicle	52
Certification Summary	61
Method Summary	62
Sample Summary	63
Chain of Custody	64
Receipt Checklists	67

Definitions/Glossary

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	5
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	8

E1	MS and/or MSD receivery exceeds control limite
Qualifier	Qualifier Description
HPLC/IC	
U	Indicates the analyte was analyzed for but not detected.

Surrogate recovery exceeds control limits, high biased.

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

F2 S1-S1+

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Job ID: 880-10650-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-10650-1

Receipt

The samples were received on 1/27/2022 12:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.3°C

GC VOA

Method 8021B: 4-Bromofluorobenzene recovery for the following samples were outside of acceptance limits: V2 @ 1' (880-10650-8) and NH1 @ 1' (880-10650-14), due to matrix interference.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-17780 and analytical batch 880-17974 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: V1 @ 4' (880-10650-6), (CCV 880-18101/20) and (CCV 880-18101/33). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: V1 @ 0' (880-10650-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: EH1 @ 1' (880-10650-18), EH2 @ 0' (880-10650-19), (880-10734-A-1-F MS) and (880-10734-A-1-G MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 880-18150 and analytical batch 880-18223 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: EH3 @ 0' (880-10650-21), EH3 @ 1' (880-10650-22), WH1 @ 0' (880-10650-23), WH1 @ 1' (880-10650-24), WH2 @ 0' (880-10650-25), WH2 @ 1' (880-10650-26), WH3 @ 0' (880-10650-27), WH3 @ 1' (880-10650-28), (880-10650-A-21-G MS) and (880-10650-A-21-H MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-17962 and analytical batch 880-18076 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Page 44 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: OS1 @ 0'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Sample Depth: 0'

Project/Site: Speedy Booster

Lab Sample ID: 880-10650-1 Matrix: Solid 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 13:29	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 13:29	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 13:29	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/27/22 16:00	01/28/22 13:29	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 13:29	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/27/22 16:00	01/28/22 13:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	72		70 - 130				01/27/22 16:00	01/28/22 13:29	1
1,4-Difluorobenzene (Surr)	72		70 - 130				01/27/22 16:00	01/28/22 13:29	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/31/22 12:09	1
Method: 8015 NM - Diesel Range	e Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/02/22 12:49	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 10:47	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 10:47	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 10:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130				01/31/22 11:05	02/01/22 10:47	1
o-Terphenyl	76		70 - 130				01/31/22 11:05	02/01/22 10:47	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.80	F1	4.96		mg/Kg			01/30/22 16:20	1
lient Sample ID: OS1 @ 1' ate Collected: 01/26/22 00:00 ate Received: 01/27/22 00:00 ample Depth: 1'							Lab Sam	ple ID: 880-1 Matri	0650-2 x: Solic
Method: 8021B - Volatile Organi	c Compounde /								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199		mg/Kg		01/27/22 16:00	01/28/22 13:50	1
Toluene	< 0.00199		0.00199		mg/Kg		01/27/22 16:00	01/28/22 13:50	
	<0.00100		0.00100		.99		01/27/22 16:00	01/20/22 10:00	

01/27/22 16:00 01/28/22 13:50 Ethylbenzene <0.00199 U 0.00199 mg/Kg <0.00398 U 0.00398 01/27/22 16:00 01/28/22 13:50 m-Xylene & p-Xylene mg/Kg 1 o-Xylene <0.00199 U 0.00199 01/27/22 16:00 01/28/22 13:50 mg/Kg 1 Xylenes, Total <0.00398 U 0.00398 mg/Kg 01/27/22 16:00 01/28/22 13:50 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 4-Bromofluorobenzene (Surr) 106 70 - 130 01/27/22 16:00 01/28/22 13:50 1

Eurofins Midland

Released to Imaging: 8/24/2022 11:52:12 AM

5

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-2

Client Sample ID: OS1 @ 1'

Project/Site: Speedy Booster

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 1'								Matri	x: Solid
Method: 8021B - Volatile Organic	c Compounds (GC) (Conti	nued)						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	107		70 - 130				01/27/22 16:00	01/28/22 13:50	
- Method: Total BTEX - Total BTE>	Calculation								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/31/22 12:09	
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			02/02/22 16:07	
Method: 8015B NM - Diesel Rang	ne Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 11:52	
(GRO)-C6-C10					0 0				
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 11:52	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 11:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	99		70 - 130				01/31/22 11:05	02/01/22 11:52	
o-Terphenyl	87		70 - 130				01/31/22 11:05	02/01/22 11:52	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	26.1		4.99		mg/Kg			01/30/22 16:43	
Client Sample ID: OS2 @ 0'							Lab Sam	ple ID: 880-1	0650-3
Date Collected: 01/26/22 00:00								Matri	x: Solid
Date Received: 01/27/22 00:00									
Sample Depth: 0'									
- Method: 8021B - Volatile Organio	c Compounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 14:11	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 14:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 14:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 14:11	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/27/22 16:00	01/28/22 14:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 14:11	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/27/22 16:00	01/28/22 14:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				01/27/22 16:00	01/28/22 14:11	1
1,4-Difluorobenzene (Surr)	90		70 - 130				01/27/22 16:00	01/28/22 14:11	1
– Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			01/31/22 12:09	1
– Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			02/02/22 16:07	1

Eurofins Midland

Released to Imaging: 8/24/2022 11:52:12 AM

Matrix: Solid

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-3

Client Sample ID: OS2 @ 0'

Project/Site: Speedy Booster

Date Collected: 01/26/22 00:00	
Date Received: 01/27/22 00:00	

Sample Depth: 0'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 12:13	
GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 12:13	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 12:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
I-Chlorooctane	73		70 - 130				01/31/22 11:05	02/01/22 12:13	
o-Terphenyl	70		70 - 130				01/31/22 11:05	02/01/22 12:13	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	39.6		4.98		mg/Kg			01/30/22 16:51	1

Client Sample ID: OS2 @ 1'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		01/27/22 16:00	01/28/22 14:32	1
Toluene	<0.00202	U	0.00202		mg/Kg		01/27/22 16:00	01/28/22 14:32	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		01/27/22 16:00	01/28/22 14:32	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		01/27/22 16:00	01/28/22 14:32	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		01/27/22 16:00	01/28/22 14:32	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		01/27/22 16:00	01/28/22 14:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				01/27/22 16:00	01/28/22 14:32	1
1,4-Difluorobenzene (Surr)	74		70 - 130				01/27/22 16:00	01/28/22 14:32	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			01/31/22 12:09	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			02/02/22 16:07	1
- Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 12:35	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 12:35	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 12:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	74		70 - 130				01/31/22 11:05	02/01/22 12:35	1

3 4 5

Client Sample Results

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: OS2 @ 1' Date Collected: 01/26/22 00:00							Lab Sam	ple ID: 880-1 Matri	0650-4 ix: Solid
Date Received: 01/27/22 00:00 Sample Depth: 1'								indu	
- Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.0		5.00		mg/Kg			01/30/22 16:58	1
Client Sample ID: V1 @ 0'							Lab Sam	ple ID: 880-1	0650-5
ate Collected: 01/26/22 00:00								Matri	ix: Solic
ate Received: 01/27/22 00:00									
ample Depth: 0'									
Method: 8021B - Volatile Organic	Compounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.202	U	0.202		mg/Kg		01/31/22 07:24	01/31/22 18:34	100
Toluene	15.2		0.202		mg/Kg		01/31/22 07:24	01/31/22 18:34	100
Ethylbenzene	11.1		0.202		mg/Kg		01/31/22 07:24	01/31/22 18:34	100
m-Xylene & p-Xylene	44.1		0.403		mg/Kg		01/31/22 07:24	01/31/22 18:34	100
o-Xylene	12.7		0.202		mg/Kg		01/31/22 07:24	01/31/22 18:34	100
Xylenes, Total	56.8		0.403		mg/Kg		01/31/22 07:24	01/31/22 18:34	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	213	S1+	70 - 130				01/31/22 07:24	01/31/22 18:34	100
1,4-Difluorobenzene (Surr)	73		70 - 130				01/31/22 07:24	01/31/22 18:34	100
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	83.1		0.403		mg/Kg			02/02/22 18:08	1
- Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	7600		49.9		mg/Kg			02/02/22 12:49	1
- Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	1960		49.9		mg/Kg		01/31/22 11:05	02/01/22 15:24	
Diesel Range Organics (Over C10-C28)	5640		49.9		mg/Kg		01/31/22 11:05	02/01/22 15:24	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 15:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	161	S1+	70 - 130				01/31/22 11:05	02/01/22 15:24	1
o-Terphenyl	78		70 - 130				01/31/22 11:05	02/01/22 15:24	
- Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
			ы	MDI	Unit		Dramarad	A	Dil Fac
Analyte	Result	Qualifier	RL	WIDL	Unit	D	Prepared	Analyzed	DIFA

Eurofins Midland

Released to Imaging: 8/24/2022 11:52:12 AM

Method: 8021B - Volatile Organic Compounds (GC)

Method: Total BTEX - Total BTEX Calculation

Result Qualifier

Qualifier

<0.00199 U

0.00398

0.0134

0.128

0.0650

0.193

140 S1+

100

%Recovery

RL

0.00199

0.00199

0.00199

0.00398

0.00199

0.00398

Limits

70 - 130

70 - 130

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

01/31/22 07:27

01/31/22 07:27

01/31/22 07:27

01/31/22 07:27

01/31/22 07:27

01/31/22 07:27

Prepared

01/31/22 07:27

01/31/22 07:27

Page 48 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Analyzed

01/31/22 16:08

01/31/22 16:08

01/31/22 16:08

01/31/22 16:08

01/31/22 16:08

01/31/22 16:08

Analyzed

01/31/22 16:08

01/31/22 16:08

Client	Samp	le ID:	V1	@ 4'
--------	------	--------	----	------

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Project/Site: Speedy Booster

Sample Depth: 4'

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 880-10650-6

Matrix: Solid 4 5 ed Dil Fac

1

1

1

1

1

1

1

Dil Fac

11 12 13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.210		0.00398		mg/Kg			02/02/22 18:08	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	604		50.0		mg/Kg			02/02/22 12:49	1
- Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 15:53	1
Diesel Range Organics (Over C10-C28)	604		50.0		mg/Kg		01/31/22 11:05	02/01/22 15:53	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 15:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	76		70 - 130				01/31/22 11:05	02/01/22 15:53	1
o-Terphenyl	73		70 - 130				01/31/22 11:05	02/01/22 15:53	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2640		25.2		mg/Kg			01/30/22 17:29	5
Client Sample ID: V2 @ 0'							Lab Sam	ple ID: 880-1	0650-7
Date Collected: 01/26/22 00:00								Matri	ix: Solid
Date Received: 01/27/22 00:00									
Sample Depth: 0'									
Method: 8021B - Volatile Organic	Compounds	(GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bonzono	<0.00100	11	0.00100		ma/Ka		01/27/22 16:00	01/28/22 15:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 15:34	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 15:34	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 15:34	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/27/22 16:00	01/28/22 15:34	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 15:34	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/27/22 16:00	01/28/22 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130				01/27/22 16:00	01/28/22 15:34	1

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier

Result Qualifier

Ū

Result Qualifier

Result Qualifier

<49.9 U

<49.9 U

<49.9 U

78

74

Qualifier

%Recovery

77

<0.00398

<49.9 U Limits

70 - 130

RL

RL

49.9

RL

49.9

49.9

49.9

Limits

70 - 130

70 - 130

0.00398

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Analyzed

01/28/22 15:34

Analyzed

01/31/22 12:09

Analyzed

02/02/22 12:49

Analyzed

Client Sample ID: V2 @ 0' Date Collected: 01/26/22 00:00

Project/Site: Speedy Booster

Date Received: 01/27/22 00:00

Sample Depth: 0'

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Total TPH

Total BTEX

Prepared

01/27/22 16:00

Prepared

Prepared

Prepared

D

D

D

5

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Matrix: Solid

01/31/22 11:05	02/01/22 16:14	1	
01/31/22 11:05	02/01/22 16:14	1	
Prepared	Analyzed	Dil Fac	
01/31/22 11:05	02/01/22 16:14	1	13
01/31/22 11:05	02/01/22 16:14	1	12
01/31/22 11:05	02/01/22 16:14	1	

Method: 300.0 - Anions, Ion Chror	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2320		24.9		mg/Kg			01/30/22 17:36	5
Client Sample ID: V2 @ 1'							Lab San	nple ID: 880-1	0650-8

Client Sample ID: V2 @ 1

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 1'

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00201 U 0.00201 mg/Kg 01/27/22 16:00 01/28/22 15:55 Toluene <0.00201 U 0.00201 01/27/22 16:00 01/28/22 15:55 mg/Kg 1 Ethylbenzene <0.00201 U 0.00201 01/27/22 16:00 01/28/22 15:55 mg/Kg 0.00402 01/28/22 15:55 m-Xylene & p-Xylene <0.00402 U 01/27/22 16:00 mg/Kg 1 o-Xylene <0.00201 U 0.00201 mg/Kg 01/27/22 16:00 01/28/22 15:55 Xylenes, Total <0.00402 U 0.00402 mg/Kg 01/27/22 16:00 01/28/22 15:55 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 70 - 130 S1+ 01/27/22 16:00 01/28/22 15:55 4-Bromofluorobenzene (Surr) 156 1 1,4-Difluorobenzene (Surr) 92 70 - 130 01/27/22 16:00 01/28/22 15:55 1 Method: Total BTEX - Total BTEX Calculation Analvte RL MDL D Result Qualifier Unit Prepared Analvzed Dil Fac Total BTEX <0.00402 Ū 0.00402 01/31/22 12:09 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <50.0 U 02/02/22 12:49 Total TPH 50.0 mg/Kg 1

Eurofins Midland

Released to Imaging: 8/24/2022 11:52:12 AM

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Client Sample ID: V2 @ 1'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 16:35	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 16:35	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 16:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				01/31/22 11:05	02/01/22 16:35	1
o-Terphenyl	90		70 - 130				01/31/22 11:05	02/01/22 16:35	1
- Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Welliou. 300.0 - Allions, Ion Chi									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: V3 @ 0'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Sample Depth: 0'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 16:16	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 16:16	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 16:16	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/27/22 16:00	01/28/22 16:16	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 16:16	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/27/22 16:00	01/28/22 16:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				01/27/22 16:00	01/28/22 16:16	1
1,4-Difluorobenzene (Surr)	105		70 - 130				01/27/22 16:00	01/28/22 16:16	1
- Method: Total BTEX - Total BTE)	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			01/31/22 12:09	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			02/02/22 12:49	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 16:56	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 16:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 16:56	1
	~~=	Qualifian	Limits				Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	Quaimer	Lillins				Frepareu	Analyzeu	DIIFat
Surrogate 1-Chlorooctane	%Recovery 76	Quaimer	70 - 130				01/31/22 11:05	02/01/22 16:56	

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-8

Matrix: Solid

Lab Sample ID: 880-10650-9 Matrix: Solid

Page 51 of 168

Client Sample Results

Job ID: 880-10650-1 SDG: Rural Eddy Co. NM

Client Sample ID: V3 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 0'							Lab Sam	ple ID: 880-1 Matri	0650-9 x: Solid
 Method: 300.0 - Anions, Ion Chron Analyte		Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7060		50.1		mg/Kg			01/30/22 17:52	10
Client Sample ID: V3 @ 2'-R Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 2'							Lab Samp	le ID: 880-10 Matri	650-10 x: Solid
_ Method: 8021B - Volatile Organic (
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198		0.00198		mg/Kg		01/27/22 16:00	01/28/22 16:37	1
Toluene	<0.00198	U	0.00198		mg/Kg		01/27/22 16:00	01/28/22 16:37	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		01/27/22 16:00	01/28/22 16:37	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		01/27/22 16:00	01/28/22 16:37	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		01/27/22 16:00	01/28/22 16:37	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		01/27/22 16:00	01/28/22 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130				01/27/22 16:00	01/28/22 16:37	1
1,4-Difluorobenzene (Surr)	83		70 - 130				01/27/22 16:00	01/28/22 16:37	1
_ Method: Total BTEX - Total BTEX (Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			01/31/22 12:09	1
_ Method: 8015 NM - Diesel Range C	Drganics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/02/22 12:49	1
– Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 17:17	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 17:17	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 17:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				01/31/22 11:05	02/01/22 17:17	1
o-Terphenyl	98		70 - 130				01/31/22 11:05	02/01/22 17:17	1
_ Method: 300.0 - Anions, Ion Chron	atography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Client Sample ID: V4@ 0'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Sample Depth: 0'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 18:01	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 18:01	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 18:01	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/27/22 16:00	01/28/22 18:01	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 18:01	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/27/22 16:00	01/28/22 18:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				01/27/22 16:00	01/28/22 18:01	1
1,4-Difluorobenzene (Surr)	86		70 - 130				01/27/22 16:00	01/28/22 18:01	1

	Method: Total BTEX - Total BTEX Calculation									
	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
l	Total BTEX	<0.00398	U	0.00398	mg/Kg			01/31/22 12:09	1	

Method: 8015 NM - Diesel Range C	Organics (DRO	0) (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<50.0	U	50.0		mg/Kg			02/02/22 12:49	1	

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 17:38	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 17:38	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 17:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				01/31/22 11:05	02/01/22 17:38	1
o-Terphenyl	92		70 - 130				01/31/22 11:05	02/01/22 17:38	1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	669		4.95		mg/Kg			02/01/22 21:47	1

Client Sample ID: V4 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 1'

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		01/27/22 16:00	01/28/22 18:22	1
Toluene	<0.00202	U	0.00202		mg/Kg		01/27/22 16:00	01/28/22 18:22	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		01/27/22 16:00	01/28/22 18:22	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		01/27/22 16:00	01/28/22 18:22	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		01/27/22 16:00	01/28/22 18:22	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		01/27/22 16:00	01/28/22 18:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				01/27/22 16:00	01/28/22 18:22	1

Eurofins Midland

Matrix: Solid

Lab Sample ID: 880-10650-12

Page 52 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-11

Matrix: Solid

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Qualifier

%Recovery

<0.00404

<49.9 U

91

Result Qualifier

U

Result Qualifier

Result Qualifier

<49.9 U

<49.9 U

Limits

70 - 130

RL

RL

49.9

RL

49.9

49.9

0.00404

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Matrix: Solid

1

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: V4 @ 1' Date Collected: 01/26/22 00:00

Project/Site: Speedy Booster

Date Received: 01/27/22 00:00

Sample Depth: 1'

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

C10-C28) Oll Range Orga

Surrogate

1-Chlorooctane o-Terphenyl

Total TPH

Total BTEX

Lab Sample ID: 880-10650-12 Matrix: Solid

Analyzed

01/28/22 18:22

Analyzed

01/31/22 12:09

Analyzed

02/02/22 12:49

Analyzed

02/01/22 17:59

02/01/22 17:59

Lab Sample ID: 880-10650-13

Prepared

01/27/22 16:00

Prepared

Prepared

Prepared

01/31/22 11:05

01/31/22 11:05

D

D

D

Dil Fac	
1	
1	13

ganics (Over C28-C36)	<49.9	U	49.9	mg/Kg	01/31/22 11:05	02/01/22 17:59	
	%Recovery	Qualifier	Limits		Prepared	Analyzed	
e	91		70 - 130		01/31/22 11:05	02/01/22 17:59	_
	90		70 - 130		01/31/22 11:05	02/01/22 17:59	

Method: 300.0 - Anions, Ion Chron	Method: 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	39.9	4.9	7	mg/Kg			02/01/22 21:53	1			

Client Sample ID: NH1 @ 0'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 0'

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 mg/Kg 01/27/22 16:00 01/28/22 18:43 Toluene <0.00199 U 0 00199 01/27/22 16:00 01/28/22 18:43 mg/Kg 1 Ethylbenzene <0.00199 U 0.00199 01/27/22 16:00 01/28/22 18:43 mg/Kg 01/28/22 18:43 m-Xylene & p-Xylene <0.00398 U 0.00398 01/27/22 16:00 mg/Kg 1 o-Xylene <0.00199 U 0.00199 mg/Kg 01/27/22 16:00 01/28/22 18:43 Xylenes, Total <0.00398 U 0.00398 mg/Kg 01/27/22 16:00 01/28/22 18:43 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 70 - 130 4-Bromofluorobenzene (Surr) 92 01/27/22 16:00 01/28/22 18:43 1 1,4-Difluorobenzene (Surr) 95 70 - 130 01/27/22 16:00 01/28/22 18:43 1 Method: Total BTEX - Total BTEX Calculation Analvte RL MDL D Result Qualifier Unit Prepared Analvzed Dil Fac Total BTEX <0.00398 Ū 0.00398 mg/Kg 01/31/22 12:09 Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <50.0 U 02/02/22 12:49 Total TPH 50.0 mg/Kg 1

Eurofins Midland

Released to Imaging: 8/24/2022 11:52:12 AM

Client Sample Results

RL

MDL Unit

D

Prepared

Page 54 of 168

Dil Fac

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-13 Matrix: Solid

Analyzed

	100		70 - 150				01/21/22 10.00	01/20/22 19.04	,
thod: Total BTEX - Total BTEX (Calculation								
alyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
al BTEX	<0.00401	U	0.00401		mg/Kg			01/31/22 12:09	1
thod: 8015 NM - Diesel Range (Drganics (DR	O) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/02/22 12:49	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 18:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 18:41	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	82		70 - 130				01/31/22 11:05	02/01/22 18:41	1
o-Terphenyl	79		70 - 130				01/31/22 11:05	02/01/22 18:41	1

Eurofins Midland

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 0'

Analyte

Analyte	Result	Quaimer	RL	WDL	Unit	U	Prepared	Analyzed	DIFac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 18:20	1
(GRO)-C6-C10	~50.0		50.0		malka		01/21/22 11:05	02/01/22 19:20	1
Diesel Range Organics (Over C10-C28)	<50.0	0	50.0		mg/Kg		01/31/22 11:05	02/01/22 18:20	I
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 11:05	02/01/22 18:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130				01/31/22 11:05	02/01/22 18:20	1
o-Terphenyl	89		70 - 130				01/31/22 11:05	02/01/22 18:20	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	38.9		5.00		mg/Kg			02/01/22 21:59	1
Client Sample ID: NH1 @ 1							Lab Samp	le ID: 880-10	650-14
Date Collected: 01/26/22 00:00								Matri	x: Solid
Date Received: 01/27/22 00:00									
Sample Depth: 1'									
-									
Method: 8021B - Volatile Organic	Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:04	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:04	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:04	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		01/27/22 16:00	01/28/22 19:04	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:04	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		01/27/22 16:00	01/28/22 19:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130				01/27/22 16:00	01/28/22 19:04	1
1,4-Difluorobenzene (Surr)	100		70 - 130				01/27/22 16:00	01/28/22 19:04	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			01/31/22 12:09	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg	_		02/02/22 12:49	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/31/22 11:05	02/01/22 18:41	1

Client Sample Results

Job ID: 880-1065	50-1
SDG: Rural Eddy Co,	NM

Client Sample ID: NH1 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 1'							Lab Samp	le ID: 880-10 Matri	650-14 x: Solic
- Method: 300.0 - Anions, Ion Chro Analyte		Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	28.5		4.99		mg/Kg			02/01/22 22:18	
Client Sample ID: SH1 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Gample Depth: 0'							Lab Samp	le ID: 880-10 Matri	650-15 x: Solic
Method: 8021B - Volatile Organic									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:24	
Toluene	<0.00200		0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:24	
Ethylbenzene	<0.00200		0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:24	
m-Xylene & p-Xylene	<0.00401		0.00401		mg/Kg		01/27/22 16:00	01/28/22 19:24	
o-Xylene	<0.00200		0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:24	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		01/27/22 16:00	01/28/22 19:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		70 - 130				01/27/22 16:00	01/28/22 19:24	
1,4-Difluorobenzene (Surr)	108		70 - 130				01/27/22 16:00	01/28/22 19:24	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			01/31/22 12:09	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			02/02/22 16:07	
- Method: 8015B NM - Diesel Range	Organice (D								
Analyte	- · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8		49.8		mg/Kg		02/01/22 13:25	02/02/22 02:28	
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		02/01/22 13:25	02/02/22 02:28	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		02/01/22 13:25	02/02/22 02:28	
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Surrogate			70 - 130				02/01/22 13:25	02/02/22 02:28	
	70		10-130						
Surrogate 1-Chlorooctane o-Terphenyl	70 77		70 - 130				02/01/22 13:25	02/02/22 02:28	
1-Chlorooctane o-Terphenyl	77	Soluble					02/01/22 13:25	02/02/22 02:28	
1-Chlorooctane	77 matography -	Soluble Qualifier		MDL	Unit	D	02/01/22 13:25 Prepared	02/02/22 02:28 Analyzed	Dil Fa

Client Sample Results

RL

MDL Unit

D

Prepared

Page 56 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sam	ple ID:	SH1	@ 1'
------------	---------	-----	------

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Sample Depth: 1'

Analyte

Lab Sample ID: 880-10650-16 Matrix: Solid

Analyzed

	5
Dil Fac	
1	
1	
1	
1	
1	8
1	
Dil Fac	9
1 1	
Dil Fac	
1	
Dil Fac	13
4	

Analyte	Result	Quaimer			Unit	U	Flepaleu	Analyzeu	DIFAC
Benzene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:45	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:45	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:45	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		01/27/22 16:00	01/28/22 19:45	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/27/22 16:00	01/28/22 19:45	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		01/27/22 16:00	01/28/22 19:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 _ 130				01/27/22 16:00	01/28/22 19:45	1
1,4-Difluorobenzene (Surr)	92		70 - 130				01/27/22 16:00	01/28/22 19:45	1
Method: Total BTEX - Total BTE)	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			01/31/22 12:09	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	• · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/02/22 16:07	1
Method: 8015B NM - Diesel Rang	no Organice (D								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9		49.9		mg/Kg		02/01/22 13:25	02/02/22 02:50	1
(GRO)-C6-C10					5 5				
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		02/01/22 13:25	02/02/22 02:50	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		02/01/22 13:25	02/02/22 02:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	71		70 _ 130				02/01/22 13:25	02/02/22 02:50	1
o-Terphenyl	82		70 - 130				02/01/22 13:25	02/02/22 02:50	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<4.95	U	4.95		mg/Kg			02/01/22 22:30	1
lient Sample ID: EH1 @ 0'							Lab Samp	le ID: 880-10	650-17
ate Collected: 01/26/22 00:00									x: Solid
ate Received: 01/27/22 00:00									
ample Depth: 0'									
Method: 8021B - Volatile Organio	Compounds	(GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199		0.00199		mg/Kg		01/27/22 16:00	01/28/22 20:06	1
Toluene	<0.00199		0.00199		mg/Kg		01/27/22 16:00	01/28/22 20:06	1
Ethylbenzene	<0.00199		0.00199		mg/Kg		01/27/22 16:00	01/28/22 20:06	1
m-Xylene & p-Xylene	<0.00398		0.00398		mg/Kg		01/27/22 16:00	01/28/22 20:06	
o-Xvlene	<0.00100		0.00199		ma/Ka		01/27/22 16:00	01/28/22 20:06	1

o-Xylene <0.00199 U 0.00199 01/27/22 16:00 01/28/22 20:06 mg/Kg Xylenes, Total <0.00398 U 0.00398 mg/Kg 01/27/22 16:00 01/28/22 20:06 Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 97 70 - 130 01/27/22 16:00 01/28/22 20:06

Eurofins Midland

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

Released to Imaging: 8/24/2022 11:52:12 AM

2/2/2022

1

1

1

Dil Fac

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: EH1 @ 0' Date Collected: 01/26/22 00:00

D

Project/Site: Speedy Booster

S

Lab Sample ID:	880-10650-17
	Matrix: Solid

5

Date Received: 0	1/27/22 00:00
Sample Depth: 0	•

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	89		70 - 130				01/27/22 16:00	01/28/22 20:06	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/31/22 12:09	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			02/02/22 16:07	
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		02/01/22 13:25	02/02/22 03:11	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		02/01/22 13:25	02/02/22 03:11	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		02/01/22 13:25	02/02/22 03:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	78		70 - 130				02/01/22 13:25	02/02/22 03:11	
o-Terphenyl	89		70 - 130				02/01/22 13:25	02/02/22 03:11	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	23.3		5.04		mg/Kg			02/01/22 22:36	
lient Sample ID: EH1 @ 1							Lab Samp	le ID: 880-10	650-1
ate Collected: 01/26/22 00:00							-	Matri	x: Soli
ate Received: 01/27/22 00:00									
ample Depth: 1'									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 20:27	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 20:27	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 20:27	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/27/22 16:00	01/28/22 20:27	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/27/22 16:00	01/28/22 20:27	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/27/22 16:00	01/28/22 20:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				01/27/22 16:00	01/28/22 20:27	1
1,4-Difluorobenzene (Surr)	102		70 - 130				01/27/22 16:00	01/28/22 20:27	1
Method: Total BTEX - Total B	FEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/31/22 12:09	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		U	49.9					02/02/22 16:07	

Client Sample Results

RL

49.9

49.9

49.9

RL

4.98

Limits

70 - 130

70 - 130

MDL

Unit

mg/Kg

mg/Kg

mg/Kg

MDL Unit

mg/Kg

mg/Kg

D

D

Prepared

02/01/22 13:25

02/01/22 13:25

02/01/22 13:25

Prepared

02/01/22 13:25

02/01/22 13:25

Prepared

Page 58 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Analyzed

02/02/22 03:33

02/02/22 03:33

02/02/22 03:33

Analvzed

02/02/22 03:33

02/02/22 03:33

Analyzed

02/01/22 22:42

02/02/22 16:07

Matrix: Solid

Dil Fac

1

1

1

1

1

Client Sample ID: EH1 @ 1'

Project/Site: Speedy Booster

Analyte

(GRO)-C6-C10

C10-C28)

Surrogate

o-Terphenyl

Analvte

Chloride

Analyte

Benzene

Toluene

o-Xylene

Total TPH

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Sample Depth: 0'

1-Chlorooctane

Sample Depth: 1'

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Client Sample ID: EH2 @ 0'

Date Collected: 01/26/22 00:00

Date Received: 01/27/22 00:00

		<u> </u>
Date Co	llected: 01/2	6/22 00:00
Date Re	ceived: 01/2	7/22 00:00

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 300.0 - Anions, Ion Chromatography - Soluble

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<49.9 U

<49.9 U

<49.9 U

%Recovery Qualifier

68

76

34.2

S1-

Result Qualifier

Result Qualifier

U

<0.00199

<0.00199 U

<0.00199 U

<0.00398 U

<0.00199 U

<0.00398 U

<50.0 U

Lab Sample ID: 880-10650-18 Matrix: Solid

5

RL MDL Unit D Prepared Analyzed 0.00199 01/27/22 16:00 01/28/22 20:47 mg/Kg 0.00199 01/27/22 16:00 01/28/22 20:47 mg/Kg 01/28/22 20:47 0.00199 01/27/22 16:00 mg/Kg 0.00398 01/27/22 16:00 01/28/22 20:47 mg/Kg 0.00199 01/27/22 16:00 01/28/22 20:47 mg/Kg 0.00398 mg/Kg 01/27/22 16:00 01/28/22 20:47

Surrogate	%Recovery	Qualifier I	imits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95	7	70 - 130	01/27/22 16:00	01/28/22 20:47	1
1,4-Difluorobenzene (Surr)	97	7	70 - 130	01/27/22 16:00	01/28/22 20:47	1
	Calculation					

Welliou. Iolai DIEA - Iolai DIEA (alculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/31/22 12:09	1
— Method: 8015 NM - Diesel Range C	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

50.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		02/01/22 13:25	02/02/22 03:55	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		02/01/22 13:25	02/02/22 03:55	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		02/01/22 13:25	02/02/22 03:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	69	S1-	70 - 130				02/01/22 13:25	02/02/22 03:55	1
o-Terphenyl	79		70 - 130				02/01/22 13:25	02/02/22 03:55	1

Eurofins Midland

Dil Fac 1 Dil Fac 1 Dil Fac 1 Lab Sample ID: 880-10650-19

Released to Imaging: 8/24/2022 11:52:12 AM

Client Sample Results

	Job ID: 880-1065	50-1
S	DG: Rural Eddy Co,	NM

Client Sample ID: EH2 @ 0' ate Collected: 01/26/22 00:00 ate Received: 01/27/22 00:00 ample Depth: 0'							Lab Samp	le ID: 880-10 Matri	650-19 x: Solic
Method: 300.0 - Anions, Ion Chroi Analyte		Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	80.0		4.95		mg/Kg			02/01/22 22:49	
Client Sample ID: EH2 @ 1' ate Collected: 01/26/22 00:00 ate Received: 01/27/22 00:00 ample Depth: 1'							Lab Samp	le ID: 880-10 Matri	650-2(x: Solic
Method: 8021B - Volatile Organic									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201		0.00201		mg/Kg		01/27/22 16:00	01/28/22 21:08	
Toluene	<0.00201	U	0.00201		mg/Kg		01/27/22 16:00	01/28/22 21:08	
Ethylbenzene	<0.00201		0.00201		mg/Kg		01/27/22 16:00	01/28/22 21:08	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		01/27/22 16:00	01/28/22 21:08	
o-Xylene	<0.00201	U	0.00201		mg/Kg		01/27/22 16:00	01/28/22 21:08	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		01/27/22 16:00	01/28/22 21:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96		70 - 130				01/27/22 16:00	01/28/22 21:08	
1,4-Difluorobenzene (Surr)	101		70 - 130				01/27/22 16:00	01/28/22 21:08	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			01/31/22 12:09	
Method: 8015 NM - Diesel Range (Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			02/02/22 16:07	
Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		02/01/22 13:25	02/02/22 04:17	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		02/01/22 13:25	02/02/22 04:17	
	<49.9	U	49.9		mg/Kg		02/01/22 13:25	02/02/22 04:17	
Oll Range Organics (Over C28-C36)									
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36) Surrogate		Qualifier	Limits 70 - 130				Prepared 02/01/22 13:25	Analyzed 02/02/22 04:17	
Oll Range Organics (Over C28-C36)	%Recovery	Qualifier							Dil Fa
Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	% Recovery 70 83		70 - 130				02/01/22 13:25	02/02/22 04:17	

Client Sample Results

Page 60 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: EH3 @ 0'

Project/Site: Speedy Booster

Sample Depth: 0'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Client: Etech Environmental & Safety Solutions

Lab Sample ID: 880-10650-21

Matrix: Solid

Method: 8021B - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U F1	0.00198		mg/Kg		01/28/22 07:30	01/29/22 09:35	
Toluene	<0.00198		0.00198		mg/Kg		01/28/22 07:30	01/29/22 09:35	
Ethylbenzene	0.00285	F1	0.00198		mg/Kg		01/28/22 07:30	01/29/22 09:35	
m-Xylene & p-Xylene	<0.00396	U F1	0.00396		mg/Kg		01/28/22 07:30	01/29/22 09:35	
o-Xylene	<0.00198	U F1	0.00198		mg/Kg		01/28/22 07:30	01/29/22 09:35	
Xylenes, Total	<0.00396	U F1	0.00396		mg/Kg		01/28/22 07:30	01/29/22 09:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	96		70 - 130				01/28/22 07:30	01/29/22 09:35	
1,4-Difluorobenzene (Surr)	83		70 - 130				01/28/22 07:30	01/29/22 09:35	
Method: Total BTEX - Total BTEX	Calculation								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00396	U	0.00396		mg/Kg			02/02/22 18:08	
Method: 8015 NM - Diesel Range						_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	<49.9	U	49.9		mg/Kg			02/02/22 16:07	
Method: 8015B NM - Diesel Rang	· · ·					_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F2	49.9		mg/Kg		01/31/22 12:03	02/01/22 20:13	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		01/31/22 12:03	02/01/22 20:13	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/31/22 12:03	02/01/22 20:13	
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil F
1-Chlorooctane		S1-	70 - 130				01/31/22 12:03	02/01/22 20:13	
p-Terphenyl	73		70 - 130				01/31/22 12:03	02/01/22 20:13	
Method: 300.0 - Anions, Ion Chro			ы	MDI	11		Duonousd	Analyzad	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride	77.8		4.97		mg/Kg			02/01/22 23:13	
lient Sample ID: EH3 @ 1'							Lab Samp	le ID: 880-10	
ate Collected: 01/26/22 00:00								Matri	x: So
ate Received: 01/2//22 00:00									
ample Depth: 1'	: Compounds (GC)							
ample Depth: 1' Method: 8021B - Volatile Organic		<mark>GC)</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
ample Depth: 1' Method: 8021B - Volatile Organic ^{Analyte}			RL	MDL	Unit mg/Kg	<u>D</u>	Prepared 01/28/22 07:30	Analyzed 01/29/22 09:55	Dil F
ample Depth: 1' Method: 8021B - Volatile Organic Analyte Benzene	Result			MDL		D	· · · · · · · · · · · · · · · · · · ·		Dil F
ample Depth: 1' Method: 8021B - Volatile Organic Analyte Benzene Toluene	Result 0.00303		0.00200	MDL	mg/Kg	<u>D</u>	01/28/22 07:30	01/29/22 09:55	Dil F
ample Depth: 1' Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene	Result 0.00303 0.00434		0.00200	MDL	mg/Kg mg/Kg	<u>D</u>	01/28/22 07:30 01/28/22 07:30	01/29/22 09:55 01/29/22 09:55	Dil F
ate Received: 01/27/22 00:00 ample Depth: 1' Method: 8021B - Volatile Organic Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result 0.00303 0.00434 0.0205		0.00200 0.00200 0.00200	MDL	mg/Kg mg/Kg mg/Kg	<u> </u>	01/28/22 07:30 01/28/22 07:30 01/28/22 07:30	01/29/22 09:55 01/29/22 09:55 01/29/22 09:55	Dil F

133 S1+ 70 - 130

%Recovery Qualifier

Eurofins Midland

Analyzed

01/29/22 09:55

Prepared

01/28/22 07:30

Surrogate

4-Bromofluorobenzene (Surr)

Limits

2/2/2022

Dil Fac

1

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Qualifier

%Recovery

111

0.0414

<50.0 U

Result Qualifier

Result Qualifier

Result Qualifier

<50.0 U

<50.0 U

<50.0 U

%Recovery Qualifier

61 S1-

75

Limits

70 - 130

RL

RL

50.0

RL

50.0

50.0

0.00400

MDL Unit

MDL Unit

MDL Unit

mg/Kg

_ mg/Kg

mg/Kg

mg/Kg

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: EH3 @ 1' Date Collected: 01/26/22 00:00

Date Received: 01/27/22 00:00

Project/Site: Speedy Booster

Sample Depth: 1'

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Total TPH

Total BTEX

Lab	Sample	ID:	880-1065	0-22
			Matrix:	Solid

Analyzed

01/29/22 09:55

Analyzed

02/02/22 18:08

Analyzed

02/02/22 16:07

Analyzed

02/01/22 21:19

02/01/22 21:19

Lab Sample ID: 880-10650-23

Matrix: Solid

5

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

50.0	mg/Kg	01/31/22 12:03	02/01/22 21:19	1
Limits		Prepared	Analyzed	Dil Fac
70 - 130		01/31/22 12:03	02/01/22 21:19	1
70 - 130		01/31/22 12:03	02/01/22 21:19	1

L

D

D

D

Prepared

01/28/22 07:30

Prepared

Prepared

Prepared

01/31/22 12:03

01/31/22 12:03

Method: 300.0 - Anions, Ion Chromatography - Soluble								
Analyte	Result Qualit	ifier RL	MDL U	Init D	Prepared	Analyzed	Dil Fac	
Chloride	48.1	4.99	m	ng/Kg		02/01/22 23:32	1	

Client Sample ID: WH1 @ 0'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 0'

Method: 8021B - Volatile Organic Compounds (GC) Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Benzene 0.0128 0.00200 mg/Kg 01/28/22 07:30 01/29/22 10:16 0.00200 01/28/22 07:30 01/29/22 10:16 mg/Kg Toluene 0.0143 1 0.00200 01/28/22 07:30 01/29/22 10:16 Ethylbenzene 0.0204 mg/Kg 01/29/22 10:16 m-Xylene & p-Xylene <0.00399 U 0.00399 01/28/22 07:30 mg/Kg 1 o-Xylene 0.0370 0.00200 mg/Kg 01/28/22 07:30 01/29/22 10:16 0.00399 mg/Kg 01/28/22 07:30 01/29/22 10:16 **Xylenes**, Total 0.0370 1 %Recoverv Qualifier Limits Dil Fac Surrogate Prepared Analvzed 70 - 130 S1+ 01/28/22 07:30 4-Bromofluorobenzene (Surr) 152 01/29/22 10.16 1 1,4-Difluorobenzene (Surr) 94 70 - 130 01/28/22 07:30 01/29/22 10:16 1 Method: Total BTEX - Total BTEX Calculation Analvte RL MDL D Dil Fac Result Qualifier Unit Prepared Analvzed 0.00399 02/02/22 18:08 **Total BTEX** 0.0845 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <49.9 U 02/02/22 16:07 Total TPH 49.9 mg/Kg 1

Eurofins Midland

Released to Imaging: 8/24/2022 11:52:12 AM

Client Sample Results

Page 62 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client	Sample	ID:	WH1	@ 0'	
--------	--------	-----	-----	------	--

Project/Site: Speedy Booster

Lab Sample ID: 880-10650-23 Matrix: Solid

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Client: Etech Environmental & Safety Solutions

Sample Depth: 0'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/31/22 12:03	02/01/22 21:40	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		01/31/22 12:03	02/01/22 21:40	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/31/22 12:03	02/01/22 21:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	57	S1-	70 _ 130				01/31/22 12:03	02/01/22 21:40	1
o-Terphenyl	65	S1-	70 - 130				01/31/22 12:03	02/01/22 21:40	1

wethod: 300.0 - Anions, ion Chrom	atograpny - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	26.7	5.04	mg/Kg			02/01/22 23:38	1

Client Sample ID: WH1 @ 1'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		01/28/22 07:30	01/29/22 10:36	1
Toluene	0.00280		0.00202		mg/Kg		01/28/22 07:30	01/29/22 10:36	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		01/28/22 07:30	01/29/22 10:36	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		01/28/22 07:30	01/29/22 10:36	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		01/28/22 07:30	01/29/22 10:36	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		01/28/22 07:30	01/29/22 10:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				01/28/22 07:30	01/29/22 10:36	1
1,4-Difluorobenzene (Surr)	75		70 - 130				01/28/22 07:30	01/29/22 10:36	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			02/02/22 18:08	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			02/02/22 16:07	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/31/22 12:03	02/01/22 22:02	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		01/31/22 12:03	02/01/22 22:02	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 12:03	02/01/22 22:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	60	S1-	70 - 130				01/31/22 12:03	02/01/22 22:02	1

Project/Site: Speedy Booster

Client: Etech Environmental & Safety Solutions

Client Sample Results

Job ID: 880)-1065	50-1
SDG: Rural Edd	y Co,	NM

Client Sample ID: WH1 @ 1'							Lab Samp	le ID: 880-10	
ate Collected: 01/26/22 00:00								Matri	x: Solie
ate Received: 01/27/22 00:00									
ample Depth: 1'									
Method: 300.0 - Anions, Ion Chroi	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	26.5		4.98		mg/Kg			02/01/22 23:44	
lient Sample ID: WH2 @ 0'							Lab Samp	le ID: 880-10	650-2
ate Collected: 01/26/22 00:00								Matri	x: Soli
Date Received: 01/27/22 00:00									
Sample Depth: 0'									
Method: 8021B - Volatile Organic	Compounds	(GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		01/28/22 07:30	01/29/22 10:56	
Toluene	< 0.00200		0.00200		mg/Kg		01/28/22 07:30	01/29/22 10:56	
Ethylbenzene	< 0.00200		0.00200		mg/Kg		01/28/22 07:30	01/29/22 10:56	
m-Xylene & p-Xylene	< 0.00401		0.00401		mg/Kg		01/28/22 07:30	01/29/22 10:56	
o-Xylene	<0.00200		0.00200		mg/Kg		01/28/22 07:30	01/29/22 10:56	
Xylenes, Total	< 0.00401		0.00401		mg/Kg		01/28/22 07:30	01/29/22 10:56	
,,					5 5				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		70 - 130				01/28/22 07:30	01/29/22 10:56	
1,4-Difluorobenzene (Surr)	104		70 - 130				01/28/22 07:30	01/29/22 10:56	
Method: Total BTEX - Total BTEX	Calculation								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401		0.00401		mg/Kg			02/02/22 18:08	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			02/02/22 16:07	
- Method: 8015B NM - Diesel Range	Organica (D								
Analyte	- · ·	Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0		50.0		mg/Kg	— -	01/31/22 12:03	02/01/22 22:24	
(GRO)-C6-C10	00.0	C C	0010				0	02/0//22 22/21	
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/31/22 12:03	02/01/22 22:24	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/31/22 12:03	02/01/22 22:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane		S1-	70 - 130				01/31/22 12:03	02/01/22 22:24	
	69	S1-	70 - 130				01/31/22 12:03	02/01/22 22:24	
o-Terphenyl	03								
		0.1.1.							
o-Terphenyl Method: 300.0 - Anions, Ion Chron Analyte	matography -	Soluble Qualifier	RL	MDL	11-14	D	Prepared	Analyzed	Dil Fa

Method: 8021B - Volatile Organic Compounds (GC)

Method: Total BTEX - Total BTEX Calculation

RL

0.00200

0.00200

0.00200

0.00401

0.00200

0.00401

Limits

70 - 130

70 - 130

RL

0.00401

MDL

MDL Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

D

D

D

D

Prepared

01/28/22 07:30

01/28/22 07:30

01/28/22 07:30

01/28/22 07:30

01/28/22 07:30

01/28/22 07:30

Prepared

01/28/22 07:30

01/28/22 07:30

Prepared

Prepared

Prepared 01/31/22 12:03

01/31/22 12:03

01/31/22 12:03

Prepared

01/31/22 12:03

01/31/22 12:03

Prepared

Prepared

01/28/22 07:30

01/28/22 07:30

01/28/22 07:30

Page 64 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: WH2 @ 1'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Project/Site: Speedy Booster

Sample Depth: 1'

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Total BTEX

o-Xylene

Surrogate

Xylenes, Total

4-Bromofluorobenzene (Surr)

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample	ID:	880-10650-20	6

Matrix: Solid

50-26 Solid	
	5
Dil Fac 1	
1	
1 1	8
Dil Fac	9
1 1	
Dil Fac	
1	
Dil Fac	13
1	

Dil Fac

1

1

1

1

1

Dil Fac

Dil Fac

Dil Fac

1

1

1

1

1

1

Matrix: Solid

Dil Fac Analyzed 01/29/22 11:17 01/29/22 11:17 01/29/22 11:17

01/29/22 11:17

01/29/22 11.17

01/29/22 11:17

Analyzed

01/29/22 11:17

01/29/22 11:17

Analyzed

02/02/22 18:08

Analyzed

02/02/22 16:07

Analyzed

02/01/22 22:46

02/01/22 22:46

02/01/22 22:46

Analyzed

02/01/22 22:46

02/01/22 22:46

Analyzed

02/01/22 23:57

Analyzed

01/29/22 11:37

01/29/22 11:37

01/29/22 11:37

11:37

11:37

11:37

Lab Sample ID: 880-10650-27

	Prepared	Analyzed
mg/Kg	01/28/22 07:30	01/29/22 11:3
mg/Kg	01/28/22 07:30	01/29/22 11:3
mg/Kg	01/28/22 07:30	01/29/22 11:3

Dil Fac 01/28/22 07:30 01/29/22 11:37

Eurofins Midland

Analyte	Result	Qualifier	RL	MDL	Unit
Total TPH	<49.9	U	49.9		mg/K
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)			
Analyte	Result	Qualifier	RL	MDL	Unit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/K
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/K
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/K
Surrogate	%Recovery	Qualifier	Limits		
1-Chlorooctane	53	S1-	70 - 130		
1 Onioi ooctaric					
o- <i>Terphenyl</i> Method: 300.0 - Anions, Ion Chro	63 omatography -	S1- Soluble Qualifier	70 ₋ 130 RL	MDL	Unit
o-Terphenyl	63 omatography -	Soluble		MDL	
o- <i>Terphenyl</i> Method: 300.0 - Anions, Ion Chro Analyte	63 omatography - Result	Soluble	RL	MDL	
Method: 300.0 - Anions, Ion Chro Analyte Chloride lient Sample ID: WH3 @ 0' ate Collected: 01/26/22 00:00 ate Received: 01/27/22 00:00	63 omatography - <u>Result</u> 32.8	Soluble Qualifier	RL	MDL	
Method: 300.0 - Anions, Ion Chro Analyte Chloride lient Sample ID: WH3 @ 0' ate Collected: 01/26/22 00:00 ate Received: 01/27/22 00:00 ample Depth: 0'	63 omatography - <u>Result</u> 32.8	Soluble Qualifier	RL		
Method: 300.0 - Anions, Ion Chro Analyte Chloride lient Sample ID: WH3 @ 0' ate Collected: 01/26/22 00:00 ate Received: 01/27/22 00:00 ample Depth: 0' Method: 8021B - Volatile Organic	63 omatography - <u>Result</u> 32.8	Soluble Qualifier GC)	RL		mg/K
Method: 300.0 - Anions, Ion Chro Analyte Chloride lient Sample ID: WH3 @ 0' ate Collected: 01/26/22 00:00 ate Received: 01/27/22 00:00 ample Depth: 0' Method: 8021B - Volatile Organic Analyte	63 omatography - Result 32.8 c Compounds (Result	Soluble Qualifier GC)	RL		Unit mg/K
Method: 300.0 - Anions, Ion Chro Analyte Chloride lient Sample ID: WH3 @ 0' ate Collected: 01/26/22 00:00 ate Received: 01/27/22 00:00 ample Depth: 0' Method: 8021B - Volatile Organic Analyte Benzene	63 omatography - Result 32.8 c Compounds (<u>Result</u> 0.0713	Soluble Qualifier GC)	<u></u>		mg/K

0.0410

0.0796

48 S1-

%Recovery

Qualifier

Result Qualifier

Qualifier

Qualifier

<0.00200 U

0.00638

0.0300

0.0167

0.00787

0.0246

204 S1+

96

Result

0.0610

%Recovery

0.00200

0.00401

Limits

70 - 130

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 300.0 - Anions, Ion Chromatography - Soluble

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery

98

0.191

<50.0 U

Result Qualifier

Result Qualifier

Result Qualifier

<50.0 U

<50.0 U

<50.0 U

%Recovery Qualifier

53 S1-

64 S1-

Result Qualifier

<4.95 U

Qualifier

Limits

70 - 130

RL

RL

50.0

RL

50.0

50.0

50.0

RL

4.95

Limits

70 - 130

70 - 130

0.00401

MDL Unit

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

D

D

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: WH3 @ 0' Date Collected: 01/26/22 00:00

Date Received: 01/27/22 00:00

Project/Site: Speedy Booster

Sample Depth: 0'

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

C10-C28)

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

Total TPH

Total BTEX

Lab Sa

Lab Samp	le ID: 880-10 Matri	650-27 x: Solid	
			5
Prepared	Analyzed	Dil Fac	
01/28/22 07:30	01/29/22 11:37	1	
Prepared	Analyzed	Dil Fac	
	02/02/22 18:08	1	8
Prepared	Analyzed	Dil Fac	9
	02/02/22 16:07	1	
Prepared	Analyzed	Dil Fac	
01/31/22 12:03	02/01/22 23:09	1	
01/31/22 12:03	02/01/22 23:09	1	12
01/31/22 12:03	02/01/22 23:09	1	13
Prepared	Analyzed	Dil Fac	
01/31/22 12:03	02/01/22 23:09	1	
01/31/22 12:03	02/01/22 23:09	1	
Prepared	Analyzed	Dil Fac	
	02/02/22 00:03	1	
Lab Samp	le ID: 880-10	650-28	

Matrix: Solid

Client Sample ID: WH3 @ 1'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00 Sample Depth: 1'

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 01/28/22 07:30 01/29/22 11:58 Toluene <0.00200 U 0.00200 01/28/22 07:30 01/29/22 11:58 mg/Kg 1 Ethylbenzene <0.00200 U 0.00200 01/28/22 07:30 01/29/22 11:58 mg/Kg 01/29/22 11:58 m-Xylene & p-Xylene <0.00400 U 0.00400 01/28/22 07:30 mg/Kg 1 o-Xylene <0.00200 U 0.00200 mg/Kg 01/28/22 07:30 01/29/22 11:58 Xylenes, Total <0.00400 U 0.00400 mg/Kg 01/28/22 07:30 01/29/22 11:58 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 70 - 130 102 01/28/22 07:30 4-Bromofluorobenzene (Surr) 01/29/22 11:58 1 1,4-Difluorobenzene (Surr) 98 70 - 130 01/28/22 07:30 01/29/22 11:58 1 Method: Total BTEX - Total BTEX Calculation Analvte RL MDL D Result Qualifier Unit Prepared Analyzed Dil Fac Total BTEX <0.00400 Ū 0.00400 02/02/22 18:08 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <49.9 U 02/02/22 16:07 Total TPH 49.9 mg/Kg 1

Eurofins Midland

Released to Imaging: 8/24/2022 11:52:12 AM

5

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: WH3 @ 1'

Project/Site: Speedy Booster

Date Collected: 01/26/22 00:00

Lab Sample ID: 880-10650-28

Matrix: Solid Date Received: 01/27/22 00:00 Sample Depth: 1' Method: 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed <49.9 U 01/31/22 12:03 02/01/22 23:31 49.9 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10 Diesel Range Organics (Over 49.9 01/31/22 12:03 02/01/22 23:31 <49.9 U mg/Kg 1 C10-C28) mg/Kg 01/31/22 12:03 02/01/22 23:31 Oll Range Organics (Over C28-C36) <49.9 U 49.9 1 Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 70 - 130 64 S1-01/31/22 12:03 1-Chlorooctane 02/01/22 23:31 1 o-Terphenyl 77 70 - 130 01/31/22 12:03 02/01/22 23:31 1

Method: 300.0 - Anions, Ion Chrom	natography - 3	Soluble								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	<5.05	U	5.05		mg/Kg		-	02/02/22 00:09	1	

Eurofins Midland

Released to Imaging: 8/24/2022 11:52:12 AM

Lab Sample ID

880-10650-1 MS

880-10650-1 MSD

880-10650-1

880-10650-2

880-10650-3

880-10650-4

880-10650-5

880-10650-6

880-10650-7

880-10650-8

880-10650-9

880-10650-10

880-10650-11

880-10650-12

880-10650-13

880-10650-14

880-10650-15

880-10650-16

880-10650-17

880-10650-18

880-10650-19

880-10650-20

880-10650-21

880-10650-22

880-10650-23

880-10650-24

880-10650-25

880-10650-26

880-10650-27

880-10650-28

880-10694-A-51-B MS

880-10720-A-1-E MS

880-10720-A-1-F MSD

LCS 880-17780/1-A

LCS 880-17879/1-A

LCS 880-18098/1-A

LCS 880-18099/1-A

LCSD 880-17879/2-A

LCSD 880-18098/2-A

LCSD 880-18099/2-A MB 880-17780/5-A MB 880-17879/5-A MB 880-17924/5-A MB 880-18098/5-A

MB 880-18099/5-A

880-10694-A-51-C MSD

880-10650-21 MS

880-10650-21 MSD

BFB1

(70-130)

72

98

104

106

84

124

213 S1+ 140 S1+

87

156 S1+

100

79

109

98 92

132 S1+

97

104

97

95 95

96

96

127

136 S1+

133 S1+

152 S1+

88

101

204 S1+

48 S1-

102

129

121

102

96

100

86

102

119

83

98

128

83

101

111

111

94

75

104

96

98 98

112

98

103

97

96

95

101

101

88

99

106

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Client Sample ID

OS1 @ 0'

OS1 @ 0'

OS1 @ 0'

OS1 @ 1'

OS2 @ 0'

OS2 @ 1'

V1 @ 0'

V1 @ 4'

V2 @ 0'

V2 @ 1'

V3 @ 0'

V4@ 0'

V4 @ 1'

NH1 @ 0'

NH1 @ 1'

SH1 @ 0'

SH1 @ 1'

EH1 @ 0'

EH1 @ 1'

EH2 @ 0'

EH2 @ 1'

EH3 @ 0'

EH3 @ 0'

EH3 @ 0'

EH3 @ 1'

WH1 @ 0'

WH1 @ 1'

WH2 @ 0'

WH2 @ 1'

WH3 @ 0'

WH3 @ 1'

Matrix Spike

Matrix Spike

Matrix Spike Duplicate

Matrix Spike Duplicate

Lab Control Sample

Lab Control Sample

Lab Control Sample

Lab Control Sample

Method Blank

Lab Control Sample Dup

Lab Control Sample Dup

V3 @ 2'-R

1 1			
Lab Control Sample Dup	120	98	
Method Blank	100	89	
Method Blank	116	102	
Method Blank	106	104	
Method Blank	98	95	

Surrogate	heene I
Surroyate	Legena

		Prep Type: Total/NA
		Percent Surrogate Recovery (Acceptance Limits)
	DFBZ1	
)	(70-130)	
	72	
	103	
	95	
	107	
	90	
	74	
	73	
	100	
	77	
	92	
	105	
	83	
	86	
	91	
	95	
	100	
	108	
	92	
	89	
	102	
	97	
	101	

Eurofins Midland

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Surrogate Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Speedy Booster

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

-		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID			
LCSD 880-17780/2-A	Lab Control Sample Dup			
Surrogate Legend				
BFB = 4-Bromofluorobe	nzene (Surr)			

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1001 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-10650-1 OS1 @ 0' 84 76 880-10650-1 MS OS1 @ 0' 75 74 880-10650-1 MSD 74 68 S1-OS1 @ 0' 880-10650-2 OS1 @ 1' 99 87 880-10650-3 OS2 @ 0' 73 70 68 S1-880-10650-4 OS2 @ 1' 74 880-10650-5 V1 @ 0' 161 S1+ 78 880-10650-6 V1 @ 4' 76 73 880-10650-7 V2 @ 0' 78 74 97 90 880-10650-8 V2 @ 1' 880-10650-9 V3 @ 0' 76 74 880-10650-10 V3 @ 2'-R 101 98 880-10650-11 V4@ 0' 94 92 880-10650-12 V4 @ 1' 91 90 880-10650-13 NH1 @ 0' 92 89 82 79 880-10650-14 NH1 @ 1' 70 880-10650-15 SH1 @ 0' 77 880-10650-16 SH1 @ 1' 71 82 78 89 880-10650-17 EH1 @ 0' 880-10650-18 EH1 @ 1' 68 S1-76 880-10650-19 EH2 @ 0' 69 S1-79 880-10650-20 EH2 @ 1' 70 83 880-10650-21 73 EH3 @ 0' 60 S1-880-10650-21 MS EH3 @ 0' 57 S1-62 S1-880-10650-21 MSD EH3 @ 0' 63 S1-69 S1-880-10650-22 EH3 @ 1' 61 S1-75 880-10650-23 WH1 @ 0' 57 S1-65 S1-880-10650-24 WH1 @ 1' 60 S1-71 880-10650-25 WH2 @ 0' 57 S1-69 S1-880-10650-26 WH2 @ 1' 53 S1-63 S1-880-10650-27 WH3 @ 0' 64 S1-53 S1-880-10650-28 WH3 @ 1' 64 S1-77 880-10734-A-1-F MS Matrix Spike 63 S1-64 S1-880-10734-A-1-G MSD 64 S1-65 S1-Matrix Spike Duplicate LCS 880-18150/2-A Lab Control Sample 73 83 Lab Control Sample LCS 880-18288/2-A 88 93

Eurofins Midland

Page 68 of 168

Job ID: 880-10650-1

Prep Type: Total/NA

Prep Type: Total/NA

SDG: Rural Eddy Co, NM

5

6

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
_CSD 880-18150/3-A	Lab Control Sample Dup	74	82		
_CSD 880-18288/3-A	Lab Control Sample Dup	86	90		
VB 880-18150/1-A	Method Blank	75	96		
MB 880-18288/1-A	Method Blank	81	94		
Surrogate Legend					
1CO = 1-Chlorooctane					
OTPH = o-Terphenyl					

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

-				Percent Surrogate Recovery (Acceptance Limits)		
		1CO2	OTPH2			
Lab Sample ID	Client Sample ID	(70-130)	(70-130)			
LCS 880-18142/2-A	Lab Control Sample	71	67 S1-			
LCSD 880-18142/3-A	Lab Control Sample Dup	76	73			
MB 880-18142/1-A	Method Blank	88	86			
Surrogate Legend					- 1	
1CO = 1-Chlorooctane						
OTPH = o-Terphenyl						

Eurofins Midland

Page 69 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-17780/5-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: 1	otal/NA
Analysis Batch: 17974								Prep Batch	n: 17780
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/28/22 07:30	01/29/22 09:13	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/28/22 07:30	01/29/22 09:13	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/28/22 07:30	01/29/22 09:13	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/28/22 07:30	01/29/22 09:13	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/28/22 07:30	01/29/22 09:13	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/28/22 07:30	01/29/22 09:13	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				01/28/22 07:30	01/29/22 09:13	1
1,4-Difluorobenzene (Surr)	89		70 - 130				01/28/22 07:30	01/29/22 09:13	1

Lab Sample ID: LCS 880-17780/1-A Matrix: Solid

Analysis Batch: 17974

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08241		mg/Kg		82	70 - 130	
Toluene	0.100	0.07814		mg/Kg		78	70 - 130	
Ethylbenzene	0.100	0.07885		mg/Kg		79	70 - 130	
m-Xylene & p-Xylene	0.200	0.1592		mg/Kg		80	70 - 130	
o-Xylene	0.100	0.07992		mg/Kg		80	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

%Recovery Qualifier

Lab Sample ID: LCSD 880-17780/2-A				Clier	nt San	n <mark>ple ID:</mark> I	Lab Contr	ol Sampl	e Dup
Matrix: Solid							Prep	Type: To	tal/NA
Analysis Batch: 17974							Pre	Batch:	17780
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08258		mg/Kg					
Toluene	0.100	0.07681		mg/Kg					
Ethylbenzene	0.100	0.07922		mg/Kg					
m-Xylene & p-Xylene	0.200	0.1589		mg/Kg					
o-Xylene	0.100	0.08096		mg/Kg					
LCSD LCSD									

Surrogate					
				(0	

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 880-10650-21 Matrix: Solid Analysis Batch: 17974	MS							Cli	Prep	e ID: EH3 @ 0' Type: Total/NA o Batch: 17780
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U F1	0.0994	0.02272	F1	mg/Kg		21	70 - 130	
Toluene	<0.00198	U F1	0.0994	0.04247	F1	mg/Kg		43	70 - 130	

Limits

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

13

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 17780

Fiep Datch.	17700
%Rec.	RPD

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-10650-2 Matrix: Solid	21 MS										Clie		Type: To	otal/NA
Analysis Batch: 17974												Prep	Batch:	1778
	Sample	Samp	le	Spike	MS	MS						%Rec.		
Analyte	Result	Qualif	fier	Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Ethylbenzene	0.00285	F1		0.0994	0.03298	F1		mg/Kg			30	70 - 130		
n-Xylene & p-Xylene	<0.00396	UF1		0.199	0.09046	F1		mg/Kg			46	70 - 130		
o-Xylene	<0.00198	U F1		0.0994	0.05351	F1		mg/Kg			54	70 - 130		
	MS	MC												
			lie v	Lingita										
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 127	Qualif	ier	Limits 70 - 130										
1,4-Difluorobenzene (Surr)	101			70 - 130 70 - 130										
;4-Dilluoroberizerie (Surr)	101			70 - 730										
Lab Sample ID: 880-10650-2	21 MSD										Clie	nt Sampl	e ID: EH	13 @
Matrix: Solid											••		Type: To	_
Analysis Batch: 17974													Batch:	
analysis batch. 17014	Sample	Samp	le	Spike	MSD	MSD						%Rec.	, Daton.	RF
Analyte	Result			Added	Result		ifier	Unit		D	%Rec	Limits	RPD	Lin
Benzene	<0.00198	U F1		0.101	0.03187			mg/Kg			30	70 - 130	34	
Toluene	< 0.00198			0.101	0.03177	 F1		mg/Kg			31	70 - 130	29	:
Ethylbenzene	0.00285			0.101	0.03048	F1		mg/Kg			27	70 - 130	8	
n-Xylene & p-Xylene	< 0.00396			0.202	0.08105			mg/Kg			40	70 - 130	11	
-Xylene	< 0.00198			0.101	0.04490			mg/Kg			44	70 <u>-</u> 130	17	:
Aylene	-0.00100	011		0.101	0.04400	• •		mg/itg				10 - 100	17	
	MSD	MSD												
Surrogate	MSD %Recovery		fier	Limits										
-	%Recovery	Qualif	fier	Limits 70 - 130										
-Bromofluorobenzene (Surr)	%Recovery	Qualif	fier											
1-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	%Recovery 136 111	Qualif	fier	70 - 130							Client S:	ample ID:	Method	l Blar
1-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178	%Recovery 136 111	Qualif	fier	70 - 130							Client Sa	ample ID:		
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid	%Recovery 136 111	Qualif	fier	70 - 130							Client Sa	Prep	Type: To	otal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid	%Recovery 136 111	Qualif S1+		70 - 130							Client Sa	Prep		otal/N
I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020	%Recovery 136 111 179/5-A	Qualif S1+	MB	70 - 130 70 - 130		MDI	Unit		Р			Prep Prep	Type: To Batch:	otal/N : 1787
I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020	<u>%Recovery</u> 136 111 879/5-A	Qualif S1+ MB I	MB Qualifier	70 - 130 70 - 130 RL		MDL	Unit ma/Ka		D	Pr	epared	Prep Prep Analy:	Type: To Batch: zed	otal/N : 1787
I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene	<u>%Recovery</u> 136 111 879/5-A <u>R</u> (<0.00	Qualif S1+ MB I esult (0200 0	MB Qualifier U	70 - 130 70 - 130 		MDL	mg/Kg	-	D	Pr 01/27	repared 7/22 16:00	Prep Prep Analyz 01/28/22	Type: To D Batch: zed 13:07	otal/N : 1787
I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene	%Recovery 136 111 179/5-A 	Qualif S1+ MB esult 0200 0200	MB Qualifier U	70 - 130 70 - 130 		MDL	mg/Kg mg/Kg	9	<u>D</u>	Pr 01/27 01/27	repared 7/22 16:00 7/22 16:00	Prep Prep Analyz 01/28/22 01/28/22	Type: To Batch: zed 13:07 13:07	otal/N : 1787
I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene		Qualif S1+ MB esult 0200 0200 0200	MB Qualifier U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg	9 9	<u>D</u>	Pr 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22	Type: To Batch: zed 13:07 13:07 13:07	otal/N : 1787
Surrogate 4-Bromofluorobenzene (Surr) 4,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene	%Recovery 136 111 879/5-A 	Qualif S1+ MB esult 0200 0200 0200 0200 0200 0200	MB Qualifier U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	9 9 9	<u>D</u>	Pr 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep Analy: 01/28/22 01/28/22 01/28/22 01/28/22	zed 13:07 13:07 13:07 13:07 13:07	otal/N : 1787
A-Bromofluorobenzene (Surr) A,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene D-Xylene	%Recovery 136 111 879/5-A 	Qualif S1+ MB I esult 0 0200 I	MB Qualifier U U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	<u>D</u>	Pr 01/27 01/27 01/27 01/27 01/27	Tepared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	zed 13:07 13:07 13:07 13:07 13:07 13:07	otal/N : 1787
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) .ab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Sthylbenzene n-Xylene & p-Xylene -Xylene	%Recovery 136 111 879/5-A 	Qualif S1+ MB esult 0200 0200 0200 0200 0200 0200	MB Qualifier U U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	<u>D</u>	Pr 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep Analy: 01/28/22 01/28/22 01/28/22 01/28/22	zed 13:07 13:07 13:07 13:07 13:07 13:07	otal/N : 1787
A-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Ethylbenzene	%Recovery 136 111 879/5-A 	Qualifi S1+ MB I esult 0 0200 I	MB Qualifier U U U U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	<u>D</u>	Pr 01/27 01/27 01/27 01/27 01/27	Tepared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	zed 13:07 13:07 13:07 13:07 13:07 13:07	otal/N : 1787
A-Bromofluorobenzene (Surr) A,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene D-Xylene	%Recovery 136 111 879/5-A 	Qualifi S1+ mB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400	MB Qualifier U U U U U U	70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	<u>D</u>	Pr 01/27 01/27 01/27 01/27 01/27	Tepared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Type: To b Batch: 2ed 13:07 13:07 13:07 13:07 13:07 13:07 13:07	otal/N
A-Difluorobenzene (Surr) , 4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene A-Xylene (ylenes, Total Surrogate	%Recovery 136 111 879/5-A 	Qualifi S1+ mB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	<u>D</u>	Pr 01/27 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Type: To b Batch: 2ed 13:07 13:07 13:07 13:07 13:07 13:07 13:07 2ed	Dil Fa
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) ,4-Difluorobenzene (Surr) .ab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene -Xylene Cylenes, Total	%Recovery 136 111 879/5-A 	Qualif S1+ MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400 0400 0400	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	<u>D</u>	Pr 01/27 01/27 01/27 01/27 01/27 01/27 Pr 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Type: To D Batch: zed 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07	Dil Fa
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) ,4-Difluorobenzene (Surr) .ab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analysis Batch: 18020 Analyte Benzene Soluene Sthylbenzene -Xylene & p-Xylene -Xylene & p-Xylene -Xylenes, Total Surrogate -Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr)	%Recovery 136 111 379/5-A 	Qualifi S1+ MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400 0400 0400 0400 116	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	_	Pr 01/27 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Type: To Description Descripti	Dil Fa
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) .ab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Sthylbenzene n-Xylene & p-Xylene -Xylene & p-Xylene -Xylene & for a second Surrogate -Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) .ab Sample ID: LCS 880-17	%Recovery 136 111 379/5-A 	Qualifi S1+ MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400 0400 0400 0400 116	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	_	Pr 01/27 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Zype: To D Batch: zed 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 ontrol S	otal/N : 1787 Dil F: Dil F:
A-Difluorobenzene (Surr) 4.4-Difluorobenzene (Surr) 4.4-Difluorobenzene (Surr) 4.4-Difluorobenzene (Surr) 4.4-Difluorobenzene 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	%Recovery 136 111 379/5-A 	Qualifi S1+ MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400 0400 0400 0400 116	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	_	Pr 01/27 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Type: To Description Descripti	otal/N : 1787 Dil F: Dil F:
A-Difluorobenzene (Surr) 4.4-Difluorobenzene (Surr) 4.4-Difluorobenzene (Surr) 4.4-Difluorobenzene (Surr) 4.4-Difluense 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	%Recovery 136 111 379/5-A 	Qualifi S1+ MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400 0400 0400 0400 116	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	_	Pr 01/27 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Zype: To D Batch: zed 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 ontrol S	Dil Fa
A-Bromofluorobenzene (Surr) 4-Difluorobenzene (Surr) 4-Difluorobenzene (Surr) 4-Difluorobenzene (Surr) 4-Analysis Batch: 18020 4-Analysis Bat	%Recovery 136 111 379/5-A 	Qualifi S1+ MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400 0400 0400 0400 116	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	_	Pr 01/27 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Type: Tc D Batch: 2zed 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07	Dil Fa
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-178 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Foluene Ethylbenzene -Xylene & p-Xylene -Xylene & p-Xylene -Xylene & p-Xylene (Surrogate -Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-17 Matrix: Solid Analysis Batch: 18020	%Recovery 136 111 379/5-A 	Qualifi S1+ MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400 0400 0400 0400 116	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130		LCS	mg/Kg mg/Kg mg/Kg mg/Kg	3 3 3	_	Pr 01/27 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00	Prep Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 D1/28/22	Type: Tc D Batch: 2zed 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07	Dil Fa
A-Bromofluorobenzene (Surr) 4-Difluorobenzene (Surr) 4-Difluorobenzene (Surr) 4-Difluorobenzene (Surr) 4-Analysis Batch: 18020 4-Analysis Bat	%Recovery 136 111 379/5-A 	Qualifi S1+ MB esuit 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0200 0400 0400 0400 0400 0400 0400 0400 116	MB Qualifier U U U U U U MB	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00200 0.00400 0.00200 0.00400 0.00200 0.00400 0.00200000000	LCS	LCS	mg/Kg mg/Kg mg/Kg mg/Kg))))	_	Pr 01/27 01/27 01/27 01/27 01/27 01/27 01/27 01/27	repared 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 7/22 16:00 Sample	Prep Prep Prep 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22 01/28/22	Type: Tc D Batch: 2zed 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07 13:07	Dil Fa

Page 71 of 168

Eurofins Midland

m-Xylene & p-Xylene

0.1484

mg/Kg

74

70 - 130

0.200

Lab Sample ID: LCS 880-17879/1-A

Matrix: Solid

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Analysis Batch: 18020									Prep	Batch:	17879
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.07751		mg/Kg		78	70 - 130		
	LCS	105									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	95		70 - 130								
	00		101100								
Lab Sample ID: LCSD 880-1	7879/2-A					Clie	nt Sam	nple ID:	Lab Contro	I Sampl	e Dup
Matrix: Solid									Prep T	Type: Tot	tal/N/
Analysis Batch: 18020									Prep	Batch:	17879
			Spike	LCSD	LCSD				%Rec.		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.07955		mg/Kg		80	70 - 130	17	35
Toluene			0.100	0.07566		mg/Kg		76	70 _ 130	8	35
Ethylbenzene			0.100	0.07017		mg/Kg		70	70 - 130	6	35
m-Xylene & p-Xylene			0.200	0.1428		mg/Kg		71	70 - 130	4	35
o-Xylene			0.100	0.07225		mg/Kg		72	70 - 130	7	35
Surrogate	LCSD %Recovery	LCSD Qualifier	Limits								
4-Bromofluorobenzene (Surr)		Quanner	70 - 130								
1,4-Difluorobenzene (Surr)	88		70 - 130 70 - 130								
	00										
,,											
	IMS							Cli	ent Sample	e ID: OS	1@0
Lab Sample ID: 880-10650-1 Matrix: Solid	I MS							Cli			_
Lab Sample ID: 880-10650-1 Matrix: Solid	I MS							Cli	Prep T	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid	I MS Sample	Sample	Spike	MS	MS			Cli	Prep T		tal/NA
Lab Sample ID: 880-10650-1	Sample	Sample Qualifier			MS Qualifier	Unit	D	Cli %Rec	Prep T Prep	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020	Sample	Qualifier	Spike			_ <mark>Unit</mark> mg/Kg	<u>D</u>		Prep T Prep %Rec.	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte	Sample Result	Qualifier U	Spike Added	Result			<u>D</u>	%Rec	Prep 1 Prep %Rec. Limits	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene	Sample 	Qualifier U U	Spike Added 0.100	Result 0.08630		mg/Kg mg/Kg	<u>D</u>	%Rec 86	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U	Spike Added 0.100 0.100 0.100	Result 0.08630 0.07252 0.07616		mg/Kg mg/Kg mg/Kg	D	%Rec 86 72	Prep 1 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene	Sample Result <0.00199 <0.00199	Qualifier U U U U	Spike Added 0.100 0.100	Result 0.08630 0.07252		mg/Kg mg/Kg	<u> </u>	%Rec 86 72 76	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U U U U U U	Spike Added 0.100 0.100 0.100 0.201	Result 0.08630 0.07252 0.07616 0.1416		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 86 72 76 71	Prep T Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.201 0.100	Result 0.08630 0.07252 0.07616 0.1416		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 86 72 76 71	Prep T Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U U U U	Spike Added 0.100 0.100 0.201 0.201 0.100 Limits	Result 0.08630 0.07252 0.07616 0.1416		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 86 72 76 71	Prep T Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Sample Result <0.00199 <0.00199 <0.00398 <0.00398 <0.00199 MS %Recovery 98	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.100 0.100 0.100 0.201 0.100 Limits 70 - 130	Result 0.08630 0.07252 0.07616 0.1416		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 86 72 76 71	Prep T Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.201 0.201 0.100 Limits	Result 0.08630 0.07252 0.07616 0.1416		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 86 72 76 71	Prep T Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10650-1	Sample Result <0.00199	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.100 0.100 0.100 0.201 0.100 Limits 70 - 130	Result 0.08630 0.07252 0.07616 0.1416		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 86 72 76 71 71	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	17879
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Sample Result <0.00199	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.100 0.100 0.100 0.201 0.100 Limits 70 - 130	Result 0.08630 0.07252 0.07616 0.1416		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 86 72 76 71 71	Prep 7 Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch:	tal/NA 17879
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10650-1	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 98 103	Qualifier U U U U U MS Qualifier	Spike Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100	Result 0.08630 0.07252 0.07616 0.1416 0.07089	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 86 72 76 71 71	Prep T Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep T Prep T Prep	Batch:	tal/NA 17879 1 @ 0' tal/NA 17879
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020	Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 98 103 I MSD Sample	Qualifier U U U U U MS Qualifier	Spike Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 Description 0.100 Limits 70 - 130 70 - 130 Spike	Result 0.08630 0.07252 0.07616 0.1416 0.07089 MSD	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 86 72 76 71 71 71	Prep T Prep %Rec. Limits 70 - 130 70 - 190 70 - 130 70 - 190 70 - 190	 ID: OS Type: Tot Batch: 	1 @ 0 tal/NA 17879 1 @ 0 tal/NA 17879 RPD
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte	Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 98 103 MSD Sample Result	Qualifier U U U U MS Qualifier Sample Qualifier	Spike Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 Description Description Spike Added	Result 0.08630 0.07252 0.07616 0.1416 0.07089 MSD Result	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 86 72 76 71 71 71	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 190 %Rec. Limits	Fype: Tot Batch: EID: OS ² Fype: Tot Batch: RPD	1 @ 0 tal/NA 17879 17879 tal/NA 17879 RPC Limi
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene	Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 98 103 MSD Sample Result <0.00199	Qualifier U U U U U MS Qualifier U	Spike Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 D.100 D.100 D.100 D.000	Result 0.08630 0.07252 0.07616 0.1416 0.07089 MSD Result 0.08307	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 86 72 76 71 71 71	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 Prep 7 %Rec. Limits 70 - 130	 ID: OS Type: Tot Batch: 	1 @ 0 tal/NA 17879 17879 tal/NA 17879 RPC Limi
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte	Sample Result <0.00199 <0.00199 <0.00398 <0.00398 <0.00199 MS %Recovery 98 103 103 MSD Sample Result <0.00199 <0.00199	Qualifier U U U U U U MS Qualifier U U U	Spike Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 Description Description Spike Added	Result 0.08630 0.07252 0.07616 0.1416 0.07089 MSD Result 0.08307 0.09283	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 86 72 76 71 71 71	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 190 %Rec. Limits	Fype: Tot Batch: EID: OS ² Fype: Tot Batch: RPD	tal/NA 17879 1 @ 0 tal/NA 17879 RPC Limi 35
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene	Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 98 103 MSD Sample Result <0.00199	Qualifier U U U U U U MS Qualifier U U U	Spike Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 D.100 D.100 D.100 D.000	Result 0.08630 0.07252 0.07616 0.1416 0.07089 MSD Result 0.08307	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 86 72 76 71 71 71 Cli %Rec 83	Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130 Prep 7 %Rec. Limits 70 - 130	E ID: OS Discrete State E ID: OS Sype: To Batch: <u>RPD</u> 4	tal/NA 17879 17879 1 @ 0' tal/NA 17879 RPD Limit 35 35
Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10650-1 Matrix: Solid Analysis Batch: 18020 Analyte Benzene Toluene	Sample Result <0.00199 <0.00199 <0.00398 <0.00398 <0.00199 MS %Recovery 98 103 103 MSD Sample Result <0.00199 <0.00199	Qualifier U U U U U U MS Qualifier U U U U U	Spike Added 0.100 0.100 0.100 0.100 0.201 0.100 0.201 0.100 0.201 0.100 0.201 0.100 D.100 Limits 70 - 130 70 - 130 Spike Added 0.0996 0.0996	Result 0.08630 0.07252 0.07616 0.1416 0.07089 MSD Result 0.08307 0.09283	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 86 72 76 71 71 71 Cli %Rec 83 93	Prep T Prep 7 %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep 7 Prep 7 %Rec. Limits 70 - 130 70 - 130	Batch: Batch: Batch: D: OS Type: To Batch: RPD 4 25	tal/NA 17879 17879
Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-10650-1 MSD Matrix: Solid

Analysis Batch: 18020

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: MB 880-17924/5-A Matrix: Solid

Analysis Batch: 17974

· · · · · · · · · · · · · · · · · · ·									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/28/22 07:30	01/28/22 22:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/28/22 07:30	01/28/22 22:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/28/22 07:30	01/28/22 22:18	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/28/22 07:30	01/28/22 22:18	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/28/22 07:30	01/28/22 22:18	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/28/22 07:30	01/28/22 22:18	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				01/28/22 07:30	01/28/22 22:18	1
1,4-Difluorobenzene (Surr)	104		70 - 130				01/28/22 07:30	01/28/22 22:18	1

Lab Sample ID: MB 880-18098/5-A Matrix: Solid Analysis Batch: 18100

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/31/22 07:24	01/31/22 10:43	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/31/22 07:24	01/31/22 10:43	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/31/22 07:24	01/31/22 10:43	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/31/22 07:24	01/31/22 10:43	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/31/22 07:24	01/31/22 10:43	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/31/22 07:24	01/31/22 10:43	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCS 880-18098/1-A Matrix: Solid

Analysis Batch: 18100

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07904		mg/Kg		79	70 - 130	
Toluene	0.100	0.07722		mg/Kg		77	70 - 130	
Ethylbenzene	0.100	0.07702		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene	0.200	0.1584		mg/Kg		79	70 - 130	
o-Xylene	0.100	0.07663		mg/Kg		77	70 - 130	

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client Sample ID: OS1 @ 0'

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 17924

Prep Batch: 17879

7

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 18098

01/31/22 10:43

01/31/22 10:43

Prep Type: Total/NA

Prep Batch: 18098

Client Sample ID: Lab Control Sample

1

1

01/31/22 07:24

01/31/22 07:24

Lab Sample ID: LCS 880-18098/1-A

Matrix: Solid

Analysis Batch: 18100

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

LCS LCS

98 99

Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	102		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
- Lab Sample ID: LCSD 880-1	8098/2-A					Clie	nt San	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid								-	Prep 1	Type: To	tal/NA
Analysis Batch: 18100									Prep	Batch:	18098
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.08134		mg/Kg		81	70 - 130	3	35
Toluene			0.100	0.07230		mg/Kg		72	70 - 130	7	35
Ethylbenzene			0.100	0.07478		mg/Kg		75	70 - 130	3	35
m-Xylene & p-Xylene			0.200	0.1517		mg/Kg		76	70 - 130	4	35
o-Xylene			0.100	0.07439		mg/Kg		74	70 - 130	3	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130

70 - 130

Lab Sample ID: 880-10720-A-1-E MS
Matrix: Solid
Analysis Batch: 18100

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Datch. 10100									гтер Ба	aten. 10030
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.100	0.08526		mg/Kg		85	70 - 130	
Toluene	<0.00200	U	0.100	0.08078		mg/Kg		81	70 ₋ 130	
Ethylbenzene	<0.00200	U	0.100	0.08135		mg/Kg		81	70 - 130	
m-Xylene & p-Xylene	<0.00399	U	0.200	0.1659		mg/Kg		83	70 ₋ 130	
o-Xylene	<0.00200	U	0.100	0.08128		mg/Kg		81	70 - 130	
	MS	MS								

	1/13 1/13	
Surrogate	%Recovery Qualifie	er Limits
4-Bromofluorobenzene (Surr)	102	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Lab Sample ID: 880-10720-A-1-F MSD Matrix: Solid

Analysis Batch: 18100

Analysis Batch: 18100									Prep	Batch:	18098
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0996	0.08653		mg/Kg		87	70 - 130	1	35
Toluene	<0.00200	U	0.0996	0.08058		mg/Kg		81	70 - 130	0	35
Ethylbenzene	<0.00200	U	0.0996	0.07884		mg/Kg		79	70 - 130	3	35
m-Xylene & p-Xylene	<0.00399	U	0.199	0.1589		mg/Kg		80	70 - 130	4	35
o-Xylene	<0.00200	U	0.0996	0.07941		mg/Kg		80	70 - 130	2	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	96		70 - 130								
1,4-Difluorobenzene (Surr)	97		70_130								

Eurofins	Midland
Laionio	manana

Prep Type: Total/NA

Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 18098

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 18098

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-180										unent da	mple ID: Me		
Matrix: Solid											Prep Typ		
Analysis Batch: 18101											Prep Ba	itch:	1809
Analuta		8 MB t Qualifier	RL		MDL	Unit		D	D.,	onorod	Analyzad		Dil Fa
Analyte Benzene	<0.00200		0.00200			mg/Kg		<u> </u>		repared 1/22 07:27	Analyzed 01/31/22 10:4	<u> </u>	
Toluene	<0.00200		0.00200			mg/Kg				1/22 07:27	01/31/22 10:4		
	<0.00200												
			0.00200			mg/Kg				1/22 07:27	01/31/22 10:4		
m-Xylene & p-Xylene	<0.00400		0.00400			mg/Kg				1/22 07:27	01/31/22 10:4		
o-Xylene	<0.00200		0.00200			mg/Kg				1/22 07:27	01/31/22 10:4		
Xylenes, Total	<0.00400	0	0.00400			mg/Kg	1		01/3	1/22 07:27	01/31/22 10:4	5	
	МЕ	B MB											
Surrogate	%Recovery	Qualifier	Limits						Pr	repared	Analyzed		Dil F
4-Bromofluorobenzene (Surr)	128	3	70 - 130					-	01/3	1/22 07:27	01/31/22 10:4	5	
1,4-Difluorobenzene (Surr)	106	6	70 - 130						01/3	1/22 07:27	01/31/22 10:4	5	
Lab Sample ID: LCS 880-18	099/1-A							CI	ient	Sample I	D: Lab Cont		
Matrix: Solid											Ргер Тур	e: To	tal/l
Analysis Batch: 18101											Prep Ba	tch:	180
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Benzene			0.100	0.1021			mg/Kg			102	70 - 130		
Foluene			0.100	0.1028			mg/Kg			103	70 - 130		
Ethylbenzene			0.100	0.1043			mg/Kg			104	70 - 130		
n-Xylene & p-Xylene			0.200	0.2093			mg/Kg			105	70 - 130		
n Xylene a p Xylene			0.200										
			0.100	0.1006			mg/Kg			101	70 - 130		
		e		0.1006			mg/Kg			101	70 - 130		
o-Xylene	LCS LC %Recovery Qu		0.100	0.1006			mg/Kg			101	70 - 130		
o-Xylene	%Recovery Qu	S alifier	0.100 <i>Limits</i>	0.1006			mg/Kg			101	70 - 130		
o-Xylene Surrogate 4-Bromofluorobenzene (Surr)			0.100	0.1006			mg/Kg			101	70 - 130		
o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	% <i>Recovery</i> Qu		0.100 Limits 70 - 130	0.1006			mg/Kg			101	70 - 130		
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)			0.100 Limits 70 - 130	0.1006				ent	Sam		70 - 130 ab Control S	ampl	le Di
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid			0.100 Limits 70 - 130	0.1006				ent	Sam				
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid			0.100 Limits 70 - 130	0.1006				ent	Sam		ab Control S	e: To	tal/N
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid			0.100 Limits 70 - 130	0.1006	LCSI	D		ent	Sam		ab Control S Prep Typ	e: To	tal/I 180
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101			0.100 Limits 70 - 130 70 - 130					ent	Sam		ab Control S Prep Typ Prep Ba %Rec.	e: To	tal/N 180 R
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte			0.100 <i>Limits</i> 70 - 130 70 - 130 Spike	LCSD			Cli	ent		ple ID: La	ab Control S Prep Typ Prep Ba %Rec.	e: To itch:	tal/I 180 R
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene			0.100 <u>Limits</u> 70 - 130 70 - 130 Spike Added	LCSD Result			Cli	ent :		ple ID: La	ab Control S Prep Typ Prep Ba %Rec. Limits	e: To itch: RPD	tal/I 180 R
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Toluene			0.100 Limits 70 - 130 70 - 130 Spike Added 0.100	LCSD Result 0.09158			Cli <u>Unit</u> mg/Kg	ent :		ple ID: La <u>%Rec</u> 92	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130	e: To tch: RPD 11	tal/I 180 R
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Foluene Ethylbenzene			0.100 Limits 70 - 130 70 - 130 Spike Added 0.100 0.100	LCSD Result 0.09158 0.09843			Cli unit mg/Kg mg/Kg	ent :		ple ID: La %Rec 92 98	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130	e: To itch: RPD 11 4	tal/I 180 R
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene			0.100 Limits 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100	LCSD Result 0.09158 0.09843 0.1031			Cli <u>Unit</u> mg/Kg mg/Kg mg/Kg	ent		ple ID: La <u>%Rec</u> 92 98 103	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130	e: To atch: RPD 11 4 1	tal/N 180 R
5-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene	<u>%Recovery</u> Qu 119 101 8099/2-A	alifier	0.100 Limits 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200	LCSD Result 0.09158 0.09843 0.1031 0.1937			Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	e: To atch: RPD 11 4 1 8	tal/N 180 R
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	<u>%Recovery</u> Qu 119 101 8099/2-A 	alifier	0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100	LCSD Result 0.09158 0.09843 0.1031 0.1937			Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	e: To atch: RPD 11 4 1 8	tal/N 180 R Lii
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate		alifier	0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100 0.100 Limits	LCSD Result 0.09158 0.09843 0.1031 0.1937			Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	e: To atch: RPD 11 4 1 8	tal/N 180 R Lii
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr)	<u>%Recovery</u> Qu 119 101 8099/2-A <u>LCSD</u> <u>LC</u> <u>%Recovery</u> Qu 120	alifier	0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.100	LCSD Result 0.09158 0.09843 0.1031 0.1937			Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	e: To atch: RPD 11 4 1 8	tal/N 180 R Lii
-Xylene Surrogate -Bromofluorobenzene (Surr) -4-Difluorobenzene (Surr) -ab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Foluene Ethylbenzene -Xylene & p-Xylene -Xylene Surrogate -Bromofluorobenzene (Surr)		alifier	0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100 0.100 Limits	LCSD Result 0.09158 0.09843 0.1031 0.1937			Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	e: To atch: RPD 11 4 1 8	tal/N 180 R
Surrogate 4-Bromofluorobenzene (Surr) 4,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	<u>%Recovery</u> Qu 119 101 8099/2-A <u>LCSD</u> <u>LC</u> <u>%Recovery</u> Qu 120 98	alifier	0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.100	LCSD Result 0.09158 0.09843 0.1031 0.1937			Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97 94	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	e: To ttch: 11 4 1 8 7	tal// 180 R Lii
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10694-4	<u>%Recovery</u> Qu 119 101 8099/2-A <u>LCSD</u> <u>LC</u> <u>%Recovery</u> Qu 120 98	alifier	0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.100	LCSD Result 0.09158 0.09843 0.1031 0.1937			Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97 94	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	e: To ttch: RPD 11 4 1 8 7	tal/I 180 R Li
Surrogate Surrog	<u>%Recovery</u> Qu 119 101 8099/2-A <u>LCSD</u> <u>LC</u> <u>%Recovery</u> Qu 120 98	alifier	0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.100	LCSD Result 0.09158 0.09843 0.1031 0.1937			Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97 94	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	e: To ttch: RPD 11 4 1 8 7 7 atrix e: To	tal// 180 R Lii
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Toluene Ethylbenzene n-Xylene & p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10694-4 Matrix: Solid	<u>%Recovery</u> Qu 119 101 8099/2-A <u>LCSD</u> LC <u>%Recovery</u> Qu 120 98 A-51-B MS	alifier	0.100 Limits 70 - 130 70 - 130 Spike Added 0.100 0.100 0.200 0.100 0.200 0.100 <u>Limits</u> 70 - 130 70 - 130	LCSD Result 0.09158 0.09843 0.1031 0.1937 0.09376	Qual		Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97 94	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	e: To ttch: RPD 11 4 1 8 7 7 atrix e: To	tal/N 180 R Lin Spi tal/N
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 18101 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-10694-4 Matrix: Solid Analysis Batch: 18101		alifier SD alifier	0.100 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.100 0.200 0.100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	LCSD Result 0.09158 0.09843 0.1031 0.1937 0.09376	Qual	ifier	Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent	<u>D</u> .	ple ID: La %Rec 92 98 103 97 94 Client S	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 190 70 -	e: To ttch: RPD 11 4 1 8 7 7 atrix e: To	tal/N 180 R Lin Spi tal/N
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-1	<u>%Recovery</u> Qu 119 101 8099/2-A <u>LCSD</u> LC <u>%Recovery</u> Qu 120 98 A-51-B MS	alifier SD alifier	0.100 Limits 70 - 130 70 - 130 Spike Added 0.100 0.100 0.200 0.100 0.200 0.100 <u>Limits</u> 70 - 130 70 - 130	LCSD Result 0.09158 0.09843 0.1031 0.1937 0.09376	Qual	ifier	Cli mg/Kg mg/Kg mg/Kg mg/Kg	ent		ple ID: La %Rec 92 98 103 97 94	ab Control S Prep Typ Prep Ba %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	e: To ttch: RPD 11 4 1 8 7 7 atrix e: To	tal/N 180 R Lin Spi tal/N

Eurofins Midland

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-10694-A-	51-B MS										Client S	Sample ID		
Matrix: Solid													ype: To	
Analysis Batch: 18101												Prep	Batch:	1809
	Sample	Sam	ple	Spike	MS	MS						%Rec.		
Analyte	Result	Qual	ifier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00199	U		0.0992	0.1033			mg/Kg			104	70 - 130		
n-Xylene & p-Xylene	<0.00398	U		0.198	0.1980			mg/Kg			100	70 - 130		
-Xylene	<0.00199	U		0.0992	0.1037			mg/Kg			105	70 - 130		
	MS	мs												
Surrogate	%Recovery	Qual	ifier	Limits										
-Bromofluorobenzene (Surr)	129			70 - 130										
,4-Difluorobenzene (Surr)	112			70 - 130										
ab Sample ID: 880-10694-A-	51-C MSD								Clier	nt Sa	mple ID:	: Matrix Sp	oike Dup	olicat
Aatrix: Solid												Prep T	ype: To	tal/N
Analysis Batch: 18101												Prep	Batch:	1809
	Sample	Sam	ple	Spike	MSD	MSD)					%Rec.		RP
nalyte	Result	Qual	ifier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Lim
Benzene	<0.00199	U		0.0992	0.09491			mg/Kg			96	70 - 130	8	3
oluene	<0.00199	U		0.0992	0.09611			mg/Kg			97	70 - 130	7	3
thylbenzene	<0.00199			0.0992	0.1006			mg/Kg			101	70 ₋ 130	3	3
n-Xylene & p-Xylene	< 0.00398			0.198	0.1893			mg/Kg			95	70 - 130	4	3
-Xylene	<0.00199			0.0992	0.09620			mg/Kg			97	70 - 130	7	3
	MSD	MSD	1											
Surrogato	%Recovery	Qual	lifier	Limits										
Surroyale														
-	121			70 - 130										
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	98		(DD	70 - 130										
Bromofluorobenzene (Surr)	98 el Range Or	gan		70 - 130						(Client Sa		Method ype: To Batch:	tal/N
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) ethod: 8015B NM - Diese .ab Sample ID: MB 880-18142 Matrix: Solid Analysis Batch: 18228	98 <mark>el Range Or</mark> 2/1-A	мв	МВ	70 - 130 CO) (GC)		MDL	Unit		D			Prep T Prep	ype: To Batch:	tal/N. 1814
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) ethod: 8015B NM - Diese .ab Sample ID: MB 880-18142 Matrix: Solid Analysis Batch: 18228 	98 el Range Or 2/1-A 	мв	MB Qualifier	70 - 130		MDL	Unit mg/Kg		<u>D</u> .	Pre	Client Sa epared /22 11:05	Prep T	ype: To Batch:	tal/N 1814
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) ethod: 8015B NM - Diese ab Sample ID: MB 880-18142 Matrix: Solid Analysis Batch: 18228 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	98 el Range Or 2/1-A 	MB	MB Qualifier U	70 - 130 20) (GC) 		MDL			<u>D</u> .	Pr 01/31	epared	Prep T Prep Analyz	bype: To Batch: ed 09:44	tal/N 1814
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) ethod: 8015B NM - Diese .ab Sample ID: MB 880-18142 Matrix: Solid Analysis Batch: 18228 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	98 el Range Or 2/1-A 	MB esult 50.0	MB Qualifier U	70 - 130 C) (GC) RL 50.0 50.0		MDL	mg/Kg mg/Kg		<u>D</u> .	Pr 01/31 01/31	epared /22 11:05 /22 11:05	Analyz 02/01/22 (ype: To Batch: ed 09:44 09:44	tal/N
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) ethod: 8015B NM - Diese .ab Sample ID: MB 880-18142 Matrix: Solid Analysis Batch: 18228 .malyte Gasoline Range Organics GRO)-C6-C10 liesel Range Organics (Over	98 el Range Or 2/1-A 	MB ssult 50.0 50.0 50.0	MB Qualifier U U	70 - 130 (O) (GC) 		MDL	mg/Kg		<u>D</u> .	Pr 01/31 01/31	epared /22 11:05	Prep T Prep Analyz 02/01/22 (ype: To Batch: ed 09:44 09:44	tal/N 1814
Bromofluorobenzene (Surr) 4-Difluorobenzene (Surr) ethod: 8015B NM - Diese ab Sample ID: MB 880-18142 Matrix: Solid Malysis Batch: 18228 malyte Basoline Range Organics GRO)-C6-C10 liesel Range Organics (Over 10-C28) III Range Organics (Over C28-C36)	98 el Range Or 2/1-A 	MB esult 50.0 50.0 50.0 <i>MB</i>	MB Qualifier U U U	70 - 130 C) (GC) RL 50.0 50.0 50.0		MDL	mg/Kg mg/Kg		<u>D</u> .	Pre 01/31 01/31 01/31	22 11:05 /22 11:05 /22 11:05 /22 11:05	Prep T Prep 02/01/22 (02/01/22 (02/01/22 (ed - 09:44 - 09:44 - 09:44 -	tal/N 1814 Dil Fa
Bromofluorobenzene (Surr) 4-Difluorobenzene (Surr) ethod: 8015B NM - Diese ab Sample ID: MB 880-18142 Matrix: Solid Malysis Batch: 18228 malyte Basoline Range Organics GRO)-C6-C10 liesel Range Organics (Over 10-C28) III Range Organics (Over C28-C36)	98 el Range Or 2/1-A 	MB esult 50.0 50.0 50.0 <i>MB</i>	MB Qualifier U U	70 - 130 C) (GC) RL 50.0 50.0 50.0 Limits		MDL	mg/Kg mg/Kg		<u>D</u> .	Pre 01/31 01/31 01/31 Pre	22 11:05 /22 11:05 /22 11:05 /22 11:05	Prep T Prep 02/01/22 (02/01/22 (02/01/22 (02/01/22 (Analyz	Type: To Batch: ed 09:44 09:44 09:44 ed	tal/N 1814
Bromofluorobenzene (Surr) 4-Difluorobenzene (Surr) ethod: 8015B NM - Diese ab Sample ID: MB 880-18142 Matrix: Solid malysis Batch: 18228 malyte Basoline Range Organics GRO)-C6-C10 liesel Range Organics (Over 10-C28)	98 el Range Or 2/1-A 	MB esult 50.0 50.0 50.0 <i>MB</i>	MB Qualifier U U U	70 - 130 C) (GC) RL 50.0 50.0 50.0		MDL	mg/Kg mg/Kg		<u>D</u> .	Pre 01/31 01/31 01/31 Pre	22 11:05 /22 11:05 /22 11:05 /22 11:05	Prep T Prep 02/01/22 (02/01/22 (02/01/22 (Type: To Batch: ed 09:44 09:44 09:44 ed	tal/N 1814 Dil Fa

Lab Sample ID: LCS 880-18142/2-A Matrix: Solid Analysis Batch: 18228

Analysis Batch: 18228							Prep	Batch: 18142
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1035		mg/Kg		104	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	834.6		mg/Kg		83	70 - 130	
C10-C28)								

Prep Type: Total/NA

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-18	142/2-A						Client	Sample	ID: Lab Co		
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 18228									Prep	Batch:	18142
	LCS	105									
Surrogate	%Recovery		Limits								
1-Chlorooctane		Quaimer	70 - 130								
o-Terphenyl		S1-	70 - 130 70 - 130								
5- Terphenyi	07	37-	70 - 750								
Lab Sample ID: LCSD 880-1	18142/3-A					Clie	nt Sam	nle ID: I	Lab Contro		e Dur
Matrix: Solid										ype: To	
Analysis Batch: 18228										Batch:	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	1059		mg/Kg		106	70 - 130	2	20
(GRO)-C6-C10						0 0					
Diesel Range Organics (Over			1000	855.5		mg/Kg		86	70 - 130	2	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	73		70 - 130								
Lab Sample ID: 880-10650-	1 MS							Cli	ent Sample	ID: OS	1 @ 0'
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 18228										Batch:	
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U	997	1023		mg/Kg		100	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	997	929.5		mg/Kg		91	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	74		70 - 130								
Lab Sample ID: 880-10650-	1 MSD							Cli	ent Sample	D: OS	1 @ 0'
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 18228									Prep	Batch:	18142
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Analyte				1112		mg/Kg		109	70 - 130	8	20
Gasoline Range Organics	<49.9	U	996	2							
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	<49.9		996 996	852.6		mg/Kg		83	70 - 130	9	20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		U				mg/Kg				9	20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9	U <i>MSD</i>				mg/Kg				9	20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	<49.9 MSD	U <i>MSD</i>	996			mg/Kg				9	20

70 - 130

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

)/1-A							Client Sa	ample ID: Me		
Matrix: Solid									Prep Ty		
Analysis Batch: 18223									Prep B	atch:	1815
		B MB									
Analyte		It Qualifier			MDL Unit		D	Prepared	Analyzed		Dil Fa
Gasoline Range Organics	<50.	0 U	50.0		mg/ŀ	(g	01	/31/22 12:03	02/01/22 19:	10	
GRO)-C6-C10 Diesel Range Organics (Over	<50	0 U	50.0		mg/ł	'n	01	/31/22 12:03	02/01/22 19:	10	
C10-C28)					-	-					
Oll Range Organics (Over C28-C36)	<50.	0 U	50.0		mg/ŀ	(g	01	/31/22 12:03	02/01/22 19:	10	
	М	B MB									
Surrogate	%Recover	y Qualifier	Limits					Prepared	Analyzed		Dil F
I-Chlorooctane	7	'5	70 - 130				01	/31/22 12:03	02/01/22 19	10	
o-Terphenyl	g	6	70 - 130				01	/31/22 12:03	02/01/22 19	10	
Lab Sample ID: LCS 880-1815	0/2-A						Clie	nt Sample	ID: Lab Con		
Matrix: Solid									Prep Typ		
Analysis Batch: 18223			0	LCS					Prep B	atcn:	181
Analyta			Spike Added			Unit		% Boo	%Rec.		
Analyte			1000	774.4	Qualifier	_ Unit mg/Kg		2 %Rec 77	Limits		
Gasoline Range Organics GRO)-C6-C10			1000	//4.4		iliy/Ky		11	70 - 130		
Diesel Range Organics (Over			1000	919.4		mg/Kg		92	70 - 130		
C10-C28)											
	LCS LC	s									
Surrogate	%Recovery Q	ualifier	Limits								
I-Chlorooctane	73										
	70		70 - 130								
p-Terphenyl	83		70 - 130 70 - 130								
p-Terphenyl	83					CI	iont Sa		ah Control S	amp	
- <i>Terphenyl</i> _ab Sample ID: LCSD 880-181	83					Cli	ient Sa	mple ID: L	ab Control S		
- <i>Terphenyl</i> Lab Sample ID: LCSD 880-181 Matrix: Solid	83					Cli	ient Sa	mple ID: L	Prep Typ	e: To	otal/N
- <i>Terphenyl</i> _ab Sample ID: LCSD 880-181	83		70 - 130			Cli	ient Sa	mple ID: L	Prep Typ Prep B	e: To	otal/N 181
⊳- <i>Terphenyl</i> ∟ab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223	83		70 - 130 Spike	LCSD Result				-	Prep Typ Prep B %Rec.	oe: To atch:	otal/N 181 R
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte	83		70 - 130 Spike Added	Result	LCSD Qualifier	Unit	ient Sa	%Rec	Prep Typ Prep B %Rec. Limits	e: To atch: RPD	otal/N 181 R Lii
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Gasoline Range Organics	83		70 - 130 Spike					-	Prep Typ Prep B %Rec.	oe: To atch:	otal/N 181 Ri Lir
p- <i>Terphenyl</i> Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10	83		70 - 130 Spike Added	Result		Unit		%Rec	Prep Typ Prep B %Rec. Limits	e: To atch: RPD	otal/N 181 Ri Lir
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Gasoline Range Organics	83		70 - 130 Spike Added 1000	Result 802.4		_ <mark>Unit</mark> mg/Kg		%Rec 80	Prep Typ Prep B %Rec. Limits 70 - 130	e: To atch: RPD 4	otal/N 181 Ri Lir
D- <i>Terphenyl</i> Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	83		70 - 130 Spike Added 1000	Result 802.4		_ <mark>Unit</mark> mg/Kg		%Rec 80	Prep Typ Prep B %Rec. Limits 70 - 130	e: To atch: RPD 4	otal/N 181 Ri Lir
D- <i>Terphenyl</i> Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	83		70 - 130 Spike Added 1000	Result 802.4		_ <mark>Unit</mark> mg/Kg		%Rec 80	Prep Typ Prep B %Rec. Limits 70 - 130	e: To atch: RPD 4	otal/N 181 Ri Lir
D- <i>Terphenyl</i> Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	83 150/3-A		70 - 130 Spike Added 1000 1000	Result 802.4		_ <mark>Unit</mark> mg/Kg		%Rec 80	Prep Typ Prep B %Rec. Limits 70 - 130	e: To atch: RPD 4	otal/N
D-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	83 50/3-A 		70 - 130 Spike Added 1000 1000 Limits	Result 802.4		_ <mark>Unit</mark> mg/Kg		%Rec 80	Prep Typ Prep B %Rec. Limits 70 - 130	e: To atch: RPD 4	otal/N 181 RF Lin
2-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl	83 150/3-A LCSD LC %Recovery Qu 74 82		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 802.4		_ <mark>Unit</mark> mg/Kg		94 %Rec	Prep Typ Prep B %Rec. Limits 70 - 130 70 - 130	e: To atch: RPD 4 2	0tal/N 1814 Ri Lir
Analyte Carbon Contemporation Carbon Contemp	83 150/3-A LCSD LC %Recovery Qu 74 82		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 802.4		_ <mark>Unit</mark> mg/Kg		94 %Rec	Prep Typ Prep B %Rec. Limits 70 - 130 70 - 130	De: To atch: RPD 4 2	181/ 181 181 Lir
2-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-10650-21 Matrix: Solid	83 150/3-A LCSD LC %Recovery Qu 74 82		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 802.4		_ <mark>Unit</mark> mg/Kg		94 %Rec	Prep Typ Prep B %Rec. Limits 70 - 130 70 - 130 70 - 130	D: EH	0tal/N 1811 Lir Lir
Analyte Carbon Contemporation Carbon Contemp	83 150/3-A <u>LCSD</u> LC <u>%Recovery</u> Qi 74 82 MS	ualifier	Spike Added 1000 1000 1000 1000 1000 1000	Result 802.4 942.2	Qualifier	_ <mark>Unit</mark> mg/Kg		94 %Rec	Prep Typ Prep B %Rec. Limits 70 - 130 70 - 130 70 - 130	D: EH	0tal/N 1811 Lir Lir
2-Terphenyl Lab Sample ID: LCSD 880-181 Matrix: Solid Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-10650-21 Matrix: Solid	83 150/3-A <i>LCSD LC</i> <u>%Recovery Qu</u> 74 82 MS Sample Sa	ualifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130 70 - 130	Result 802.4 942.2	Qualifier	_ <mark>Unit</mark> mg/Kg		94 %Rec	Prep Typ Prep B %Rec. Limits 70 - 130 70 - 130 70 - 130	D: EH	181/N 181 181 Lir
Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: 880-10650-21 Matrix: Solid Analysis Batch: 18223	83 50/3-A <i>LCSD LC</i> <i>%Recovery Qu</i> 74 82 MS Sample Sa Result Qu	ualifier	70 - 130 Spike Added 1000 1000 1000 1000 500 1000 500 500 500 Added	Result 802.4 942.2 MS Result	Qualifier	_ Unit mg/Kg mg/Kg		0 %Rec 80 94 Clie	Prep Typ Prep B %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 90 - 130 Prep Typ Prep B %Rec. Limits	D: EH	0tal/N 1811 Lir Lir
Analysis Batch: 18223 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate C-Chlorooctane D-Terphenyl Lab Sample ID: 880-10650-21 Matrix: Solid Analysis Batch: 18223	83 150/3-A <i>LCSD LC</i> <u>%Recovery Qu</u> 74 82 MS Sample Sa	ualifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130 70 - 130	Result 802.4 942.2	Qualifier	_ <mark>Unit</mark> mg/Kg mg/Kg	<u>C</u>	9 <u>%Rec</u> 80 94 Clie	Prep Typ Prep B %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	D: EH	0tal/N 1811 Lir Lir

Eurofins Midland

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-10650-21	MS										Clie	ent Sample	∋ ID: E⊦	13 @ 0'
Matrix: Solid												Prep 1	Type: To	otal/NA
Analysis Batch: 18223												Prep	Batch:	: 18150
	MS	мs												
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	57	S1-		70 - 130										
o-Terphenyl	62	S1-		70 - 130										
Lab Sample ID: 880-10650-21	MSD										Clie	ent Sample	ID: EF	H3 @ 0'
Matrix: Solid												Prep 1	ype: To	otal/NA
Analysis Batch: 18223												Prep	Batch:	: 18150
-	Sample	Sam	ple	Spike	MSD	MSD						%Rec.		RPD
Analyte	Result	Qua	lifier	Added	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F2	2	999	1038	F2		mg/Kg		_	99	70 - 130	26	20
Diesel Range Organics (Over C10-C28)	<49.9	U		999	975.4			mg/Kg			96	70 - 130	11	20
	MSD	мег	,											
Surrogate	%Recovery	Qua		Limits										
1-Chlorooctane		S1-		70 - 130										
o-Terphenyl		S1-		70 - 130										
Lab Sample ID: MB 880-18288	/ 1-A										Client Sa	ample ID:	Method	Blank
Matrix: Solid												Prep 1	Type: To	otal/NA
Analysis Batch: 18225												Prep	Batch:	: 18288
		MB	MB											
Analyte			Qualifier	R		MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<	\$0.0	U	50.	0		mg/Kg	1		02/0	1/22 13:25	02/01/22	19:10	1
Diesel Range Organics (Over C10-C28)	<	\$0.0	U	50.	0		mg/Kg	ļ		02/0	1/22 13:25	02/01/22	19:10	1
Oll Range Organics (Over C28-C36)	<	\$0.0	U	50.	0		mg/Kg	I		02/0	1/22 13:25	02/01/22	19:10	1
		MВ	МВ											
Surrogate	%Reco		Qualifier	Limits	_						repared	Analyz		Dil Fac
1-Chlorooctane		81		70 - 130							1/22 13:25	02/01/22		1
o-Terphenyl		94		70 - 130						02/0	1/22 13:25	02/01/22	19:10	1
Lab Sample ID: LCS 880-1828	8/ 2-A								С	lient	Sample	ID: Lab Co	ontrol S	Sample
Matrix: Solid												Prep 1	Type: To	otal/NA
Analysis Batch: 18225												Prep	Batch:	18288
				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000	837.8			mg/Kg			84	70 - 130		
Diesel Range Organics (Over				1000	1100			malla			111	70 120		
C10-C28)				1000	1109			mg/Kg			111	70 - 130		

	LCS LCS	
Surrogate	%Recovery Qua	lifier Limits
1-Chlorooctane	88	70 - 130
o-Terphenyl	93	70 - 130

5

SDG: Rural Eddy Co, NM

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-1	8288/3-A					Clier	nt Sam	ple ID: I	Lab Contro		
Matrix: Solid										Гуре: То	
Analysis Batch: 18225									Prep	Batch:	18288
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	859.7		mg/Kg		86	70 - 130	3	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	1079		mg/Kg		108	70 - 130	3	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	86		70 - 130								
o-Terphenyl	90		70 - 130								
Lab Sample ID: 880-10734-A	A-1-F MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 18225									Prep	Batch:	18288
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U	999	812.0		mg/Kg		79	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	999	934.4		mg/Kg		92	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	63	S1-	70 - 130								
o-Terphenyl	64	S1-	70 - 130								
Lab Sample ID: 880-10734-A	A-1-G MSD					Cli	ent Sa	ample ID): Matrix Sp	oike Dup	olicate
									Prep 1	Г <mark>уре: То</mark>	tal/NA
Matrix: Solid											
									Prep	Batch:	18288
	Sample	Sample	Spike	MSD	MSD				Prep %Rec.	Batch:	18288 RPC
Analysis Batch: 18225		Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec		Batch:	RPD
Analysis Batch: 18225 Analyte		Qualifier	-			- Unit mg/Kg	<u>D</u>	%Rec 75	%Rec.		
Analysis Batch: 18225 Analyte Gasoline Range Organics	Result	Qualifier	Added	Result			D		%Rec. Limits	RPD 4	RPD Limi 20
Analysis Batch: 18225 Analyte Gasoline Range Organics (GRO)-C6-C10	Result	Qualifier	Added	Result			<u>D</u>		%Rec. Limits	RPD	RPC Limi
Analysis Batch: 18225 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		Qualifier	Added	Result 777.8		mg/Kg	D	75	%Rec. Limits 70 - 130	RPD 4	RPD Limi 20
Analysis Batch: 18225 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		Qualifier	Added	Result 777.8		mg/Kg	<u>D</u>	75	%Rec. Limits 70 - 130	RPD 4	RPE Limi 20
Analysis Batch: 18225 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier U U MSD	Added	Result 777.8		mg/Kg	D	75	%Rec. Limits 70 - 130	RPD 4	RPD Limi 20
Matrix: Solid Analysis Batch: 18225 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane		Qualifier U U	Added	Result 777.8		mg/Kg	<u>D</u>	75	%Rec. Limits 70 - 130	RPD 4	RPD Limi 20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-17962/1-A Matrix: Solid Analysis Batch: 18076							Client S	ample ID: Metho Prep Type:	
-	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			01/30/22 15:57	1

Page 80 of 168

Eurofins Midland

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster Page 81 of 168

Method: 300.0 - Anions, Ion Chromatography (Continued)

_											
Lab Sample ID: LCS 880-17962/2-A							Clien	t Sample	e ID: Lab Co		
Matrix: Solid									Prep 1	ype: So	oluble
Analysis Batch: 18076			Cuilto	1.00	LCS				%Rec.		
Analyte			Spike Added		Qualifier	Unit	D	%Rec	%Rec.		
Analyte Chloride			250	271.8	Quaimer	mg/Kg	<u> </u>	109	90 - 110		
			250	271.0		mg/rtg		109	90 - 110		
Lab Sample ID: LCSD 880-17962/3-	A					Cli	ent Sar	nple ID:	Lab Control	Sampl	e Dup
Matrix: Solid										Type: So	-
Analysis Batch: 18076											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Limit
Chloride			250	270.5		mg/Kg		108	90 _ 110	0	20
								0.1			
Lab Sample ID: 880-10650-1 MS								CI	ent Sample		_
Matrix: Solid									Prep	ype: So	oluble
Analysis Batch: 18076	Sampla	Sample	Spike	МЗ	MS				%Rec.		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Chloride	8.80		248	372.8		mg/Kg	<u> </u>	147	90 - 110		
	0.00		210	072.0		mg/rtg			00-110		
Lab Sample ID: 880-10650-1 MSD								Cli	ent Sample	ID: OS	1 @ 0'
Matrix: Solid									Prep 1	ype: S	oluble
Analysis Batch: 18076											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	8.80	F1	248	360.1	F1	mg/Kg		142	90 _ 110	3	20
- Lab Sample ID: MD 990 47062/4 A								Client	Semula ID: N	lathad	Diank
Lab Sample ID: MB 880-17963/1-A Matrix: Solid								Client	Sample ID: N	ietnoù Type: Se	
Analysis Batch: 18284									Fieb	ype. S	oluble
Analysis Datch. 10204		MB MB									
Analyte	R	lesult Qualifier		RL	MDL Unit		DF	Prepared	Analyze	d	Dil Fac
Chloride		<5.00 U		5.00	mg/K	g			02/01/22 2		1
_					Ū						
Lab Sample ID: LCS 880-17963/2-A							Clien	t Sample	e ID: Lab Co	ntrol Sa	ample
Matrix: Solid									Prep 1	Type: So	oluble
Analysis Batch: 18284											
			Spike		LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Chloride			250	227.1		mg/Kg		91	90 - 110		
- Lab Sample ID: LCSD 880-17963/3-	^					Cli	ont Sar		Lab Control	Sampl	
Matrix: Solid	^					01	ent Gai	inpie ib.		ype: So	
Analysis Batch: 18284										, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	orabio
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	259.9		mg/Kg		104	90 - 110	13	20
-											
Lab Sample ID: 880-10650-19 MS								CI	ient Sample		_
Matrix: Solid									Prep 1	ype: So	oluble
Analysis Batch: 18284											
	_ ·										
	-	Sample	Spike		MS		_	~ =	%Rec.		
Analyte	-	Sample Qualifier	Spike Added 248		MS Qualifier	_ Unit mg/Kg	D	%Rec 106	%Rec. Limits 90 - 110		

Eurofins Midland

5 - 6 P 7 e 8 int 9 o 10 le 11 - 12 o 13 le 14

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Method: 300.0 - Anions, Ion Chromatography

ab Sample ID: 880-10650-19 latrix: Solid	9 MSD							Cli	ent Sample Pren	e ID: EH2 Type: So	-	
nalysis Batch: 18284									Trop	Type. O	Jubic	
	Sample	-	Spike		MSD				%Rec.		RPD	
nalyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Limit	
nloride	80.0		248	313.7		mg/Kg		94	90 - 110	9	20	
												j

Eurofins Midland

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

GC VOA

Prep Batch: 17780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-21	EH3 @ 0'	Total/NA	Solid	5035	
880-10650-22	EH3 @ 1'	Total/NA	Solid	5035	
880-10650-23	WH1 @ 0'	Total/NA	Solid	5035	
880-10650-24	WH1 @ 1'	Total/NA	Solid	5035	
880-10650-25	WH2 @ 0'	Total/NA	Solid	5035	
880-10650-26	WH2 @ 1'	Total/NA	Solid	5035	
880-10650-27	WH3 @ 0'	Total/NA	Solid	5035	
880-10650-28	WH3 @ 1'	Total/NA	Solid	5035	
MB 880-17780/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-17780/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-17780/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-10650-21 MS	EH3 @ 0'	Total/NA	Solid	5035	
880-10650-21 MSD	EH3 @ 0'	Total/NA	Solid	5035	

Prep Batch: 17879

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-1	OS1 @ 0'	Total/NA	Solid	5035	
880-10650-2	OS1 @ 1'	Total/NA	Solid	5035	
880-10650-3	OS2 @ 0'	Total/NA	Solid	5035	
880-10650-4	OS2 @ 1'	Total/NA	Solid	5035	
880-10650-7	V2 @ 0'	Total/NA	Solid	5035	
880-10650-8	V2 @ 1'	Total/NA	Solid	5035	
880-10650-9	V3 @ 0'	Total/NA	Solid	5035	
880-10650-10	V3 @ 2'-R	Total/NA	Solid	5035	
880-10650-11	V4@ 0'	Total/NA	Solid	5035	
880-10650-12	V4 @ 1'	Total/NA	Solid	5035	
880-10650-13	NH1 @ 0'	Total/NA	Solid	5035	
880-10650-14	NH1 @ 1'	Total/NA	Solid	5035	
880-10650-15	SH1 @ 0'	Total/NA	Solid	5035	
880-10650-16	SH1 @ 1'	Total/NA	Solid	5035	
880-10650-17	EH1 @ 0'	Total/NA	Solid	5035	
880-10650-18	EH1 @ 1'	Total/NA	Solid	5035	
880-10650-19	EH2 @ 0'	Total/NA	Solid	5035	
880-10650-20	EH2 @ 1'	Total/NA	Solid	5035	
MB 880-17879/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-17879/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-17879/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-10650-1 MS	OS1 @ 0'	Total/NA	Solid	5035	
880-10650-1 MSD	OS1 @ 0'	Total/NA	Solid	5035	

Prep Batch: 17924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-17924/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 17974

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-21	EH3 @ 0'	Total/NA	Solid	8021B	17780
880-10650-22	EH3 @ 1'	Total/NA	Solid	8021B	17780
880-10650-23	WH1 @ 0'	Total/NA	Solid	8021B	17780
880-10650-24	WH1 @ 1'	Total/NA	Solid	8021B	17780
880-10650-25	WH2 @ 0'	Total/NA	Solid	8021B	17780

Eurofins Midland

5

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

GC VOA (Continued)

Analysis Batch: 17974 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-26	WH2 @ 1'	Total/NA	Solid	8021B	17780
880-10650-27	WH3 @ 0'	Total/NA	Solid	8021B	17780
880-10650-28	WH3 @ 1'	Total/NA	Solid	8021B	17780
MB 880-17780/5-A	Method Blank	Total/NA	Solid	8021B	17780
MB 880-17924/5-A	Method Blank	Total/NA	Solid	8021B	17924
LCS 880-17780/1-A	Lab Control Sample	Total/NA	Solid	8021B	17780
LCSD 880-17780/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	17780
880-10650-21 MS	EH3 @ 0'	Total/NA	Solid	8021B	17780
880-10650-21 MSD	EH3 @ 0'	Total/NA	Solid	8021B	17780

Analysis Batch: 18020

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-1	OS1 @ 0'	Total/NA	Solid	8021B	17879
880-10650-2	OS1 @ 1'	Total/NA	Solid	8021B	17879
880-10650-3	OS2 @ 0'	Total/NA	Solid	8021B	17879
880-10650-4	OS2 @ 1'	Total/NA	Solid	8021B	17879
880-10650-7	V2 @ 0'	Total/NA	Solid	8021B	17879
880-10650-8	V2 @ 1'	Total/NA	Solid	8021B	17879
880-10650-9	V3 @ 0'	Total/NA	Solid	8021B	17879
880-10650-10	V3 @ 2'-R	Total/NA	Solid	8021B	17879
880-10650-11	V4@ 0'	Total/NA	Solid	8021B	17879
880-10650-12	V4 @ 1'	Total/NA	Solid	8021B	17879
880-10650-13	NH1 @ 0'	Total/NA	Solid	8021B	17879
880-10650-14	NH1 @ 1'	Total/NA	Solid	8021B	17879
880-10650-15	SH1 @ 0'	Total/NA	Solid	8021B	17879
880-10650-16	SH1 @ 1'	Total/NA	Solid	8021B	17879
880-10650-17	EH1 @ 0'	Total/NA	Solid	8021B	17879
880-10650-18	EH1 @ 1'	Total/NA	Solid	8021B	17879
880-10650-19	EH2 @ 0'	Total/NA	Solid	8021B	17879
880-10650-20	EH2 @ 1'	Total/NA	Solid	8021B	17879
MB 880-17879/5-A	Method Blank	Total/NA	Solid	8021B	17879
LCS 880-17879/1-A	Lab Control Sample	Total/NA	Solid	8021B	17879
LCSD 880-17879/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	17879
880-10650-1 MS	OS1 @ 0'	Total/NA	Solid	8021B	17879
880-10650-1 MSD	OS1 @ 0'	Total/NA	Solid	8021B	17879

Prep Batch: 18098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-10650-5	V1 @ 0'	Total/NA	Solid	5035	
MB 880-18098/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-18098/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-18098/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-10720-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
880-10720-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 18099

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-6	V1 @ 4'	Total/NA	Solid	5035	
MB 880-18099/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-18099/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-18099/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Page 84 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

GC VOA (Continued)

Prep Batch: 18099 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10694-A-51-B MS	Matrix Spike	Total/NA	Solid	5035	
880-10694-A-51-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
Analysis Batch: 18100					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-5	V1 @ 0'	Total/NA	Solid	8021B	18098
MB 880-18098/5-A	Method Blank	Total/NA	Solid	8021B	18098
LCS 880-18098/1-A	Lab Control Sample	Total/NA	Solid	8021B	18098
LCSD 880-18098/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	18098
880-10720-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	18098
880-10720-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	18098
Analysis Batch: 18101					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-6	V1 @ 4'	Total/NA	Solid	8021B	18099
MB 880-18099/5-A	Method Blank	Total/NA	Solid	8021B	18099
LCS 880-18099/1-A	Lab Control Sample	Total/NA	Solid	8021B	18099
LCSD 880-18099/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	18099
880-10694-A-51-B MS	Matrix Spike	Total/NA	Solid	8021B	18099
880-10694-A-51-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	18099
Analysis Batch: 18165					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-1	OS1 @ 0'	Total/NA	Solid	Total BTEX	
880-10650-2	OS1 @ 1'	Total/NA	Solid	Total BTEX	
880-10650-3	OS2 @ 0'	Total/NA	Solid	Total BTEX	
880-10650-4	OS2 @ 1'	Total/NA	Solid	Total BTEX	
880-10650-7	V2 @ 0'	Total/NA	Solid	Total BTEX	

		i o tai i u t	00110
880-10650-3	OS2 @ 0'	Total/NA	Solid
880-10650-4	OS2 @ 1'	Total/NA	Solid
880-10650-7	V2 @ 0'	Total/NA	Solid
880-10650-8	V2 @ 1'	Total/NA	Solid
880-10650-9	V3 @ 0'	Total/NA	Solid
880-10650-10	V3 @ 2'-R	Total/NA	Solid
880-10650-11	V4@ 0'	Total/NA	Solid
880-10650-12	V4 @ 1'	Total/NA	Solid
880-10650-13	NH1 @ 0'	Total/NA	Solid
880-10650-14	NH1 @ 1'	Total/NA	Solid

			0	
880-10650-13	NH1 @ 0'	Total/NA	Solid	Total BTEX
880-10650-14	NH1 @ 1'	Total/NA	Solid	Total BTEX
880-10650-15	SH1 @ 0'	Total/NA	Solid	Total BTEX
880-10650-16	SH1 @ 1'	Total/NA	Solid	Total BTEX
880-10650-17	EH1 @ 0'	Total/NA	Solid	Total BTEX
880-10650-18	EH1 @ 1'	Total/NA	Solid	Total BTEX
880-10650-19	EH2 @ 0'	Total/NA	Solid	Total BTEX
880-10650-20	EH2 @ 1'	Total/NA	Solid	Total BTEX

Analysis Batch: 18428

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-5	V1 @ 0'	Total/NA	Solid	Total BTEX	
880-10650-6	V1 @ 4'	Total/NA	Solid	Total BTEX	
880-10650-21	EH3 @ 0'	Total/NA	Solid	Total BTEX	
880-10650-22	EH3 @ 1'	Total/NA	Solid	Total BTEX	
880-10650-23	WH1 @ 0'	Total/NA	Solid	Total BTEX	
880-10650-24	WH1 @ 1'	Total/NA	Solid	Total BTEX	
880-10650-25	WH2 @ 0'	Total/NA	Solid	Total BTEX	

Eurofins Midland

Total BTEX

Total BTEX

Total BTEX

Total BTEX

Total BTEX

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

GC VOA (Continued)

Analysis Batch: 18428 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-26	WH2 @ 1'	Total/NA	Solid	Total BTEX	
880-10650-27	WH3 @ 0'	Total/NA	Solid	Total BTEX	
880-10650-28	WH3 @ 1'	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 18142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
880-10650-1	OS1 @ 0'	Total/NA	Solid	8015NM Prep		
880-10650-2	OS1 @ 1'	Total/NA	Solid	8015NM Prep		0
880-10650-3	OS2 @ 0'	Total/NA	Solid	8015NM Prep		3
880-10650-4	OS2 @ 1'	Total/NA	Solid	8015NM Prep		10
880-10650-5	V1 @ 0'	Total/NA	Solid	8015NM Prep		IU
880-10650-6	V1 @ 4'	Total/NA	Solid	8015NM Prep		4.4
880-10650-7	V2 @ 0'	Total/NA	Solid	8015NM Prep		11
880-10650-8	V2 @ 1'	Total/NA	Solid	8015NM Prep		
880-10650-9	V3 @ 0'	Total/NA	Solid	8015NM Prep		12
880-10650-10	V3 @ 2'-R	Total/NA	Solid	8015NM Prep		
880-10650-11	V4@ 0'	Total/NA	Solid	8015NM Prep		13
880-10650-12	V4 @ 1'	Total/NA	Solid	8015NM Prep		
880-10650-13	NH1 @ 0'	Total/NA	Solid	8015NM Prep		14
880-10650-14	NH1 @ 1'	Total/NA	Solid	8015NM Prep		
MB 880-18142/1-A	Method Blank	Total/NA	Solid	8015NM Prep		
LCS 880-18142/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-18142/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
880-10650-1 MS	OS1 @ 0'	Total/NA	Solid	8015NM Prep		
880-10650-1 MSD	OS1 @ 0'	Total/NA	Solid	8015NM Prep		

Prep Batch: 18150

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-21	EH3 @ 0'	Total/NA	Solid	8015NM Prep	
880-10650-22	EH3 @ 1'	Total/NA	Solid	8015NM Prep	
880-10650-23	WH1 @ 0'	Total/NA	Solid	8015NM Prep	
880-10650-24	WH1 @ 1'	Total/NA	Solid	8015NM Prep	
880-10650-25	WH2 @ 0'	Total/NA	Solid	8015NM Prep	
880-10650-26	WH2 @ 1'	Total/NA	Solid	8015NM Prep	
880-10650-27	WH3 @ 0'	Total/NA	Solid	8015NM Prep	
880-10650-28	WH3 @ 1'	Total/NA	Solid	8015NM Prep	
MB 880-18150/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-18150/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-18150/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-10650-21 MS	EH3 @ 0'	Total/NA	Solid	8015NM Prep	
880-10650-21 MSD	EH3 @ 0'	Total/NA	Solid	8015NM Prep	

Analysis Batch: 18223

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-21	EH3 @ 0'	Total/NA	Solid	8015B NM	18150
880-10650-22	EH3 @ 1'	Total/NA	Solid	8015B NM	18150
880-10650-23	WH1 @ 0'	Total/NA	Solid	8015B NM	18150
880-10650-24	WH1 @ 1'	Total/NA	Solid	8015B NM	18150
880-10650-25	WH2 @ 0'	Total/NA	Solid	8015B NM	18150

Eurofins Midland

Job ID: 880-10650-1

SDG: Rural Eddy Co, NM

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

GC Semi VOA (Continued)

Analysis Batch: 18223 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-26	WH2 @ 1'	Total/NA	Solid	8015B NM	18150
880-10650-27	WH3 @ 0'	Total/NA	Solid	8015B NM	18150
880-10650-28	WH3 @ 1'	Total/NA	Solid	8015B NM	18150
MB 880-18150/1-A	Method Blank	Total/NA	Solid	8015B NM	18150
LCS 880-18150/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	18150
LCSD 880-18150/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	18150
880-10650-21 MS	EH3 @ 0'	Total/NA	Solid	8015B NM	18150
880-10650-21 MSD	EH3 @ 0'	Total/NA	Solid	8015B NM	18150

Analysis Batch: 18225

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-10650-15	SH1 @ 0'	Total/NA	Solid	8015B NM	18288	
880-10650-16	SH1 @ 1'	Total/NA	Solid	8015B NM	18288	
880-10650-17	EH1 @ 0'	Total/NA	Solid	8015B NM	18288	
880-10650-18	EH1 @ 1'	Total/NA	Solid	8015B NM	18288	
880-10650-19	EH2 @ 0'	Total/NA	Solid	8015B NM	18288	
880-10650-20	EH2 @ 1'	Total/NA	Solid	8015B NM	18288	
MB 880-18288/1-A	Method Blank	Total/NA	Solid	8015B NM	18288	4
LCS 880-18288/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	18288	
LCSD 880-18288/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	18288	
880-10734-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	18288	
880-10734-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	18288	

Analysis Batch: 18228

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-1	OS1 @ 0'	Total/NA	Solid	8015B NM	18142
880-10650-2	OS1 @ 1'	Total/NA	Solid	8015B NM	18142
880-10650-3	OS2 @ 0'	Total/NA	Solid	8015B NM	18142
880-10650-4	OS2 @ 1'	Total/NA	Solid	8015B NM	18142
880-10650-5	V1 @ 0'	Total/NA	Solid	8015B NM	18142
880-10650-6	V1 @ 4'	Total/NA	Solid	8015B NM	18142
880-10650-7	V2 @ 0'	Total/NA	Solid	8015B NM	18142
880-10650-8	V2 @ 1'	Total/NA	Solid	8015B NM	18142
880-10650-9	V3 @ 0'	Total/NA	Solid	8015B NM	18142
880-10650-10	V3 @ 2'-R	Total/NA	Solid	8015B NM	18142
880-10650-11	V4@ 0'	Total/NA	Solid	8015B NM	18142
880-10650-12	V4 @ 1'	Total/NA	Solid	8015B NM	18142
880-10650-13	NH1 @ 0'	Total/NA	Solid	8015B NM	18142
880-10650-14	NH1 @ 1'	Total/NA	Solid	8015B NM	18142
MB 880-18142/1-A	Method Blank	Total/NA	Solid	8015B NM	18142
LCS 880-18142/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	18142
LCSD 880-18142/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	18142
880-10650-1 MS	OS1 @ 0'	Total/NA	Solid	8015B NM	18142
880-10650-1 MSD	OS1 @ 0'	Total/NA	Solid	8015B NM	18142

Prep Batch: 18288

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-15	SH1 @ 0'	Total/NA	Solid	8015NM Prep	
880-10650-16	SH1 @ 1'	Total/NA	Solid	8015NM Prep	
880-10650-17	EH1 @ 0'	Total/NA	Solid	8015NM Prep	
880-10650-18	EH1 @ 1'	Total/NA	Solid	8015NM Prep	

Page 87 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Matrix Spike

Matrix Spike Duplicate

GC Semi VOA (Continued)

Prep Batch: 18288 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
880-10650-19	EH2 @ 0'	Total/NA	Solid	8015NM Prep
880-10650-20	EH2 @ 1'	Total/NA	Solid	8015NM Prep
MB 880-18288/1-A	Method Blank	Total/NA	Solid	8015NM Prep
LCS 880-18288/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep
LCSD 880-18288/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep

Analysis Batch: 18369

880-10734-A-1-F MS

880-10734-A-1-G MSD

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-1	OS1 @ 0'	Total/NA	Solid	8015 NM	
880-10650-5	V1 @ 0'	Total/NA	Solid	8015 NM	
880-10650-6	V1 @ 4'	Total/NA	Solid	8015 NM	
880-10650-7	V2 @ 0'	Total/NA	Solid	8015 NM	
880-10650-8	V2 @ 1'	Total/NA	Solid	8015 NM	
880-10650-9	V3 @ 0'	Total/NA	Solid	8015 NM	
880-10650-10	V3 @ 2'-R	Total/NA	Solid	8015 NM	
880-10650-11	V4@ 0'	Total/NA	Solid	8015 NM	
880-10650-12	V4 @ 1'	Total/NA	Solid	8015 NM	
880-10650-13	NH1 @ 0'	Total/NA	Solid	8015 NM	
880-10650-14	NH1 @ 1'	Total/NA	Solid	8015 NM	

Total/NA

Total/NA

Solid

Solid

Analysis Batch: 18413

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-2	OS1 @ 1'	Total/NA	Solid	8015 NM	
880-10650-3	OS2 @ 0'	Total/NA	Solid	8015 NM	
880-10650-4	OS2 @ 1'	Total/NA	Solid	8015 NM	
880-10650-15	SH1 @ 0'	Total/NA	Solid	8015 NM	
880-10650-16	SH1 @ 1'	Total/NA	Solid	8015 NM	
880-10650-17	EH1 @ 0'	Total/NA	Solid	8015 NM	
880-10650-18	EH1 @ 1'	Total/NA	Solid	8015 NM	
880-10650-19	EH2 @ 0'	Total/NA	Solid	8015 NM	
880-10650-20	EH2 @ 1'	Total/NA	Solid	8015 NM	
880-10650-21	EH3 @ 0'	Total/NA	Solid	8015 NM	
880-10650-22	EH3 @ 1'	Total/NA	Solid	8015 NM	
880-10650-23	WH1 @ 0'	Total/NA	Solid	8015 NM	
880-10650-24	WH1 @ 1'	Total/NA	Solid	8015 NM	
880-10650-25	WH2 @ 0'	Total/NA	Solid	8015 NM	
880-10650-26	WH2 @ 1'	Total/NA	Solid	8015 NM	
880-10650-27	WH3 @ 0'	Total/NA	Solid	8015 NM	
880-10650-28	WH3 @ 1'	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 17962

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-1	OS1 @ 0'	Soluble	Solid	DI Leach	
880-10650-2	OS1 @ 1'	Soluble	Solid	DI Leach	
880-10650-3	OS2 @ 0'	Soluble	Solid	DI Leach	
880-10650-4	OS2 @ 1'	Soluble	Solid	DI Leach	
880-10650-5	V1 @ 0'	Soluble	Solid	DI Leach	

Eurofins Midland

Page 88 of 168

Prep Batch

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

8015NM Prep

8015NM Prep

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

HPLC/IC (Continued)

Leach Batch: 17962 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-10650-6	V1 @ 4'	Soluble	Solid	DI Leach	
880-10650-7	V2 @ 0'	Soluble	Solid	DI Leach	
880-10650-8	V2 @ 1'	Soluble	Solid	DI Leach	
880-10650-9	V3 @ 0'	Soluble	Solid	DI Leach	
880-10650-10	V3 @ 2'-R	Soluble	Solid	DI Leach	
MB 880-17962/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-17962/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-17962/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-10650-1 MS	OS1 @ 0'	Soluble	Solid	DI Leach	
880-10650-1 MSD	OS1 @ 0'	Soluble	Solid	DI Leach	

Leach Batch: 17963

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-11	V4@ 0'	Soluble	Solid	DI Leach	
880-10650-12	V4 @ 1'	Soluble	Solid	DI Leach	
880-10650-13	NH1 @ 0'	Soluble	Solid	DI Leach	
880-10650-14	NH1 @ 1'	Soluble	Solid	DI Leach	
880-10650-15	SH1 @ 0'	Soluble	Solid	DI Leach	
880-10650-16	SH1 @ 1'	Soluble	Solid	DI Leach	
880-10650-17	EH1 @ 0'	Soluble	Solid	DI Leach	
880-10650-18	EH1 @ 1'	Soluble	Solid	DI Leach	
880-10650-19	EH2 @ 0'	Soluble	Solid	DI Leach	
880-10650-20	EH2 @ 1'	Soluble	Solid	DI Leach	
880-10650-21	EH3 @ 0'	Soluble	Solid	DI Leach	
880-10650-22	EH3 @ 1'	Soluble	Solid	DI Leach	
880-10650-23	WH1 @ 0'	Soluble	Solid	DI Leach	
880-10650-24	WH1 @ 1'	Soluble	Solid	DI Leach	
880-10650-25	WH2 @ 0'	Soluble	Solid	DI Leach	
880-10650-26	WH2 @ 1'	Soluble	Solid	DI Leach	
880-10650-27	WH3 @ 0'	Soluble	Solid	DI Leach	
880-10650-28	WH3 @ 1'	Soluble	Solid	DI Leach	
MB 880-17963/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-17963/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-17963/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-10650-19 MS	EH2 @ 0'	Soluble	Solid	DI Leach	
880-10650-19 MSD	EH2 @ 0'	Soluble	Solid	DI Leach	

Analysis Batch: 18076

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-1	OS1 @ 0'	Soluble	Solid	300.0	17962
880-10650-2	OS1 @ 1'	Soluble	Solid	300.0	17962
880-10650-3	OS2 @ 0'	Soluble	Solid	300.0	17962
880-10650-4	OS2 @ 1'	Soluble	Solid	300.0	17962
880-10650-5	V1 @ 0'	Soluble	Solid	300.0	17962
880-10650-6	V1 @ 4'	Soluble	Solid	300.0	17962
880-10650-7	V2 @ 0'	Soluble	Solid	300.0	17962
880-10650-8	V2 @ 1'	Soluble	Solid	300.0	17962
880-10650-9	V3 @ 0'	Soluble	Solid	300.0	17962
880-10650-10	V3 @ 2'-R	Soluble	Solid	300.0	17962
MB 880-17962/1-A	Method Blank	Soluble	Solid	300.0	17962
LCS 880-17962/2-A	Lab Control Sample	Soluble	Solid	300.0	17962

Eurofins Midland

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

HPLC/IC (Continued)

Analysis Batch: 18076 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-17962/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	17962
880-10650-1 MS	OS1 @ 0'	Soluble	Solid	300.0	17962
880-10650-1 MSD	OS1 @ 0'	Soluble	Solid	300.0	17962

Analysis Batch: 18284

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-10650-11	V4@ 0'	Soluble	Solid	300.0	17963
880-10650-12	V4 @ 1'	Soluble	Solid	300.0	17963
880-10650-13	NH1 @ 0'	Soluble	Solid	300.0	17963
880-10650-14	NH1 @ 1'	Soluble	Solid	300.0	17963
880-10650-15	SH1 @ 0'	Soluble	Solid	300.0	17963
880-10650-16	SH1 @ 1'	Soluble	Solid	300.0	17963
880-10650-17	EH1 @ 0'	Soluble	Solid	300.0	17963
880-10650-18	EH1 @ 1'	Soluble	Solid	300.0	17963
880-10650-19	EH2 @ 0'	Soluble	Solid	300.0	17963
880-10650-20	EH2 @ 1'	Soluble	Solid	300.0	17963
880-10650-21	EH3 @ 0'	Soluble	Solid	300.0	17963
880-10650-22	EH3 @ 1'	Soluble	Solid	300.0	17963
880-10650-23	WH1 @ 0'	Soluble	Solid	300.0	17963
880-10650-24	WH1 @ 1'	Soluble	Solid	300.0	17963
880-10650-25	WH2 @ 0'	Soluble	Solid	300.0	17963
880-10650-26	WH2 @ 1'	Soluble	Solid	300.0	17963
880-10650-27	WH3 @ 0'	Soluble	Solid	300.0	17963
880-10650-28	WH3 @ 1'	Soluble	Solid	300.0	17963
MB 880-17963/1-A	Method Blank	Soluble	Solid	300.0	17963
LCS 880-17963/2-A	Lab Control Sample	Soluble	Solid	300.0	17963
LCSD 880-17963/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	17963
880-10650-19 MS	EH2 @ 0'	Soluble	Solid	300.0	17963
880-10650-19 MSD	EH2 @ 0'	Soluble	Solid	300.0	17963

Released to Imaging: 8/24/2022 11:52:12 AM

5 6 7

Initial

Amount

5.02 g

5 mL

10.02 g

5.04 g

Final

Amount

5 mL

5 mL

10 mL

50 mL

Batch

17879

18020

18165

18369

18142

18228

17962

Number

Dil

1

1

1

1

1

Factor

Run

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Client Sample ID: OS1 @ 1

Date Collected: 01/26/22 00:00

Date Received: 01/27/22 00:00

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: OS1 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab

XEN MID

Matrix: Solid

Lab Sample ID: 880-10650-1 Matrix: Solid

Analyst

KL

KL

AJ

AJ

DM

AJ

СН

5 9

Matrix: Solid

Lab Sample ID: 880-10650-3

Lab Sample ID: 880-10650-4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 13:50	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 11:52	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		1			18076	01/30/22 16:43	СН	XEN MID

Client Sample ID: OS2 @ 0' Date Collected: 01/26/22 00:00

Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 14:11	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 12:13	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		1			18076	01/30/22 16:51	СН	XEN MID

Client Sample ID: OS2 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 14:32	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID

Eurofins Midland

Matrix: Solid

18076 01/30/22 16:20 СН Lab Sample ID: 880-10650-2

Prepared

or Analyzed

01/27/22 16:00

01/28/22 13:29

01/31/22 12:09

02/02/22 12:49

01/31/22 11:05

02/01/22 10:47

01/27/22 18:49

Released to Imaging: 8/24/2022 11:52:12 AM

Client Sample ID: OS2 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 12:35	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		1			18076	01/30/22 16:58	СН	XEN MID

Client Sample ID: V1 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	18098	01/31/22 07:24	KL	XEN MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	18100	01/31/22 18:34	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18428	02/02/22 18:08	KL	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 15:24	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		10			18076	01/30/22 17:06	CH	XEN MID

Client Sample ID: V1 @ 4'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	18099	01/31/22 07:27	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18101	01/31/22 16:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			18428	02/02/22 18:08	KL	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 15:53	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		5			18076	01/30/22 17:29	СН	XEN MID

Client Sample ID: V2 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 15:34	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.03 g	10 mL	18142 18228	01/31/22 11:05 02/01/22 16:14	DM AJ	XEN MID XEN MID

Eurofins Midland

Matrix: Solid

Page 92 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-4 Matrix: Solid

Lab Sample ID: 880-10650-5

11 12 13

Lab Sample ID: 880-10650-7

Matrix: Solid

Client Sample ID: V2 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		5			18076	01/30/22 17:36	СН	XEN MID

Client Sample ID: V2 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 15:55	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 16:35	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		1			18076	01/30/22 17:44	СН	XEN MID

Client Sample ID: V3 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 16:16	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 16:56	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		10			18076	01/30/22 17:52	СН	XEN MID

Client Sample ID: V3 @ 2'-R Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Lab Sample ID: 880-10650-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 16:37	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 17:17	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	17962	01/27/22 18:49	СН	XEN MID
Soluble	Analysis	300.0		1			18076	01/30/22 17:59	СН	XEN MID

Eurofins Midland

Page 93 of 168

Matrix: Solid

Matrix: Solid

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-7 Matrix: Solid

Lab Sample ID: 880-10650-8

Lab Sample ID: 880-10650-9

Leach

Analysis

DI Leach

300.0

Client Sample ID: V4@ 0' Date Collected: 01/26/22 00:00 Date R

ate Received:	01/27/22 00:0	D								
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 18:01	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 17:38	AJ	XEN MID

5.05 g

1

50 mL

17963

18284

Client Sample ID: V4 @ 1' Date Collected: 01/26/22 00:00

Soluble

Soluble

Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 18:22	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 17:59	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 21:53	CH	XEN MID

Client Sample ID: NH1 @ 0' Date Collected: 01/26/22 00:00

Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 18:43	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 18:20	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 21:59	СН	XEN MID

Client Sample ID: NH1 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 19:04	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID

Lab Sample ID: 880-10650-12 Matrix: Solid

01/27/22 18:55 CH

02/01/22 21:47 CH

XEN MID

XEN MID

Lab Sample ID: 880-10650-13

Matrix: Solid

Lab Sample ID: 880-10650-14

Matrix: Solid

Job ID: 880-10650-1

Matrix: Solid

SDG: Rural Eddy Co, NM Lab Sample ID: 880-10650-11

Client Sample ID: NH1 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			18369	02/02/22 12:49	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18142	01/31/22 11:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18228	02/01/22 18:41	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 22:18	СН	XEN MID

Client Sample ID: SH1 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Туре Run Factor Analyst Lab 5035 Total/NA Prep 4.99 g 5 mL 17879 01/27/22 16:00 KL XEN MID Total/NA Analysis 8021B 5 mL 5 mL 18020 01/28/22 19:24 KL XEN MID 1 Total/NA Total BTEX XEN MID Analysis 1 18165 01/31/22 12:09 AJ Total/NA Analysis 8015 NM 18413 02/02/22 16:07 XEN MID AJ 1 XEN MID Total/NA Prep 8015NM Prep 10.04 g 10 mL 18288 02/01/22 13:25 DM Total/NA Analysis 8015B NM 18225 02/02/22 02:28 AJ XEN MID 1 Soluble Leach DI Leach 5.03 g 50 mL 17963 01/27/22 18:55 CH XEN MID Soluble Analysis 300.0 1 18284 02/01/22 22:24 CH XEN MID

Client Sample ID: SH1 @ 1'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 19:45	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18288	02/01/22 13:25	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18225	02/02/22 02:50	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 22:30	СН	XEN MID

Client Sample ID: EH1 @ 0'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 20:06	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	18288 18225	02/01/22 13:25 02/02/22 03:11	DM AJ	XEN MID XEN MID

Eurofins Midland

Matrix: Solid

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-14

Lab Sample ID: 880-10650-15

Lab Sample ID: 880-10650-16

Lab Sample ID: 880-10650-17

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: EH1 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 22:36	СН	XEN MID

Client Sample ID: EH1 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 20:27	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	18288	02/01/22 13:25	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18225	02/02/22 03:33	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 22:42	СН	XEN MID

Client Sample ID: EH2 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 20:47	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	18288	02/01/22 13:25	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18225	02/02/22 03:55	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 22:49	СН	XEN MID

Client Sample ID: EH2 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	17879	01/27/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	18020	01/28/22 21:08	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18165	01/31/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18288	02/01/22 13:25	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18225	02/02/22 04:17	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 23:07	СН	XEN MID

Eurofins Midland

Matrix: Solid

Page 96 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-17

Lab Sample ID: 880-10650-18

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-10650-19 Matrix: Solid

Lab Sample ID: 880-10650-20

Initial

Amount

5.05 g

5 mL

10.02 g

5.03 g

Final

Amount

5 mL

5 mL

10 mL

50 mL

Batch

17780

17974

18428

18413

18150

18223

17963

18284

Number

Dil

1

1

1

1

1

Factor

Run

Client: Etech Environmental & Safety Solutions Project/Site: Speedy Booster

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: EH3 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-21

Analyst

KL

KL

KL

AJ

DM

AJ

СН

СН

Prepared

or Analyzed

01/28/22 07:30

01/29/22 09:35

02/02/22 18:08

02/02/22 16:07

01/31/22 12:03

02/01/22 20:13

01/27/22 18:55

02/01/22 23:13

Matrix: Solid

Lab

XEN MID

Matrix: Solid

Lab Sample ID: 880-10650-22 Matrix: Solid

Lab Sample ID: 880-10650-23

Lab Sample ID: 880-10650-24

rix: Solid

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Client Sample ID: EH3 @ 1'

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	17780	01/28/22 07:30	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17974	01/29/22 09:55	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18428	02/02/22 18:08	KL	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	18150	01/31/22 12:03	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18223	02/01/22 21:19	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 23:32	CH	XEN MID

Client Sample ID: WH1 @ 0' Date Collected: 01/26/22 00:00

Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	17780	01/28/22 07:30	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17974	01/29/22 10:16	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18428	02/02/22 18:08	KL	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	18150	01/31/22 12:03	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18223	02/01/22 21:40	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 23:38	СН	XEN MID

Client Sample ID: WH1 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	17780	01/28/22 07:30	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17974	01/29/22 10:36	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18428	02/02/22 18:08	KL	XEN MID

Eurofins Midland

Matrix: Solid

Client Sample ID: WH1 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	18150	01/31/22 12:03	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18223	02/01/22 22:02	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 23:44	СН	XEN MID

Client Sample ID: WH2 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Туре Run Factor Analyst Lab 5035 Total/NA Prep 4.99 g 5 mL 17780 01/28/22 07:30 KL XEN MID Total/NA Analysis 8021B 5 mL 5 mL 17974 01/29/22 10:56 KL XEN MID 1 Total/NA Total BTEX XEN MID Analysis 1 18428 02/02/22 18:08 KL Total/NA Analysis 8015 NM 18413 02/02/22 16:07 XEN MID AJ 1 XEN MID Total/NA Prep 8015NM Prep 10.01 g 10 mL 18150 01/31/22 12:03 DM Total/NA Analysis 8015B NM 18223 02/01/22 22:24 XEN MID 1 AJ Soluble Leach DI Leach 5.03 g 50 mL 17963 01/27/22 18:55 CH XEN MID Soluble Analysis 300.0 1 18284 02/01/22 23:50 CH XEN MID

Client Sample ID: WH2 @ 1'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	17780	01/28/22 07:30	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17974	01/29/22 11:17	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18428	02/02/22 18:08	KL	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18150	01/31/22 12:03	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18223	02/01/22 22:46	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/01/22 23:57	CH	XEN MID

Client Sample ID: WH3 @ 0'

Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	17780	01/28/22 07:30	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17974	01/29/22 11:37	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18428	02/02/22 18:08	KL	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	18150 18223	01/31/22 12:03 02/01/22 23:09	DM AJ	XEN MID XEN MID

Eurofins Midland

Matrix: Solid

Page 98 of 168

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-24 Matrix: Solid

Lab Sample ID: 880-10650-25

- 4

Lab Sample ID: 880-10650-26

Lab Sample ID: 880-10650-27

Matrix: Solid

Matrix: Solid

Client Sample ID: WH3 @ 0' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

		-								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/02/22 00:03	СН	XEN MID

Client Sample ID: WH3 @ 1' Date Collected: 01/26/22 00:00 Date Received: 01/27/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	17780	01/28/22 07:30	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	17974	01/29/22 11:58	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			18428	02/02/22 18:08	KL	XEN MID
Total/NA	Analysis	8015 NM		1			18413	02/02/22 16:07	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	18150	01/31/22 12:03	DM	XEN MID
Total/NA	Analysis	8015B NM		1			18223	02/01/22 23:31	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	17963	01/27/22 18:55	СН	XEN MID
Soluble	Analysis	300.0		1			18284	02/02/22 00:09	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Lab Sample ID: 880-10650-27

Lab Sample ID: 880-10650-28

Matrix: Solid

Matrix: Solid

Page 99 of 168

Eurofins Midland

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	P	rogram	Identification Number	Expiration Date
xas	N	IELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, b	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w
the agency does not o		Mathin	A	
the agency does not o Analysis Method	ffer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

Page 100 of 168

10

Eurofins Midland

Job ID: 880-10650-1 SDG: Rural Eddy Co, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Etech Environmental & Safety Solutions Project

Job ID: 880-10650-1
SDG: Rural Eddy Co, NM

Page	63	of	67

Project/Site: Sp	beedy Booster				SDG: Rural Eddy Co, NM
Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-10650-1	OS1 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-2	OS1 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-3	OS2 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-4	OS2 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-5	V1 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-6	V1 @ 4'	Solid	01/26/22 00:00	01/27/22 00:00	4'
880-10650-7	V2 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-8	V2 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-9	V3 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-10	V3 @ 2'-R	Solid	01/26/22 00:00	01/27/22 00:00	2'
880-10650-11	V4@ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-12	V4 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-13	NH1 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-14	NH1 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-15	SH1 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-16	SH1 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-17	EH1 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-18	EH1 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-19	EH2 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-20	EH2 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-21	EH3 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-22	EH3 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-23	WH1 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-24	WH1 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-25	WH2 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-26	WH2 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'
880-10650-27	WH3 @ 0'	Solid	01/26/22 00:00	01/27/22 00:00	0'
880-10650-28	WH3 @ 1'	Solid	01/26/22 00:00	01/27/22 00:00	1'

Chain of Custody

 Houston
 TX (281) 240-4200
 Dallas
 TX (214) 902-0300
 San Antonio
 TX (210) 509-3334

 Midland
 TX (432) 704-5440
 EL Paso
 TX (915) 585-3443, Lubbock
 TX (806) 794-1296

 Hobbs
 NM (575) 392-7550
 Carlsbad
 NM (575) 988-3199
 Phoenix, AZ (480) 355-0900

 Tampa
 FL (813) 620-2000
 Tallahassee
 FL (850) 756-0747
 Delray Beach
 FL (561) 689-6701

 Atlanta
 GA (770) 449-8800
 GA (770) 449-8800
 GA (770) 449-8800
 GA (770) 449-8800

							A	tlanta (GA (770	D) 44 9-8	3800														
Project Manager	Joel Lowry				Bill to (if differ	ent)	Solar	is Wat	er Mid	stream				ר ר					Philippine Constraints	o com		oyunnan caasaan,	of <u>3</u>		
Company Name:	Etech Environr	mental ar	nd Safety		Bill to (if different) Solaris Water Midstream C/O Rob Kirk Company Name										Work Order Comments Program: UST/PST PRF Brownfield RR Superfund										
Address:	2617 West Ma				Address.								-	State of Project:											
City, State ZIP	Hobbs, NM 88				City, State Z																				
Phone:	(575) 264-9884			Email	Email Results to <u>PM@etechenv com</u> + Client																				
									I - India i Cesults to <u>Pivicetechenv com</u> + Client																
Project Name:	Sp Sp	beedy Bo		1.1.000	urn Around	-	r	<u> </u>	<u>r – – – – – – – – – – – – – – – – – – –</u>	1 ¹¹⁰	AN	ALYS	IS RE	QUE	ST T			······			Pre	servative	Codes		
Project Number		15509		Rout					ļ		ļ										ниоз н	IN			
Project Location		al Eddy C		Rust		tive															H2S04 H	12			
Sampler's Name: PO #:	l Ma	atthew G	rieco	Due	Date	servati								1							HCL HL				
		na Disala	Yes No	N 559-11	TO L	les													1		None NC)			
Temperature (°C)	a weet an Station of Second	np Blank:	and the second s	Wet Ice																	NaOH N	а			
Received Intact:	Yes		1		<u>10</u> 49	aine		- I								-					MeOH N	le			
Cooler Custody Seal	Iv Seals: Yes No (N/A) Correction Factor					Containe		EXT								-					Zn Aceta	te+ NaOH	Zn		
Sample Custody Sea	and a start of the			72	(8021)	dified														ts the day re if received by	cevied by the				
Sample Ider	ntification	Matrix	Date Sampled	Time Sampled	Depth	Number Code	BTEX (80	TPH (Modified Ext.)	CI- (E300)													nple Com			
OS1 @ 0'		Soil	1/26/2022		0'	1/NO		X	X		<u> </u>												and a first of the second states of the second stat		
OS1 @ 1'		Soil	1/26/2022		1'	1/NO		x	x	<u> </u>	<u> </u>								+	+					
OS2 @ 0'		Soil	1/26/2022		0'	1/NO		x	X	<u> </u>									+	+	<u> </u>				
OS2 @ 1'		Soil	1/26/2022		1'	1/NO		x	x		<u> </u>								 	<u>+</u>					
V1@0'		Soil	1/26/2022		0'	1/NO		X	X		 								+	+			······································		
V1@4'		Soil	1/26/2022		4'	1/NO	x	X	X		İ								<u>† </u>	+			·		
V2 @ 0'		Soil	1/26/2022		0'	1/NO	х	x	X		1								<u>†</u>						
V2 @ 1'		Soil	1/26/2022		1'	1/NO	х	x	X		1								<u>†</u>	+					
V3 @ 0'		Soil	1/26/2022		0'	1/NO	х	x	X										1	<u> </u>	1				
V3 @ 2' - R		Soil	1/26/2022		2'	1/NO	х	x	X										1	<u>+</u>					
Total 200.7 / 6	010 200.8 / (6020:	8RC	RA 13PP	M Texas 11	ALS	Sh As	Ba	Re R	Cd	CalC	· Co /			Ma N	An M		VC		<u> </u>	Ne C 7				
Circle Method	(s) and Metal(s)	to be an	alyzed	TCLP / SP	LP 6010 8F	RCRA	Sb .	As B	a Be	Cd C	Cr Co	Cu F	b Mn	Mo	NI SI	e Aa	TILI	n 96	= Ag			IISnUV 1/7470/			
Notice Signature of this	document and reling	uishment o	f samples cons	titutes a valid r	ourchase order fr	om clien	t comp	any to)	(enco i	te offilia	toe and	oubcon		14			4		dition						
of service. Xenco will be of Xenco. A minimum ch																				I					
Relinguished by	of the second			by: (Signat		ł	Sec. No. Sec.	/Time	كمد المتحد بالأرجاع الم			shed b				A				ignatu	ire)	Date	/Time		
Mantine M.						3%	γ_{\sim}	71-	7_	2	Λ	D	$\mathbf{)}$	Deserve		JT	10 0	• ~	<u> </u>	$\overline{\mathcal{O}}$		1-2.7.	and the second states		
VIU	The procession							1	~p	4	1~	×7	L		-	2		~ {	24			<u>· 2. ŀ</u>			
5		1				†		·															11:33		

6

Released to Imaging: 8/24/2022 11:52:12 AM

2/2/2022

Chain of Custody

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334 Midland TX (432) 704-5440 EL Paso TX (915) 585-3443 Lubbock TX (806) 794-1296 Hobbs NM (575) 392-7550 Carlsbad NM (575) 988-3199 Phoenix, AZ (480) 355-0900 Tampa FL (813) 620-2000 Tallahassee FL (850) 756-0747 Delray Beach FL (561) 689-6701 Atlanta GA (770) 449-8800

Work Order No: 10650

								r											www	xenco	o com	Page	2 of		
Project Manager	Joel L					Bill to. (if differ	ent)	Solari	s Wat	er Mids	stream	C/O F	Rob Kir	k		ļ			W	ork O	rder C	Commer	its		
		Environm		nd Safety		Company Na	ime:									Program: UST/PST PRF Brownfield RR Superfund State of Project:									
Address:	2617	West Mar	land			Address.										St	ate of	Projec	ject:						
City, State ZIP	Hobbs	s, NM 882	40			City, State Z	P					Reporting Level 🔲 Level 📋 PST/U 🕄 TRF Level 🏹													
Phone:	(575)	264-9884			Email	Email Resu	its to	<u>PM@</u>	etech	env co	<u>om</u> + (Client				Deliverables EDD ADaPT Other									
Project Name:		Sp	eedy Bo	oster	T	urn Around						AN	IALYS	SIS RE	EQUE	ST	H 					Pre	servative Codes		
Project Number			15509		Rou	ine 🛛											1					HNO3 I			
Project Location		Rura	l Eddy C	o NM	Rus	י 🗌	ke															H2S04 I			
Sampler's Name:		Ma	tthew G	rieco	Due	Date	rvativ	dan ala														HCL HL			
20#:				r			ese															None N			
SAMPLE RECE	IPT	Ten	np Blank:	Yes No	Wet Ice	Yes No	Pr															NaOH N	la		
Temperature (°C) [,]	-			e e e e e e e e e e e e e e e e e e e	Thermomete	r ID																МеОН Ме			
Received Intact:		Yes		Construction of the second second		a	u		Ext.)													Zn Acetate+ NaOH Zn			
Cooler Custody Seals	and the second			Correction F	alarikkar fastalarini davada. Mata markari amarkar da da ara ara ara	<u> </u>			edE														rts the day recevied by th		
Sample Custody Seals: Yes No		N/A	Total Contai	ners.		er of	8021	odifi	Ô													if received by 4 30pm			
Sample Iden	on	Matrix	Date Sampled	Time Sampled	Depth	Numb Code	BTEX (8021)	TPH (Modified	CI- (E300)												Sa	mple Comments			
V4 @ 0'			Soil	1/26/2022		0'	1/NO		x	x										<u> </u>		<u></u>			
V4 @ 1'			Soil	1/26/2022		1'	1/NO	X	х	х						 			1	†					
NH1 @ 0'			Soil	1/26/2022		0'	1/NO	X	х	х									1	1					
NH1 @ 1'			Soil	1/26/2022		1'	1/NO	X	х	х											<u>†</u>				
SH1 @ 0'			Soil	1/26/2022		0'	1/NO	x	х	х							1		1		<u> </u>				
SH1 @ 1'			Soil	1/26/2022		1'	1/NO	X	х	х									1						
EH1 @ 0'			Soil	1/26/2022		0'	1/NO	X	х	х										1					
EH1 @ 1'			Soil	1/26/2022		1'	1/NO	X	х	x													······································		
EH2 @ 0'			Soil	1/26/2022		0'	1/NO	X	х	х						<u> </u>			1						
EH2 @ 1'			Soil	1/26/2022		1'	1/NO	X	х	х										1	1				
Total 200.7 / 6(Circle Method(Notice Signature of this of service. Xenco will be of Xenco. A minimum chi	s) and documer liable on	nt and reling	to be an	8RC alyzed f samples cons	TCLP / SP	M Texas 11 LP 6010 8F	AI S RCRA	Sb As Sb A	Ba As Ba any to)	Be B a Be (enco, if	Cd C	tes and	Cu F	b Mr	n Mo	Ni S	andard	TI U	J and con	ditions	163		TISnUVZn 1/7470/7471 -		
Relinguished by	Contract Sectors	and the second	-ppned (U	and the second	by: (Signat		ne suom		Xenco, /Time								ss previ								
-11151-	Manan Nn					ww.wj	07.	교교년		γ	 	<u>Indan</u>		y (SI	ignature) Received by: (Signat								Date/Time		
Hallow C	if the	-le	-10	1L-	•		 - 	Uo	[]-	26	4		2				A	tt/	C	C		<u> </u>	1-27-22 113		
							1																1		

2/2/2022

Received by OCD: 8/19/2022 7:09:47 AM

Page 104 of 168

Etech Environmental and Safety

Joel Lowry

Chain of Custody

Bill to. (if different)

Company Name:

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334 Midland TX (432) 704-5440 EL Paso TX (915) 585-3443 Lubbock TX (806) 794-1296 Hobbs NM (575) 392-7550 Carlsbad NM (575) 988-3199 Phoenix, AZ (480) 355-0900 Tampa FL (813) 620-2000 Tallahassee FL (850) 756-0747 Delray Beach FL (561) 689-6701 Atlanta GA (770) 449-8800

Solaris Water Midstream C/O Rob Kirk

Page _

3

of 3

www xenco com

Work Order Comments

Program: UST/PST PRF Brownfield RR Superfund

2617	West Mar	land				Address:										St	ate of				0.011		
Hobb	s, NM 882	40				City, State ZI	P.									Repo	ting L	evel [] Lev	rel 🗌	PST	ла т	RF Level
(575)	264-9884			<u> </u>	Email:	Email Resu	lts to	PM@	etech	env c	<u>om</u> + (Client					rables				ADaP		Other [.]
	Sp	eedy Bo	oster		Tu	rn Around						AN	ALYS	SIS RI	EQUE	ST						Pre	servative Codes
		15509)		Routi	ne 🛛																HNO3 H	IN
	Rura	I Eddy C	Co,NM		Rush		Ņ															H2S04 F	12
	Ma	tthew G	rieco		Due [Date	rvat															HCL HL	-
				1			lese															None NC)
<u>IPT</u>	Ten	p Blank:	Yes No	A CONTRACTOR OF A		Yes No	d's															NaOH N	a
beleteren		NI -		Thermo	meter	D	tine															МеОН М	le
S .			Correction E	notor			ont		Ext.													Zn Aceta	te+ NaOH Zn
y. IIS:							ar of C	3021)	odified	6													
tificat	lon.	Matrix	Date Sampled			Depth	Numbe Code	BTEX (8	трн (М	CI- (E30												Sar	nple Comments
		Soil	1/26/2022			0'	1/NO	Х	х	X													
			1/26/2022			1'	1/NO	Х	Х	Х													
			1/26/2022			0'	1/NO	Х	Х	X													
						1'	1/NO	Х	Х	X													
						0'	1/NO	Х	Х	X													
						1'	1/NO	Х	Х	X													
									X	X											ļ		
<u></u>		Soil	1/26/2022			1'	1/NO	X	Х	X									ļ				
	·····																		ļ		ļ		
				L													l		<u> </u>		<u> </u>		
010			, 8RC	RA 1	3PPN	1 Texas 11	AI S	Sb As	Ва	Be B	Cd (Ca Cr	Co	Cu F	e Pb	Mg	Mn M	o Ni	K Se	Ag	SIO2	Na Sr	TISnUVZn
																					16	31 / 245.1	1/7470/7471 Hg
liable o	nly for the cos	st of sampl	les and shall no	ot assume	e anv re	sponsibility for	any loss	es or e	mensee	e incurn	ad hu th	o oliont	if such	100000		40.0100							
: (Sig	nature)	and the second second	Received	by: (Si	gnatu	re)		Date	Time		Re	linqui	shed I	by [.] (S	ignatu	ure)	n	Rece	eived b	by [.] (Si	ignatu	ire)	Date/Time
Th	n	/	AC	<u>,</u>			31	\mathcal{A}_{c}	1.	-74	2	N	S	\geq		<u>{</u>	X	ti	Ċ		~	12	
•	Temp Blank Yes No Wei Ice, Yes No Yes No Thermometer ID Fig. 9 Fig. 9																						

Released to Imaging: 8/24/2022 11:52:12 AM

Project Manager

Company Name:

City, State ZIP

Project Name:

Project Number Project Location Sampler's Name:

Received Intact: Cooler Custody Seals Sample Custody Seals

EH3 @ 0' EH3 @ 1' WH1 @ 0' WH1 @ 1' WH2 @ 0'

WH2 @ 1' WH3 @ 0'

WH3 @ 1'

Total 200.7 / 601

Circle Method(s,

Notice Signature of this do of service. Xenco will be lia of Xenco A minimum char Relinquished by:

SAMPLE RECEI Temperature (°C):

Sample Identi

Address.

Phone:

PÓ #:

Job Number: 880-10650-1 SDG Number: Rural Eddy Co, NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Etech Environmental & Safety Solutions

Login Number: 10650 List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

July 28, 2022

JOEL LOWRY Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: SPEEDY BOOSTER

Enclosed are the results of analyses for samples received by the laboratory on 07/25/22 15:18.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW 1 (H223257-01)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/28/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/26/2022	ND	190	94.9	200	4.49	
DRO >C10-C28*	<10.0	10.0	07/26/2022	ND	206	103	200	0.347	
EXT DRO >C28-C36	<10.0	10.0	07/26/2022	ND					
Surrogate: 1-Chlorooctane	78.6	% 43-149)						
Surrogate: 1-Chlorooctadecane	87.7	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW 2 (H223257-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/28/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/26/2022	ND	190	94.9	200	4.49	
DRO >C10-C28*	<10.0	10.0	07/26/2022	ND	206	103	200	0.347	
EXT DRO >C28-C36	<10.0	10.0	07/26/2022	ND					
Surrogate: 1-Chlorooctane	83.2	% 43-149)						
Surrogate: 1-Chlorooctadecane	93.6	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW 3 (H223257-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	07/28/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/26/2022	ND	190	94.9	200	4.49	
DRO >C10-C28*	<10.0	10.0	07/26/2022	ND	206	103	200	0.347	
EXT DRO >C28-C36	<10.0	10.0	07/26/2022	ND					
Surrogate: 1-Chlorooctane	78.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	88.1	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW 4 (H223257-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/28/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/26/2022	ND	190	94.9	200	4.49	
DRO >C10-C28*	<10.0	10.0	07/26/2022	ND	206	103	200	0.347	
EXT DRO >C28-C36	<10.0	10.0	07/26/2022	ND					
Surrogate: 1-Chlorooctane	88.6	% 43-149)						
Surrogate: 1-Chlorooctadecane	99.4	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW 5 (H223257-05)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	69.9-14)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/28/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/26/2022	ND	190	94.9	200	4.49	
DRO >C10-C28*	<10.0	10.0	07/26/2022	ND	206	103	200	0.347	
EXT DRO >C28-C36	<10.0	10.0	07/26/2022	ND					
Surrogate: 1-Chlorooctane	89.3	% 43-149							
Surrogate: 1-Chlorooctadecane	100 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW 1 (H223257-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/28/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/26/2022	ND	190	94.9	200	4.49	
DRO >C10-C28*	<10.0	10.0	07/26/2022	ND	206	103	200	0.347	
EXT DRO >C28-C36	<10.0	10.0	07/26/2022	ND					
Surrogate: 1-Chlorooctane	87.9	% 43-149	,						
Surrogate: 1-Chlorooctadecane	98.3	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW 2 (H223257-07)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/26/2022	ND	190	94.9	200	4.49	
DRO >C10-C28*	<10.0	10.0	07/26/2022	ND	206	103	200	0.347	
EXT DRO >C28-C36	<10.0	10.0	07/26/2022	ND					
Surrogate: 1-Chlorooctane	85.8	% 43-149)						
Surrogate: 1-Chlorooctadecane	96.3	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW 3 (H223257-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/26/2022	ND	190	94.9	200	4.49	
DRO >C10-C28*	<10.0	10.0	07/26/2022	ND	206	103	200	0.347	
EXT DRO >C28-C36	<10.0	10.0	07/26/2022	ND					
Surrogate: 1-Chlorooctane	82.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	92.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW 4 (H223257-09)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2022	ND	214	107	200	2.98	
DRO >C10-C28*	<10.0	10.0	07/27/2022	ND	224	112	200	0.786	
EXT DRO >C28-C36	<10.0	10.0	07/27/2022	ND					
Surrogate: 1-Chlorooctane	91.5	% 43-149)						
Surrogate: 1-Chlorooctadecane	104 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW 5 (H223257-10)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.05	103	2.00	1.00	
Toluene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	0.572	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.19	109	2.00	1.15	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	6.70	112	6.00	1.86	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2022	ND	214	107	200	2.98	
DRO >C10-C28*	<10.0	10.0	07/27/2022	ND	224	112	200	0.786	
EXT DRO >C28-C36	<10.0	10.0	07/27/2022	ND					
Surrogate: 1-Chlorooctane	80.1	% 43-149)						
Surrogate: 1-Chlorooctadecane	91.7	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: SW 1 (H223257-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	12.7	
Toluene*	<0.050	0.050	07/27/2022	ND	2.23	112	2.00	13.1	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.28	114	2.00	13.4	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	7.00	117	6.00	13.3	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2022	ND	214	107	200	2.98	
DRO >C10-C28*	<10.0	10.0	07/27/2022	ND	224	112	200	0.786	
EXT DRO >C28-C36	<10.0	10.0	07/27/2022	ND					
Surrogate: 1-Chlorooctane	74.1	% 43-149)						
Surrogate: 1-Chlorooctadecane	85.2	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 1 @ 6" (H223257-12)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	12.7	
Toluene*	<0.050	0.050	07/27/2022	ND	2.23	112	2.00	13.1	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.28	114	2.00	13.4	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	7.00	117	6.00	13.3	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	120 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2022	ND	214	107	200	2.98	
DRO >C10-C28*	<10.0	10.0	07/27/2022	ND	224	112	200	0.786	
EXT DRO >C28-C36	<10.0	10.0	07/27/2022	ND					
Surrogate: 1-Chlorooctane	80.4	% 43-149)						
Surrogate: 1-Chlorooctadecane	93.6	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 2 @ 6" (H223257-13)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	12.7	
Toluene*	<0.050	0.050	07/27/2022	ND	2.23	112	2.00	13.1	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.28	114	2.00	13.4	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	7.00	117	6.00	13.3	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2022	ND	214	107	200	2.98	
DRO >C10-C28*	<10.0	10.0	07/27/2022	ND	224	112	200	0.786	
EXT DRO >C28-C36	<10.0	10.0	07/27/2022	ND					
Surrogate: 1-Chlorooctane	91.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	106 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 3 @ 6" (H223257-14)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	12.7	
Toluene*	<0.050	0.050	07/27/2022	ND	2.23	112	2.00	13.1	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.28	114	2.00	13.4	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	7.00	117	6.00	13.3	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2022	ND	214	107	200	2.98	
DRO >C10-C28*	<10.0	10.0	07/27/2022	ND	224	112	200	0.786	
EXT DRO >C28-C36	<10.0	10.0	07/27/2022	ND					
Surrogate: 1-Chlorooctane	76.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	88.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 4 @ 6" (H223257-15)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	12.7	
Toluene*	<0.050	0.050	07/27/2022	ND	2.23	112	2.00	13.1	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.28	114	2.00	13.4	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	7.00	117	6.00	13.3	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2022	ND	214	107	200	2.98	
DRO >C10-C28*	<10.0	10.0	07/27/2022	ND	224	112	200	0.786	
EXT DRO >C28-C36	<10.0	10.0	07/27/2022	ND					
Surrogate: 1-Chlorooctane	87.8	% 43-149)						
Surrogate: 1-Chlorooctadecane	99.8	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/25/2022	Sampling Date:	07/25/2022
Reported:	07/28/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Shalyn Rodriguez
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 5 @ 6" (H223257-16)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2022	ND	2.13	107	2.00	12.7	
Toluene*	<0.050	0.050	07/27/2022	ND	2.23	112	2.00	13.1	
Ethylbenzene*	<0.050	0.050	07/27/2022	ND	2.28	114	2.00	13.4	
Total Xylenes*	<0.150	0.150	07/27/2022	ND	7.00	117	6.00	13.3	
Total BTEX	<0.300	0.300	07/27/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/28/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2022	ND	214	107	200	2.98	
DRO >C10-C28*	<10.0	10.0	07/27/2022	ND	224	112	200	0.786	
EXT DRO >C28-C36	<10.0	10.0	07/27/2022	ND					
Surrogate: 1-Chlorooctane	79.2	% 43-149)						
Surrogate: 1-Chlorooctadecane	91.3	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

7/25/22

3

101 East Marland, Hobbs, NM 88240

ompany Name: Effek Explorientmenth. 3 Salety Solutions P.O. # roject Manager: Joel Laury Company: Solar (1 roject Manager: Joel Laury Company: Solar (1 decress: 3617: JAH: 984 Fax #: Address: roject #: ////////////////////////////////////		(575) 393-2326 FA	X (575) 393-24	76			_	_			1	PI	11	TO	1						A	NAL	YSIS	S R	EQI	JES	Т			
Coject Manager: Joel C Gury Company: Selar /L Holdbos State: N/M Zip: N/M Holdbos Project Name: Site: Zip: Holdbos Fax #: Fax Fax Fax Holdbos Fax #: Fax Fax Fax Holdbos Fax Fax Fax Fax Fax Holdbos Sample Name Mark Max Presserv Sample Name Fax Fax Holdbos Sample Name Northold Name Fax Fax Fax Fax Holdbos Sample I.D. Bin Holdbos Sample I.D.	Company Name:	ETech Environmen	tul 3 sate	fy	50	vtio	ns			0	#.	BI	in he			-														
ddress: 26/17. Mar land typ: H0bbs State: N/M Z IP: 33/14/0 Attr:: none %: 57% 2.441-9804 Fax #: Address:	Project Manager:	JoeL Lowry								_	_	1	.1	1.																
ity: H0bbs State: N/M Zip: 20/270 Auto: hone #: Fig. 5/2: 2/4'.989.4 Fig. #: Address: roject #: ////////////////////////////////////	Address: 26/7	Marlund					1					y: 5,	016	irh																
hone #: 515: 244 9844 Fax #: Address: roject #: 155:09 Project Owner: Sofar is City: sampler Name: Splice Owner: Sofar is roject Mam: Splice Owner: Sofar is roject Mam: Splice Owner: Sofar is roject Name: Sofar is Sofar is roject Name: Sample I.D. Will Will Will Will Will Will Will Will	City: Hobbs	· · · · · · ·	State: NM	Zip:	80	1240)																							
roject #: [5509 Project Owner: SolAr IS UNP: roject Loss for Array Loss Co, Nm Project Owner: SolAr IS UNP: roject Loss for Array Loss Co, Nm Project Owner: SolAr IS UNP: roject Loss for Array Loss Co, Nm Project Owner: SolAr IS UNP: roject Loss for Array Loss Co, Nm Project Owner: SolAr IS UNP: roject Loss for Array Development of the solar and	Phone #: 515	264.9884	Fax #:	-					4	Addr	ess	:																		
Order The image is and in the product of the state in the product of the state is and	Designet #: 150	na	Project Owner	: So	alar	ris			C	City:																				
rolect Location: K/rA/L LCG CO, K/M implementation: K/rA/L LCG CO, K/R implementation: K/rA/L CG CO, K/R implementation: K/rA/L CG CO, K/R implementation: K/rA/L CG CO, K/R implementation: K	Project Name	Wedy Booker							\$	State	e:		Zi	ip:										199						
Induced ONLY Image: Stample I.D.	Project Name.	Turel 100 M	hin him							Pho	ne #	ŧ:																		
Induced ONLY Image: Stample I.D.	Project Location	Munuel Dunne	1							-	-		-		101	NC														
Lab I.D. Sample I.D. Image: Big Org Org Org Org Org Org Org Org Org Or	Sampler Name:	ingue kanny					MA	TRIX	-	P	RES	SERV	4	SAN	IPLI	ING	~													
1 EW1 1		Sample I	.D.	G)RAB OR (C)OMF	# CONTAINERS	GROUNDWATER	SOIL	OIL	SLUDGE	OTHER :	ACID/BASE:	ICE / COOL OTHER :				тіме	Chloride	XILX	V-1 0,	Hd+										
1 EW1 1	1223251	F. 11		Č	#	ľ	X				1	X	7	7/25/2	7		Ň	X	-	X		-	-	-	-					1
3 EW3 4 EW4 5 EW5 6 WW1 7 WW2 8 WW4 9 WW4 9 WW4				Ĩ	li		1					1		1			11	$\left \right\rangle$	+	1		-	-	+	-					T
S EWS WW1 WW2 7 WW2 8 WW3 9 WW4 9 WW5 10 realabel or indelend amagel, ncluding wheleffer boaden amagele or onel	2			Ħ	tt										_		11	11	+	1		-	-	-						
S EWS WW1 WW2 7 WW2 8 WW3 9 WW4 9 WW5 10 realabel or indelend amagel, ncluding wheleffer boaden amagele or onel	3			11	11										-			$\left \right $	+	1			-	+						
Yes WW2 Yes WW3 Yes WW4 Yes WW4 Yes No Add! Phone #: Add! Phone #: All Results are emailed. Please provide Email address: Time: Date: Time: Date: Time: Date: Time: Date: Received By: Time: Date: Date: Received By: Time: Sample Condition Corrected Temp. °C 4.4° Sample Condition Corrected Temp. °C 4.6° Sample Condition Corrected Temp. °C 2.6° No													-		-		11	++	-	-		-	-							
7 WW2 8 WW3 9 WW4 9 We4	10								-				+		-		++	++		1		1								
WW3 WW4 WW4 WW5 PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any client aring whether based in contract or fort, shall be limited to the amount paid by the client for the applicable analyses. All claims including whose for negligence and any other cause whatsoever shall be deemed waved unless made involved and limitation, business interruption, loss of use, or lose of profits incurred by Cardinal within 30 days after completion of the applicable analyses. All claims including whose for negligence and any other cause whatsoever shall be deemed waved unless made within and claim is based upon any of the above stated reasons or otherwise. In no event shall Cardinal transmitter by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Refinquished By: Date: Time: Date: Time: Time: Delivered By: Circle One) Observed Temp. °C QL 40° Sample Condition CHECKED BY: (Initials) Turnaround Time: Standard Result: Observed Temp. °C Yes Yes One Corrected Temp. °C Yes Yes Yes Wether such and the proved Temp. °C Yes Yes Yes No													+		-			11	-	1										
9 Why PLEASE NOTE: Liability and Damages. Cardinal's iability and client's exclusive remedy for any claim arising whether based in outract or tort, shall be limited to the amount paid by the client for the amount paid the parlow of the approximate of an alphanes. Cardinal's iability and client's exclusive remedy for any claim arising whether based in writing and received by Cardinal within 30 days after completion of the appletion the appletion the appletion the appletion the appletion the appletion of the appletin appleting appletion of the appletion of the appleti	8								-				+		-		11	++	1	1										
WWS With	g							1	-		-	1	-		+		1	1	1	L										
analyses. All claims including those for incidental or consequential damages, including without limitation, business interruptions, loss of use, or loss of use, or loss of use, or loss or otherwise. artifiates or successive arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Verbal Result: Yes No Add'I Phone #: Relinquished By: Date: Received By: Time: All Results are emailed. Please provide Email address: Relinquished By: Date: Received By: Time: M.P. 4f.ch.eW.cOM Time: Date: Received By: Time: M.P. 4f.ch.eW.cOM Delivered By: Observed Temp. °C 4/4° Sample Condition CHECKED BY: Turnaround Time: Standard Bacteria (only) Sample Condition Cool Intact Yes J Yes Yes J Yes O.O. O.O. Observed Temp. °C 4/4° Sample Condition Corrected Temp. °C 3/6° Observed Temp. °C 3/6° Yes J Yes Yes J Yes O.O. O.O. O.O. Observed Temp. °C		Jalia S		1	1	1	ther bo	¥ sed in c	ontrac	t or tort	t, shali	be limit	ted to	to the amoun	t paid	by the client	for the	-	-	4										
service. In no event shall Catchinal or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any or the devenue. Verbal Result: Yes No Add T PhOTe #. All Results are emailed. Please provide Email address: Time: Date: Received By: Time: President of the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any or the devenue. Verbal Result: Yes No Add T PhOTe #. Relinquished By: Date: President of the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any or the devenue. Remained and claim is based upon any or the devenue. Verbal Result: President of the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any or the devenue. Relinquished By: Date: Received By: Received By: Remained By: President of the performance of services hereunder by Cardinal, regardless of the performance of services hereunder by Cardinal, regardless of the performance of services hereunder by Cardinal, regardless of the performance of services hereunder by Cardinal, regardless of the performance of services hereunder by Cardinal, regardless of the performance of services hereunder by Cardinal, regardless of the performance of services hereunder by Cardinal, regardless of the performance																	t the applic diaries,	able												
Relinquished By: Date: Received By: Received By: REMARKS: M R 4 CherV.COM Delivered By: (Circle One) Observed Temp. °C 4.4° Sample Condition Cool Intact CHECKED BY: Turnaround Time: Standard Rush Bacteria (only) Sample Condition Cool Intact Observed Temp. °C Sempler UPS - Bus - Other: Corrected Temp. °C 3.8° Gorrected Temp. °C 3.8° Gorrected Temp. °C 3.8° Nc No Nc No No <td< td=""><td>affiliates or successors an</td><td>ising out of or related to the performan</td><td>Date: 725/2</td><td>y Cardir</td><td>nal, re</td><td>gardless</td><td>of whet</td><td>her suc</td><td>h claim</td><td>is bas</td><td>ed up</td><td>on any o</td><td>of the</td><td>e above stati</td><td>-</td><td></td><td>2</td><td></td><td>Yes ed.</td><td>Plea</td><td>No Se pro</td><td>Add ovide E</td><td>l'I Pho mail a</td><td>ne #: addre</td><td>SS:</td><td></td><td></td><td></td><td></td><td></td></td<>	affiliates or successors an	ising out of or related to the performan	Date: 725/2	y Cardir	nal, re	gardless	of whet	her suc	h claim	is bas	ed up	on any o	of the	e above stati	-		2		Yes ed.	Plea	No Se pro	Add ovide E	l'I Pho mail a	ne #: addre	SS:					
Delivered By: (Circle One) Observed Temp. °C 4 4 2 Sample Condition Cool Intact CHECKED BY: (Initials) Turnaround Time: Standard Rush Bacteria (only) sample Condition Cool Intact Observed Temp. °C Sempler LIPS - Bus - Other: Corrected Temp. °C 2 8° Yes Yes Yes Yes Yes Yes Yes No Orrected Temp. °C	Relinquished	By:	Date:	F	Rece	eived	By:	NK	1	9	V	X		J		REMAR	KS: P	M	9	(+(che	nV.(
Delivered By: (Circle One) Observed Temp. °C 4 4° Sample Conduct Rust Coorected Temp. °C Sampler LIPS - Bus - Other: Corrected Temp. °C 3 8° Greeted Temp. °C 3 8° Greeted Temp. °C No		V								hier	_	CHE	ECK	KED BY	_	Turnaro	und Tir	ne:		Star	ndard		Ba	acteria	a (on	ly) Sa	ample	Condit	tion	
Sampler - 0F3 - Bus - Ottom						<	Coo FT	I In Yes	tact	es						1			-0			U		Yes [🗌 Ye	S				
FORM-000 R 3.2 10/07/21 + Cordinal cannot accept verbal changes. Please email changes to celey.keenewcalumanooning).	0	C		No		0		Dies	V	omail	ha	nges to	celev.	keen	e@	card	inalla	bsnm	n.com	1						

Page 125 of 168

Page 19 of 20

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

2/2

101	Fast	Marland,	Hobbs.	NM	88240
101	East	Wallallu,	noobs,	14141	00240

CARDINAL Laboratories

Company Name	(575) 393-2326 FAX (575) 393-2 ETech Environmental	476 Calety calutions	BILL TC		ANALYSIS	REQUEST
	r: Joel Lowry	Serving Services	P.O. #:			
Address: 2/al	7 Marland		Company: Solaris			
city: Holobs	State: NM	Zip: 88240	Attn:			
	G-264.9884 Fax #: /		Address:			
Project #: 15		er: Splar is	City:			
Project Name:	speedy Boaster		State: Zip:			
Project Locatio	n: Runa / Lea CO NM		Phone #:			
Sampler Name	n: Rural Lea Co, NM Miguel Rumier		Fax #:			
FOR LAB USE ONLY		MATRIX	PRESERV. SAMPI	LING		
Lab I.D. H223257 11 12 13 14 14	Sample I.D. SWI FL @ 6" FL 2@ 6" FL 3@ 6" FL 4@ 6" FL 5@6"	C (G)RAB OR (C)OMP 	× 7/25/22		Hell X	
14	FL 5 @6"		¥ ¥			
analyses. All claims inclu	1/292 Time: 518	ding without limitation, business interruption by Cardinal, regardless of whether such cla Received By:	and received by our and received by our and received by our and received by our loss of profits incurred by cl	ient, its subsidiaries, isons or otherwise. Verbal Result:	■ No Add'I Phone Please provide Email add etechen V· CO	Iress:
Delivered By: (Sampler - UPS	Circle One) Observed Temp. - Bus - Other: Corrected Temp.	C38 Cool Intac	t (Initials) Yes Sch	Thermometer ID #113 Correction Factor -0.5°C	Rush Cool	eria (only) Sample Condition Intact Observed Temp. °C
FORM-00	† Cardina	I cannot accept verbal c	hanges. Please email cha	nges to celey.keene@c 7(2)	ardinallabsnm.com うしょう シー	

Page 20 of 20

August 02, 2022

JOEL LOWRY Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: SPEEDY BOOSTER

Enclosed are the results of analyses for samples received by the laboratory on 07/28/22 15:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/26/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 6 @ 1' (H223340-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	08/01/2022	ND	432	108	400	0.00	QM-07
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/29/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/29/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/29/2022	ND					
Surrogate: 1-Chlorooctane	88.1	% 43-149)						
Surrogate: 1-Chlorooctadecane	108	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/26/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 7 @ 1' (H223340-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/29/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/29/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/29/2022	ND					
Surrogate: 1-Chlorooctane	97.4	% 43-149)						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/26/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 8 @ 1' (H223340-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/29/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/29/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/29/2022	ND					
Surrogate: 1-Chlorooctane	103 9	% 43-149							
Surrogate: 1-Chlorooctadecane	119 %	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/26/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW6 (H223340-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/29/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/29/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/29/2022	ND					
Surrogate: 1-Chlorooctane	103 9	% 43-149)						
Surrogate: 1-Chlorooctadecane	118 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/26/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW6 (H223340-05)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/29/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/29/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/29/2022	ND					
Surrogate: 1-Chlorooctane	94.4	% 43-149)						
Surrogate: 1-Chlorooctadecane	107 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/27/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW7 (H223340-06)

BTEX 8021B	mg,	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/29/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/29/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/29/2022	ND					
Surrogate: 1-Chlorooctane	100	% 43-149	1						
Surrogate: 1-Chlorooctadecane	115 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/27/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: NW1 (H223340-07)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.0	% 69.9-14	0						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/29/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/29/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/29/2022	ND					
Surrogate: 1-Chlorooctane	95.0	% 43-149	1						
Surrogate: 1-Chlorooctadecane	109 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/27/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 9 @ 4' (H223340-08)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	672	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/29/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/29/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/29/2022	ND					
Surrogate: 1-Chlorooctane	99.2	% 43-149	1						
Surrogate: 1-Chlorooctadecane	113 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/27/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 10 @ 4' (H223340-09)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.01	100	2.00	1.43	
Toluene*	<0.050	0.050	07/30/2022	ND	2.10	105	2.00	1.11	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.14	107	2.00	1.57	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.55	109	6.00	1.04	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	576	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/30/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/30/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/30/2022	ND					
Surrogate: 1-Chlorooctane	97.4	% 43-149)						
Surrogate: 1-Chlorooctadecane	112 9	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/27/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 11 @ 4' (H223340-10)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	736	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/30/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/30/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/30/2022	ND					
Surrogate: 1-Chlorooctane	93.8	% 43-149)						
Surrogate: 1-Chlorooctadecane	106 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 12 @ 4' (H223340-11)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2000	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/30/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/30/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/30/2022	ND					
Surrogate: 1-Chlorooctane	85.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	97.4	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 13 @ 4' (H223340-12)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1760	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/30/2022	ND	218	109	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/30/2022	ND	226	113	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	07/30/2022	ND					
Surrogate: 1-Chlorooctane	95.4	% 43-149)						
	110 9								

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 14 @ 4' (H223340-13)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1840	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	80.4	% 43-149)						
Surrogate: 1-Chlorooctadecane	93.1	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 15 @ 4' (H223340-14)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2600	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	89.7	% 43-149)						
Surrogate: 1-Chlorooctadecane	103 9	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 16 @ 4' (H223340-15)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1800	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	81.9	% 43-149)						
Surrogate: 1-Chlorooctadecane	94.7	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW8 (H223340-16)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	84.5	% 43-149	1						
Surrogate: 1-Chlorooctadecane	91.3	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: EW9 (H223340-17)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	79.1	% 43-149							
Surrogate: 1-Chlorooctadecane	90.5	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW7 (H223340-18)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	80.2	% 43-149	1						
Surrogate: 1-Chlorooctadecane	93.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW8 (H223340-19)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	79.1	% 43-149	1						
Surrogate: 1-Chlorooctadecane	90.1	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: WW9 (H223340-20)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	08/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	68.9	% 43-149	1						
Surrogate: 1-Chlorooctadecane	77.8	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 17 @ 4' (H223340-21)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1800	16.0	08/01/2022	ND	416	104	400	3.77	QM-07
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	61.2	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	18.8	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	59.0	% 43-149)						
Surrogate: 1-Chlorooctadecane	66.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 18 @ 4' (H223340-22)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1150	16.0	08/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	54.6	% 43-149)						
Surrogate: 1-Chlorooctadecane	62.1	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 19 @ 4' (H223340-23)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2960	16.0	08/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	65.2	% 43-149)						
Surrogate: 1-Chlorooctadecane	70.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 20 @ 4' (H223340-24)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1060	16.0	08/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	14.6	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	64.4	% 43-149)						
Surrogate: 1-Chlorooctadecane	68.6	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 21 @ 4' (H223340-25)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1340	16.0	08/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	12.6	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	69.2	% 43-149)						
Surrogate: 1-Chlorooctadecane	76.0	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 22 @ 4' (H223340-26)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1800	16.0	08/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	75.4 9	% 43-149							
Surrogate: 1-Chlorooctadecane	77.3 9	42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 23 @ 4' (H223340-27)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	08/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	<10.0	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	<10.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	74.1	% 43-149)						
Surrogate: 1-Chlorooctadecane	72.9	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 24 @ 4' (H223340-28)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1600	16.0	08/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	84.2	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	32.9	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	75.5	% 43-149)						
Surrogate: 1-Chlorooctadecane	78.7	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	07/28/2022	Sampling Date:	07/28/2022
Reported:	08/02/2022	Sampling Type:	Soil
Project Name:	SPEEDY BOOSTER	Sampling Condition:	Cool & Intact
Project Number:	15509	Sample Received By:	Tamara Oldaker
Project Location:	SOLARIS - LEA CO NM		

Sample ID: FL 25 @ 4' (H223340-29)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/30/2022	ND	2.00	100	2.00	4.98	
Toluene*	<0.050	0.050	07/30/2022	ND	2.12	106	2.00	5.36	
Ethylbenzene*	<0.050	0.050	07/30/2022	ND	2.19	110	2.00	5.29	
Total Xylenes*	<0.150	0.150	07/30/2022	ND	6.77	113	6.00	5.58	
Total BTEX	<0.300	0.300	07/30/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1800	16.0	08/01/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/01/2022	ND	226	113	200	3.31	
DRO >C10-C28*	40.6	10.0	08/01/2022	ND	229	115	200	0.787	
EXT DRO >C28-C36	14.0	10.0	08/01/2022	ND					
Surrogate: 1-Chlorooctane	69.6	% 43-149)						
Surrogate: 1-Chlorooctadecane	73.2	% 42.5-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

5	CA	R	D	IN	JA	1L
	Lat	00	ra	tc	Dri	es

Time:

Observed Temp. °C

Corrected Temp. °C 3,7

3.3

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

	aborato	ries	>																		1	12			
1	01 East Marland, Hobbs	, NM 8824	0																		l	2/			
a N	(575) 393-2326 FAX (57	5) 393-247	6	1				T			B		LTO	1					ANA	LYSIS	RÉ	QUES	Т		
Company Name:	ETech Environment	ntal 3 5	ate	ty	501	oti	(pmS		P.O. #:																
Project Manager												<	olaris	_											
Address: 2617		NM									ny.	20													
City: Hobbs	St	ate: Holds z	ip: (8u	40			-f	Attn																
Phone #: 515	264 8000 Fax			(1.			-1	Add		s:						1								
Project #: / 5		ject Owner:	50	ar	19			-	City			-													
Project Name:	Speedy Booster								Stat	te:		2	Zip:												
Project Location	: FAVA HENCO, N	м							Pho		#:														
Sampler Name:	Miguel Rominer			-			DIV		Fax	-	SER		SAMPLIN	IG				-							
FOR LAB USE ONLY		- 1	<u>.</u>			MAT	RIX		-	PRE	SER	"	Orani Lite		5										
Lab I.D.	Sample I.D.		(G)RAB OR (C)OMP		WASTEWATER	SOIL	OIL	SLUDGE	OTHER :	ACID/BASE:	ICE / COOL	OTHER :	DATE	TIME	Chlonides	RTEX	TPU	4 15							
HZZ 3340			Ň	# 0	2 5	S V		0	0	٩	X	Ĭ	7/26/22		X	X	X	C	- ×						
2	FLGQI		1	1	+	7	-				1		1 1		1	1	1								
2	FLTON		Ħ	H	+	5					1														
2	FL 8 el'		11	Ħ		1													_						
7	FULL		11	T									V					_	_						
	ENT			11									7/27/22					_	_						
70	NWI			1									1									-			
8	FL9 QH'														\square		+		_		-				
9.	FL 10 Qu'															1	-		_		+				
10.	FL II Q4'		J	Y		V		ptract	t or tor	chal	Y	nited t	to the amount paid by t	the client fo	r the	V	1.				_				
analyses. All claims includ	nd Damages. Cardinal's liability and client's ex ing those for negligence and any other cause	whatsoever shall be u	eemeu	Walvou	- hus	in one in	tornin	tions	loss o	fuse	or loss	s of pr	rofits incurred by client,	t, its subsidia	aries,	ble									
service. In no event shall of affiliates or successors aris	cardinal be liable for incidential or consequential ing out of or related to the performance of ser	vices hereunder by Ca	ardinal,	regardi	less of	whethe	r such	claim	is bas	ed up	oon any	y of th	he above stated reason	orbal R	ise.		'es	□ No		l'I Phon					
Relinquished B		me:535	Red	eive	ed B	y: UU	N	a	1	k	U	d	All	I Result	s are e	maile	d. Pl	ease p	rovide E	Email ad	dress:				
Relinquished E		ate:	Re	ceiv	ed E	By:				~		~	R	EMARK	S:	up	A	Pp	10	etu	che	nu	TOP	n	

Delivered By: (Circle One)

Sampler - UPS - Bus - Other:

ORM-000 R 3.2 10/07/2

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CHECKED BY:

(Initials)

Sample Condition

Cool Intact Yes Yes No No

Bacteria (only) Sample Condition

Observed Temp. °C

Corrected Temp. °C

Cool Intact Yes Yes Nc No

Standard

Rush

10. 1128

Turnaround Time:

Thermometer ID #113 Correction Factor -0.5°C

Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

2/3

101 East Marland, Hobbs, NM 88240

	(575) 393-2326 FAX	(575) 393-2476	;			-	_				TO					A	NAL	(SIS	REG	UES	Т		
Company Name:	Etech Environ	mental 350	ulty	sol	ution	15	-	0 #	BIL	L	10			T		T							
Project Manager:	Soel lowry		,					0. #:		sol	lewis										İ		
Address: 2617	Marlund		-						any:	500	0415												
city: Hobbs)	State: NM z	ip: 81	8 ZU	10			tn:															
Phone #: 575	GIUSAD	Fax #:					-	ddres	ss:														
Project # 155	509	Project Owner:	501	ati	5		Ci	ity:		-													
Project Name: 4	Speedy Booste Rura Lea	X		1			S	tate:		Zip):												
Project Location	: Rural lea	co, MM					-	hone															
Sampler Name:	Miguel Ro	marez					F	ax #:	ESERV	-	SAMPL	ING	1										
FOR LAB USE ONLY					MA	TRIX	T	PR	ESERV	1			13										
Lab I.D. H223340 11 · 12 ·	Sample I FL 12 @ Y' FL 13 @ Y'	.D.	(G)RAB OR (C)OMP	GROUNDWATER	WASTEWATER SolL	oll	SLUDGE	ACID/BASE:	→ ★ ICE / COOL	7	DATE 28 29	TIME	- × Ph lovic	- × BTEV	Hal x								
13. 14. 15. 16	FL 12 @ 4' FL 13 @ 4' FL 14 @ 4' FL 15 @ 4' FL 15 @ 4' FL 16 @ 4' EW 8																						
10	EW9							+		+	-		11	++									
18.	WWT						-			+	1.		11	11	11							-	
19.	WW8			1		M	-		V	+	V		0		12								
20,	1211/0	To the avaluation rampedu for a	ny claim a	rising wh	nether ba	sed in c	ontract	or tort, s	hall be limit	ted to t	the amount pai	id by the clie	nt for the	cable									
PLEASE NOTE: Liability analyses. All claims inclu	and Damages. Cardinal's liability and uding those for negligence and any oth I Cardinal be liable for incidental or cou-	er cause whatsoever shall be	deemed w	vaived un mitation,	hless mai husines	de in wri s interru	ting and ptions, l	d receive loss of u	ed by Cardin se, or loss o	of profi	its incurred by	client, its sub	sidiaries, nerwise.										
service. In no event shall affiliates or successors a Relinquished	rising out of or related to the performa	Date: 7-28-72	Rec	egardles eiveo	s of whet	ther suc	h claim	is based	I upon any o		above stated te	and the second division of the second divisio	Result: ults are		Yes ed. Ple	No ase pro	Add ovide E	'l Phon mail ad	e #: Idress:	:			
Relinquished	By	Time: Date:	Rec	eive	d By:	arc	9	Ke	UNG.	9	yc	REMA	rks: F	m	0	eta	ect						
Delivered By:	(Circle One)	Time: Observed Temp. °C			Coo	ple C	tact			ECKI (Initi	ED BY: als)		round T ometer II tion Fact			sh		Coo	I Inta	ct	Observ	ed lem	ipC
Sampler - UPS	- Bus - Other:	Corrected Temp. °C	2.	1	H	Yes No		lo)			Correc	tion Fact	or -0.5	C TO	1/2		com	NCL	NO	001100		

Page 159 of 168

ORM-000 R 3.2 10/07/21

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

3/3

101 East Marland, Hobbs, NM 88240

and the second sec	(575) 393-2326 FAX (575) 393-2	476			
Company Name	ETech Environmental 3.	safety solutions	BILL TO	ANALYSIS REQUEST	
Project Manage	r: Joel Lowry	.) -	P.O. #:		
Address: 261	7 Marland		Company: Solaris		
City: 66655		Zip: 88240	Attn:		
	-964-8000 Fax #:		Address:		
Project #: 15		r: Solaris	City:		·
	spiedy Boostir		State: Zip:		
Project Location	n: Rival Lea CO NO		Phone #:		
Sampler Name:	n: Rural Lea CO NM Moquel Reminer		Fax #:		
FOR LAB USE ONLY		MATRIX	PRESERV. SAMPLI	LING	
Lab I.D. AZZ 3340 21 · 22 · 23 · 24 · 25 · 26 · 27 ° 38 °	Sample I.D. FL 17 Q4' FL 18 Q4' FL 19 Q4' FL 30 Q4' FL 31 Q4' FL 31 Q4' FL 31 Q4' FL 32 Q4' FL 34 Q4' FL 34 Q4'	C (G)RAB OR (C)OMP C (G)RAB OR (C)OMP C (G)RAB OR (C)OMP C (C)OMP C (G)RAB OR (C)OMP C (C)O	OTHER: ACID/BASE: ACID		
29 1	FL 25 @4'	44	d b		
analyses. All claims includ	14-20-22 Time:-35	e deemend waived unless made in writing ar gwithout limitation, business interruptions. Cardinal, regardless of whether such claim Received By:	nd received by Cardinal within 30 days after co loss of use, or loss of profits incurred by clien is based upon any of the above stated reaso	completion of the applicable lient, its subsidiaries, sons or otherwise. Verbal Result: Ves No Add'I Phone #: All Results are emailed. Please provide Email address:	
Reilinguished	Time:	Received By:		REMARKS: PMQ etechenicom	
Delivered By: (0 Sampler - UPS -		Cool Intact	(Initials)	Turnaround Time: Standard Rush Bacteria (only) Sample Condition Thermometer ID #113 Correction Factor -0.5°C To The stor -0.5°C	np. °C
	R 3.2 10/07/21	and the second second second second second second second second second second second second second second second	A DESCRIPTION OF THE OWNER AND AND ADDRESS OF THE OWNER ADDRESS OF THE OWNER ADDRESS OF THE OWNER ADDRESS OF THE		

Page 160 of 168

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Appendix D Photographic Log

Photographic Log

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
SOLARIS WATER MIDSTREAM, LLC	371643
907 Tradewinds Blvd, Suite B	Action Number:
Midland, TX 79706	135735
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	Closure Report Approved.	8/24/2022

Page 168 of 168

CONDITIONS

.

Action 135735