E ENSOLUM

August 2, 2022

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1000 Rio Brazos Road Aztec, New Mexico 87410

Re: Second Quarter 2022 – Remediation System Quarterly Report Federal 18 #1T San Juan County, New Mexico Hilcorp Energy Company NMOCD Incident Number: NCS2103335776 Ensolum Project No.: 07A1988003

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this Second Quarter 2022 – Remediation System Quarterly Report summarizing second quarter 2022 activities at the former Federal 18 #1T coalbed methane gas well (Site), located in Unit M, Section 18, Township 30 North, Range 12 West in the City of Farmington, New Mexico. The casing of the original gas well has been modified to vent gas and purge water from the Ojo Alamo and Nacimiento Formations. Since initiation of the remediation system in 2010, quarterly reports have been submitted to the New Mexico Oil Conservation Division (NMOCD) to record activities performed at the Site, as well as document well-casing pressures from nearby domestic water well SJ-01737, the volume of gas vented from the Site's well, and groundwater analytical results collected from the Site's well.

SITE BACKGROUND

As part of an ongoing effort between the NMOCD and Hilcorp (Site originally operated by XTO Energy, Inc. [XTO]), the agreed upon remedial option for the Site was to install a vacuum system at the Site to vent gas from the Nacimiento formation, which overlies the Ojo Alamo Formation. Gas found in the Nacimiento formation could have originated from several contributing sources in the area including existing and abandoned gas wells near the Site. In agreement with the NMOCD, XTO modified the Site's production well to vent gas and recover contaminated groundwater by setting a plug at a depth of approximately 513 feet below ground surface (bgs). Perforations were made in the casing at 437 to 452 feet bgs and 457 to 473 feet bgs in order to monitor groundwater and vent gas from the Nacimiento Formation. Based on initial groundwater sampling results, XTO recommended pumping the aquifer until groundwater results were below the New Mexico Water Quality Control Commission (NMWQCC) standards for benzene, toluene, ethylbenzene, total xylenes (referred to as BTEX), and chloride.

A submersible water pump was installed in the Site's well in November 2010 at a depth of approximately 485 feet bgs in order to recover impacted groundwater. Based on aquifer tests performed by XTO, the water pump was set to maintain a static water level of approximately 473 feet bgs. The water pump is plumbed into the existing water lines and stored in the on-Site 210-barrel (bbl) water tank, which is regularly emptied for off-Site disposal. A vacuum pump was subsequently installed at the Site's well to

By Nelson Velez at 8:38 am, Sep 08, 2022

REVIEWED

 Continue with O & M schedule.
 Continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters.
 Sampling for chloride can be discontinued.
 Submit next quarterly report by October 31, 2022. Hilcorp Energy Company Federal 18 #1T August 2, 2022

ENSOLUM

also remove gas entrained in the formation. A portable generator was originally placed at the Site to power both the vacuum and water pumps. Generator maintenance issues led to the system being electrified on February 3, 2011.

Operation and maintenance (O&M) inspections are conducted by Hilcorp personnel regularly to check the system and verify proper water and vacuum pump operation, record water meter volumes, and verify that no other Site conditions dictate system maintenance and/or adjustment. Possible pressure variations in the subsurface due to the vacuum pump are monitored using nearby water well SJ-01737. Casing pressure measurements from the SJ-01737 are included in Table 1.

SECOND QUARTER 2022 SITE ACTIVITIES AND RESULTS

Approximately 13,100 gallons (311 bbls) of water was removed from the Site's well during the second quarter of 2022. To date, approximately 1,160,384 gallons (27,628 bbls) of impacted water have been removed from the Site. A water sample from the well was collected on April 12, 2022 and submitted to Hall Environmental Analysis Laboratory (Hall) for laboratory analysis. Specifically, the water sample was analyzed for the following constituents: volatile organic compounds (VOCs), including BTEX by Environmental Protection Agency (EPA) Method 8260, chloride by EPA Method 300.0, specific conductance (or electrical conductivity) by Standard Method (SM) 2510B, pH by Method SM4500-H+B, and total dissolved solids (TDS) by Method SM2540C.

Based on results from the April 2022 sampling event, benzene and TDS remain at concentrations exceeding the applicable NMWQCC standards and appear to be similar to historical results. Analytical results are summarized in Table 2, with complete laboratory reports attached as Appendix A.

Since January 24, 2022, the pump has operated for two cycles of 690 minutes on and 30 minutes off (23 hours runtime per day). Approximately 30,715 thousand cubic feet (MCF) of gas/air have been emitted from the Site's well since the system began operating in 2010. Gas/air volumes vented by the system are summarized in Table 3.

RECOMMENDATIONS

O&M visits will continue to be performed by Hilcorp personnel to verify the system is operating as designed. Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters.

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this proposal, please contact the undersigned.

Sincerely, Ensolum, LLC

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com

Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Hilcorp Energy Company Federal 18 #1T August 2, 2022

ENSOLUM

Attachments:

Table 1	Well SJ-01737 Casing Pressure Readings
Table 2	Water Analytical Results
Table 3	Gas and Air Vented
Appendix A	Laboratory Analytical Reports

TABLES

ENSOLUM

TABLE 1 WELL SJ-01737 CASING PRESSURE READINGS Hilcorp Energy Company - Federal 18 #1T San Juan County, New Mexico

Ensolum Project No. 07A1988003

	Solum Project No. 07A19880	
Sample Date	Casing Pressure (ounces)	Average
1/7/2020	0	0.000
1/17/2020	1.25	0.125
1/30/2020	0	0.000
2/12/2020	2.25	0.173
2/25/2020	0	0.000
4/3/2020	1.75	0.046
4/9/2020	0 3	0.000
4/15/2020 4/23/2020	0	0.500
4/30/2020	0.5	0.071
5/15/2020	0	0.000
5/21/2020	1.25	0.208
5/29/2020	0	0.000
6/5/2020	0.5	0.071
6/29/2020	0	0.000
7/8/2020	0.75	0.083
7/22/2020	0	0.000
8/11/2020	0	0.000
8/25/2020	0	0.000
9/16/2020	0	0.000
9/22/2020	0	0.000
10/26/2020	2.75	0.081
11/9/2020 12/8/2020	0	0.000
12/18/2020	0	0.000
1/5/2021	1.75	0.097
1/20/2021	0	0.000
2/11/2021	1.75	0.080
2/17/2021	0	0.000
3/25/2021	3.5	0.097
10/4/2021	0	0.000
10/11/2021	2.5	0.357
10/18/2021	0	0.000
10/26/2021	3.25	0.406
11/1/2021	0	0.000
11/9/2021	0.5	0.063
11/23/2021	3	0.214
11/29/2021 12/6/2021	0 3	0.000
12/14/2021	0	0.000
12/20/2021	0	0.000
12/30/2021	0	0.000
1/4/2022	0	0.000
1/11/2022	0	0.000
1/24/2022	0	0.000
1/31/2022	0	0.000
2/7/2022	0	0.000
2/17/2022	0	0.000
3/2/2022	0	0.000
3/7/2022	0	0.000
3/14/2022	0	0.000
3/21/2022	0	0.000
3/28/2022 4/7/2022	0	0.000
4/19/2022	0	0.000
4/25/2022	0	0.000
5/2/2022	0	0.000
5/11/2022	0	0.000
5/16/2022	0	0.000
5/24/2022	0	0.000
6/2/2022	0	0.000
6/8/2022	0	0.000
6/14/2022	0	0.000

ENSOLUM

			Hilco	TABLE 2 WATER ANALYTICA orp Energy Company San Juan County, N Ensolum Project No.	L RESULTS - Federal 18 #1T New Mexico				
Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylene (µg/L)	Chlorides (mg/L)	TDS (mg/L)	Electrical Conductivity (umhos/cm)	рН	Purge Water Volume (gallons)
NMWQCC Standards	5.0	1,000	700	620	250	1,000		6 thru 9	
11/5/2010	ND	5.2	ND	ND	15	1,400	2,600	7.2	NM
9/24/2010 9/24/2010	150 190	ND 170	76 24	670 210	6,800	13,000	18,000	6.1	NM NM
9/24/2010	143	221	63.6	950					NM
9/24/2010	320	377	31.8	568	7,150	11,100	16,000	5.84	NM
12/10/2011					2,800	7,610	8,900	6.36	3,033
1/5/2011 1/5/2011	67 73	93 99	7.9	25 39	1,600	4,800	6,000	6.6	7,798 7,798
1/29/2011	60	99	10	39	930	4,800	4,900	6.4	10,791
2/28/2011	42	60	6.1	20	550	3,400	4,000	6.7	14,795
4/1/2011	23	27	1.8	6.8	260	2,700	3,100	6.8	31,238
4/29/2011 5/31/2011	29 14	28 19	2.4	7.3	140 89	2,600 2,500	2,900 2,800	6.9 6.7	50,217 76,513
6/14/2011	55	81	2.8	4.9	73	2,500	2,700	6.7	88,120
6/30/2011	52	67	2.6	12	61	2,500	2,700	6.9	101,209
8/15/2011	21	25	1.2	5.8	44	2,500	2,600	6.8	140,267
9/2/2011	10	12	0.64	3.2	41	2,500	2,600	7.2	155,801
9/16/2011 9/30/2011	9.6 7.2	11 8.7	0.64	3 2.5	38 35	2,400 2,500	2,500 2,600	7.2	168,040 180,393
10/28/2011	5.1	ND	1.8	2.7	31	2,300	2,600	6.9	205,220
11/30/2011	4	ND	3.9	2	27	2,500	2,600	7.1	233,488
12/30/2011	3.4	ND	ND	2.9	27	2,500	2,500	7.5	261,391
4/3/2012	6	ND	ND	1.6					351,300
4/9/2012 7/3/2012	5.3	 ND	 ND	 ND	19 16	2,400 2,300	2,400 2,400	7.4	NM NM
7/6/2012									441,053
9/19/2012		-							521,271
9/27/2012	6.2	ND	ND	ND	15	2,300	2,500	7.1	NM
12/14/2012									598,540
12/31/2012 1/23/2013	13.9 160	1.1 190	ND ND	3.3 26	15.5 15	2,690 2,400	2,440 2,500	7.05	604,689 NM
2/22/2013	7.1	77	ND	1.8	15	2,100	2,500	7.1	605,860
5/2/2013	9	6.9	ND	ND	15	2,400	2,600	7.5	612,601
8/19/2013	20	11	ND	2.3	16	2,200	2,600	7.2	NM
9/23/2013 11/25/2013	13 4.6	11 5.2	ND ND	2.2 ND	16 15	2,300 2,200	2,500 2,700	7.1	621,744 631,430
2/4/2014	15	17	0.72	3.1	16	2,200	2,500	7.3	636,120
10/1/2015	54.2	57	1.37	9.77	21.3	2,260	2,640	6.98	639,410
10/20/2015	42.3	39.9	0.964	7.06	18.1	2,330	1,460	7.09	642,650
3/28/2016 6/14/2016	38	34.1	0.835	4.82	21.6	2,230	2,570	6.86 6.89	650,850
8/29/2016	78.3 19	58.4 ND	1.16 ND	2.18	13.7 14.8	2,890 2,410	2,600	7.02	704,371 763,261
11/18/2016	13.2	5.61	ND	2.33	13.9	2,470	2,580	7.03	842,610
3/31/2017	9.61	7.87	ND	ND	14.4	2,300	2,570	7.28	858,190
6/16/2017	64.6	29.2	0.781	5.4	14.2	2,360	2,570	7.05	927,854
9/7/2017 12/5/2017	4.61 138	1.73 51.5	ND 1.65	ND 9.378	13.7 14.4	2,030 2,230	2,450 2,590	7.14	997,330 1,080,550
3/6/2018	19.9	14.8	0.543	2.71	14.4	2,290	2,620	7.13	1,080,840
8/7/2018	7.9	8.06	<0.5	<1.5	13.7	2,200	2,300	7.19	1,082,751
1/3/2019	7.07	3.29	0.177	1.08	15.8	2,080	6,750	6.35	1,120,220
2/22/2019 5/24/2019	19.8 11.9	11.1 10.8	<0.5 ND	3.97 ND	14.1 13.4	2,270 2,380	2,710 2,760	7.46 7.15	1,120,366 1,123,853
9/10/2019	23.2	10.8	ND	ND	13.4	2,380	2,600	7.15	1,123,853
10/29/2019	5.41	5.68	ND	ND	14	2,300	2,530	7.09	1,127,076
2/27/2020	20.7	19.3	ND	ND	14.4	2,280	2,580	7.06	1,128,506
5/15/2020	10.3	8.91	ND	ND	13.6	2,460	2,570	7.27	1,131,033
8/25/2020 10/27/2020	3.9 31.1	3.5 24.4	ND ND	ND ND	13.9 13.9	2,190 2,240	2,640 2,530	7.62	1,131,100 1,131,119
2/17/2020	73	<1	<1	<1.5	18	2,240	2,400	7.43	1,131,113
6/29/2021 (2)									1,134,031
9/30/2021	130	87	<5.0	8.1	19	2,300	2,500	7.20	1,134,167
12/6/2021	33	20	<1.0	6.0	15	2,430	2,500	7.15	1,143,239
2/17/2022 4/12/2022	25 27	3.1 4.3	<1.0 <1.0	2.7	13 12	2,380 2,360	2,600 2,500	7.17 7.13	1,147,283 1,160,384
7/12/2022	21	7.5	<1.0	2.0	12	2,300	2,000	1.13	1,100,004

Notes:

(1): initial water sample

(2): water pump not functioning

µg/L: micrograms per liter

ng/L: milligrams per liter ND: not detected, practical quantitation limit unknown NMWQCC: New Mexico Water Quality Control Commission

--: not analyzed

<0.037: indicates result less than the stated laboratory reporting limit (RL) Concentrations in bold and shaded exceed the New Mexico Water Quality Control Commission Standards, 20.6.2 of the New Mexico Administrative Code

ENSOLUM

TABLE 3 GAS AND AIR VENTED Hilcorp Energy Company - Federal 18 #1T San Juan County, New Mexico

Ensolum Project No. 07A1988003

Date	SCFM	ACFM	Total Vented Gas and Air (MCF)
9/17/2019	3	6	26,677
10/7/2019	3	6	26,849
10/21/2019	3	6	26,969
10/28/2019	3	6	27,030
12/5/2019	3	6	27,356
12/19/2019	3	6	27,477
1/7/2020	3	6	27,954
1/17/2020	3	6	28,040
1/30/2020	3	6	28,153
2/12/2020	3	6	28,265
2/25/2020	3	6	28,377
4/3/2020	3	6	28,705
4/9/2020	3	6	28,756
4/15/2020	3	6	28,808
4/23/2020	3	6	28,877
4/30/2020	3	6	28,937
5/15/2020	3	6	29,067
5/21/2020	3	6	29,118
5/29/2020	3	6	29,179
6/5/2020	3	6	29,239
6/29/2020	0	0	Hot, not running
7/8/2020	0	0	Unit Down
8/11/2020	0	0	Unit Down
8/25/2020	0	0	Unit Down
9/16/2020	0	0	Unit Down
9/22/2020	0	0	Unit Down
10/26/2020	0	0	Unit Down
11/9/2020	0	0	Unit Down
12/8/2020	0	0	Unit Down
1/5/2021	0	0	Unit Down
1/20/2021	0	0	Unit Down
2/11/2021	0	0	Unit Down
2/17/2021	0	0	Unit Down
3/22/2021	0	0	Unit Down
*3/31/2021	5.6	7	29,241
6/29/2021	5.6	7	29,262
9/30/2021	5.6	7	29,281
12/31/2021	5.6	7	29,320
1/19/2022	5.6	7	29,328
1/24/2022	5.6	7	29,353
3/31/2022	5.6	7	29,991
6/14/2022	5.6	7	30,715

Notes:

ACFM - flow rate in actual cubic feet per minute

MCF - thousand cubic feet

SCFM - flow rate in standard cubic feet per minute

* - Pump operated from 3/23 - 3/31/2021.

SCFM per day based on manufacture specifications.

ACFM is estimated based on site elevation and/or observed vacuum

Page 8 of 20

APPENDIX A

Laboratory Analytical Reports

April 21, 2022

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Federal 18 1T

OrderNo.: 2204564

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 1 sample(s) on 4/13/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Order 2204564

Date Reported: 4/21/2022

CLIENT: HILCORP ENERGY Project: Federal 18 1T Lab ID: 2204564-001	Matrix: AQUEOUS	Collectio	Client Sample ID: W-1 Collection Date: 4/12/2022 2:55:00 PM Received Date: 4/13/2022 7:30:00 AM						
Analyses	Result	RL Qual Units		DF	Date Analyzed				
EPA METHOD 300.0: ANIONS					Analyst: CAS				
Chloride	12	2.5	mg/L	5	4/13/2022 3:09:46 PM				
EPA METHOD 8260B: VOLATILES			U		Analyst: CCM				
Benzene	27	1.0	µg/L	1	4/16/2022 8:04:00 AM				
Toluene	4.3	1.0	µg/∟ µg/L	1	4/16/2022 8:04:00 AM				
Ethylbenzene	ND	1.0	µg/∟ µg/L	1	4/16/2022 8:04:00 AM				
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM				
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM				
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM				
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM				
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM				
Naphthalene	ND	2.0	μg/L	1	4/16/2022 8:04:00 AM				
1-Methylnaphthalene	ND	4.0	µg/L	1	4/16/2022 8:04:00 AM				
2-Methylnaphthalene	ND	4.0	µg/L	1	4/16/2022 8:04:00 AM				
Acetone	ND	10	µg/L	1	4/16/2022 8:04:00 AM				
Bromobenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
Bromodichloromethane	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM				
Bromoform	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM				
Bromomethane	ND	3.0	μg/L	1	4/16/2022 8:04:00 AM				
2-Butanone	ND	10	μg/L	1	4/16/2022 8:04:00 AM				
Carbon disulfide	ND	10	μg/L	1	4/16/2022 8:04:00 AM				
Carbon Tetrachloride	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM				
Chlorobenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
Chloroethane	ND	2.0	µg/L	1	4/16/2022 8:04:00 AM				
Chloroform	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
Chloromethane	ND	3.0	µg/L	1	4/16/2022 8:04:00 AM				
2-Chlorotoluene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
4-Chlorotoluene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
cis-1,2-DCE	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	4/16/2022 8:04:00 AM				
Dibromochloromethane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
Dibromomethane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
1,2-Dichlorobenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
1,3-Dichlorobenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
1,4-Dichlorobenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
Dichlorodifluoromethane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
1,1-Dichloroethane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
1,1-Dichloroethene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				
1,2-Dichloropropane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank в

Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 1 of 8

Analytical Report Lab Order 2204564

Date	Reported.	4/21/2022	

CLIENT: HILCORP ENERGY		Client San	nple ID: `	W-1			
Project: Federal 18 1T		Collectio	on Date: 4	4/12/2	2022 2:55:00 PM		
•	Matrix: AQUEOUS			te: 4/13/2022 7:30:00 AM			
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
EPA METHOD 8260B: VOLATILES					Analyst: CCM		
1,3-Dichloropropane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
2,2-Dichloropropane	ND	2.0	µg/L	1	4/16/2022 8:04:00 AM		
1,1-Dichloropropene	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM		
Hexachlorobutadiene	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM		
2-Hexanone	ND	10	μg/L	1	4/16/2022 8:04:00 AM		
Isopropylbenzene	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM		
4-Isopropyltoluene	1.1	1.0	μg/L	1	4/16/2022 8:04:00 AM		
4-Methyl-2-pentanone	ND	10	μg/L	1	4/16/2022 8:04:00 AM		
Methylene Chloride	ND	3.0	µg/L	1	4/16/2022 8:04:00 AM		
n-Butylbenzene	ND	3.0	µg/L	1	4/16/2022 8:04:00 AM		
n-Propylbenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
sec-Butylbenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
Styrene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
tert-Butylbenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	4/16/2022 8:04:00 AM		
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	4/16/2022 8:04:00 AM		
trans-1,2-DCE	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
1,1,1-Trichloroethane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
1,1,2-Trichloroethane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
Trichloroethene (TCE)	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
Trichlorofluoromethane	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
1,2,3-Trichloropropane	ND	2.0	µg/L	1	4/16/2022 8:04:00 AM		
Vinyl chloride	ND	1.0	µg/L	1	4/16/2022 8:04:00 AM		
Xylenes, Total	2.0	1.5	µg/L	1	4/16/2022 8:04:00 AM		
Surr: 1,2-Dichloroethane-d4	94.2	70-130	%Rec	1	4/16/2022 8:04:00 AM		
Surr: 4-Bromofluorobenzene	97.7	70-130	%Rec	1	4/16/2022 8:04:00 AM		
Surr: Dibromofluoromethane	98.1	70-130	%Rec	1	4/16/2022 8:04:00 AM		
Surr: Toluene-d8	97.6	70-130	%Rec	1	4/16/2022 8:04:00 AM		
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN		
Conductivity	2500	10	µmhos/c	1	4/18/2022 1:04:08 PM		
SM4500-H+B / 9040C: PH					Analyst: LRN		
pH	7.13	н	pH units	1	4/18/2022 1:04:08 PM		
SM2540C MOD: TOTAL DISSOLVED SOLI	DS				Analyst: KS		
Total Dissolved Solids	2360	40.0 *D	mg/L	1	4/14/2022 7:26:00 PM		
Refer to the QC Summary report and sa	mple login checklist f	or flagged OC	' data and	nrocc	ruation information		

D Sample Diluted Due to Matrix H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

 B
 Analyte detected in the associated Method Blank

 E
 Estimated value

 J
 Analyte detected below quantitation limits

 P
 Sample pH Not In Range

 RL
 Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference Page 2 of 8

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	HILCOR Federal 1	P ENERG` 8 1T	Y								
Sample ID:	МВ	SampT	ype: mb	lk	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	PBW	Batch	ID: R8	7234	F	RunNo: 87	7234				
Prep Date:		Analysis D	ate: 4/	13/2022	S	SeqNo: 30	084775	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50								
Sample ID:	LCS	SampT	ype: Ics		Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	LCSW	Batch	ID: R8	7234	F	RunNo: 8 7	7234				
Prep Date:		Analysis D	ate: 4/	13/2022	S	SeqNo: 3	084776	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.7	0.50	5.000	0	93.2	90	110			
Sample ID:	2204564-001BMS	SampT	ype: ms		TestCode: EPA Method 300.0: Anions						
Client ID:	W-1	Batch	ID: R8	7234	F	RunNo: 8 7	7234				
Prep Date:		Analysis D	ate: 4/	13/2022	S	SeqNo: 3	084780	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		36	2.5	25.00	12.44	94.9	86.3	114			
Sample ID:	2204564-001BMS	SampT	ype: ms	d	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	W-1	Batch	ID: R8	7234	F	RunNo: 8 7	7234				
Prep Date:		Analysis D	ate: 4/	13/2022	S	SeqNo: 30	084781	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		37	2.5	25.00	12.44	97.3	86.3	114	1.67	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 8

2204564

21-Apr-22

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:HILCOFProject:Federal	RP ENERGY 18 1T									
Sample ID: 100ng Ics 2	SampType: LC	s	Tes	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch ID: R	37276	F	RunNo: 87276						
Prep Date:	Analysis Date: 4	/15/2022	S	SeqNo: 30	86670	Units: %Rec				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 1,2-Dichloroethane-d4	9.6	10.00		96.4	70	130				
Surr: 4-Bromofluorobenzene	9.8	10.00		98.4	70	130				
Surr: Dibromofluoromethane	9.8	10.00		97.7	70	130				
Surr: Toluene-d8	9.4	10.00		94.4	70	130				
Sample ID: 100ng lcs 3	SampType: LC	s	Tes	tCode: EP	A Method	8260B: VOLA	TILES			
Client ID: LCSW	Batch ID: Batch	37276	F	RunNo: 87	276					
Prep Date:	Analysis Date: 4	/16/2022	S	SeqNo: 30	86671	Units: µg/L				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	20 1.0	20.00	0	98.7	70	130				
Toluene	20 1.0	20.00	0	100	70	130				
Chlorobenzene	20 1.0	20.00	0	101	70	130				
1,1-Dichloroethene	18 1.0	20.00	0	91.7	70	130				
Trichloroethene (TCE)	19 1.0	20.00	0	95.3	70	130				
Surr: 1,2-Dichloroethane-d4	9.6	10.00		95.7	70	130				
Surr: 4-Bromofluorobenzene	10	10.00		103	70	130				
Surr: Dibromofluoromethane	9.8	10.00		98.3	70	130				
Surr: Toluene-d8	9.5	10.00		95.2	70	130				
Sample ID: mb 2	SampType: M	BLK	Tes	tCode: EP	A Method	8260B: VOLA	TILES			
Client ID: PBW	Batch ID: R	37276	F	RunNo: 87276						
Prep Date:	Analysis Date: 4	15/2022	S	SeqNo: 30	86672	Units: %Rec				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 1,2-Dichloroethane-d4	9.7	10.00		96.9	70	130				
Surr: 4-Bromofluorobenzene	9.7	10.00		96.8	70	130				
Surr: Dibromofluoromethane	10	10.00		101	70	130				
Surr: Toluene-d8	9.6	10.00		96.1	70	130				
Sample ID: mb 3	SampType: M	BLK	Tes	tCode: EP	A Method	8260B: VOLA	TILES			
Client ID: PBW	Batch ID: B8	37276	F	RunNo: 87	276					
Prep Date:	Analysis Date: 4	/16/2022	S	SeqNo: 30	86673	Units: µg/L				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND 1.0									
Toluene	ND 1.0									
Ethylbenzene	ND 1.0									
Methyl tert-butyl ether (MTBE)	ND 1.0									
1,2,4-Trimethylbenzene	ND 1.0									

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit S % Recovery outside of range due to dilution or matrix interference B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

2204564

21-Apr-22

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

HILCORP ENERGY

Sample ID: mb 3	Samp	Гуре: МЕ	BLK	Tes	stCode: EF	PA Method	8260B: VOLA	TILES	
Client ID: PBW	Batc	h ID: B8	7276	F	RunNo: 87	7276			
Prep Date:	Analysis [Date: 4/	16/2022	SeqNo: 3086673			Units: µg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
1,3,5-Trimethylbenzene	ND	1.0							
1,2-Dichloroethane (EDC)	ND	1.0							
1,2-Dibromoethane (EDB)	ND	1.0							
Naphthalene	ND	2.0							
1-Methylnaphthalene	ND	4.0							
2-Methylnaphthalene	ND	4.0							
Acetone	ND	10							
Bromobenzene	ND	1.0							
Bromodichloromethane	ND	1.0							
Bromoform	ND	1.0							
Bromomethane	ND	3.0							
2-Butanone	ND	10							
Carbon disulfide	ND	10							
Carbon Tetrachloride	ND	1.0							
Chlorobenzene	ND	1.0							
Chloroethane	ND	2.0							
Chloroform	ND	1.0							
Chloromethane	ND	3.0							
2-Chlorotoluene	ND	1.0							
4-Chlorotoluene	ND	1.0							
cis-1,2-DCE	ND	1.0							
cis-1,3-Dichloropropene	ND	1.0							
1,2-Dibromo-3-chloropropane	ND	2.0							
Dibromochloromethane	ND	1.0							
Dibromomethane	ND	1.0							
1,2-Dichlorobenzene	ND	1.0							
1,3-Dichlorobenzene	ND	1.0							
1,4-Dichlorobenzene	ND	1.0							
Dichlorodifluoromethane	ND	1.0							
1,1-Dichloroethane	ND	1.0							
1,1-Dichloroethene	ND	1.0							
1,2-Dichloropropane	ND	1.0							
1,3-Dichloropropane	ND	1.0							
2,2-Dichloropropane	ND	2.0							
1,1-Dichloropropene	ND	1.0							
Hexachlorobutadiene	ND	1.0							
2-Hexanone	ND	10							
Isopropylbenzene	ND	1.0							
4-Isopropyltoluene	ND	1.0							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2204564 21-Apr-22

Qual

Client:

Project:

Client ID:

Prep Date:

Analvte

Sample ID: mb 3

4-Methyl-2-pentanone

Methylene Chloride

n-Butylbenzene

n-Propylbenzene

sec-Butylbenzene

tert-Butylbenzene

trans-1,2-DCE

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Tetrachloroethene (PCE)

trans-1,3-Dichloropropene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

Styrene

PBW

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Result

ND

SampType: MBLK

Batch ID: B87276

PQL

10

3.0

3.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

SPK value SPK Ref Val

Analysis Date: 4/16/2022

HILCORP ENERGY

Federal 18 1T

Vinyl c	hloride	ND	1.0						
Xylene	es, Total	ND	1.5						
-	r: 1,2-Dichloroethane-d4	9.7		10.00		96.9	70	130	
	r: 4-Bromofluorobenzene	9.9		10.00		99.3	70	130	
Sur	r: Dibromofluoromethane	9.9		10.00		99.0	70	130	
	r: Toluene-d8	9.4		10.00		93.8	70	130	
oun		0.1		10.00		00.0	10	100	
Quali	fiers:								
*	Value exceeds Maximum Contaminat	nt Level.		Η	В	Analyte detected in the associa	ted Method Blank		
D	Sample Diluted Due to Matrix				Е	Estimated value			
Н	Holding times for preparation or analy	sis exceeded			J	Analyte detected below quanti	tation limits		
ND	Not Detected at the Reporting Limit				P	Sample pH Not In Range			
PQL	Practical Quanitative Limit	ilution on motol- in		R	L	Reporting Limit			
S	% Recovery outside of range due to d	ilution or matrix i	nterference						

2204564	
21-Apr-22	

Qual

WO#:

RPDLimit

TestCode: EPA Method 8260B: VOLATILES

LowLimit

Units: µg/L

HighLimit

%RPD

RunNo: 87276

%REC

SeqNo: 3086673

Page 6 of 8

Client: Project:	HILCOR Federal 1	P ENERG 8 1T	Y								
Sample ID:	lcs-1 98.6uS eC	SampT	ype: Ics		Tes	tCode: SN	/12510B: Sp	ecific Condu	ctance		
Client ID:	LCSW	Batcl	n ID: R8 '	7335	F	RunNo: 87	7335				
Prep Date:		Analysis E	Date: 4/*	18/2022	S	SeqNo: 30	088939	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		99	10	98.60	0	100	85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2204564

21-Apr-22

Client: Project:		CORP ENERG eral 18 1T	Y								
Sample ID: MB	8-66834	SampT	уре: МЕ	LK	Tes	tCode: SI	M2540C MC	D: Total Diss	olved Soli	ids	
Client ID: PB	w	Batch	n ID: 668	334	F	RunNo: 8	7254				
Prep Date: 4/	13/2022	Analysis E	Date: 4/*	14/2022	5	SeqNo: 3	085324	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved Soli	ids	ND	20.0								
Sample ID: LC	S-66834	SampT	ype: LC	S	Tes	tCode: SI	M2540C MC	D: Total Diss	olved Soli	ids	
Client ID: LC:	sw	Batcl	n ID: 668	34	F	RunNo: 8	7254				
Prep Date: 4/	13/2022	Analysis E	Date: 4/*	14/2022	S	SeqNo: 3	085325	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved Soli	ids	1010	20.0	1000	0	101	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2204564

21-Apr-22

ived by OCD: 8/8/2022 11:06:55 AM HALL ENVIRONMENTAL ANALYSIS LABORATORY		001 Hawkins NE rque, NM 87109 1: 505-345-4107	Sar	mple Log-In Check	Page 18 List
Client Name: HILCORP ENERGY	Work Order Number: 22	04564		RcptNo: 1	
Received By: Cheyenne Cason 4/	13/2022 7:30:00 AM	Ch	ent		
Completed By: Sean Livingston 4/	13/2022 8:17:12 AM	<	\leq /	in the	
Reviewed By: Jn 4/13/22		~			
Chain of Custody					
1. Is Chain of Custody complete?	Ye	s 🗸	No 🗌	Not Present	
2. How was the sample delivered?	Con	urier			
<u>Log In</u>					
3. Was an attempt made to cool the samples?	Yes		No 🗌	NA 🗌	
4. Were all samples received at a temperature of >	0° C to 6.0°C Yes		No 🗌	NA 🗌	
5. Sample(s) in proper container(s)?	Yes	1	No 🗌		
6. Sufficient sample volume for indicated test(s)?	Yes		10 🗌		
7. Are samples (except VOA and ONG) properly pre	served? Yes		lo 🗌		
8. Was preservative added to bottles?	Yes		lo 🔽	NA 🗌	
9. Received at least 1 vial with headspace <1/4" for	AQ VOA? Yes	✓ N	lo 🗌		
10. Were any sample containers received broken?	Yes		No 🔽	# of preserved	Э <u> </u>
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes	V N	lo 🗌	bottles checked for pH: (<2 or >12 unless	S/77
12. Are matrices correctly identified on Chain of Custo	ody? Yes	✓ N	o 🗌	Adjusted?	
13. Is it clear what analyses were requested?	Yes	✓ N	o 🗌		
14. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes	✓ N	•	Checked by:	
Special Handling (if applicable)					
15. Was client notified of all discrepancies with this o	der? Yes		lo 🗌	NA 🗹	
Person Notified:	Date:		mensearce		
By Whom:	Via: eM	ail 🗌 Phone [Fax	In Person	
Regarding: Client Instructions:					
16. Additional remarks:					
17. <u>Cooler Information</u>					
Cooler No Temp °C Condition Seal Int	act Seal No Seal D	ate Signe	d By		

Page 1 of 1

	Cha	lin-of.	Chain-of-Custody Record	Turn-Around Time:	
Client:	Hilcorp	Hilcorp Farmington NM	tion NM	-	
				X Standard	ANALYCIC LADORATION AL
				Project Name:	
Mailing	Addres	s: 382 R	Mailing Address: 382 Road 3100 Aztec, NM 87410	Federal 18 1T	
Billing A	vddress.	: PO Box	Billing Address: PO Box 61529 Houston, TX 77208	Project #:	Tal FOE 24E 207E F201 F07 24E 207E
Phone #:	÷+;	505-486-9543	6-9543		rei. 000-04-0-39/0 rax 000-345-410/ Analvsis Rennest
email or Fax#:	Fax#:	Brando	Brandon. Sinclair@hilcorp.com	Project Manager:	
QA/QC Package:	ackage:				
Standard	dard		Level 4 (Full Validation)	Mitch Killoust	9016
Accreditation:	ation:	D AZ C	Az Compliance	Brando	onpu
		D Other			: Cor
	(1 ype)				scific
				Cooler Temp(Including CF): 0. 9-0, 1 20.8	
					oride
Date -	Time	Matrix	Sample Name	Container Type Preservativ HEAL No. and # e Type	H, Chia
					b
4-12	1455	Water	W~I	(1) 500ml HCl Plastic Cool	×
		Relinquished by:	0 1	Date Time	しょく3 Remarks: Special Pricing See Andy
9 - 12 Date: Ti	Time:	Relipquished by	Jun	12 m	
4/12/22	157	1 mm	mit wall	Che COUNT 4/13/20 0730	
		If necessary,	samples submitted to Hall Environmental may be su	subcontracted to other accredited laboratories. This serves as notice	if necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Released to Imaging: 9/8/2022 9:17:05 AM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 132101

CONDIT	IONS
Operator: HILCORP ENERGY COMPANY	OGRID: 372171
HILCORP ENERGY COMPANY 1111 Travis Street Houston, TX 77002	Action Number: 132101
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created	Condition	Condition
Ву		Date
nvelez	1. Continue with O & M schedule. 2. Continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters. 3. Sampling for chloride can be discontinued. 4. Submit next quarterly report by October 31, 2022.	9/8/2022