Received by OCD: 10/23/2022 10:45:51 PM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u> : Each of the following items must be included in the plan.					
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 					
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.					
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.					
Extents of contamination must be fully delineated.					
Contamination does not cause an imminent risk to human health, the environment, or groundwater.					
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.					
Printed Name: Title:					
Signature: Date: _10-23-22					
email: Telephone:					
OCD Only					
Received by: Jocelyn Harimon Date: 10/24/2022					
Approved X Approved with Attached Conditions of Approval Denied Deferral Approved					
Signature: <u>Jannifar Nobui</u> <u>Date: 11/18/2022</u>					

.

Page 5

October 18, 2022

Robert Hamlet New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505 PH #: 575-748-1283 Robert.Hamlet@state.nm.us

Re: Soil Remediation Workplan Chevron USA Dagger Lake Narwhal Pad Release (nAPP2205633098) GPS: N 32.40054° W 103.56251° Unit Letter "N", Section 10, Township 22 South, Range 33 East Lea County, New Mexico

Dear Mr. Hamlet,

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA (Chevron), has prepared this *Soil Remediation Workplan* for the Dagger Lake Narwhal Pad Release (Release Site). The legal description of the Release Site is Unit Letter "N", Section 10, Township 22 South, Range 33 East, in Lea County, New Mexico. The GPS coordinates for the site are N 32.40054° W 103.56251°. A Site Location Topographic Map and Aerial Proximity Map are provided as Figure 1 and Figure 2, respectively.

INTRODUCTION

On February 9, 2022, a reportable release occurred at the Release Site. The release was the result of a failure on the body of the layflat hose. Approximately five (5) barrels (bbls) of produced water was released with approximately one (1) bbl of produced water recovered via vacuum truck, for a net loss of four (4) bbls of produced water. The initial Form C-141 is provided in Appendix A.

NMOCD SITE CLASSIFICATION

New Mexico Oil Conservation Division (NMOCD) assessment and cleanup levels for hydrocarbon and produced water releases are based on depth to groundwater and karst status and follow the criteria in the revised August 2018 Title 19 Chapter 15 part 29 New Mexico Administrative Code (19.15.29 NMAC) regulations. Groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE), New Mexico Bureau of Geology & Mineral Resources (NMBGMR), and United States Geological Survey (USGS) were accessed to determine if any registered water wells were located within a half-mile of the site. The databases identified zero (0) water wells within a ½-mile radius. The closest water well (USGS Well# 322325103313301) is 2.16 miles southeast of the release site with a depth to water of three hundred ninety-one (391) feet below ground surface (bgs). In addition, the site is listed as being in a low Karst Topography region. See Appendix B for maps, along with water well data, detailing the site relative to groundwater locations. Based on the NMOCD site classification system and with no pertinent groundwater data located within ½ miles of the site, the following soil remediation clean up levels were assigned to the Release Site:

- Benzene 10 mg/Kg (ppm)
- Total BTEX 50 mg/Kg (ppm)
- Total TPH 100 mg/Kg (ppm)
- Chloride 600 mg/Kg (ppm)

INITIAL ASSESSMENT AND DELINEATION ACTIVITIES

On August 10, 2022, Etech was onsite to perform the initial assessment of the release. On September 6, 2022, one (1) auger hole (Auger Hole 1) was installed in the spill area to depth of forty-eight (48) inches bgs. Samples were collected in every twelve (12) inch intervals and submitted to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas for analysis of Benzene, Toulene, Ethylbenzene, and Xylenes (BTEX) by EPA method 8021B, Total Petroleum Hydrocarbons (TPH) by EPA method 8015M, and Chlorides by EPA method E300.0. Analytical concentrations for chloride were above the NMOCD remediation standards in Auger Hole 1 in the two (2) foot, three (3) foot, and four (4) foot intervals and were not vertically delineated. All other analysis were below both the NMOCD Closure Criteria or Reclamation Standards. See Table 1 for analytical results. See Appendix C for attached photos detailing release and impact to pad. See Figure 3 for Site and Sample Location map.

SOIL DELINEATION AND REMEDIATION WORKPLAN

Etech proposes to complete delineation and remediation in accordance with NMOCD rules and regulations which will entail the following:

- Impacted soils will be excavated to appropriate depths based on field and laboratory delineation data and stockpiled on plastic awaiting disposal.
- During excavation activities, soils will be field screened utilizing chloride test kits and a PID meter for determination of laboratory sampling and additional excavation, if warranted.
- Upon completion of the excavation, confirmation soil samples will be collected every two hundred (200) square feet from the base and sidewalls of the excavated areas. Additional, discrete grab samples will be collected from wet or visibly stained areas inferred to have been affected by the release, as necessary. Samples will be submitted to Permian Basin Environmental Labs of Texas (PBELAB) for analysis of BTEX by EPA Method 8021B, TPH by EPA Method 8015M, and Chlorides by EPA method E300.0.
- The impacted soils will be transported off-site for disposal at an NMOCD approved disposal facility.
- Upon completion of additional delineation/remediation and requisite soil sampling, the site will be backfilled with locally sourced, non-impacted "like" material from an approved off-site facility and brought back to grade.
- A closure report with final C-141 will be submitted to the NMOCD upon completion of remediation activities.

Once the soil remediation work plan has been approved by the NMOCD, Chevron will commence and complete remediation activities within ninety (90) days and submit a *"Remediation Summary and Site Closure Request Report"* to the NMOCD.

If you have any questions, or if additional information is required, please feel free to call me at 432-563-2200 (office) or 432-894-6038 (cell).

Thank you,

Black tito

Blake Estep Project Manager Etech Environmental & Safety Solutions, Inc.

Huy Kindley

Jeffrey Kindley, P.G. Senior Project Manager/Geologist Etech Environmental & Safety Solutions, Inc.

Attachments:

Figure 1 – Site Location Topographic Map
Figure 2 – Aerial Proximity Map
Figure 3 – Site and Sample Location Map
Table 1 – Concentrations of Benzene, BTEX, TPH, and Chloride in Soil - Delineation
Appendix A: Initial Release Notification and Corrective Action Form C-141
Appendix B: Groundwater Data Maps and Supporting Water Well Data
Appendix C: Photographic Documentation
Appendix D: Laboratory Analytical

cc: File

Received by OCD: 10/23/2022 10:45:51 PM

Released to Imaging: 11/18/2022 9:00:06 AM

Released to Imaging: 11/18/2022 9:00:06 AM

•

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL - DELINEATION

CHEVRON USA

DAGGER LAKE NARWHAL PAD

LEA COUNTY, NEW MEXICO

				METHODS: SW 846-8021B				METHOD: SW 8015M			E 300.0			
SAMPLE LOCATION	DEPTH	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₀	TPH DRO C ₁₀ -C ₂₈	TPH ORO C ₂₈ -C ₃₆	ТОТАL ТРН С ₆ -С ₃₆	CHLORIDE
NMOCD	RRAL		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
						Bottom	Hole Sample	Results						
Auger Hole 1	12''	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.2
Auger Hole 1	24''	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,520
Auger Hole 1	36''	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,620
Auger Hole 1	48''	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,530

Bold and Yellow Highlighted indicates Analyte Above NMOCD Regulatory Limit

ND - Analyte Not Detected at or above the laboratory reporting limit

Appendix A

Initial Release Notification and Corrective Action Form C-141

Received by OCD: 10/23/2022 10:45:51 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 11 of 42
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10	/23/2022 10:45:51 PM State of New Mexico		Page 12 of 42		
			Incident ID		
Page 4	Oil Conservation Division		District RP		
			Facility ID		
			Application ID		
regulations all operator public health or the en- failed to adequately in- addition, OCD accepta and/or regulations.	e information given above is true and complete to the rs are required to report and/or file certain release not vironment. The acceptance of a C-141 report by the O vestigate and remediate contamination that pose a throance of a C-141 report does not relieve the operator of mance of a C-141 report does not relieve the operator of	ifications and perform co DCD does not relieve the eat to groundwater, surfa responsibility for compl	rrective actions for rele operator of liability sho ce water, human health iance with any other fee	eases which may endanger ould their operations have or the environment. In deral, state, or local laws	
OCD Only					
Received by:		Date:			

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Chevron USA	OGRID: 4323
Contact Name: Amy Barnhill	Contact Telephone: 432-687-7108
Contact email: ABarnhill@chevron.com	Incident # (assigned by OCD)
Contact mailing address: 6301 Deauville Blvd Midland, Tx 79706	

Location of Release Source

Latitude 32.400539

(NAD 83 in decimal degrees to 5 decimal places)

Site Name: DL 22 33 Sec 15/22 Pad 219, Pkg 3 Dagger Lake Narwhal Pad	Site Type: Produced Water
Date Release Discovered: 2-9-22	API# (if applicable)

Unit Letter	Section	Township	Range	County
Ν	10	228	33E	Lea

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 5	Volume Recovered (bbls) 1
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release: a fai	lure on the body of the layflat hose	

Page 2

-

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \boxtimes The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

 \boxtimes All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Amy Barnhill	Title: Water Specialist
Signature: My Phile	Date: 2-7-22
email: ABarnhill@chevron.com	Telephone: 432-687-7108
OCD Only	
Received by:	Date:

Spill Calculations:

4.76	free- fluid
0.24	in soil
5.00	total

Appendix B

Groundwater Data Maps and Supporting Water Well Data

New Mexico Office of the State Engineer Wells with Well Log Information

No wells found.

UTMNAD83 Radius Search (in meters):

Easting (X): 635199.74

Northing (Y): 3585742.45

Radius: 804

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Received by OCD: 10/23/2022 10:45:51 PM

Received by OCD: 10/23/2022/10:45:51 PM usgs.gov/nwis/gwlevels?site_no=322325103313301&begin_date=&end_date=&format=img&subrit&of 42

Appendix C Photographic Documentation

Project Name: Dagger Lake Project No: 16450

Photographic Documentation

Appendix D Laboratory Analytical

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa, TX 79765

> Project: Dagger Lake Project Number: 16450 Location: New Mexico

Lab Order Number: 2I06020

Current Certification

Report Date: 09/15/22

E Tech Environmental & Safety Solutions, Inc. [1]	Project:
13000 West County Road 100	Project Number:
Odessa TX, 79765	Project Manager:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Auger Hole 1 (1')	2I06020-01	Soil	09/06/22 11:15	09-06-2022 16:24
Auger Hole 1 (2')	2106020-02	Soil	09/06/22 11:20	09-06-2022 16:24
Auger Hole 1 (3')	2106020-03	Soil	09/06/22 11:25	09-06-2022 16:24
Auger Hole 1 (4')	2106020-04	Soil	09/06/22 11:30	09-06-2022 16:24

Dagger Lake

Blake Estep

16450

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Dagger Lake
13000 West County Road 100	Project Number: 16450
Odessa TX, 79765	Project Manager: Blake Estep

Auger Hole 1 (1')

2I06020-01 (Soil)

A		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Р	ermian B	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Toluene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Xylene (o)	ND 0.00115		mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	108 %		80-120		P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	19.2	1.15	mg/kg dry	1	P2I0804	09/08/22 10:00	09/09/22 09:29	EPA 300.0	
% Moisture	13.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Fotal Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
>C12-C28	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
Surrogate: 1-Chlorooctane		120 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
Surrogate: o-Terphenyl		133 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	S-GO
Total Petroleum Hydrocarbon C6-C35	ND	28.7	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 22:33	calc	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	Dagger Lake 16450 Blake Estep				
				Auger H 2106020-	ole 1 (2') 02 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental La	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.5 %	80-120		P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	4520	11.1	mg/kg dry	10	P2I0811	09/08/22 11:54	09/09/22 02:23	EPA 300.0	
% Moisture	10.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
Surrogate: 1-Chlorooctane		124 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
Surrogate: o-Terphenyl		136 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 22:56	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	Dagger Lake 16450 Blake Estep				
				0	ole 1 (3') 03 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental La	ıb, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	2620	10.9	mg/kg dry	10	P2I0811	09/08/22 11:54	09/09/22 02:36	EPA 300.0	
% Moisture	8.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
Surrogate: 1-Chlorooctane		125 %	70-130		P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
Surrogate: o-Terphenyl		136 %	70-130		P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 23:19	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	Dagger Lake 16450 Blake Estep				
				Auger H 2106020-	ole 1 (4') 04 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental La	ıb, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.4 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	1530	5.38	mg/kg dry	5	P2I0906	09/09/22 11:55	09/09/22 23:41	EPA 300.0	
% Moisture	7.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
Surrogate: 1-Chlorooctane		127 %	70-130		P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
Surrogate: o-Terphenyl		138 %	70-130		P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	09/07/22 14:30	09/10/22 00:28	calc	

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Dagger Lake
13000 West County Road 100	Project Number:	16450
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

		D (G 1	G		A/DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0803 - *** DEFAULT PREP ***										
Blank (P210803-BLK1)				Prepared: 0)9/08/22 Ar	nalyzed: 09	/09/22			
Benzene	ND	0.00100	mg/kg	1		5				
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.8	80-120			
LCS (P2I0803-BS1)				Prepared: 0	09/08/22 Ar	nalyzed: 09	/09/22			
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.211	0.00200	"	0.200		105	80-120			
Xylene (o)	0.117	0.00100	"	0.100		117	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.0	80-120			
LCS Dup (P2I0803-BSD1)				Prepared: 0	09/08/22 Ar	nalyzed: 09	/09/22			
Benzene	0.115	0.00100	mg/kg	0.100		115	80-120	1.92	20	
Toluene	0.110	0.00100	"	0.100		110	80-120	5.68	20	
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120	0.490	20	
Xylene (p/m)	0.217	0.00200	"	0.200		108	80-120	2.88	20	
Xylene (o)	0.113	0.00100	"	0.100		113	80-120	3.05	20	
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.0	80-120			
Calibration Check (P2I0803-CCV1)				Prepared: 0	09/08/22 Ar	nalyzed: 09	/09/22			
Benzene	0.108	0.00100	mg/kg	0.102		106	80-120			
Toluene	0.110	0.00100	"	0.102		108	80-120			
Ethylbenzene	0.114	0.00100	"	0.102		112	80-120			
Xylene (p/m)	0.206	0.00200	"	0.204		101	80-120			
Xylene (o)	0.117	0.00100	"	0.102		115	80-120			
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	75-125			
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.6	75-125			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Dagger Lake
13000 West County Road 100	Project Number: 16450
Odessa TX, 79765	Project Manager: Blake Estep

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0803 - *** DEFAULT PREP ***										
Calibration Check (P2I0803-CCV2)				Prepared: 0	09/08/22 At	nalyzed: 09	/09/22			
Benzene	0.113	0.00100	mg/kg	0.102		111	80-120			
Toluene	0.116	0.00100	"	0.102		114	80-120			
Cthylbenzene	0.112	0.00100		0.102		110	80-120			
Xylene (p/m)	0.232	0.00200		0.204		114	80-120			
Xylene (o)	0.120	0.00100		0.102		118	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
urrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.9	75-125			
Aatrix Spike (P210803-MS1)	Sou	rce: 2106020-	02	Prepared: 0	09/08/22 Ai	nalyzed: 09	/09/22			
Benzene	0.0967	0.00111	mg/kg dry	0.111	ND	87.0	80-120			
Toluene	0.0996	0.00111	"	0.111	ND	89.6	80-120			
Cthylbenzene	0.105	0.00111		0.111	ND	94.9	80-120			
Xylene (p/m)	0.185	0.00222		0.222	ND	83.1	80-120			
Cylene (o)	0.101	0.00111		0.111	ND	91.0	80-120			
urrogate: 4-Bromofluorobenzene	0.140		"	0.133		105	80-120			
urrogate: 1,4-Difluorobenzene	0.133		"	0.133		99.8	80-120			
Matrix Spike Dup (P2I0803-MSD1)	Sou	rce: 2106020-	02	Prepared: 0	09/08/22 At	nalyzed: 09	/09/22			
Benzene	0.0970	0.00111	mg/kg dry	0.111	ND	87.3	80-120	0.252	20	
oluene	0.101	0.00111	"	0.111	ND	91.3	80-120	1.91	20	
Ethylbenzene	0.108	0.00111		0.111	ND	97.1	80-120	2.31	20	
Kylene (p/m)	0.187	0.00222	"	0.222	ND	83.9	80-120	0.964	20	
Zylene (o)	0.100	0.00111		0.111	ND	90.4	80-120	0.651	20	
urrogate: 4-Bromofluorobenzene	0.142		"	0.133		106	80-120			
urrogate: 1,4-Difluorobenzene	0.132		"	0.133		98.8	80-120			
Batch P2I1201 - *** DEFAULT PREP ***										
Blank (P2I1201-BLK1)				Prepared &	Analyzed:	09/12/22				
Benzene	ND	0.00100	mg/kg							
oluene	ND	0.00100	"							
thylbenzene	ND	0.00100	"							
Kylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100								
urrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	80-120			
urrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.6	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Dagger Lake
13000 West County Road 100	Project Number:	16450
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I1201 - *** DEFAULT PREP ***										
LCS (P2I1201-BS1)				Prepared &	Analyzed:	09/12/22				
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.196	0.00200	"	0.200		97.9	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
LCS Dup (P2I1201-BSD1)				Prepared &	Analyzed:	09/12/22				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120	1.01	20	
Toluene	0.106	0.00100	"	0.100		106	80-120	3.69	20	
Ethylbenzene	0.117	0.00100	"	0.100		117	80-120	5.22	20	
Xylene (p/m)	0.206	0.00200	"	0.200		103	80-120	4.90	20	
Xylene (o)	0.110	0.00100	"	0.100		110	80-120	3.05	20	
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	80-120			
Calibration Blank (P2I1201-CCB1)				Prepared &	Analyzed:	09/12/22				
Benzene	0.00		ug/kg							
Toluene	0.280		"							
Ethylbenzene	0.110		"							
Xylene (p/m)	0.210		"							
Xylene (o)	0.180		"							
Surrogate: 4-Bromofluorobenzene	0.100		"	0.120		83.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		93.8	80-120			
Calibration Blank (P2I1201-CCB2)				Prepared &	Analyzed:	09/12/22				
Benzene	0.00		ug/kg							
Toluene	0.230		"							
Ethylbenzene	0.180									
Xylene (p/m)	0.250									
Xylene (o)	0.180		"							
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.8	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Dagger Lake
13000 West County Road 100	Project Number:	16450
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

Benzene 0.112 0.0010 mgkg 0.102 110 80-120 Toluene 0.114 0.0010 * 0.102 112 80-120 Kliphlencene 0.116 0.0010 * 0.102 112 80-120 Xylene (p'm) 0.208 0.0020 * 0.204 102 80-120 Surrogate: 1.47 00100 * 0.120 115 80-120 Surrogate: 1.47 00100 * 0.120 75-125 Calibration Check (P211201-CCV2) * 0.120 100 75-125 Denzene 0.107 0.0010 mgkg 0.102 111 80-120 Toluene 0.110 0.00100 * 0.102 111 80-120 Surrogate: 1.47 0.00100 * 0.102 111 80-120 Surrogate: 1.47 0.00100 * 0.102 111 80-120 Surrogate: 4.50 0.0020 * 0.120 1113 80-120											
Bark P211201 - *** DEFAULT PREP *** Bark P211201 - *** DEFAULT PREP *** Bark P211201 - *** DEFAULT PREP *** Benzene 0.112 0.00100 mg/kg 0.102 110 80-120 Benzene 0.114 0.00100 * 0.102 114 80-120 Ethylanzane 0.116 0.00100 * 0.102 114 80-120 Xylene (p/m) 0.208 0.0200 * 0.204 102 80-120 Surrogate: 1.4-Difbuorobenzene 0.103 * 0.120 86.1 75-125 Calibration Check (P211201-CCV2) Prepared & Analyzed: 09/12/22 Benzene 0.100 mg/kg 0.102 100 75-125 Calibration Check (P211201-CCV2) Prepared & Analyzed: 09/12/22 Benzene 0.1010 mg/kg 0.102 101 80-120 Stranget: 1.4-Difbuorobenzene 0.114 0.00100 * 0.102 111 80-120 Stranget: 1.4-Difbuorobenzene 0.114 0.00100 0.102 111 <th< th=""><th>Analyte</th><th>Result</th><th></th><th>Units</th><th></th><th></th><th>%RFC</th><th></th><th>RPD</th><th></th><th>Notes</th></th<>	Analyte	Result		Units			%RFC		RPD		Notes
Prepared & Analyzed: $09/12/22$ Benzene 0.112 0.010 mg/kg 0.102 110 80-120 Foluene 0.114 0.0010 " 0.102 114 80-120 Foluene 0.116 0.0010 " 0.102 114 80-120 Kylene (p/m) 0.208 0.0020 " 0.204 102 80-120 Syngene: Paramafilamberscame 0.103 " 0.102 115 80-120 Swragate: 1.4D [flooroberscame 0.103 " 0.120 80-120 Swragate: 1.4D [flooroberscame 0.107 0.0010 " 0.122 105 80-120 Ealibration Check (P211201-CCV2) Prepared & Analyzed: 09/12.22 Ealibration 80-120 114 0.00100 " 0.122 105 80-120 Ealibration Check (P211201-CCV2) Prepared & Analyzed: 09/12.22 114 80-120 114 80-120 115 80-120 115 80-120 114 114 </th <th>-</th> <th>Result</th> <th>Linit</th> <th>Onits</th> <th>Level</th> <th>Result</th> <th>/urec</th> <th>Linits</th> <th>KI D</th> <th>Linit</th> <th>Totes</th>	-	Result	Linit	Onits	Level	Result	/urec	Linits	KI D	Linit	Totes
Benzene 0.112 0.0010 mgkg 0.102 110 80-120 Toluene 0.114 0.0010 * 0.102 112 80-120 Kliphlencene 0.116 0.0010 * 0.102 112 80-120 Xylene (p'm) 0.208 0.0020 * 0.204 102 80-120 Surrogate: 1.47 00100 * 0.120 115 80-120 Surrogate: 1.47 00100 * 0.120 75-125 Calibration Check (P211201-CCV2) * 0.120 100 75-125 Denzene 0.107 0.0010 mgkg 0.102 111 80-120 Toluene 0.110 0.00100 * 0.102 111 80-120 Surrogate: 1.47 0.00100 * 0.102 111 80-120 Surrogate: 1.47 0.00100 * 0.102 111 80-120 Surrogate: 4.50 0.0020 * 0.120 1113 80-120	Batch P211201 - *** DEFAULT PREP ***										
Toluene 0.114 0.0010 " 0.102 112 80-120 Ehlybenzane 0.116 0.0010 " 0.102 114 80-120 Sylenc (n) 0.208 0.0020 " 0.204 102 80-120 Sylenc (n) 0.010 " 0.102 115 80-120 Surrogate: 1.4-01fluorobenzene 0.103 " 0.120 100 75-125 Calibration Check (P211201-CCV2) " 0.100 mg/gg 0.102 107 80-120 Toluene 0.110 0.0010 " 0.102 101 80-120 Toluene 0.110 0.0010 " 0.102 111 80-120 Toluene 0.114 0.00100 " 0.102 111 80-120 Sylenc (n) 0.114 0.00100 " 0.102 111 80-120 Surrogate: 1.4-D1fluorobenzene 0.114 0.00100 " 0.102 111 80-120 Surrogate: 1.4-D1fluorobenzene 0.114 0.00100 md/gg 0.102	Calibration Check (P2I1201-CCV1)				Prepared &	Analyzed:	09/12/22				
Nuclea 0.114 0.0100 0.102 114 80-120 Xylene (p'm) 0.208 0.00200 " 0.204 102 80-120 Xylene (p'm) 0.208 0.00100 " 0.102 115 80-120 Surrogate: 4-Bronofluorobenzene 0.102 " 0.120 86.1 75-125 Calibration Check (P211201-CCV2) Prepared & Analyzed: 09/12/22 80-120 80-120 Benzene 0.107 0.00100 mg/kg 0.102 107 80-120 Toluene 0.110 0.00100 " 0.102 111 80-120 Sylene (p'm) 0.209 0.0020 " 0.102 111 80-120 Sylene (p'm) 0.129 0.0020 " 0.102 111 80-120 Sylene (p'm) 0.129 0.0020 " 0.120 111 80-120 Sylene (p'm) 0.129 103 75-125 111 80-120 Sylene (p'm) 0.114 0.00100 " </td <td>Benzene</td> <td>0.112</td> <td>0.00100</td> <td>mg/kg</td> <td>0.102</td> <td></td> <td>110</td> <td>80-120</td> <td></td> <td></td> <td></td>	Benzene	0.112	0.00100	mg/kg	0.102		110	80-120			
Languatura 0.110 0.0100 0.102 114 0.012 Xylene (p) 0.117 0.00100 " 0.102 115 80-120 Xylene (p) 0.117 0.00100 " 0.120 115 80-120 Surrogate: 1.4-Difuorobenzene 0.102 " 0.120 100 75-125 Calibration Check (P211201-CCV2) " 0.102 105 80-120 Eduration Check (P211201-CCV2) " 0.102 107 80-120 Toluene 0.101 0.00100 " 0.102 101 80-120 Sylene (pin) 0.014 0.00100 " 0.102 111 80-120 Sylene (pin) 0.120 " 0.120 111 80-120 Sylene (pin) 0.120 " 0.120 111 80-120 Sylene (pin) 0.121 " 0.120 111 80-120 111 80-120 Sylene (pin) 0.123 " 0.120 115 80-120	Toluene	0.114	0.00100	"	0.102		112	80-120			
Xylene (n) 0.117 0.00100 * 0.102 115 80-120 Surrogate: 1-4-Dromofluorobenzene 0.103 " 0.120 86.1 75-125 Surrogate: 1,4-Difluorobenzene 0.107 0.00100 " 0.120 100 75-125 Calibration Check (P211201-CCV2) Prepared & Analyzed: 09/12/22 105 80-120 Benzene 0.101 0.00100 " 0.102 107 80-120 Ethylbenzene 0.114 0.00100 " 0.102 111 80-120 Sylene (n) 0.129 0.0020 " 0.102 111 80-120 Sylene (n) 0.114 0.00100 " 0.102 111 80-120 Sylene (n) 0.129 0.020 " 0.120 98.8 75-125 Surrogate: 1-4-Difluorobenzene 0.118 0.0100 " 0.102 115 80-120 Surrogate: 1-4-Difluorobenzene 0.116 0.0010 " 0.102 115 80-120 S	Ethylbenzene	0.116	0.00100	"	0.102		114	80-120			
Ayleie (b) 0.11 0.000 0.102 11.3 0.120 Surrogate: + Abromofluorobenzene 0.103 " 0.120 86.1 75-125 Calibration Check (P211201-CCV2) Prepared & Analyzed: 09/12/22 105 80-120 Benzene 0.107 0.00100 " 0.102 107 80-120 Toluene 0.114 0.00100 " 0.102 111 80-120 Sylene (p/m) 0.209 0.00200 " 0.102 111 80-120 Sylene (p/m) 0.209 0.00200 " 0.102 111 80-120 Surrogate: 1.4-Difluorobenzene 0.114 0.00100 " 0.120 111 80-120 Surrogate: 1.4-Difluorobenzene 0.119 " 0.120 103 75-125 Surrogate: 1.4-Difluorobenzene 0.116 0.00100 " 0.102 115 80-120 Surrogate: 1.4-Difluorobenzene 0.116 0.00100 " 0.102 115 80-120 Surrogate: 1.	Xylene (p/m)	0.208	0.00200	"	0.204		102	80-120			
Mininguinavolution 0.103 0.103 0.120 <td>Xylene (o)</td> <td>0.117</td> <td>0.00100</td> <td>"</td> <td>0.102</td> <td></td> <td>115</td> <td>80-120</td> <td></td> <td></td> <td></td>	Xylene (o)	0.117	0.00100	"	0.102		115	80-120			
Calibration Check (P211201-CCV2) Prepared & Analyzed: 09/12/22 Benzene 0.107 0.00100 mg/kg 0.102 105 80-120 Calibration Check (P211201-CCV2) 0.00100 mg/kg 0.102 105 80-120 Eanzene 0.114 0.00100 " 0.102 111 80-120 Kylene (p'm) 0.209 0.00200 " 0.204 103 80-120 Surrogate: 1.4-Difluorobenzene 0.114 0.0100 " 0.102 111 80-120 Surrogate: 4-Bromofluorobenzene 0.112 " 0.120 103 75-125 Calibration Check (P211201-CCV3) Prepared & Analyzed: 09/12/22 Benzene 0.116 0.0100 " 0.102 115 80-120 Toluene 0.116 0.0100 " 0.102 115 80-120 Ehylenzene 0.116 0.0100 " 0.102 115 80-120 Surrogate: 1.4-Difluorobenzene 0.124 " 0.120 113 80-120 <tr< td=""><td>Surrogate: 4-Bromofluorobenzene</td><td>0.103</td><td></td><td>"</td><td>0.120</td><td></td><td>86.1</td><td>75-125</td><td></td><td></td><td></td></tr<>	Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		86.1	75-125			
Benzene 0.107 0.00100 mg/kg 0.102 105 80-120 Toluene 0.110 0.00100 " 0.102 107 80-120 Ethylbenzene 0.114 0.0100 " 0.102 111 80-120 Xylene (p/m) 0.209 0.00200 " 0.204 103 80-120 Surrogate: 1.4-Diffuorobenzene 0.114 0.0100 " 0.102 111 80-120 Surrogate: 1.4-Diffuorobenzene 0.119 " 0.120 98.8 75-125 Calibration Check (P211201-CCV3) Prepared & Analyzed: 09/12/22 0.103 75-125 Benzene 0.116 0.00100 " 0.102 113 80-120 Sylene (p/m) 0.215 0.00200 " 0.204 106 80-120 Sylene (p/m) 0.215 0.00200 " 0.204 104 80-120 Sylene (p/m) 0.216 0.0100 " 0.102 115 80-120 S	Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	75-125			
Toluene 0.110 0.00100 " 0.102 107 80-120 Ethylbenzene 0.114 0.00100 " 0.102 111 80-120 Xylene (p/m) 0.209 0.00200 " 0.204 103 80-120 Surrogate: 1,4-Difluorobenzene 0.114 0.0100 " 0.102 111 80-120 Surrogate: 1,4-Difluorobenzene 0.119 " 0.120 98.8 75-125 Surrogate: 1,4-Bromofluorobenzene 0.123 " 0.120 103 75-125 Calibration Check (P211201-CCV3) " 0.120 113 80-120 Chuene 0.116 0.00100 " 0.102 113 80-120 Ethylbenzene 0.116 0.0100 " 0.102 113 80-120 Xylene (o'm) 0.215 0.0200 " 0.204 106 80-120 Xylene (o'm) 0.216 0.0100 " 0.120 114 80-120 Surrogate: 1,4-Difluorobenzene 0.127 " 0.120 103 75-125	Calibration Check (P2I1201-CCV2)				Prepared &	Analyzed:	09/12/22				
Ethylbenzene 0.114 0.0010 " 0.102 111 80-120 Xylene (p'm) 0.209 0.0020 " 0.204 103 80-120 Xylene (o) 0.114 0.0010 " 0.102 111 80-120 Surrogate: 1.4-Difluorobenzene 0.112 " 0.120 98.8 75-125 Surrogate: 4-Bromofluorobenzene 0.123 " 0.120 98.8 75-125 Calibration Check (P211201-CCV3) " 0.120 103 75-125 Benzene 0.116 0.0010 " 0.102 115 80-120 Toluene 0.116 0.0010 " 0.102 114 80-120 Xylene (p'm) 0.215 0.0020 " 0.204 106 80-120 Xylene (p'm) 0.215 0.0020 " 0.102 114 80-120 Xylene (p'm) 0.215 0.0020 " 0.102 104 80-120 Surrogate: 1.4-Difluorobenzene 0.122 " 0.102 104 80-120 Surrogate: 1.4-Difluorobenzene<	Benzene	0.107	0.00100	mg/kg	0.102		105	80-120			
Xylene (p/m) 0.209 0.00200 " 0.204 103 80-120 Xylene (o) 0.114 0.0010 " 0.102 111 80-120 Surrogate: 1.4-Diftuorobenzene 0.119 " 0.120 98.8 75-125 Calibration Check (P211201-CCV3) " 0.120 103 75-125 Calibration Check (P211201-CCV3) Prepared & Analyzed: 09/12/22 80-120 80-120 Toluene 0.116 0.0010 " 0.102 113 80-120 Toluene 0.116 0.00100 " 0.102 114 80-120 Xylene (p/m) 0.215 0.00200 " 0.102 114 80-120 Surrogate: 1.4-Diftuorobenzene 0.116 0.0010 " 0.102 114 80-120 Surrogate: 1.4-Diftuorobenzene 0.122 " 0.120 103 75-125 75 Marti Spike (P211201-MS1) Surce: 2108010-04 " 0.120 103 75-125 Marti Spike (P211201-MS1) Surce: 2108010-04 " 0.108 ND 80.4 80-120 <td>Toluene</td> <td>0.110</td> <td>0.00100</td> <td>"</td> <td>0.102</td> <td></td> <td>107</td> <td>80-120</td> <td></td> <td></td> <td></td>	Toluene	0.110	0.00100	"	0.102		107	80-120			
Number Numer Number Number	Ethylbenzene	0.114	0.00100	"	0.102		111	80-120			
Surrogate: 1.4-Diffuorobenzene 0.119 " 0.120 98.8 75-125 Surrogate: 4-Bromofluorobenzene 0.123 " 0.120 103 75-125 Calibration Check (P211201-CCV3) Prepared & Analyzed: 09/12/22 115 80-120 Benzene 0.116 0.00100 " 0.102 113 80-120 Toluene 0.117 0.00100 " 0.102 115 80-120 Xylene (p'm) 0.215 0.00200 " 0.204 106 80-120 Surrogate: 1.4-Difluorobenzene 0.116 0.00100 " 0.102 114 80-120 Xylene (p'm) 0.215 0.00200 " 0.204 106 80-120 Surrogate: 1.4-Difluorobenzene 0.122 " 0.120 103 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 Emezene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120	Xylene (p/m)	0.209	0.00200	"	0.204		103	80-120			
Surrogate: 1,4-Difusiondenene 0.113 0.123 " 0.120 103 75-125 Calibration Check (P211201-CCV3) Prepared & Analyzed: 09/12/22 Benzene 0.118 0.00100 mg/kg 0.102 115 80-120 Toluene 0.116 0.00100 " 0.102 115 80-120 Kylene (p/m) 0.215 0.00200 " 0.204 106 80-120 Surrogate: 4-Bromofluorobenzene 0.116 0.00100 " 0.102 115 80-120 Xylene (p/m) 0.215 0.00200 " 0.204 106 80-120 Surrogate: 4-Bromofluorobenzene 0.122 " 0.120 114 80-120 Surrogate: 1,4-Difluorobenzene 0.122 " 0.120 103 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 102 56.8 80	Xylene (o)	0.114	0.00100	"	0.102		111	80-120			
Sarragale: 9.120 100 100 101 <t< td=""><td>Surrogate: 1,4-Difluorobenzene</td><td>0.119</td><td></td><td>"</td><td>0.120</td><td></td><td>98.8</td><td>75-125</td><td></td><td></td><td></td></t<>	Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.8	75-125			
Benzene 0.118 0.00100 mg/kg 0.102 115 80-120 Toluene 0.116 0.00100 0.102 113 80-120 Ethylbenzene 0.117 0.00100 0.102 115 80-120 Xylene (p/m) 0.215 0.00200 0.204 106 80-120 Xylene (o) 0.116 0.00100 0.102 114 80-120 Surrogate: 1.4-Difluorobenzene 0.122 " 0.120 103 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.9922 0.00108 mg/kg dry 0.108 ND 80.4 80-120 Kylene (o) 0.165 0.00215 " 0.215 ND 76-9 80-120 Xylene (o) 0.0893 0.0108 " 0.108 ND 83.1 80-120 Xylene (o) 0.0893 0.0108 " 0.108 ND 83.1<	Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Toluene 0.116 0.00100 " 0.102 113 80-120 Ethylbenzene 0.117 0.00100 " 0.102 115 80-120 Xylene (p/m) 0.215 0.00200 " 0.204 106 80-120 Xylene (o) 0.116 0.00100 " 0.102 114 80-120 Surrogate: 4-Bromofluorobenzene 0.124 " 0.120 103 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 102 75-125 Benzene 0.0865 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.0215 <t< td=""><td>Calibration Check (P2I1201-CCV3)</td><td></td><td></td><td></td><td>Prepared &</td><td>Analyzed:</td><td>09/12/22</td><td></td><td></td><td></td><td></td></t<>	Calibration Check (P2I1201-CCV3)				Prepared &	Analyzed:	09/12/22				
Indication 0.0100 0.0100 0.102 115 0.0120 Ethylbenzene 0.117 0.00100 0.102 115 80-120 Xylene (p/m) 0.215 0.00200 0.204 106 80-120 Xylene (o) 0.116 0.00100 0.102 114 80-120 Surrogate: 4-Bromofluorobenzene 0.124 " 0.120 103 75-125 Surrogate: 1,4-Difluorobenzene 0.122 " 0.120 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 V V Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.0865 0.00108 " 0.108 ND 85.8 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 QM- Xylene (o) 0.0893 0.0108 ND 83.1 80-120	Benzene	0.118	0.00100	mg/kg	0.102	5	115	80-120			
Xylene (p/m) 0.215 0.00200 " 0.204 106 80-120 Xylene (o) 0.116 0.00100 " 0.102 114 80-120 Surrogate: 4-Bromofluorobenzene 0.124 " 0.120 103 75-125 Surrogate: 1,4-Difluorobenzene 0.122 " 0.120 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 Prepared & Analyzed: 09/12/22 Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.0865 0.00108 " 0.108 ND 80.4 80-120 Kylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 Xylene (o) 0.0893 0.00108 " 0.108 ND 83.1 80-120 Surrogate: 1,4-Difluorobenzene 0.031 " 0.129 101 80-120	Toluene	0.116	0.00100	"	0.102		113	80-120			
Xylene (o) 0.116 0.00100 " 0.102 114 80-120 Surrogate: 4-Bromofluorobenzene 0.124 " 0.120 103 75-125 Surrogate: 1,4-Difluorobenzene 0.122 " 0.120 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.0865 0.00108 " 0.108 ND 80.4 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 QM- Xylene (o) 0.0893 0.00108 " 0.108 ND 83.1 80-120 QM- Xylene (o) 0.0893 0.0108 " 0.108 ND 83.1 80-120 QM- Xylene (o) 0.0893 0.0108 " 0.108 ND 83.1 80-120 QM-	Ethylbenzene	0.117	0.00100	"	0.102		115	80-120			
Xylic (0) 0.110 0.0100 0.102 114 80-120 Surrogate: 4-Bromofluorobenzene 0.124 " 0.120 103 75-125 Surrogate: 1,4-Difluorobenzene 0.122 " 0.120 102 75-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 Prepared & Analyzed: 09/12/22 Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.0865 0.00108 " 0.108 ND 80.4 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 QM- Surrogate: 1,4-Difluorobenzene 0.033 0.00108 " 0.108 ND 83.1 80-120 QM-	Xylene (p/m)	0.215	0.00200	"	0.204		106	80-120			
Surrogate: 4-Difluorobenzene 0.124 0.120 103 7.5-125 Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 QM- Surrogate: 1.4-Difluorobenzene 0.108 ND 83.1 80-120 Surrogate: 1.4-Difluorobenzene 0.131 " 0.108 ND 83.1 80-120	Xylene (o)	0.116	0.00100	"	0.102		114	80-120			
Matrix Spike (P211201-MS1) Source: 2108010-04 Prepared & Analyzed: 09/12/22 Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.0865 0.00108 " 0.108 ND 80.4 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 Xylene (o) 0.0893 0.00108 " 0.108 ND 83.1 80-120 Surrogate: 1,4-Difluorobenzene 0.131 " 0.125 ND 76.9 80-120 QM-	Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		103	75-125			
Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.0865 0.00108 " 0.108 ND 80.4 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 QM- Xylene (o) 0.0893 0.00108 " 0.108 ND 83.1 80-120 QM- Surrogate: 1,4-Difluorobenzene 0.131 " 0.129 101 80-120	Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	75-125			
Benzene 0.0867 0.00108 mg/kg dry 0.108 ND 80.6 80-120 Toluene 0.0865 0.00108 " 0.108 ND 80.4 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 QM- Xylene (o) 0.0893 0.00108 " 0.108 ND 83.1 80-120 QM- Surrogate: 1,4-Difluorobenzene 0.131 " 0.129 101 80-120	Matrix Spike (P2I1201-MS1)	Sou	ırce: 2108010-	04	Prepared &	Analyzed:	09/12/22				
Toluene 0.0865 0.00108 " 0.108 ND 80.4 80-120 Ethylbenzene 0.0922 0.00108 " 0.108 ND 85.8 80-120 Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 QM- Xylene (o) 0.0893 0.00108 " 0.108 ND 83.1 80-120 Surrogate: 1,4-Difluorobenzene 0.131 " 0.129 101 80-120	Benzene				1	,		80-120			
Xylene (p/m) 0.165 0.00215 " 0.215 ND 76.9 80-120 QM- Xylene (o) 0.0893 0.00108 " 0.108 ND 83.1 80-120 QM- Surrogate: 1,4-Difluorobenzene 0.131 " 0.129 101 80-120	Toluene	0.0865	0.00108		0.108	ND	80.4	80-120			
Xylene (o) 0.0893 0.00108 " 0.108 ND 83.1 80-120 Surrogate: 1,4-Difluorobenzene 0.131 " 0.129 101 80-120	Ethylbenzene	0.0922	0.00108	"	0.108	ND	85.8	80-120			
Surrogate: 1,4-Difluorobenzene 0.131 " 0.129 101 80-120	Xylene (p/m)	0.165	0.00215	"	0.215	ND	76.9	80-120			QM-
Surrogate. 1,4-Dijutorobenzene 0.151 0.125 101 00-120	Xylene (o)	0.0893	0.00108	"	0.108	ND	83.1	80-120			
	Surrogate: 1,4-Difluorobenzene	0.131		"	0.129		101	80-120			
	Surrogate: 4-Bromofluorobenzene	0.145		"	0.129		112	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Dagger Lake
13000 West County Road 100	Project Number:	16450
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2I1201 - *** DEFAULT PREP ***

Matrix Spike Dup (P2I1201-MSD1)	Sour	rce: 2I08010-	04	Prepared &	Analyzed:	09/12/22				
Benzene	0.0871	0.00108	mg/kg dry	0.108	ND	81.0	80-120	0.544	20	
Toluene	0.0869	0.00108	"	0.108	ND	80.8	80-120	0.434	20	
Ethylbenzene	0.0933	0.00108	"	0.108	ND	86.8	80-120	1.18	20	
Xylene (p/m)	0.167	0.00215	"	0.215	ND	77.5	80-120	0.706	20	QM-05
Xylene (o)	0.0903	0.00108	"	0.108	ND	84.0	80-120	1.14	20	
Surrogate: 1,4-Difluorobenzene	0.134		"	0.129		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.150		"	0.129		116	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	
13000 West County Road 100	I
Odessa TX, 79765	Р

Project: Dagger Lake Project Number: 16450 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0804 - *** DEFAULT PREP ***										
Blank (P2I0804-BLK1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	ND	1.00	mg/kg							
LCS (P210804-BS1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	38.5		mg/kg	40.0		96.3	90-110			
LCS Dup (P2I0804-BSD1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	38.7		mg/kg	40.0		96.7	90-110	0.373	10	
Calibration Blank (P2I0804-CCB1)				Prepared: ()9/08/22 A	nalyzed: 09	/09/22			
Chloride	0.00		mg/kg							
Calibration Blank (P2I0804-CCB2)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	0.00		mg/kg							
Calibration Check (P210804-CCV1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	19.9		mg/kg	20.0		99.7	90-110			
Calibration Check (P210804-CCV2)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	20.3		mg/kg	20.0		101	90-110			
Calibration Check (P210804-CCV3)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	19.5		mg/kg	20.0		97.5	90-110			
Matrix Spike (P2I0804-MS1)	Sou	rce: 2106008-	-01	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	1990	28.1	mg/kg dry	1400	717	90.7	80-120			
Matrix Spike (P2I0804-MS2)	Sou	rce: 2106018-	-04	Prepared: ()9/08/22 A	nalyzed: 09	/09/22			
Chloride	780	10.9	mg/kg dry	543	336	81.8	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa TX, 79765		Project Nu	roject: Dag umber: 164 unager: Bla	150						
General Chemi	•	ameters by lian Basin				_	lity Cont	trol		
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0804 - *** DEFAULT PREP ***										
Matrix Spike Dup (P2I0804-MSD1)	Sou	rce: 2106008-	01	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	1930	28.1	mg/kg dry	1400	717	86.4	80-120	3.05	20	
Matrix Spike Dup (P210804-MSD2)	Sou	rce: 2I06018-	04	Prepared: ()9/08/22 A	nalyzed: 09	/09/22			
Chloride	793	10.9	mg/kg dry	543	336	84.1	80-120	1.59	20	
Batch P2I0811 - *** DEFAULT PREP ***										
Blank (P2I0811-BLK1)				Prepared &	Analyzed:	09/08/22				
Chloride	ND	1.00	mg/kg							
LCS (P2I0811-BS1)				Prepared &	Analyzed:	09/08/22				
Chloride	38.5		mg/kg	40.0		96.3	90-110			
LCS Dup (P2I0811-BSD1)				Prepared &	Analyzed:	09/08/22				
Chloride	38.1		mg/kg	40.0		95.3	90-110	1.00	10	
Calibration Blank (P2I0811-CCB1)				Prepared &	Analyzed:	09/08/22				
Chloride	0.00		mg/kg	•						
Calibration Blank (P2I0811-CCB2)				Prepared &	Analyzed:	09/08/22				
Chloride	0.00		mg/kg		,					
Calibration Check (P2I0811-CCV1)				Prepared &	Analyzed:	09/08/22				
Chloride	19.6		mg/kg	20.0		97.9	90-110			
Calibration Check (P2I0811-CCV2)				Prepared &	Analyzed:	09/08/22				
Chloride	19.9		mg/kg	20.0	<u> </u>	99.3	90-110			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	
13000 West County Road 100	Proje
Odessa TX, 79765	Proje

Project: Dagger Lake roject Number: 16450 oject Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian	Basin	Environmental	Lab,	L.P.
---------	-------	---------------	------	------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0811 - *** DEFAULT PREP ***										
Calibration Check (P2I0811-CCV3)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	19.9		mg/kg	20.0		99.7	90-110			
Matrix Spike (P2I0811-MS1)	Sou	rce: 2108001-	21	Prepared &	Analyzed:	09/08/22				
Chloride	12400	26.3	mg/kg dry	1320	11300	88.3	80-120			
Matrix Spike (P2I0811-MS2)	Sou	rce: 2108001-	31	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	12100	26.9	mg/kg dry	1340	11000	85.3	80-120			
Matrix Spike Dup (P2I0811-MSD1)	Sou	rce: 2108001-	21	Prepared &	Analyzed:	09/08/22				
Chloride	12600	26.3	mg/kg dry	1320	11300	101	80-120	1.34	20	
Matrix Spike Dup (P2I0811-MSD2)	Sou	rce: 2108001-	31	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	12100	26.9	mg/kg dry	1340	11000	82.9	80-120	0.265	20	
Batch P210902 - *** DEFAULT PREP ***										
Blank (P2I0902-BLK1)				Prepared &	Analyzed:	09/09/22				
% Moisture	ND	0.1	%							
Blank (P210902-BLK2)				Prepared &	Analyzed:	09/09/22				
% Moisture	ND	0.1	%							
Duplicate (P210902-DUP1)	Sou	rce: 2107002-	03	Prepared &	Analyzed:	09/09/22				
% Moisture	13.0	0.1	%		5.0			88.9	20	I
Duplicate (P2I0902-DUP2)	Sou	rce: 2108001-	06	Prepared &	Analyzed:	09/09/22				
% Moisture	9.0	0.1	%		9.0			0.00	20	

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa TX, 79765	Project: Dagger Lake Project Number: 16450 Project Manager: Blake Estep														
General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.															
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes					
Batch P2I0902 - *** DEFAULT PREP ***															
Duplicate (P2I0902-DUP3)	DUP3) Source: 2108001-21			Prepared & Analyzed: 09/09/22											
% Moisture	5.0	0.1	%		5.0			0.00	20						
Duplicate (P2I0902-DUP4)	0902-DUP4) Source: 2108001-31				Prepared & Analyzed: 09/09/22										
% Moisture	7.0	0.1	%		7.0			0.00	20						
Batch P2I0906 - *** DEFAULT PREP ***															
Blank (P2I0906-BLK1)				Prepared &	Analyzed:	09/09/22									
Chloride	ND	1.00	mg/kg												
LCS (P2I0906-BS1)				Prepared &	Analyzed:	09/09/22									
Chloride	37.1		mg/kg	40.0		92.7	90-110								
LCS Dup (P2I0906-BSD1)				Prepared &	Analyzed:	09/09/22									
Chloride	37.0		mg/kg	40.0		92.5	90-110	0.240	10						
Calibration Blank (P210906-CCB1)				Prepared &	Analyzed:	09/09/22									
Chloride	0.00		mg/kg												
Calibration Blank (P210906-CCB2)				Prepared &	Analyzed:	09/09/22									
Chloride	0.00		mg/kg	*	·										
Calibration Check (P2I0906-CCV1)				Prepared &	Analyzed:	09/09/22									
Chloride	19.3		mg/kg	20.0		96.5	90-110								
Calibration Check (P2I0906-CCV2)				Prepared &	Analyzed:	09/09/22									
Chloride	19.4		mg/kg	20.0	<u> </u>	97.0	90-110								

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Dagger Lake
13000 West County Road 100	Project Number: 16450
Odessa TX, 79765	Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian	Basin	Environmental	Lab, L.P.
---------	-------	---------------	-----------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch P2I0906 - *** DEFAULT PREP ***											
Calibration Check (P210906-CCV3)				Prepared: (09/09/22 A	nalyzed: 09	/10/22				
Chloride	19.6		mg/kg	20.0		98.2	90-110				
Matrix Spike (P2I0906-MS1)	Source: 2108013-17 Pr				Prepared & Analyzed: 09/09/22						
Chloride	11500	28.1	mg/kg dry	1400	10100	97.9	80-120				
Matrix Spike (P2I0906-MS2)	Sour	ce: 2108013-	27	Prepared &							
Chloride	9160	28.4	mg/kg dry	1420	7950	85.4	80-120				
Matrix Spike Dup (P2I0906-MSD1)	Sour	ce: 2108013-	17	Prepared &	Analyzed:	09/09/22					
Chloride	11500	28.1	mg/kg dry	1400	10100	98.0	80-120	0.00981	20		
Matrix Spike Dup (P2I0906-MSD2)	Sour	ce: 2108013-	27	Prepared &	Analyzed:	09/09/22					
Chloride	9000	28.4	mg/kg dry	1420	7950	74.2	80-120	1.76	20	QM-0.	

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Dagger Lake
13000 West County Road 100	Project Number:	16450
Odessa TX, 79765	Project Manager:	Blake Estep

Notes and Definitions

S-GC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
ROI	Received on Ice
R3	The RPD exceeded the acceptance limit due to sample matrix effects.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
BULK	Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Bun Barron

Date: <u>9/15/2022</u>

- - - - - - - - -

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Dagger Lake	e
13000 West County Road 100	Project Number:	16450	
Odessa TX, 79765	Project Manager:	Blake Estep	

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

PBELAB Permian Basin 400 Bankin Hwy Midland Texas 7970		oum		LP Phone: 4	132	-686	6-72	35		СН	AIN	0F	CUS	TODY	RE	LUK	D A	ND .	AN.	ALY	212	REC	<i>L</i> UΕ	51		L.
			<u>n an an</u>								Pre	ojeo	ct Na	ame	1)au	2	5	19	<u>.</u>	٩			-		Ì
Project Manager: <u>Blake Estep</u> Company Name: <u>Etech Environmental & Safety (</u>	Solutio	ns Ir									Pre	oje	:t #:	16	4 S	50	/ / P	roj	<u>ect</u>	Lo	<u>c:</u>	Ne	w	Me	<u></u>	J
Company Name: <u>Etech Environmental & Safety S</u> Company Address: <u>P.O. Box 62228</u>	Jonatic	<u>///3, //</u>	<u></u>										L		-				PO							
City/State/Zip: Midland, Texas 79711													Ete													
Sampler Signature: en	nail:	blake	@etechenv	.com								DIII	Ele	CII												
											Re	port F	ormat		IDAR	D:□	T	RRP:				DES:D]			
and the second														\vdash		тс	LP:			nalyz		or:				Т
														-		тот		-							2	
RDER #: 2114020		Pre	eservation & # of	Containers			-						Matrix	1006	Γ			-				-	\top	-	8, 72 h	
									Τ				,		$\overline{\mathbf{v}}$	03)		Hg S			X 826				24, 41	
				_	sıs							()	oii/Soi	H: 418.1 8015 1005	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	ы Ш	Metals: As Ag Ba Cd Cr Pb Hg Se		es	BIEX 8021B 5030 or BTEX 8260		. In		RUSH TAT(Pre-Schedule) 24, 48, 72 hrs	TANDADD TAT
Field CODE	pth	pth	Date Sampled	Time Sampled	No. of Containers			~	Ŧ	ő	ω	Other (Specify)	er S=S	2 Pecif	a, Mg	04, C(SAR / ESP / CEC	3a Cd	Volatiles	Semi volatiles	330 0		N.U.K.M.		e-Sch	
ਤੋਂ ਜ਼ਿੰਦ CODE	Start Depth	End Depth	e San	e Sar	f Cor	lce	HN0 ₃	HCI H,SO ₄	NaOH	Na ₂ S ₂ O ₃	None	er (S	Groundwater	01 801	ns (C	C, SC	AR / E	AgE	20	emi	A		z		AT(Pi	N A
	Sta	Ш Ш	Date	Ë	No. 0					-		đ	Grour	Non-P 18.1	atior) suo	S	ls: As		Š	802			1	L HSU	۲ ۲
					-					·			= MG	TPH: 418.1 8015M		Anio		Meta			III				Ē	2 - 2
			Addin	1900	<u> </u>			╼┟╴						⊢ K	4											
11 Augohole I		1	916122		1	Ø				-		_		Ř						_	¥ X	_		_		
VI Auguna 1		2		11:20 11:25	<u> </u>									X							È			-		<u>.</u>
13 Sugarde 1		<u>) や</u>		11:30	- -					+_				R	$\overline{\Box}$			_				-		-		1 5
14 Augunde I		17	¥	11.10	ŀ		-			-												_		-		iΓ
		+			+					+	┝──┿															J E
	_				$\left \right $		-																			ΪE
	-				\top					, 🗆																Ĵ [
지는 같은 것 같아요. 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 없는 것이 있는 것이 없는 것이 않는 것이 없는 않이 않은 않은 않은 것이 없는 것 것이 않아, 것이 않아, 것이 않아, 것이 없는 것이 없는 것이 없는 것이 없는 것이 없이 않이 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않이 않아, 않아, 않아, 않이 않이 않이 않이 않이 않아, 않아, 않이 않아, 않이 않아, 않이 않아, 않아, 않																										1 C
) [
		1																							1.6	1
	· .														-											1
				14. L																						
																										<u>I [</u>
pecial Instructions:	7.1		-1-												5	Labo Sampl	le Co	ntain	ers	Intac	:t?			R	N	
elinquished by Date T	5/!	Receiv		:								Date		Time		VOCs Custo	dy se	eals (on c	ontai	iner(s)		Y.	N N	Sec. 1. 1. 19
9/1 1/.	14			alan da da mangan sa mangan sa ka	•••••			er de la street e	5-195 (166 -167			a de chagar		ana en anticipado	A MARINA	Custo Sampl	dy se	als o	on c	ooler	r(s)			7	N N	
elinquished by Date 1	/	Receiv	red by:		ener la castra	an part				Notati No		Date		Tim		Sar by	/ San	pler	/Clie	nt Re	ер. ?		inger Er	Y	2 N Lone	
A RECEIPTION OF A DESCRIPTION OF A DESCRIP			Ad by: /								ſ	Dafe &/		Time	10	Sar by				UPS	3	DHL		cuCX	LOUR	ાર્વા

Received by OCD: 10/23/2022 10:45:51 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	152767
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved with Conditions. Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination (<50'). Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Sidewall/Floor samples should represent no more than 200 ft2.	11/18/2022

Page 42 of 42

.

Action 152767