

October 28, 2022

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Windward Federal CTB Incident Number NAPP2222347897 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of COG Operating, LLC (COG), has prepared this *Closure Request* to document site assessment and soil sampling activities performed at the Windward Federal CTB (Site). The purpose of the site assessment and soil sampling activities was to address impacts to soil resulting from a release of crude oil at the Site. Based on field observations, field screening activities, and laboratory analytical results from the soil sampling events, COG is submitting this *Closure Request*, describing remediation that has occurred and requesting closure for Incident Number NAPP2222347897.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit D, Section 30, Township 24 South, Range 32 East, in Lea County, New Mexico (32.195278° N, 103.718056° W) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM).

On July 30, 2022, a hole in the flare scrubber drain line resulted in the release of approximately 7.29 barrels (bbls) of crude oil onto the pad. A vacuum truck was immediately dispatched to the Site to recover free-standing fluids; approximately 5 bbls of the released fluids were recovered. COG reported the release immediately to the New Mexico Oil Conservation Division (NMOCD) via email on August 1, 2022 and submitted a Release Notification Form C-141 (Form C-141) on August 11, 2022. The release was assigned Incident Number NAPP2222347897.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, (19.15.29.12) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data. On September 15, 2022, borehole BH01 (New Mexico Office of the State Engineer (NMOSE) file number C-4665) was advanced to a depth of 120 feet bgs via air rotary drill rig. The borehole was located approximately 0.34 miles east of the Site and is depicted on Figure 1. A field geologist logged and described soils continuously. The borehole lithologic/soil sampling

Windward Federal CTB Closure Request COG Operating, LLC

🔁 E N S O L U M

log is included in Appendix A. The borehole was left open for over 72 hours to allow for potential slow infill of groundwater. After the 72-hour waiting period, groundwater was not observed and it was confirmed that groundwater beneath the Site is greater than 120 feet bgs. The borehole was properly abandoned using hydrated bentonite chips. All wells used for depth to groundwater determination are depicted on Figure 1 and the associated well records are included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is an freshwater pond, located approximately 5,596 feet southeast of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- Total Petroleum Hydrocarbons (TPH): 2,500 mg/kg
- Chloride: 20,000 mg/kg

SITE ASSESSMENT ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

On August 11, 2022, Ensolum personnel visited the Site to evaluate the release extent and conduct site assessment activities. Ensolum personnel collected four soil samples (SS01 through SS04), collected at 0.5 feet bgs around and within the release extent, to assess the lateral extent of the release. The soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The visible release extent and soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following chemicals of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH- GRO, TPH- DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for soil samples SS02 through SS04 indicated all COC concentrations were compliant with the Site Closure Criteria and successfully define the lateral extent of the release. Laboratory analytical results for SS01 indicated TPH-GRO/TPH-DRO and TPH concentrations exceeded the Site Closure Criteria. Based on visible staining in the release extent and laboratory analytical results, excavation activities were warranted.

Windward Federal CTB Closure Request COG Operating, LLC

🖻 ENSOLUM

EXCAVATION AND DELINEATION SOIL SAMPLE ACTIVITIES

On September 8, 2022, Ensolum personnel were onsite to oversee excavation and delineation activities as indicated by visible staining. Excavation activities were performed using track-mounted backhoe and transport vehicles. The excavation areal extent was only 129 square feet and 0.5 feet deep and since composite samples are to be collected every 200 square feet, a composite sample did not appear to be appropriate for this de minimis excavation. As such, discrete soil samples were collected to verify impacted soil was adequately removed. A total of 4 cubic yards of soil were transported to a New Mexico-approved landfill.

Upon completion of excavation activities, one borehole (BH01) was advanced via backhoe within the release extent to assess the vertical extent of impacted soil. The borehole was advanced to a depth of 2 feet bgs. Delineation soil samples were collected from the borehole at depths of 1-foot and 2 feet bgs. Soil from the boreholes was field screened for VOCs and chloride. Field screening results and observations for the borehole were logged on lithologic soil sampling logs, which are included in Appendix B. Soil samples from borehole BH01 were submitted for laboratory analysis of BTEX, TPH, and chloride.

The delineation soil sample location is depicted on Figure 2. Photographic documentation was conducted during the Site visit and is included in Appendix C.

LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for borehole soil sample BH01 at 1-foot and 2 feet bgs, indicated all COC concentrations were compliant with the Site Closure Criteria. In addition, soil samples SS02 through SS04 were compliant with the Site Closure Criteria and successfully define the lateral extent of the release. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix D.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the July 30, 2022, release of crude oil at the Site. Based on excavation activities and laboratory analytical results for the vertical and lateral delineation soil samples indicated all COC concentrations were compliant with the Closure Criteria. Based on the soil sample analytical results, no further remediation was required. COG will backfill the excavation with material purchased locally and recontour the Site to match pre-existing site conditions.

Excavation of impacted soil has mitigated impacts at this Site. COG believes the remedial actions are protective of human health, the environment, and groundwater. As such, COG respectfully requests closure for Incident Number NAPP2222347897. The Final C-141 is included in Appendix E.

Windward Federal CTB Closure Request COG Operating, LLC

🔁 E N S O L U M

If you have any questions or comments, please contact Ms. Kalei Jennings at (817) 683-2503 or kjennings@ensolum.com.

Sincerely, Ensolum, LLC

aeri Jennings

Kalei Jennings Senior Project Manager

Daniel R. Moir, PG Senior Managing Geologist

cc: Charles Beauvais, COG Operating, LLC Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Soil Sample Locations
- Table 1
 Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Lithologic/Soil Sampling Log
- Appendix C Photographic Log
- Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix E Final C-141

FIGURES

•

Received by OCD: 10/31/2022 9:20:54 AM

TABLES

•

E N S O L U M

				Wi C	TABLE 1 PLE ANALYTIC/ ndward Federal :OG Operating, L :OG Coperating, New M	CTB LC				
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 C	losure Criteria (NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
				Preliminar	y Assessment S	oil Samples	1	1	1	
SS01	08/11/2022	0.5	<0.401	148	3,070	8,910	1,730	11,980	13,700	109
SS02	08/11/2022	0.5	<0.00201	0.0174	<49.9	<49.9	<49.9	<49.9	<49.9	12.0
SS03	08/11/2022	0.5	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	41.0
SS04	08/11/2022	0.5	<0.00202	<0.00404	<49.9	<49.9	80.3	80.3	80.3	18.7
				Deli	ineation Soil San	nples				
BH01	09/08/2022	1	<0.00201	<0.00402	<49.9	80.5	131	81	212	22.1
BH01	09/08/2022	2	<0.00200	<0.00399	<49.8	<49.8	95.0	<49.8	95.0	25.3

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in bold exceed the NMOCD Table 1 Closure Criteria or

reclamation standard where applicable.

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon

1 of 1

APPENDIX A

Referenced Well Records

	Date Sampled: Drilled by: Driller: Logged by: Sampler: HADLIE GREEN HADLIE GREEN HADLIE GREEN				2 LERLAN EN		Project Project Project Ground Top of C North C West Co Bench N Z At	CONOCO PHILLIPS Name: <u>KING TUT FEDERAL CO3H</u> Location: <u>LEA COUNTY, NM</u> Manager: <u>KALEI TENNINGS</u> Surface Elevation: Casing Elevation: oordinate: Ark Elevation: Completion Well Stabilization	BORING LOG NUMBER BHO1 Project No. Ø3D2Ø24Ø82 Borehole Diameter: Casing Diameter: Well Materials: Surface Completion: Boring Method:AIRROTARY				
	D EPTH (ft)	SAMPLE INTERVAL	SAMPLE	RECOVERY (%)	FID/PID READING (ppm)	POTENTIO- METRIC SURFACE	GEOLOGIC LOG SYMBOL	GEOLOGIC DESCRIPTION	BORING / WELL COMPLETION (GRAPHIC DEPICTION)				
	11111							pg. 1 of 2					
20'	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						O' CCHE IO' SM	CALICHE, light tan, fine to med grain, up to 1" limestone clasts, slightly most, no star SILTY SAND, pinkisn red, fine gran 1-2 cm limestone clasts, w sorted, moderate grade, slig consolidated, no stain lodor	n, eil ghtly				
40	74						sm	SAA, reddish brown, trace li clasts (1-2 cm).	MESTONE				
0'	hn					-	sm	SAA, abundant subrounded m clasts up to 1".	ud				
90,	80						sm	90': SNA, some green mud cle (1~3 mm), slightly conso					
00'	120												

1-

Date Sam Drilled by		09/15		2.	_	Project Project Ground Top of	t: <u>CONOCO PHILLI PS</u> Name: <u>KINGT TVT FEDERAL 003H</u> Location: <u>LEA COUNTY, NM</u> Manager: <u>KALEI JENNINGS</u> Surface Elevation: Casing Elevation: Coordinate:	BORING LOG NUMBER BHOI Project No. \$\phi 3D 2\phi 24\phi 82 Borehole Diameter: \$\begin{array}{c} \mathcal{B} & \ & \ & \ & \ & \ & \ & \ & \ & \ &				
Driller: Logged by Sampler:	у: <u>Н</u>	ADLIE	GREE	EN		West C Bench [™] At [™] At	oordinate:	Surface Completion: Boring Method: AIP ROTARY				
DEPTH (f)	SAMPLE INTERVAL	SAMPLE ID	RECOVERY (%)	FID/PID READING (ppm)	POTENTIO- METRIC SURFACE	GEOLOGIC LOG SYMBOL	GEOLOGIC DESCRIPTION	BORING / WELL COMPLETION (GRAPHIC DEPICTION)				
1.1.1.	-						pg. 2 of 2					
An	-					sm	SILTY SIAND, Reddish brown, fi less mud clasts, No green Clasts, well sorted, slightl consolidated, no stain lodo	muð l				
					-		TD @ 120 feet bg	5				
20												
					-		1000					

Released to Imaging: 11/23/2022 2:40:00 PM

New Mexico Office of the State Engineer Point of Diversion Summary

			(quarters) (quarter)	are 1=N s are sma				(NAD83 U	(NAD83 UTM in meters)		
Well Tag	Well Tag POD Number		Q64 Q	Q64 Q16 Q4 Se				X	Y		
22333 C		4388 POD1	3	2 1	23	24S	31E	617546	3564006 🌍		
x Driller Lic	ense:	1058	Driller (Compa	ny:	KE	Y'S DRI	ILLING & I	PUMP SERVIC	E	
Driller Na	me:	KEY, GARYR.S	AICHARDD	ENAS							
Drill Start Date: 12/18/2019 Log File Date: 02/27/2020		Drill Fin	ish Da	te:	0	2/22/202	20 Pl	ug Date:			
		PCW Ro	v Date	:			So	Source:			
Pump Typ	e:		Pipe Dis	charge	Size	:		Es	60 GPM		
Casing Siz	ze:	4.50	Depth W	ell:		9	10 feet	D	Depth Water:		
X	Wate	er Bearing Stratif	fications:	То	p B	ottom	Descr	iption			
x Casing Perfor				866 rations: Top			868 Limestone Bottom		ne/Dolomite/Chalk		
			forations:								
				85	50	910					

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/17/22 7:38 AM

POINT OF DIVERSION SUMMARY

APPENDIX B

Lithologic/Soil Sampling Log

•

							Sample Name: BH01	Date: 9-8-2022		
		N	2			Μ	Site Name: Windward 2H CTB Incident Number: NAPP22223478			
							Incident Number: NAPP22223478	97		
							Job Number: 03D2024079			
	LITHOL	OGI	C / SOIL S	SAMPLING	G LOG		Logged By: LC	Method: Pothole		
Coordinates: 3							Hole Diameter: N/A	Total Depth: 2'		
Comments: Fie performed witl						Strips and	PID for chloride and vapor, respec	ctively. Chloride test		
Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions		
D <168	0	N	BH01	1 _		CCHE	aliche, brown and tan o odor, no stain, dry			
D <168	0	N	вно1 2 2			TD: 2 feet b	ogs			

APPENDIX C

Photographic Log

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 10/31/2022 9:20:54 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 11/23/2022 2:40:00 PM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2742-1

Laboratory Sample Delivery Group: 03D2024079 Client Project/Site: Windward 2H CTB

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

Authorized for release by: 8/22/2022 3:38:05 PM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

SDG: 03D2024079

Laboratory Job ID: 890-2742-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Page 21 of 123

	Definitions/Glossary		
Client: Ensolur		Job ID: 890-2742-1	2
	Vindward 2H CTB	SDG: 03D2024079	
Qualifiers			3
GC VOA Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
F1 F2	MS/MSD RPD exceeds control limits		5
U	Indicates the analyte was analyzed for but not detected.		υ
GC Semi VOA			
Qualifier	Qualifier Description		
-	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		8
U	Indicates the analyte was analyzed for but not detected.		
Glossary			9
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		

Eurofins Carlsbad

Positive / Present

Presumptive Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

POS

PQL

QC RER

RL

RPD TEF

TEQ

TNTC

PRES

4

5

Job ID: 890-2742-1 SDG: 03D2024079

Job ID: 890-2742-1

Client: Ensolum

Laboratory: Eurofins Carlsbad

Project/Site: Windward 2H CTB

Narrative

Job Narrative 890-2742-1

Receipt

The sample was received on 8/11/2022 3:27 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-32565 and analytical batch 880-32572 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: 8021B - Volatile Organic Compounds (GC)

Job ID: 890-2742-1 SDG: 03D2024079

Client Sample ID: SS04

Project/Site: Windward 2H CTB

Date Collected: 08/11/22 12:15 Date Received: 08/11/22 15:27

Sample Depth: 0.5

Client: Ensolum

Lab Sample ID: 890-2742-1

Matrix: Solid

	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		08/20/22 11:55	08/22/22 11:48	1
Toluene	<0.00202	U	0.00202	mg/Kg		08/20/22 11:55	08/22/22 11:48	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		08/20/22 11:55	08/22/22 11:48	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		08/20/22 11:55	08/22/22 11:48	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		08/20/22 11:55	08/22/22 11:48	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		08/20/22 11:55	08/22/22 11:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130			08/20/22 11:55	08/22/22 11:48	1
1,4-Difluorobenzene (Surr)	103		70 - 130			08/20/22 11:55	08/22/22 11:48	1
- Method: Total BTEX - Total BTE	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			08/22/22 14:35	1
- Method: 8015 NM - Diesel Rang	ge Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	80.3		49.9	mg/Kg			08/16/22 09:21	1
– Method: 8015B NM - Diesel Rai	nge Organics (D	RO) (GC)						
_ Method: 8015B NM - Diesel Rai Analyte		RO) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	RL 49.9	Unit mg/Kg	<u>D</u>	Prepared 08/15/22 10:43	Analyzed 08/15/22 18:45	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U			<u>D</u>			
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9	Qualifier U	49.9	mg/Kg	<u>D</u>	08/15/22 10:43	08/15/22 18:45	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Result <49.9 <49.9	Qualifier U U	49.9	mg/Kg	<u>D</u>	08/15/22 10:43 08/15/22 10:43	08/15/22 18:45 08/15/22 18:45	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9 80.3	Qualifier U U	49.9 49.9 49.9	mg/Kg	<u>D</u>	08/15/22 10:43 08/15/22 10:43 08/15/22 10:43	08/15/22 18:45 08/15/22 18:45 08/15/22 18:45	1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U U	49.9 49.9 49.9 Limits	mg/Kg	<u> </u>	08/15/22 10:43 08/15/22 10:43 08/15/22 10:43 Prepared	08/15/22 18:45 08/15/22 18:45 08/15/22 18:45 08/15/22 18:45 Analyzed	1 1 1 <i>Dil Fac</i>
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130	mg/Kg	<u> </u>	08/15/22 10:43 08/15/22 10:43 08/15/22 10:43 Prepared 08/15/22 10:43	08/15/22 18:45 08/15/22 18:45 08/15/22 18:45 08/15/22 18:45 <u>Analyzed</u> 08/15/22 18:45	1 1 1 <i>Dil Fac</i> 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130	mg/Kg	<u>D</u>	08/15/22 10:43 08/15/22 10:43 08/15/22 10:43 Prepared 08/15/22 10:43	08/15/22 18:45 08/15/22 18:45 08/15/22 18:45 08/15/22 18:45 <u>Analyzed</u> 08/15/22 18:45	1 1 1 <i>Dil Fac</i> 1

Eurofins Carlsbad

Released to Imaging: 11/23/2022 2:40:00 PM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-18292-A-1-D MS	Matrix Spike	111	95	
880-18292-A-1-E MSD	Matrix Spike Duplicate	88	97	
390-2742-1	SS04	77	103	
CS 880-32565/1-A	Lab Control Sample	106	104	
CSD 880-32565/2-A	Lab Control Sample Dup	109	94	
/IB 880-32563/5-A	Method Blank	79	116	
MB 880-32565/5-A	Method Blank	79	115	
Surrogate Legend				

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
ample ID	Client Sample ID	(70-130)	(70-130)	
)58-A-1-B MS	Matrix Spike	92	86	
3058-A-1-C MSD	Matrix Spike Duplicate	92	88	
42-1	SS04	86	95	
-32158/2-A	Lab Control Sample	123	129	
)-32158/3-A	Lab Control Sample Dup	119	123	
80-32158/1-A	Method Blank	91	103	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-2742-1

Prep Type: Total/NA

Page 24 of 123

Eurofins Carlsbad

Client: Ensolum

QC Sample Results

Job ID: 890-2742-1 SDG: 03D2024079

Project/Site: Windward 2H CTB

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-325 Matrix: Solid										mple ID: Meth Prep Type:		
Analysis Batch: 32572										Prep Bato		
	ME	МВ								. top Date		
Analyte	Resul	Qualifier	RL		Unit		D	Pr	repared	Analyzed	Dil	Fa
Benzene	<0.00200	U	0.00200		mg/K	(g	_	08/20	0/22 11:38	08/21/22 15:32		
Toluene	<0.00200	U	0.00200		mg/K	-		08/20	0/22 11:38	08/21/22 15:32		
Ethylbenzene	<0.00200	U	0.00200		mg/K	-		08/20	0/22 11:38	08/21/22 15:32		
m-Xylene & p-Xylene	<0.00400		0.00400		mg/K				0/22 11:38	08/21/22 15:32		
o-Xylene	< 0.00200		0.00200		mg/K	-			0/22 11:38	08/21/22 15:32		
Xylenes, Total	<0.00400		0.00400		mg/K	-			0/22 11:38	08/21/22 15:32		
					-	-						
Surrogata	ME % Basayan		Limits						ranarad	Analyzad		Fa
Surrogate	%Recovery 		<u></u>	-					repared 0/22 11:38	Analyzed 08/21/22 15:32		га
4-Bromofluorobenzene (Surr)												
1,4-Difluorobenzene (Surr)	116	1	70 - 130					08/20	0/22 11:38	08/21/22 15:32		
Lab Sample ID: MB 880-325	65/5-A								Client Sa	mple ID: Meth		
Matrix: Solid										Prep Type:		
Analysis Batch: 32572										Prep Bato	h: 32	56
	ME	MB										
Analyte	Resul	Qualifier	RL		Unit		D	Pr	repared	Analyzed	Dil	Fa
Benzene	<0.00200	U	0.00200		mg/K	(g		08/20	0/22 11:55	08/22/22 03:08		
Toluene	<0.00200	U	0.00200		mg/K	(g		08/20	0/22 11:55	08/22/22 03:08		
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		08/20	0/22 11:55	08/22/22 03:08		
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/K	g		08/20	0/22 11:55	08/22/22 03:08		
o-Xylene	<0.00200	U	0.00200		mg/K	íg		08/20	0/22 11:55	08/22/22 03:08		
Xylenes, Total	<0.00400	U	0.00400		mg/K	g		08/20	0/22 11:55	08/22/22 03:08		
	МЕ	МВ										
Surrogate	%Recovery	Qualifier	Limits					Pi	repared	Analyzed	Dil	Fa
4-Bromofluorobenzene (Surr)	79		70 - 130					08/2	0/22 11:55	08/22/22 03:08		
1,4-Difluorobenzene (Surr)	115	i	70 - 130					08/2	0/22 11:55	08/22/22 03:08		
Lab Sample ID: LCS 880-32	565/1-0						C	liont	Sample	ID: Lab Contro	l Sam	Inl
Matrix: Solid							Ŭ	lioni	Campio	Prep Type:		- C
Analysis Batch: 32572										Prep Bato		
			Spike	LCS	LCS					%Rec		
Analyte			Added		Qualifier	Unit		D	%Rec	Limits		
Benzene			0.100	0.09644	Guainer	 mg/Kg			96	70 - 130		
Toluene			0.100	0.1021		mg/Kg			102	70 - 130		
Ethylbenzene			0.100	0.1021		mg/Kg			102	70 - 130		
m-Xylene & p-Xylene			0.200	0.1024		mg/Kg			95	70 - 130		
o-Xylene			0.100	0.1026		mg/Kg			103	70 - 130		
	LCS LC											
Surrogate	%Recovery Qu	alifier	Limits									
4-Bromofluorobenzene (Surr)	106		70 - 130									
1,4-Difluorobenzene (Surr)	104		70 - 130									
Lab Sample ID: LCSD 880-3	2565/2-A					Cli	ient	Sam	ple ID: L	ab Control San	nple [Ju
Matrix: Solid										Prep Type:	Total	/N/
Analysis Batch: 32572										Prep Bato	h: 32	56
-			Spike	LCSD	LCSD					%Rec		RP
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits RP	D L	imi

Eurofins Carlsbad

QC Sample Results

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2742-1 SDG: 03D2024079

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

94

Lab Sample ID: LCSD 880-3 Matrix: Solid	2565/2-A					Clier	nt San	nple ID:	Lab Contro Prep 1	ol Sample Type: Tot	
Analysis Batch: 32572									Prep	Batch:	32565
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.1074		mg/Kg		107	70 - 130	5	35
Ethylbenzene			0.100	0.1108		mg/Kg		111	70 - 130	8	35
m-Xylene & p-Xylene			0.200	0.2083		mg/Kg		104	70 - 130	9	35
o-Xylene			0.100	0.1122		mg/Kg		112	70 - 130	9	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	109		70 _ 130								

70 - 130

Lab Sample ID: 880-18292-A-1-D MS
Matrix: Solid

Analysis Batch: 32572

1,4-Difluorobenzene (Surr)

Analysis Daton. 02012									i i cp	Daten. 0200	50
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	< 0.00199	U F1	0.101	0.08144		mg/Kg		81	70 - 130		_
Toluene	<0.00199	U	0.101	0.09736		mg/Kg		97	70 - 130		
Ethylbenzene	<0.00199	U F2	0.101	0.1011		mg/Kg		100	70 - 130		
m-Xylene & p-Xylene	<0.00398	U F1 F2	0.201	0.1900		mg/Kg		94	70 - 130		
o-Xylene	<0.00199	U F1 F2	0.101	0.1002		mg/Kg		100	70 - 130		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: 880-18292-A-1-E MSD Matrix: Solid Analysis Batch: 32572

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Daton. 52572									i ieb	Daten.	52505
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U F1	0.0998	0.05964	F1	mg/Kg		60	70 - 130	31	35
Toluene	<0.00199	U	0.0998	0.06975		mg/Kg		70	70 - 130	33	35
Ethylbenzene	<0.00199	U F2	0.0998	0.07051	F2	mg/Kg		71	70 - 130	36	35
m-Xylene & p-Xylene	<0.00398	U F1 F2	0.200	0.1254	F1 F2	mg/Kg		62	70 - 130	41	35
o-Xylene	<0.00199	U F1 F2	0.0998	0.06585	F1 F2	mg/Kg		66	70 - 130	41	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

88

97

Lab Sample ID: MB 880-32158/1-A Matrix: Solid Analysis Batch: 32121						Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		08/15/22 10:43	08/15/22 10:50	1
(GRO)-C6-C10								

5 6 7

Eurofins Carlsbad

Page 26 of 123

Prep Batch: 32565 **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA Prep Batch: 32565

Released to Imaging: 11/23/2022 2:40:00 PM

QC Sample Results

Job ID: 890-2742-1 SDG: 03D2024079

lethod: 8015B NM - Diesel												
Lab Sample ID: MB 880-32158/1 Matrix: Solid	1-A								Client S	ample ID: I		
											ype: To	
Analysis Batch: 32121		в мв								Frep	Batch:	32130
naluta		t Qualifier	RL		Unit		D	р.	epared	Analua	ad	Dil Fa
Nalyte Diesel Range Organics (Over	Kesu <50.				mg/Kg		_		5/22 10:43	Analyz 08/15/22		DIIFa
:10-C28)	-00.	0 0	00.0		mg/re	9		00/10	J/22 10.40	00/10/22	0.00	
Il Range Organics (Over C28-C36)	<50.	0 U	50.0		mg/K	g		08/1	5/22 10:43	08/15/22	10:50	
	М	B MB										
	%Recover		Limits						repared	Analua	ad	Dil Fac
Surrogate -Chlorooctane			<u></u>						5/22 10:43	Analyz 08/15/22		Dii Fat
-Terphenyl	10		70 - 130						5/22 10:43 5/22 10:43			
loiphony!	10	•	101100					00/10	<i>"</i> <u> </u>	00,10,22	0.00	
ab Sample ID: LCS 880-32158/	/2-A						С	lient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid										Prep T	ype: To	tal/NA
Analysis Batch: 32121										Prep	Batch:	32158
			Spike	LCS	LCS					%Rec		
nalyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics			1000	1127		mg/Kg		_	113	70 - 130		
GRO)-C6-C10			1000	4000		ma //			440	70 400		
Diesel Range Organics (Over C10-C28)			1000	1099		mg/Kg			110	70 - 130		
	LCS LC	s										
	0/ D											
Surrogate	%Recovery Qu	alifier	Limits									
-Chlorooctane	123	alifier	70 - 130									
1-Chlorooctane		alifier										
1-Chlorooctane o-Terphenyl	123 129	alifier	70 - 130			Cli	ont	Sam		ah Contro	Samo	
I-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-3215	123 129	alifier	70 - 130			Cli	ent	Sam	ple ID: L	ab Contro	-	
I-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid	123 129	alifier	70 - 130			Cli	ent	Sam	ple ID: L	Prep T	ype: To	tal/NA
I-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid	123 129	alifier	70 - 130 70 - 130	LCSD	LCSD	Cli	ent	Sam	ple ID: L	Prep T Prep	-	tal/NA 32158
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121	123 129	alifier	70 - 130		LCSD Qualifier	Cli	ent	Sam D	ple ID: L %Rec	Prep T	ype: To	tal/NA
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121	123 129	alifier	70 - 130 70 - 130 Spike			Unit	ent		-	Prep T Prep %Rec	ype: To Batch:	tal/NA 32158 RPD
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Malyte Gasoline Range Organics	123 129	alifier	70 - 130 70 - 130 Spike Added	Result			ent		%Rec	Prep T Prep %Rec Limits	ype: To Batch: 	tal/NA 32158 RPC Limit
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	123 129	alifier	70 - 130 70 - 130 Spike Added	Result		Unit	ent		%Rec	Prep T Prep %Rec Limits	ype: To Batch: 	tal/NA 32158 RPC Limit
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	123 129		70 - 130 70 - 130 Spike Added	Result 1094		Unit mg/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 32158 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	123 129		70 - 130 70 - 130 Spike Added	Result 1094		Unit mg/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 32158 RPD Limit
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Malyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	123 129 ;8/3-A		70 - 130 70 - 130 Spike Added	Result 1094		Unit mg/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 32158 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	123 129 18/3-A 		70 - 130 70 - 130 Spike Added 1000	Result 1094		Unit mg/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 32158 RPD Limit
I-Chlorooctane - Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	123 129 18/3-A <i>LCSD LC</i> %Recovery Qu		70 - 130 70 - 130 Spike Added 1000 1000	Result 1094		Unit mg/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 32158 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl	123 129 88/3-A <i>LCSD LC</i> %Recovery Qu 119 123		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1094		Unit mg/Kg	ent		%Rec 109 105	Prep T Prep %Rec Limits 70 - 130 70 - 130	ype: To Batch: RPD 3 4	tal/NA 32158 RPD Limit 20 20
I-Chlorooctane Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-18058-A-1-I	123 129 88/3-A <i>LCSD LC</i> %Recovery Qu 119 123		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1094		Unit mg/Kg	ent		%Rec 109 105	Prep T %Rec Limits 70 - 130 70 - 130	ype: To Batch: RPD 3 4 Matrix	tal/NA 32158 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid	123 129 88/3-A <i>LCSD LC</i> %Recovery Qu 119 123		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1094		Unit mg/Kg	ent		%Rec 109 105	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep T	ype: To Batch: <u>RPD</u> 3 4 Matrix ype: To	tal/NA 32158 RPC Limit 20 20 Spike tal/NA
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid	123 129 88/3-A <u>LCSD</u> LC <u>%Recovery</u> Qu 119 123 B MS	SD salifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130	Result 1094 1054	Qualifier	Unit mg/Kg	ent		%Rec 109 105	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep T Prep T	ype: To Batch: RPD 3 4 Matrix	tal/NA 32158 RPC Limit 20 20 Spike tal/NA
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane D-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid Analysis Batch: 32121	123 129 88/3-A <i>LCSD LC</i> <i>%Recovery Qu</i> 119 123 B MS Sample Sa	SD nalifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 1094 1054 MS	Qualifier	Unit mg/Kg mg/Kg	ent	D .	%Rec 109 105	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 9 70 - 190 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	ype: To Batch: <u>RPD</u> 3 4 Matrix ype: To	tal/NA 32158 RPC Limit 20 20 Spike tal/NA
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane D-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid Analysis Batch: 32121 Malyte	123 129 88/3-A <u>LCSD</u> LC <u>%Recovery</u> Qu 119 123 B MS	SD nalifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130	Result 1094 1054 MS	Qualifier	Unit mg/Kg	ent		%Rec 109 105	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep T Prep T	ype: To Batch: <u>RPD</u> 3 4 Matrix ype: To	tal/NA 32158 RPC Limit 20 20 Spike tal/NA
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane D-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid Analysis Batch: 32121 Malyte Basoline Range Organics	123 129 88/3-A 	SD nalifier	70 - 130 70 - 130 Spike Added 1000 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 1094 1054 MS Result	Qualifier	Unit mg/Kg mg/Kg	ent	D .	%Rec 109 105 Client 3	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 1	ype: To Batch: <u>RPD</u> 3 4 Matrix ype: To	tal/NA 32158 RPC Limit 20 20 Spike tal/NA
-Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane D-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid Analysis Batch: 32121 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics GRO)-C6-C10 Diesel Range Organics (Over	123 129 88/3-A 	SD nalifier	70 - 130 70 - 130 Spike Added 1000 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 1094 1054 MS Result	Qualifier	Unit mg/Kg mg/Kg	ent	D .	%Rec 109 105 Client 3	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 1	ype: To Batch: <u>RPD</u> 3 4 Matrix ype: To	tal/NA 32158 RPC Limit 20 20 Spike tal/NA
I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid Analysis Batch: 32121 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics GRO)-C6-C10 Diesel Range Organics GRO)-C6-C10 Diesel Range Organics (Over	123 129 129 129 129 129 129 129 123 119 123 123 123 B MS Sample Sa Result Qu <49.9	SD valifier	70 - 130 70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike 70 - 130 70 - 130 70 - 130 999	Result 1094 1054 MS Result 1002	Qualifier	Unit mg/Kg mg/Kg Unit mg/Kg	ent	D .	%Rec 109 105 Client 3 %Rec 100	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep T Prep T %Rec Limits 70 - 130	ype: To Batch: <u>RPD</u> 3 4 Matrix ype: To	tal/NA 32158 RPC Limit 20 20 Spike tal/NA
Surrogate 1-Chlorooctane b-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane b-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	123 129 129 129 129 129 129 129 129 120 110 123 119 123 B MS Sample Result <49.9	SD valifier	70 - 130 70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike 70 - 130 70 - 130 70 - 130 999	Result 1094 1054 MS Result 1002	Qualifier	Unit mg/Kg mg/Kg Unit mg/Kg	ent	D .	%Rec 109 105 Client 3 %Rec 100	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep T Prep T %Rec Limits 70 - 130	ype: To Batch: <u>RPD</u> 3 4 Matrix ype: To	tal/NA 32158 RPC Limit 20 20 Spike tal/NA
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-3215 Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-18058-A-1-I Matrix: Solid Analysis Batch: 32121 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (GRO)-C6-C10 Diesel Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	123 129 129 129 129 129 129 129 129 120 110 123 119 123 B MS Sample Result <49.9	SD mple mple	70 - 130 70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike 70 - 130 70 - 130 70 - 130 999 999 999	Result 1094 1054 MS Result 1002	Qualifier	Unit mg/Kg mg/Kg Unit mg/Kg	ent	D .	%Rec 109 105 Client 3 %Rec 100	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep T Prep T %Rec Limits 70 - 130	ype: To Batch: <u>RPD</u> 3 4 Matrix ype: To	tal/NA 32158 RPC Limit 20 20 Spike tal/NA

Eurofins Carlsbad

Blank al/NA 32158 Dil Fac 1 1 7 Dil Fac 1 1 mple al/NA 32158

QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	1-C MSD): Matrix Sp Prep 1	Гуре: То	
Analysis Batch: 32121										Batch:	
Analysis Batch. 02121	Sample	Sample	Spike	MSD	MSD				%Rec	Baten.	RPE
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<49.9		999	1014	Quanner	mg/Kg		102	70 - 130	1	2
(GRO)-C6-C10	-+0.0	0	555	1014		ing/itg		102	70 - 150	'	20
Diesel Range Organics (Over	<49.9	U	999	905.8		mg/Kg		91	70 - 130	4	2
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	88		70 <u>-</u> 130								
<i></i>											
lethod: 300.0 - Anions, Io	on Chromat	ography									
Lab Sample ID: MB 880-32160	0/1-A							Client S	ample ID:	Method	Blan
Matrix: Solid									Prep	Type: So	olubl
Analysis Batch: 32201											
		MB MB									
Analyte	Re	esult Qualifier		RL	Unit		о р	repared	Analyz	zed	Dil Fa
Chloride	<	4.98 U		4.98	mg/K	g			08/16/22	02:34	
Lab Sample ID: LCS 880-3216	50/2-A						Client	Sample	ID: Lab Co	ontrol Sa	ampl
									_		
									Prep	Type: So	olubl
									-	Type: So	olubl
Analysis Batch: 32201			Spike		LCS				%Rec	Type: So	olubl
Analysis Batch: 32201 Analyte			Added	Result	LCS Qualifier	Unit	D	%Rec	%Rec Limits	Type: So	olubl
Analysis Batch: 32201 Analyte						Unit mg/Kg	D	%Rec 102	%Rec	Type: So	olubl
Analysis Batch: 32201 Analyte Chloride	150/2 4		Added	Result		mg/Kg		102	%Rec Limits 90 - 110		
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32	 160/3-A		Added	Result		mg/Kg		102	%Rec Limits 90 - 110		e Du
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid	160/3-A		Added	Result		mg/Kg		102	%Rec Limits 90 - 110		e Du
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid	160/3-A		Added 250	Result 254.1	Qualifier	mg/Kg		102	%Rec Limits 90 - 110 Lab Contro Prep		e Du olubi
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201	160/3-A		Added 250 Spike	Result 254.1 LCSD	Qualifier	mg/Kg	nt Sam	102	%Rec Limits 90 - 110 Lab Contro Prep %Rec	ol Sampl Type: So	e Du olubi RP
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte	160/3-A		Added 250 Spike Added	Result 254.1 LCSD Result	Qualifier	mg/Kg Cliet		102	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	ol Sampl Type: So RPD	e Duj olubi RPI Lim
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte	160/3-A		Added 250 Spike	Result 254.1 LCSD	Qualifier	mg/Kg	nt Sam	102	%Rec Limits 90 - 110 Lab Contro Prep %Rec	ol Sampl Type: So	e Du olubl RP Lim
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride			Added 250 Spike Added	Result 254.1 LCSD Result	Qualifier	mg/Kg Cliet	nt Sam	102 aple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	DI Sampl Type: So <u>RPD</u> 4	e Du olubl RP Lim 2
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A-			Added 250 Spike Added	Result 254.1 LCSD Result	Qualifier	mg/Kg Cliet	nt Sam	102 aple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	ol Sampl Type: So <u>4</u> : Matrix	e Du olubl RP Lim 2 Spik
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analysis Batch: 32201			Added 250 Spike Added	Result 254.1 LCSD Result	Qualifier	mg/Kg Cliet	nt Sam	102 aple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	DI Sampl Type: So <u>RPD</u> 4	e Duj olubi RP Lim 2 Spik
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A-	 1-E MS		Added 250 Spike Added 251	Result 254.1 LCSD Result 243.5	Qualifier LCSD Qualifier	mg/Kg Cliet	nt Sam	102 aple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	ol Sampl Type: So <u>4</u> : Matrix	e Duj olubi RP Lim 2 Spik
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-327 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analysis Batch: 32201	1-E MS Sample	-	Added 250 Spike Added 251 Spike	Result 254.1 LCSD Result 243.5 MS	Qualifier LCSD Qualifier MS	mg/Kg Clier Unit mg/Kg	 	102 nple ID: %Rec 97 Client	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	ol Sampl Type: So <u>4</u> : Matrix	e Duj olubi RP Lim 2 Spik
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-327 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analysis Batch: 32201 Analyte	1-E MS Sample Result	Sample Qualifier	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result	Qualifier LCSD Qualifier	mg/Kg Clier Unit mg/Kg	nt Sam	102 nple ID: %Rec 97 Client %Rec	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits	ol Sampl Type: So <u>4</u> : Matrix	e Du olubl RP Lim 2 Spik
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-327 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analysis Batch: 32201 Analyte	1-E MS Sample	-	Added 250 Spike Added 251 Spike	Result 254.1 LCSD Result 243.5 MS	Qualifier LCSD Qualifier MS	mg/Kg Clier Unit mg/Kg	 	102 nple ID: %Rec 97 Client	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	ol Sampl Type: So <u>4</u> : Matrix	e Du olubi RP Lim 2 Spik
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-327 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analysis Batch: 32201 Analyte Chloride	1-E MS Sample Result 207	-	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	D	102 nple ID: 1 %Rec 97 Client %Rec 106	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	el Sampl Type: So RPD 4 : Matrix Type: So	e Du olubi RP Lim 2 Spik olubi
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A-	1-E MS Sample Result 207	-	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	D	102 nple ID: 1 %Rec 97 Client %Rec 106	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Sampl Type: So <u>RPD</u> 4 : Matrix Type: So 	e Du olubl RP Lim 2 Spik olubl
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid	1-E MS Sample Result 207	-	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	D	102 nple ID: 1 %Rec 97 Client %Rec 106	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	el Sampl Type: So RPD 4 : Matrix Type: So	e Du olubl RP Lim 2 Spik olubl
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-327 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analysis Batch: 32201 Analyte	1-E MS Sample <u>Result</u> 207 1-F MSD	Qualifier	Added 250 Spike Added 251 Spike Added 250	Result 254.1 LCSD Result 243.5 MS Result 472.1	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg	D	102 nple ID: 1 %Rec 97 Client %Rec 106	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 90 - 110 90 - 110	ol Sampl Type: So <u>RPD</u> 4 : Matrix Type: So 	le Du olubl RP Lim 2 Spik olubl
Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid Analyte Chloride Lab Sample ID: 880-18061-A- Matrix: Solid	1-E MS Sample <u>Result</u> 207 1-F MSD Sample	Qualifier	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result 472.1	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	D	102 nple ID: 1 %Rec 97 Client %Rec 106	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Sampl Type: So <u>RPD</u> 4 : Matrix Type: So 	e Du olubl RP Lim 2 Spik olubl

QC Association Summary

Client: Ensolum Project/Site: Windward 2H CTB Page 29 of 123

Job ID: 890-2742-1 SDG: 03D2024079

GC VOA

Prep Batch: 32563

ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
/IB 880-32563/5-A	Method Blank	Total/NA	Solid	5035	
rep Batch: 32565					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2742-1	SS04	Total/NA	Solid	5035	
MB 880-32565/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-32565/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-32565/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-18292-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-18292-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
	Olivert Oceande ID	Dava Tara	Madaia	M-4h - d	Dura Datak
Lab Sample ID	Client Sample ID SS04	Prep Type Total/NA	Matrix Solid	<u>Method</u> 8021B	Prep Batch 32565
Lab Sample ID 890-2742-1	•				
Lab Sample ID 890-2742-1 MB 880-32563/5-A	SS04	Total/NA	Solid	8021B	32565
Lab Sample ID 890-2742-1 MB 880-32563/5-A MB 880-32565/5-A	SS04 Method Blank	Total/NA Total/NA	Solid Solid	8021B 8021B	32565 32563
Lab Sample ID 890-2742-1 MB 880-32563/5-A MB 880-32565/5-A LCS 880-32565/1-A	SS04 Method Blank Method Blank	Total/NA Total/NA Total/NA	Solid Solid Solid	8021B 8021B 8021B	32565 32563 32565
Lab Sample ID 890-2742-1 MB 880-32563/5-A MB 880-32565/5-A LCS 880-32565/1-A LCSD 880-32565/2-A	SS04 Method Blank Method Blank Lab Control Sample	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	8021B 8021B 8021B 8021B 8021B	32565 32563 32565 32565
Lab Sample ID 890-2742-1 MB 880-32563/5-A MB 880-32565/5-A LCS 880-32565/1-A LCSD 880-32565/2-A 880-18292-A-1-D MS	SS04 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid	8021B 8021B 8021B 8021B 8021B 8021B	32565 32563 32565 32565 32565 32565
Lab Sample ID 890-2742-1 MB 880-32563/5-A MB 880-32565/5-A LCS 880-32565/1-A LCSD 880-32565/2-A 880-18292-A-1-D MS 880-18292-A-1-E MSD	SS04 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid	8021B 8021B 8021B 8021B 8021B 8021B 8021B	32565 32563 32565 32565 32565 32565 32565
Lab Sample ID 890-2742-1 MB 880-32563/5-A MB 880-32565/5-A LCS 880-32565/1-A LCSD 880-32565/2-A 880-18292-A-1-D MS 880-18292-A-1-E MSD analysis Batch: 32700 Lab Sample ID	SS04 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid	8021B 8021B 8021B 8021B 8021B 8021B 8021B	32565 32563 32565 32565 32565 32565 32565

GC Semi VOA

Analysis Batch: 32121

Lab Sample ID 890-2742-1	Client Sample ID SS04	Prep Type Total/NA	Matrix	Method 8015B NM	Prep Batch 32158
MB 880-32158/1-A	Method Blank	Total/NA	Solid	8015B NM	32158
LCS 880-32158/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32158
LCSD 880-32158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32158
880-18058-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	32158
880-18058-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	32158

Prep Batch: 32158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2742-1	SS04	Total/NA	Solid	8015NM Prep	
MB 880-32158/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32158/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-18058-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-18058-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2742-1	SS04	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Ensolum Project/Site: Windward 2H CTB

HPLC/IC

Leach Batch: 32160

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2742-1	SS04	Soluble	Solid	DI Leach	
MB 880-32160/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32160/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32160/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-18061-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-18061-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batch: 32201					

Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 890-2742-1 SS04 Soluble Solid 300.0 32160 MB 880-32160/1-A Method Blank Soluble Solid 300.0 32160 LCS 880-32160/2-A Lab Control Sample Soluble Solid 300.0 32160 LCSD 880-32160/3-A Lab Control Sample Dup Soluble Solid 300.0 32160 880-18061-A-1-E MS Matrix Spike Soluble Solid 300.0 32160 Soluble Solid 32160 880-18061-A-1-F MSD Matrix Spike Duplicate 300.0

Job ID: 890-2742-1 SDG: 03D2024079

Job ID: 890-2742-1 SDG: 03D2024079

Lab Sample ID: 890-2742-1 Matrix: Solid

Client Sample ID: SS04 Date Collected: 08/11/22 12:15 Date Received: 08/11/22 15:27

Project/Site: Windward 2H CTB

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	32565	08/20/22 11:55	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32572	08/22/22 11:48	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32700	08/22/22 14:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			32209	08/16/22 09:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32158	08/15/22 10:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32121	08/15/22 18:45	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32160	08/15/22 11:22	KS	EET MID
Soluble	Analysis	300.0		1			32201	08/16/22 06:25	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 11/23/2022 2:40:00 PM

Accreditation/Certification Summary

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		Program	Identification Number	Expiration Date
xas	١	IELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report, I	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w
the agency does not o	ffer certification.	Matrix	Analvte	
• •	• •	Matrix	Analyte Total TPH	

Job ID: 890-2742-1 SDG: 03D2024079

Page 32 of 123

Eurofins Carlsbad

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2742-1 SDG: 03D2024079

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E = TestAmerica Laboratories, Standard Operating Procedure	dition, November 1986 And Its Updates.	
Laboratory R			
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-544(J	

Protocol References:

Laboratory References:

Sample Summary

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2742-1 SDG: 03D2024079

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-2742-1	SS04	Solid	08/11/22 12:15	08/11/22 15:27	0.5	4
						5
						8
						9
						12
						13

🔅 eurofins		nment	Testing	Ho Midla EL	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Miciland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Peso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	(281) 240-4 2) 704-544 915) 585-34 75) 392-75	200, Dalla D, San Ante 143, Lubbo 50, Carlsba	s, TX (214 pnio, TX (2 ck, TX (80 id, NM (57) 902-030 10) 509-3 6) 794-12 5) 988-31	999 996 4			No No	Work Order No:	der N	1	F
				Bill to: (if differ		(alei lenn	ions						3	Work Order	Order	Work Order Comments	in l
				Company Name:		Ensolum 110	- C				Pro	ram: US	TIPST] PRP	Bro	Program: UST/PST PRP Brownfields RRC Superfund	סק
iname.	Elisoluili, LLV	Ct Cuite ANN		Address:		601 N Marienfeld St Suite 400	ionfald St	Suite 40			Stat	State of Project:	ët:	Ļ	0	۱	
		OL OUND TOO		City Cloth 71			V 10101	0.000			Repo	nting: Le		l evel li		Reporting: Level II CLEvel III CPST/UST CTRRP	T -
City, State ZIP: Mi	Midland, TX 79701			City, State ZIP:		Midland, TX 79701	10762 X				2	Jung. Lu	, i	;	;[2 :
	817-683-2503		Emai	Email: kjennings@ensolum.com	ensolum.c	com					Deliv	Deliverables: EDD	EDD		ADa	ADaPT L	Other:
Project Name:	Windward 2H CTB	2H CTB	Tur	Turn Around					ANA	ANALYSIS REQUEST	QUES					Preservative Codes	es es
Project Number:	03D2024079	4079	I Routine	C Rush	Pres. Code	_								-	\vdash	None: NO	0
Project Location:			Due Date:												_	Cool: Cool	2
Sampler's Name:	Conner Shore	Shore	TAT starts t	TAT starts the day received by	¥			-	-	_	-	_		-	-	HCL: HC	
PO #:			the lab, if re	the lab, if received by 4:30pm	<u> </u>			_								H ₂ S0 ₄ : H ₂	N
SAMPLE RECEIPT	Temp Blank:	IK: Kes No	lo Wet Ice:	(Yes) No	nete	.0)									-	H ₃ PO ₄ : HP	P
Samples Received Intact:			Thermometer ID:	122.00	arar	300										NaHSO4: NABIS	Z
Cooler Custody Seals:	Yes No		Correction Factor:	10.0	P	EPA:		œ =	890-2742 Chai		n of Custody					Na25203: NASO3	Na
Sample Custody Seals:	Yes No	NA Tempera	Temperature Reading:			-	21	-	-				-	I		NaOH+Ascorbic Acid: SAPC	SCO
Sample Identification		Matrix Date	Date Time Sampled Sampled	-	o/ #of Cont	HLORI	BTEX (8							<u> </u>		Sample Comments	npl
SS04	S	08.11.22	+	0.5 ⁻ G		+	×								+		
						-		-		_	+		-	+	+		
						+	1	+	+	-	+		+	-	+		
)					-		_						-	-		
	X					+		+			+		+	+-	+		
2						+		+									
0														-	+		
	-					-		-	-		-		_				
Total 200.7 / 6010 Circle Method(s) and f) 200.8 / 6020: Metal(s) to be an	0: nalvzed	BRCRA 13	13PPM Texas 11 / SPLP 6010: 8RC	11 AI Sb	b As Ba Sb As Ba	a Be Co	Cd Ca d	Cr Co o	A	Pb Mg I Ao Ni Se	Pb Mg Mn Mo Ni Mo Ni Se Ag Ti U	ㅈ	Se Ag Hg	SiO ₂ g: 1631	Na Sr TI 1/245.1/7	Sn 747(
UICIE MIEITIOUS) AITO MIETATS) to be analyzed ICLEF / SELF OVID. DIXONX, SEA BE SEA DO SEA DO SEA DO TO SEA DO SEA	will be liable only for t	ment of samples	constitutes a valid	TOLE 7 1 OF LET OV 10: DIVIDION OD INS DE DE OG OF INS ANTINE INSTALLES A VAIID PUEDEN OF OF THE INSTALLES A VAIID PUEDEN OF ANTINES ANTINE ANTINES ANTINE ANTINES	om client co Ibility for an	ompany to E ly losses or	expenses in Eurofins Xen	ico, its affili icurred by	ates and s the client i	ubcontracti I such losse d. These te	rs. It assi s are due	gns standa	rd terms ances be	and con- yond the	ditions control	Ā	
Relinquished by: (Signature)	Signature)	Rece	Received by: (Signature)	lature)		Date/Time	0	Relinc	luished	Relinquished by: (Signature)	ature)		Receive	Received by: (Signature)	Signat	ture)	
6.5			X CUM 1	2	27	1-221	1631										
З		5	1														1

Page 35 of 123

14

Job Number: 890-2742-1 SDG Number: 03D2024079

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2742 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").
14

Job Number: 890-2742-1 SDG Number: 03D2024079

List Source: Eurofins Midland

List Creation: 08/15/22 08:36 AM

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 2742 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 10/31/2022 9:20:54 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 11/23/2022 2:40:00 PM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2743-1

Laboratory Sample Delivery Group: 03d2024079 Client Project/Site: Windward 2H CTB

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

Authorized for release by: 8/22/2022 9:38:18 AM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

SDG: 03d2024079

Laboratory Job ID: 890-2743-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
• · · · ·	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
-	18

Page 40 of 123

	Definitions/Glossary		
Client: Ensolum Project/Site: Wi	n indward 2H CTB	Job ID: 890-2743-1 SDG: 03d2024079	2
Qualifiers			3
GC VOA			3
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		5
GC Semi VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		8
Glossary			9
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF DER	Contains No Free Liquid Duplicate Error Ratio (normalized absolute difference)		
DER Dil Fac	Diplicate Error Ratio (normalized absolute difference) Dilution Factor		
DL	Detection Limit (DoD/DOE)		13
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML MPN	Minimum Level (Dioxin) Most Probable Number		
MQL	Most Probable Number		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

Job ID: 890-2743-1 SDG: 03d2024079

Job ID: 890-2743-1

Client: Ensolum

Laboratory: Eurofins Carlsbad

Project/Site: Windward 2H CTB

Narrative

Job Narrative 890-2743-1

Receipt

The sample was received on 8/11/2022 3:27 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS03 (890-2743-1), (CCV 880-32557/20), (CCV 880-32557/33), (CCV 880-32557/51), (LCS 880-32561/1-A), (LCSD 880-32561/2-A), (MB 880-32546/5-A), (MB 880-32561/5-A), (880-18346-A-21-D MS) and (880-18346-A-21-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-18346-A-21-F). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-2743-1 SDG: 03d2024079

Client Sample ID: SS03

Project/Site: Windward 2H CTB

Date Collected: 08/11/22 12:10 Date Received: 08/11/22 15:27

Sample Depth: 0.5

Client: Ensolum

SDG: 03d202407

Lab Sample ID: 890-2743-1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		08/20/22 10:39	08/21/22 08:43	1
Toluene	<0.00201	U	0.00201	mg/Kg		08/20/22 10:39	08/21/22 08:43	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		08/20/22 10:39	08/21/22 08:43	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		08/20/22 10:39	08/21/22 08:43	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		08/20/22 10:39	08/21/22 08:43	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		08/20/22 10:39	08/21/22 08:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	207	S1+	70 - 130			08/20/22 10:39	08/21/22 08:43	1
1,4-Difluorobenzene (Surr)	76		70 - 130			08/20/22 10:39	08/21/22 08:43	1
Method: Total BTEX - Total BTE>	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402	mg/Kg			08/22/22 10:17	1
Method: 8015 NM - Diesel Range Analyte Total TPH		Qualifier	RL	Unit mg/Kg	<u> </u>	Prepared	Analyzed 08/16/22 09:21	Dil Fac
-			00.0	mg/rtg			00/10/22 00.21	I
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
					_	_ .		
		Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	Result <50.0		RL	Unit mg/Kg	<u>D</u>	Prepared 08/15/22 10:43	Analyzed 08/15/22 19:07	Dil Fac
Gasoline Range Organics		U			<u>D</u>	<u> </u>		
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg	<u> </u>	08/15/22 10:43	08/15/22 19:07	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U U U	50.0	mg/Kg	<u> </u>	08/15/22 10:43 08/15/22 10:43	08/15/22 19:07 08/15/22 19:07	1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 <50.0 <50.0	U U U	50.0 50.0 50.0	mg/Kg	<u> </u>	08/15/22 10:43 08/15/22 10:43 08/15/22 10:43	08/15/22 19:07 08/15/22 19:07 08/15/22 19:07 08/15/22 19:07	1 1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0 <50.0 %Recovery	U U U	50.0 50.0 50.0 <i>Limits</i>	mg/Kg	<u>D</u>	08/15/22 10:43 08/15/22 10:43 08/15/22 10:43 Prepared	08/15/22 19:07 08/15/22 19:07 08/15/22 19:07 08/15/22 19:07 Analyzed	1 1 1 Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 <50.0 %Recovery 90 95	U U Qualifier	50.0 50.0 50.0 <u>Limits</u> 70 - 130	mg/Kg	<u>D</u>	08/15/22 10:43 08/15/22 10:43 08/15/22 10:43 Prepared 08/15/22 10:43	08/15/22 19:07 08/15/22 19:07 08/15/22 19:07 08/15/22 19:07 <u>Analyzed</u> 08/15/22 19:07	1 1 1 <u>Dil Fac</u> 1
C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0 <50.0 <50.0 %Recovery 90 95 comatography -	U U Qualifier	50.0 50.0 50.0 <u>Limits</u> 70 - 130	mg/Kg	D	08/15/22 10:43 08/15/22 10:43 08/15/22 10:43 Prepared 08/15/22 10:43	08/15/22 19:07 08/15/22 19:07 08/15/22 19:07 08/15/22 19:07 <u>Analyzed</u> 08/15/22 19:07	1 1 1 <u>Dil Fac</u> 1

Project/Site: Windward 2H CTB

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Lab Sample ID **Client Sample ID** (70-130) (70-130) 880-18346-A-21-D MS Matrix Spike 202 S1+ 95 880-18346-A-21-E MSD Matrix Spike Duplicate 207 S1+ 100 890-2743-1 SS03 207 S1+ 76 LCS 880-32561/1-A Lab Control Sample 209 S1+ 99 LCSD 880-32561/2-A Lab Control Sample Dup 196 S1+ 97 MB 880-32546/5-A Method Blank 137 S1+ 70 MB 880-32561/5-A Method Blank 152 S1+ 70 Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Sample ID	Client Sample ID	(70-130)	(70-130)	
058-A-1-B MS	Matrix Spike	92	86	
058-A-1-C MSD	Matrix Spike Duplicate	92	88	
43-1	SS03	90	95	
)-32158/2-A	Lab Control Sample	123	129	
80-32158/3-A	Lab Control Sample Dup	119	123	
0-32158/1-A	Method Blank	91	103	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-2743-1 SDG: 03d2024079

Page 43 of 123

Prep Type: Total/NA

Client: Ensolum

QC Sample Results

Job ID: 890-2743-1 SDG: 03d2024079

Project/Site: Windward 2H CTB Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-3254	46/5-A							Client Sa	mple ID: Metho	od Blank
Matrix: Solid									Prep Type:	Total/N/
Analysis Batch: 32557									Prep Batc	h: 32546
Analyte		3 MB t Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.0020		0.00200		mg/K			8/19/22 19:05	08/20/22 13:06	
Toluene	<0.0020		0.00200		mg/K	-		8/19/22 19:05	08/20/22 13:06	
Ethylbenzene	<0.0020		0.00200		mg/K	-		8/19/22 19:05	08/20/22 13:06	
m-Xylene & p-Xylene	< 0.0040		0.00400		mg/K			8/19/22 19:05	08/20/22 13:06	
o-Xylene	<0.0020		0.00200		mg/K	-		8/19/22 19:05	08/20/22 13:06	
Xylenes, Total	< 0.0040		0.00400		mg/K	-		8/19/22 19:05	08/20/22 13:06	
	-0.00+0	, 0	0.00400		ing/iv	9	Ŭ	0/10/22 10:00	00/20/22 10:00	
		3 MB								
Surrogate		Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	13	7 S1+	70 - 130				C	8/19/22 19:05	08/20/22 13:06	
1,4-Difluorobenzene (Surr)	7	0	70 - 130				C	8/19/22 19:05	08/20/22 13:06	
Lab Sample ID: MB 880-3256	61/5-A							Client Sa	mple ID: Metho	od Blan
Matrix: Solid									Prep Type:	Total/N
Analysis Batch: 32557									Prep Batc	h: <mark>3256</mark>
Analyte		3 MB t Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.0020		0.00200		mg/K			8/20/22 10:39	08/21/22 02:38	
Toluene	< 0.0020) U	0.00200		mg/K	-		8/20/22 10:39	08/21/22 02:38	
Ethylbenzene	<0.0020		0.00200		mg/K	-		8/20/22 10:39	08/21/22 02:38	
m-Xylene & p-Xylene	< 0.0040		0.00400		mg/K			8/20/22 10:39	08/21/22 02:38	
o-Xylene	<0.0020		0.00200		mg/K	-		8/20/22 10:39	08/21/22 02:38	
Xylenes, Total	<0.00400		0.00400		mg/K	-		8/20/22 10:39	08/21/22 02:38	
· · · · · · · · · · · · · · · · · · ·						5	-			
Survey and a		3 MB / Qualifier	Limite					Dramarad	Anolymod	
Surrogate 4-Bromofluorobenzene (Surr)		$\frac{\mathbf{Quanner}}{S1+}$	Limits 70 _ 130				_	Prepared 8/20/22 10:39	Analyzed 08/21/22 02:38	Dil Fa
1,4-Difluorobenzene (Surr)	75.		70 - 130 70 - 130					8/20/22 10:39	08/21/22 02:38	
			101100				Ŭ	0,20,22 10.00	00,2,7,22,02.00	
Lab Sample ID: LCS 880-325	61/1-A						Clie	ent Sample I	D: Lab Control	Sample
Matrix: Solid									Prep Type:	Total/N
Analysis Batch: 32557									Prep Batc	h: 3256
-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits	
Benzene			0.100	0.1162		mg/Kg		116	70 - 130	
Toluene			0.100	0.1167		mg/Kg		117	70 - 130	
Ethylbenzene			0.100	0.1229		mg/Kg		123	70 - 130	
m-Xylene & p-Xylene			0.200	0.2462		mg/Kg		123	70 - 130	
o-Xylene			0.100	0.1247		mg/Kg		125	70 - 130	
	LCS LC	c								
Surrogate	%Recovery Qu		Limits							
4-Bromofluorobenzene (Surr)	209 S1		70 - 130							
1,4-Difluorobenzene (Surr)	99		70 - 130							
Lab Sample ID: LCSD 880-32	2561/2-A					Clie	ent S	ample ID: La	ab Control Sam	nple Dur
Matrix: Solid									Prep Type:	
Analysis Batch: 32557									Prep Batc	
			Spike	LCSD	LCSD				%Rec	RPI
			- er							
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits RP	D Limi

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2743-1 SDG: 03d2024079

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-325 Matrix: Solid	561/2-A					Clier	nt Sam	ple ID: I	Lab Contro Pren 1	l Sampl Type: To	
Analysis Batch: 32557										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.1197		mg/Kg		120	70 - 130	3	3
Ethylbenzene			0.100	0.1226		mg/Kg		123	70 - 130	0	3
m-Xylene & p-Xylene			0.200	0.2445		mg/Kg		122	70 - 130	1	3
o-Xylene			0.100	0.1236		mg/Kg		124	70 - 130	1	3
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	196	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	97		70 - 130								
Lab Sample ID: 880-18346-A-2	21-D MS							Client	Sample ID	: Matrix	Spik
Matrix: Solid										Type: To	
Analysis Batch: 32557										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.000402	U	0.0998	0.1219		mg/Kg		122	70 - 130		
Toluene	<0.000402	U	0.0998	0.1183		mg/Kg		119	70 - 130		
Ethylbenzene	<0.000402	U	0.0998	0.1246		mg/Kg		125	70 - 130		
m-Xylene & p-Xylene	<0.000805	U	0.200	0.2501		mg/Kg		125	70 - 130		

0.0998

0.1235

mg/Kg

123

70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	202	S1+	70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

<0.000402 U

Lab Sample ID: 880-18346-A-21-E MSD Matrix: Solid Analysis Batch: 32557

1,4-Difluorobenzene (Surr)

o-Xylene

Analysis Batch: 32557									Prep	Batch:	32561
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.000402	U	0.100	0.1204		mg/Kg		120	70 - 130	1	35
Toluene	<0.000402	U	0.100	0.1173		mg/Kg		117	70 - 130	1	35
Ethylbenzene	<0.000402	U	0.100	0.1207		mg/Kg		120	70 - 130	3	35
m-Xylene & p-Xylene	<0.000805	U	0.200	0.2380		mg/Kg		119	70 - 130	5	35
o-Xylene	<0.000402	U	0.100	0.1215		mg/Kg		121	70 - 130	2	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	207	S1+	70 - 130								

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

100

Lab Sample ID: MB 880-32158/1-A Matrix: Solid Analysis Batch: 32121						Client Sa	mple ID: Metho Prep Type: 1 Prep Batcl	Total/NA
		MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		08/15/22 10:43	08/15/22 10:50	1
(GRO)-C6-C10								

Client: Ensolum Project/Site: Windward 2H CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-32158	/ 1-A										Client Sa	ample ID:	Methor	l Blank
Matrix: Solid														otal/NA
Analysis Batch: 32121														32158
		мв	МВ									1100	Duton	
Analyte	Re	sult		R	RL		Unit		D	Р	repared	Analyz	ed	Dil Fac
Diesel Range Organics (Over		50.0		50			mg/Kg		_	-	5/22 10:43	08/15/22		1
C10-C28)							5.	, ,						
Oll Range Organics (Over C28-C36)	<	50.0	U	50	.0		mg/Ko	9		08/1	5/22 10:43	08/15/22	10:50	1
		мп	мв											
Sumo noto	%/ D aaa	MB	MB	Limits							way award	Amalum		
Surrogate 1-Chlorooctane	%Reco	91	Qualifier								repared 5/22 10:43	Analyz 08/15/22		Dil Fac
o-Terphenyl		103		70 - 130 70 - 130							5/22 10:43 5/22 10:43	08/15/22		1
		105		70 - 730						00/1	5/22 10.45	00/13/22	10.50	,
Lab Sample ID: LCS 880-3215	8/ 2-A								С	lient	Sample	ID: Lab C	ontrol S	Sample
Matrix: Solid														otal/NA
Analysis Batch: 32121														32158
				Spike	LC	ΒL	cs					%Rec		
Analyte				Added	Resu	t G	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	112			mg/Kg			113	70 - 130		
(GRO)-C6-C10														
Diesel Range Organics (Over				1000	109	9		mg/Kg			110	70 - 130		
C10-C28)														
	LCS	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	123			70 - 130										
o-Terphenyl	129			70 - 130										
Lab Sample ID: LCSD 880-321 Matrix: Solid Analysis Batch: 32121	58/3-A							Cli	ent	Sam	iple ID: L		Type: To	ole Dup otal/NA : 32158
Analysis Datch. 32121				Spike	LCSI		CSD					%Rec	Daten	RPD
Analyte				Added			Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1000	109		guunnen	mg/Kg			109	70 - 130	3	20
(GRO)-C6-C10				1000	100	•		ing/itg			100	10-100	0	20
Diesel Range Organics (Over				1000	105	4		mg/Kg			105	70 - 130	4	20
C10-C28)														
	LCSD	105	n											
Surrogate	%Recovery			Limits										
1-Chlorooctane	119			70 - 130										
o-Terphenyl	123			70 - 130										
Lab Sample ID: 880-18058-A-1	-B MS										Client S	Sample ID	: Matrix	c Spike
Matrix: Solid												Prep 1	Type: To	otal/NA
Analysis Batch: 32121												Prep	Batch	32158
	Sample	Sam	ple	Spike	M	S N	IS					%Rec		
Analyte	Result	Qua	lifier	Added	Resu	t C	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U		999	100	2	_	mg/Kg	_		100	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.9	U		999	874.4	4		mg/Kg			88	70 - 130		
		MC												
Surrogato	MS % Pocovorv		lifior	Limite										
Surrogate 1-Chlorooctane	%Recovery 92	Qua		Limits 70 - 130										
	92			10-130										

5

Job ID: 890-2743-1 SDG: 03d2024079

Eurofins Carlsbad

o-Terphenyl

86

70 - 130

Client: Ensolum Project/Site: Windward 2H CTB Page 47 of 123

Job ID: 890-2743-1 SDG: 03d2024079

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid): Matrix S Prep 1	Type: To	
Analysis Batch: 32121										Batch:	
Analysis Batch. 52121	Sample	Sample	Spike	MSD	MSD				%Rec	Daten.	RPE
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	- <u></u>		999 -	1014	Quaimer			102	70 - 130	1	2
(GRO)-C6-C10	\$49.9	0	999	1014		mg/Kg		102	70 - 130	I	20
Diesel Range Organics (Over	<49.9	U	999	905.8		mg/Kg		91	70 - 130	4	20
C10-C28)						0 0					
	MSD	MED									
Sumonoto		Qualifier	Limits								
Surrogate 1-Chlorooctane	_ <u>%Recovery</u> 92		70 - 130								
o-Terphenyl	92 88		70 - 130 70 - 130								
o-reipilenyi	00		10 - 150								
lethod: 300.0 - Anions, I	on Chromat	ography									
		0 1 3									
Lab Sample ID: MB 880-3216	50/1-A							Client S	Sample ID:	Method	Blan
Matrix: Solid									Prep	Type: So	olubl
Analysis Batch: 32201											
		МВ МВ									
Analyte	Re	esult Qualifier		RL	Unit		D P	repared	Analyz	zed	Dil Fa
Chloride	<	4.98 U		4.98	mg/K	g .			08/16/22	02:34	
Lob Comple ID: LCC 000 224	60/2-1						Client	t Sample	BID: Lab Co	ontrol Sa	ampl
Lab Sample ID: LCS 000-321	00/2-A										
	00/2 - A									Type: So	
Lab Sample ID: LCS 880-321 Matrix: Solid Analysis Batch: 32201	00/2-4										
Matrix: Solid	00/2-4		Spike	LCS	LCS						
Matrix: Solid Analysis Batch: 32201			Spike Added		LCS Qualifier	Unit	D	%Rec	Prep		
Matrix: Solid Analysis Batch: 32201 ^{Analyte}			•			Unit mg/Kg		-	Prep %Rec		
Matrix: Solid Analysis Batch: 32201 Analyte Chloride			Added	Result		mg/Kg	D	%Rec 102	Prep %Rec Limits 90 - 110	Type: So	olubl
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32			Added	Result		mg/Kg	D	%Rec 102	Prep %Rec Limits 90 - 110	Type: So	olubl
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid			Added	Result		mg/Kg	D	%Rec 102	Prep %Rec Limits 90 - 110	Type: So	olubl
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid			Added 250	Result 254.1	Qualifier	mg/Kg	D	%Rec 102	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So	e Du olubi
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201			Added 250 Spike	Result 254.1 LCSD	Qualifier	mg/Kg Clie	D_	%Rec 102 nple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So DI Sample Type: So	e Du olubi RP
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte			Added 250 Spike Added	Result 254.1 LCSD Result	Qualifier	mg/Kg Clie Unit	D	%Rec 102 nple ID: %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So ol Sample Type: So 	e Du olubi olubi RP Lim
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte			Added 250 Spike	Result 254.1 LCSD	Qualifier	mg/Kg Clie	D_	%Rec 102 nple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So DI Sample Type: So	e Duj olubi olubi RPI Lim
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride	2160/3-A		Added 250 Spike Added	Result 254.1 LCSD Result	Qualifier	mg/Kg Clie Unit	D_	%Rec 102 hple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 4	e Du olubi olubi RPI Lim 2
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A	2160/3-A		Added 250 Spike Added	Result 254.1 LCSD Result	Qualifier	mg/Kg Clie Unit	D_	%Rec 102 hple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So ol Sample Type: So <u>RPD</u> 4 : Matrix	e Duj olubi olubi RPI Lim 2 Spik
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid	2160/3-A		Added 250 Spike Added	Result 254.1 LCSD Result	Qualifier	mg/Kg Clie Unit	D_	%Rec 102 hple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So ol Sample Type: So <u>RPD</u> 4	e Duj olubi olubi RPI Lim 2 Spik
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid	2160/3-A 		Added 250 Spike Added 251	Result 254.1 LCSD Result 243.5	Qualifier LCSD Qualifier	mg/Kg Clie Unit	D_	%Rec 102 hple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: So ol Sample Type: So <u>RPD</u> 4 : Matrix	e Duj olubi olubi RPI Lim 2 Spik
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid Analysis Batch: 32201	2160/3-A 	-	Added 250 Spike Added 251 Spike	Result 254.1 LCSD Result 243.5 MS	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	nt San	%Rec 102 nple ID: %Rec 97 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: So ol Sample Type: So <u>RPD</u> 4 : Matrix	e Duj olubli RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid Analysis Batch: 32201 Analyte	2160/3-A -1-E MS Sample Result	Sample Qualifier	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result	Qualifier LCSD Qualifier	mg/Kg Clie Unit mg/Kg Unit	D_	%Rec 102 nple ID: %Rec 97 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits	Type: So ol Sample Type: So <u>RPD</u> 4 : Matrix	e Du olubi olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid Analysis Batch: 32201 Analyte	2160/3-A 	-	Added 250 Spike Added 251 Spike	Result 254.1 LCSD Result 243.5 MS	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	nt San	%Rec 102 nple ID: %Rec 97 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: So ol Sample Type: So <u>RPD</u> 4 : Matrix	e Duj olubi olubi RPI Lim 2 Spik
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid Analysis Batch: 32201 Analyte Chloride	2160/3-A -1-E MS 	-	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D ent San D	%Rec 102 nple ID: %Rec 97 Client %Rec 106	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So DI Sample Type: So <u>RPD</u> 4 2: Matrix Type: So	e Duj olubi RPI Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A	2160/3-A -1-E MS 	-	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D ent San D	%Rec 102 nple ID: %Rec 97 Client %Rec 106	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 4 : Matrix Type: So pike Dup	e Du olubi RP Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid	2160/3-A -1-E MS 	-	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D ent San D	%Rec 102 nple ID: %Rec 97 Client %Rec 106	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So DI Sample Type: So <u>RPD</u> 4 2: Matrix Type: So	e Duj olubi RPI Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A Matrix: Solid	-1-E MS -1-E MS - Result 207 -1-F MSD	Qualifier	Added 250 Spike Added 251 Spike Added 250	Result 254.1 LCSD Result 243.5 MS Result 472.1	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg	D ent San D	%Rec 102 nple ID: %Rec 97 Client %Rec 106	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 0: Matrix Sp Prep	Type: So ol Sample Type: So <u>RPD</u> 4 : Matrix Type: So pike Dup	e Du olubi RPI Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: LCSD 880-32 Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A	2160/3-A -1-E MS Sample Result 207 -1-F MSD Sample	Qualifier	Added 250 Spike Added 251 Spike Added	Result 254.1 LCSD Result 243.5 MS Result 472.1	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D ent San D	%Rec 102 nple ID: %Rec 97 Client %Rec 106	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 4 : Matrix Type: So pike Dup	e Dup olubi RPI Lim 2 Spikk olubi

Eurofins Carlsbad

Released to Imaging: 11/23/2022 2:40:00 PM

QC Association Summary

Client: Ensolum Project/Site: Windward 2H CTB Page 48 of 123

Job ID: 890-2743-1 SDG: 03d2024079

GC VOA

Prep Batch: 32546

ep Batch: 32546					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-32546/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 32557					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2743-1	SS03	Total/NA	Solid	8021B	32561
MB 880-32546/5-A	Method Blank	Total/NA	Solid	8021B	32546
MB 880-32561/5-A	Method Blank	Total/NA	Solid	8021B	32561
LCS 880-32561/1-A	Lab Control Sample	Total/NA	Solid	8021B	32561
LCSD 880-32561/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	32561
880-18346-A-21-D MS	Matrix Spike	Total/NA	Solid	8021B	32561
880-18346-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	32561
rep Batch: 32561					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2743-1	SS03	Total/NA	Solid	5035	
MB 880-32561/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-32561/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-32561/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-18346-A-21-D MS	Matrix Spike	Total/NA	Solid	5035	
880-18346-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
Analysis Batch: 32622					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2743-1	SS03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 32121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2743-1	SS03	Total/NA	Solid	8015B NM	32158
MB 880-32158/1-A	Method Blank	Total/NA	Solid	8015B NM	32158
LCS 880-32158/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32158
LCSD 880-32158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32158
880-18058-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	32158
880-18058-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	32158

Prep Batch: 32158

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2743-1	SS03	Total/NA	Solid	8015NM Prep	
MB 880-32158/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32158/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-18058-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-18058-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 32210					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2743-1	SS03	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Ensolum Project/Site: Windward 2H CTB

HPLC/IC

Leach Batch: 32160

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-2743-1	SS03	Soluble	Solid	DI Leach	
MB 880-32160/1-A	Method Blank	Soluble	Solid	DI Leach	
CS 880-32160/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-32160/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-18061-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-18061-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
nalysis Batch: 32201					
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-2743-1	SS03	Soluble	Solid	300.0	32160
/IB 880-32160/1-A	Method Blank	Soluble	Solid	300.0	32160
_CS 880-32160/2-A	Lab Control Sample	Soluble	Solid	300.0	32160
CSD 880-32160/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32160
380-18061-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	32160
	Matrix Spike Duplicate	Soluble	Solid	300.0	32160
80-18061-A-1-F MSD					
380-18061-A-1-F MSD					
380-18061-A-1-F MSD					
380-18061-A-1-F MSD					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2743-1	SS03	Soluble	Solid	300.0	32160
MB 880-32160/1-A	Method Blank	Soluble	Solid	300.0	32160
LCS 880-32160/2-A	Lab Control Sample	Soluble	Solid	300.0	32160
LCSD 880-32160/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32160
880-18061-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	32160
880-18061-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	32160

Page 49 of 123

Job ID: 890-2743-1 SDG: 03d2024079

Job ID: 890-2743-1 SDG: 03d2024079

Lab Sample ID: 890-2743-1 Matrix: Solid

Date Collected: 08/11/22 12:10 Date Received: 08/11/22 15:27

Client Sample ID: SS03

Project/Site: Windward 2H CTB

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	32561	08/20/22 10:39	MR	EET MID
Total/NA	Analysis	8021B		1			32557	08/21/22 08:43	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32622	08/22/22 10:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			32210	08/16/22 09:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32158	08/15/22 10:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32121	08/15/22 19:07	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32160	08/15/22 11:22	KS	EET MID
Soluble	Analysis	300.0		1			32201	08/16/22 06:34	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 11/23/2022 2:40:00 PM

Accreditation/Certification Summary

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority		rogram	Identification Number	Expiration Date	
as	N	ELAP T104704400-22-24		06-30-23	
• •	are included in this report, b	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for v	
the agency does not of	fer certification.				
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte		
0,		Matrix Solid	Analyte Total TPH		

10

Job ID: 890-2743-1

SDG: 03d2024079

Job ID: 890-2743-1 SDG: 03d2024079

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
MCAWW	STM International = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, M "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E	1	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
	e ferences: = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		
	- Laronino Wilaland, 12 11 W. Florida Ave, Wilaland, 17 79701, TEL (432)/04-0440	, ,	

Protocol References:

Laboratory References:

Sample Summary

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2743-1 SDG: 03d2024079

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-2743-1	SS03	Solid	08/11/22 12:10	08/11/22 15:27	0.5	4
						5
						8
						9
						12
						13

Sting Fousion, TA (432) 704-544 Midland, TX (432) 704-544 ELP sax, TX (432) 704-544 Hobbs, NM (575) 392-75 Hobbs, NM (575) 392-75 Bill to: (if different) Kalei Jenn Company Name: Ensolum, Address: 601 N Mat Crity, State ZIP: Midland, T Email: kijennings@ensolum.com Turn Around Pres. Rush Code Oue Date: L	Bill to: (if Compan) Address: City, Stat I: kjenning Rush	Houston, TX (281) 240-4200, Dallas, TX (214) 9 Midland, TX (432) 704-5440, San Antonio, TX (210) EL Paso, TX (915) 585-3443, Lubbock, TX (806) i Hobbs, NM (575) 392-7550, Carlsbad, NM (575) s Company Name: Ensolum, LLC Address: 601 N Marienfeld St Suite 400 City, State ZIP: Midland, TX 79701 I: kiennings@ensolum.com n Around Pres. Rush Code Code Code Code Code Code Code Code	Houston, TX (2Brl) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 565-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Bill to: (if different) Kalei Jennigns Company Name: Ensolum, LLC Address: 601 N Marienfeld St Suite 400 City, State ZIP: Midland, TX 79701 I: kjennings@ensolum.com ANALYSIS REQUE Rush Code Ores. Code	Houston, TX (2B1) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 565-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Bill to: (if different) Kalei Jennigns Company Name: Ensolum, LLC Address: 601 N Marienfeld St Suite 400 City, State ZIP: Midland, TX 79701 I: kjennings@ensolum.com ANALYSIS REQI Rush Code Orde ANALYSIS REQI
Midland, TX (432) 704-544 EL Paso, TX (915) 585-3 Hobbs, NM (575) 392-75 Hobbs, NM (575) 392-75 Company Name: Ensolum, Address: 601 N Mai City, State ZIP: Midland, T Email: kjennings@ensolum.com Turn Around Pres. Que Date: Due Date: Variants the day received by 4:30m	and, TX (432) 704-5440, San Antonio, TX (21 Paso, TX (915) 585-3443, Lubbock, TX (806 bbs, NM (575) 392-7550, Carlsbad, NM (575 me: Ensolum, LLC 601 N Marienfeld St Suite 400 601 N Marienfeld St Suite 400 Pres. Midland, TX 79701 Pres. Com	d, TX (432) 704-5440, San Antonio, TX (210) aso, TX (915) 585-3443, Lubbock, TX (806) ; ss, NM (575) 392-7550, Carlsbad, NM (575) 9 ss, NM (575) 392-750, Carlsba	d, TX (432) 704-5440, San Antonio, TX (210) 509-3334 aso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 ss, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 e: Ensolum, LLC 601 N Marienfeid St Suite 400 Midland, TX 79701 Solum.com ANALYSIS REQI Code ANALYSIS REQI	d, TX (432) 704-5440, San Antonio, TX (210) 509-3334 aso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 ss, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 e: Ensolum, LLC 601 N Marienfeid St Suite 400 Midland, TX 79701 Solum.com ANALYSIS REQI Code ANALYSIS REQI
	igns LLC X 79701 X 79701	o, San Antonio, TX (210) 509-3334 443, Lubbock, TX (806) 794-1296 50, Carlsbad, NM (575) 988-3199 LLC LLC X 79701 X 79701 ANALYSIS RE		

the eurofins

5 6

12 13 14

Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 2743 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-2743-1 SDG Number: 03d2024079 List Source: Eurofins Carlsbad 5 6 7 8 9 10 11 12 13 14

Job Number: 890-2743-1 SDG Number: 03d2024079

List Source: Eurofins Midland

List Creation: 08/15/22 08:36 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2743 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Received by OCD: 10/31/2022 9:20:54 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 11/23/2022 2:40:00 PM

Visit us at:

Ask-The Expert

eurofins 🔅

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2744-1

Laboratory Sample Delivery Group: 03D2024079 Client Project/Site: Windward 2H CTB

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

Authorized for release by: 8/25/2022 9:48:18 AM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

SDG: 03D2024079

Laboratory Job ID: 890-2744-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

3

5

Definitions/Glossary

MCL

MDA

MDC

MDL

ML

MPN

MQL

NC

ND NEG

POS

PQL

QC

RER

RPD TEF

TEQ

TNTC

RL

PRES

Client: Ensolun		Job ID: 890-2744-1
Project/Site: W	indward 2H CTB	SDG: 03D2024079
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

4

5

Case Narrative

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2744-1 SDG: 03D2024079

Job ID: 890-2744-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2744-1

Receipt

The sample was received on 8/11/2022 3:27 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Dil Fac

1

1

1 1

1

1

1

1

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

1

1

1

Dil Fac

Job ID: 890-2744-1 SDG: 03D2024079

Client Sample ID: SS02

Project/Site: Windward 2H CTB

Date Collected: 08/11/22 12:05 Date Received: 08/11/22 15:27

Sample Depth: 0.5

Client: Ensolum

Lab Sample ID: 890-2744-1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Benzene	< 0.00201	U	0.00201	mg/Kg		08/23/22 10:42	08/24/22 21:34
Toluene	0.00576		0.00201	mg/Kg		08/23/22 10:42	08/24/22 21:34
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		08/23/22 10:42	08/24/22 21:34
m-Xylene & p-Xylene	0.00878		0.00402	mg/Kg		08/23/22 10:42	08/24/22 21:34
o-Xylene	0.00284		0.00201	mg/Kg		08/23/22 10:42	08/24/22 21:34
Xylenes, Total	0.0116		0.00402	mg/Kg		08/23/22 10:42	08/24/22 21:34
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed
4-Bromofluorobenzene (Surr)	101		70 - 130			08/23/22 10:42	08/24/22 21:34
1,4-Difluorobenzene (Surr)	98		70 - 130			08/23/22 10:42	08/24/22 21:34
Method: Total BTEX - Total BTEX	(Calculation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
- analyto							
Total BTEX	0.0174		0.00402	mg/Kg			08/25/22 09:42
Total BTEX		0) (6C)	0.00402	mg/Kg			08/25/22 09:42
	Organics (DR	<mark>O) (GC)</mark> Qualifier	0.00402	mg/Kg Unit	 D	Prepared	08/25/22 09:42 Analyzed
Total BTEX Method: 8015 NM - Diesel Range	Organics (DR	Qualifier			D	Prepared	
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH	Organics (DR Result <49.9	Qualifier U	RL	Unit	D	Prepared	Analyzed
Total BTEX Method: 8015 NM - Diesel Range Analyte	o Organics (DR <u>Result</u> <49.9 ge Organics (DI	Qualifier U	RL	Unit	D	Prepared	Analyzed
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	o Organics (DR <u>Result</u> <49.9 ge Organics (DI	Qualifier U RO) (GC) Qualifier	<u></u>	Unit mg/Kg		<u>.</u>	Analyzed 08/16/22 09:21 Analyzed
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	organics (DR Result <49.9 ge Organics (DI Result <49.9	Qualifier U RO) (GC) Qualifier U	RL 49.9 RL 49.9	Unit mg/Kg Unit mg/Kg		Prepared 08/15/22 10:43	Analyzed 08/16/22 09:21 Analyzed 08/15/22 19:28
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	o Organics (DR Result <49.9 ge Organics (DI Result	Qualifier U RO) (GC) Qualifier U	RL	Unit mg/Kg Unit		Prepared	Analyzed 08/16/22 09:21 Analyzed
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	organics (DR Result <49.9 ge Organics (DI Result <49.9 <49.9	Qualifier U RO) (GC) Qualifier U U	RL 49.9 RL 49.9 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/15/22 10:43 08/15/22 10:43	Analyzed 08/16/22 09:21 Analyzed 08/15/22 19:28 08/15/22 19:28
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	organics (DR Result <49.9 ge Organics (DI Result <49.9	Qualifier U RO) (GC) Qualifier U U	RL 49.9 RL 49.9	Unit mg/Kg Unit mg/Kg		Prepared 08/15/22 10:43	Analyzed 08/16/22 09:21 Analyzed 08/15/22 19:28
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	organics (DR Result <49.9 ge Organics (DI Result <49.9 <49.9	Qualifier U RO) (GC) Qualifier U U U	RL 49.9 RL 49.9 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/15/22 10:43 08/15/22 10:43	Analyzed 08/16/22 09:21 Analyzed 08/15/22 19:28 08/15/22 19:28
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	organics (DR Result <49.9 ge Organics (D) Result <49.9 <49.9 <49.9	Qualifier U RO) (GC) Qualifier U U U	RL 49.9 RL 49.9 49.9 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/15/22 10:43 08/15/22 10:43 08/15/22 10:43	Analyzed 08/16/22 09:21 Analyzed 08/15/22 19:28 08/15/22 19:28

Method: 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	12.0	5.02	mg/Kg			08/16/22 06:43	1			

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-18428-A-9-A MS	Matrix Spike	96	101		
880-18428-A-9-B MSD	Matrix Spike Duplicate	99	104		6
890-2744-1	SS02	101	98		
LCS 880-32772/1-A	Lab Control Sample	105	98		
LCSD 880-32772/2-A	Lab Control Sample Dup	100	101		
MB 880-32772/5-A	Method Blank	79	118		8
Surrogate Legend					
BFB = 4-Bromofluorobe	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) Lab Sample ID **Client Sample ID** (70-130) 880-18058-A-1-B MS Matrix Spike 92 86 880-18058-A-1-C MSD Matrix Spike Duplicate 92 88 890-2744-1 SS02 80 87 LCS 880-32158/2-A Lab Control Sample 123 129 LCSD 880-32158/3-A Lab Control Sample Dup 119 123 MB 880-32158/1-A Method Blank 91 103

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-2744-1 SDG: 03D2024079

Page 62 of 123

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-32772/5-A

Matrix: Solid Analysis Batch: 32836

	МВ	МВ					-	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		08/23/22 10:42	08/24/22 14:51	1
Toluene	<0.00200	U	0.00200	mg/Kg		08/23/22 10:42	08/24/22 14:51	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		08/23/22 10:42	08/24/22 14:51	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		08/23/22 10:42	08/24/22 14:51	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		08/23/22 10:42	08/24/22 14:51	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		08/23/22 10:42	08/24/22 14:51	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130			08/23/22 10:42	08/24/22 14:51	1
1,4-Difluorobenzene (Surr)	118		70 - 130			08/23/22 10:42	08/24/22 14:51	1

Lab Sample ID: LCS 880-32772/1-A Matrix: Solid

Analysis Batch: 32836

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09872		mg/Kg		99	70 - 130	
Toluene	0.100	0.1103		mg/Kg		110	70 - 130	
Ethylbenzene	0.100	0.1125		mg/Kg		113	70 - 130	
m-Xylene & p-Xylene	0.200	0.2113		mg/Kg		106	70 - 130	
o-Xylene	0.100	0.1122		mg/Kg		112	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: LCSD 880-32772/2-A

Matrix: Solid

	Analysis Batch: 32836							Prep	Batch:	32772
		Spike	LCSD	LCSD				%Rec		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Benzene	0.100	0.09581		mg/Kg		96	70 - 130	3	35
	Toluene	0.100	0.1040		mg/Kg		104	70 - 130	6	35
	Ethylbenzene	0.100	0.1058		mg/Kg		106	70 - 130	6	35
	m-Xylene & p-Xylene	0.200	0.1977		mg/Kg		99	70 - 130	7	35
	o-Xylene	0.100	0.1052		mg/Kg		105	70 - 130	6	35
1										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-18428-A-9-A MS

Matrix: Solid aluaia Batahi 22926

Analysis Batch: 32836									Prep Bat	tch: 32772
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.0998	0.08869		mg/Kg		89	70 - 130	
Toluene	<0.00202	U	0.0998	0.09107		mg/Kg		91	70 - 130	

rlsbad

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 32772

Client Sample ID: Matrix Spike

Lab Sample ID: 880-18428-A-9-A MS

Lab Sample ID: 880-18428-A-9-B MSD

QC Sample Results

MS MS

MSD MSD

0.09044

0.09690

0.09457

0.1709

0.09105

Result Qualifier

Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Result

0.08911

0.1640

0.08683

Spike

Added

0.0998

0.200

0.0998

Limits 70 - 130

70 - 130

0.100

0.100

Client: Ensolum Project/Site: Windward 2H CTB

Matrix: Solid

Analyte

o-Xylene

Surrogate

Toluene

Ethylbenzene

o-Terphenyl

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 32836

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

U

U

MS MS

96

101

Qualifier

Qualifier

Result

<0.00202

< 0.00404

%Recovery

<0.00202 U

Job ID: 890-2744-1 SDG: 03D2024079

%Rec

Limits

%Rec

Limits

70 - 130

70 - 130

Client Sample ID: Method Blank

08/15/22 10:50

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 32158

%Rec

89

82

87

%Rec

90

97

94

85

91

08/15/22 10:43

D

D

Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 32772 70 - 130 70 - 130 70 - 130 7 **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA Prep Batch: 32772 RPD RPD Limit 70 - 130 2 35 70 - 130 6 35 70 - 130 35 6

35

35

1

4

5

Matrix: Solid			
Analysis Batch: 32836			
	Sample	Sample	Spike
Analyte	Result	Qualifier	Added
Benzene	<0.00202	U	0.100

<0.00202 U

<0.00202 U

103

m-Xylene & p-Xylene	<0.00404	U	0.201
o-Xylene	<0.00202	U	0.100
	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-32158/1-A
Matrix: Solid
Analysis Batch: 32121

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		08/15/22 10:43	08/15/22 10:50	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		08/15/22 10:43	08/15/22 10:50	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		08/15/22 10:43	08/15/22 10:50	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130			08/15/22 10:43	08/15/22 10:50	1

70 - 130

Lab Sample ID: LCS 880-32158/2-A	
Matrix: Solid	

Analysis Batch: 32121							Prep B	atch: 32158	
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	1000	1127		mg/Kg		113	70 - 130		
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1099		mg/Kg		110	70 - 130		
C10-C28)									

Eurofins Carlsbad

Prep Type: Total/NA

Client: Ensolum Project/Site: Windward 2H CTB

Method: 8015B NM - Diese

Lab Sample ID: LCS 880-32	158/2-4						Client	Sample	e ID: Lab Co	ontrol S	amnle	
Matrix: Solid	100/2-4						onem	oumpi		Type: To		
Analysis Batch: 32121										Batch:		
									1100	Batom	02100	
		LCS										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	123		70 - 130									
o-Terphenyl	129		70 - 130									
											_	
Lab Sample ID: LCSD 880-3	2158/3-A					Clier	nt Sam	ple ID:	Lab Contro			
Matrix: Solid										Гуре: То		
Analysis Batch: 32121										Batch:		
			Spike		LCSD				%Rec		RPD	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics			1000	1094		mg/Kg		109	70 - 130	3	20	
(GRO)-C6-C10			4000	4054				405	70 400	4	00	
Diesel Range Organics (Over			1000	1054		mg/Kg		105	70 - 130	4	20	
C10-C28)												
	LCSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	119		70 - 130									
o-Terphenyl	123		70 - 130									
-												
Lab Sample ID: 880-18058-A	A-1-B MS							Client	Sample ID			
Matrix: Solid									Prep 1	Гуре: То	tal/NA	
Analysis Batch: 32121									Prep	Batch:	32158	
	Sample	Sample	Spike	MS	MS				%Rec			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Gasoline Range Organics	<49.9	U	999	1002		mg/Kg		100	70 - 130			
(GRO)-C6-C10												
Diesel Range Organics (Over	<49.9	U	999	874.4		mg/Kg		88	70 - 130			
C10-C28)												
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 - 130
o-Terphenyl	86		70 - 130

Lab Sample ID: 880-18058-A-1-C MSD Matrix: Solid

Matrix: Solid Analysis Batch: 32121										Type: To Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	1014		mg/Kg		102	70 - 130	1	20
Diesel Range Organics (Over C10-C28)	<49.9	U	999	905.8		mg/Kg		91	70 _ 130	4	20
	MSD	MSD									

Page 9 of 19

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	92	70 - 130
o-Terphenyl	88	70 - 130

Eurofins Carlsbad

Client Sample ID: Matrix Spike Duplicate

SDG: 03D2024079

QC Sample Results

Job ID: 890-2744-1 SDG: 03D2024079

Client: Ensolum Project/Site: Windward 2H CTB

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-32160/1 Matrix: Solid	-A										Client S	ample ID:	Method Type: S	
Analysis Batch: 32201												Fiep	Type. 5	oluble
Analysis Batch. 52201		мв	MB											
Analyte	Re		Qualifier		RL		Unit		D	P	repared	Analy	zed	Dil Fac
Chloride		4.98			4.98		mg/K	a			opulou	08/16/22		1
-							0.	5						
Lab Sample ID: LCS 880-32160/2	2-A								Cli	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 32201														
				Spike	LC	S LCS	6					%Rec		
Analyte				Added		t Qua	alifier	Unit		D	%Rec	Limits		
Chloride				250	254.	1		mg/Kg			102	90 - 110		
- Lab Sample ID: LCSD 880-32160	D/3-∆							CI	iont S	am	nle ID: I	Lab Contro	ol Samol	
Matrix: Solid													Type: S	
Analysis Batch: 32201												iiop	1900.0	orabic
· ······				Spike	LCS	LCS	5D					%Rec		RPD
Analyte				Added	Resu	t Qua	alifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride				251	243.	5		mg/Kg		_	97	90 - 110	4	20
Chionde								0 0						
- ⁻ -	MS							0 0			Client	Sample ID) · Matrix	Spike
 Lab Sample ID: 880-18061-A-1-E	EMS							0 0			Client	Sample ID		
Lab Sample ID: 880-18061-A-1-E Matrix: Solid	MS										Client): Matrix Type: S	
Lab Sample ID: 880-18061-A-1-E		Samp	le	Spike	м	S MS					Client			
Lab Sample ID: 880-18061-A-1-E Matrix: Solid Analysis Batch: 32201	Sample	Samp Qualif		Spike Added		6 MS t Qua	lifier	Unit		D	Client %Rec	Prep		
Lab Sample ID: 880-18061-A-1-E Matrix: Solid	Sample					t Qua	alifier			<u>D</u>		Prep %Rec		
Lab Sample ID: 880-18061-A-1-E Matrix: Solid Analysis Batch: 32201 Analyte Chloride	Sample Result 207			Added	Resu	t Qua	llifier	Unit mg/Kg		_	%Rec	Prep %Rec Limits 90 - 110	Туре: S	oluble
Lab Sample ID: 880-18061-A-1-E Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A-1-F	Sample Result 207			Added	Resu	t Qua	lifier	Unit mg/Kg	Client	_	%Rec	Prep %Rec Limits 90 - 110 D: Matrix S	Type: S	
Lab Sample ID: 880-18061-A-1-E Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A-1-F Matrix: Solid	Sample Result 207			Added	Resu	t Qua	llifier	Unit mg/Kg	Client	_	%Rec	Prep %Rec Limits 90 - 110 D: Matrix S	Туре: S	
Lab Sample ID: 880-18061-A-1-E Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A-1-F	Sample Result 207 F MSD	Qualif	fier	Added 250	Resu 472	t Qua		Unit mg/Kg	Client	_	%Rec	Prep %Rec Limits 90 - 110 D: Matrix S Prep	Type: S	blicate
Lab Sample ID: 880-18061-A-1-E Matrix: Solid Analysis Batch: 32201 Analyte Chloride Lab Sample ID: 880-18061-A-1-F Matrix: Solid	Sample Result 207	Qualif	fier	Added	Resu 472	t Qua	D	Unit mg/Kg	Client	_	%Rec	Prep %Rec Limits 90 - 110 D: Matrix S	Type: S	

QC Association Summary

Client: Ensolum Project/Site: Windward 2H CTB

Job ID: 890-2744-1 SDG: 03D2024079

GC VOA

Prep Batch: 32772

ep Batch: 32772					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2744-1	SS02	Total/NA	Solid	5035	
MB 880-32772/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-32772/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-32772/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-18428-A-9-A MS	Matrix Spike	Total/NA	Solid	5035	
880-18428-A-9-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 32836					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2744-1	SS02	Total/NA	Solid	8021B	32772
MB 880-32772/5-A	Method Blank	Total/NA	Solid	8021B	32772
LCS 880-32772/1-A	Lab Control Sample	Total/NA	Solid	8021B	32772
LCSD 880-32772/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	32772
880-18428-A-9-A MS	Matrix Spike	Total/NA	Solid	8021B	32772
880-18428-A-9-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	32772
nalysis Batch: 32913					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2744-1	SS02	Total/NA	Solid	Total BTEX	

Analysis Batch: 32121

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2744-1	SS02	Total/NA	Solid	8015B NM	32158
MB 880-32158/1-A	Method Blank	Total/NA	Solid	8015B NM	32158
LCS 880-32158/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32158
LCSD 880-32158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32158
880-18058-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	32158
880-18058-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	32158

Prep Batch: 32158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2744-1	SS02	Total/NA	Solid	8015NM Prep	
MB 880-32158/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32158/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-18058-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-18058-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2744-1	SS02	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 32160

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2744-1	SS02	Soluble	Solid	DI Leach	
MB 880-32160/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32160/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32160/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

HPLC/IC (Continued)

Leach Batch: 32160 (Continued)

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
880-18061-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-18061-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batch: 32201					

Lab Sample ID 890-2744-1	Client Sample ID	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 32160
MB 880-32160/1-A	Method Blank	Soluble	Solid	300.0	32160
LCS 880-32160/2-A	Lab Control Sample	Soluble	Solid	300.0	32160
LCSD 880-32160/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32160
880-18061-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	32160
880-18061-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	32160
					1

5 6

Job ID: 890-2744-1 SDG: 03D2024079

Job ID: 890-2744-1 SDG: 03D2024079

Lab Sample ID: 890-2744-1 Matrix: Solid

Date Collected: 08/11/22 12:05 Date Received: 08/11/22 15:27

Project/Site: Windward 2H CTB

Client Sample ID: SS02

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	32772	08/23/22 10:42	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32836	08/24/22 21:34	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32913	08/25/22 09:42	SM	EET MID
Total/NA	Analysis	8015 NM		1			32211	08/16/22 09:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32158	08/15/22 10:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32121	08/15/22 19:28	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	32160	08/15/22 11:22	KS	EET MID
Soluble	Analysis	300.0		1			32201	08/16/22 06:43	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 11/23/2022 2:40:00 PM

Accreditation/Certification Summary

Client: Ensolum Project/Site: Windward 2H CTB

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	Pr	rogram	Identification Number	Expiration Date
xas	N	ELAP	T104704400-22-24	06-30-23
0,	1 /	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
the agency does not c	ffer certification.			
the agency does not o Analysis Method	ffer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

10

Job ID: 890-2744-1

SDG: 03D2024079

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2744-1 SDG: 03D2024079

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E = TestAmerica Laboratories, Standard Operating Procedure	dition, November 1986 And Its Updates.	
Laboratory R			
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-544(J	

Protocol References:

Laboratory References:

Sample Summary

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2744-1 SDG: 03D2024079

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-2744-1	SS02	Solid	08/11/22 12:05	08/11/22 15:27	0.5	4
						5
						8
						9
						12
						13
		Bill to: (if different)				
-------------------------------	--	--				
Project Manager: Kalei J	Kalei Jennings)				
	Ensolum, LLC	Company Name:				
	601 N Marienfeld St Suite 400	Address:				
te ZIP:	Midland, TX 79701	City, State ZIP:				
	817-683-2503	Email: kjennings@ensolum.com				
Name:	Windward 2H CTB	Turn Around				
er.		Routine Rush Code				
Project Location:	Due	Due Date:				
Sampler's Name:	Conner Shore TAT	TAT starts the day received by				
PO#		L				
SAMPLE RECEIPT	Temp Blank: Yes No We					
Samples Received Intact:	Yes No Thermometer ID-	Wet Ice: (Yes No				
	NAN N	tice: (Yes) No				
Sample Custody Seals:	Yes No N/A Temperature Reading:	Ice: (Yes				
otal Containers:		Ice: (Yes) No (NM, 004) -0.2				
Sample Identification	Matrix Sampled	Ice: (Yes) No Img: 5.6 ature: 5.6				
SS02	S 08.11.22 1	Ice: (Yes) No ing: 5.0 ature: 5.0 ature				
		Ice: (Yes) No Img: D. Q ature: D. Q ature: D. Q ature: D. Q ature: C. Q ature: G ature: G				
		Ice: (Yes) No Iling: 5 . Q ature: 5 . Q pled Depth Grab/ pled Comp				
		Ice: (Yes) No Img: 5.0 ature: 5.4 pled Depth Grab/ Depth Comp 05 0.5' G				
1		Ice: (Yes) No ling: D. Q ature: D. Q piled Depth Grab/ piled Comp 05 0.5' G				
X		Ice: (Yes) No Img: J. Q ature: J. Q ature: J. Q of 0.5' G 05 0.5' G				
1		Ice: (Yes) No atture: 5, 9 piled Depth Grab 05 0.5' G 05 0.5' G				
		Ice: (Yes) No Img: 5. V atture: 5. V pied Depth Grab/ Comp G 0.5' G G G				
Total 200.7 / 6010		Ice: (Yes) No atture: 5, 9 piled Depth Grab 05 0.5' G 05 G				
e: Signature of this document	99	Ice: (Yes) No ature: 5.9 piled Depth Grab piled Comp 05 0.5' G 05 0.5' G 05 G 05 C.5' C.5' C.5' C.5' C.5' C.5' C.5' C.5				
Relinguished by (Signature)	Total 200.7 / 6010 200.8 / 6020: BRCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U Hg: 163 Notice: Signature of this document and relinquishment of samples constitutes a vilid purchase order from client company to Eurofins Xenco. Its affiliates and subcontractors. It assigns standard terms and conditions of samples and shall not assume any stop analytic for expense time to the analytic the cost of samples and shall not assume any stop analytic to repense time to the same time will be an order unisets beyond the contractions.	Net Ice: / (ves) No D: // W. OOJ Diagonal reading: 5.0 9 impled Depth Grable # of 1205 0.5' G 1 1205 <td< td=""></td<>				
	Total 200.7 / 6010 200.8 / 6020: BRCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu F Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Notce: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcon of service. Eurofins Xenco, will be applied to each project and a charge of \$6 for each samples unmitted to Eurofins Xenco, but not analyzed. The Client if such of Eurofins Xenco, but not analyzed. The Client is document to Second by: (Signature) Date/Time Relinquished by: (Signature)	ime Depth Grab/ # npled Depth Comp Comp 205 0.5' G 205				

Chain of Custody

Page 73 of 123

Job Number: 890-2744-1 SDG Number: 03D2024079

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2744 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-2744-1 SDG Number: 03D2024079

List Source: Eurofins Midland

List Creation: 08/15/22 08:36 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2744 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 10/31/2022 9:20:54 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 11/23/2022 2:40:00 PM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2745-1

Laboratory Sample Delivery Group: 03D2024079 Client Project/Site: Windward 2H CTB

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

Authorized for release by: 8/25/2022 3:18:00 PM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

SDG: 03D2024079

Laboratory Job ID: 890-2745-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

	Definitions/Glossary	
Client: Ensolum		
-	indward 2H CTB SDG: 03D2024079	
Qualifiers		Ĩ
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	·
U	Indicates the analyte was analyzed for but not detected.	
		-
Glossary		-
Abbreviation	These commonly used abbreviations may or may not be present in this report.	-
¤ N D	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER Dil Fac	Duplicate Error Ratio (normalized absolute difference) Dilution Factor	
DII Fac	Dilution Factor Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive Quality Control

PQL

QC

RER

RL RPD

TEF

TEQ TNTC

PRES

Job ID: 890-2745-1 SDG: 03D2024079

Job ID: 890-2745-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2745-1

Receipt

The sample was received on 8/11/2022 3:27 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: SS01 (890-2745-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-32568 and analytical batch 880-32832 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-32339 and analytical batch 880-32436 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: 8021B - Volatile Organic Compounds (GC)

Job ID: 890-2745-1 SDG: 03D2024079

Client Sample ID: SS01

Project/Site: Windward 2H CTB

Date Collected: 08/11/22 12:00 Date Received: 08/11/22 15:27

Sample Depth: 0.5

Client: Ensolum

Analyte

Chloride

Lab	Sample	ID:	890	-274	45-	1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.401	U	0.401	mg/Kg		08/20/22 15:24	08/25/22 14:26	200
Toluene	32.6		0.401	mg/Kg		08/20/22 15:24	08/25/22 14:26	200
Ethylbenzene	17.7		0.401	mg/Kg		08/20/22 15:24	08/25/22 14:26	200
m-Xylene & p-Xylene	70.8		0.802	mg/Kg		08/20/22 15:24	08/25/22 14:26	200
o-Xylene	27.3		0.401	mg/Kg		08/20/22 15:24	08/25/22 14:26	200
Xylenes, Total	98.1		0.802	mg/Kg		08/20/22 15:24	08/25/22 14:26	200
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	193	S1+	70 - 130			08/20/22 15:24	08/25/22 14:26	200
1,4-Difluorobenzene (Surr)	102		70 - 130			08/20/22 15:24	08/25/22 14:26	200
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	148		0.802	mg/Kg			08/25/22 14:47	1
Mothod: 2015 NM Dissel Dan	no Organico (DD							
Method: 8015 NM - Diesel Rang Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			249	mg/Kg		Flepaleu	08/16/22 09:21	
Total TPH	13700		249	ilig/Kg			06/10/22 09.21	
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	3070		249	mg/Kg		08/15/22 10:43	08/16/22 07:42	5
Diesel Range Organics (Over C10-C28)	8910		249	mg/Kg		08/15/22 10:43	08/16/22 07:42	5
Oll Range Organics (Over C28-C36)	1730		249	mg/Kg		08/15/22 10:43	08/16/22 07:42	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
	118		70 - 130			08/15/22 10:43	08/16/22 07:42	5
1-Chlorooctane	110							

RL

5.00

Unit

mg/Kg

D

Prepared

Analyzed

08/19/22 01:26

Dil Fac

1

Result Qualifier

Page 81 of 123

Job ID: 890-2745-1 SDG: 03D2024079

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
890-2745-1	SS01	193 S1+	102		
890-2750-A-1-H MS	Matrix Spike	119	99		6
890-2750-A-1-I MSD	Matrix Spike Duplicate	88	90		
LCS 880-32568/1-A	Lab Control Sample	114	118		
LCSD 880-32568/2-A	Lab Control Sample Dup	130	103		
MB 880-32568/5-A	Method Blank	101	90		8
Surrogate Legend					
BFB = 4-Bromofluorobe					9

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) Lab Sample ID **Client Sample ID** (70-130) 880-18058-A-1-B MS Matrix Spike 92 86 880-18058-A-1-C MSD Matrix Spike Duplicate 92 88 890-2745-1 SS01 118 82 LCS 880-32158/2-A Lab Control Sample 123 129 LCSD 880-32158/3-A Lab Control Sample Dup 119 123 MB 880-32158/1-A Method Blank 91 103

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: I	MB 880-32568/5-A

Matrix: Solid Analysis Batch: 32832

	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		08/20/22 15:24	08/25/22 10:47	1
Toluene	<0.00200	U	0.00200	mg/Kg		08/20/22 15:24	08/25/22 10:47	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		08/20/22 15:24	08/25/22 10:47	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		08/20/22 15:24	08/25/22 10:47	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		08/20/22 15:24	08/25/22 10:47	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		08/20/22 15:24	08/25/22 10:47	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130			08/20/22 15:24	08/25/22 10:47	1
1,4-Difluorobenzene (Surr)	90		70 - 130			08/20/22 15:24	08/25/22 10:47	1

Lab Sample ID: LCS 880-32568/1-A Matrix: Solid

Analysis Batch: 32832

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08421		mg/Kg		84	70 - 130	
Toluene	0.100	0.08069		mg/Kg		81	70 - 130	
Ethylbenzene	0.100	0.08760		mg/Kg		88	70 - 130	
m-Xylene & p-Xylene	0.200	0.1782		mg/Kg		89	70 - 130	
o-Xylene	0.100	0.1040		mg/Kg		104	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	118		70 - 130

Lab Sample ID: LCSD 880-32568/2-A

Matrix: Solid

Analysis Batch: 32832							Prep	Batch:	32568
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09160		mg/Kg		92	70 - 130	8	35
Toluene	0.100	0.09082		mg/Kg		91	70 - 130	12	35
Ethylbenzene	0.100	0.1003		mg/Kg		100	70 - 130	13	35
m-Xylene & p-Xylene	0.200	0.2090		mg/Kg		105	70 - 130	16	35
o-Xylene	0.100	0.1219		mg/Kg		122	70 - 130	16	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	130		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 890-2750-A-1-H MS Matrix: Solid

Analysis Batch: 32832

Analysis Batch: 32832									Prep	Batch: 32568
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F1 F2	0.0998	0.05443	F1	mg/Kg		55	70 - 130	
Toluene	<0.00201	U F1 F2	0.0998	0.05913	F1	mg/Kg		59	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 32568

QC Sample Results

Client: Ensolum Project/Site: Windward 2H CTB

d: 8021B - Volatile O 47 Meth 41

Job ID: 890-2745-1 SDG: 03D2024079

Lab Sample ID: 890-2750-A Matrix: Solid	-1-H MS									Client S	Sample ID: I Prep Ty		-
Analysis Batch: 32832											Prep B		
,	Sample	Sample	e Spik	9	MS	MS					%Rec		
Analyte	-	Qualifie			Result	Qualifier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00201	U F1 F2	2 0.099	3 0.	.06688	F1	mg/Kg		_	67	70 - 130		
n-Xylene & p-Xylene	<0.00402	U F1 F	2 0.20) (0.1288	F1	mg/Kg			65	70 - 130		
p-Xylene	<0.00201	U F1 F2	2 0.099	3 0.	.07445		mg/Kg			75	70 - 130		
	MS	MS											
Surrogate	%Recovery	Qualifi	er Limits										
4-Bromofluorobenzene (Surr)			70 - 13	2									
1,4-Difluorobenzene (Surr)	99		70 - 13	0									
Lab Sample ID: 890-2750-A	-1-I MSD							Clier	nt S	ample ID:	Matrix Spil	ce Du	olicate
Matrix: Solid											Prep Ty		
Analysis Batch: 32832											Prep B		
-	Sample	Sample	e Spik	9	MSD	MSD					%Rec		RPD
Analyte	Result	Qualifie	er Adde	t	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Benzene	<0.00201	U F1 F	2 0.099	4 0.	.01901	F1 F2	mg/Kg		_	19	70 - 130	96	35
Toluene	<0.00201	U F1 F2	2 0.099	4 0.	.02694	F1 F2	mg/Kg			27	70 - 130	75	35
Ethylbenzene	<0.00201	U F1 F2	2 0.099	4 0.	.02636	F1 F2	mg/Kg			27	70 - 130	87	35
m-Xylene & p-Xylene	<0.00402	UF1F	2 0.19	90.	.04893	F1 F2	mg/Kg			25	70 - 130	90	35
o-Xylene	<0.00201	U F1 F2	2 0.099	4 0	.03111	F1 F2	mg/Kg			31	70 - 130	82	35
	MSD	MSD											
Surrogate	%Recovery	Qualifi	er Limits										
4-Bromofluorobenzene (Surr)	88		70 - 13	0									
1,4-Difluorobenzene (Surr)	90		70 - 13	0									
lethod: 8015B NM - Die	sel Range O	rganio	cs (DRO) (G	C)									
Lab Sample ID: MB 880-321	58/1-A									Client Sa	ample ID: M	ethod	Blanl
Matrix: Solid											Prep Ty	p <mark>e: To</mark>	tal/NA
Analysis Batch: 32121											Prep B	atch:	32158
		MB M											
Analyte		esult Q	·	RL		Unit		D	P	repared	Analyzed	I	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	•	<50.0 U	1	50.0		mg/ł	Κg		08/1	5/22 10:43	08/15/22 10	:50	
Diesel Range Organics (Over C10-C28)	•	<50.0 U	I	50.0		mg/ł	Κg		08/1	5/22 10:43	08/15/22 10	:50	

Matrix: Solid		
Analysis Batch: 32121		

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		08/15/22 10:43	08/15/22 10:50	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		08/15/22 10:43	08/15/22 10:50	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		08/15/22 10:43	08/15/22 10:50	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 _ 130			08/15/22 10:43	08/15/22 10:50	1

	······,	
1-Chlorooctane	91	 70 - 130
o-Terphenyl	103	70 - 130

Lab Sample ID: LCS 880-32158/2-A Matrix: Solid alvsis Ratch: 32121

Analysis Batch: 32121							Prep	Batch: 32158
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1127		mg/Kg		113	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1099		mg/Kg		110	70 - 130	
C10-C28)								

Prep Type: Total/NA

08/15/22 10:43 08/15/22 10:50

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-32158/2-A

Lab Sample ID: LCSD 880-32158/3-A

Lab Sample ID: 880-18058-A-1-B MS

QC Sample Results

Client: Ensolum Project/Site: Windward 2H CTB

Matrix: Solid

Surrogate

1-Chlorooctane o-Terphenyl

Matrix: Solid

Analyte

C10-C28)

Surrogate

1-Chlorooctane o-Terphenyl

Matrix: Solid

(GRO)-C6-C10

Analyte

Analysis Batch: 32121

Analysis Batch: 32121

Gasoline Range Organics (GRO)-C6-C10

Diesel Range Organics (Over

Analysis Batch: 32121

Gasoline Range Organics

Diesel Range Organics (Over

Method: 8015B NM - Diesel Range

%Recov

%Recov

24079	: 03D202	SDG								
						d)	ontinue	0RO) (GC) (0	ganics (D	nge Or
amplo	ontrol Sc	ID: Lab Co	Sample	Client						
	ype: Tot		Sample	Chem						
	Batch:									
										LCS
								Limits 70 - 130	Qualifier	Recovery 123
								70 - 130 70 - 130		123
								10 - 150		123
e Dup	I Sample	Lab Contro	ple ID: L	nt Sam	Clier					-A
	ype: Tot									
32158	Batch:	Prep								
RPD		%Rec				LCSD	LCSD	Spike		
Limit	RPD	Limits	%Rec	D	Unit	Qualifier	Result	Added		
20	3	70 - 130	109		mg/Kg		1094	1000		
20	4	70 - 130	105		m a // a		1054	1000		
20	4	70 - 130	105		mg/Kg		1054	1000		
									1.000	LCSD
								Limits		Recovery
								70 - 130	Quanner	119
								70 <u>-</u> 130		123
										.20
Spike	: Matrix	Sample ID	Client							S
tal/NA	ype: Tot	Prep T								
32158	Batch:	Prep								
		%Rec				MS	MS	Spike	Sample	Sample
		Limits	%Rec	D	Unit	Qualifier	Result	Added	Qualifier	Result
		70 - 130	100		mg/Kg		1002	999	U	<49.9

mg/Kg

C10-C28)			
	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 _ 130
o-Terphenyl	86		70 - 130

<49.9 U

Lab Sample ID: 880-18058-A-1-C MSD Matrix: Solid

Analysis Batch: 32121										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	1014		mg/Kg		102	70 - 130	1	20
Diesel Range Organics (Over C10-C28)	<49.9	U	999	905.8		mg/Kg		91	70 _ 130	4	20
	MSD	MSD									

999

874.4

	INISD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 _ 130
o-Terphenyl	88		70 - 130

Client Sample ID: Matrix Spike Duplicate

70 - 130

88

Prep Type: Total/NA

Page 84 of 123

Job ID: 890-2745-1

QC Sample Results

Job ID: 890-2745-1 SDG: 03D2024079

Client: Ensolum Project/Site: Windward 2H CTB

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-32339/1-A Matrix: Solid									0	Client S	ample ID:	Method Type: S	
Analysis Batch: 32436											Fieh	Type. 5	oluble
Analysis Batch. 32430		МВ М	B										
Analyte	R	esult Q			RL	Unit		D	Pr	epared	Analy	zed	Dil Fac
Chloride		5.00 U			5.00					opulou	08/18/22		1
							-9						
Lab Sample ID: LCS 880-32339/2-/	4							Cli	ent	Sample	D: Lab C	ontrol S	ample
Matrix: Solid											Prep	Type: S	oluble
Analysis Batch: 32436													
				Spike	LCS	LCS					%Rec		
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride				250	244.2		mg/Kg			98	90 _ 110		
Lab Samula ID: LCSD 990 22220/2							0				l ah Cantu		D
Lab Sample ID: LCSD 880-32339/3 Matrix: Solid	р-А						CI	ient S	am	pie ID: I	Lab Contro		
Matrix, Soliu											Freu	Type: S	olubi
Analysis Patch: 22426													
Analysis Batch: 32436				Snike	LCSD								
				Spike Added		LCSD Qualifier	Unit		D	%Rec	%Rec		RPD
Analyte				Spike Added 250		Qualifier	_ <mark>Unit</mark> mg/Kg		<u>D</u>	% Rec 97		0	RPE Limi
Analyte				Added	Result	Qualifier			<u>D</u>		%Rec Limits	RPD	RPC Limi
Analyte				Added	Result	Qualifier			<u>D</u>	97	%Rec Limits	RPD 0	RPI Limi 20
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M				Added	Result	Qualifier			<u>D</u>	97	%Rec Limits 90 - 110 Sample IE	RPD 0	RPE Limi 20 Spike
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid				Added 250	Result	Qualifier			<u>D</u>	97	%Rec Limits 90 - 110 Sample IE Prep	RPD 0	RPE Limi 20 Spike
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid	//S Sample	Sample		Added	Result 243.2	Qualifier			<u>D</u>	97	%Rec Limits 90 - 110 Sample IE	RPD 0	RPD Limit 20 Spike
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid Analysis Batch: 32436 Analyte	Sample Result	Qualifie		Added 250 Spike Added	Result 243.2 MS Result	Qualifier MS Qualifier	mg/Kg		<u>D</u>	97 Client %Rec	%Rec Limits 90 - 110 Sample IE Prep %Rec Limits	RPD 0	RPD Limit 20 Spike
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid Analysis Batch: 32436 Analyte	Sample	Qualifie		Added 250 Spike	Result 243.2 MS	Qualifier MS Qualifier	mg/Kg			97 Client	%Rec Limits 90 - 110 Sample IC Prep %Rec	RPD 0	RPE Limi 20 Spike
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid Analysis Batch: 32436 Analyte Chloride	Sample Result 855	Qualifie		Added 250 Spike Added	Result 243.2 MS Result	Qualifier MS Qualifier	mg/Kg		<u>D</u>	97 Client %Rec 136	%Rec Limits 90 - 110 Sample II Prep %Rec Limits 90 - 110	0 P: Matrix Type: S	RPI Limi 20 Spike oluble
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid Analysis Batch: 32436 Analyte Chloride Lab Sample ID: 880-17981-A-1-D M	Sample Result 855	Qualifie		Added 250 Spike Added	Result 243.2 MS Result	Qualifier MS Qualifier	mg/Kg	Client	<u>D</u>	97 Client %Rec 136	%Rec Limits 90 - 110 Sample IE Prep %Rec Limits 90 - 110 D: Matrix S	 P: Matrix Type: S 	RPI Limi 20 Spike oluble
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid Analysis Batch: 32436 Analyte Chloride Lab Sample ID: 880-17981-A-1-D M Matrix: Solid	Sample Result 855	Qualifie		Added 250 Spike Added	Result 243.2 MS Result	Qualifier MS Qualifier	mg/Kg	Client	<u>D</u>	97 Client %Rec 136	%Rec Limits 90 - 110 Sample IE Prep %Rec Limits 90 - 110 D: Matrix S	0 P: Matrix Type: S	RPE Limi 20 Spike oluble
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid Analysis Batch: 32436 Analyte Chloride Lab Sample ID: 880-17981-A-1-D M	Sample Result 855	Qualifie F1	ər	Added 250 Spike Added 248	Result 243.2 MS Result 1192	Qualifier MS Qualifier F1	mg/Kg	Client	<u>D</u>	97 Client %Rec 136	%Rec Limits 90 - 110 Sample IE Prep %Rec Limits 90 - 110 D: Matrix S Prep	 P: Matrix Type: S 	RPE Limi 20 Spike oluble
Analyte Chloride Lab Sample ID: 880-17981-A-1-C M Matrix: Solid Analysis Batch: 32436 Analyte Chloride Lab Sample ID: 880-17981-A-1-D M Matrix: Solid	Sample Result 855 ASD Sample	Qualifie F1	er	Added 250 Spike Added	Result 243.2 MS Result 1192	Qualifier MS Qualifier F1 MSD	mg/Kg	Client	<u>D</u>	97 Client %Rec 136	%Rec Limits 90 - 110 Sample IE Prep %Rec Limits 90 - 110 D: Matrix S	 P: Matrix Type: S 	RPD Limit 20 Spike oluble

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: Windward 2H CTB

Job ID: 890-2745-1 SDG: 03D2024079

GC VOA

Prep Batch: 32568

ab Sample ID.	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
90-2745-1	SS01	Total/NA	Solid	5035	
MB 880-32568/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-32568/1-A	Lab Control Sample	Total/NA	Solid	5035	
_CSD 880-32568/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2750-A-1-H MS	Matrix Spike	Total/NA	Solid	5035	
890-2750-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 32832					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-2745-1	SS01	Total/NA	Solid	8021B	32568
MB 880-32568/5-A	Method Blank	Total/NA	Solid	8021B	32568
LCS 880-32568/1-A	Lab Control Sample	Total/NA	Solid	8021B	32568
_CSD 880-32568/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	32568
390-2750-A-1-H MS	Matrix Spike	Total/NA	Solid	8021B	32568
890-2750-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	32568
nalysis Batch: 32989					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	SS01	Total/NA	Solid	Total BTEX	

Analysis Batch: 32121

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2745-1	SS01	Total/NA	Solid	8015B NM	32158
MB 880-32158/1-A	Method Blank	Total/NA	Solid	8015B NM	32158
LCS 880-32158/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32158
LCSD 880-32158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32158
880-18058-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	32158
880-18058-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	32158

Prep Batch: 32158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2745-1	SS01	Total/NA	Solid	8015NM Prep	
MB 880-32158/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32158/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-18058-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-18058-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 32215					
l ah Samplo ID	Client Sample ID	Bron Type	Matrix	Mothod	Prop Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2745-1	SS01	Total/NA	Solid	8015 NM	
—					

HPLC/IC

Leach Batch: 32339

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2745-1	SS01	Soluble	Solid	DI Leach	
MB 880-32339/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32339/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32339/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Job ID: 890-2745-1 SDG: 03D2024079

HPLC/IC (Continued)

Leach Batch: 32339 (Continued)

Lab Sample ID 880-17981-A-1-C MS	Client Sample ID Matrix Spike	Prep Type Soluble	Matrix Solid	DI Leach	Prep Batch
880-17981-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batch: 32436					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2745-1	SS01	Soluble	Solid	300.0	32339
MB 880-32339/1-A	Method Blank	Soluble	Solid	300.0	32339
LCS 880-32339/2-A	Lab Control Sample	Soluble	Solid	300.0	32339
LCSD 880-32339/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32339
880-17981-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	32339
880-17981-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	32339

Eurofins Carlsbad

Job ID: 890-2745-1 SDG: 03D2024079

Lab Sample ID: 890-2745-1 Matrix: Solid

Date Collected: 08/11/22 12:00 Date Received: 08/11/22 15:27

Client Sample ID: SS01

Project/Site: Windward 2H CTB

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	32568	08/20/22 15:24	MR	EET MID
Total/NA	Analysis	8021B		200	5 mL	5 mL	32832	08/25/22 14:26	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32989	08/25/22 14:47	SM	EET MID
Total/NA	Analysis	8015 NM		1			32215	08/16/22 09:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	32158	08/15/22 10:43	DM	EET MID
Total/NA	Analysis	8015B NM		5			32121	08/16/22 07:42	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32339	08/17/22 09:34	СН	EET MID
Soluble	Analysis	300.0		1			32436	08/19/22 01:26	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 11/23/2022 2:40:00 PM

Accreditation/Certification Summary

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	P	rogram	Identification Number	Expiration Date
as	N	ELAP	T104704400-22-24	06-30-23
• •	are included in this report, b	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for v
the agency does not of	fer certification.			
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

10

Job ID: 890-2745-1

SDG: 03D2024079

Eurofins Carlsbad

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2745-1 SDG: 03D2024079

ethod	Method Description	Protocol	Laboratory
)21B	Volatile Organic Compounds (GC)	SW846	EET MID
tal BTEX	Total BTEX Calculation	TAL SOP	EET MID
15 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
5B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
0.0	Anions, Ion Chromatography	MCAWW	EET MID
5	Closed System Purge and Trap	SW846	EET MID
5NM Prep	Microextraction	SW846	EET MID
each	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2745-1 SDG: 03D2024079

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-2745-1	SS01	Solid	08/11/22 12:00	08/11/22 15:27	0.5	4
						5
						8
						9
						12
						13

	Xenco	0		EL Paso Hobbs, I	NM (575	5) 585-3444) 392-7550,	Carlsbad, NM	EL Paso, TX (915) 585-3443, Lubbock, TX (806) / 94-1286 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199					2
				Rill to: (if different)	5	Kalei . lennions	8			WW	Work Order Comments	Comments	9
Company Name: Er	Ensolum, LLC		0	Company Name:	m l	Ensolum, LLC	0		Progr	am: UST/PST		Program: UST/PST 🗌 PRP 🗌 Brownfields 🗌 RRC 🗌	Superfund
	601 N Marienfeld St Suite 400	t Suite 400	Þ	Address:	60	1 N Marier	601 N Marienfeld St Suite 400	400	State	State of Project:	l	ſ	
e ZIP:	Midland, TX 79701		0	City, State ZIP:	Mi	Midland, TX 79701	79701		Repor	ting: Level II	evel III	Reporting: Level II CLevel III PST/UST TRRP	
	817-683-2503		Email: k	Email: kjennings@ensolum.com	olum.cc	m			Delive	Deliverables: EDD	ADaf	ADaPT Other:	ā
Project Name:	Windward 2H CTB	нств	Turn /	Turn Around	-			ANALYSI	ANALYSIS REQUEST			Preservative Codes	ative C
Project Number:	03D2024079	079	Routine	Rush C	Code							None: NO	DI Water: H ₂ O
Project Location:			Due Date:		_							Cool: Cool	MeOH: Me
Sampler's Name:	Conner Shore	hore	TAT starts the day received by	day received by						-	-	HCL: HC	HNO3: HN
PO #			the lab, if recei	the lab, if received by 4:30pm	ers							H ₂ SO ₄ : H ₂	NaOH: Na
SAMPLE RECEIPT		: Ves No	Wet Ice: (Yes No	nete	.0}						H ₃ PO ₄ : HP	
Samples Received Intact:	ict Yds No	Thermometer ID:	1	PAR BA		300						NaHSO4: NABIS) IS
Cooler Custody Seals:	Yes No	MA Correction Factor:	Factor:	10.0		:PA:	-					Na2S2O3: NaSO3	03
Sample Custody Seals:	Yes No	N/A Temperature Reading:	re Reading:	5.6		-	1	890-274	45 Chain of Custody	renar		Zn Acetate+NaOH: Zn	aOH: Zn
Sample Identification		Matrix Date	Date Time Sampled Sampled	Depth Grab/	Cont Cont	PH (801	3TEX (80					Sample Comments	Comm
SS01	S	08.11.22		0.5' G		+	×					_1	
				/	-								
		\backslash											
	111				-								
6													
12					-	-	_						
					-	-	-						
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	0 200.8 / 6020: Metal(s) to be an		BRCRA 13PPM	CRA 13PPM Texas 11 AI	AI Sb	As Ba I b As Ba	Be B Cd Ca Be Cd Cr C	o Cu Pb Mr	re Pb Mg Mn Mo Ni Mo Ni Se Ag TI U	n Mo Ni K Se Ag Ti U	~	Ag SiO ₂ Na Sr TI Sn U Hg:1631/245.1/7470/	U V Zn 17471
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcon of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for an uloses or expenses incurred by the cost of samples and shall not assume any responsibility for an uloses or expenses incurred by the cost of samples and shall not assume any responsibility for an uloses or expenses incurred by the cost of samples and shall not assume any responsibility for an uloses or expenses incurred by the cost of samples and shall not assume any responsibility for an uloses or expenses incurred by the client if such	cument and relinquishr will be liable only for th	e cost of samples co	nstitutes a valid pu and shall not assu	rchase order from (ne any responsibilit	lient com y for any	npany to Eur losses or ex	ofins Xenco, its penses incurred	der from client company to Eurofina Xenco, its affiliates and subcontractors. It assigns standard terms and conditions ponsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control for each anomed without to Eurofina Xenco, but not analyzed. These terms will be enforced unless previously neoditated.	tractors. It assig losses are due to	Itractors. It assigns standard terms and conditions losses are due to circumstances beyond the control se terns will be enforced unless previously neoottat	and conditions ond the control riously negotiate	P-	
Relinquished by: (Signature)	(Signature)	Received by;	ed by;/(Signature)	ure)	0	Date/Time	Re	Relinquished by: (\$	Signature)	Receive	Received by: (Signature)	ure)	Date/Time
Ñ.		all	M	0	2	1:221	201						

5

12 13 14

Chain of Custody

Job Number: 890-2745-1 SDG Number: 03D2024079

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2745 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-2745-1 SDG Number: 03D2024079

List Source: Eurofins Midland

List Creation: 08/15/22 08:36 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2745 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 10/31/2022 9:20:54 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 11/23/2022 2:40:00 PM

Visit us at:

Ask— The Expert 🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2913-1

Laboratory Sample Delivery Group: Lea County NM Client Project/Site: Windward 2H CTB

For:

Ensolum 2351 W. Northwest Hwy Suite 1203 Dallas, Texas 75220

Attn: Joe Gable

RAMER

Authorized for release by: 9/21/2022 5:14:33 PM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

SDG: Lea County NM

Page 96 of 123

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

	Definitions/Glossary	
Client: Ensolun	-	-1
	findward 2H CTB SDG: Lea County N	
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	-
F1	MS and/or MSD recovery exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	-
Glossary		- 1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
MQL		
NC	Not Calculated	

Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

ND

PQL Practical Quantitation Limit PRES Presumptive

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Carlsbad

Job ID: 890-2913-1 SDG: Lea County NM

Job ID: 890-2913-1

Client: Ensolum

Laboratory: Eurofins Carlsbad

Project/Site: Windward 2H CTB

Narrative

Job Narrative 890-2913-1

Receipt

The samples were received on 9/9/2022 9:22 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-34858 and analytical batch 880-34895 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-34181/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-34181 and analytical batch 880-34171 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-34181 and analytical batch 880-34171 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: 8021B - Volatile Organic Compounds (GC)

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

Qualifier

<0.00201 U

<0.00201 U

<0.00201 U

<0.00402 U

<0.00201 U

<0.00402 U

91

112

<0.00402 U

212

Result Qualifier

Result Qualifier

%Recovery

RL

0.00201

0.00201

0.00201

0.00402

0.00201

0.00402

Limits

70 - 130

70 - 130

RL

RL

49.9

0.00402

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

09/19/22 15:06

09/19/22 15:06

09/19/22 15:06

09/19/22 15:06

09/19/22 15:06

09/19/22 15:06

Prepared

09/19/22 15:06

09/19/22 15:06

Dil Fac

1

1

1

1

1

Dil Fac

Job ID: 890-2913-1 SDG: Lea County NM

Project/Site: Windward 2H CTB Client Sample ID: BH01

Date Collected: 09/08/22 12:00 Date Received: 09/09/22 09:22

Sample Depth: 1

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: Ensolum

SDG: Lea County N

Lab Sample ID: 890-2913-1 Matrix: Solid

Analyzed

09/21/22 13:20

09/21/22 13:20

09/21/22 13:20

09/21/22 13:20

09/21/22 13:20

09/21/22 13:20

Analyzed

09/21/22 13:20

09/21/22 13:20

Lab Sample ID: 890-2913-2

Matrix: Solid

4 5 6

Unit	D	Prepared	Analyzed	Dil Fac	
mg/Kg			09/21/22 15:17	1	
Unit	D	Prepared	Analyzed	Dil Fac	13
mg/Kg			09/13/22 10:25	1	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9	mg/Kg		09/12/22 08:48	09/12/22 14:36	1
(GRO)-C6-C10								
Diesel Range Organics (Over	80.5		49.9	mg/Kg		09/12/22 08:48	09/12/22 14:36	1
C10-C28)								
Oll Range Organics (Over	131		49.9	mg/Kg		09/12/22 08:48	09/12/22 14:36	1
C28-C36)								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130			09/12/22 08:48	09/12/22 14:36	1
o-Terphenyl	83		70 - 130			09/12/22 08:48	09/12/22 14:36	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22.1		4.99	mg/Kg			09/14/22 22:47	1

Client Sample ID: BH01

Date Collected: 09/08/22 12:10

Date Received: 09/09/22 09:22

Sample Depth: 2

Method: 8021B - Volatile Orga	nic Compounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		09/19/22 15:06	09/21/22 13:40	1
Toluene	<0.00200	U	0.00200	mg/Kg		09/19/22 15:06	09/21/22 13:40	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/19/22 15:06	09/21/22 13:40	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		09/19/22 15:06	09/21/22 13:40	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/19/22 15:06	09/21/22 13:40	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		09/19/22 15:06	09/21/22 13:40	1

Eurofins Carlsbad

Matrix: Solid

5

Client Sample Results

Job ID: 890-2913-1 SDG: Lea County NM

Lab Sample ID: 890-2913-2

Client Sample ID: BH01

Project/Site: Windward 2H CTB

Date Collected: 09/08/22 12:10 Date Received: 09/09/22 09:22

Sample Depth: 2

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130			09/19/22 15:06	09/21/22 13:40	1
1,4-Difluorobenzene (Surr)	111		70 - 130			09/19/22 15:06	09/21/22 13:40	1
- Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			09/21/22 15:17	1
- Method: 8015 NM - Diesel Range	e Organics (DR	0) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	95.0		49.8	mg/Kg			09/13/22 10:25	1
- Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						
Analyte	• • ·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U *1	49.8	mg/Kg		09/12/22 08:48	09/12/22 14:57	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		09/12/22 08:48	09/12/22 14:57	1
Oll Range Organics (Over C28-C36)	95.0		49.8	mg/Kg		09/12/22 08:48	09/12/22 14:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130			09/12/22 08:48	09/12/22 14:57	1
o-Terphenyl	87		70 - 130			09/12/22 08:48	09/12/22 14:57	1
- Method: 300.0 - Anions, Ion Chr	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 890-2913-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		5
Lab Sample ID 880-19019-A-1-E MS	Client Sample ID Matrix Spike	(70-130) 	(70-130) 114	·	
880-19019-A-1-F MSD	Matrix Spike Duplicate	92	114		6
890-2913-1	BH01	91	112		
890-2913-2	BH01	86	111		
LCS 880-34858/1-A	Lab Control Sample	91	102		
LCSD 880-34858/2-A	Lab Control Sample Dup	94	103		8
MB 880-34692/5-A	Method Blank	102	116		
MB 880-34858/5-A	Method Blank	104	116		9
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Reco
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
90-2907-A-1-C MS	Matrix Spike	98	93	
390-2907-A-1-D MSD	Matrix Spike Duplicate	99	93	
890-2913-1	BH01	81	83	
90-2913-2	BH01	85	87	
CS 880-34181/2-A	Lab Control Sample	144 S1+	151 S1+	
_CSD 880-34181/3-A	Lab Control Sample Dup	122	130	
MB 880-34181/1-A	Method Blank	105	109	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Client: Ensolum

Job ID: 890-2913-1 SDG: Lea County NM

Project/Site: Windward 2H CTB Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-34692/5 Matrix: Solid	A									Client Sa	mple ID: Meth	
											Prep Type:	
Analysis Batch: 34895		мв	MD								Prep Bate	:n: 346
Analyte			Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil
Benzene	<0.002			0.00200		<u>mg/K</u>	ζα.	_		6/22 16:15	09/20/22 17:37	
Toluene	<0.002			0.00200		mg/K	-			6/22 16:15	09/20/22 17:37	
Ethylbenzene	<0.002			0.00200		mg/K				6/22 16:15	09/20/22 17:37	
m-Xylene & p-Xylene	<0.00			0.00200						6/22 16:15	09/20/22 17:37	
	<0.00		U	0.00400		mg/K	-					
p-Xylene						mg/K	-			6/22 16:15	09/20/22 17:37	
Xylenes, Total	<0.004	400	0	0.00400		mg/K	.g		09/1	6/22 16:15	09/20/22 17:37	
		ΜВ	МВ									
Surrogate	%Recov	ery	Qualifier	Limits					P	repared	Analyzed	Dil
4-Bromofluorobenzene (Surr)		102		70 - 130					09/1	6/22 16:15	09/20/22 17:37	
1,4-Difluorobenzene (Surr)		116		70 - 130					09/1	6/22 16:15	09/20/22 17:37	
Lab Sample ID: MB 880-34858/5	A									Client Sa	mple ID: Meth	od Bla
Matrix: Solid											Prep Type:	
Analysis Batch: 34895											Prep Bate	
-		ΜВ	МВ									
Analyte	Re	sult	Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil
Benzene	<0.002	200	U	0.00200		mg/K	(g	_	09/1	9/22 15:06	09/21/22 05:13	
Toluene	<0.00	200	U	0.00200		mg/K	G		09/1	9/22 15:06	09/21/22 05:13	
Ethylbenzene	< 0.00			0.00200		mg/K	-			9/22 15:06	09/21/22 05:13	
m-Xylene & p-Xylene	<0.004			0.00400		mg/K				9/22 15:06	09/21/22 05:13	
o-Xylene	< 0.002		U	0.00200		mg/K	-			9/22 15:06	09/21/22 05:13	
Xylenes, Total	< 0.004		U	0.00400		mg/K	-			9/22 15:06	09/21/22 05:13	
, , , , , , , , , , , , , , , , , , ,						5	5					
		ΜВ	МВ									
Surrogate	%Recov	ery	Qualifier	Limits					P	repared	Analyzed	Dil
4-Bromofluorobenzene (Surr)		104		70 - 130					09/1	9/22 15:06	09/21/22 05:13	
1,4-Difluorobenzene (Surr)		116		70 - 130					09/1	9/22 15:06	09/21/22 05:13	
Lab Sample ID: LCS 880-34858/1	I- A							С	lient	Sample I	D: Lab Contro	I Sam
Matrix: Solid											Prep Type:	
Analysis Batch: 34895											Prep Bate	
-				Spike	LCS	LCS					%Rec	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits	
Benzene	·			0.100	0.09802		 mg/Kg			98	70 - 130	
Toluene				0.100	0.08583		mg/Kg			86	70 - 130	
Ethylbenzene				0.100	0.08534		mg/Kg			85	70 - 130	
m-Xylene & p-Xylene				0.200	0.1780		mg/Kg			89	70 - 130	
o-Xylene				0.100	0.08903		mg/Kg			89	70 - 130	
Surrogate	LCS %Recovery	LCS Quali	ifier	Limits								
4-Bromofluorobenzene (Surr)	91	Quun		70 - 130								
1,4-Difluorobenzene (Surr)	102			70 - 130								
Lab Sample ID: LCSD 880-34858	3/2-A						Cli	ent	Sam	nole ID: I :	ab Control Sa	nple D
Matrix: Solid							-				Prep Type:	
Analysis Batch: 34895											Prep Bate	
Anarysis Daton. 34033				Spike		LCSD					%Rec	л. 340 F
				Added		Qualifier	Unit		D	%Rec		יי D Li
Analyte												

Eurofins Carlsbad

QC Sample Results

Client: Ensolum Project/Site: Windward 2H CTB

Job ID: 890-2913-1 SDG: Lea County NM

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 34858

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-34 Matrix: Solid				Clie	nt Sarr	ple ID:	· · · · ·	· Type: To	tal/NA		
Analysis Batch: 34895			o							Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.08451		mg/Kg		85	70 - 130	2	35
Ethylbenzene			0.100	0.08316		mg/Kg		83	70 - 130	3	35
m-Xylene & p-Xylene			0.200	0.1731		mg/Kg		87	70 - 130	3	35
o-Xylene			0.100	0.08797		mg/Kg		88	70 - 130	1	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	94		70 - 130								
1,4-Difluorobenzene (Surr)	103		70 - 130								

Lab Sample ID: 880-19019-A-1-E MS Matrix: Solid

Analysis Batch: 34895

Analysis Batch: 34895										Batch: 348
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F2 F1	0.0998	0.04876	F1	mg/Kg		49	70 - 130	
Toluene	<0.00201	U F2 F1	0.0998	0.04594	F1	mg/Kg		46	70 - 130	
Ethylbenzene	<0.00201	U F2 F1	0.0998	0.04536	F1	mg/Kg		45	70 - 130	
m-Xylene & p-Xylene	<0.00402	U F2 F1	0.200	0.09537	F1	mg/Kg		48	70 - 130	
o-Xylene	<0.00201	U F2 F1	0.0998	0.05511	F1	mg/Kg		55	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	117		70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: 880-19019-A-1-F MSD Matrix: Solid

Analysis Batch: 34895

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U F2 F1	0.0990	0.1026	F2	mg/Kg		104	70 - 130	71	35
Toluene	<0.00201	U F2 F1	0.0990	0.08240	F2	mg/Kg		83	70 - 130	57	35
Ethylbenzene	<0.00201	U F2 F1	0.0990	0.07768	F2	mg/Kg		78	70 - 130	53	35
m-Xylene & p-Xylene	<0.00402	U F2 F1	0.198	0.1614	F2	mg/Kg		82	70 - 130	51	35
o-Xylene	<0.00201	U F2 F1	0.0990	0.08266	F2	mg/Kg		83	70 - 130	40	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

92

112

Lab Sample ID: MB 880-34181/1-A Matrix: Solid Analysis Batch: 34171					Client Sa	mple ID: Metho Prep Type: ⊺ Prep Batcl	Fotal/NA	
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		09/12/22 08:48	09/12/22 10:56	1
(GRO)-C6-C10								

Eurofins Carlsbad

Lab Sample ID: MB 880-34181/1-A

RL

50.0

50.0

Limits

70 - 130

70 - 130

Unit

mg/Kg

mg/Kg

D

Prepared

09/12/22 08:48

09/12/22 08:48

Prepared

09/12/22 08:48

09/12/22 08:48

Matrix: Solid

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Matrix: Solid

Analysis Batch: 34171

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Lab Sample ID: LCS 880-34181/2-A

MB MB

<50.0 U

<50.0 U

105

109

%Recovery

MB MB

Qualifier

Result Qualifier

Job ID: 890-2913-1 SDG: Lea County NM

	d Blank	mple ID: Metho	Client Sa
		Prep Type:	
5	1: 34161	Prep Batch	
	Dil Fac	Analyzed	repared
	1	09/12/22 10:56	2/22 08:48
7	1	09/12/22 10:56	2/22 08:48
8	Dil Fac	Analyzed	Prepared
	1	09/12/22 10:56	12/22 08:48
9	1	09/12/22 10:56	12/22 08:48
	Sample	D: Lab Control	t Sample I
		Prep Type:	•
	n: 34181	Prep Batch	
		%Rec	
		Limits	%Rec
		70 - 130	98

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 34181

	Prep Batch: 34181
s	%Rec
alifier Unit D %Re	ec Limits
	98 70 - 130
mg/Kg 10	00 70 - 130
	lifier Unit D %Re mg/Kg 9

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	144	S1+	70 - 130
o-Terphenyl	151	S1+	70 - 130

Lab Sample ID: LCSD 880-34181/3-A Clien				nt Sam	iple ID: I	Lab Contro	I Sampl	e Dup	
Matrix: Solid						Prep 1	Type: Tot	tal/NA	
Analysis Batch: 34171							Prep	Batch:	34181
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	765.3	*1	mg/Kg		77	70 - 130	25	20
Diesel Range Organics (Over C10-C28)	1000	859.3		mg/Kg		86	70 - 130	15	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	122		70 - 130
o-Terphenyl	130		70 - 130

Lab Sample ID: 890-2907-A-1-C MS	
Matrix: Solid	
Analysis Potob: 24171	

Analysis Batch: 34171									Pre	p Batch: 34181
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.8	U F1 *1	998	611.1	F1	mg/Kg		59	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.8	U	998	859.4		mg/Kg		83	70 - 130	
C10-C28)										

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	98		70 - 130
o-Terphenyl	93		70 - 130

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client: Ensolum

Job ID: 890-2913-1 SDG: Lea County NM

Project/Site: Windward 2H CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	ISD					С	lient S	ample II	D: Matrix Sp Prop 1	oike Dup Type: To	
Analysis Batch: 34171	<u> </u>	. .	• "							Batch:	
A		Sample	Spike		MSD	11	_	0/ D	%Rec		RPI
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10	<49.8	U F1 *1	995	585.4	FI	mg/Kg		57	70 - 130	4	2
Diesel Range Organics (Over	<49.8	U	995	865.7		mg/Kg		84	70 - 130	1	2
C10-C28)	10.0	0	000	000.1		ingrig		01	10-100	·	-
)											
		MSD									
	%Recovery	Qualifier	Limits								
1-Chlorooctane	99		70 - 130								
o-Terphenyl	93		70 - 130								
lethod: 300.0 - Anions, Ion (Lab Sample ID: MB 880-34288/1-/ Matrix: Solid		ograpny						Client	Sample ID: Prep	Method Type: S	
Analysis Batch: 34499		МВ МВ									
Analyta	Б			ы	Unit			Droporod	Analys	a d	Dil Fa
Analyte Chloride		sult Qualifier		RL	Unit mg/Kg		D	Prepared	Analyz		DIF
Chionde		5.00 0		5.00	my/K	9			09/14/22	22.32	
Lab Sample ID: LCS 880-34288/2-	A						Clien	t Sample	e ID: Lab C	ontrol Sa	amp
-										Type: S	olub
Matrix: Solid										Type: S	olub
Matrix: Solid			Spike	LCS	LCS					Type: S	olub
Matrix: Solid Analysis Batch: 34499			Added		LCS Qualifier	Unit	D	%Rec	Prep	Type: S	olub
Matrix: Solid Analysis Batch: 34499 ^{Analyte}						Unit mg/Kg	D	%Rec 97	Prep %Rec	Type: So	olub
Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid	3-A		Added	Result		mg/Kg		97	Prep %Rec Limits 90 - 110		e Du
Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid	 3-A		Added 250	Result 241.4	Qualifier	mg/Kg		97	Prep %Rec Limits 90 - 110 Lab Contro Prep		e Du olub
Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499	3-A		Added 250 Spike	Result 241.4 LCSD	Qualifier	mg/Kg Clie	nt Sai	97 mple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	ol Sampl Type: S	e Du olub RF
Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte	3-A		Added 250 Spike Added	Result 241.4 LCSD Result	Qualifier	mg/Kg Clie Unit		97 mple ID: %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	ol Sampl Type: So 	e Du olub RF Lin
Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte	3-A		Added 250 Spike	Result 241.4 LCSD	Qualifier	mg/Kg Clie	nt Sai	97 mple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	ol Sampl Type: S	e Du olub RF Lin
Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride	 3-A		Added 250 Spike Added	Result 241.4 LCSD Result	Qualifier	mg/Kg Clie Unit	nt Sai	97 mple ID: %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	DI Sampl Type: So <u>RPD</u> 0	e Du olub RF Lin
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MS	3-A		Added 250 Spike Added	Result 241.4 LCSD Result	Qualifier	mg/Kg Clie Unit	nt Sai	97 mple ID: %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar	DI Sampl Type: So <u>RPD</u> 0 mple ID:	e Du olub RF Lin 2 BH0
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid	3-A		Added 250 Spike Added	Result 241.4 LCSD Result	Qualifier	mg/Kg Clie Unit	nt Sai	97 mple ID: %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar	DI Sampl Type: So <u>RPD</u> 0	e Du olub RP Lim 2 BH0
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid			Added 250 Spike Added 250	Result 241.4 LCSD Result 242.0	Qualifier LCSD Qualifier	mg/Kg Clie Unit	nt Sai	97 mple ID: %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sau Prep	DI Sampl Type: So <u>RPD</u> 0 mple ID:	e Du olubi RP Lim 2 BH0
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid Analysis Batch: 34499	Sample		Added 250 Spike Added 250 Spike	Result 241.4 LCSD Result 242.0	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	97 mple ID: <u>%Rec</u> 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar Prep %Rec	DI Sampl Type: So <u>RPD</u> 0 mple ID:	e Du olubl RP Lim 2 BH0
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid Analysis Batch: 34499 Analyte	Sample Result	Sample Qualifier	Added 250 Spike Added 250 Spike Added	Result 241.4 LCSD Result 242.0 MS Result	Qualifier LCSD Qualifier	mg/Kg Clie Unit mg/Kg Unit	nt Sai	97 mple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar Prep %Rec Limits	DI Sampl Type: So <u>RPD</u> 0 mple ID:	e Du olub RP Lim 2 BH0
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid Analysis Batch: 34499 Analyte	Sample	•	Added 250 Spike Added 250 Spike	Result 241.4 LCSD Result 242.0	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	97 mple ID: <u>%Rec</u> 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar Prep %Rec	DI Sampl Type: So <u>RPD</u> 0 mple ID:	e Du olub RP Lim 2 BH0
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid Analysis Batch: 34499 Analyte Chloride	Sample Result	•	Added 250 Spike Added 250 Spike Added	Result 241.4 LCSD Result 242.0 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg Unit	D	97 mple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sau Prep %Rec Limits 90 - 110	DI Sampl Type: So <u>RPD</u> 0 mple ID: Type: So	e Du olub RP Lin 2 BH0 olub
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid Analysis Batch: 34499 Analyte Chloride	Sample Result	•	Added 250 Spike Added 250 Spike Added	Result 241.4 LCSD Result 242.0 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg Unit	D	97 mple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client San Prep %Rec Limits 90 - 110 Client San	DI Sampl Type: So <u>RPD</u> 0 mple ID: Type: So mple ID:	e Du olub RP Lin 2 BH0 olub
Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MSD Matrix: Solid	Sample Result	•	Added 250 Spike Added 250 Spike Added	Result 241.4 LCSD Result 242.0 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg Unit	D	97 mple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client San Prep %Rec Limits 90 - 110 Client San	DI Sampl Type: So <u>RPD</u> 0 mple ID: Type: So	e Du olub RPP Lim 2 BH0 olub
Matrix: Solid Analysis Batch: 34499 Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid	Sample Result 22.1	Qualifier	Added 250 Spike Added 250 Spike Added 250	Result 241.4 LCSD Result 242.0 MS Result 276.5	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg Unit	D	97 mple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sau Prep %Rec Limits 90 - 110 Client Sau Prep	DI Sampl Type: So <u>RPD</u> 0 mple ID: Type: So mple ID:	BH0 olubl
Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: LCSD 880-34288/ Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MS Matrix: Solid Analysis Batch: 34499 Analyte Chloride Lab Sample ID: 890-2913-1 MSD Matrix: Solid	Sample Result 22.1 Sample	•	Added 250 Spike Added 250 Spike Added	Result 241.4 LCSD Result 242.0 MS Result 276.5	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg Unit	D	97 mple ID: %Rec 97	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client San Prep %Rec Limits 90 - 110 Client San	DI Sampl Type: So <u>RPD</u> 0 mple ID: Type: So mple ID:	e Du olubl RP Lim 2 BH0 olubl

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: Windward 2H CTB Page 106 of 123

Job ID: 890-2913-1 SDG: Lea County NM

GC VOA

Prep Batch: 34692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-34692/5-A	Method Blank	Total/NA	Solid	5035	
ep Batch: 34858					
_ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
390-2913-1	BH01	Total/NA	Solid	5035	
390-2913-2	BH01	Total/NA	Solid	5035	
MB 880-34858/5-A	Method Blank	Total/NA	Solid	5035	
CS 880-34858/1-A	Lab Control Sample	Total/NA	Solid	5035	
CSD 880-34858/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
380-19019-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
380-19019-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 34895					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

MB 880-34858/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-34858/1-A	Lab Control Sample	Total/NA	Solid	5035		8
LCSD 880-34858/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-19019-A-1-E MS	Matrix Spike	Total/NA	Solid	5035		9
880-19019-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		
Analysis Batch: 34895						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-2913-1	BH01	Total/NA	Solid	8021B	34858	
890-2913-2	BH01	Total/NA	Solid	8021B	34858	
MB 880-34692/5-A	Method Blank	Total/NA	Solid	8021B	34692	
MB 880-34858/5-A	Method Blank	Total/NA	Solid	8021B	34858	4.0
LCS 880-34858/1-A	Lab Control Sample	Total/NA	Solid	8021B	34858	13
LCSD 880-34858/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	34858	
880-19019-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	34858	
880-19019-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	34858	

Analysis Batch: 35090

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2913-1	BH01	Total/NA	Solid	Total BTEX	
890-2913-2	BH01	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 34171

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2913-1	BH01	Total/NA	Solid	8015B NM	34181
890-2913-2	BH01	Total/NA	Solid	8015B NM	34181
MB 880-34181/1-A	Method Blank	Total/NA	Solid	8015B NM	34181
LCS 880-34181/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	34181
LCSD 880-34181/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	34181
890-2907-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	34181
890-2907-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	34181

Prep Batch: 34181

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2913-1	BH01	Total/NA	Solid	8015NM Prep	
890-2913-2	BH01	Total/NA	Solid	8015NM Prep	
MB 880-34181/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-34181/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-34181/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2907-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2907-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Received by OCD: 10/31/2022 9:20:54 AM

Client: Ensolum Project/Site: Windward 2H CTB

GC Semi VOA

Analysis Batch: 34379

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2913-1	BH01	Total/NA	Solid	8015 NM	
890-2913-2	BH01	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 34288

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2913-1	BH01	Soluble	Solid	DI Leach	
890-2913-2	BH01	Soluble	Solid	DI Leach	
MB 880-34288/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-34288/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-34288/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2913-1 MS	BH01	Soluble	Solid	DI Leach	
890-2913-1 MSD	BH01	Soluble	Solid	DI Leach	

Analysis Batch: 34499

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2913-1	BH01	Soluble	Solid	300.0	34288
890-2913-2	BH01	Soluble	Solid	300.0	34288
MB 880-34288/1-A	Method Blank	Soluble	Solid	300.0	34288
LCS 880-34288/2-A	Lab Control Sample	Soluble	Solid	300.0	34288
LCSD 880-34288/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	34288
890-2913-1 MS	BH01	Soluble	Solid	300.0	34288
890-2913-1 MSD	BH01	Soluble	Solid	300.0	34288

Job ID: 890-2913-1 SDG: Lea County NM

Lab Sample ID: 890-2913-1 Matrix: Solid

Date Collected: 09/08/22 12:00 Date Received: 09/09/22 09:22

Client Sample ID: BH01

Project/Site: Windward 2H CTB

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	34858	09/19/22 15:06	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	34895	09/21/22 13:20	MR	EET MID
Total/NA	Analysis	Total BTEX		1			35090	09/21/22 15:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			34379	09/13/22 10:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	34181	09/12/22 08:48	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	34171	09/12/22 14:36	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	34288	09/12/22 11:50	KS	EET MID
Soluble	Analysis	300.0		1			34499	09/14/22 22:47	СН	EET MID

Client Sample ID: BH01

Date Collected: 09/08/22 12:10 Date Received: 09/09/22 09:22

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	34895	09/21/22 13:40	MR	EET MID
Total/NA	Analysis	Total BTEX		1			35090	09/21/22 15:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			34379	09/13/22 10:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	34181	09/12/22 08:48	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	34171	09/12/22 14:57	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	34288	09/12/22 11:50	KS	EET MID
Soluble	Analysis	300.0		1			34499	09/14/22 23:01	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 108 of 123

5 6 9

Lab Sample ID: 890-2913-2 Matrix: Solid
	A	ccreditation/C	ertification Summary		
Client: Ensolum Project/Site: Windward	2H CTB			Job ID: 890-2913-1 SDG: Lea County NM	2
Laboratory: Eurofi			reditation locatification below		
_	nalytes for this laboratory we				
Authority Texas		ogram LAP	Identification Number T104704400-22-24	Expiration Date 06-30-23	
					5
The following analytes a the agency does not off		t the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for which	
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					4.4
					13
					14

Eurofins Carlsbad

Method Summary

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2913-1 SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: Ensolum Project/Site: Windward 2H CTB Job ID: 890-2913-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-2913-1	BH01	Solid	09/08/22 12:00	09/09/22 09:22	1	4
890-2913-2	BH01	Solid	09/08/22 12:10	09/09/22 09:22	2	
						5
						8
						9
						12
						13

E. Pano, Michaeling in the model of the			viron	Environment Testing	ting	~	Houston	TX (28: (432) 7) 240-420 04-5440, 5	0, Daltas, 1 an Antonio	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	334	Work O	Work Order No:		
Manager Joe Gable Manager Joe Gable Manager		Xe	000				EL Paso, Hobbs, Ni	TX (915 M (575)	, 585-3443 392-7550,	, Lubbock, Carlsbad, N	rX (806) 794-12 M (575) 988-319	96			-	ۍ ۲
Manage: Use Gable Ibit (inference) Lob Gable Program: Ust Trist 1 Program: Ust Trist 2 District 1 Distrit 1 District 1 District 1								-					WWW.XC	crico.com r ag	D	5
y Name Erecultin s. 2172 National Parks Hvy, are Zir. Carstad, MN 88220 are Zir. Carstad, Salar, Carstad, MN 88220 benefit: Carstad, MN 88220 are Zir. Carstad, Salar, Carstad, MN 88200 benefit: Carstad, MN 88200 are Carstad, MN 88200 benefit: Les Control, NM NA. Norward 21 CTB Norward 21 CTB Norwar	Project Manager: Jo	e Gable				Bill to: (if d	fferent)	Joe	Gable				Wor	k Order Commer		
s: 3122 National Parke Hwy. Address. Dist of the line of the lin		solum				Company	Name:	Ens	nun			Pro	gram: UST/PST 🗌 PR.	P 🗌 Brownfields 🗌		huperfund
Resolution Carisbad, NM 86220 Carisbad, NM 8620 Carisbad, NM 862		22 National F	arks Hv	ų.		Address:		312	2 Nationa	I Parks Hv	Y.	Sta	te of Project:			
Beck-selectory Email (activity in the neuron) Email (activity in the neuron) Addition (activity in the neuron) Additin the neuron) Addit in the neuron) </td <td></td> <td>Irlsbad, NM 8</td> <td>8220</td> <td></td> <td></td> <td>City, State</td> <td>ZIP:</td> <td>Car</td> <td>sbad, NN</td> <td>88220</td> <td></td> <td>Rep</td> <td>orting: Level II Level</td> <td></td> <td>TRRP</td> <td>VI Ievel</td>		Irlsbad, NM 8	8220			City, State	ZIP:	Car	sbad, NN	88220		Rep	orting: Level II Level		TRRP	VI Ievel
Number: Vinnokard 2H CTB Turn Around Number: 0020204079 Image: Term Around Mat.YSIS REQUEST Preservativ Number: 0020204079 Image: Term Around Mat.YSIS REQUEST Preservativ Number: 0020204079 Image: Term Around Mat.YSIS REQUEST None: NO et cleaning: Liz Chelin Number: One: NO None: NO et cleaning: Liz Chelin Number: Not None: NO et cleaning: NA None: NO Pression: Harounder Distribution Not NA None: NO None: NO Not loss: None: NO et cleaning: None: NO Not loss: None: NO Harounder Distribution NA None: NO None: NO None: NO None: NO Harounder Distribution Harounder Distribution NA None: NO None: NO None: NO None: NO None: NO None: NO None: NO None: NO None: NO None: NO None: NO None: NO None: NO None: N		9-388-8073			Email:	igable@e	insolum.	com				Del	verables: EDD	ADaPT	Other:	
Number: 03D2024079 Routine Runth Openend ILocation: Lea County, NM Due Date: 5Day TAT Note: Note:	ect Name:	Windwar	d 2H C	TB	Turn	Around		-			ANAL	YSIS REQUES	T	Pre	eservative	Codes
Location: Lea Courty, MM Due Date: S Day TAT Tarante mediane with weaker MA The tash increments in screened by 450m effs Name: Liz Cheli TAT stants menower by 450m TAT stants menower by 450m Fast stants stants menower by 450m Fast stants stants menower by 450m Fast stants stantstant	ect Number:	03D2	024079		 Routine 	🗌 Rush	τς Γ	de .		_				None: N		Water: H
ers Liz Cheli Tart state are envisioned by MA Tart state are envisioned by he lab. freemeet by 4.30m Funct: He Cheli HS0, 1 He Tart state are envisioned by HS0, 1 He ELE RECEIPT Targo Bank: (e) No Waits Waits HS0, 1 He Custody Seals: Yes No Mainton Mainton Mainton Custody Seals: Yes No Waits Mainton Mainton BH01 S 9/9/2022 1200 1' X X X BH01 S 9/9/2022 1210 2' Grabit 1 X X X BH01 S 9/9/2022 1210 2' Grabit 1 X X X Mathematic BH01 S 9/9/2022 1210 2' Grabit 1 X X Mathematic BH01 S 9/9/2022 1210 2' Grabit 1 X X Mathematic BH01 S 9/9/2022 1210 2'' Grabit 1 X X Mathematic BH01 S 9/9/2022 1/210 2'' Grabit 1 X X Mathematic BH01 S 9/9/2022 1/210 2'' Grabit 1 <	ect Location:	Lea Co	unty, Ni		Due Date:	5 Day 1	AT							Cool: Co		sOH: Me
Lie RECEIPT Tagn Blank: NA The lib. frequestly 4.30m He lib. frequestly 4.30m PLE RECEIPT Tagn Blank: West No. West No. West No. West No. Mest No.	pler's Name:	Liz	Cheli		TAT starts the	day receiv	yd by	_				_	_	HCL: HC		NO3: HN
T Tamp Blank: Ves No Wet loce: Kes No ct (Ves) No Temperature Reading: 1 Parameter r Ves No Wat Correction Factor: -50.3 Parameter r Ves No Wat Correction Factor: -50.3 Parameter r Ves No Wat X Sampled Time Parameter s 9/9/2022 12/10 2' Grab/1 x x x Ambulation S 9/9/2022 12/10 2' Grab/1 x x S 9/9/2022 12/10 2' Grab/1 x x x S 9/9/2022 12/10 2' Grab/1 x x x S 9/9/2022 12/10 2' Grab/1 x x x S 9/9/2022 12/10 2' Grab/1 x<			AIA	4	the lab, if rec	eived by 4:0	- 1							H2S04: F		aOH: Na
Att No Themmometer ID: Th.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M	APLE RECEIPT	-	lank:	on (sa)	Wet Ice:									H3PO4: H	Ч	
Yes No With Correction Factor: Image: Second Factor: Image: Second Factor: Yes No Watrix Date Time Genetic Factor: Image: Second Factor: Corrected Temperature: Image: Second Factor: S 9/9/2022 1210 2' Grab/ I X X Second Factor: S 9/9/2022 1210 2' Grab/ I X X Second Factor: S 9/9/2022 1210 2' Grab/ I X X S 9/9/9/2022 1210 2' G	ples Received Intac	-		Thermometer		Thing	0							NaHSO4	4: NABIS	
Yes No Wath Temperature Reading: 11 Bit is it is	er Custody Seals:	Yes No	MAN	Correction Fa	ctor:	61	1							Na ₂ S ₂ O ₃	3: NaSO3	
Corrected Temperature: 1-3 Result # of Gatabi FPH file cation Matrix Date Time Depth Gatabi 1 S 9/9/2022 1200 1' Grabbi 1 X X S 9/9/2022 1210 2' Grabbi 1 X X S 9/9/9/20 1 X X X X <td>ple Custody Seals:</td> <td>Yes No</td> <td>AN</td> <td>Temperature</td> <td>Reading:</td> <td>1:-</td> <td>L</td> <td>13) S</td> <td></td> <td></td> <td>890-26</td> <td>113 Chain of Cu</td> <td>stody</td> <td>Zn Aceta</td> <td>ate+NaOH:</td> <td>Zn Z</td>	ple Custody Seals:	Yes No	AN	Temperature	Reading:	1:-	L	13) S			890-26	113 Chain of Cu	stody	Zn Aceta	ate+NaOH:	Zn Z
Date Time Depth Grab/ comp Fm Fm 19/2022 1200 1' Grab/ 1 × × × 19/2022 1210 2' Grab/ 1 × × × 19/2022 1210 2' Grab/ 1 × × × 19/2022 1210 2' Grab/ 1 × × × 10/2022 1210 2' Grab/ 1 × × × 10/2023 1210 2' Grab/ 1 × × 10/2024 13PM Texas 11 Als Ba B Als B 110 N N N N N N	Containers:		-	Corrected Tei	nperature:	C-1		Badi		1208		-	-	NaOH+F	Ascorbic Ac	d: SAPC
Implea Samplea Comp Uoint, G F B (9/2022 1200 1' Grab/ 1 ×	Sample Identifi	cation	Matrix	Date	Time					i) XƏT				Sa	Imple Con	ments
9/2022 1210 2' Grab/ 1 x x x 9/2022 1210 2' Grab/ 1 x x x 8/2 x x x 9/2022 1210 2' Grab/ 1 x x x 8/2 x x x 9/2 x x x 9/2 x x x 9/2 x x x x 9/2 x x x x 9/2 x x x x 9/2 x x x x x 9/2 x x x x x x 9/2 x x x x x x x x x x x x x x x x x x x				o lo lo lo lo lo				1	+	8 >				incider	11 1D:	
BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag SiO ₂ Na			0 0	0/0/2020	Τ			┢	+-	< ×				NAPI	herrid	1976
BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Ks Ag Si02 Na Sr TI Sn U V	2		>	1101010	2.4			+						A		
BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V								-		+						
BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V			T					+		A						
BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V						$\ $			Ø							
BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V							-	1								
BRCFA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V			I				-	-		-						
BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V TCI P / SPI P 6010* RPCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U							-									
BRCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V TCI D / SPI D 6010° BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Hg: 1631/245.1/7470 /74																
	otal 200.7 / 6010) 200.8 / 6	020:		RCRA 13F	PM Tex	as 11 A	dS I	As Ba E As Ba	m C	8 3	u Fe Pb Mg Mn Mo Ni St	n MoNiK Se A Ag TIU	SiO ₂ Na Sr TI : 1631 / 245.1 /	74/	5 -
	Relinquished by: (Signature)		Received	by: (Signa	ture)	-	Da	e/Time		elinquished t	y: (Signature)	Received by:	: (Signature)	Dat	s/Time
		5		the CN	C		U	O,	0	232						
ture)										4						
tture)																

9/21/2022

Page 112 of 123

14

Job Number: 890-2913-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2913 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-2913-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 09/12/22 09:08 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2913 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

APPENDIX F

Final C-141

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
------	---

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🗌 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

L48 Spill Volume Estimate Form

				A		to spin v	orume Louman		
Received by OCD.	: 10/31/	72022Ait	128m24 AMhiber:	WINDWARD 2H CT	8				Page 118 of 123
1	1.00	1.1	Asset Area:	DBEN					
	Releas	se Disco	overy Date & Time:	7/30/2022					
			Release Type:	Oil					
Provide a	ny know	/n detail	s about the event:	HOLE IN FLARE SC	UBBER DRAINLIN	E		The second second	
					Spil	Calculation	n - On Pad Surfac	e Pool Spill	1.
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Deepest point in each of the areas (in.)	No. of boundaries of "shore" in each area		Estimated Average Depth (ft.)	Estimated volume of each pool area (bbl.)		Total Estimated Volume of Spill (bbl.)
Rectangle A	30.0	10.0	6.00	4	300.000	0.125	6.675	0.006	6.717
Rectangle B					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle C		1			0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle D		1			0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle E					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle F		1			0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle G					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle H					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle I					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Released to Imagi	ng: 11	23/202	22 2:40:00 PM		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
				-				Total Volume Release	e: 6.717

Total Volume Release:

L48 Spill Volume Estimate Form

				and the second second second second		to spin v	orume Louma		
Received by OCD:	: 10/31	/4022at	Adhie & Adhiber:	WINDWARD 2H CTI	3	and the second second			Page 119 of 123
	07	1.5	Asset Area:	DBEN					
	Releas	se Disco	very Date & Time:	7/30/2022 9:45AM	1				
			Release Type:	Oil					
Provide an	ny know	/n detail	s about the event:	FLARE FIRE FROM	PRODUCTION K.C	DUMP LINE	PLUGGED	22.32	
					Spil	I Calculation	n - On Pad Surfac	e Pool Spill	
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Deepest point in each of the areas (in.)	No. of boundaries of "shore" in each area	Estimated <u>Pool</u> Area (sq. ft.)	Estimated Average Depth (ft.)	Estimated volume of each pool area (bbl.)		Total Estimated Volume of Spill (bbl.)
Rectangle A	80.0	20.0	0.10	4	1600.000	0.002	0.593	0.000	0.593
Rectangle B					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle C	0				0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle D	0		-		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle E		1			0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle F	T	1			0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle G		1			0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle H	1	1			0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle I	L	1			0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Refeased to Imagi	no· 11	123/20	2. 2.40.00 PM		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
					-			Total Volume Release	0.593

Oil Conservation Division

Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100 (ft bgs)</u>
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data

Page 3

- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- \boxtimes Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/31	1/2022 9:20:54 AM State of New Mexico			Page 121 of 12.
			Incident ID	NAPP2222347897
Page 4	Oil Conservation Division	n	District RP	
			Facility ID	
			Application ID	
regulations all operators a public health or the envir failed to adequately inves addition, OCD acceptance and/or regulations. Printed Name:Cha Signature: <i>Charles ;</i>	nformation given above is true and complete to the are required to report and/or file certain release nor onment. The acceptance of a C-141 report by the stigate and remediate contamination that pose a thi e of a C-141 report does not relieve the operator o arles Beauvais	tifications and perform co OCD does not relieve the reat to groundwater, surfa f responsibility for comp Title: _Senior Env Date:10/28/02	orrective actions for rele e operator of liability sh- ice water, human health liance with any other fea ironmental Engineer_	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by: <u>Jocely</u>	n Harimon	Date: 10	/31/2022	

Page 6

Oil Conservation Division

	Page 122 of 123
Incident ID	NAPP2222347897
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: ____Charles Beauvais_____ Title: ____Senior Environmental Engineer_____ Signature: Charles R. Beauvais 99 Date: 10/28/2022 email: Charles.R.Beauvais@conocophillips.com Telephone: 575-988-2043 **OCD Only** Received by: _____ Jocelyn Harimon Date: 10/31/2022 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Jannifar Nobui _____ Date: 11/23/2022 Title: Environmental Specialist A Printed Name: Jennifer Nobui

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	154891
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved. Please implement 19.15.29.13 NMAC when completing P&A.	11/23/2022