

402 E. Wood Avenue Carlsbad, New Mexico 88220 Tel. 432.701.2159 www.ntgenvironmental.com

October 10, 2022

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report GOVERNMENT AA COM #002 Colgate Operating, LLC. Site Location: Unit D-23-20S-28E (Lat 32.5658798°, Long -104.1557693 °) Eddy County, New Mexico Incident ID: NAB1502037424

Mr. Bratcher:

On behalf of Colgate Operating, LLC (Colgate), New Tech Global Environmental, LLC (NTGE) has prepared this letter to document site assessment and remedial action activities at the GOVERNMENT AA COM #002 location (Site). The Site is located approximately 11 miles northeast of Carlsbad, New Mexico in Eddy County (Figures 1 and 2).

Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on January 6, 2015. The release was a result of a gas supply line freezing causing fluid to discharge from the field vent. The discharge resulted in the release of approximately 15 barrels (bbls) of crude oil of which ten where recovered. Upon discovery, the well was shut-in and area was secured. The release is shown on Figure 3. The initial C-141 form is attached.

Site Characterization

The Site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, there are no known water sources within a ½ mile radius of the location. The nearest identified well is located 0.89 miles south of the Site in Section 14, T20S, R28E. The well was drilled in 1973 and the reported depth to groundwater is 140 feet below ground surface (ft bgs). The site characterization information and the associated USGS summary report is attached.

Regulatory Criteria

In accordance with the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria are applicable to the Site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg

Mr. Mike Bratcher October 12, 2022 Page 2 of 3

Site Assessment

On June 24, 2022, NTGE conducted site assessment activities to assess the horizontal and vertical extent of impacts at the Site. A total of two sample points (S-1 and S-2) were installed within the release area to characterize and vertically delineate the potential impacts. Additionally, four horizontal delineation sample points (H-1 through H-4) were installed to define the extent of potential impacts. Soil samples were collected in 0.5 to 1 ft depth intervals and collected from soil borings advanced to depths ranging from 0 - 2.5 ft bgs with a geotechnical hand auger. The hand auger was decontaminated with Alconox and deionized water between soil borings to prevent cross-contamination. Sample locations are shown on Figure 3.

Soil samples were placed directly into laboratory provided samples containers, placed on ice, and transported under proper chain-of-custody protocol. Soil samples were collected and analyzed for TPH (EPA method 8015 modified), BTEX (EPA Method 8021B), and chloride (method SM4500Cl-B). Analytical results of the samples are included in Table 1. Laboratory reports containing analytical methods and chain-of-custody documents are attached.

Analytical results were below the regulatory limits for all analytes in all samples except sample point H-11 which identified chloride concentrations above the regulatory limit. The horizontal and vertical extent of impacts were not identified at the Site; however, additional delineation efforts were achieved during remedial action activities detailed in a subsequent section of this letter.

Remedial Action Activities and Confirmation Sampling

Based on the analytical results, Colgate proceeded with the remedial actions at the Site to include the excavation and disposal of impacted soils above the regulatory limits. The release area was excavated to the depths detailed below and illustrated on Figure 4.

• The areas of S-1 & S-2 were excavated to a depth of 2.5 ft bgs.

The soils were field screened during excavation activities to aide in determining final excavation depths, primarily in the areas of H-1 where the horizontal delineation of impacts was not achieved during site assessment activities. Following excavation activities, a total of six composite confirmation samples were collected from the excavation base (i.e., CS-1 through CS-6) and seven composite confirmation samples were collected from the excavation sidewalls (i.e., SW-1 through SW-7) to ensure impacted soil was removed.

The confirmation samples were collected from areas representing no greater than 200 square ft and analyzed for TPH (EPA method 8015 modified), BTEX (EPA Method 8021B), and chloride (method SM4500Cl-B or 300.0). Analytical results indicated that all impacted soils were successfully excavated.

The excavated soils were transported to a NMOCD approved facility, Lea Land LLC. (Lea Land), for final disposition. A total of 228 cubic yards of impacted soils were hauled to Lea Land.

The final excavation extent and confirmation sample locations are shown on Figure 4. Analytical results of the confirmation samples are included in Table 2. Following receipt of the analytical results the area was backfilled and graded to a near natural state.

Mr. Mike Bratcher October 10, 2022 Page 3 of 3

Closing

Based on the assessment and subsequent remedial action activities, the Site is compliant with the regulatory limits and no further actions are required at the site. A copy of the final C- 141 and NMOCD sampling notification are attached. Colgate formally request a no further action designation for the Site.

If you have any questions regarding this report or need additional information, please contact us at 432-701-2159.

Sincerely, NTG Environmental

aller

Ethan Sessums Project Manager

Attachments:

Initial And Final C-141 Site Characterization Information Tables Figures Photographic Log Laboratory Reports and Chain-of-Custody Documents

Ethan Sessums

From:	Ethan Sessums
Sent:	Friday, September 9, 2022 4:17 PM
То:	ocd.enviro@state.nm.us
Cc:	Tyler Kimball
Subject:	Confirmation Sampling Event

We will be conducting a confirmation sampling event on behalf of Colgate on September the 12th 2022 around 10 am

Government AA COM #2 (2RP-2745)

Ethan Sessums Project Manager NTG Environmental New Mexico 402 E Wood Ave, Carlsbad, NM 88220 M: 254-266-5456 W: 432-701-2159 Email: esessums@ntglobal.com http://www.ntgenvironmental.com/

C-141 Documentation

<u>District 1</u> 625 N. French Dr., Hobbs, NM 8824(<u>District II</u> 301 W. Grand Avenue, Artesia, NM 8				New Mex and Natura	NM ico I Resources	OIL CONSEI ARTESIA DIST	RICF Revised October 10, 2003
Jointiet III 000 Rio Brazos Road, Aztec, NM 874 <u>District IV</u> 220 S. St. Francis Dr., Santa Fe, NM	10	Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505		JAN 15 20 Fibmit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form			
	Rel				orrective A		абарнаны дан дан алан алан арада дан дан дан дан дан дан дан дан дан
ABI50203742	4			OPERA	ГOR	🖂 Initia	al Report 📋 Final Report
Name of Company : Oxy Per	mian LTD			Contact : C			
Address: 1502 W. Commer Facility Name : North Burton					No. : 575-628-41		
	Tais Battery	· · · · · · · · · · · · · · · · · · ·		racinty Typ	e: Central Tai		
Surface Owner : Federal		Mineral C	Owner				30-015-33283 No.: NM 18293
······							40 ININ 10235
Unit Letter Section Towns	nip Range	LOCA Feet from the		N OF RE	LEASE Feet from the	East/West Line	County: Eddy, NM
D 23 20S	28E	reet nom the		V South Line	reet nom the		County. Eugy, NW
	Latitud	le_ <u>32.5658815</u>	<u>N</u>	Longitude_	-104.1557648	<u>W</u>	
		NAT	URE	OF REL			
Type of Release : Oil				Volume of	Release : 15 bbls	S Volume F	Recovered: 10 bbls
Source of Release : Gas Supply	1/5		1/5/2015	Iour of Occurrenc	nce: Date and Hour of Discovery: 1/6/2015 11:19 am		
Was Immediate Notice Given?	X Yes [No 🗌 Not R	eouired	If YES, To Whom? OCD/Mike Bratcher via telephone			
	·			BLM/Jim	Amos via email		
			Hour: 1/8/2015 1				
Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. If YES No							
If a Watercourse was Impacted, I	Describe Fully.	*					
Describe Cause of Problem and I A gas supply line froze and lost j vac truck was immediately called	ressure sendin	g the fluid to the t			5 barrels of oil. Th	he facility was shut	t-in and the gas line repaired. A
Describe Area Affected and Clea berms and impacted approximate	ly 25'x15 onto	the location. Tal	lon/LPF	E has been con	tracted to comple	te site assessment a	and remediation activities.
I hereby certify that the informat regulations all operators are requ public health or the environment should their operations have faile or the environment. In addition, federal, state, or local laws and/o	ired to report a The acceptan d to adequated NMOCD acce	nd/or file certain ce of a C-141 rep y investigate and a	release ort by t remedia	notifications a he NMOCD m ate contaminat	nd perform correct narked as "Final R ion that pose a thu	ctive actions for rel leport" does not rel reat to ground wate	eases which may endanger ieve the operator of liability r, surface water, human health
					OIL CON	SERVATION	DIVISION
Signature: Chris Jones				Approved by	District Supervis	or 11	ρ
Printed Name: Chris Jones				the	for		
Title: HES Specialist	·			Approval Da	ite: 1/14/1	Expiration	Date: NA
E-mail Address: Christopher	Jones@oxy.co	<u>m</u>		Conditions o	f Approval:	aa 8 Guidalin	Attached
	575-628-4121		Rem		er O.C.D. Ruik DIATION PR(es & Guideling DPOSAL NO	σφ
Attach Additional Sheets If N	ecessary		LATE	ER THAN:	2/16/15		2RP-27

۰,

Page 7 of 87

State of New Mexico Oil Conservation Division

Incident ID	NAB1502037424
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	$\frac{140}{1}$ (ft
Did this release impact groundwater or surface water?	bgs)
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant	🗌 Yes 🛛 No
watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔀 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh	🗌 Yes 🛛 No
water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	🛛 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No
	T Yes X No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

- Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141 Page 4	State of New Mexico Oil Conservation Division			NAB1502037424
regulations all operators are required public health or the environment. T failed to adequately investigate and	given above is true and complete to the 1 to report and/or file certain release noti he acceptance of a C-141 report by the C remediate contamination that pose a three 1 report does not relieve the operator of	ifications and perform OCD does not relieve the term of term o	corrective actions for rele he operator of liability sh face water, human health	eases which may endanger ould their operations have or the environment. In
Printed Name:	shler	Title: ^{Senior E}	Invironmental	Representative
Signature: Lilly M	•	Date: 10/12/2		
email: <u>Nikki.Mishler@</u>	cdevinc.com	Telephone: <u>432-634-8722</u>		
OCD Only				
Received by: Jocelyn Harin	non	Date: 10/	/13/2022	

Page 8 of 87

•

Form C-141 Page 5

Page 9 of 87

State of New Mexico Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

Incident ID	NAB1502037424
District RP	
Facility ID	
Application ID	

Remediation Plan

 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.1 Proposed schedule for remediation (note if remediation plane) 	15.29.12(C)(4) NMAC
Deferral Requests Only: Each of the following items must	be confirmed as part of any request for deferral of remediation.
	und production equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human	health, the environment, or groundwater.
rules and regulations all operators are required to report and/o which may endanger public health or the environment. The a- liability should their operations have failed to adequately inve	omplete to the best of my knowledge and understand that pursuant to OCD r file certain release notifications and perform corrective actions for releases cceptance of a C-141 report by the OCD does not relieve the operator of stigate and remediate contamination that pose a threat to groundwater, OCD acceptance of a C-141 report does not relieve the operator of local laws and/or regulations.
Printed Name: <u>Nikki Mishler</u>	Title:Senior Environmental Representative

Printed Name: Nikki Mishler	
Signature: Mill Mill	Date: _10/12/2022
email: Nikki.Mishler@cdevinc.com	Telephone: <u>432-634-8722</u>
OCD Only	
Received by: Jocelyn Harimon	Date: 10/13/2022
Approved Approved with Attached Conditions of	Approval 🗌 Denied 🗌 Deferral Approved
Signature:	Date:

Form C-141 Page 6

age 10 of 87

State of New Mexico Oil Conservation Division

Incident ID	NAB1502037424
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Nikki Mishler	Title: <u>Senior Environmental Representat</u> ive
Signature: <u>Autur Msthn</u>	Date: 10/12/2022
email:Nikki.Mishler@cdevinc.com	Telephone:432-634-8722
OCD Only	
<u>OCD ONIV</u>	
Received by: Jocelyn Harimon	Date: 10/13/2022
	y of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible
party of compliance with any other federal, state, or local laws and	

Closure Approved by:	Ashley Maxwell	Date:	12/15/2022
Printed Name:A	shley Maxwell	- _ Title:	Environmental Specialist

SITE CHARACTERIZATION INFORMATION

Colgate Operating, LLC - Government AA Com 2H Sec 23 T20S R28E Unit D 32.5658798, -104.1557693 Eddy County, New Mexico

Site Characterization -No water features within specified distances of 1/2 mile radius, drilled within 25 years

-High Karst

-NMSEO Groundwater is 70' below surface, 1.02 miles North of the site, 2021 Drilled, Section 15, T20S, R28E -NMSEO Groundwater is 140' below surface, 0.89 miles North-northeast of the site, 1973 Drilled, Section 14, T20S, R28E

-USGS Groundwater is 40.54' below surface, 1.04 miles North-northeast of the site, 1984 Drilled, Section 14, T20S, R28E

-USGS Groundwater is 34.78' below surface, 1.24 miles South-southwest of the site, 1999 Drilled, Section 27, T20S, R28E

-USGS Groundwater is 44.35' below surface, 1.30 miles North-northeast of the site, 1983 Drilled, Section 13, T20S, R28E

RRALs due to insufficient *RECENT* groundwater data -Chlorides 600 mg/kg -TPH GRO+DRO+MRO 100 mg/kg -BTEX 50 mg/kg -Benzene 10 mg/kg

Received by OCD: 10/13/2022 9:38:08 AM Nearest water well

Released to Imaging: 12/15/2022 7:55:49 Al

Colgate Operating, LLC Eddy County, New Mexico 32.5658798, -104.1557693

70' - Drilled 2021 0 40.54 - Drilled 1984

140' - Drilled 1973

44.35' - Drilled 1983

Government AA Com 2H

30 0.89 Miles NNE 1.02 Miles N 30 20 1.04 Miles NNE 3 1.24 Miles SSW 3 1.30 Miles NNE ... 1/2 Mile Radius NMSEO Water Well Site Location 0 USGS Water Well

1 mi

Legend

238

Page 14 of 87

34.78' - Drilled 1999

New Mexico NFHL Data

September	22,	2022
-----------	-----	------

		1:36,112	
0	0.25	0.5	1 mi
0	0.4	0.8	1.6 kr
A. Esri, HERE	Garmin, (c)	OpenStreetMap	contributors, and the C

FEMA, Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community, Source: Esri, Maxar, Earthstar Geographics, and the GIS

nmflood.org is made possible through a collaboration with NMDHSEM. This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

			(quarters a (quarters a				(NAD83 UT	TM in meters)		
Well Tag	POD	Number	Q64 Q16	16 Q4 Se		Tws	Rng	Х	Y	
20D82	CP (01862 POD1	2 2	2	15	208	28E	579002	3605104 🌍	
x Driller Lic	ense:	1706	Driller Co	mpan	y:	ELI	TE DRI	LLERS CO	RPORATION	
Driller Na	me:	BRYCE WALLA	CE							
Drill Start	Date:	08/24/2021	Drill Finis	h Dat	e:	0	8/25/202	1 Plu	ıg Date:	
Log File D	ate:	05/28/2022	PCW Rev	Date:				So	urce:	Shallow
Ритр Тур	e:		Pipe Disch	arge	Size	:		Est	timated Yield:	12 GPM
Casing Siz	e:	6.00	Depth We	11:		1:	50 feet	De	pth Water:	70 feet
X	Wate	er Bearing Stratif	ications:	Tor	B	ottom	Descr	intion		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a bearing strain	ications:	3(100		•	/Conglomerate	
х		forations:	Тор	B	ottom					
		0		80	,	150				

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/22/22 1:08 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

		••	's are sm		0			JTM in meters)	
Well Tag P	OD Number	Q64 Q	16 Q4	Sec	Tws	Rng	Х	Y	
C	P 00525	3	2 1	14	208	28E	579656	3604847* 🌍	
Driller Licens	e: 46	Driller C	Compa	ny:	AB	BOTT BR	OTHER	S COMPANY	
Driller Name:									
Drill Start Da	te: 10/14/1973	Drill Fin	ish Da	te:	10)/24/1973	Р	lug Date:	
Log File Date	: 11/05/1973	PCW Ro	ev Date	:			S	ource:	Shallo
Pump Type:		Pipe Dis	charge	Size	:		Е	stimated Yield:	40 GP
Casing Size:	7.00	Depth W	/ell:		17	71 feet	D	epth Water:	140 fe
×	Vater Bearing Strati	fications:	Та	рE	ottom	Descrip	tion		
			14	0	171	Sandstor	ne/Grave	el/Conglomerate	
X	Casing Per	forations:	То	рE	ottom				
			14	0	171				

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/22/22 1:04 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	, ((•					2=NE 3 st to lar	3=SW 4= gest)) AD83 UTM in me	eters)	(In feet)	
POD Number	POD Sub- Code basin C	ounty		Q 16		Sec	Tws	Rng		X	Y	Distance	-	-	Water Column
CP 00525	CP	ED	3	2	1	14	20S	28E	5796	56	3604847* 🌍	1429	171	140	31
CP 01862 POD1	СР	ED	2	2	2	15	20S	28E	5790	02	3605104 🌍	1646	150	70	80
											Avera	ge Depth to	Water:	105	feet
												Minimum	Depth:	70	feet
												Maximum	Depth:	140	feet
Record Count: 2															

UTMNAD83 Radius Search (in meters):

Easting (X): 579249.68

Northing (Y): 3603476.29

Radius: 3000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

accuracy land specific vertical datum		ew Mexico GO
---------------------------------------	--	--------------

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

• Full News 🔝

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323253104093101 20S.28E.27.241323

Eddy County, New Mexico Latitude 32°32'53", Longitude 104°09'31" NAD27 Land-surface elevation 3,225 feet above NAVD88 The depth of the well is 80 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer. **Output formats**

Table of data

Tab-separated data

<u>Graph of data</u>

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1968-05-23		D	62610		3189.88	NGVD29	1	Z			
1968-05-23		D	62611		3191.43	NAVD88	1	Z			
1968-05-23		D	72019	33.57			1	Z			
1971-02-09		D	62610		3190.37	NGVD29	1	Z			
1971-02-09		D	62611		3191.92	NAVD88	1	Z			
1971-02-09		D	72019	33.08			1	Z			
1976-10-28		D	62610		3189.50	NGVD29	1	Z			
1976-10-28		D	62611		3191.05	NAVD88	1	Z			
1976-10-28		D	72019	33.95			1	Z			
1976-12-08		D	62610		3190.32	NGVD29	1	Z			
1976-12-08		D	62611		3191.87	NAVD88	1	Z			
1976-12-08		D	72019	33.13			1				
1983-01-13		D	62610		3191.09	NGVD29	1	Z			
1983-01-13		D	62611		3192.64	NAVD88	1				
1983-01-13		D	72019	32.36			1				
1994-03-03		D	62610		3189.01	NGVD29	1				
1994-03-03		D	62611		3190.56	NAVD88	1				
1994-03-03		D	72019	34.44			1				
1999-01-28		D	62610		3188.67	NGVD29	1				
1999-01-28		D	62611		3190.22	NAVD88	1				
1999-01-28		D	72019	34.78			1	S			

Explanation

Received by OCD: 10/13/2022 9:38:08 AM

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	
Referenced vertic	al datum		NAVD88		ican Vertical Datum					
Referenced vertic	al datum		NGVD29	National Geodetic Vertical Datum of 1929						
Status			1	Static						
Method of measu	rement		S	Steel-tape r	measurement.					
Method of measu	rement		Z	Other.						
Measuring agence	y			Not determined						
Source of measu	rement			Not determined						
Water-level appro	oval status		А	Approved for	or publication Pro	cessing and review	completed.			

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-09-22 15:13:20 EDT 0.36 0.32 nadww01 USA.gov

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface USGS Water Resources

 Data Category:
 Geographic Area:

 Groundwater
 V
 New Mexico
 GO

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

• Full News 🔝

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 323447104085601

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323447104085601 20S.28E.14.12322

Eddy County, New Mexico Latitude 32°34'47", Longitude 104°08'56" NAD27 Land-surface elevation 3,248 feet above NAVD88 The depth of the well is 171 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer. **Output formats**

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1984-04-27		D	62610		3205.92	NGVD29	1	Z			А
1984-04-27		D	62611		3207.46	NAVD88	1	Z			A
1984-04-27		D	72019	40.54			1	Z			А

Explanation									
Section	Code	Description							
Water-level date-time accuracy	D	Date is accurate to the Day							
Parameter code	62610	Groundwater level above NGVD 1929, feet							
Parameter code	62611	Groundwater level above NAVD 1988, feet							
Parameter code	72019	Depth to water level, feet below land surface							
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988							
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929							
Status	1	Static							
Method of measurement	Z	Other.							
Measuring agency		Not determined							
Source of measurement		Not determined							
Water-level approval status	А	Approved for publication Processing and review completed.							

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms

Received by OCD: 10/13/2022 9:38:08 AM

Subscribe for system changes News

Privacy Accessibility FOIA Policies and Notices U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-09-22 15:17:26 EDT 0.27 0.25 nadww01

USA.gov

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface USGS Water Resources

 Data Category:
 Geographic Area:

 Groundwater
 V
 New Mexico
 GO

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

• Full News 🔝

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 323429104081001

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323429104081001 20S.28E.13.13344

Eddy County, New Mexico Latitude 32°34'29", Longitude 104°08'10" NAD27 Land-surface elevation 3,252 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats

Table of data

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1968-05-23		D	62610		3203.18	NGVD29	1	Z			А
1968-05-23		D	62611		3204.72	NAVD88	1	Z			A
1968-05-23		D	72019	47.28			1	Z			А
1971-02-08		D	62610		3204.48	NGVD29	1	Z			А
1971-02-08		D	62611		3206.02	NAVD88	1	Z			А
1971-02-08		D	72019	45.98			1	Z			А
1976-12-08		D	62610		3205.69	NGVD29	1	Z			А
1976-12-08		D	62611		3207.23	NAVD88	1	Z			А
1976-12-08		D	72019	44.77			1	Z			А
1983-01-10		D	62610		3206.11	NGVD29	1	Z			А
1983-01-10		D	62611		3207.65	NAVD88	1	Z			А
1983-01-10		D	72019	44.35			1	Z			А

	Explanation										
Section	Code	Description									
Water-level date-time accuracy	D	Date is accurate to the Day									
Parameter code	62610	Groundwater level above NGVD 1929, feet									
Parameter code	62611	Groundwater level above NAVD 1988, feet									
Parameter code	72019	Depth to water level, feet below land surface									
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988									
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929									
Status	1	Static									
Method of measurement	Z	Other.									
Measuring agency		Not determined									

Released to Imaging: 12/15/2022 7:55:49 AM

Received by OCD: 10/13/2022 9:38:08 AM

Section	Code	Description					
Source of measurement		Not determined					
Water-level approval status	А	Approved for publication Processing and review completed.					

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes

News

 Accessibility
 FOIA
 Privacy
 Policies and Notices

 U.S. Department of the Interior
 U.S. Geological Survey

 Title:
 Groundwater for New Mexico:
 Water Levels

 URL:
 https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-09-22 15:15:36 EDT 0.34 0.29 nadww01

USGS Home Contact USGS Search USGS

Help

Received by OCD: 10/13/2022 9:38:08 AM

National Water Information System: Mapper

Site Information

TABLES

Table 1									
Colgate									
Government AA Com 2H									
Eddy County, New Mexico									

					Governn	Table 1 Colgate nent AA Cor inty, New M						Received by OCD: 1
Sample ID	Date	Sample Depth (ft)	DRO	TPH GRO	(mg/kg) MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
S-1	6/24/2022	2-2.5	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	23.7
S-2	6/24/2022	0-1	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	< 0.00396	61.7 👹
H-1	6/24/2022		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	677
H-2	6/24/2022		<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	< 0.00402	<0.00402	12.2
H-3	6/24/2022		<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	17.4
H-4	6/24/2022		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	25.4
Regulat	tory Limits ^A			•		100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- total petroleum hydrocarbons

ft-feet

exceeds regulatory limits

NTG Perpared By:

Table 2 Colgate Government AA Com 2H Eddy County NM												
Sample ID	Date	Sample Depth (ft)	GRO	TP DRO	H (mg/kg) MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
SW-1	9/12/2022	N/A	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-2	9/12/2022	N/A	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-3	9/12/2022	N/A	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
SW-4	9/12/2022	N/A	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-5	9/12/2022	N/A	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
SW-6	9/12/2022	N/A	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-7	9/12/2022	N/A	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-1	9/12/2022	2.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
CS-2	9/12/2022	2.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-3	9/12/2022	2.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-4	9/12/2022	2.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
CS-5	9/12/2022	2.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
CS-6	9/12/2022	2.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
Regul	latory Limits					100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/k

(-) Not Analyzed

A - Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft-feet

Exceeds RRAL's

FIGURES

Released to Imaging: 12/15/2022 7:55:49 AM

Released to Imaging: 12/15/2022 7:55:49 AM

Received by OCD: 10/13/2022 9:38:08 AM

Released to Imaging: 12/15/2022 7:55:49 AM

Released to Imaging: 12/15/2022 7:55:49 AM

PHOTOGRAPHIC LOG

PHOTOGRAPHIC LOG

Colgate Energy Production Company

Photograph No. 1

Facility:Government AA Com 2HCounty:Eddy County, New Mexico

Description: Area of concern

Photograph No. 2

- Facility:
 Government AA Com 2H
- County: Eddy County, New Mexico

Description:

Area of concern

Photograph No. 3

- Facility: Government AA Com 2H
- County: Eddy County, New Mexico

Description:

Area of concern

PHOTOGRAPHIC LOG

Colgate Energy Production Company

Photograph No. 4

 Facility:
 Government AA Com 2H

County: Eddy County, New Mexico

Description: Remediated site photos

Photograph No. 5

Facility: Government AA Com 2H

County: Eddy County, New Mexico

Description: Remediated site photos

Photograph No. 6

Facility: Government AA Com 2H

County: Eddy County, New Mexico

Description: Remediated site photos

LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTS

Received by OCD: 10/13/2022 9:38:08 AM

----- LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 12/15/2022 7:55:49 AM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2468-1

Laboratory Sample Delivery Group: 225839 Client Project/Site: Government AA Com 2H

For:

NT Global 701 Tradewinds Blvd Midland, Texas 79706

Attn: Gordon Banks

VRAMER

Authorized for release by: 7/5/2022 12:58:25 PM

Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Page 39 of 87

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

	Definitions/Glossary		
Client: NT Glob Project/Site: Go	overnment AA Com 2H Job ID: 890-2468 SDG: 2258		
Qualifiers			3
GC VOA			ľ
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			5
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier F1	Qualifier Description MS and/or MSD recovery exceeds control limits	_	
U	MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected.		
		_	2
Glossary			9
Abbreviation	These commonly used abbreviations may or may not be present in this report.		ľ
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	1	
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF DER	Contains No Free Liquid		
DER Dil Fac	Duplicate Error Ratio (normalized absolute difference) Dilution Factor		
DI Fac DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry) Method Detection Limit		
MDL ML	Method Detection Limit Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		

- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

4

5

Job ID: 890-2468-1 SDG: 225839

Job ID: 890-2468-1

Client: NT Global

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2468-1

Receipt

The samples were received on 6/27/2022 12:08 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-28556 and 880-28556 and analytical batch 880-28884 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Job ID: 890-2468-1 SDG: 225839

Matrix: Solid

5

Lab Sample ID: 890-2468-1

Client Sample ID: S-1 (2-2,5) Date Collected: 06/24/22 00:00

Project/Site: Government AA Com 2H

Date Received: 06/27/22 12:08

Client: NT Global

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/28/22 16:05	06/29/22 02:27	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/28/22 16:05	06/29/22 02:27	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/28/22 16:05	06/29/22 02:27	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/28/22 16:05	06/29/22 02:27	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/28/22 16:05	06/29/22 02:27	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/28/22 16:05	06/29/22 02:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				06/28/22 16:05	06/29/22 02:27	1
1,4-Difluorobenzene (Surr)	85		70 - 130				06/28/22 16:05	06/29/22 02:27	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/29/22 09:18	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			07/01/22 12:14	1
Method: 8015B NM - Diesel Rang	ne Organics (D								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 11:48	1
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 11:48	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 11:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				06/29/22 08:44	06/30/22 11:48	1
o-Terphenyl	113		70 - 130				06/29/22 08:44	06/30/22 11:48	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.7		4.99		mg/Kg	_		07/03/22 21:04	1
									0.400.0
lient Sample ID: S-2 (0-1)							Lab San	nple ID: 890-2	2468-2
lient Sample ID: S-2 (0-1) ate Collected: 06/24/22 00:00							Lab San		2468- x: Soli

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit D Dil Fac RL Prepared Analyzed Benzene <0.00198 U 0.00198 mg/Kg 06/28/22 16:05 06/29/22 02:48 1 Toluene <0.00198 U 0.00198 mg/Kg 06/28/22 16:05 06/29/22 02:48 1 Ethylbenzene <0.00198 U 0.00198 mg/Kg 06/28/22 16:05 06/29/22 02:48 1 m-Xylene & p-Xylene <0.00396 U 0.00396 mg/Kg 06/28/22 16:05 06/29/22 02:48 1 o-Xylene <0.00198 U 0.00198 mg/Kg 06/28/22 16:05 06/29/22 02:48 1 <0.00396 U 0.00396 06/28/22 16:05 06/29/22 02:48 Xylenes, Total mg/Kg 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 97 70 - 130 06/28/22 16:05 06/29/22 02:48 4-Bromofluorobenzene (Surr) 1 1,4-Difluorobenzene (Surr) 90 70 - 130 06/28/22 16:05 06/29/22 02:48 1

Eurofins Carlsbad

Released to Imaging: 12/15/2022 7:55:49 AM

Client Sample Results

Job ID: 890-2468-1 SDG: 225839

Lab Sample ID: 890-2468-2

Client Sample ID: S-2 (0-1)

Project/Site: Government AA Com 2H

Date Collected: 06/24/22 00:00 Date Received: 06/27/22 12:08

Client: NT Global

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			06/29/22 09:18	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/01/22 12:14	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/29/22 08:44	06/30/22 12:53	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/29/22 08:44	06/30/22 12:53	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/29/22 08:44	06/30/22 12:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				06/29/22 08:44	06/30/22 12:53	1
o-Terphenyl	110		70 - 130				06/29/22 08:44	06/30/22 12:53	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61.7		4.96		mg/Kg			07/03/22 21:27	1

Client Sample ID: H-1

Date Collected: 06/24/22 00:00

Date Received: 06/27/22 12:08

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		06/28/22 16:05	06/29/22 04:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/28/22 16:05	06/29/22 04:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/28/22 16:05	06/29/22 04:11	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/28/22 16:05	06/29/22 04:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/28/22 16:05	06/29/22 04:11	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/28/22 16:05	06/29/22 04:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				06/28/22 16:05	06/29/22 04:11	1
1,4-Difluorobenzene (Surr)	91		70 - 130				06/28/22 16:05	06/29/22 04:11	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/29/22 09:18	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			07/01/22 12:14	1
Method: 8015B NM - Diesel Rar	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 13:15	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 13:15	1
C10-C28)									

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Client Sample Results

Job ID: 890-2468-1 SDG: 225839

Client Sample ID: H-1

Client: NT Global

Date Collected: 06/24/22 00:00 Date Received: 06/27/22 12:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 13:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				06/29/22 08:44	06/30/22 13:15	1
o-Terphenyl	107		70 - 130				06/29/22 08:44	06/30/22 13:15	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	677		25.2		mg/Kg			07/03/22 21:35	5

Client Sample ID: H-2

Date Collected: 06/24/22 00:00

Date Received: 06/27/22 12:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		06/28/22 16:05	06/29/22 04:31	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/28/22 16:05	06/29/22 04:31	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/28/22 16:05	06/29/22 04:31	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/28/22 16:05	06/29/22 04:31	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/28/22 16:05	06/29/22 04:31	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/28/22 16:05	06/29/22 04:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130				06/28/22 16:05	06/29/22 04:31	1
1,4-Difluorobenzene (Surr)	90		70 - 130				06/28/22 16:05	06/29/22 04:31	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/29/22 09:18	1
 Method: 8015 NM - Diesel Range C	organics (DR	O) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			07/01/22 12:14	1

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/29/22 08:44	06/30/22 13:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		06/29/22 08:44	06/30/22 13:36	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/29/22 08:44	06/30/22 13:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				06/29/22 08:44	06/30/22 13:36	1
o-Terphenyl	96		70 - 130				06/29/22 08:44	06/30/22 13:36	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.2		4.97		mg/Kg			07/03/22 21:43	1

Lab Sample ID: 890-2468-3 Matrix: Solid

5

Client Sample Results

Page 45 of 87

Job ID: 890-2468-1 SDG: 225839

Lab Sample ID: 890-2468-5

Client Sample ID: H-3 Date Collected: 06/24/22 00:00

Client: NT Global

Date Received: 06/27/22 12:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		06/28/22 16:05	06/29/22 04:52	
Toluene	<0.00202	U	0.00202		mg/Kg		06/28/22 16:05	06/29/22 04:52	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		06/28/22 16:05	06/29/22 04:52	
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		06/28/22 16:05	06/29/22 04:52	
o-Xylene	<0.00202	U	0.00202		mg/Kg		06/28/22 16:05	06/29/22 04:52	
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		06/28/22 16:05	06/29/22 04:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	112		70 - 130				06/28/22 16:05	06/29/22 04:52	
1,4-Difluorobenzene (Surr)	95		70 - 130				06/28/22 16:05	06/29/22 04:52	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00404	U	0.00404		mg/Kg			06/29/22 09:18	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			07/01/22 12:14	
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/29/22 08:44	06/30/22 13:58	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/29/22 08:44	06/30/22 13:58	
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/29/22 08:44	06/30/22 13:58	
					0 0				
Surrogate	- %Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	100		70 - 130				06/29/22 08:44	06/30/22 13:58	
o-Terphenyl	108		70 - 130				06/29/22 08:44	06/30/22 13:58	
Method: 300.0 - Anions, Ion Chro									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloride	17.4		5.04		mg/Kg			07/04/22 11:56	
lient Sample ID: H-4							Lab Sar	nple ID: 890-	2468-

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit D Dil Fac RL Prepared Analyzed Benzene <0.00200 U 0.00200 mg/Kg 06/28/22 16:05 06/29/22 05:12 1 Toluene <0.00200 U 0.00200 mg/Kg 06/28/22 16:05 06/29/22 05:12 1 Ethylbenzene <0.00200 U 0.00200 mg/Kg 06/28/22 16:05 06/29/22 05:12 1 m-Xylene & p-Xylene <0.00399 U 0.00399 mg/Kg 06/28/22 16:05 06/29/22 05:12 1 o-Xylene <0.00200 U 0.00200 mg/Kg 06/28/22 16:05 06/29/22 05:12 1 <0.00399 U 0.00399 06/28/22 16:05 06/29/22 05:12 Xylenes, Total mg/Kg 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 112 70 - 130 06/28/22 16:05 06/29/22 05:12 4-Bromofluorobenzene (Surr) 1 1,4-Difluorobenzene (Surr) 93 70 - 130 06/28/22 16:05 06/29/22 05:12 1

Eurofins Carlsbad

Matrix: Solid

Client Sample Results

Job ID: 890-2468-1

Client Sample ID: H-4

Client: NT Global

Date Collected: 06/24/22 00:00 Date Received: 06/27/22 12:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Total BTEX	<0.00399	U	0.00399		mg/Kg			06/29/22 09:18	1	
Method: 8015 NM - Diesel Range	Organics (DB)									
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<49.9		49.9		mg/Kg			07/01/22 12:14	1	
					0 0					
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 14:20	1	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 14:20	1	
C10-C28)										
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/29/22 08:44	06/30/22 14:20	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1-Chlorooctane	104		70 - 130				06/29/22 08:44	06/30/22 14:20	1	
o-Terphenyl	114		70 - 130				06/29/22 08:44	06/30/22 14:20	1	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble								
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac	
Chloride	25.4		5.03		mg/Kg			07/03/22 21:59	1	

SDG: 225839

Lab Sample ID: 890-2468-6

Matrix: Solid

Job ID: 890-2468-1
SDG: 225839

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

Client: NT Global

-				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-16372-A-1-D MS	Matrix Spike	106	101		÷
880-16372-A-1-E MSD	Matrix Spike Duplicate	107	100		
890-2468-1	S-1 (2-2,5)	104	85		1
890-2468-2	S-2 (0-1)	97	90		
890-2468-3	H-1	99	91		1
890-2468-4	H-2	111	90		
890-2468-5	H-3	112	95		
890-2468-6	H-4	112	93		
LCS 880-28492/1-A	Lab Control Sample	106	99		
LCSD 880-28492/2-A	Lab Control Sample Dup	107	101		
MB 880-28492/5-B	Method Blank	101	92		
MB 880-28503/5-A	Method Blank	99	89		
• • • •					
Surrogate Legend					
BFB = 4-Bromofluorober					
DFBZ = 1,4-Difluoroben:	zene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2468-1	S-1 (2-2,5)	104	113	
890-2468-1 MS	S-1 (2-2,5)	100	96	
890-2468-1 MSD	S-1 (2-2,5)	88	85	
890-2468-2	S-2 (0-1)	100	110	
890-2468-3	H-1	98	107	
890-2468-4	H-2	89	96	
890-2468-5	H-3	100	108	
890-2468-6	H-4	104	114	
LCS 880-28611/2-A	Lab Control Sample	85	90	
LCSD 880-28611/3-A	Lab Control Sample Dup	98	102	
MB 880-28611/1-A	Method Blank	102	117	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Benzene

Toluene

Method: 8021B - Volatile Organic Compounds (GC)

Job ID: 890-2468-1
SDG: 225839
· · · · · · · · · · · · · · · · · · ·

Page 48 of 87

Lab Sample ID: MB 880-28492/5-B **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 28497 Prep Batch: 28492 MB MB Dil Fac Result Qualifier RL MDL Unit D Prepared Analvzed <0.00200 U 0.00200 06/28/22 16:05 06/28/22 23:21 mg/Kg 1 <0.00200 U 0.00200 06/28/22 16:05 06/28/22 23:21 mg/Kg 1 Ethylbenzene 0.00200 06/28/22 23:21 <0.00200 U mg/Kg 06/28/22 16:05 1 m-Xylene & p-Xylene < 0.00400 U 0.00400 mg/Kg 06/28/22 16:05 06/28/22 23:21 <0.00200 U 0.00200 06/28/22 16:05 06/28/22 23.21 mg/Kg 1 <0.00400 U 0.00400 Xylenes, Total mg/Kg 06/28/22 16:05 06/28/22 23:21 MB MB %Recovery Qualifier Limits Dil Fac Prepared Analyzed 70 - 130 06/28/22 16:05 4-Bromofluorobenzene (Surr) 101 06/28/22 23:21 1,4-Difluorobenzene (Surr) 92 70 - 130 06/28/22 16:05 06/28/22 23:21 1 **Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 880-28492/1-A Matrix: Solid Prep Type: Total/NA Analysis Batch: 28497 Prep Batch: 28492 LCS LCS Spike %Rec Added Result Qualifier Unit D %Rec Limits 0.100 0.08192 mg/Kg 82 70 - 130 0.100 0.08189 mg/Kg 82 70 - 130 Ethylbenzene 0.100 0.08532 mg/Kg 85 70 - 130 m-Xylene & p-Xylene 0.200 0.1766 mg/Kg 88 70 - 130 0.100 0.09022 mg/Kg 90 70 - 130 LCS LCS %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 106 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 99 Lab Sample ID: LCSD 880-28492/2-A Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA Analysis Batch: 28497 Prep Batch: 28492 LCSD LCSD RPD Spike %Rec Added **Result Qualifier** Unit D %Rec Limits RPD Limit 35 0.100 0.08697 mg/Kg 87 70 - 130 6 0.100 0.08762 mg/Kg 88 70 - 130 7 35 0.100 0.09077 mg/Kg 91 70 - 130 35 Ethylbenzene 6 m-Xylene & p-Xylene 0.200 0.1870 mg/Kg 93 70 - 130 6 35 0.100 0.09565 mg/Kg 96 70 - 130 6 35 LCSD LCSD %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 107 70 - 1301,4-Difluorobenzene (Surr) 101 70 - 130 Lab Sample ID: 880-16372-A-1-D MS **Client Sample ID: Matrix Spike** Matrix: Solid Prep Type: Total/NA Prep Batch: 28492 Analysis Batch: 28497 Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit D %Rec Limits U 90 <0.00201 0 100 0 09073 mg/Kg 70 - 130 <0.00201 U 0.100 0.09069 mg/Kg 90 70 - 130

MS MS

0.09410

0.1931

0.09705

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.100

0.201

0.100

Limits

70 - 130

70 - 130

Client: NT Global Project/Site: Government AA Com 2H

Lab Sample ID: 880-16372-A-1-D MS

Lab Sample ID: 880-16372-A-1-E MSD

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 28497

Sample Sample

<0.00201

<0.00402 U

<0.00201 U

106

101

%Recovery

Result Qualifier

U

MS MS

Qualifier

MB MB

225839	
k Spike otal/NA : 28492	
. 20492	
plicate otal/NA	
: 28492 RPD	
Limit 35	

5 6 7

Client Sample ID: Matrix Spike Du Prep Type: To

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

94

96

96

D

Matrix: Solid Analysis Batch: 28497

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 28497									Prep	Batch:	28492	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	< 0.00201	U	0.0990	0.08862		mg/Kg		90	70 - 130	2	35	
Toluene	<0.00201	U	0.0990	0.08929		mg/Kg		90	70 - 130	2	35	ī
Ethylbenzene	<0.00201	U	0.0990	0.09315		mg/Kg		94	70 - 130	1	35	
m-Xylene & p-Xylene	<0.00402	U	0.198	0.1920		mg/Kg		97	70 - 130	1	35	i
o-Xylene	<0.00201	U	0.0990	0.09627		mg/Kg		97	70 - 130	1	35	
	MSD	MSD										

	WISD	WSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: MB 880-28503/5-A Matrix: Solid Analysis Batch: 28497

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 28503

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/28/22 08:42	06/28/22 11:21	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/28/22 08:42	06/28/22 11:21	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/28/22 08:42	06/28/22 11:21	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/28/22 08:42	06/28/22 11:21	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/28/22 08:42	06/28/22 11:21	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/28/22 08:42	06/28/22 11:21	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				06/28/22 08:42	06/28/22 11:21	1
1,4-Difluorobenzene (Surr)	89		70 - 130				06/28/22 08:42	06/28/22 11:21	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-28611/1-A Matrix: Solid Analysis Batch: 28717							Client Sa	mple ID: Metho Prep Type: ⁻ Prep Bato	Total/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/29/22 08:44	06/30/22 10:43	1
(GRO)-C6-C10									

Eurofins Carlsbad

Page 49 of 87

Released to Imaging: 12/15/2022 7:55:49 AM

Client: NT Global Project/Site: Government AA Com 2H

Job ID: 890-2468-1

SDG: 225839

ab Sample ID: MB 880-28611/1	- A											Client Sa	ample ID:	Method	Blank
Aatrix: Solid														Type: To	
Analysis Batch: 28717													Prep	Batch:	28611
Analyta	D		MB Qualifier		RL		MDL I	Init		D	Dr	repared	Apply	rod	Dil Fac
Analyte Diesel Range Organics (Over		50.0			50.0			ng/Kg		_		9/22 08:44	Analy: 06/30/22		1 Dil Fac
C10-C28)		.00.0	0		50.0		'	iig/itg			00/23	5/22 00.44	00/30/22	10.45	1
, Oll Range Organics (Over C28-C36)	<	50.0	U		50.0		I	ng/Kg			06/29	9/22 08:44	06/30/22	10:43	1
		MR	МВ												
Surrogate	%Reco		Qualifier	Limit	s						Pr	repared	Analy	zed	Dil Fac
I-Chlorooctane		102		70 - 1								9/22 08:44	06/30/22		1
p-Terphenyl		117		70 - 1	30						06/29	9/22 08:44	06/30/22	10:43	1
										~		•			
.ab Sample ID: LCS 880-28611/ /atrix: Solid	2- A									C	iient	Sample	ID: Lab C		-
														Type: To Batch:	
Analysis Batch: 28717				Spike		LCS	LCS						%Rec	Datch.	20011
Analyte				Added	1	Result		ier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000		807.5	quuili		mg/Kg			81	70 - 130		
GRO)-C6-C10						201.0						51	100		
Diesel Range Organics (Over				1000		1033			mg/Kg			103	70 - 130		
c10-C28)															
	LCS	LCS													
Surrogate	%Recovery	Qua	lifier	Limits											
-Chlorooctane	85			70 - 130											
-Terphenyl	90			70 - 130											
ab Sample ID: LCSD 880-2861	1/2_1								Cliv	ont	Sam		ab Contro	Samn	
Matrix: Solid	1/ 3-A								Circ	ent	Sam	pie iD. L		Type: To	
Analysis Batch: 28717														Batch:	
analysis Baton. 20117				Spike		LCSD	LCSD						%Rec	, Datom	RPD
Analyte				Added		Result		ier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1000		900.3			mg/Kg			90	70 - 130	11	20
GRO)-C6-C10									- •						
Diesel Range Organics (Over				1000		1118			mg/Kg			112	70 - 130	8	20
C10-C28)															
	LCSD	LCS	D												
Surrogate	%Recovery	Qua	lifier	Limits											
-Chlorooctane	98			70 - 130											
-Terphenyl	102			70 - 130											
_ab Sample ID: 890-2468-1 MS												Clier	it Sample	ID: S-1	(2-2.5)
Matrix: Solid														Type: To	· · · ·
Analysis Batch: 28717														Batch:	
-	Sample	Sam	ple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	lifier	Added	I	Result	Qualif	ier	Unit		D	%Rec	Limits		
Basoline Range Organics	<49.9	U		996		1246			mg/Kg			125	70 - 130		
GRO)-C6-C10															
Diesel Range Organics (Over C10-C28)	<49.9	U		996		1179			mg/Kg			118	70 - 130		
- /	МС	MS													
Surrogate			lifier	l imite											
Surrogate	%Recovery 100		lifier	<i>Limits</i>											

o-Terphenyl

96

70 - 130

Client: NT Global Project/Site: Government AA Com 2H

Job ID: 890-2468-1 SDG: 225839

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	MSD									Cile	nt Sample		
Matrix: Solid												Гуре: То	
Analysis Batch: 28717												Batch:	
		Sample	Spike	MSD	MSD						%Rec		RPD
Analyte		Qualifier	Added		Qual	ifier	Unit		D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	996	1097		I	mg/Kg			110	70 - 130	13	20
Diesel Range Organics (Over C10-C28)	<49.9	U	996	1071		I	mg/Kg			108	70 - 130	10	2
	MSD	MSD											
Surrogate	%Recovery	Qualifier	Limits										
1-Chlorooctane	88		70 - 130										
o-Terphenyl	85		70 - 130										
lethod: 300.0 - Anions,	Ion Chromat	ography											
Lab Sample ID: MB 880-285 Matrix: Solid	556/1-A									Client S	ample ID: Prep	Method Type: Se	
Analysis Batch: 28884		МВ МВ											
Analyte	D	esult Qualifier		RL	MDL	Unit		D	p,	epared	Analyz	red	Dil Fa
Chloride		<5.00 U		5.00		mg/Kg		<u> </u>	FI	epareu	07/03/22		Dirra
Matrix: Solid												Type: S	0.000
Analysis Batch: 28884			Snike	LCS	LCS						%Rec		
-			Spike Added		LCS Qual	ifier	Unit		D	%Rec	%Rec Limits		
Analyte			Spike Added 250	LCS Result 263.1			Unit mg/Kg		D	% Rec	%Rec Limits 90 - 110		
Analyte Chloride	 28556/3-A		Added	Result			mg/Kg			105	Limits		e Du
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid	 28556/3-A		Added	Result			mg/Kg	ent S		105	Limits 90 - 110 Lab Contro	bl Sampl Type: So	
Analysis Batch: 28884 Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884	 28556/3-A		Added	Result 263.1		I	mg/Kg	ent S		105	Limits 90 - 110 Lab Contro		olubl
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884	28556/3-A		Added 250	Result 263.1 LCSD	Qual		mg/Kg	ent (105	Limits 90 - 110 Lab Contro Prep		olubl RP
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte	28556/3-A		Added 250 Spike	Result 263.1 LCSD	Qual	D	mg/Kg Cli	ent (_ Sam	105 -	Limits 90 - 110 Lab Contro Prep %Rec	Type: S	olubi RP Lim
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-4			Added 250 Spike Added	Result 263.1 LCSD Result	Qual	D	mg/Kg Cli Unit	ent S	_ Sam	105 ple ID: I %Rec 106	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So <u>RPD</u> 0 : Matrix	olubl RP Lim 2 Spik
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-4 Matrix: Solid			Added 250 Spike Added	Result 263.1 LCSD Result	Qual	D	mg/Kg Cli Unit	ient S	_ Sam	105 ple ID: I %Rec 106	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So	olubl RPI Lim 2 Spik
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid	 A-17-C MS		Added 250 Spike Added	Result 263.1 LCSD Result 263.9	Qual	D	mg/Kg Cli Unit		_ Sam	105 ple ID: I %Rec 106	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So <u>RPD</u> 0 : Matrix	olubl RPI Lim 2 Spik
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-4 Matrix: Solid	— — — — — — — — — — — — — — — — — — —	Sample Qualifier	Added 250 Spike Added 250	Result 263.1 LCSD Result 263.9 MS	Qual LCSI Qual) ifier	mg/Kg Cli Unit		_ Sam	105 ple ID: I %Rec 106	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: So <u>RPD</u> 0 : Matrix	olubl RPI Lim 2 Spike
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-A Matrix: Solid Analysis Batch: 28884 Analyte	— — — — — — — — — — — — — — — — — — —	Qualifier	Added 250 Spike Added 250 Spike	Result 263.1 LCSD Result 263.9 MS	Qual LCSI Qual	D ifier	mg/Kg Cli Unit mg/Kg		<u>D</u>	105 ple ID: I %Rec 106 Client	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: So <u>RPD</u> 0 : Matrix	olubl RPI Lim 2 Spik
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-4 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-4	A-17-C MS Sample Result 3430	Qualifier	Added 250 Spike Added 250 Spike Added	Result 263.1 LCSD Result 263.9 MS Result	Qual LCSI Qual	D ifier	mg/Kg Cli Unit mg/Kg Unit mg/Kg		D D	105 ple ID: I %Rec 106 Client %Rec 119	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 Sample JD Prep	Type: So <u>RPD</u> 0 : Matrix Type: So pike Dup	olubi RP Lim 2 Spik olubi
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-4 Matrix: Solid Analyte Chloride Lab Sample ID: 880-16340-4 Matrix: Solid	A-17-C MS Sample Result 3430	Qualifier	Added 250 Spike Added 250 Spike Added	Result 263.1 LCSD Result 263.9 MS Result	Qual LCSI Qual	D ifier	mg/Kg Cli Unit mg/Kg Unit mg/Kg		D D	105 ple ID: I %Rec 106 Client %Rec 119	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 Sample JD Prep	Type: So <u>RPD</u> 0 : Matrix Type: So	olubi RP Lim 2 Spik olubi
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-A Matrix: Solid Analysis Batch: 28884	A-17-C MS Sample Result 3430 A-17-D MSD	Qualifier F1	Added 250 Spike Added 250 Spike Added 1260	Result 263.1 LCSD Result 263.9 MS Result 4920	Qual Qual MS Qual F1) ifier	mg/Kg Cli Unit mg/Kg Unit mg/Kg		D D	105 ple ID: I %Rec 106 Client %Rec 119	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So <u>RPD</u> 0 : Matrix Type: So pike Dup	olubi RPI 2 Spike olubi
Analyte Chloride Lab Sample ID: LCSD 880-2 Matrix: Solid Analysis Batch: 28884 Analyte Chloride Lab Sample ID: 880-16340-4 Matrix: Solid Analyte Chloride Lab Sample ID: 880-16340-4 Matrix: Solid	A-17-C MS Sample Result 3430 A-17-D MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 263.1 LCSD Result 263.9 MS Result 4920	Qual LCSI Qual	D ifier	mg/Kg Cli Unit mg/Kg Unit mg/Kg		D D	105 ple ID: I %Rec 106 Client %Rec 119	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 Sample JD Prep	Type: So <u>RPD</u> 0 : Matrix Type: So pike Dup	olubi RP Lim 2 Spik olubi

QC Sample Results

Client: NT Global Project/Site: Government AA Com 2H Job ID: 890-2468-1 SDG: 225839

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-2462-A-	52-F MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 28884											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Oble vide			054	074.0	E1	mg/Kg		146	90 - 110		
-	307	F1	251	674.0	FI	mg/Kg		140	90 - 110		
Chloride Lab Sample ID: 890-2462-A- Matrix: Solid Analysis Batch: 28884		FI	251	674.0	ΓI	0 0	ent Sa): Matrix Sp	oike Dup Type: Se	
Lab Sample ID: 890-2462-A- Matrix: Solid			Spike			0 0	ent Sa): Matrix Sp		
Lab Sample ID: 890-2462-A- Matrix: Solid	52-G MSD Sample			MSD		0 0	ent Sa): Matrix Sp Prep		oluble

QC Association Summary

Client: NT Global Project/Site: Government AA Com 2H

5

Job ID: 890-2468-1 SDG: 225839

GC VOA

Prep Batch: 28492

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2468-1	S-1 (2-2,5)	Total/NA	Solid	5035	
890-2468-2	S-2 (0-1)	Total/NA	Solid	5035	
890-2468-3	H-1	Total/NA	Solid	5035	
890-2468-4	H-2	Total/NA	Solid	5035	
890-2468-5	H-3	Total/NA	Solid	5035	
890-2468-6	H-4	Total/NA	Solid	5035	
MB 880-28492/5-B	Method Blank	Total/NA	Solid	5035	
LCS 880-28492/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-28492/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-16372-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-16372-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 28497

MB 880-28492/5-B	Method Blank	Iotal/NA	Solid	5035		
LCS 880-28492/1-A	Lab Control Sample	Total/NA	Solid	5035		8
LCSD 880-28492/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-16372-A-1-D MS	Matrix Spike	Total/NA	Solid	5035		9
880-16372-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		
Analysis Batch: 28497						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	11
890-2468-1	S-1 (2-2,5)	Total/NA	Solid	8021B	28492	
890-2468-2	S-2 (0-1)	Total/NA	Solid	8021B	28492	12
890-2468-3	H-1	Total/NA	Solid	8021B	28492	
890-2468-4	H-2	Total/NA	Solid	8021B	28492	4.9
890-2468-5	H-3	Total/NA	Solid	8021B	28492	13
890-2468-6	H-4	Total/NA	Solid	8021B	28492	
MB 880-28492/5-B	Method Blank	Total/NA	Solid	8021B	28492	14
MB 880-28503/5-A	Method Blank	Total/NA	Solid	8021B	28503	
LCS 880-28492/1-A	Lab Control Sample	Total/NA	Solid	8021B	28492	
LCSD 880-28492/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	28492	
880-16372-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	28492	
880-16372-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	28492	

Prep Batch: 28503

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
MB 880-28503/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 28622

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2468-1	S-1 (2-2,5)	Total/NA	Solid	Total BTEX	
890-2468-2	S-2 (0-1)	Total/NA	Solid	Total BTEX	
890-2468-3	H-1	Total/NA	Solid	Total BTEX	
890-2468-4	H-2	Total/NA	Solid	Total BTEX	
890-2468-5	H-3	Total/NA	Solid	Total BTEX	
890-2468-6	H-4	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 28611

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2468-1	S-1 (2-2,5)	Total/NA	Solid	8015NM Prep	
890-2468-2	S-2 (0-1)	Total/NA	Solid	8015NM Prep	
890-2468-3	H-1	Total/NA	Solid	8015NM Prep	
890-2468-4	H-2	Total/NA	Solid	8015NM Prep	
890-2468-5	H-3	Total/NA	Solid	8015NM Prep	
890-2468-6	H-4	Total/NA	Solid	8015NM Prep	
MB 880-28611/1-A	Method Blank	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: NT Global Project/Site: Government AA Com 2H

GC Semi VOA (Continued)

Prep Batch: 28611 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-28611/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-28611/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2468-1 MS	S-1 (2-2,5)	Total/NA	Solid	8015NM Prep	
890-2468-1 MSD	S-1 (2-2,5)	Total/NA	Solid	8015NM Prep	
analysis Batch: 28717					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2468-1	S-1 (2-2,5)	Total/NA	Solid	8015B NM	28611
890-2468-2	S-2 (0-1)	Total/NA	Solid	8015B NM	28611
890-2468-3	H-1	Total/NA	Solid	8015B NM	28611
890-2468-4	H-2	Total/NA	Solid	8015B NM	28611
890-2468-5	Н-3	Total/NA	Solid	8015B NM	28611
890-2468-6	H-4	Total/NA	Solid	8015B NM	28611
MB 880-28611/1-A	Method Blank	Total/NA	Solid	8015B NM	28611
LCS 880-28611/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	28611
LCSD 880-28611/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	28611
890-2468-1 MS	S-1 (2-2,5)	Total/NA	Solid	8015B NM	28611
890-2468-1 MSD	S-1 (2-2,5)	Total/NA	Solid	8015B NM	28611

Analysis Batch: 28848

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2468-1	S-1 (2-2,5)	Total/NA	Solid	8015 NM	
890-2468-2	S-2 (0-1)	Total/NA	Solid	8015 NM	
890-2468-3	H-1	Total/NA	Solid	8015 NM	
890-2468-4	H-2	Total/NA	Solid	8015 NM	
890-2468-5	H-3	Total/NA	Solid	8015 NM	
890-2468-6	H-4	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 28556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2468-1	S-1 (2-2,5)	Soluble	Solid	DI Leach	
890-2468-2	S-2 (0-1)	Soluble	Solid	DI Leach	
890-2468-3	H-1	Soluble	Solid	DI Leach	
890-2468-4	H-2	Soluble	Solid	DI Leach	
890-2468-5	Н-3	Soluble	Solid	DI Leach	
890-2468-6	H-4	Soluble	Solid	DI Leach	
MB 880-28556/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-28556/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-28556/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-16340-A-17-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-16340-A-17-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
890-2462-A-52-F MS	Matrix Spike	Soluble	Solid	DI Leach	
890-2462-A-52-G MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 28884

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2468-1	S-1 (2-2,5)	Soluble	Solid	300.0	28556
890-2468-2	S-2 (0-1)	Soluble	Solid	300.0	28556
890-2468-3	H-1	Soluble	Solid	300.0	28556

Eurofins Carlsbad

Page 54 of 87

Job ID: 890-2468-1 SDG: 225839

QC Association Summary

Client: NT Global Project/Site: Government AA Com 2H

HPLC/IC (Continued)

Analysis Batch: 28884 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2468-4	H-2	Soluble	Solid	300.0	28556
890-2468-5	H-3	Soluble	Solid	300.0	28556
890-2468-6	H-4	Soluble	Solid	300.0	28556
MB 880-28556/1-A	Method Blank	Soluble	Solid	300.0	28556
LCS 880-28556/2-A	Lab Control Sample	Soluble	Solid	300.0	28556
LCSD 880-28556/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	28556
880-16340-A-17-C MS	Matrix Spike	Soluble	Solid	300.0	28556
880-16340-A-17-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	28556
890-2462-A-52-F MS	Matrix Spike	Soluble	Solid	300.0	28556
890-2462-A-52-G MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	28556

5 6 7

Job ID: 890-2468-1 SDG: 225839

Client Sample ID: S-1 (2-2,5)

5

9

Job ID: 890-2468-1 SDG: 225839

Lab Sample ID: 890-2468-1 Matrix: Solid

Date Collected: 06/24/22 00:00 Date Received: 06/27/22 12:08

Client: NT Global

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	28492	06/28/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28497	06/29/22 02:27	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28622	06/29/22 09:18	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			28848	07/01/22 12:14	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	28611	06/29/22 08:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28717	06/30/22 11:48	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	28556	06/28/22 14:52	SMC	XEN MID
Soluble	Analysis	300.0		1			28884	07/03/22 21:04	СН	XEN MID

Lab Sample ID: 890-2468-2 Matrix: Solid

Lab Sample ID: 890-2468-3

Lab Sample ID: 890-2468-4

Matrix: Solid

Client Sample ID: S-2 (0-1) Date Collected: 06/24/22 00:00

Date Received: 06/27/22 12:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	28492	06/28/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28497	06/29/22 02:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28622	06/29/22 09:18	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			28848	07/01/22 12:14	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	28611	06/29/22 08:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28717	06/30/22 12:53	SM	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	28556	06/28/22 14:52	SMC	XEN MID
Soluble	Analysis	300.0		1			28884	07/03/22 21:27	СН	XEN MID

Client Sample ID: H-1

Date Collected: 06/24/22 00:00

Date Received: 06/27/22 12:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	28492	06/28/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28497	06/29/22 04:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28622	06/29/22 09:18	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			28848	07/01/22 12:14	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	28611	06/29/22 08:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28717	06/30/22 13:15	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	28556	06/28/22 14:52	SMC	XEN MID
Soluble	Analysis	300.0		5			28884	07/03/22 21:35	СН	XEN MID

Client Sample ID: H-2 Date Collected: 06/24/22 00:00 Date Received: 06/27/22 12:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	28492	06/28/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28497	06/29/22 04:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28622	06/29/22 09:18	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 12/15/2022 7:55:49 AM

Job ID: 890-2468-1 SDG: 225839

Lab Sample ID: 890-2468-4 Matrix: Solid

Date Collected: 06/24/22 00:00 Date Received: 06/27/22 12:08

Client Sample ID: H-2

Client: NT Global

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			28848	07/01/22 12:14	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	28611	06/29/22 08:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28717	06/30/22 13:36	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	28556	06/28/22 14:52	SMC	XEN MID
Soluble	Analysis	300.0		1			28884	07/03/22 21:43	СН	XEN MID

Client Sample ID: H-3 Date Collected: 06/24/22 00:00

Date Received: 06/27/22 12:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	28492	06/28/22 16:05	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	28497	06/29/22 04:52	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			28622	06/29/22 09:18	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			28848	07/01/22 12:14	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	28611	06/29/22 08:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			28717	06/30/22 13:58	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	28556	06/28/22 14:52	SMC	XEN MID
Soluble	Analysis	300.0		1			28884	07/04/22 11:56	СН	XEN MID

Client Sample ID: H-4

Prep Type

Total/NA

Total/NA

Total/NA

Date Collected: 06/24/22 00:00 Date Received: 06/27/22 12:08

Batch Batch Dil Initial Final Batch Prepared Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 06/28/22 16:05 Prep 5035 5.01 g 5 mL 28492 MR XEN MID Analysis 8021B 5 mL 5 mL 28497 06/29/22 05:12 MR XEN MID 1 Analysis Total BTEX 28622 06/29/22 09:18 XEN MID 1 AJ EN MID

Total/NA	Analysis	8015 NM	1			28848	07/01/22 12:14	SM	XEN MID
Total/NA	Prep	8015NM Prep		10.02 g	10 mL	28611	06/29/22 08:44	DM	XEN MID
Total/NA	Analysis	8015B NM	1			28717	06/30/22 14:20	SM	XEN MID
Soluble	Leach	DI Leach		4.97 g	50 mL	28556	06/28/22 14:52	SMC	XEN MID
Soluble	Analysis	300.0	1			28884	07/03/22 21:59	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 890-2468-5 9 Matrix: Solid

Lab Sample ID: 890-2468-6

Matrix: Solid

Accreditation/Certification Summary

	,		or anoual of the output of the		
Client: NT Global				Job ID: 890-2468-1	
Project/Site: Governme	ent AA Com 2H			SDG: 225839	
Laboratory: Eurof	ins Midland				
Unless otherwise noted, all a	analytes for this laboratory we	ere covered under each acc	reditation/certification below.		
Authority	Pr	ogram	Identification Number	Expiration Date	
Texas	NE	ELAP	T104704400-22-23	06-30-23	5
The following analytes	are included in this report, bu	ut the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for which	5
the agency does not of					
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					4.0
					13

Job ID: 890-2468-1 SDG: 225839

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

Client: NT Global

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: NT Global Project/Site: Government AA Com 2H

Job ID: 890-2468-1
SDG: 225839

Page 60 of 87

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-2468-1	S-1 (2-2,5)	Solid	06/24/22 00:00	06/27/22 12:08
890-2468-2	S-2 (0-1)	Solid	06/24/22 00:00	06/27/22 12:08
890-2468-3	H-1	Solid	06/24/22 00:00	06/27/22 12:08
890-2468-4	H-2	Solid	06/24/22 00:00	06/27/22 12:08
890-2468-5	H-3	Solid	06/24/22 00:00	06/27/22 12:08
890-2468-6	H-4	Solid	06/24/22 00:00	06/27/22 12:08

Juzal - 1	Relinquished by: (Signature)	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Additional Comments:			H-4	H-3	H-2	H-1	S-2 (0-1)	S-1 (2-2,5)	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #	Sampler's Name:	Project Location	Project Number:	Project Name: G	Phone: 254-266-5456	e ZIP:			Project Manager: Ethan S	(
Amorio	ture)	and relinquishment of sam for the cost of samples ar .00 will be applied to each	nments:			6/24/2022	6/24/2022	6/24/2022	6/24/2022	6/24/2022	6/24/2022	Date	(Yes NO NIA	Yes NO MA	(Res No	TempBlank:		Jordan Tyner	Eddy Co	225839	Government AA Com 2H	-5456	Carlsbad, NM 88220	402 E Wood Ave	NTG Environmental	Ethan Sessums	
rol	Received by;	ples constitut Id shall not as project and a										Time	Corrected	Temperat	Correction Factor:	Thermometer ID:	Xes No					1 2H						
h Sta	d by; (Signature)	es a valid purchau sume any respon charge of \$5 for e				×	×	×	×	×	×	Soil	Corrected Temperature:	Temperature Reading:	Factor:	eter ID:	Wet Ice:	lab, if rece	TAT starts the	Due Date:	 Routine 	Turr	Email:					
-	ıre)	se order from clien sibility for any losa each sample submi				Comp	Comp	Comp	Comp	Comp	Comp	Water Comp	8.5	6.0	-0-	TIM - Q	Yes No	lab, if received by 4:30pm	TAT starts the day received by the		Rush	Turn Around		City, State ZIP:	Address:	Company Name	Bill to: (if different)	
1d		it company i ies or expen itted to Xenc		-	_	np 1	np 1	np 1	np 1	np 1	חום 1	np Cont			P	arar	nete		he	L	Code	-				ē.	ť	
cels ch	Date/Time	to Xenco, il ses incurro ;o, but not				×	×	×	×	×	×	+ "		E	TEX	802	18							-	-	Colga		
10	Time	s affillates ad by the c analyzed.				×	×	×	×	×	×	TPI	1 80	15M	(GF	RO +	DRC) + N	IRO)						Colgate Energy		
- 00	_	and sub client if su These ter			-	×	×	×	×	×	×			C	hlori	ide 4	500	+	_							Y		
	Relinquished by: (Signature)	contractors. It assigns standard terms and conditions to hosses are due to circumstances beyond the contro ms will be enforced unless previously negotiated.										890-2468 Chain of Custody								_		ANALYSIS REQUEST						
	ure)	terms and co ces beyond to ously negotia				-		-				stody				101 INI 111	_					UEST	Deliverab	Reporting	State of Project:	Program:		
	Receive	onditions he control ated.			+																	-	Deliverables: EDD	Reporting:Level II Level III PST/UST	^o roject:	Program: UST/PST		
	Received by: (Signature)																+							evel III			Work O	
	gnature)												Z	Zr			_	H ₂	H	C	NC		ADaPT			Brownfie	der Co	
												Samp	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na2S2O3: NaSO3	NaHSO4: NABIS	H ₃ PO ₄ : HP	H2SO4: H2	HCL: HC	Cool: Cool	None: NO	Prese				Brownfields RRC	Work Order Comments	Page
	Date											Sample Comments	orbic Acio	NaOH: Z	SO3	ABIS		Nat	HN	Me	DI	Preservative Codes	Other:			_		
	Date/Time											ments	SAPO	D				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Codes				uperfund		9.

7/5/2022

Page 61 of 87

Chain of Custody

13

Work Order No:

Login Sample Receipt Checklist

Client: NT Global

Login Number: 2468 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-2468-1 SDG Number: 225839

List Source: Eurofins Carlsbad

14

Job Number: 890-2468-1 SDG Number: 225839

List Source: Eurofins Midland

List Creation: 06/28/22 10:53 AM

Login Sample Receipt Checklist

Client: NT Global

Login Number: 2468 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

September 23, 2022

ETHAN SESSUMS NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND, TX 79706

RE: GOVERNMENT AA COM 2H

Enclosed are the results of analyses for samples received by the laboratory on 09/12/22 12:20.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	GOVERNMENT AA COM 2H 225839 ETHAN SESSUMS	Reported: 23-Sep-22 08:47
--	-----------------	---	------------------------------

12-Sep-22 12:20
·=
12-Sep-22 12:20

09/23/22 - Client changed sample IDs (see COC). This is the revised report and will replace the one sent on 09/15/22.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUIT MIDLAND TX, 79706		Project: GOVERNMENT AA COM 2H Project Number: 225839 Project Manager: ETHAN SESSUMS Fax To:					Reported: 23-Sep-22 08:47			
				SW - 1 180-01 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Labora	tories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B	
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			102 %	69.9	-140	2091333	JH	14-Sep-22	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctane			76.8 %	45.3	-161	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctadecane			84.4 %	46.3	-178	2091316	СК	14-Sep-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706			Project Num Project Mana	ber: 225		Reported: 23-Sep-22 08:47				
				SW - 2						
			H224	180-02 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	3021								
Benzene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Surrogate: 4-Bromofluorobenzene (P	ID)		100 %	69.9	-140	2091333	ЛН	14-Sep-22	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctane			85.1 %	45.3	-161	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctadecane			94.2 %	46.3-	-178	2091316	СК	14-Sep-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706			Project Num Project Mana	ber: 225		Reported: 23-Sep-22 08:47				
				SW - 3	•1\					
			H224	180-03 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ll Laborat	ories					
Inorganic Compounds										
Chloride	128		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		104 %	69.9	-140	2091333	JH	14-Sep-22	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctane			83.5 %	45.3	-161	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctadecane			92.0 %	46.3	-178	2091316	CK	14-Sep-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706		Project Num Project Mana	ber: 225		Reported: 23-Sep-22 08:47					
				SW - 4						
			H224	180-04 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		99.0 %	69.9	-140	2091333	ЛН	14-Sep-22	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctane			85.1 %	45.3	-161	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctadecane			95.0 %	46.3-	-178	2091316	СК	14-Sep-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706			Project Num Project Mana	ber: 225		Reported: 23-Sep-22 08:47				
				SW - 5						
			H224	180-05 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	144		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Surrogate: 4-Bromofluorobenzene (P	ID)		104 %	69.9	-140	2091333	ЛН	14-Sep-22	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctane			93.4 %	45.3-	-161	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctadecane			105 %	46.3-	-178	2091316	СК	14-Sep-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706		Project Num Project Mana	ber: 225		Reported: 23-Sep-22 08:47					
				SW - 6						
			H224	180-06 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		104 %	69.9	-140	2091333	JH	14-Sep-22	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctane			84.5 %	45.3	-161	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctadecane			95.5 %	46.3	-178	2091316	СК	14-Sep-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706		Project: GOVERNMENT AA COM 2H Project Number: 225839 Project Manager: ETHAN SESSUMS Fax To:					Reported: 23-Sep-22 08:47			
				SW - 7						
H224180-07 (Soil)										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		103 % 69.9-140		-140	2091333	ЛН	14-Sep-22	8021B		
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091316	CK	14-Sep-22	8015B	
Surrogate: 1-Chlorooctane		88.9 %	45.3-161		2091316	CK	14-Sep-22	8015B		
Surrogate: 1-Chlorooctadecane			96.3 %	46.3-178		2091316	СК	14-Sep-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C	Project: GOVERNMENT AA COM 2 Project Number: 225839 Project Manager: ETHAN SESSUMS Fax To:						DM 2H Reported: 23-Sep-22 08:47				
				- 1 (2.5' 180-08 (Se	·							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	al Laborat	ories							
Inorganic Compounds Chloride	96.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B			
Volatile Organic Compound	s by EPA Method 8	8021										
Benzene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	ЛН	14-Sep-22	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЛН	14-Sep-22	8021B			
Surrogate: 4-Bromofluorobenzene (P	PID)		101 %	69.9	-140	2091333	ЈН	14-Sep-22	8021B			
Petroleum Hydrocarbons by	GC FID											
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B			
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B			
Surrogate: 1-Chlorooctane			105 %	45.3	-161	2091325	СК	13-Sep-22	8015B			
Surrogate: 1-Chlorooctadecane			113 %	46.3	-178	2091325	СК	13-Sep-22	8015B			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C	Project: GOVERNMENT AA COM 2H C Project Number: 225839 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Sep-22 08:47			
				- 2 (2.5' 180-09 (So	,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	32.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	JH	14-Sep-22	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	JH	14-Sep-22	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЈН	14-Sep-22	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	D)		103 %	69.9	-140	2091333	JH	14-Sep-22	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B		
Surrogate: 1-Chlorooctane			98.5 %	45.3	-161	2091325	CK	13-Sep-22	8015B	_	
Surrogate: 1-Chlorooctadecane			107 %	46.3	-178	2091325	CK	13-Sep-22	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project Num Project Mana	ber: 225			Reported: 23-Sep-22 08:47			
				- 3 (2.5' 180-10 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds			16.0		4	2001409		14.6 22	4500 CL D	
Chloride	32.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2091333	ЈН	14-Sep-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091333	ЈН	14-Sep-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2091333	ЛН	14-Sep-22	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		104 %	69.9	-140	2091333	JH	14-Sep-22	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091325	CK	13-Sep-22	8015B	
Surrogate: 1-Chlorooctane			101 %	45.3	-161	2091325	СК	13-Sep-22	8015B	
Surrogate: 1-Chlorooctadecane			107 %	46.3	-178	2091325	СК	13-Sep-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. S MIDLAND TX, 79706	SUITE C	Project: GOVERNMENT AA COM 2H E C Project Number: 225839 Project Manager: ETHAN SESSUMS Fax To:							Reported: 23-Sep-22 08:47			
				- 4 (2.5' 180-11 (Se	<i>,</i>							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	l Laborat	ories							
Inorganic Compounds												
Chloride	64.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B			
Volatile Organic Compounds	by EPA Method 8	8021										
Benzene*	< 0.050		0.050	mg/kg	50	2091334	ЛН	14-Sep-22	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	2091334	ЛН	14-Sep-22	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091334	ЛН	14-Sep-22	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091334	ЛН	14-Sep-22	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	2091334	ЛН	14-Sep-22	8021B			
Surrogate: 4-Bromofluorobenzene (PIL))		105 %	69.9	-140	2091334	ЈН	14-Sep-22	8021B			
Petroleum Hydrocarbons by	GC FID											
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
Surrogate: 1-Chlorooctane			88.2 %	45.3	-161	2091325	CK	14-Sep-22	8015B			
Surrogate: 1-Chlorooctadecane			96.0 %	46.3	-178	2091325	СК	14-Sep-22	8015B			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C	Project: GOVERNMENT AA COM 2H TE C Project Number: 225839 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Sep-22 08:47				
				- 5 (2.5' 180-12 (Se	/							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	ıl Laborat	ories							
Inorganic Compounds												
Chloride	96.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B			
Volatile Organic Compound	s by EPA Method	8021										
Benzene*	< 0.050		0.050	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Surrogate: 4-Bromofluorobenzene (PL	ID)		104 %	69.9	-140	2091334	JH	14-Sep-22	8021B			
Petroleum Hydrocarbons by	GC FID											
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
Surrogate: 1-Chlorooctane			76.5 %	45.3	-161	2091325	CK	14-Sep-22	8015B			
Surrogate: 1-Chlorooctadecane			82.7 %	46.3	-178	2091325	СК	14-Sep-22	8015B			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. S MIDLAND TX, 79706	SUITE C	Project: GOVERNMENT AA COM 2H Project Number: 225839 Project Manager: ETHAN SESSUMS Fax To:							Reported: 23-Sep-22 08:47			
				- 6 (2.5' 180-13 (Se	<i>,</i>							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	l Laborat	ories							
Inorganic Compounds												
Chloride	64.0		16.0	mg/kg	4	2091408	AC	14-Sep-22	4500-Cl-B			
Volatile Organic Compounds	by EPA Method 8	8021										
Benzene*	< 0.050		0.050	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	2091334	JH	14-Sep-22	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	2091334	ЈН	14-Sep-22	8021B			
Surrogate: 4-Bromofluorobenzene (PII	D)		103 %	69.9	-140	2091334	JH	14-Sep-22	8021B			
Petroleum Hydrocarbons by	GC FID											
GRO C6-C10*	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2091325	CK	14-Sep-22	8015B			
Surrogate: 1-Chlorooctane			82.0 %	45.3	-161	2091325	CK	14-Sep-22	8015B			
Surrogate: 1-Chlorooctadecane			86.6 %	46.3	-178	2091325	CK	14-Sep-22	8015B			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	GOVERNMENT AA COM 2H 225839 ETHAN SESSUMS	Reported: 23-Sep-22 08:47
--	-----------------	---	------------------------------

Inorganic Compounds - Quality Control

		Cardiı	nal Lab	oratories						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2091408 - 1:4 DI Water										
Blank (2091408-BLK1)				Prepared &	& Analyzed:	14-Sep-22				
Chloride	ND	16.0	mg/kg							
LCS (2091408-BS1)				Prepared &	& Analyzed:	14-Sep-22				
Chloride	400	16.0	mg/kg	400		100	80-120			
LCS Dup (2091408-BSD1)				Prepared &	& Analyzed:	14-Sep-22				
Chloride	416	16.0	mg/kg	400		104	80-120	3.92	20	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project: Project Number: Project Manager: Fax To:		Reported: 23-Sep-22 08:47	
--	--	--	------------------------------	--

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratorie

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2091333 - Volatiles										
Blank (2091333-BLK1)				Prepared: 1	3-Sep-22 A	nalyzed: 1	4-Sep-22			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0516		mg/kg	0.0500		103	69.9-140			
LCS (2091333-BS1)				Prepared: 1	3-Sep-22 A	nalyzed: 1	4-Sep-22			
Benzene	1.75	0.050	mg/kg	2.00		87.7	83.4-122			
Toluene	1.97	0.050	mg/kg	2.00		98.3	84.2-126			
Ethylbenzene	1.93	0.050	mg/kg	2.00		96.3	84.2-121			
m,p-Xylene	3.97	0.100	mg/kg	4.00		99.2	89.9-126			
o-Xylene	1.92	0.050	mg/kg	2.00		96.1	84.3-123			
Total Xylenes	5.89	0.150	mg/kg	6.00		98.2	89.1-124			
Surrogate: 4-Bromofluorobenzene (PID)	0.0529		mg/kg	0.0500		106	69.9-140			
LCS Dup (2091333-BSD1)				Prepared: 1	3-Sep-22 A	nalyzed: 1	4-Sep-22			
Benzene	1.88	0.050	mg/kg	2.00		94.1	83.4-122	7.04	12.6	
Toluene	2.06	0.050	mg/kg	2.00		103	84.2-126	4.81	13.3	
Ethylbenzene	2.04	0.050	mg/kg	2.00		102	84.2-121	5.86	13.9	
m,p-Xylene	4.23	0.100	mg/kg	4.00		106	89.9-126	6.43	13.6	
o-Xylene	2.07	0.050	mg/kg	2.00		104	84.3-123	7.45	14.1	
Total Xylenes	6.30	0.150	mg/kg	6.00		105	89.1-124	6.76	13.4	
Surrogate: 4-Bromofluorobenzene (PID)	0.0524		mg/kg	0.0500		105	69.9-140			

Batch 2091334 - Volatiles

Blank (2091334-BLK1)			Prepared: 13-Sep-22 Analyzed: 14-Sep-22
Benzene	ND	0.050	mg/kg
Toluene	ND	0.050	mg/kg
Ethylbenzene	ND	0.050	mg/kg
Total Xylenes	ND	0.150	mg/kg

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project: GOVERI Project Number: 225839 Project Manager: ETHAN Fax To:		Reported: 23-Sep-22 08:47	
--	--	--	------------------------------	--

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Carumai Laboratories	Cardinal	l Laboratori	es
----------------------	----------	--------------	----

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2091334 - Volatiles										
Blank (2091334-BLK1)				Prepared: 1	3-Sep-22 A	nalyzed: 1	4-Sep-22			
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0559		mg/kg	0.0500		112	69.9-140			
LCS (2091334-BS1)				Prepared: 1	3-Sep-22 A	nalyzed: 1	4-Sep-22			
Benzene	1.80	0.050	mg/kg	2.00		90.1	83.4-122			
Toluene	2.01	0.050	mg/kg	2.00		100	84.2-126			
Ethylbenzene	1.98	0.050	mg/kg	2.00		98.9	84.2-121			
m,p-Xylene	4.08	0.100	mg/kg	4.00		102	89.9-126			
o-Xylene	1.97	0.050	mg/kg	2.00		98.6	84.3-123			
Total Xylenes	6.05	0.150	mg/kg	6.00		101	89.1-124			
Surrogate: 4-Bromofluorobenzene (PID)	0.0511		mg/kg	0.0500		102	69.9-140			
LCS Dup (2091334-BSD1)				Prepared: 1	3-Sep-22 A	nalyzed: 1	4-Sep-22			
Benzene	1.95	0.050	mg/kg	2.00		97.7	83.4-122	8.10	12.6	
Toluene	2.22	0.050	mg/kg	2.00		111	84.2-126	10.1	13.3	
Ethylbenzene	2.22	0.050	mg/kg	2.00		111	84.2-121	11.4	13.9	
m,p-Xylene	4.58	0.100	mg/kg	4.00		114	89.9-126	11.5	13.6	

2.00

6.00

0.0500

113

114

109

84.3-123

89.1-124

69.9-140

14.0

12.3

14.1

13.4

2.27

6.85

0.0546

0.050

0.150

mg/kg

mg/kg

mg/kg

Surrogate: 4-Bromofluorobenzene (PID)

o-Xylene

Total Xylenes

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Petroleum Hydrocarbons by GC FID - Quality Control

50.0 50.0	9 Analyzed: 13-S	88.3 4 99.1 4 Sep-22	45.3-161 46.3-178			
50.0 50.0 Prepared & A 200	8 9 Analyzed: 13-S	88.3 4 99.1 4 Sep-22	46.3-178			
50.0 Prepared & 2 200	9 Analyzed: 13-S	99.1 4 Sep-22	46.3-178			
50.0 Prepared & 2 200	9 Analyzed: 13-S	99.1 4 Sep-22	46.3-178			
50.0 Prepared & 2 200	9 Analyzed: 13-S	99.1 4 Sep-22	46.3-178			
50.0 Prepared & 2 200	9 Analyzed: 13-S	99.1 4 Sep-22	46.3-178			
Prepared & 2	Analyzed: 13-S	Sep-22				
200	1	1	76.0.104			
		119 7	10 104			
200			76.8-124			
200	1	115 7	74.9-127			
400	1	117 7	77.5-124			
50.0	1	105 4	45.3-161			
50.0	1	126 4	46.3-178			
Prepared &	Analyzed: 13-S	Sep-22				
200	1	116 7	76.8-124	2.65	17.2	
200	1	105 7	74.9-127	8.87	18.6	
400	1	111 7	77.5-124	5.66	17.6	
50.0	i	115 4	45.3-161			
50.0	1	128 4	46.3-178			
	200 400 50.0	200 400 50.0	200 105 7 400 111 7 50.0 115 7 50.0 128 7	200 105 74.9-127 400 111 77.5-124 50.0 115 45.3-161 50.0 128 46.3-178	200 105 74.9-127 8.87 400 111 77.5-124 5.66 50.0 115 45.3-161	200 105 74.9-127 8.87 18.6 400 111 77.5-124 5.66 17.6 50.0 115 45.3-161 50.0 128 46.3-178

Blank (2091325-BLK1)				Prepared & Ana	lyzed: 13-Sep-22	2	
GRO C6-C10	ND	10.0	mg/kg				
DRO >C10-C28	ND	10.0	mg/kg				
EXT DRO >C28-C36	ND	10.0	mg/kg				
Surrogate: 1-Chlorooctane	51.9		mg/kg	50.0	104	45.3-161	
Surrogate: 1-Chlorooctadecane	56.1		mg/kg	50.0	112	46.3-178	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	GOVERNMENT AA COM 2H 225839 ETHAN SESSUMS	Reported: 23-Sep-22 08:47
--	-----------------	---	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2091325 - General Prep - Organics										
LCS (2091325-BS1)				Prepared &	Analyzed:	13-Sep-22				
GRO C6-C10	216	10.0	mg/kg	200		108	76.8-124			
DRO >C10-C28	215	10.0	mg/kg	200		108	74.9-127			
Total TPH C6-C28	431	10.0	mg/kg	400		108	77.5-124			
Surrogate: 1-Chlorooctane	57.1		mg/kg	50.0		114	45.3-161			
Surrogate: 1-Chlorooctadecane	66.1		mg/kg	50.0		132	46.3-178			
LCS Dup (2091325-BSD1)				Prepared &	Analyzed:	13-Sep-22				
GRO C6-C10	217	10.0	mg/kg	200		109	76.8-124	0.528	17.2	
DRO >C10-C28	213	10.0	mg/kg	200		107	74.9-127	0.846	18.6	
Total TPH C6-C28	430	10.0	mg/kg	400		108	77.5-124	0.156	17.6	
Surrogate: 1-Chlorooctane	59.4		mg/kg	50.0		119	45.3-161			
Surrogate: 1-Chlorooctadecane	68.2		mg/kg	50.0		136	46.3-178			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

FORM-DOD K 3.3 0771	Sampler - UPS - Bus - Other:	Delivered By: (Circle One)	Relinguished By:	JALLAN	Relinquished By:	service. In no event shall Cardinal be liable f affiliates or successors arising out of or relate	PLEASE NOTE: Liability and Damages. Car analyses. All claims including those for negli	a/ *	4 9	* %	2	6	5	<u>-</u>	(J)	2	-	N81422H		Lab I.D. S	FOR LAB USE ONLY	Sampler Name: (U o	Project Location: COO	Project Name: OVELCMC	K	220	104 13 14 26C	10/01		Project Manager:	Company Name: N/T	(575) 393	101 Eact M
t Cardinal c	Correcte	Observed Temp. °C	Time:	1210 Nate:	1 Hales	ardinal be liable for incidental or consequental damages, income ng out of or related to the performance of services hereunder by Ce	PLEASE NOTE: Liability and Damages. Cardinal's liability and clients exclusive returnation of the deemed waived unless made in writing and received by Cardinal within 30 days autor on provide the subsidiaries, analyses. All claims including those for negligence and any other cases including without limitation, business interruptions, loss of use, or loss of profits incrued by client, its subsidiaries, analyses. All claims including those for negligence and any other cases including without limitation, business interruptions, loss of use, or loss of profits incrued by client, its subsidiaries, analyses.	CS-3 (2-3-3/	(C-2 (2.5.2)	(16-1 (2.5-3)	Su-7-51	D-M-C	52-5	21	SWID	SW-X	SWI	-		Sample I.D.	CIOMP	C M CMDALL	4 CONTY	ATTIC	-	Project Owner:	5456 Fax #:	State:		n Secsimi	40.	575) 393-2326 FAX (575) 393-2476	101 East Marland, Hobbs, NM 88240
Cardinal cannot accept verbal changes. Please email changes to cerey. Accure with the commentation of the		Sample Condition Cool Intact		Received By:	A normal	Index by Cardinal, regardless of whether such claim is based upon	erned waived unless made in writing and received the without limitation, business interruptions, loss of use,	claim arising whether based in contract or tort, sha	> t	X	C C		×	×7		X		- # G V X S C S S C C	CO RO VAS SOIL DIL SLUI DTH	NTAINE UNDWA TEWAT DGE IER : D/BASE	ERS ATER ER	MATRIX PRE	Fax #:	Phone #:	2.H State:	(day City:	Address:	NM Zip: 88220 Attn:	Company:	P.O. #:			
. Please email changes to	Correcti	CHECKED BY: Turnarc (Initials)		REMARKS:	All Kesuis are	Verbal Result:	, or loss of profits incurred by client, its subsi-	ad in contract or tort, shall be limited to the amount paid by the client for the		C A	- 2									/ COOL HER :		PRESERV. SAMPLING		#	Zip:		S.		ny:		BILL IV	BILLTD	
Celey.neolio@cui uiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Correction Factor -0.6°C	Turnaround Illine: Qualitative Thermometer ID #113	standard			Ves No		for the (イイケン	XXX	+++	XXX	XYXX	XXXX	XXX	XXX	XXX	XXX		BI	PH Tex (or	j'd	ع	5								ANALYSIS	
	NCLINO	Cool Intact Observed Temp. "C	Bacteria (only) Sample Condition		a Sessims.	Add'I Phone #: de Email address:																			0							YSIS REQUEST	

Page 22 of 23

atories

Page 85 of 87

101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476		· ANALYSIS REDUEST
Company Name: NTOF	BILL	
Ether	P.O. #:	
F Wasa	Company:	
cont	State: Null Zip: 98220 Attn:	
1 0 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	Address:	
225	1er: Cologter City:	
me: Chilochant	an alt State: Zip:	2
Project Institute: The County	Phone #:	
Sampler Name: 2000 10 11 100 11	Fax #:	
	MATRIX PRESERV.	SAMPLING
	WATER ATER SE:	PH Tex Nori
	# CONT GROUN WASTE SOIL OIL SLUDG OTHEF ACID/E ICE / C OTHEF	DATE
H227100 1.6-4/725	- " X	Q-12 X X X X X X 1.51
K IN CASS	× 19	
* 13 05-6(1718		X X X
ŷ		
PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be limited to the amount paid by the client for the pplicat processory of the applicat processory and processory of the application of the applicati	r for any claim arising whether based in contract or tort, shall be limited to the all be deemed waived unless made in writing and received by Cardinal within any second secon	amount paid by the client for the 20 days after completion of the applicable on-mode by client the utbeclatters
anaryses, in or event shall Carlin be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of purus incurrour y rown, or or barries, or or barries, in or event shall Carlinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of purus incurrour y rown, or or barries, and the liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of purus incurrour y rown, or or barries, and the liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of purus incurrour y rown, or or barries, and the liable for incidental be liable for incidental or consequential damages, including without limitation, business interruptions, loss of use, or loss of purus incurrour y rown, or or barries, and the liable for incidental be able for the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above	Juding without limitation, business interruptions, loss of use, or loss or promiser by Cardinal, regardless of whether such claim is based upon any of the ab	we stated reasons or otherwise.
Relinquished Bv: Date: / Date: /	1_/ C Received By:	are emailed. Please prov

Relinquished By:

Date: Time:

Received By:

Ime

Sampler - UPS - Bus - Other: Delivered By: (Circle One)

Observed Temp. °C Corrected Temp. °C

8

CHECKED BY: (Initials) 0

Turnaround Time:

Rush Standard

Bacteria (only) Sample Condition Cool Intact Observed Temp. Yes Yes Nc No Corrected Temp.

Observed Temp. °C Corrected Temp. °C

7

Mange

22422 b. a

REMARKS:

emai

Fthm

essnor >

1

Cool Intact Sample Condition

Thermometer ID #113 Correction Factor -0.6°C

+

Cardinal cannot accept verbal changes. Please email changes to celey keene@cardinallabsnm.com

Page 23 of 23

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 86 of 87

AL DS

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COLGATE OPERATING, LLC	371449
300 North Marienfeld Street	Action Number:
Midland, TX 79701	150652
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition Condition Date 12/15/2022 None amaxwell

Page 87 of 87

.

Action 150652