

SITE INFORMATION

Closure Report JoHelen SWD 001 (07.19.22) Eddy County, New Mexico Incident ID: NAPP221454459 Unit N Sec 12 T26S R26E 32.0525°, -104.2475°

Produced Water Release Point of Release: Hole in polyline Release Date: 07.19.2022 Volume Released: 36 barrels of Produced Water Volume Recovered: 20 barrels of Produced Water

Prepared for: Concho Operating, LLC 15 West London Road, Loving, New Mexico 88256

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 415 Midland, Texas 79701

> 310 West Wall Street, Suite 415 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	SAMPLE LOCATION	FIGURE 4	EXCAVATION
	APPEN	<u>IDICES</u>	
APPENDIX A	TABLES		
APPENDIX B	PHOTOS		

- **APPENDIX C INITIAL C-141 AND FINAL/NMOCD CORRESPONDENCE**
- **APPENDIX D** SITE CHARACTERIZATION AND GROUNDWATER
- **APPENDIX E** LABORATORY REPORTS

October 11, 2022

Mike Bratcher Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report JoHelen SWD 001 (07.19.22) Concho Operating, LLC Site Location: Unit N, S12, T26S, R26E (Lat 32.0525°, Long -104.2475°) Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment and remediation activities at the JoHelen SWD 001 (07.19.22). The site is located at 32.0525°, -104.2475° within Unit N S12, T26S, R26E, and in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on July 19, 2022, caused by a polyline rupture due to corrosion. It released approximately 36 barrels of produced water, and 20 barrels were recovered. The impacted area occurred on the pad; see Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, one known water source is within a 0.50-mile radius of the location. The well is approximately 0.09 miles West of the site in S12, T26S, R26E and was drilled in 2018. The well has a reported depth to groundwater of 12.60' feet below the ground surface (ft bgs). A copy of the associated Summary Report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, thefollowing criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On August 18, 2022, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of four (4) sample points (S-1, S-2, S-3, and S-4) and six (6) horizontal sample points (H-1 through H-6) were installed to total depths ranging from surface to 4.5 ft

below the surface. Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The sample locations are shown in Figure 3.

In Table 1, the areas of S-1, S-2, S-3, and S-4 showed elevated chloride concentrations ranging from surface to 4.5' below the surface. The areas of S-1, S-3, and S-4 showed high TPH concentrations from the surface to 4.5' below the surface. All horizontal extents (H-1 through H-4) were below the regulatory limits for BTEX, TPH, and Chloride.

5.0 Remediation Activities

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on September 27, 2022, per Subsection D of 19.15.29.12 NMAC. See Appendix C. The area of S-1 was excavated to a depth of 5.0' below the surface to remove all the impacted soils. The area of S-2 was excavated to a depth of 3.0'-5.0' below the surface to remove all the impacted soils. The areas of S-3 and S-4 were excavated to a depth of 2.0' below the surface. A total of seventeen (17) floor confirmation samples were collected (CS-1 through CS-17), and eighteen (18) sidewall samples (SW-1 through SW-18) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and Chloride. Refer to Table 2.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 638 cubic yards of material were excavated and transported offsite for proper disposal.

6.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests closure of the spill. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Mike Carmona Environmental Manager

Conner Moehring Sr. Project Manager

APPENDIX A

.

Table 1 COG JoHelen SWD 001 (07.19.22) Eddy County, New Mexico

Sample ID	Date	Depth (ft)		ТРН	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Deptil (it)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	8/17/2022	0-0.5	<499	18,100	<499	18,100	<0.00201	<0.00201	<0.00201	0.0170	0.0170	1,400
		0.5-1	<49.9	<49.9	<49.9	<49.9	<0.00200	0.00216	<0.00200	<0.00399	<0.00399	13,500
S-1		1.5	<50.0	61.7	<50.0	61.7	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,020
0-1	"	2.5	<49.8	<49.8	<49.8	<49.8	<0.00202	< 0.00202	<0.00202	< 0.00403	<0.00403	879
	"	3.5	<50.0	<50.0	<50.0	<50.0	<0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	253
	"	4.5	<50.0	113	<50.0	113	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	600
	8/17/2022	0-0.5	<50.0	50.6	<50.0	50.6	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	8,750
S-2		0.5-1	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	8,200
0-2		1.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	5,600
	"	2.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	2,650
S-3	8/17/2022	0-0.5	102	3,480	<50.0	3,580	<0.00202	0.00233	0.00730	0.0471	0.0567	8,150
3-3	"	0.5-1	<50.0	1,070	<50.0	1,070	<0.00200	0.00227	0.00410	0.0274	0.0338	5,760
	8/17/2022	0-0.5	<50.0	1,140	<50.0	1,140	<0.00201	<0.00201	<0.00201	< 0.00402	<0.00402	8,630
S-4	"	0.5-1	<50.0	79.3	<50.0	79.3	<0.00200	< 0.00200	<0.00200	<0.00401	<0.00401	6,870
	"	1.5	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,660
H-1	8/17/2022	0-0.5	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	22.3
H-2	8/17/2022	0-0.5	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	12.7
H-3	8/17/2022	0-0.5	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	11.7
H-4	8/17/2022	0-0.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	13.1
H-5	8/17/2022	0-0.5	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	11.7
H-6	8/17/2022	0-0.5	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	20.0
	tory Criteria ^A					100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/kg
(-) N	ot Analyzed											

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft-feet

(S) Sample Point

(H) Horizontal

Removed

•

Table 2 COG JoHelen SWD 001 (07.19.22) Eddy County, New Mexico

Sample ID	Date	Depth (ft)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Campie ib	Date	Dopin (it)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-2	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-3	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-4	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-5	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-6	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-7	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-8	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-9	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-10	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-11	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-12	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-13	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-14	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-15	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-16	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-17	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
0	ory Criteria ^A					100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft-feet

(CS) Confirmation Floor Sample

•

Table 2 COG JoHelen SWD 001 (07.19.22) Eddy County, New Mexico

Sample ID	Date	Depth (ft)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
			GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-1	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-2	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-3	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-4	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-5	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-6	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-7	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-8	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-9	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-10	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-11	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-12	10/3/2022	5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-13	10/3/2022	3	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-14	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-15	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-16	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-17	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-18	10/3/2022	2	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	ory Criteria ^A					100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft-feet

(SW) Sidewall Sample

APPENDIX B

PHOTOGRAPHIC LOG

Concho Operating, LLC

PHOTOGRAPHIC LOG

Concho Operating, LLC

APPENDIX C

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 18 of 123

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	Longitude
	(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
1 ugo	~

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
Yes No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

h				L48 Spill Volume	Estimate Form				
Received by OCD :	: 10/17/2022	12:02:28 PMme & Number:	JoHelen SWD						Page 20 of 123
			Carlsbad 2 South						
	F	Release Discovery Date & Time: 7	7/19/2022 8a.m						/
		Release Type:	Produced Water						/
<i></i>	Provide any	/ known details about the event:	8" black poly line rv	uptured, possibly high pressure. Recove	ered 20 bbls				
				Spill Calculation - Subsu					
	Was	s the release on pad or off-pad?			See reference table	e below			
Has	it rained at least	a half inch in the last 24 hours?			See reference table	e below			
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Depth (in.)	Soil Spilled-Fluid Saturation	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)
Rectangle A	160.0	35.0	1.00	8.00%	83.067	6.645			
Rectangle B	208.0	40.0	1.00	8.00%	123.413	9.873			
Rectangle C					0.000	0.000			
Rectangle D					0.000	0.000			
Rectangle E					0.000	0.000			
Rectangle F					0.000	0.000			
Rectangle G					0.000	0.000			
Rectangle H					0.000	0.000			
Rectangle I					0.000	0.000			
Released to Imagi	ing: 12/15/20	22 1:51:04 PM			0.000	0.000			
					Total Volume Release:	16.518			

Received by OCD: 10/17/2022 12:02:28 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 21 of 12.
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

.

Received by OCD: 10/17/20 Form C-141 Page 4	22 12:02:28 PM State of New Mexico Oil Conservation Division		Incident ID District RP Facility ID Application ID	Page 22 of 123
regulations all operators are r public health or the environm failed to adequately investiga addition, OCD acceptance of and/or regulations.	nation given above is true and complete to the equired to report and/or file certain release not ent. The acceptance of a C-141 report by the te and remediate contamination that pose a thr a C-141 report does not relieve the operator of	tifications and perform cc OCD does not relieve the reat to groundwater, surfa f responsibility for compl	prective actions for rele operator of liability sho ce water, human health iance with any other feo	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
Printed Name:		_ Title:		
Signature: Jacque	Acorios	Date:		
email:		Telephone:		
OCD Only		1		
	Harimon	Date: 10/	17/2022	

Received by OCD: 10/17/2022 12:02:28 PM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following it	tems must be included in the closure report.								
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC								
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)								
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)								
Description of remediation activities									
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and ren human health or the environment. In addition, OCD acceptance of a compliance with any other federal, state, or local laws and/or regula restore, reclaim, and re-vegetate the impacted surface area to the con accordance with 19.15.29.13 NMAC including notification to the O Printed Name:	nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.								
OCD Only									
Received by: Jocelyn Harimon	Date: 10/17/2022								
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.								
Closure Approved by: <u>Jennifer Nobui</u>	Date:								
Printed Name:	Title:								

Page 6

From: Mike Carmona
Sent: Tuesday, September 27, 2022 5:53 PM
To: ocd.enviro@emnrd.nm.gov
Cc: Conner Moehring; Harris, Jacqui
Subject: COG - JoHelen SWD 001- Incident #NAPP2221454459- Sampling Notification

Good Afternoon,

On behalf of COG, Carmona Resources will collect confirmation samples at the below-referenced site <u>on</u> 09/30/22 around 8:00 a.m. Mountain Time. Please let me know if you have any questions.

Site Name: JoHelen SWD 001 Incident # NAPP2221454459

Mike J. Carmona 310 West Wall Street, Suite 415 Midland TX, 79701 M: <u>432-813-1992</u> Mcarmona@carmonaresources.com

APPENDIX D

Legend

Page 26 of 123

 JoHelen SWD 001 (07.19.22) 🥖 Medium

•

Received by OCD: 10/17/2022 12:02:28 PM NEAREST WATER WELL COG OPERATING

1000

12.60' - Drilled 2018

748 QoHelen SWD 001 (07.19.22)

T D Forefrend

GReleased to Imaging: 12/15/2022 1:51:04 PM

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(2=NE 3 st to lar	s=SW 4=SE gest) (N/) AD83 UTM in me	eters)	(1	In feet)	
POD Number	POD Sub- Code basin C	County		Q 16		Sec	Tws	Rng	х	Y	Distance	-	Depth Water	Water Column
<u>C 02438</u>	CUB	ED	4	2	3	12	26S	26E	571015	3546705* 🌍	203	30		
<u>C 02218</u>	CUB	ED	4	1	4	07	26S	27E	573039	3546725* 🌍	2013	35		
C 04269 POD1	CUB	ED	4	2	3	18	26S	27E	572620	3545176 🌍	2064	105		
<u>C 02439</u>	CUB	ED	2	4	2	15	26S	26E	568614	3545697* 🌍	2554	30		
<u>C 01887</u>	С	ED	4	4	2	15	26S	26E	568614	3545497* 🌍	2624	53	31	22
										Avera	ge Depth to	Water:	31	feet
											Minimum	Depth:	31	feet
											Maximum	Depth:	31	feet
Record Count: 5					_									

UTMNAD83 Radius Search (in meters):

Easting (X): 571038

Northing (Y): 3546502.52

Radius: 4000

Page 28 of 123

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Date	Time	?	?	Water level,	Water level,	Referenced vertical	1
		Water-level date-time accuracy	Parameter code	feet below land surface	feet above specific vertical datum	datum	£
Q				Groundwate	r 🗸 New Mexico	▼ GO	

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320320104145101 26S.26E.12.34120

Eddy County, New Mexico Latitude 32°03'09.7", Longitude 104°14'56.7" NAD83 Land-surface elevation 3,230.90 feet above NGVD29 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

<u>Table of data</u>

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1978-01-25		D	62610		3217.55	NGVD29	1	Z		
1978-01-25		D	62611		3219.22	NAVD88	1	Z		
1978-01-25		D	72019	13.35			1	Z		
1992-11-18		D	62610		3218.87	NGVD29	1	S		
1992-11-18		D	62611		3220.54	NAVD88	1	S		
1992-11-18		D	72019	12.03			1	S		
1998-01-13		D	62610		3215.24	NGVD29	1	S		
1998-01-13		D	62611		3216.91	NAVD88	1	S		
1998-01-13		D	72019	15.66			1	S		
2003-01-28		D	62610		3214.44	NGVD29	1	S	USGS	
2003-01-28		D	62611		3216.11	NAVD88	1	S	USGS	
2003-01-28		D	72019	16.46			1	S	USGS	
2013-01-09	22:10 UTC	m	62610		3213.80	NGVD29	1	S	USGS	
2013-01-09	22:10 UTC	m	62611		3215.47	NAVD88	1	S	USGS	
2013-01-09	22:10 UTC	m	72019	17.10			1	S	USGS	

Received by QGP: 10/17/2022 12:02:28 PM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 30 of 123

	Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum		erenced tical um	1
[
	2018-02-15 22:14 UT	C m	62610	3218.30	NGVD29	1	S	USGS	
	2018-02-15 22:14 UT	C m	62611	3219.97	NAVD88	1	S	USGS	
	2018-02-15 22:14 UT	C m	72019	12.60		1	S	USGS	

Explanation								
Section	Code	Description						
Water-level date-time accuracy	D	Date is accurate to the Day						
Water-level date-time accuracy	m	Date is accurate to the Minute						
Parameter code	62610	Groundwater level above NGVD 1929, feet						
Parameter code	62611	Groundwater level above NAVD 1988, feet						
Parameter code	72019	Depth to water level, feet below land surface						
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988						
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929						
Status	1	Static						
Method of measurement	S	Steel-tape measurement.						
Method of measurement	Z	Other.						
Measuring agency		Not determined						
Measuring agency	USGS	U.S. Geological Survey						
Source of measurement		Not determined						
Source of measurement	S	Measured by personnel of reporting agency.						
Water-level approval status	А	Approved for publication Processing and review completed.						

Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> Data Tips Explanation of terms Subscribe for system changes <u>News</u>

Privacy FOIA Accessibility

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-08-12 10:31:19 EDT 0.27 0.23 nadww02

.

APPENDIX E

Received by OCD: 10/17/2022 12:02:28 PM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 12/15/2022 1:51:04 PM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-18314-1

Laboratory Sample Delivery Group: Eddy Co, NM Client Project/Site: JoHelen SWD 001 (07.19.22)

For:

Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701

Attn: Ashton Thielke

RAMER

Authorized for release by: 8/24/2022 10:33:48 AM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 880-18314-1

SDG: Eddy Co, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	21
QC Sample Results	23
QC Association Summary	31
Lab Chronicle	37
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
	50

Definitions/Glossary

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Qualifiers

Page 34 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM	
	3

)
GC VOA		
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
F1	MS and/or MSD recovery exceeds control limits.	5
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	8
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	a
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	10
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	13
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	

CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Midland

Released to Imaging: 12/15/2022 1:51:04 PM

Job ID: 880-18314-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-18314-1

Receipt

The samples were received on 8/18/2022 11:50 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.3°C

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-32613 and analytical batch 880-32708 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (LCS 880-32613/1-A) and (LCSD 880-32613/2-A). Evidence of matrix interferences is not obvious.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-32706 and analytical batch 880-32729 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-6 (0-0.5') (880-18314-21), (880-18314-A-21-B MS) and (880-18314-A-21-C MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-32429 and analytical batch 880-32386 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: S-2 (0-0.5') (880-18314-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: S-4 (1.5") (880-18314-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: S-4 (0-0.5') (880-18314-13). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Client Sample ID: S-1 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U F1	0.00201		mg/Kg		08/22/22 15:21	08/23/22 16:22	1
Toluene	<0.00201	U F1	0.00201		mg/Kg		08/22/22 15:21	08/23/22 16:22	1
Ethylbenzene	<0.00201	U F1	0.00201		mg/Kg		08/22/22 15:21	08/23/22 16:22	1
m-Xylene & p-Xylene	0.0114	F1	0.00402		mg/Kg		08/22/22 15:21	08/23/22 16:22	1
o-Xylene	0.00563	F1	0.00201		mg/Kg		08/22/22 15:21	08/23/22 16:22	1
Xylenes, Total	0.0170	F1	0.00402		mg/Kg		08/22/22 15:21	08/23/22 16:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				08/22/22 15:21	08/23/22 16:22	1
1,4-Difluorobenzene (Surr)	105		70 - 130				08/22/22 15:21	08/23/22 16:22	1
Method: Total BTEX - Total BTEX C	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0170		0.00402		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Range O	organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	18100		499		mg/Kg			08/19/22 10:18	1
Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<499	U	499		mg/Kg		08/18/22 14:47	08/19/22 18:23	10
Diesel Range Organics (Over C10-C28)	18100		499		mg/Kg		08/18/22 14:47	08/19/22 18:23	10
Oll Range Organics (Over C28-C36)	<499	U	499		mg/Kg		08/18/22 14:47	08/19/22 18:23	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	72		70 - 130				08/18/22 14:47	08/19/22 18:23	10
o-Terphenyl	106		70 - 130				08/18/22 14:47	08/19/22 18:23	10
Method: 300.0 - Anions, Ion Chrom	natography -	Soluble							
Wethou. 300.0 - Amons, for children	Beault	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result								
	1400		50.2		mg/Kg			08/24/22 05:37	10
Analyte			50.2		mg/Kg		Lab Sam	08/24/22 05:37 ple ID: 880-1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Benzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 16:43
Toluene	0.00216		0.00200		mg/Kg		08/22/22 15:21	08/23/22 16:43
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 16:43
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/22/22 15:21	08/23/22 16:43
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 16:43
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/22/22 15:21	08/23/22 16:43
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed

99

97

Eurofins Midland

08/23/22 16:43

08/23/22 16:43

08/22/22 15:21

08/22/22 15:21

Page 36 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-1

Matrix: Solid

70 - 130

70 - 130

4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)

Dil Fac

1

1
Job ID: 880-18314-1 SDG: Eddy Co, NM

Client Sample ID: S-1 (0.5-1') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/19/22 10:18	1
- Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 11:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 11:31	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 11:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130				08/18/22 14:47	08/19/22 11:31	1
o-Terphenyl	105		70 - 130				08/18/22 14:47	08/19/22 11:31	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble - D	L						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13500		100		mg/Kg			08/24/22 06:01	20

Client Sample ID: S-1 (1.5')

Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

Method: 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00201 U 08/22/22 15:21 08/23/22 17:03 0.00201 mg/Kg 08/23/22 17:03 Toluene <0.00201 U 0.00201 08/22/22 15:21 mg/Kg Ethylbenzene <0.00201 U 0.00201 08/22/22 15:21 08/23/22 17:03 mg/Kg m-Xylene & p-Xylene <0.00402 U 0.00402 mg/Kg 08/22/22 15:21 08/23/22 17:03 o-Xylene <0.00201 U 0.00201 mg/Kg 08/22/22 15:21 08/23/22 17:03 Xylenes, Total <0.00402 U 0.00402 08/22/22 15:21 08/23/22 17:03 mg/Kg %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 08/22/22 15:21 08/23/22 17:03 4-Bromofluorobenzene (Surr) 92 1,4-Difluorobenzene (Surr) 106 70 - 130 08/22/22 15:21 08/23/22 17:03

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	61.7		50.0		mg/Kg			08/19/22 10:18	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 12:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	61.7		50.0		mg/Kg		08/18/22 14:47	08/19/22 12:36	1

Eurofins Midland

Lab Sample ID: 880-18314-2 Matrix: Solid

Lab Sample ID: 880-18314-3 Matrix: Solid

1

1

1

1

1

1

1

1

Client Sample Results

Page 38 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Client Sample ID: S-1 (1.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 12:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				08/18/22 14:47	08/19/22 12:36	1
o-Terphenyl	102		70 - 130				08/18/22 14:47	08/19/22 12:36	1
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 300.0 - Anions, Ion Chron Analyte Chloride		Qualifier	RL	MDL	Unit mg/Kg	<u> </u>	Prepared	Analyzed 08/24/22 06:09	Dil Fac 10
Analyte	Result	Qualifier		MDL		<u> </u>			10
Analyte Chloride	Result	Qualifier		MDL		<u> </u>		08/24/22 06:09	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/22/22 15:21	08/23/22 17:24	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/22/22 15:21	08/23/22 17:24	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/22/22 15:21	08/23/22 17:24	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/22/22 15:21	08/23/22 17:24	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/22/22 15:21	08/23/22 17:24	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/22/22 15:21	08/23/22 17:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				08/22/22 15:21	08/23/22 17:24	1
1,4-Difluorobenzene (Surr)	100		70 - 130				08/22/22 15:21	08/23/22 17:24	1

Analyte Total BTEX	Result <0.00403	Qualifier U	RL 0.00403	MDL	Unit mg/Kg	<u> </u>	Prepared	Analyzed 08/23/22 17:20	Dil Fac
Method: 8015 NM - Diesel Range O	rganics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			08/19/22 10:18	1

mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		08/18/22 14:47	08/19/22 12:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		08/18/22 14:47	08/19/22 12:58	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/18/22 14:47	08/19/22 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130				08/18/22 14:47	08/19/22 12:58	1
o-Terphenyl	104		70 - 130				08/18/22 14:47	08/19/22 12:58	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	879		50.0		mg/Kg			08/24/22 06:16	10

Matrix: Solid

5

Lab Sample ID: 880-18314-3

Released to Imaging: 12/15/2022 1:51:04 PM

Client Sample Results

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Client Sample ID: S-1 (3.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 17:44	
Toluene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 17:44	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 17:44	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/22/22 15:21	08/23/22 17:44	
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 17:44	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/22/22 15:21	08/23/22 17:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	98		70 - 130				08/22/22 15:21	08/23/22 17:44	
1,4-Difluorobenzene (Surr)	98		70 - 130				08/22/22 15:21	08/23/22 17:44	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/23/22 17:20	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			08/19/22 10:18	
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 13:20	
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 13:20	
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 13:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				08/18/22 14:47	08/19/22 13:20	
o-Terphenyl	102		70 - 130				08/18/22 14:47	08/19/22 13:20	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	253		50.1		mg/Kg			08/24/22 06:24	1
							Lab Cam		0211 (
lient Sample ID: S-1 (4.5')							Lap Sam	ple ID: 880-1	0314-

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit D Dil Fac RL Prepared Analyzed Benzene <0.00200 U 0.00200 mg/Kg 08/22/22 15:21 08/23/22 18:05 1 Toluene <0.00200 U 0.00200 mg/Kg 08/22/22 15:21 08/23/22 18:05 1 Ethylbenzene <0.00200 U 0.00200 mg/Kg 08/22/22 15:21 08/23/22 18:05 1 m-Xylene & p-Xylene <0.00399 U 0.00399 mg/Kg 08/22/22 15:21 08/23/22 18:05 1 o-Xylene <0.00200 U 0.00200 mg/Kg 08/22/22 15:21 08/23/22 18:05 1 <0.00399 U 0.00399 08/22/22 15:21 08/23/22 18:05 Xylenes, Total mg/Kg 1 %Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 100 70 - 130 08/22/22 15:21 08/23/22 18:05 4-Bromofluorobenzene (Surr) 1 1,4-Difluorobenzene (Surr) 93 70 - 130 08/22/22 15:21 08/23/22 18:05 1

Eurofins Midland

Page 39 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-5

Matrix: Solid

Client Sample Results

Page 40 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-6

Client Sample ID: S-1 (4.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	113		50.0		mg/Kg			08/19/22 10:18	
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 13:42	
(GRO)-C6-C10									
Diesel Range Organics (Over	113		50.0		mg/Kg		08/18/22 14:47	08/19/22 13:42	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 13:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	127		70 _ 130				08/18/22 14:47	08/19/22 13:42	
o-Terphenyl	116		70 - 130				08/18/22 14:47	08/19/22 13:42	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	• • • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	600		49.8		mg/Kg			08/24/22 06:32	10

Client Sample ID: S-2 (0-0.5')

Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 18:25	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 18:25	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 18:25	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/22/22 15:21	08/23/22 18:25	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 18:25	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/22/22 15:21	08/23/22 18:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				08/22/22 15:21	08/23/22 18:25	1
1,4-Difluorobenzene (Surr)	95		70 - 130				08/22/22 15:21	08/23/22 18:25	1

Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			08/23/22 17:20	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	50.6		50.0		mg/Kg			08/19/22 10:18	1
- Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 14:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	50.6		50.0		mg/Kg		08/18/22 14:47	08/19/22 14:03	1
C10-C28)									

Eurofins Midland

Matrix: Solid

5

Lab Sample ID: 880-18314-7 Matrix: Solid

Client Sample Results

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-7

Client Sample ID: S-2 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 14:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	131	S1+	70 - 130				08/18/22 14:47	08/19/22 14:03	1
o-Terphenyl	121		70 - 130				08/18/22 14:47	08/19/22 14:03	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8750		99.8		mg/Kg			08/24/22 06:40	20

Client Sample ID: S-2 (0.5-1')

Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 18:45	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 18:45	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 18:45	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/22/22 15:21	08/23/22 18:45	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 18:45	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/22/22 15:21	08/23/22 18:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				08/22/22 15:21	08/23/22 18:45	1
1,4-Difluorobenzene (Surr)	98		70 - 130				08/22/22 15:21	08/23/22 18:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/23/22 17:20	1
 Method: 8015 NM - Diesel Range C	Organics (DR	0) (GC)							

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			08/19/22 10:18	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 14:25	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 14:25	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 14:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	119		70 - 130				08/18/22 14:47	08/19/22 14:25	1
o-Terphenyl	109		70 - 130				08/18/22 14:47	08/19/22 14:25	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8200		100		mg/Kg			08/24/22 06:48	20

Eurofins Midland

Matrix: Solid

Matrix: Solid

5

12 13

Released to Imaging: 12/15/2022 1:51:04 PM

Client Sample Results

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Client Sample ID: S-2 (1.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 19:06	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 19:06	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 19:06	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/22/22 15:21	08/23/22 19:06	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 19:06	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/22/22 15:21	08/23/22 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				08/22/22 15:21	08/23/22 19:06	1
1,4-Difluorobenzene (Surr)	101		70 - 130				08/22/22 15:21	08/23/22 19:06	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9		mg/Kg		<u> </u>	08/19/22 10:18	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 14:47	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 14:47	1
C10-C28)	<49.9	п	49.9		mg/Kg		08/18/22 14:47	08/19/22 14:47	1
Oll Range Organics (Over C28-C36)	-+0.0	0	43.5		iiig/itg		00/10/22 14.47	00/13/22 14.47	ľ
Oll Range Organics (Over C28-C36)		Qualifian	Limits				Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36) Surrogate	%Recovery	Qualifier					00/40/00 44.47	08/10/00 14:47	1
		Quaimer	70 - 130				08/18/22 14:47	08/19/22 14:47	'
Surrogate		Quanner					08/18/22 14:47 08/18/22 14:47	08/19/22 14:47 08/19/22 14:47	1
Surrogate 1-Chlorooctane	130 119		70 - 130						
Surrogate 1-Chlorooctane o-Terphenyl	130 119 omatography -		70 - 130	MDL	Unit	D			
Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	130 119 omatography -	Soluble	70 - 130 70 - 130	MDL	Unit mg/Kg	<u>D</u>	08/18/22 14:47	08/19/22 14:47	1

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 19:26	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 19:26	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 19:26	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/22/22 15:21	08/23/22 19:26	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 19:26	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/22/22 15:21	08/23/22 19:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				08/22/22 15:21	08/23/22 19:26	1
1,4-Difluorobenzene (Surr)	102		70 - 130				08/22/22 15:21	08/23/22 19:26	1

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-9

Matrix: Solid

Page 42 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Client Sample ID: S-2 (2.5')

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		08/22/22 15:21	08/23/22 21:16	1
Toluene	0.00233		0.00202		mg/Kg		08/22/22 15:21	08/23/22 21:16	1
Ethylbenzene	0.00730		0.00202		mg/Kg		08/22/22 15:21	08/23/22 21:16	1
m-Xylene & p-Xylene	0.0312		0.00403		mg/Kg		08/22/22 15:21	08/23/22 21:16	1
o-Xylene	0.0159		0.00202		mg/Kg		08/22/22 15:21	08/23/22 21:16	1
Xylenes, Total	0.0471		0.00403		mg/Kg		08/22/22 15:21	08/23/22 21:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				08/22/22 15:21	08/23/22 21:16	1
1,4-Difluorobenzene (Surr)	99		70 - 130				08/22/22 15:21	08/23/22 21:16	1
Method: Total BTEX - Total BT	EX Calculation								
- Method: Total BTEX - Total BT Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.00403	MDL	<mark>Unit</mark> mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 17:20	Dil Fac
Analyte	Result 0.0567			MDL		D	Prepared		Dil Fac
Analyte Total BTEX	ge Organics (DR			MDL	mg/Kg	<u>D</u> 	Prepared		1
Analyte Total BTEX Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)	0.00403		mg/Kg		<u>.</u>	08/23/22 17:20	1
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte	ge Organics (DR Result Result 3580	O) (GC) Qualifier	0.00403		mg/Kg Unit		<u>.</u>	08/23/22 17:20 Analyzed	1 Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra	ge Organics (DR Result Result 3580 Inge Organics (D	O) (GC) Qualifier	0.00403		mg/Kg Unit mg/Kg		<u>.</u>	08/23/22 17:20 Analyzed	1 Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH	ge Organics (DR Result Result 3580 Inge Organics (D	O) (GC) Qualifier RO) (GC)	0.00403	MDL	mg/Kg Unit mg/Kg	D	Prepared	08/23/22 17:20 Analyzed 08/19/22 10:18	1 Dil Fac

Eurofins Midland

Lab Sample ID: 880-18314-10 Date Collected: 08/17/22 00:00 Matrix: Solid Date Received: 08/18/22 11:50 Method: Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX < 0.00399 U 0.00399 08/23/22 17:20 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac Total TPH <49.9 U 49.9 08/19/22 10:18 mg/Kg Method: 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit Analyte D Prepared Dil Fac Analyzed <49.9 U 49.9 08/18/22 14:47 08/19/22 15:08 Gasoline Range Organics mg/Kg (GRO)-C6-C10 49.9 Diesel Range Organics (Over <49.9 U mg/Kg 08/18/22 14:47 08/19/22 15:08 C10-C28) mg/Kg Oll Range Organics (Over C28-C36) <49.9 U 49.9 08/18/22 14:47 08/19/22 15:08 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 08/18/22 14:47 1-Chlorooctane 109 70 - 130 08/19/22 15:08 1 o-Terphenyl 104 70 - 130 08/18/22 14:47 08/19/22 15:08 1 Method: 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Chloride 2650 50.5 mg/Kg 08/24/22 03:25 10 Client Sample ID: S-3 (0-0.5') Lab Sample ID: 880-18314-11 Date Collected: 08/17/22 00:00 Matrix: Solid Date Received: 08/18/22 11:50

C10-C28)

Client Sample Results

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-11

Client Sample ID: S-3 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 18:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	122		70 - 130				08/18/22 14:47	08/19/22 18:45	1
o-Terphenyl	115		70 - 130				08/18/22 14:47	08/19/22 18:45	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8150		100		mg/Kg			08/24/22 03:34	20

Client Sample ID: S-3 (0.5-1')

Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 21:36	1
Toluene	0.00227		0.00200		mg/Kg		08/22/22 15:21	08/23/22 21:36	1
Ethylbenzene	0.00410		0.00200		mg/Kg		08/22/22 15:21	08/23/22 21:36	1
m-Xylene & p-Xylene	0.0185		0.00399		mg/Kg		08/22/22 15:21	08/23/22 21:36	1
o-Xylene	0.00890		0.00200		mg/Kg		08/22/22 15:21	08/23/22 21:36	1
Xylenes, Total	0.0274		0.00399		mg/Kg		08/22/22 15:21	08/23/22 21:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	46	S1-	70 - 130				08/22/22 15:21	08/23/22 21:36	1
1,4-Difluorobenzene (Surr)	96		70 - 130				08/22/22 15:21	08/23/22 21:36	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0338		0.00399		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Range Analyte	- · ·	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1070		50.0		mg/Kg			08/19/22 10:18	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 19:07	1
Diesel Range Organics (Over C10-C28)	1070		50.0		mg/Kg		08/18/22 14:47	08/19/22 19:07	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 19:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				08/18/22 14:47	08/19/22 19:07	1
o-Terphenyl	103		70 - 130				08/18/22 14:47	08/19/22 19:07	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Page 44 of 123

Matrix: Solid

5

12 13

Lab Sample ID: 880-18314-12 Matrix: Solid

Client Sample Results

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Client Sample ID: S-4 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/22/22 15:21	08/23/22 21:57	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/22/22 15:21	08/23/22 21:57	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/22/22 15:21	08/23/22 21:57	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/22/22 15:21	08/23/22 21:57	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/22/22 15:21	08/23/22 21:57	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/22/22 15:21	08/23/22 21:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				08/22/22 15:21	08/23/22 21:57	1
1,4-Difluorobenzene (Surr)	98		70 - 130				08/22/22 15:21	08/23/22 21:57	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/23/22 17:20	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1140		50.0		mg/Kg			08/19/22 10:18	1
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 19:28	1
Diesel Range Organics (Over C10-C28)	1140		50.0		mg/Kg		08/18/22 14:47	08/19/22 19:28	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 19:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	138	S1+	70 - 130				08/18/22 14:47	08/19/22 19:28	1
o-Terphenyl	125		70 - 130				08/18/22 14:47	08/19/22 19:28	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8630		101		mg/Kg			08/24/22 03:52	20
Client Sample ID: S-4 (0.5-1))						Lab Samp	le ID: 880-18	314-14
Date Collected: 08/17/22 00:00								Matri	ix: Solid
ate Received: 08/18/22 11:50									

Method: 8021B - Volatile Orga	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 22:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 22:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 22:17	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/22/22 15:21	08/23/22 22:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 22:17	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/22/22 15:21	08/23/22 22:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				08/22/22 15:21	08/23/22 22:17	1
1,4-Difluorobenzene (Surr)	100		70 - 130				08/22/22 15:21	08/23/22 22:17	1

Eurofins Midland

Page 45 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-13

Matrix: Solid

Job ID: 880-18314-1 SDG: Eddy Co, NM

Client Sample ID: S-4 (0.5-1')

Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	79.3		50.0		mg/Kg			08/19/22 10:18	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 15:30	1
(GRO)-C6-C10									
Diesel Range Organics (Over	79.3		50.0		mg/Kg		08/18/22 14:47	08/19/22 15:30	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 15:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130				08/18/22 14:47	08/19/22 15:30	1
o-Terphenyl	111		70 - 130				08/18/22 14:47	08/19/22 15:30	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6870		101		mg/Kg			08/24/22 04:20	20

Client Sample ID: S-4 (1.5")

Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 22:38	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 22:38	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 22:38	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/22/22 15:21	08/23/22 22:38	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/23/22 22:38	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/22/22 15:21	08/23/22 22:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				08/22/22 15:21	08/23/22 22:38	1
1,4-Difluorobenzene (Surr)	97		70 - 130				08/22/22 15:21	08/23/22 22:38	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/19/22 10:18	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 16:13	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 16:13	1
C10-C28)									

Eurofins Midland

Page 46 of 123

Matrix: Solid

Matrix: Solid

5

Lab Sample ID: 880-18314-14

Released to Imaging: 12/15/2022 1:51:04 PM

Client Sample Results

Page 47 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-18314-15

Client Sample ID: S-4 (1.5") Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 16:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	133	S1+	70 - 130				08/18/22 14:47	08/19/22 16:13	1
o-Terphenyl	124		70 - 130				08/18/22 14:47	08/19/22 16:13	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4660		99.8		mg/Kg			08/24/22 04:29	20

Client Sample ID: H-1 (0-0.5')

Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 22:58	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 22:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 22:58	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/22/22 15:21	08/23/22 22:58	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 22:58	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/22/22 15:21	08/23/22 22:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				08/22/22 15:21	08/23/22 22:58	1
1,4-Difluorobenzene (Surr)	106		70 - 130				08/22/22 15:21	08/23/22 22:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			08/23/22 17:20	1
_ Method: 8015 NM - Diesel Range C	Prganics (DR	O) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			08/19/22 10:18	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 16:35	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 16:35	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 16:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130				08/18/22 14:47	08/19/22 16:35	1
o-Terphenyl	110		70 - 130				08/18/22 14:47	08/19/22 16:35	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22.3		4.96		mg/Kg			08/24/22 04:38	1

Client Sample Results

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Client Sample ID: H-2 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

<0.00200								
	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 23:18	1
<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 23:18	1
<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 23:18	1
<0.00401	U	0.00401		mg/Kg		08/22/22 15:21	08/23/22 23:18	1
<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 23:18	1
<0.00401	U	0.00401		mg/Kg		08/22/22 15:21	08/23/22 23:18	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
100		70 - 130				08/22/22 15:21	08/23/22 23:18	1
99		70 - 130				08/22/22 15:21	08/23/22 23:18	1
Calculation								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00401	U	0.00401		mg/Kg			08/23/22 17:20	1
<50.0	U	50.0		mg/Kg			08/19/22 10:18	Dil Fac
			MDI	11 14		Description	A	D!!
			MDL			<u> </u>		Dil Fac
<50.0	U	50.0		ilig/Kg		00/10/22 14.47	06/19/22 10.50	
<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 16:56	1
<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 16:56	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
122		70 - 130				08/18/22 14:47	08/19/22 16:56	1
111		70 - 130				08/18/22 14:47	08/19/22 16:56	1
matography -	Soluble							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
12.7		4.95		mg/Kg			08/24/22 04:47	1
						Lab Samp	le ID: 880-18	314-18
	<0.00401 <0.00200 <0.00401 %Recovery 100 99 Calculation Result <0.00401 Organics (DR Calculation Result <50.0 e Organics (DR Calculation Solo <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <	<0.00401	< 0.00401 U 0.00401 < 0.00200 U 0.00200 < 0.00401 U 0.00200 < 0.00401 U 0.00401 < 0.00401 U 0.00401 $< ? Recovery$ Qualifier Limits 100 $70 \cdot 130$ $70 \cdot 130$ 99 $70 \cdot 130$ $70 \cdot 130$ Calculation Result Qualifier RL < 0.00401 U 0.00401 0.00401 Organics (DRO) (GC) Result Qualifier RL < 50.0 U 50.0 50.0 < 50.0 U 50.0 50.0 < 50.0 U 50.0 50.0 < 50.0 U 50.0 $70 \cdot 130$ < 122 $70 \cdot 130$ $70 \cdot 130$ 111 $70 - 130$ $70 - 130$ 0 0 0 0 0 0 0 110 0 0 110 $70 - 130$ 0 0 0		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.00401

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-17

Matrix: Solid

Page 48 of 123

Date Received: 08/18/22 11:50

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/22/22 15:21	08/23/22 23:39	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/22/22 15:21	08/23/22 23:39	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/22/22 15:21	08/23/22 23:39	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/22/22 15:21	08/23/22 23:39	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/22/22 15:21	08/23/22 23:39	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/22/22 15:21	08/23/22 23:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				08/22/22 15:21	08/23/22 23:39	1
1,4-Difluorobenzene (Surr)	101		70 - 130				08/22/22 15:21	08/23/22 23:39	1

Client Sample Results

Page 49 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Client Sample ID: H-3 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/23/22 17:20	1
Method: 8015 NM - Diesel Rang	e Organics (DR	0) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			08/19/22 10:18	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 17:18	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 17:18	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/18/22 14:47	08/19/22 17:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				08/18/22 14:47	08/19/22 17:18	1
o-Terphenyl	106		70 - 130				08/18/22 14:47	08/19/22 17:18	1
Method: 300.0 - Anions, Ion Chi	romatography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.7		5.03		mg/Kg			08/24/22 04:57	1

Client Sample ID: H-4 (0-0.5')

Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Method: 8021B - Volatile Organ	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 23:59	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 23:59	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 23:59	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/22/22 15:21	08/23/22 23:59	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/22/22 15:21	08/23/22 23:59	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/22/22 15:21	08/23/22 23:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				08/22/22 15:21	08/23/22 23:59	1
1,4-Difluorobenzene (Surr)	104		70 - 130				08/22/22 15:21	08/23/22 23:59	1

Method: Total BTEX - Total BTEX Calculation Analyte RL MDL Unit **Result Qualifier** D Prepared Analyzed Dil Fac Total BTEX <0.00399 U 0.00399 mg/Kg 08/23/22 17:20 1 Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Total TPH <49.9 U 49.9 08/19/22 10:18 mg/Kg 1 Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <49.9 U 49.9 08/18/22 14:47 08/19/22 17:40 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10 <49.9 U 49.9 08/18/22 14:47 Diesel Range Organics (Over mg/Kg 08/19/22 17:40 1 C10-C28)

Eurofins Midland

Matrix: Solid

Lab Sample ID: 880-18314-18

Matrix: Solid

Client Sample Results

Job ID: 880-18314-1 SDG: Eddy Co, NM

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-18314-19

Lab Sample ID: 880-18314-20

Client Sample ID: H-4 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/18/22 14:47	08/19/22 17:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				08/18/22 14:47	08/19/22 17:40	1
o-Terphenyl	99		70 - 130				08/18/22 14:47	08/19/22 17:40	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13.1		5.04		mg/Kg			08/24/22 05:06	1

Client Sample ID: H-5 (0-0.5')

Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/24/22 00:20	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/24/22 00:20	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/24/22 00:20	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/22/22 15:21	08/24/22 00:20	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/22/22 15:21	08/24/22 00:20	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/22/22 15:21	08/24/22 00:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				08/22/22 15:21	08/24/22 00:20	1
1,4-Difluorobenzene (Surr)	101		70 - 130				08/22/22 15:21	08/24/22 00:20	1

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00398	U	0.00398		mg/Kg			08/23/22 17:20	1
ĺ	 Method: 8015 NM - Diesel Range O	raanice (DB)								
	wethou. ou is www - Diesel Ralige O	iyanics (DR								

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			08/19/22 10:18	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		08/18/22 14:47	08/19/22 18:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		08/18/22 14:47	08/19/22 18:01	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/18/22 14:47	08/19/22 18:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				08/18/22 14:47	08/19/22 18:01	1
o-Terphenyl	103		70 - 130				08/18/22 14:47	08/19/22 18:01	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.7		4.96		mg/Kg			08/24/22 05:34	1

1921/ 4

5

Client Sample Results

Page 51 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-21

Client Sample ID: H-6 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/22/22 09:35	08/23/22 13:18	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/22/22 09:35	08/23/22 13:18	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/22/22 09:35	08/23/22 13:18	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/22/22 09:35	08/23/22 13:18	1
o-Xylene	<0.00199	U *+	0.00199		mg/Kg		08/22/22 09:35	08/23/22 13:18	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/22/22 09:35	08/23/22 13:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/22/22 09:35	08/23/22 13:18	1
1,4-Difluorobenzene (Surr)	90		70 - 130				08/22/22 09:35	08/23/22 13:18	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/23/22 17:20	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			08/19/22 10:18	1
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U F1 F2	49.8		mg/Kg		08/18/22 13:46	08/18/22 22:05	1
Diesel Range Organics (Over C10-C28)	<49.8	U F1	49.8		mg/Kg		08/18/22 13:46	08/18/22 22:05	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/18/22 13:46	08/18/22 22:05	1
			Limits				Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	Qualifier	Ennits						
			70 - 130				08/18/22 13:46	08/18/22 22:05	1
1-Chlorooctane	57	-					08/18/22 13:46 08/18/22 13:46	08/18/22 22:05 08/18/22 22:05	1 1
1-Chlorooctane o-Terphenyl	57 62	S1- S1-	70 - 130						
	57 62 omatography -	S1- S1-	70 - 130	MDL	Unit	D			

Matrix: Solid

5

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130))
880-18311-A-15-C MS	Matrix Spike	124	107	_
880-18311-A-15-D MSD	Matrix Spike Duplicate	122	97	
880-18314-1	S-1 (0-0.5')	86	105	
880-18314-1 MS	S-1 (0-0.5')	90	108	
880-18314-1 MSD	S-1 (0-0.5')	88	104	
880-18314-2	S-1 (0.5-1')	99	97	
880-18314-3	S-1 (1.5')	92	106	
880-18314-4	S-1 (2.5')	99	100	
880-18314-5	S-1 (3.5')	98	98	
880-18314-6	S-1 (4.5')	100	93	
880-18314-7	S-2 (0-0.5')	95	95	
880-18314-8	S-2 (0.5-1')	101	98	
880-18314-9	S-2 (1.5')	97	101	
880-18314-10	S-2 (2.5')	100	102	
880-18314-11	S-3 (0-0.5')	96	99	
880-18314-12	S-3 (0.5-1')	46 S1-	96	
880-18314-13	S-4 (0-0.5')	109	98	
880-18314-14	S-4 (0.5-1')	106	100	
880-18314-15	S-4 (1.5")	92	97	
880-18314-16	H-1 (0-0.5')	96	106	
880-18314-17	H-2 (0-0.5')	100	99	
880-18314-18	H-3 (0-0.5')	101	101	
880-18314-19	H-4 (0-0.5')	101	104	
880-18314-20	H-5 (0-0.5')	98	101	
880-18314-21	H-6 (0-0.5')	93	90	
LCS 880-32613/1-A	Lab Control Sample	137 S1+	109	
LCS 880-32706/1-A	Lab Control Sample	107	96	
LCSD 880-32613/2-A	Lab Control Sample Dup	139 S1+	106	
LCSD 880-32706/2-A	Lab Control Sample Dup	97	100	
MB 880-32613/5-A	Method Blank	87	88	
MB 880-32706/5-A	Method Blank	78	115	
WD 000-32700/3-A		10	115	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-18314-1	S-1 (0-0.5')	72	106	·
380-18314-2	S-1 (0.5-1')	112	105	
880-18314-2 MS	S-1 (0.5-1')	103	92	
80-18314-2 MSD	S-1 (0.5-1')	105	96	
80-18314-3	S-1 (1.5')	109	102	
880-18314-4	S-1 (2.5')	111	104	
380-18314-5	S-1 (3.5')	112	102	
380-18314-6	S-1 (4.5')	127	116	

Eurofins Midland

Job ID: 880-18314-1 SDG: Eddy Co, NM

Prep Type: Total/NA

8/24/2022

Prep Type: Total/NA

Job ID: 880-18314-1 SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

Client: Carmona Resources

Prep Type: Total/NA

		(66)		Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	·	5
880-18314-7	S-2 (0-0.5')	131 S1+	121		
880-18314-8	S-2 (0.5-1')	119	109		6
880-18314-9	S-2 (1.5')	130	119		
880-18314-10	S-2 (2.5')	109	104		
880-18314-11	S-3 (0-0.5')	122	115		
880-18314-12	S-3 (0.5-1')	113	103		
880-18314-13	S-4 (0-0.5')	138 S1+	125		8
880-18314-14	S-4 (0.5-1')	120	111		
880-18314-15	S-4 (1.5")	133 S1+	124		9
880-18314-16	H-1 (0-0.5')	121	110		
880-18314-17	H-2 (0-0.5')	122	111		
880-18314-18	H-3 (0-0.5')	113	106		
880-18314-19	H-4 (0-0.5')	108	99		
880-18314-20	H-5 (0-0.5')	109	103		
880-18314-21	H-6 (0-0.5')	57 S1-	62 S1-		
880-18314-21 MS	H-6 (0-0.5')	63 S1-	60 S1-		
880-18314-21 MSD	H-6 (0-0.5')	52 S1-	53 S1-		19
LCS 880-32429/2-A	Lab Control Sample	94	94		13
LCS 880-32443/2-A	Lab Control Sample	110	98		
LCSD 880-32429/3-A	Lab Control Sample Dup	99	96		
LCSD 880-32443/3-A	Lab Control Sample Dup	98	97		
MB 880-32429/1-A	Method Blank	77	80		
MB 880-32443/1-A	Method Blank	107	102		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-32613/5-A	
Matrix: Solid	

Analysis Batch: 32708

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/22/22 09:35	08/23/22 11:55	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/22/22 09:35	08/23/22 11:55	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/22/22 09:35	08/23/22 11:55	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/22/22 09:35	08/23/22 11:55	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/22/22 09:35	08/23/22 11:55	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/22/22 09:35	08/23/22 11:55	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130				08/22/22 09:35	08/23/22 11:55	1
1,4-Difluorobenzene (Surr)	88		70 - 130				08/22/22 09:35	08/23/22 11:55	1

Lab Sample ID: LCS 880-32613/1-A Matrix: Solid

Analysis Batch: 32708

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1026		mg/Kg		103	70 - 130	
Toluene	0.100	0.09861		mg/Kg		99	70 - 130	
Ethylbenzene	0.100	0.1128		mg/Kg		113	70 - 130	
m-Xylene & p-Xylene	0.200	0.2421		mg/Kg		121	70 - 130	
o-Xylene	0.100	0.1425	*+	mg/Kg		142	70 - 130	

	LCS		
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	137	S1+	70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: LCSD 880-32613/2-A

Matrix: Solid

Analysis Batch: 32708							Prep	Batch:	32613
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09095		mg/Kg		91	70 - 130	12	35
Toluene	0.100	0.08906		mg/Kg		89	70 - 130	10	35
Ethylbenzene	0.100	0.1038		mg/Kg		104	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.2183		mg/Kg		109	70 - 130	10	35
o-Xylene	0.100	0.1268		mg/Kg		127	70 - 130	12	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	139	S1+	70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 880-18311-A-15-C MS

Matrix: Solid

Analysis Batch: 32708									Prep	Batch: 32613
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.09840		mg/Kg		98	70 - 130	
Toluene	<0.00201	U	0.100	0.08819		mg/Kg		87	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Job ID: 880-18314-1 SDG: Eddy Co, NM

Prep Type: Total/NA

Prep Batch: 32613

Client Sample ID: Method Blank

13

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 32613

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22) Page 55 of 123

SDG: Eddy Co, NM

Mathadi 2021 P Valatila O -

Lab Sample ID: 880-18311-4	A-15-C MS										Client	Sample ID:	Matrix	Spike
Matrix: Solid												Prep T	ype: To	tal/NA
Analysis Batch: 32708												Prep	Batch:	32613
	Sample	Samp	ole	Spike	MS	MS						%Rec		
Analyte	Result	Quali	fier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00201	U		0.100	0.09434			mg/Kg			94	70 - 130		
m-Xylene & p-Xylene	<0.00402	U		0.201	0.1913			mg/Kg			95	70 - 130		
o-Xylene	<0.00201	U *+		0.100	0.1145			mg/Kg			114	70 - 130		
	MS	MS												
Surrogate	%Recovery	Quali	fier	Limits										
4-Bromofluorobenzene (Surr)	124			70 - 130										
1,4-Difluorobenzene (Surr)	107			70 - 130										
Lab Sample ID: 880-18311-4	A-15-D MSD							(Clie	nt Sa	mple ID:	: Matrix Sp	ike Duj	plicate
Matrix: Solid												Prep T	ype: To	otal/NA
Analysis Batch: 32708												Prep	Batch:	32613
	Sample	Samp	ole	Spike	MSD	MSD)					%Rec		RPD
Analyte	Result	Quali	fier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limi
Benzene	<0.00201	U		0.0992	0.08231			mg/Kg			83	70 - 130	18	35
Toluene	<0.00201	U		0.0992	0.07662			mg/Kg			77	70 - 130	14	35
Ethylbenzene	<0.00201	U		0.0992	0.08780			mg/Kg			89	70 - 130	7	35
m-Xylene & p-Xylene	<0.00402	U		0.198	0.1681			mg/Kg			84	70 - 130	13	35
o-Xylene	<0.00201	U *+		0.0992	0.1008			mg/Kg			102	70 - 130	13	35
	MSD	MSD												
Surrogate	%Recovery	Quali	fier	Limits										
4-Bromofluorobenzene (Surr)	122			70 - 130										
1,4-Difluorobenzene (Surr)	97			70 - 130										
Lab Sample ID: MB 880-327	'06/5-A										Client Sa	ample ID: N	/lethod	Blank
Matrix: Solid												Prep T	ype: To	otal/NA
Analysis Batch: 32729												Prep	Batch:	32706
		MB	МВ											
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	Pr	epared	Analyze	ed	Dil Fac
Benzene	<0.0	0200	U	0.00200			mg/Kg	1		08/22	2/22 15:21	08/23/22 1	5:54	1
Toluene	<0.0	0200	U	0.00200			mg/Kg	I		08/22	2/22 15:21	08/23/22 1	5:54	1
Ethylbenzene	<0.0	0200	U	0.00200			mg/Kg	1		08/22	2/22 15:21	08/23/22 1	5:54	1
m-Xylene & p-Xylene	<0.0	0400	U	0.00400			mg/Kg	1		08/22	2/22 15:21	08/23/22 1	5:54	1
o-Xylene	<0.0	0200	U	0.00200			mg/Kg	1		08/22	2/22 15:21	08/23/22 1	5:54	1
Xylenes, Total	<0.0	0400	U	0.00400			mg/Kg	I		08/22	2/22 15:21	08/23/22 1	5:54	1
			МВ											
Surrogate	%Reco	overy	Qualifier	Limits						Pr	repared	Analyze	ed	Dil Fac

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	78	70 - 130
1,4-Difluorobenzene (Surr)	115	70 - 130

Lab Sample ID: LCS 880-32706/1-A Matrix: Solid Analysis Batch: 32729

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.1036		mg/Kg		104	70 - 130
Toluene	0.100	0.1172		mg/Kg		117	70 - 130
Ethylbenzene	0.100	0.1206		mg/Kg		121	70 - 130
m-Xylene & p-Xylene	0.200	0.2220		mg/Kg		111	70 - 130

Eurofins Midland

Prep Type: Total/NA

Prep Batch: 32706

08/22/22 15:21

08/22/22 15:21 08/23/22 15:54

08/23/22 15:54

Client Sample ID: Lab Control Sample

1

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Lab Sample ID: LCS 880-32706/1-A

Matrix: Solid

Job ID: 880-18314-1 SDG: Eddy Co, NM

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid										ype: 101	
Analysis Batch: 32729									Prep	Batch:	32706
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.1164		mg/Kg		116	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	96		70 - 130								
Lab Sample ID: LCSD 880-3	32706/2-4					Clie	nt Sarr		Lab Contro	l Sampl	o Duu
Matrix: Solid	/LI 00/L-A					One	in Oan			Type: Tot	
Analysis Batch: 32729										Batch:	
Analysis Daten. 52725			Spike		LCSD				%Rec	Daten.	RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene			0.100		Quaimer		<u>_</u>		70 - 130	4	3
				0.1084		mg/Kg		108			
Toluene			0.100	0.1095		mg/Kg		109	70 - 130	7	3
Ethylbenzene			0.100	0.1083		mg/Kg		108	70 - 130	11	3
m-Xylene & p-Xylene			0.200	0.1994		mg/Kg		100	70 - 130	11	3
o-Xylene			0.100	0.1052		mg/Kg		105	70 - 130	10	3
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	97		70 - 130								
			70 (00								
Lab Sample ID: 880-18314-	103 1 MS		70 - 130					Clie	nt Sample I Prep T		
Lab Sample ID: 880-18314- Matrix: Solid	1 MS							Clie	Prep T Prep	ID: S-1 ((Type: Tot Batch: 3	tal/N
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729	1 MS Sample	•	Spike		MS				Prep T Prep %Rec	Type: Tot	tal/N/
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 ^{Analyte}	1 MS Sample Result	Qualifier	Spike Added	Result	Qualifier	Unit	D	%Rec	Prep T Prep %Rec Limits	Type: Tot	tal/N
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene	1 MS Sample <u>Result</u> <0.00201	Qualifier U F1	Spike Added 0.0998	Result 0.05526	Qualifier F1	mg/Kg	<u>D</u>	%Rec 55	Prep T Prep %Rec Limits 70 - 130	Type: Tot	tal/N
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene	1 MS Sample Result	Qualifier U F1	Spike Added	Result	Qualifier		<u>D</u>	%Rec	Prep T Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene	1 MS Sample <u>Result</u> <0.00201	Qualifier U F1 U F1	Spike Added 0.0998	Result 0.05526 0.03928	Qualifier F1	mg/Kg	D	%Rec 55	Prep T Prep %Rec Limits 70 - 130	Type: Tot	tal/N/
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene	1 MS Sample Result <0.00201 <0.00201	Qualifier U F1 U F1 U F1 U F1	Spike Added 0.0998 0.0998	Result 0.05526 0.03928 0.02496	Qualifier F1 F1	mg/Kg mg/Kg	D	%Rec 55 38	Prep T Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	1 MS Sample Result <0.00201 <0.00201 <0.00201	Qualifier U F1 U F1 U F1 U F1 F1	Spike Added 0.0998 0.0998 0.0998	Result 0.05526 0.03928 0.02496	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg	D	%Rec 55 38 24	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N/
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563	Qualifier U F1 U F1 U F1 F1 F1	Spike Added 0.0998 0.0998 0.0998 0.200	Result 0.05526 0.03928 0.02496 0.055436	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 55 38 24 22	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N/
Toluene	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563 MS	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0998 0.0998 0.0998 0.200	Result 0.05526 0.03928 0.02496 0.055436	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 55 38 24 22	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N/
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563 MS	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998	Result 0.05526 0.03928 0.02496 0.055436	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 55 38 24 22	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N/
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563 MS %Recovery	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0998 0.0998 0.200 0.0998 Limits	Result 0.05526 0.03928 0.02496 0.055436	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u>P</u>	%Rec 55 38 24 22	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N/
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563 MS %Recovery 90 108	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.05526 0.03928 0.02496 0.055436	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 55 38 24 22 20	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: :	tal/N. 3270
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314-	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563 MS %Recovery 90 108	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.05526 0.03928 0.02496 0.055436	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 55 38 24 22 20	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tof Batch: : D: S-1 (0	tal/N/ 3270
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314- Matrix: Solid	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563 MS %Recovery 90 108	Qualifier U F1 U F1 U F1 F1 F1 F1	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 70 - 130	Result 0.05526 0.03928 0.02496 0.055436	Qualifier F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 55 38 24 22 20	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	D: S-1 (Cype: Tot	tal/N/ 3270 0-0.5 tal/N/
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314- Matrix: Solid	1 MS Sample Result 0.00201 0.00201 0.00201 0.0114 0.00563 MS %Recovery 90 108 	Qualifier U F1 U F1 F1 F1 F1 MS Qualifier	Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 0.200 0.0998 D.200 0.0998 0.200 0.0998 0.200 0.0998 D.200 0.10998	Result 0.05526 0.03928 0.02496 0.05436 0.02595	Qualifier F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 55 38 24 22 20	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tof Batch: : D: S-1 (0	0-0.5 tal/N. 3270
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563 MS %Recovery 90 108 1 MSD Sample	Qualifier U F1 U F1 F1 F1 MS Qualifier	Spike Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998	Result 0.05526 0.03928 0.02496 0.05436 0.02595	Qualifier F1 F1 F1 F1 F1 F1 MSD	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 55 38 24 22 20 Clier	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	D: S-1 (Cype: Tot Batch: : D: S-1 (Cype: Tot Batch: :	0-0.5 tal/N, 3270
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte	1 MS Sample Result <0.00201 <0.00201 0.0114 0.00563 MS %Recovery 90 108 1 MSD Sample Result	Qualifier U F1 U F1 F1 F1 MS Qualifier Sample Qualifier	Spike Added 0.0998 0.0998 0.200 0.298 0.200 0.0998 Limits 70 - 130 70 - 130 70 - 130 Spike Added	Result 0.05526 0.03928 0.02496 0.05436 0.02595	Qualifier F1 F1 F1 F1 F1 MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 55 38 24 22 20 Cliet	Prep T Prep %Rec Limits 70 - 130 70 - 190 70 - 130 70 - 170 70 - 170	ID: S-1 ((Fype: Tot Batch: 3 Batch: 3 RPD	0-0.5 tal/N. 3270 0-0.5 tal/N. 3270 RP Lim
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene	1 MS Sample Result <0.00201 <0.00201 <0.00201 0.0114 0.00563 MS %Recovery 90 108 1 MSD Sample Result <0.00201	Qualifier U F1 U F1 F1 F1 MS Qualifier U F1	Spike Added 0.0998 0.0998 0.200 0.200 0.0998 Limits 70 - 130 70 - 130 Spike Added 0.0996	Result 0.05526 0.03928 0.02496 0.05535 0.02595	Qualifier F1 F1 F1 F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg		%Rec 55 38 24 22 20 Clien %Rec 45	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep T Prep %Rec Limits 70 - 130	ID: S-1 ((Fype: Tot Batch: 3 Discrete: 5 Batch: 3 RPD 22	0-0.5 tal/N. 3270 5 tal/N. 3270 RP Lim 3
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene	1 MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00263 MS %Recovery 90 108 1 MSD Sample Result <0.00201 <0.00201 <0.00201 	Qualifier U F1 U F1 F1 F1 MS Qualifier U F1 U F1 U F1	Spike Added 0.0998 0.0998 0.200 0.200 0.0998 0.200 0.0998 5000 5000 5000 0.0998 0.200 0.0998 5000 5000 5000 5000 5000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000	Result 0.05526 0.03928 0.02496 0.05536 0.02595	Qualifier F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 55 38 24 22 20 Clien %Rec 45 34	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits 70 - 130 70 - 130	D: S-1 (C ype: Tot D: S-1 (C ype: Tot Batch: 3 <u>RPD</u> 22 13	0-0.5 10-
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene	1 MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00114 0.00563 MS %Recovery 90 108 1 MSD Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 	Qualifier U F1 U F1 F1 F1 MS Qualifier U F1 U F1 U F1 U F1	Spike Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 0.200 0.0998 Limits 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996	Result 0.05526 0.03928 0.02496 0.05436 0.02595 MSD Result 0.04451 0.03457 0.01920	Qualifier F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 55 38 24 22 20 Clien %Rec 45 34 18	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep T Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	D: S-1 ((Type: Tot D: S-1 ((Type: Tot Batch: 3 22 13 26	0-0.5' al/N/ 32700 2700 80-0.5' tal/N/ 32700 80-0.5' tal/N/ 32700 80-0.5' tal/N/ 33-3
Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-18314- Matrix: Solid Analysis Batch: 32729 Analyte Benzene Toluene	1 MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00263 MS %Recovery 90 108 1 MSD Sample Result <0.00201 <0.00201 <0.00201 	Qualifier U F1 U F1 F1 F1 MS Qualifier U F1 U F1 U F1 U F1 F1	Spike Added 0.0998 0.0998 0.200 0.200 0.0998 0.200 0.0998 5000 70 - 130 70 - 130 5000 5000 0.0996 0.0996	Result 0.05526 0.03928 0.02496 0.05536 0.02595	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 55 38 24 22 20 Clien %Rec 45 34	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits 70 - 130 70 - 130	D: S-1 (C ype: Tot D: S-1 (C ype: Tot Batch: 3 <u>RPD</u> 22 13	tal/NA 32700 0-0.5' tal/NA

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Analysis Batch: 32729)									Cher	nt Sample ID: S Prep Type: Prep Bate	Tot	al/N/
	MSD												
	%Recovery	Qua	lifier	Limits									
4-Bromofluorobenzene (Surr)	88			70 - 130									
	104			70 - 130									
Method: 8015B NM - Diesel R - Lab Sample ID: MB 880-32429/1-/		gar		(GC)						Client S	ample ID: Meth		Plan
Matrix: Solid	•									Chefit 3	Prep Type:		
Analysis Batch: 32386		MD	мв								Prep Bate	5H. 3	242
Analysis				ы			11			Drevered	A we have a		
Analyte			Qualifier	RL		MDL	Unit		2	Prepared	Analyzed		Dil Fa
Gasoline Range Organics (GRO)-C6-C10		<50.0	U	50.0			mg/Kg			8/18/22 13:46			
Diesel Range Organics (Over C10-C28)	<	<50.0	U	50.0			mg/Kg		0	8/18/22 13:46	08/18/22 20:59		
Oll Range Organics (Over C28-C36)	<	<50.0	U	50.0			mg/Kg		0	8/18/22 13:46	08/18/22 20:59		
		MB	MB										
Surrogate	%Reco	overy	Qualifier	Limits						Prepared	Analyzed		Dil Fa
1-Chlorooctane		77		70 - 130					0	8/18/22 13:46	08/18/22 20:59		
o-Terphenyl		80		70 - 130					0	8/18/22 13:46	08/18/22 20:59		
Lab Sample ID: LCS 880-32429/2 Matrix: Solid Analysis Batch: 32386				Spike	LCS	LCS				·	ID: Lab Contro Prep Type: Prep Bate %Rec	Tot	al/N/
Analyte				Added	Result	Qua	lifier	Unit		D %Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000	914.5			mg/Kg		91	70 - 130		
Diesel Range Organics (Over C10-C28)				1000	862.2			mg/Kg		86	70 - 130		
	LCS	LCS		1000	862.2			mg/Kg		86	70 - 130		
C10-C28)	LCS %Recovery			1000 <i>Limits</i>	862.2			mg/Kg		86	70 - 130		
C10-C28)					862.2			mg/Kg		86	70 - 130		
C10-C28)	%Recovery			Limits	862.2			mg/Kg		86	70 - 130		
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/	<mark>%Recovery</mark> 94 94			Limits 70 - 130	862.2				nt Sa		.ab Control Sa		
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/ Matrix: Solid	<mark>%Recovery</mark> 94 94			Limits 70 - 130	862.2				nt Sa		.ab Control Sa Prep Type:	Tot	al/N/
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/	<mark>%Recovery</mark> 94 94			Limits 70 - 130	862.2 LCSD	LCS	D		nt Sa		.ab Control Sa	Tot	al/N/
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/ Matrix: Solid	<mark>%Recovery</mark> 94 94			Limits 70 - 130 70 - 130							.ab Control Sar Prep Type: Prep Bate %Rec	Tot	al/N/ 32429
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/ Matrix: Solid Analysis Batch: 32386 Analyte Gasoline Range Organics	<mark>%Recovery</mark> 94 94			Limits 70 - 130 70 - 130 Spike	LCSD			Clie		ample ID: L	.ab Control Sar Prep Type: Prep Bate %Rec	Tot ch: 3	al/NA 32429 RPI
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/ Matrix: Solid Analysis Batch: 32386 Analyte	<mark>%Recovery</mark> 94 94			Limits 70 - 130 70 - 130 Spike Added	LCSD Result			Clie		ample ID: L	.ab Control Sar Prep Type: Prep Bate %Rec Limits R	Tot ch: 3	al/N/ 32429 RPI Limi
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/ Matrix: Solid Analysis Batch: 32386 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 94 94 3-A LCSD	Qua	lifier	Limits 70 - 130 70 - 130 Spike Added 1000	LCSD Result 894.5			Clie Unit mg/Kg		ample ID: L D <u>%Rec</u> 89	ab Control Sat Prep Type: Prep Bate %Rec Limits Ri 70 - 130	Tot ch: 3 PD 2	al/N/ 32429 RPI Limi 20
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/ Matrix: Solid Analysis Batch: 32386 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery 94 94 3-A <i>LCSD</i> %Recovery	Qua	lifier	Limits 70 - 130 70 - 130 Spike Added 1000 1000	LCSD Result 894.5			Clie Unit mg/Kg		ample ID: L D <u>%Rec</u> 89	ab Control Sat Prep Type: Prep Bate %Rec Limits Ri 70 - 130	Tot ch: 3 PD 2	al/N/ 32429 RPI Limi 20
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-32429/ Matrix: Solid Analysis Batch: 32386 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 94 94 3-A LCSD	Qua	lifier	Limits 70 - 130 70 - 130 Spike Added 1000	LCSD Result 894.5			Clie Unit mg/Kg		ample ID: L D <u>%Rec</u> 89	ab Control Sat Prep Type: Prep Bate %Rec Limits Ri 70 - 130	Tot ch: 3 PD 2	al/N/ 32429 RPI Limi 20

Job ID: 880-18314-1 SDG: Eddy Co, NM 7

Released to Imaging: 12/15/2022 1:51:04 PM

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Metrix: Celid										Clien	t Sample ID		
Matrix: Solid											Prep Ty		
Analysis Batch: 32386		_										Batch:	32429
	Sample		-	Spike		MS					%Rec		
Analyte	Result	-		Added	Result			Init	[Limits		
Gasoline Range Organics	<49.8	U F1	I F2	999	663.6	F1	n	ng/Kg		64	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over	<49.8	LI F1	1	999	588.4	F1	n	ng/Kg		54	70 - 130		
C10-C28)	~+3.0	01	I	333	500.4			ignitg		54	70 - 150		
	MS	MS											
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	63	S1-		70 - 130									
o-Terphenyl	60	S1-		70 - 130									
Lab Sample ID: 880-18314-21	MSD									Clien	t Sample ID): H-6 (0-0.5
Matrix: Solid											Prep Ty	pe: To	tal/N/
Analysis Batch: 32386											Prep I	Batch:	3242
-	Sample	Sam	ple	Spike	MSD	MSD					%Rec		RP
Analyte	Result	Qua	lifier	Added	Result	Qual	ifier U	Init) %Rec	Limits	RPD	Lim
Gasoline Range Organics	<49.8	U F1	1 F2	998	402.4	F1 F	2 n	ng/Kg		37	70 - 130	49	2
(GRO)-C6-C10													
Diesel Range Organics (Over C10-C28)	<49.8	U F1	1	998	508.0	F1	n	ng/Kg		46	70 - 130	15	2
	MSD	MSE)										
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	52	S1-		70 - 130									
p-Terphenyl	53	S1-		70 - 130									
Lab Sample ID: MB 880-32443	3/1 -A									Client Sa	ample ID: N	lethod	Blan
	3/1- A									Client Sa	ample ID: N Prep Ty		
Lab Sample ID: MB 880-32443 Matrix: Solid Analysis Batch: 32462	3/1-A									Client Sa	Prep Ty		tal/N
Matrix: Solid	3/1-A	МВ	МВ							Client Sa	Prep Ty	pe: To	tal/N
Matrix: Solid Analysis Batch: 32462 ^{Analyte}	R	esult	Qualifier	RL		MDL			<u>D</u>	Prepared	Prep Ty Prep I Analyze	vpe: To Batch: d	tal/N/
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics	R		Qualifier	RL 50.0		MDL	Unit mg/Kg				Prep Ty Prep I	vpe: To Batch: d	tal/N 3244 Dil Fa
Matrix: Solid Analysis Batch: 32462	R	esult	Qualifier U			MDL			08	Prepared	Prep Ty Prep I Analyze	d D:24	tal/N 3244 Dil Fa
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	R	esult 50.0	Qualifier U	50.0		MDL	mg/Kg		08	Prepared 3/18/22 14:47	Prep Ty Prep I Analyze 08/19/22 10	d D:24	tal/N 3244 Dil Fa
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10	R	esult 50.0	Qualifier U U	50.0		MDL	mg/Kg		30 30	Prepared 3/18/22 14:47	Prep Ty Prep I Analyze 08/19/22 10	be: To Batch: d):24):24	tal/N 3244 Dil Fa
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	R	esult 50.0 50.0 50.0	Qualifier U U	50.0 50.0		MDL	mg/Kg mg/Kg		30 30	Prepared 3/18/22 14:47 3/18/22 14:47	Analyze 08/19/22 10	be: To Batch: d):24):24	tal/N/ 3244
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	R	esult 50.0 50.0 50.0 50.0 MB	Qualifier U U U MB	50.0 50.0		MDL	mg/Kg mg/Kg		30 30	Prepared 3/18/22 14:47 3/18/22 14:47	Analyze 08/19/22 10	d):24):24):24):24	tal/N/ 3244 Dil Fa
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	R	esult 50.0 50.0 50.0 50.0 MB	Qualifier U U U MB	50.0 50.0 50.0		MDL	mg/Kg mg/Kg		30 30 30	Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47	Prep Ty Prep I 08/19/22 10 08/19/22 10 08/19/22 10	d - 0:24 - 0:24 - 0:24 -	tal/N/ 3244 Dil Fa
Matrix: Solid Analysis Batch: 32462 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	R	esult 50.0 50.0 50.0 MB overy	Qualifier U U U MB	50.0 50.0 50.0 <i>Limits</i>		MDL	mg/Kg mg/Kg		30 30 30 30	Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 Prepared	Prep Ty Prep I Analyze 08/19/22 10 08/19/22 10 08/19/22 10 Analyze	d ():24 ():24 ():24 ():24 ():24 ():24 ():24	tal/N 3244 Dil Fa
Matrix: Solid Analysis Batch: 32462 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg		30 — 30 30 30 30 80	Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 Prepared 3/18/22 14:47 3/18/22 14:47	Prep Ty Prep I Analyze 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10	d i :24 i :24	tal/N 3244 Dil Fa
Matrix: Solid Analysis Batch: 32462 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-3244	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg		30 — 30 30 30 30 80	Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 Prepared 3/18/22 14:47 3/18/22 14:47	Prep Ty Prep I 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10	d - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 -	tal/N. 3244 Dil Fa Dil Fa
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-3244 Matrix: Solid	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 130		MDL	mg/Kg mg/Kg		30 — 30 30 30 30 80	Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 Prepared 3/18/22 14:47 3/18/22 14:47	Analyze 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10	d - d - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:25 - 0:26 - 0:27 - 0:28 - 0:29 - 0:29 - 0:20 - 0:21 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 -	tal/N. 3244 Dil Fa Dil Fa ampl tal/N.
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-3244 Matrix: Solid	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50.0 50.0 50.0 50.0 50.0 70 - 130 70 - 130		MDL	mg/Kg mg/Kg		30 — 30 30 30 30 80	Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 Prepared 3/18/22 14:47 3/18/22 14:47	Analyze 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10	d - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 -	tal/N. 3244 Dil Fa Dil Fa ampl tal/N.
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: LCS 880-3244 Matrix: Solid Analysis Batch: 32462	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 130	LCS	LCS	mg/Kg mg/Kg mg/Kg	Init	30 — 30 30 30 30 80	Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 Prepared 3/18/22 14:47 3/18/22 14:47 nt Sample	Prep Ty Prep I Analyze 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 Prep Ty Prep I	d - d - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:25 - 0:26 - 0:27 - 0:28 - 0:29 - 0:29 - 0:20 - 0:21 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 -	tal/N. 3244 Dil Fa Dil Fa ampl tal/N.
Matrix: Solid Analysis Batch: 32462 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-3244 Matrix: Solid Analysis Batch: 32462 Analyte	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50.0 50.0 50.0 50.0 50.0 70 - 130 70 - 130 70 - 130		LCS	mg/Kg mg/Kg mg/Kg	Init ng/Kg		Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 Prepared 3/18/22 14:47 3/18/22 14:47 nt Sample	Analyze 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 NB 08/19/22 10 08/19/22 10 NB Nept Prep Ty Prep I % Rec	d - d - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:25 - 0:26 - 0:27 - 0:28 - 0:29 - 0:29 - 0:20 - 0:21 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 -	tal/N. 3244 Dil Fa Dil Fa ampl tal/N.
Matrix: Solid Analysis Batch: 32462 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-3244	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50.0 50.0 50.0 50.0 50.0 70 - 130 70 - 130 70 - 130 70 - 130	LCS Result	LCS	mg/Kg mg/Kg mg/Kg			Prepared 3/18/22 14:47 3/18/22 14:47 3/18/22 14:47 Prepared 3/18/22 14:47 3/18/22 14:47 nt Sample 0 %Rec	Analyze 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 08/19/22 10 Negative 08/19/22 10 ID: Lab Coor Prep Ty Prep I %Rec Limits	d - d - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:24 - 0:25 - 0:26 - 0:27 - 0:28 - 0:29 - 0:29 - 0:20 - 0:21 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 - 0:224 -	tal/N. 3244 Dil Fa Dil Fa ampl tal/N.

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid										ype: Tot	
Analysis Batch: 32462									Prep	Batch:	3244
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	110		70 - 130								
o-Terphenyl	98		70 - 130								
Lab Sample ID: LCSD 880-3244	43/3-A					Clier	nt Sam	ple ID:	Lab Contro	I Sample	e Du
Matrix: Solid										· ype: Tot	
Analysis Batch: 32462										Batch:	
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	859.6		mg/Kg		86	70 - 130	9	2
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)			1000	956.6		mg/Kg		96	70 - 130	1	2
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	98		70 - 130								
o-Terphenyl	97		70 - 130								
Lab Sample ID: 880-18314-2 M Matrix: Solid Analysis Batch: 32462								Clief	Prep	ype: Tot Batch: 3	al/N
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	1166		mg/Kg		115	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.9	U	999	1140		mg/Kg		111	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	103		70 - 130								
o-Terphenyl	92		70 - 130								
Lab Sample ID: 880-18314-2 M	SD							Clie	nt Sample I	D: S-1 ((0.5-1
Matrix: Solid										ype: Tot	
Analysis Batch: 32462										Batch:	
-	Sample	Sample	Spike	MSD	MSD				%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
	<49.9	U	998	1183		mg/Kg		117	70 - 130	1	2
			998	1194		mg/Kg		116	70 - 130	5	2
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U	000								
(GRO)-C6-C10 Diesel Range Organics (Over		MSD									
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate		MSD	Limits								
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	MSD	MSD									

QC Sample Results

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22) Job ID: 880-18314-1 SDG: Eddy Co, NM

Method: 300.0 - Anions, Ion Chromatography

Matrix: Solid	L .										Client S	ample ID: I Pren	Method Type: S	
Analysis Batch: 32695												пер	Type. c	
		ΜВ	МВ											
Analyte	R	esult	Qualifier		RL		MDL Unit		D	Pi	repared	Analyz	ed	Dil Fac
Chloride	<	\$.00	U		5.00		mg/Kg					08/24/22 (02:52	1
Lab Sample ID: LCS 880-32491/2-4 Matrix: Solid	A								Cli	ient	Sample	ID: Lab Co	ontrol S Type: S	
Analysis Batch: 32695												riep	Type. c	
-				Spike		LCS	LCS					%Rec		
Analyte				Added			Qualifier	Unit		D	%Rec	Limits		
Chloride				250		239.0		mg/Kg			96	90 - 110		
Lab Sample ID: LCSD 880-32491/3	8-A							Cli	ent S	Sam	ple ID: I	Lab Contro	-	
Matrix: Solid Analysis Batch: 32695												Prep	Type: S	olubi
Analysis Baton. 02000				Spike		LCSD	LCSD					%Rec		RPD
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride				250		239.5		mg/Kg		_	96	90 - 110	0	20
Lab Sample ID: 880-18312-A-14-B Matrix: Solid	MS										Client	Sample ID:	: Matrix Type: S	
Analysis Batch: 32695												Trop	Type. e	
	Sample	Sam	ple	Spike		MS	MS					%Rec		
	Desult	Oual	lifior	Added		Result	Qualifier	Unit		D	%Rec	Limits		
	Result	Quai				273.8				_	101	90 110		
Analyte Chloride	19.7			251		273.8		mg/Kg		_	101	90 - 110		
Chloride Lab Sample ID: 880-18312-A-14-C	19.7	qua				273.8	<u> </u>	mg/Kg	Clien	- It Sa): Matrix Sp		-
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid	19.7	Qual	<u> </u>			273.8		mg/Kg	Clien	_ it Sa): Matrix Sp	oike Du Type: S	-
Chloride Lab Sample ID: 880-18312-A-14-C	19.7					273.8 MSD	MSD	mg/Kg	Clien	_ It Sa): Matrix Sp		Soluble
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid	19.7 MSD	Sam	ple	251		MSD	MSD Qualifier	mg/Kg	Clien	_ It Sa): Matrix Sp Prep		Soluble RPC
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695	19.7 MSD Sample	Sam	ple	251 Spike		MSD		mg/Kg	Clien		imple ID): Matrix Sp Prep %Rec	Type: S	RPD Limit
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride	19.7 MSD Sample Result 19.7	Sam	ple	251 Spike Added		MSD Result		mg/Kg Unit	Clien	D	%Rec 102	D: Matrix Sp Prep %Rec Limits	Type: S RPD	RPE Limi
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A	19.7 MSD Sample Result 19.7	Sam	ple	251 Spike Added		MSD Result		mg/Kg Unit	Clien	D	%Rec 102	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I	Type: S RPD	RPE Limi 20
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid	19.7 MSD Sample Result 19.7	Sam	ple	251 Spike Added		MSD Result		mg/Kg Unit	Clien	D	%Rec 102	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I	Type: S <u>RPD</u> 0 Method	RPE Limi 20
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696	19.7 MSD Sample Result 19.7	Sam Qual MB	ple ifier	251 Spike Added		MSD Result 274.1	Qualifier	mg/Kg Unit		<u>D</u>	%Rec 102 Client S	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep	Type: S <u>RPD</u> 0 Method Type: S	RPE Limi 20 Blank Soluble
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte	19.7 MSD Sample Result 19.7	Sam Qual MB esult	ple ifier MB Qualifier	251 Spike Added	RL	MSD Result 274.1	Qualifier MDL Unit	Unit mg/Kg	D	<u>D</u>	%Rec 102	0: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep Analyz	Type: S <u>RPD</u> 0 Method Type: S ed	RPC Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696	19.7 MSD Sample Result 19.7	Sam Qual MB	ple ifier MB Qualifier	251 Spike Added	RL 5.00	MSD Result 274.1	Qualifier	Unit mg/Kg		<u>D</u>	%Rec 102 Client S	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep	Type: S <u>RPD</u> 0 Method Type: S ed	RPE Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride	19.7 MSD Sample <u>Result</u> 19.7	Sam Qual MB esult	ple ifier MB Qualifier	251 Spike Added		MSD Result 274.1	Qualifier MDL Unit	Unit mg/Kg	<u>D</u>	D — Pr	wind the second	0: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep Analyz	Type: S <u>RPD</u> 0 Method Type: S ed 02:29	Coluble RPI Limi 20 Blani Coluble Dil Fa
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCS 880-32497/2-4	19.7 MSD Sample <u>Result</u> 19.7	Sam Qual MB esult	ple ifier MB Qualifier	251 Spike Added		MSD Result 274.1	Qualifier MDL Unit	Unit mg/Kg	<u>D</u>	D — Pr	wind the second	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep 	Type: S <u>RPD</u> 0 Method Type: S ed 02:29	RPE Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCS 880-32497/2-A Matrix: Solid	19.7 MSD Sample <u>Result</u> 19.7	Sam Qual MB esult	ple ifier MB Qualifier	251 Spike Added 251		MSD Result 274.1	Qualifier MDL Unit mg/Kg	Unit mg/Kg	<u>D</u>	D — Pr	wind the second	9: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID: I Prep Analyz 08/24/22 (Prep 1	Type: S <u>RPD</u> 0 Method Type: S ed 02:29 -	RPE Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCS 880-32497/2-A Matrix: Solid Analysis Batch: 32696	19.7 MSD Sample <u>Result</u> 19.7	Sam Qual MB esult	ple ifier MB Qualifier	251 Spike Added 251		MSD Result 274.1	Qualifier MDL Unit mg/Kg	Unit mg/Kg	<u>D</u>	D Pr	%Rec 102 Client S repared Sample	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep Analyz 08/24/22 (9 ID: Lab Co Prep %Rec	Type: S <u>RPD</u> 0 Method Type: S ed 02:29 -	RPE Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCS 880-32497/2-A Matrix: Solid Analysis Batch: 32696 Analyte Analysis Batch: 32696 Analyte	19.7 MSD Sample <u>Result</u> 19.7	Sam Qual MB esult	ple ifier MB Qualifier	Spike Added 251 Spike Added		MSD Result 274.1	Qualifier MDL Unit mg/Kg	Unit mg/Kg	<u>D</u>	D — Pr	%Rec 102 Client S repared Sample %Rec	2: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep Analyz 08/24/22 0 e ID: Lab Co Prep %Rec Limits	Type: S <u>RPD</u> 0 Method Type: S ed 02:29 -	RPC Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCS 880-32497/2-A Matrix: Solid Analysis Batch: 32696 Analyte Analysis Batch: 32696 Analyte	19.7 MSD Sample <u>Result</u> 19.7	Sam Qual MB esult	ple ifier MB Qualifier	251 Spike Added 251		MSD Result 274.1	Qualifier MDL Unit mg/Kg	Unit mg/Kg	<u>D</u>	D Pr	%Rec 102 Client S repared Sample	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep Analyz 08/24/22 (9 ID: Lab Co Prep %Rec	Type: S <u>RPD</u> 0 Method Type: S ed 02:29 -	RPE Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCS 880-32497/2-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Chloride Chloride	19.7 MSD Sample Result 19.7	Sam Qual MB esult	ple ifier MB Qualifier	Spike Added 251 Spike Added		MSD Result 274.1	Qualifier MDL Unit mg/Kg	Unit mg/Kg mg/Kg	D Cli	Pi ient	%Rec 102 Client S repared Sample %Rec 96	2: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep (Analyz 08/24/22 0 e ID: Lab Co Prep %Rec Limits	Type: S <u>RPD</u> 0 Method Type: S ed 02:29 Ontrol S Type: S	Coluble RPI Limi 20 Blank Soluble Soluble
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCS 880-32497/2-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCSD 880-32497/3	19.7 MSD Sample Result 19.7	Sam Qual MB esult	ple ifier MB Qualifier	Spike Added 251 Spike Added		MSD Result 274.1	Qualifier MDL Unit mg/Kg	Unit mg/Kg mg/Kg	D Cli	Pi ient	%Rec 102 Client S repared Sample %Rec 96	2: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep 08/24/22 0 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S <u>RPD</u> 0 Method Type: S ed 02:29 Ontrol S Type: S	Elini Limi 20 Blank Soluble Dil Factoria Sample Soluble
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte	19.7 MSD Sample Result 19.7	Sam Qual MB esult	ple ifier MB Qualifier	Spike Added 251 Spike Added		MSD Result 274.1 LCS Result 239.0	Qualifier MDL Unit mg/Kg LCS Qualifier	Unit mg/Kg mg/Kg	D Cli	Pi ient	%Rec 102 Client S repared Sample %Rec 96	2: Matrix Sp Prep 7 %Rec Limits 90 - 110 Gample ID: I Prep 7 Manual Science 90 - 110 Prep 7 %Rec Limits 90 - 110 Lab Contro Prep 7	Type: S RPD 0 Method Type: S ed 0 2:29 - - S Type: S - - - - - - - - -	Coluble RPD Limit 20 Blank Coluble Dil Fac 1 Coluble Coluble Coluble
Chloride Lab Sample ID: 880-18312-A-14-C Matrix: Solid Analysis Batch: 32695 Analyte Chloride Lab Sample ID: MB 880-32497/1-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCS 880-32497/2-A Matrix: Solid Analysis Batch: 32696 Analyte Chloride Lab Sample ID: LCSD 880-32497/3 Matrix: Solid	19.7 MSD Sample Result 19.7	Sam Qual MB esult	ple ifier MB Qualifier	Spike Added 251 Spike Added		MSD Result 274.1 LCS Result 239.0	Qualifier MDL Unit mg/Kg	Unit mg/Kg mg/Kg	D Cli	Pi ient	%Rec 102 Client S repared Sample %Rec 96	2: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep 08/24/22 0 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S RPD 0 Method Type: S ed 0 2:29 - - S Type: S - - - - - - - - -	Coluble RPD Limit 20 Blank Soluble Dil Fac 1 Sample Soluble

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22) Job ID: 880-18314-1 SDG: Eddy Co, NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-18314-9 MS Matrix: Solid								CI	ient Sampl Prep	e ID: S-2 Type: So	· · ·
Analysis Batch: 32696										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	5600		4980	10430		mg/Kg		97	90 - 110		
Lab Sample ID: 880-18314-9 MSD								CI	ient Sampl	e ID: S-2	2 (1.5')
Matrix: Solid										Type: So	
Analysis Batch: 32696											
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	5600		4980	10170		mg/Kg		92	90 _ 110	3	20
Lab Sample ID: 880-18314-19 MS								Clier	nt Sample	ID: H-4 (0-0.5')
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 32696											
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	13.1		252	263.6		mg/Kg		99	90 _ 110		
Lab Sample ID: 880-18314-19 MSD								Clier	nt Sample	ID: H-4 (0-0.5')
Matrix: Solid										Type: S	
Analysis Batch: 32696										~ •	
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	13.1		252	264.0		mg/Kg		100	90 - 110	0	20

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

5

Job ID: 880-18314-1 SDG: Eddy Co, NM

GC VOA

Prep Batch: 32613

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
880-18314-21	H-6 (0-0.5')	Total/NA	Solid	5035	
MB 880-32613/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-32613/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-32613/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-18311-A-15-C MS	Matrix Spike	Total/NA	Solid	5035	
880-18311-A-15-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
rep Batch: 32706					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-18314-1	S-1 (0-0.5')	Total/NA	Solid	5035	
880-18314-2	S-1 (0.5-1')	Total/NA	Solid	5035	
880-18314-3	S-1 (1.5')	Total/NA	Solid	5035	
880-18314-4	S-1 (2.5')	Total/NA	Solid	5035	
880-18314-5	S-1 (3.5')	Total/NA	Solid	5035	
880-18314-6	S-1 (4.5')	Total/NA	Solid	5035	
880-18314-7	S-2 (0-0.5')	Total/NA	Solid	5035	
880-18314-8	S-2 (0.5-1')	Total/NA	Solid	5035	
880-18314-9	S-2 (1.5')	Total/NA	Solid	5035	
880-18314-10	S-2 (2.5')	Total/NA	Solid	5035	
880-18314-11	S-3 (0-0.5')	Total/NA	Solid	5035	
880-18314-12	S-3 (0.5-1')	Total/NA	Solid	5035	
880-18314-13	S-4 (0-0.5')	Total/NA	Solid	5035	
880-18314-14	S-4 (0.5-1')	Total/NA	Solid	5035	
880-18314-15	S-4 (1.5")	Total/NA	Solid	5035	
380-18314-16	H-1 (0-0.5')	Total/NA	Solid	5035	
880-18314-17	H-2 (0-0.5')	Total/NA	Solid	5035	
380-18314-18	H-3 (0-0.5')	Total/NA	Solid	5035	
880-18314-19	H-4 (0-0.5')	Total/NA	Solid	5035	
380-18314-20	H-5 (0-0.5')	Total/NA	Solid	5035	
MB 880-32706/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-32706/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-32706/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-18314-1 MS	S-1 (0-0.5')	Total/NA	Solid	5035	
880-18314-1 MSD	S-1 (0-0.5')	Total/NA	Solid	5035	

Analysis Batch: 32708

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-18314-21	H-6 (0-0.5')	Total/NA	Solid	8021B	32613
MB 880-32613/5-A	Method Blank	Total/NA	Solid	8021B	32613
LCS 880-32613/1-A	Lab Control Sample	Total/NA	Solid	8021B	32613
LCSD 880-32613/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	32613
880-18311-A-15-C MS	Matrix Spike	Total/NA	Solid	8021B	32613
880-18311-A-15-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	32613

Analysis Batch: 32729

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-18314-1	S-1 (0-0.5')	Total/NA	Solid	8021B	32706
880-18314-2	S-1 (0.5-1')	Total/NA	Solid	8021B	32706
880-18314-3	S-1 (1.5')	Total/NA	Solid	8021B	32706
880-18314-4	S-1 (2.5')	Total/NA	Solid	8021B	32706
880-18314-5	S-1 (3.5')	Total/NA	Solid	8021B	32706

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

GC VOA (Continued)

Analysis Batch: 32729 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-18314-6	S-1 (4.5')	Total/NA	Solid	8021B	32706
880-18314-7	S-2 (0-0.5')	Total/NA	Solid	8021B	32706 0
880-18314-8	S-2 (0.5-1')	Total/NA	Solid	8021B	32706
880-18314-9	S-2 (1.5')	Total/NA	Solid	8021B	32706
880-18314-10	S-2 (2.5')	Total/NA	Solid	8021B	32706
880-18314-11	S-3 (0-0.5')	Total/NA	Solid	8021B	32706
880-18314-12	S-3 (0.5-1')	Total/NA	Solid	8021B	32706
880-18314-13	S-4 (0-0.5')	Total/NA	Solid	8021B	32706
880-18314-14	S-4 (0.5-1')	Total/NA	Solid	8021B	32706
880-18314-15	S-4 (1.5")	Total/NA	Solid	8021B	32706 9
880-18314-16	H-1 (0-0.5')	Total/NA	Solid	8021B	32706
880-18314-17	H-2 (0-0.5')	Total/NA	Solid	8021B	32706
880-18314-18	H-3 (0-0.5')	Total/NA	Solid	8021B	32706
880-18314-19	H-4 (0-0.5')	Total/NA	Solid	8021B	32706
880-18314-20	H-5 (0-0.5')	Total/NA	Solid	8021B	32706
MB 880-32706/5-A	Method Blank	Total/NA	Solid	8021B	32706
LCS 880-32706/1-A	Lab Control Sample	Total/NA	Solid	8021B	32706
LCSD 880-32706/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	32706
880-18314-1 MS	S-1 (0-0.5')	Total/NA	Solid	8021B	32706
880-18314-1 MSD	S-1 (0-0.5')	Total/NA	Solid	8021B	32706

Analysis Batch: 32803

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-18314-1	S-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-2	S-1 (0.5-1')	Total/NA	Solid	Total BTEX	
880-18314-3	S-1 (1.5')	Total/NA	Solid	Total BTEX	
880-18314-4	S-1 (2.5')	Total/NA	Solid	Total BTEX	
880-18314-5	S-1 (3.5')	Total/NA	Solid	Total BTEX	
880-18314-6	S-1 (4.5')	Total/NA	Solid	Total BTEX	
880-18314-7	S-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-8	S-2 (0.5-1')	Total/NA	Solid	Total BTEX	
880-18314-9	S-2 (1.5')	Total/NA	Solid	Total BTEX	
880-18314-10	S-2 (2.5')	Total/NA	Solid	Total BTEX	
880-18314-11	S-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-12	S-3 (0.5-1')	Total/NA	Solid	Total BTEX	
880-18314-13	S-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-14	S-4 (0.5-1')	Total/NA	Solid	Total BTEX	
880-18314-15	S-4 (1.5")	Total/NA	Solid	Total BTEX	
880-18314-16	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-17	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-18	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-19	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-20	H-5 (0-0.5')	Total/NA	Solid	Total BTEX	
880-18314-21	H-6 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 32386

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18314-21	H-6 (0-0.5')	Total/NA	Solid	8015B NM	32429
MB 880-32429/1-A	Method Blank	Total/NA	Solid	8015B NM	32429

Eurofins Midland

Job ID: 880-18314-1 SDG: Eddy Co, NM

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

GC Semi VOA (Continued)

Analysis Batch: 32386 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 880-32429/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32429
LCSD 880-32429/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32429
880-18314-21 MS	H-6 (0-0.5')	Total/NA	Solid	8015B NM	32429
880-18314-21 MSD	H-6 (0-0.5')	Total/NA	Solid	8015B NM	32429
Prep Batch: 32429					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18314-21	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-32429/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32429/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32429/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-18314-21 MS	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-21 MSD	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
Prep Batch: 32443					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-18314-1	S-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-2	S-1 (0.5-1')	Total/NA	Solid	8015NM Prep	
880-18314-3	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-18314-4	S-1 (2.5')	Total/NA	Solid	8015NM Prep	
880-18314-5	S-1 (3.5')	Total/NA	Solid	8015NM Prep	
880-18314-6	S-1 (4.5')	Total/NA	Solid	8015NM Prep	
880-18314-7	S-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-8	S-2 (0.5-1')	Total/NA	Solid	8015NM Prep	
880-18314-9	S-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-18314-10	S-2 (2.5')	Total/NA	Solid	8015NM Prep	
880-18314-11	S-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-12	S-3 (0.5-1')	Total/NA	Solid	8015NM Prep	
880-18314-13	S-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-14	S-4 (0.5-1')	Total/NA	Solid	8015NM Prep	
880-18314-15	S-4 (1.5")	Total/NA	Solid	8015NM Prep	
880-18314-16	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-17	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-18	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-19	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-18314-20	H-5 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-32443/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32443/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32443/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-18314-2 MS	S-1 (0.5-1')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 32462

880-18314-2 MSD

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-18314-1	S-1 (0-0.5')	Total/NA	Solid	8015B NM	32443
880-18314-2	S-1 (0.5-1')	Total/NA	Solid	8015B NM	32443
880-18314-3	S-1 (1.5')	Total/NA	Solid	8015B NM	32443
880-18314-4	S-1 (2.5')	Total/NA	Solid	8015B NM	32443
880-18314-5	S-1 (3.5')	Total/NA	Solid	8015B NM	32443
880-18314-6	S-1 (4.5')	Total/NA	Solid	8015B NM	32443
880-18314-7	S-2 (0-0.5')	Total/NA	Solid	8015B NM	32443

Total/NA

Eurofins Midland

8

Job ID: 880-18314-1 SDG: Eddy Co, NM

Page 33 of 50	

Solid

8015NM Prep

Released to Imaging: 12/15/2022 1:51:04 PM

S-1 (0.5-1')

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

GC Semi VOA (Continued)

Analysis Batch: 32462 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-18314-8	S-2 (0.5-1')	Total/NA	Solid	8015B NM	32443	5
880-18314-9	S-2 (1.5')	Total/NA	Solid	8015B NM	32443	Ο
880-18314-10	S-2 (2.5')	Total/NA	Solid	8015B NM	32443	
880-18314-11	S-3 (0-0.5')	Total/NA	Solid	8015B NM	32443	
880-18314-12	S-3 (0.5-1')	Total/NA	Solid	8015B NM	32443	
880-18314-13	S-4 (0-0.5')	Total/NA	Solid	8015B NM	32443	
880-18314-14	S-4 (0.5-1')	Total/NA	Solid	8015B NM	32443	
880-18314-15	S-4 (1.5")	Total/NA	Solid	8015B NM	32443	8
880-18314-16	H-1 (0-0.5')	Total/NA	Solid	8015B NM	32443	
880-18314-17	H-2 (0-0.5')	Total/NA	Solid	8015B NM	32443	9
880-18314-18	H-3 (0-0.5')	Total/NA	Solid	8015B NM	32443	
880-18314-19	H-4 (0-0.5')	Total/NA	Solid	8015B NM	32443	
880-18314-20	H-5 (0-0.5')	Total/NA	Solid	8015B NM	32443	
MB 880-32443/1-A	Method Blank	Total/NA	Solid	8015B NM	32443	
LCS 880-32443/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32443	
LCSD 880-32443/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32443	
880-18314-2 MS	S-1 (0.5-1')	Total/NA	Solid	8015B NM	32443	
880-18314-2 MSD	S-1 (0.5-1')	Total/NA	Solid	8015B NM	32443	
Analysis Batch: 32489						
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
880-18314-1	S-1 (0-0.5')	Total/NA	Solid	8015 NM		
880-18314-2	S-1 (0.5-1')	Total/NA	Solid	8015 NM		
880-18314-3	S-1 (1.5')	Total/NA	Solid	8015 NM		
880-18314-4	S-1 (2.5')	Total/NA	Solid	8015 NM		
880-18314-5	S-1 (3.5')	Total/NA	Solid	8015 NM		
880-18314-6	S-1 (4.5')	Total/NA	Solid	8015 NM		
880-18314-7	S-2 (0-0.5')	Total/NA	Solid	8015 NM		
880-18314-8	S-2 (0.5-1')	Total/NA	Solid	8015 NM		
880-18314-9	S-2 (1.5')	Total/NA	Solid	8015 NM		
880-18314-10	S-2 (2.5')	Total/NA	Solid	8015 NM		
880-18314-11	S-3 (0-0.5')	Total/NA	Solid	8015 NM		
880-18314-12	S-3 (0.5-1')	Total/NA	Solid	8015 NM		
880-18314-13	S-4 (0-0.5')	Total/NA	Solid	8015 NM		
880-18314-14	S-4 (0.5-1')	Total/NA	Solid	8015 NM		

Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 880-18314-1 S-1 (0-0.5') Soluble Solid DI Leach 880-18314-2 - DL S-1 (0.5-1') Soluble Solid DI Leach 880-18314-3 S-1 (1.5') Soluble Solid DI Leach Soluble Solid 880-18314-4 S-1 (2.5') DI Leach

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Solid

Solid

Solid

Solid

8015 NM

Eurofins Midland

Page 65 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

S-4 (1.5")

H-1 (0-0.5')

H-2 (0-0.5')

H-3 (0-0.5')

H-4 (0-0.5')

H-5 (0-0.5')

H-6 (0-0.5')

880-18314-15

880-18314-16

880-18314-17

880-18314-18

880-18314-19

880-18314-20

880-18314-21

Leach Batch: 32491

HPLC/IC

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

HPLC/IC (Continued)

Leach Batch: 32491 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18314-5	S-1 (3.5')	Soluble	Solid	DI Leach	
880-18314-6	S-1 (4.5')	Soluble	Solid	DI Leach	
880-18314-7	S-2 (0-0.5')	Soluble	Solid	DI Leach	
880-18314-8	S-2 (0.5-1')	Soluble	Solid	DI Leach	
MB 880-32491/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32491/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32491/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-18312-A-14-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-18312-A-14-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 32497

LCSD 880-32491/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
880-18312-A-14-B MS	Matrix Spike	Soluble	Solid	DI Leach		8
880-18312-A-14-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		
Leach Batch: 32497						9
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
880-18314-9	S-2 (1.5')	Soluble	Solid	DI Leach		
880-18314-10	S-2 (2.5')	Soluble	Solid	DI Leach		
880-18314-11	S-3 (0-0.5')	Soluble	Solid	DI Leach		
880-18314-12	S-3 (0.5-1')	Soluble	Solid	DI Leach		
880-18314-13	S-4 (0-0.5')	Soluble	Solid	DI Leach		
880-18314-14	S-4 (0.5-1')	Soluble	Solid	DI Leach		40
880-18314-15	S-4 (1.5")	Soluble	Solid	DI Leach		13
880-18314-16	H-1 (0-0.5')	Soluble	Solid	DI Leach		
880-18314-17	H-2 (0-0.5')	Soluble	Solid	DI Leach		
880-18314-18	H-3 (0-0.5')	Soluble	Solid	DI Leach		
880-18314-19	H-4 (0-0.5')	Soluble	Solid	DI Leach		
880-18314-20	H-5 (0-0.5')	Soluble	Solid	DI Leach		
880-18314-21	H-6 (0-0.5')	Soluble	Solid	DI Leach		
MB 880-32497/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-32497/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-32497/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
880-18314-9 MS	S-2 (1.5')	Soluble	Solid	DI Leach		
880-18314-9 MSD	S-2 (1.5')	Soluble	Solid	DI Leach		
880-18314-19 MS	H-4 (0-0.5')	Soluble	Solid	DI Leach		
880-18314-19 MSD	H-4 (0-0.5')	Soluble	Solid	DI Leach		
-						

Analysis Batch: 32695

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-18314-1	S-1 (0-0.5')	Soluble	Solid	300.0	32491
880-18314-2 - DL	S-1 (0.5-1')	Soluble	Solid	300.0	32491
880-18314-3	S-1 (1.5')	Soluble	Solid	300.0	32491
880-18314-4	S-1 (2.5')	Soluble	Solid	300.0	32491
880-18314-5	S-1 (3.5')	Soluble	Solid	300.0	32491
880-18314-6	S-1 (4.5')	Soluble	Solid	300.0	32491
880-18314-7	S-2 (0-0.5')	Soluble	Solid	300.0	32491
880-18314-8	S-2 (0.5-1')	Soluble	Solid	300.0	32491
MB 880-32491/1-A	Method Blank	Soluble	Solid	300.0	32491
LCS 880-32491/2-A	Lab Control Sample	Soluble	Solid	300.0	32491
LCSD 880-32491/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32491
880-18312-A-14-B MS	Matrix Spike	Soluble	Solid	300.0	32491
880-18312-A-14-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	32491

SDG: Eddy Co, NM

Page 66 of 123

5

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22) Job ID: 880-18314-1 SDG: Eddy Co, NM

HPLC/IC

Analysis Batch: 32696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18314-9	S-2 (1.5')	Soluble	Solid	300.0	32497
880-18314-10	S-2 (2.5')	Soluble	Solid	300.0	32497
80-18314-11	S-3 (0-0.5')	Soluble	Solid	300.0	32497
80-18314-12	S-3 (0.5-1')	Soluble	Solid	300.0	32497
80-18314-13	S-4 (0-0.5')	Soluble	Solid	300.0	32497
80-18314-14	S-4 (0.5-1')	Soluble	Solid	300.0	32497
80-18314-15	S-4 (1.5")	Soluble	Solid	300.0	32497
80-18314-16	H-1 (0-0.5')	Soluble	Solid	300.0	32497
80-18314-17	H-2 (0-0.5')	Soluble	Solid	300.0	32497
80-18314-18	H-3 (0-0.5')	Soluble	Solid	300.0	32497
80-18314-19	H-4 (0-0.5')	Soluble	Solid	300.0	32497
80-18314-20	H-5 (0-0.5')	Soluble	Solid	300.0	32497
80-18314-21	H-6 (0-0.5')	Soluble	Solid	300.0	32497
IB 880-32497/1-A	Method Blank	Soluble	Solid	300.0	32497
CS 880-32497/2-A	Lab Control Sample	Soluble	Solid	300.0	32497
CSD 880-32497/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32497
80-18314-9 MS	S-2 (1.5')	Soluble	Solid	300.0	32497
80-18314-9 MSD	S-2 (1.5')	Soluble	Solid	300.0	32497
880-18314-19 MS	H-4 (0-0.5')	Soluble	Solid	300.0	32497
380-18314-19 MSD	H-4 (0-0.5')	Soluble	Solid	300.0	32497

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: S-1 (0-0.5')

Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client: Carmona Resources

Initial

Amount

4.98 g

5 mL

10.02 g

4.98 g

Final

Amount

5 mL

5 mL

10 mL

50 mL

Batch

32706

32729

32803

32489

32443

32462

32491

32695

Number

Dil

1

1

1

10

10

Factor

Run

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-1

Analyst

MR

MR

SM

SM

DM

SM

SMC

СН

Lab Sample ID: 880-18314-2

Lab Sample ID: 880-18314-3

Lab Sample ID: 880-18314-4

Prepared

or Analyzed

08/22/22 15:21

08/23/22 16:22

08/23/22 17:20

08/19/22 10:18

08/18/22 14:47

08/19/22 18:23

08/19/22 10:28

08/24/22 05:37

Matrix: Solid

Lab

EET MID

Matrix: Solid

Matrix: Solid

Client Sample ID: S-1 (0.5-1') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 16:43	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 11:31	SM	EET MID
Soluble	Leach	DI Leach	DL		4.99 g	50 mL	32491	08/19/22 10:28	SMC	EET MID
Soluble	Analysis	300.0	DL	20			32695	08/24/22 06:01	СН	EET MID

Client Sample ID: S-1 (1.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 17:03	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 12:36	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32491	08/19/22 10:28	SMC	EET MID
Soluble	Analysis	300.0		10			32695	08/24/22 06:09	СН	EET MID

Client Sample ID: S-1 (2.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 17:24	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 12/15/2022 1:51:04 PM

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-4

Lab Sample ID: 880-18314-5

Matrix: Solid

Matrix: Solid

Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

Client Sample ID: S-1 (2.5')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 12:58	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32491	08/19/22 10:28	SMC	EET MID
Soluble	Analysis	300.0		10			32695	08/24/22 06:16	СН	EET MID

Client Sample ID: S-1 (3.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 17:44	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 13:20	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	32491	08/19/22 10:28	SMC	EET MID
Soluble	Analysis	300.0		10			32695	08/24/22 06:24	СН	EET MID

Client Sample ID: S-1 (4.5')

Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 18:05	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 13:42	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32491	08/19/22 10:28	SMC	EET MID
Soluble	Analysis	300.0		10			32695	08/24/22 06:32	CH	EET MID

Client Sample ID: S-2 (0-0.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 18:25	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 14:03	SM	EET MID

Eurofins Midland

Lab Sample ID: 880-18314-6

Matrix: Solid

Lab Sample ID: 880-18314-7 Matrix: Solid

Job ID: 880-18314-1 SDG: Eddy Co, NM

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Lab Sample ID: 880-18314-7

Lab Sample ID: 880-18314-8

Lab Sample ID: 880-18314-9

Client Sample ID: S-2 (0-0.5') Date Collected: 08/17/22 00:00

Client: Carmona Resources

Date Received: 08/18/22 11:50	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	32491	08/19/22 10:28	SMC	EET MID
Soluble	Analysis	300.0		20			32695	08/24/22 06:40	СН	EET MID

Client Sample ID: S-2 (0.5-1') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 18:45	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 14:25	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32491	08/19/22 10:28	SMC	EET MID
Soluble	Analysis	300.0		20			32695	08/24/22 06:48	СН	EET MID

Client Sample ID: S-2 (1.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 19:06	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 14:47	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		20			32696	08/24/22 02:57	СН	EET MID

Client Sample ID: S-2 (2.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

Lab Sample ID: 880-18314-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 19:26	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 15:08	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		10			32696	08/24/22 03:25	СН	EET MID

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: S-3 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client: Carmona Resources

Initial

Amount

4.96 g

5 mL

10.01 g

4.98 g

Final

Amount

5 mL

5 mL

10 mL

50 mL

Batch

32706

32729

32803

32489

32443

32462

32497

32696

Number

Dil

1

1

1

1

20

Factor

Run

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-11

Analyst

MR

MR

SM

SM

DM

SM

SMC

СН

Prepared

or Analyzed

08/22/22 15:21

08/23/22 21:16

08/23/22 17:20

08/19/22 10:18

08/18/22 14:47

08/19/22 18:45

08/19/22 10:38

08/24/22 03:34

Matrix: Solid

Lab

EET MID

Matrix: Solid

5 9

Lab Sample ID: 880-18314-12 Matrix: Solid

Lab Sample ID: 880-18314-13

Lab Sample ID: 880-18314-14

Client Sample ID: S-3 (0.5-1')
Date Collected: 08/17/22 00:00
Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 21:36	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 19:07	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		20			32696	08/24/22 03:43	СН	EET MID

Client Sample ID: S-4 (0-0.5') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 21:57	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 19:28	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		20			32696	08/24/22 03:52	СН	EET MID

Client Sample ID: S-4 (0.5-1') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 22:17	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 12/15/2022 1:51:04 PM

Client Sample ID: S-4 (0.5-1') Date Collected: 08/17/22 00:00

Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 15:30	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		20			32696	08/24/22 04:20	CH	EET MID

Client Sample ID: S-4 (1.5") Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 22:38	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 16:13	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		20			32696	08/24/22 04:29	СН	EET MID

Client Sample ID: H-1 (0-0.5')

Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 22:58	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 16:35	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		1			32696	08/24/22 04:38	СН	EET MID

Client Sample ID: H-2 (0-0.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 23:18	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 16:56	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 72 of 123

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-14

Matrix: Solid

5 6 9

Lab Sample ID: 880-18314-17

Lab Sample ID: 880-18314-16

Matrix: Solid

8/24/2022

Lab Sample ID: 880-18314-15 Matrix: Solid
Project/Site: JoHelen SWD 001 (07.19.22)

Job ID: 880-18314-1 SDG: Eddy Co, NM

Lab Sample ID: 880-18314-17

Lab Sample ID: 880-18314-18

Lab Sample ID: 880-18314-19

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

Client Sample ID: H-2 (0-0.5')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		1			32696	08/24/22 04:47	СН	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 23:39	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 17:18	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		1			32696	08/24/22 04:57	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/23/22 23:59	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 17:40	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		1			32696	08/24/22 05:06	СН	EET MID

Client Sample ID: H-5 (0-0.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

Lab Sample ID: 880-18314-20 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	32706	08/22/22 15:21	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32729	08/24/22 00:20	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	32443	08/18/22 14:47	DM	EET MID
Total/NA	Analysis	8015B NM		1			32462	08/19/22 18:01	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		1			32696	08/24/22 05:34	СН	EET MID

Lab Chronicle

Client Sample ID: H-6 (0-0.5') Date Collected: 08/17/22 00:00 Date Received: 08/18/22 11:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	32613	08/22/22 09:35	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	32708	08/23/22 13:18	MR	EET MID
Total/NA	Analysis	Total BTEX		1			32803	08/23/22 17:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			32489	08/19/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	32429	08/18/22 13:46	DM	EET MID
Total/NA	Analysis	8015B NM		1			32386	08/18/22 22:05	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	32497	08/19/22 10:38	SMC	EET MID
Soluble	Analysis	300.0		1			32696	08/24/22 05:43	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-18314-1 SDG: Eddy Co, NM

Page 74 of 123

Lab Sample ID: 880-18314-21

Matrix: Solid

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22) Job ID: 880-18314-1 SDG: Eddy Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		Program	Identification Number	Expiration Date	
exas		NELAP	T104704400-22-24	06-30-23	
The following analytes	are included in this report,	, but the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for which	
the agency does not off	fer certification.				
Analysis Method	Prep Method	Matrix	Analyte		
300.0		Solid	Chloride		
8015 NM		Solid	Total TPH		
8015B NM	8015NM Prep	Solid	Diesel Range Organics (Over	C10-C28)	
8015B NM	8015NM Prep	Solid	Gasoline Range Organics (GR	O)-C6-C10	
8015B NM	8015NM Prep	Solid	Oll Range Organics (Over C28	3-C36)	
8021B	5035	Solid	Benzene		
8021B	5035	Solid	Ethylbenzene		
8021B	5035	Solid	m-Xylene & p-Xylene		
8021B	5035	Solid	o-Xylene		
8021B	5035	Solid	Toluene		
8021B	5035	Solid	Xylenes, Total		
Total BTEX		Solid	Total BTEX		

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22) Job ID: 880-18314-1 SDG: Eddy Co, NM

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	-
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	MCAWW	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Refe	ences:			8
ASTM = AS	STM International			
MCAWW =	"Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 194	83 And Subsequent Revisions.		
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, N	November 1986 And Its Updates.		
TAL SOP =	TestAmerica Laboratories, Standard Operating Procedure			

Protocol References:

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 76 of 123

Sample Summary

Client: Carmona Resources Project/Site: JoHelen SWD 001 (07.19.22)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-18314-1	S-1 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-2	S-1 (0.5-1')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-3	S-1 (1.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-4	S-1 (2.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-5	S-1 (3.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-6	S-1 (4.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-7	S-2 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-8	S-2 (0.5-1')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-9	S-2 (1.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-10	S-2 (2.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-11	S-3 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-12	S-3 (0.5-1')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-13	S-4 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-14	S-4 (0.5-1')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-15	S-4 (1.5")	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-16	H-1 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-17	H-2 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-18	H-3 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-19	H-4 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-20	H-5 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50
880-18314-21	H-6 (0-0.5')	Solid	08/17/22 00:00	08/18/22 11:50

Job ID: 880-18314-1

SDG: Eddy Co, NM

Eurofins Midland 8/24/2022

13 14

H-5 (0-0 5') 8/17/2022		H-4 (0-0 5') 8/17/2022	H-3 (0-0 5') 8/17/2022		H-1 (0-0 5') 8/17/2022	S-4 (1 5") 8/17/2022	S-4 (0 5-1') 8/17/2022	S-4 (0-0 5') 8/17/2022	S-3 (0 5-1') 8/17/2022	S-3 (0-0 5') 8/17/2022	Sample Identification Date	Total Containers.	Sample Custody Seals. Yes No N/A	Seals. Yes No		SAMPLE RECEIPT Temp Blank.			Project Location Eddy Co, NM	Project Number 1112	Project Name JoHelen SWD 001 (07 19 22)	Phone 432-813-5347	City, State ZIP Midland, TX 79701	Address 310 W Wall St Ste 415	Company-Name: Carmona Resources	Project Manager Ashton Thielke	n en
	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	te Time	Correcte			Thermometer ID	Yes No			M		(07 19 22)			5			
	×	×	×	×	×	×	×	×	×	×	Soil	Corrected Temperature.	Temperature Reading:	n Factor	veter ID	Wet Ice:	lab, if rece	TAT starts the	Due Date	Routine	Tun	Email					
											Water Gr				- 1	Yes No	lab, if received by 4 30pm	TAT starts the day received by the	72 Hr	< √ Rush	Turn Around	Jacqui harris@conocophilips com	City, State ZIP	Address.	Company Name	Bill to (if different)	
	G 1	G 1	G 1	G 1	G 1	G 1	G 	G 1	G 1	G 1	Grab/ # of Comp Cont			Pa]	neter		the		Code		;@conoco	P		me.	ant)	
	×	×	×	×	×	×	×	×	×	×	# ~		B	TEX	802 ⁻	B	يل تورج خ			æ ?"		phillips	Lovi	15 V	cog	Jacq	
Date/Time	×	×	×	×	×	×	×	×	×	×	TPH	1 801	5M (GR	0+1	DRO	+ MF	RO)				com	Loving,NM 88256	15 W London Rd	42	Jacqui Harris	
	×	×	×	×	×	×	×	×	×	×	*****		Ch	lorid	e 30	0.0							3256	Rd			
									_		erek- 10 î										ANALYS						
, ₽ ao				-+				-	-												ISIS REQUEST						
ceived by (Signature)																			_		UEST	Delivera	Reportin	State of	Program		
(Signat	$\left - \right $					_	-	-		_												Deliverables EDD	Reporting Level II Level III PST/UST	State of Project:	n: UST/P		
ure)																									STPR	Wo	
				_	_	-	_	_	_	-				HOI	D		· · · · · · ·			_		ADa	Ē	ł	P Bro	rk Orde	
					_							NaOt	Zn Ac			H ₁ PO, HP	H-SOL H-		3	None NO		ADaPT	ST/UST		wnfields	Work Order Comments	ס
											Sample Comments	NaOH+Ascorbic Acid SAPC	Zn Acetate+NaOH Zn	Na ₂ S ₂ O ₃ NaSO ₃	NaHSO, NARIS	Ë ,	ŗ₹			5	Preservative Codes	Other		1	Program: UST/PST PRP Brownfields RRC	- 1	Page 2
Date/Time											Comm	ic Acid	ĩOH Zn	្ង	ñ		NH CONL		M	DI Water: H-O	ative Co	, 			Cuperfund		of.

Received by OCD: 10/17/2022 12:02:28 PM

8/24/2022

Work Order No:

high

Page 79 of 123

Received by OCD: 10/17/2022 12:02:28 PM

H	5					H-6 (0-0 5')	Sample Identification	Total Containers.	Sample Custody Seals	Cooler Custody Seals.	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name.	Project Location	Project Number	Project Name.	Phone 4	City, State ZIP M	Address. 3	Company Name: C	Project Manager A	
Relino						5')	Ication		Yes	Yes	Yes				Edo		JoHelen SV	432-813-5347	Midland, TX 79701	310 W Wall St Ste 415	Carmona Resources	Ashton Thielke	
Relinquished by (Signature)						8/17/2022	Date		NO N/A	No N/A	No	Temp Blank:		AT	Eddy Co, NM	1112	JoHelen SWD 001 (07 19 22)		701	Ste 415	ources		
Signature)		 					Time	Corrected Temperature	Temperature Reading	Correction Factor	Thermometer ID	Yes No			0		9 22)	-					
						×	Soil	emperature	e Reading	actor	ΨD	Wet lce	lab, if received by 4 30pm	TAT starts the	Due Date	Routine	Tun	Email	,				
					 	-	Water o					Yes N	ived by 4 30pn	day received b	72 Hr	< ⊂ Rush	Turn Around	jacqui harris@conocophillips com	City, State ZIP	Address.	Company Name	Bill to. (if different)	
					 	ଜ 1	Grabl # of Comp Cont			P	aran	Z		yy the		Pres. Code	 	IS@conocc	SIP		ame.	rent)	
Date/Time						×	# *	L	B	TEX	802	1B				<u>.</u>		phillips co	Loving,	15 W L	900	Jacqui Harris	
ne			 			××	TPI	1 801			te 30		+ M	RO)				m	Loving,NM 88256	15 W London Rd		Harris	
												<u></u>					ANAL						
↓ Re			 	 	 			<u></u>	<u> </u>	<u> </u>				<u></u>			LYSIS REQUEST						
Received by (Signature)			 		 												QUEST	Deliverables	Reporti	State o	Progra]
(Signat									<u></u>									ables EDD	Reporting Level II Level III PST/UST	State of Project:	m: UST/P		
ıre)																						Work	
										нс)LD							ADaPT			Brown	Order C	
							Sampl	NaOH+Ascorbic Acid SAPC	Zn Acetate+NaOH Zn	Na2S2O3. NaSO3	NaHSO₄ NABIS	H,PO, HP	H ₂ SO ₄ . H ₂	HOL HO	Cool Cool	None NO	Preser	r 🗆 Other	UST TRRP		Program: UST/PST PRP Brownfields RRC	Work Order Comments	Page
Date/Time							Sample Comments	rbic Acid S.	VaOH Zn	SO3	BIS		NaOH Na	HNO, HN	MeOH Me	DI Wa	Preservative Codes)er:					_3 of
ime J J I T							ints	APC				,	Na	E i	Me	DI Water H ₂ O	des				uperfund		ι ω

Page 80 of 123

Work Order No: 8514

Job Number: 880-18314-1 SDG Number: Eddy Co, NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 18314 List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

October 05, 2022

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST SUITE 415 MIDLAND, TX 79701

RE: JOHELEN 001 (07.09.22)

Enclosed are the results of analyses for samples received by the laboratory on 10/04/22 13:51.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 1 (5') (H224614-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	81.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	96.0	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 2 (5') (H224614-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	91.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	109	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 3 (3') (H224614-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	84.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	102	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 4 (3') (H224614-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	84.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 5 (3') (H224614-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	89.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	107	% 46.3-17	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 6 (3') (H224614-06)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	81.4	% 45.3-16	51						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 7 (5') (H224614-07)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	88.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	106	% 46.3-17	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 8 (5') (H224614-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	89.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	107	% 46.3-17	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 9 (2') (H224614-09)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	89.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	106 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 10 (2') (H224614-10)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	89.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	107 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 11 (2') (H224614-11)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	88.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	106	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 12 (2') (H224614-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	200	100	200	0.993	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	187	93.3	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	90.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	108	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 13 (2') (H224614-13)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	100	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	111 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 14 (2') (H224614-14)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/04/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	118 9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	130	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 15 (2') (H224614-15)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/05/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	79.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	84.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 16 (2') (H224614-16)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	100	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	110 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: CS - 17 (2') (H224614-17)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.31	115	2.00	2.92	
Toluene*	<0.050	0.050	10/05/2022	ND	2.20	110	2.00	3.18	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	2.06	103	2.00	3.13	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	6.21	103	6.00	3.06	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	101	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	107	% 46.3-17	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 1 (5') (H224614-18)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	104	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	114 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 2 (5') (H224614-19)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	210	105	200	2.70	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	202	101	200	5.30	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	94.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	114 9	% 46.3-17	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 3 (2') (H224614-20)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	103	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	111 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 4 (3') (H224614-21)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	101	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	112 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 5 (3') (H224614-22)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	98.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	107	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 6 (2') (H224614-23)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	108	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	116 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 7 (5') (H224614-24)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/04/2022	ND	197	98.3	200	2.06	
DRO >C10-C28*	<10.0	10.0	10/04/2022	ND	197	98.4	200	0.620	
EXT DRO >C28-C36	<10.0	10.0	10/04/2022	ND					
Surrogate: 1-Chlorooctane	99.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	109	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 8 (5') (H224614-25)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	80.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	94.2	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 9 (5') (H224614-26)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	81.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.4	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 10 (3') (H224614-27)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	82.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	98.1	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 11 (3') (H224614-28)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	83.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	99.9	% 46.3-17	o						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 12 (5') (H224614-29)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	79.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.6	% 46.3-17	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 13 (3') (H224614-30)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	71.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	84.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 14 (2') (H224614-31)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	79.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 15 (2') (H224614-32)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	78.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 16 (2') (H224614-33)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	78.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.4	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 17 (2') (H224614-34)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	79.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.6	% 46.3-17							

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	10/04/2022	Sampling Date:	10/03/2022
Reported:	10/05/2022	Sampling Type:	Soil
Project Name:	JOHELEN 001 (07.09.22)	Sampling Condition:	Cool & Intact
Project Number:	1112	Sample Received By:	Shalyn Rodriguez
Project Location:	COP - EDDY CO, NM		

Sample ID: SW - 18 (2') (H224614-35)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/05/2022	ND	2.02	101	2.00	2.18	
Toluene*	<0.050	0.050	10/05/2022	ND	2.14	107	2.00	2.75	
Ethylbenzene*	<0.050	0.050	10/05/2022	ND	1.96	98.0	2.00	0.336	
Total Xylenes*	<0.150	0.150	10/05/2022	ND	5.79	96.5	6.00	2.05	
Total BTEX	<0.300	0.300	10/05/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/05/2022	ND	448	112	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/05/2022	ND	211	106	200	3.93	
DRO >C10-C28*	<10.0	10.0	10/05/2022	ND	205	103	200	9.11	
EXT DRO >C28-C36	<10.0	10.0	10/05/2022	ND					
Surrogate: 1-Chlorooctane	79.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

(min	0	Email to: Mike Carn	CS-10 (2')		CS-8 (5')		CS-6 (3')	CS-5 (3')	CS-4 (3')	CS-3 (3')	CS-2 (5')	CS-1 (5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals;	Received Intact:	SAMPLE RECEIPT	PO井	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone: 43	City, State ZIP: M	Address: 31	Company Name: C	Project Manager. C	
Jour	1 0 1	Carmona Mcarmona	(1	9)))))))	300	ication		Yes	Yes	Yes						JoH	432-813-6823	Midland, TX 79701	310 W Wall St Ste 415	Carmona Resources	Conner Moehring	
d'a	Relinquished		10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	Date		NO N/A	NO NIA	No	Temp Blank:		GPJ	Eddy Co, NM	1112	JoHelen 001 (07.09.22)		701	Ste 415	ources	ng	
	Relinquished by: (Signature)	@carmonaresources.com and											Time	Corrected Temperature	Temperature Reading:	Correction Factor:		Yes No			A		09.22)						
	0	com and Conner	×	×	×	×	×	×	×	×	×	×	Soil	nperature:	Reading:	stor.	ID:	Wet Ice:		-	Due Date:	Routine	T	Email:					
		ner Moehring@carmonaresources											Water c	3.72	4.32	-0-0	113	N			24 hrs.	✓ Rush	Turn Around	ait; Jacqui.Harris	City, State ZIP	Address:	Company Name	Bill to: (if different)	
101)@carmo	0	-	\vdash		C	1	1	0		-	Grab/ # Comp Co			c.,		No				0.3	2	9	ZIP:		ame:	erent)	
14/20.		nareso		1	1	1	1	1		*	1	-	# of Cont			_	arar	-	ers			Code		conocophillips.com	-	-	-	Ja	
	eTi	urces.	××	+	+		××	××	-	××	××	××	TP	H 80		_	RO +	_	0+	MRC))	-		ps.com				Jacqui Harris	
35/	0	.com	×	+	+	-	×		-		\vdash	-			-	-	ide 4		_		50	-		$\ $				mis	
Chranolo	Re																						ANALYSIS REQUEST						
menz	Received by: (Signature)																						QUEST				ST PRP	Work On	
CCI YPEL OI	_		01	5	×	J.M	6	J.	4	3	e	-	Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na2S2O3: NASO3	NaHSO4: NABIS	H ₃ PO ₄ ; HP	H2SU4: H2 NACH: NA		M	None: NO DI Water: H ₂ O	Preservative Codes	Abari Li Other:	Г		Prownfields RC perfund	Work Order Comments	Page 2

Page 119 of 123

Project Manager. Conner Company Name: Carmon Address: 310 W1 City, State ZIP: Midland Phone: 432-813 Project Name: 432-813 Project Number: Project Number: Project Number: Froject Number: Project Number: Froject Number: Project Number: Froject Number: Project Number: Froject Number: Project Location Froject Number: Sampler's Name: Froject Nume: PO #: Froject Nume:	Ste 4 9701 9701 Eddy	MM Thermometer ID:	Due Date	Aro City Bill		8	EX 8021B Jacqui Hamis	pride 4500	A	ANALYSIS REQUEST		Program: UST/PST State of Project: Reporting:Level II D Deliverables: EDD EST	ram: UST/PST PRP rown of Project: rrting:Level III Level III ST/ erables: EDD ADaPT ADaPT
Cooler Custody Seals: Sample Custody Seals: Total Containers: Sample Identification	Yes No	Correction Factor. Temperature Reading: Corrected Temperature	actor: Preading: amperature: Soll	-0.Ur 4-3- 3-12 Water Co	Grab/ Grab/ Comp Cont Pa			TPH 8015M (GR					Chlorid
CS-11 (2)	10/3/2022	2 2	× ×			××	××	C 1 1 2 2 1	××	× ×	× ×		
CS-13 (2')	10/3/2022	N	× :		H	×	×	$\langle \times $	++				
CS-14 (2') CS-15 (2')	10/3/2022	2	× ×			××	××	××					
CS-16 (2')	10/3/2022	3 13	× ×		1 1	××	××	××					
SW-1 (5')		2	- ×		00	< ×	×	$\langle \times$					
SW-3 (2')	(¹) 10/3/2022	2	× >		0 0	×	×	×	H				
Email to: Mike Carmona	Mcarmona@	onaresource	s.com and Cor	carmonaresources.com and Conner Moehring@carmonaresources.com	gcarmon	aresour	ces.con	1	11 1				
						Date/	Qate/Time						

0 /	Jame M	7			2021	Email to: Mike Carmona	SW-13	SW-12	SW-11	SW-10	6-MS	SW-8	SW-7	9-MS	SW-5	SW-4	Sample Identification	Total Containers:	Tatal Costainers	Cooler Custody Seals	Color Custody Cool	SAMPLE RECEIPT		PO #	Complete Name	Dmiant I onation	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	Company Name:	1		ruge
¢	Jaccourt	F				armona Mcarmona	13 (31)	12 (5')	11 (3')	10 (3)	-	(2) 8-		(, C) 9-	-5 (3')	4 (3')	ntification			Vac	Vac		-					JoHel	432-813-6823	Midland, TX 79701	310 W Wall St Ste 415	Carmona Resources		Conner Moehring	
)	Relinquished b				0	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	10/3/2022	Date		1441	NIA	N/A	Ver No	Diant		GPJ	Eddy Co. NM	1112	JoHelen 001 (07.09.22)		01	te 415	rces			
		Relinquished by: (Signature)				carmonaresources.com											Time		Corrected Tem	Temperature Reading:	Correction Factor:	Thermometer ID:	Vacino					.22)							
						om and Conn	×	×	×	×	×	×	×	×	×	×	SOIL		perature:	eadino:	OF.		Wat Ica.			Due Date:	Routine	Tun	Email:						
						and Conner Moehring@carmonaresources											Water C		270	4.30	-0.6	V	Yes No			24 hrs.	Rush	Turn Around	Jacqui.Harris@conocophillips.com	City, State ZIP	Address,	Address:	Company Na	Bill to: (if different)	
_	10					g@carmo	C	0	0	0	C	0	0	C	C	C	Comp C	Grab/ #			c .						0 1		ris@cono	IP:		arrie,	Ime'	ent)	
	14/22	D				onareso	-	+	+	+	-	+	+	-		+	Cont	of				8021		rs			Code		cophilli	-	+			Jac	
	2 135	Date/Time				purces	>	+	+	+	+	+	+	1	+	+	-	трн	801			8021	_) + N	IRO)	-		ps.con					Jacqui Harris	
	19	ne				.com	>	+	+	+	+	+	+	+	+	+				-	-	te 48	-				-							rris	
	r								-				+	+	-								_	_			-								
	Stad	2					l	+				t	1				Ľ				_	_	_		_		t	ANALY							
	MARICA	Re						+	+	+	+	+	+	+	+	+	+									_	+	ANALYSIS REQUEST	L]
	March	Received by: (Signature)	second by (Signature)																		,	łold						UEST			Reporting:Level II Level III	State of Project:	Program: UST/PST PRP prow	Work Order Comments	
	10-1 10-100	Date Inite	Date/Time				- OK	oc	B	80	200	SIN NO	2	nt	22	22		Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na25203: NaSO3	NaHSO4: NABIS	H ₃ PO ₄ : HP	H2SO4: H2 NACH: NA		2		Preservative Codes		Other:	ST/UST RRP Level IV	1	Frownfields RC perfund	1	Page 3 of 4 Page 40

Received by QCD: 10/17/2022 12:02:28 PM

Released to Imaging: 12/15/2022 1:51:04 PM

0
3
²
3
0
÷
0
-
3
6
0

							1				Wast Order Con	nments
Project Manager: Col	Conner Moehring	g			Bill to: (if different)	0	Jacqu	Jacqui Harris			NIOAA	
	Carmona Resources	rces			Company Name	ie:					Program: UST/PST DRP rownfields	Ids RC perfund
Address 310	310 W Wall St Ste 415	te 415			Address:							
a 7IP.	Midland, TX 79701	01			City, State ZIP:							
- 110 mill	432-813-6823			Email:		00	onocophillips	.com			Deliverables: EDD	Cuner.
	- 010 00-0			1	. 11		-			ANALYSIS REQUEST	UEST	Preservative Codes
Project Name:		4449	0.5.5.	Routine	e 🗸 Rush	Pres.			_			None: NO DI Water: H ₂ O
Figer multion.				Dile Date:	24 hrs	-	-				Co	Cool: Cool MeOH: Me
Project Location		CDI CDI		and parts		1	_	RO)			H	
po #		0				rs) + M			H ₂	H ₂ SO ₄ : H ₂ NaOH: Na
SAMPLE RECEIPT		Temp Blank:	Yes No	Wet Ice:	Xes No	nete	1B	DRO	1500			H3PO4: HP
Received Intact:	0	No	Thermometer ID:	2		Para	x 80	RO 4	ride		Hole	Na-S-O-: NaSO-
Cooler Custody Seals:	Yes	NO N/A	Correction Factor:	00	-0.00	F	BTE	1 (G	hlo		Zn	Zn Acetate+NaOH: Zn
Sample Custody Seals:	Yes No	No N/A	Temperature Reading:	eading:	4.5:	1	E	015N	C		Na	NaOH+Ascorbic Acid: SAPC
Total Containers:			Corrected Temperature	perature;	10-16	1	-	PH 8				
Sample Identification	ication	Date	Time	Soil	Water Comp	mp Cont	-	т				sample comments
SW-14	(2')	10/3/2022		×		C 1	×	×	×			10
SW-15	_	10/3/2022		×	0	1	×	×	×			328
SW-16		10/3/2022		×		C 1	×	×	×			100
SW-17		10/3/2022		×		C 1	×	×	×			14
SW-18	(2')	10/3/2022		×		C 1	×	×	×			S.
						-	F	F				
Email to: Mike Cam	mona Mcarm	ona@carmo	Mike Carmona Mcarmona@carmonaresources.com and Conner Moehring@carmonaresources.com	om and Conn	er Moehring@	gcarmona	resou	rces.co	m			
		Pelinnuished	Pelinnuished hv. (Signature)			_	Date	Date/Time		Re	Received by: (Signature)	Date/Time
Jan my	torau		-). (-).			10/	4/22	2 135	15	Slocker	and	10.420 13
T		1				_			_	010	C	

Reco

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	151288
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved.	12/15/2022

Action 151288

.

Released to Imaging: 12/15/2022 1:51:04 PM