District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Released to Imaging: 1/10/2023 1:118319 PMA

Incident ID	nAPP2208051921
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

			A			,	
Responsible Party: Centennial Resource Production, Inc			OGRID: 3	72165			
Contact Name: Nikki Mishler				Contact Te	elephone: 432-6	34-8722	
Contact email: Nikki.Mishler@cdevinc.com				Incident #			
Contact mail Texas 79705		500 W. Illinois A	ve, Suite 500, Mid	idland			
			Location	of Re	elease So	ource	
Latitude 32.2	0953		(NAD 83 in de			103.46472 nal places)	
Site Name: R	omeo Fed 2	2 Battery 1			Site Type: 1	Production Faci	lity
		API# (if app	licable)				
Unit Letter	Section	Township	Range		Coun	ty	
D	22	24S	34E	Lea			
Surface Owne		Federal Tr	Nature and	d Volu	ıme of F	Release	
Crude Oil	Materia l	l(s) Released (Select al Volume Release		h calculatio	ons or specific		volumes provided below) vered (bbls) 10
☐ Produced Water Volume Released (bbls) 160				Volume Recovered (bbls) 160			
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?		in the	Yes No	•			
Condensa	ite	Volume Released (bbls)			Volume Reco	vered (bbls)	
☐ Natural Gas Volume Released (Mcf)			Volume Reco	vered (Mcf)			
Other (describe) Volume/Weight Released (provide units)			Volume/Weig	ht Recovered (provide units)			
Cause of Rel							
T1 1 1	1 . C. 11 . 1	at common to a		4 .	. ~ 11		

The check valve failed on the SWD line which caused produced water to overfill the produced water tanks due to the disposal being down due to a power outage. 160 bbls of produced water was released and contained within the lined metal berm of the facility while 15 bbls of crude oil were released outside of the containment, including an overspray area which went north-northwest of the facility. The estimated volume of released produced water was calculated based on readouts from the meter and recovered fluids from the lined containment.

Based on the square footage of the impacted soils (2,180 sq. ft. and 21,885 sq. ft. of overspray) and an estimated depth of impact of approximately 1' and 0.25' for the overspray area, accounting for porosity and saturation % of the soils (sand), an estimated 15 bbls of crude oil was released. Approximately 10 bbls of crude oil were recovered during initial response activities.

Incident ID	nAPP2208051921
District RP	
Facility ID	
Application ID	

Released to Imaging: I/10/2023 15:18:319 PMA

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? The amount released was greater than 25 barrels.
, ,	
⊠ Yes □ No	
If YES, was immediate no Yes, a NOR was submitted	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? and by Nikki Mishler through the NMOCD Portal on 3/21/2022.
	Initial Response
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
☐ The source of the rele	ease has been stopped.
☐ The impacted area ha	s been secured to protect human health and the environment.
Released materials ha	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and managed appropriately.
If all the actions describe	d above have not been undertaken, explain why:
has begun, please attach within a lined containmed. I hereby certify that the inforcegulations all operators are public health or the environ failed to adequately investigation.	IAC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. Formation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have gate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In sof a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
Printed Name: Nikki Mis	•
Signature: <u>MM</u>	Milly Date: 3/22/2022
email: Nikki Mishler@co	devinc.com Telephone: 432-634-8722
OCD Only	
Received by:	Date:

Incident ID	nAPP2208051921
District RP	
Facility ID	
Application ID	

Released to Imaging: 1/10/2023 1:118319 PMA

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	>100 (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☑ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☑ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☑ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☑ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☑ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☑ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☑ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☑ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☑ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☑ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☑ No
Did the release impact areas not on an exploration, development, production, or storage site?	☑ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	

	aracter Eation Report Checkist. Luch of the following tiems must be included in the report.
\square	Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
	Field data
	Data table of soil contaminant concentration data
	Depth to water determination
\square	Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
	Boring or excavation logs
	Photographs including date and GIS information
	Topographic/Aerial maps
\mathbf{V}	Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	
Page 4	

Incident ID	nAPP2208051921
District RP	
Facility ID	
Application ID	

Incident ID	nAPP2208051921
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.
Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.
☑ Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.
Extents of contamination must be fully delineated.
Contamination does not cause an imminent risk to human health, the environment, or groundwater.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
Printed Name: Nikki Mishler Title: Sr. Envionmental Representative
Signature: Melle Msle Date: 6/15/23
email: Nikki.Mishler@cdevinc.com Telephone: 432-634-8722
OCD Only
Received by: Date:
Approved
Signature: Jennifer Nobili Date: 06/22/2022

Form C-141
Page 6

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

Incident ID	nAPP2208051921
District RP	
Facility ID	
Application ID	

Released to Imaging: 1/10/2023 1:18:19 PM

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

✓ A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
☐ Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Nikki Mishler
OCD Only
Received by: Date:
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.
Closure Approved by:
Closure Approved by:

2135 S. Loop 250 W, Midland, Texas 79703 United States www.ghd.com

Our ref: 12580761

December 08, 2022

New Mexico Oil Conservation Division District 1 1625 N. French Drive Hobbs, New Mexico 88240

Re: Site Closure Report

Romeo Federal 22 Battery 1 Release Site Centennial Resources Production, Inc.

Incident ID: nAPP2208051921

D-22-24S-34E, Lea County, New Mexico Centennial Project #: CDEV ID 54383

To Whom It May Concern:

1. Introduction

GHD Services, Inc. (GHD), on behalf of Centennial Resources Production, Inc. (CRP), submits this Site Closure Report to the New Mexico Oil Conservation Division (NMOCD) District 1 Office. This Report provides documentation of remedial activities and analyses in the affected area at the Romeo Federal 22 Release Site (Site). The Site is located in Unit Letter D Section 22 of Township 24 South and Range 34 East in Lea County, New Mexico. The GPS coordinates for the release site are 32.20953 N latitude and 103.46472 W longitude. The private surface owner of the land where the release occurred is the Quail Ranch. Figure 1 depicts the Site location. The CRP production facility and other site details are depicted on Figure 2.

2. Background Information

A C-141 initial report for this release was submitted to the NMOCD on March 22, 2022. The C-141 stated that approximately fifteen (15) barrels of crude oil and one hundred-sixty (160) barrels of produced water were released. The release occurred as the result of failed check valve on the SWD line, which caused the produced water tanks to overfill. Approximately ten (10) barrels of crude oil and one hundred-sixty (160) barrels of produced water were recovered.

The release falls under the jurisdiction of the NMOCD District 1 Office in Hobbs, New Mexico. The NMOCD assigned the release with Incident Number nAPP2208051921. The Release Notification, Site Assessment/Characterization, Remediation, and Closure portions of Form C-141 are attached to the front of this report.

3. Groundwater and Site Characterization

GHD characterized the Site according to Table I, Closure Criteria for Soils Impacted by a Release, from New Mexico Administrative Code (NMAC) Title 19, Chapter 15, Part 29, Section 12 (NMAC 19.15.29.12).

The Site Characterization and Remediation Work Plan dated June 15, 2022, was approved by the NMOCD on June 22, 2022. Details of the Site Characterization documentation and previously completed Site assessment activities can be found in the aforementioned Site Characterization and Remediation Work Plan. The soil closure criteria are listed below:

General Site Characterization and Groundwater:

Site Characterization	Average Groundwater Depth (feet)
No Receptors Found	>100 feet

Table 3.1 Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29.12)

Regulatory Standard	Chloride	TPH (GRO+DRO+MRO)	TPH (GRO+MRO)	втех	Benzene
19.15.29.13 Restoration, Reclamation and Re- Vegetation (Impacted Area 0-4 Feet)	600 mg/kg	100 mg/kg		50 mg/kg	10 mg/kg
19.15.29.12 NMAC Table I Closure Criteria for Soils Impacted by a Release	20,000 mg/kg	2,500 mg/kg	1,000 mg/kg	50 mg/kg	10 mg/kg
Notes:					
= not defined					

4. Initial Soil Delineation Assessment Summary and Findings

On April 7, 2022, GHD on behalf of CRP, installed seven (7) hand auger soil borings (HA-1 through HA-7) within the suspected impacted area. Samples were collected at varying depths from one half foot (0.5) to four (4) feet bgs (SB-1 through SB-7). Samples were submitted to Eurofins Laboratory in Carlsbad, New Mexico, and analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8021B, total petroleum hydrocarbons (TPH) by Method 8015B Modified, and chloride by EPA Method 300.

Analytical results indicated three (3) of the soil samples (SB-2, SB-3, and SB-4) exhibited TPH concentrations above 19.15.29.13 for soils within the top four (4) feet. One (1) of the soil samples (SB-5) exhibited TPH concentrations above the selected Table I Closure Criteria for the Site (>100 feet DTW).

On April 11 and 12, 2022, GHD returned to the Site to collect samples in the overspray area of the release via hand auger. Samples were collected from surface (0 feet bgs) to one half (0.5) foot bgs (P1-S/P1-0.5 through P6-S/P6-0.5). The samples were submitted to Eurofins Laboratory in Carlsbad, New Mexico, and analyzed for BTEX by EPA Method 8021B, TPH) by Method 8015B Modified, and chloride by EPA Method 300. None of the samples exhibited BTEX, TPH, or chloride concentrations above 19.15.29.13 for soils within the top four (4) feet. Sample locations and analytical results are provided in the Site Characterization and Remediation Work Plan, dated June 15, 2022.

5. Initial Excavation, Waste Management and Confirmation Sampling Activities

On April 19, 2022, GHD and Standard Safety & Supply (SS) mobilized to the Site to perform excavation activities on the impacted area of the Site, excavation activities continued through April 27, 2022. The area of the excavation ranged in depth from one half foot (0.5) to seven (7) feet bgs. As shown on Figure 3, a total of forty-seven (47) bottom hole composite (BH-1 through BH-47) and ten (10) sidewall composite (SW-1 through SW-10) confirmation samples were collected. The samples were submitted to Eurofins Laboratory in Carlsbad, New Mexico, and analyzed for BTEX by EPA Method 8021B, TPH by Method 8015B Modified, and chloride by EPA Method 300.

Analytical results indicated twenty-four (24) of the bottom hole composite samples (BH-3 through BH-7, BH-9 through BH-16, BH-19, BH-21 through BH-26, BH-28, BH-30, BH-31, and BH-34) exhibited TPH concentrations above 19.15.29.13 for soils within the top four (4) feet. Analytical results indicated five (5) of the sidewall composite samples (SW-1 through SW-4 and SW-10) exhibited TPH concentrations above 19.15.29.13 for soils within the top four (4) feet. Two (2) of the sidewall composite samples (SW-3 and SW-4) also exhibited chloride concentrations above 19.15.29.13 for soils within the top four (4) feet. Sample locations and analytical results are provided in the Site Characterization and Remediation Work Plan, dated June 15, 2022.

Waste Management activities were performed in coordination with CRP directives. GHD obtained regulatory approval via the successful processing of Form C-138 Request for Approval to Accept Solid Waste. The waste was approved for acceptance at the OCD-permitted (NMI-63), Northern Delaware Basin Landfill facility located at 2029 W NM HWY 128, Jal, NM 88252. Approximately 680 cubic yards of impacted soil were disposed at Northern Delaware Basin Landfill, the waste manifests from April 20, 2022, through April 26, 2022, are available upon request and aren't included in this report due to size of the file. A Daily Disposal Summary is provided as Table 2.

6. Final Excavation, Waste Management, and Confirmation Sampling Activities

Due to samples exceeding Table I Closure Criteria, GHD and SDR Enterprises (SDR) mobilized to the Site on July 7, 2022, to further excavate the affected areas. Excavation activities continued through September 14, 2022. The areas around BH-3 through BH-7, BH-9 through BH-16, BH-21 through BH-26, and BH-28, were further excavated from one-half (0.5) to one (1) foot bgs and resampled (BH-3A through BH-7A, BH-9A through BH-16A, BH-21A through BH-26A, and BH-28A). The area around BH-19 was further excavated from two and one-half (2.5) to three (3) feet bgs and resampled (BH-19A). The areas around BH-30 and BH-31 were further excavated from two (2) to three (3) feet bgs and resampled (BH-30A And BH-31A). The area around BH-34 was further excavated from three (3) to three and one-half (3.5) feet bgs and resampled (BH-34A). The sidewalls of sample locations SW-1 through SW-4 and SW-10 were further excavated and resampled (SW-1A through SW-4A and SW-10A). The samples were submitted to Eurofins Laboratory in Carlsbad, New Mexico, and analyzed for BTEX by EPA Method 8021B, TPH by Method 8015B Modified, and chloride by EPA Method 300.

Analytical results indicated four (4) of the bottom hole composite samples (BH-3A, BH-7A, BH-31A, and BH-34A) exhibited TPH concentrations above 19.15.29.13 for soils within the top four (4) feet. None of the other samples collected exhibited benzene, BTEX, TPH, or chloride concentrations above Table I Closure Criteria.

Due to the samples exhibiting TPH concentrations above 19.15.29.13 for soils within the top four (4) feet, GHD and SDR returned to the Site on August 22, 2022, to further excavate the affected areas. The areas around BH-3A and BH-7A were further excavated from one (1) to two (2) feet bgs and resampled (BH-3B and BH-7B). The area around BH-31A was further excavated from three (3) to three and one-half (3.5) feet bgs and resampled (BH-31B). The area around BH-34A was further excavated from three and one-half (3.5) to four (4) feet bgs and resampled (BH-34B). The samples were submitted to Eurofins Laboratory in Carlsbad, New Mexico, and analyzed for BTEX by EPA Method 8021B, TPH by Method 8015B Modified, and chloride by EPA Method 300. Analytical results indicated one (1) of the bottom hole composite samples (BH-31B) exhibited chloride concentrations above 19.15.29.13 for soils within the top four (4) feet. None of the other samples collected exhibited benzene, BTEX, TPH, or chloride concentrations above Table I Closure Criteria.

Due to the sample exhibiting chloride concentrations above 19.15.29.13 for soils within the top four (4) feet, GHD and SDR returned to the Site on September 14, 2022, to further excavate the affected area. The area around BH-31B was further excavated from three and one-half (3.5) to five (5) feet bgs and resampled (BH-31C). A sidewall sample was collected from the area around BH-31C (SW-11), on November 23, 2022. The samples were submitted to Eurofins Laboratory in Carlsbad, New Mexico, and analyzed for BTEX by EPA Method 8021B, TPH by Method 8015B Modified, and chloride by EPA Method 300. Analytical results indicated the samples did not exhibit benzene, BTEX, TPH, or chloride concentrations above Table I Closure Criteria. Sampling locations are depicted on Figure 2. Analytical results are included on Table 1 and in the Laboratory Analytical reports included as Attachment A.

Waste Management activities were performed in coordination with CRP directives. GHD obtained regulatory approval via the successful processing of Form C-138 Request for Approval to Accept Solid Waste. The waste was approved for acceptance at the OCD-permitted (NMI-63), Northern Delaware Basin Landfill facility located at 2029 W NM HWY 128, Jal, NM 88252. Approximately 208 additional cubic yards (total of 888 yds³⁾ of impacted soil were disposed at Northern Delaware Basin Landfill, the waste manifests from August 3, 2022, are available upon request and aren't included in this report due to size of the file. A Daily Disposal Summary is provided as Table 2. A photographic log is included as Attachment B. Confirmation Sampling Notifications are provided at Attachment C.

7. nAPP2208051921 Closure Request

Soil assessment, delineation, and remediation activities for Remediation Permit nAPP2208051921 have been performed in accordance with applicable NMOCD guidance and regulations. Based upon supporting documentation provided in this report, GHD, on behalf of CRP, respectfully requests closure and no further regulatory actions for nAPP2208051921.

If you have any questions or comments concerning this Site Closure Report, please do not hesitate to contact our Midland office at (432) 686-0086.

Sincerely,

GHD

Nate Reece

Environmental Scientist

Make June

JT Murrey

Senior Project Manager

J. Murrey

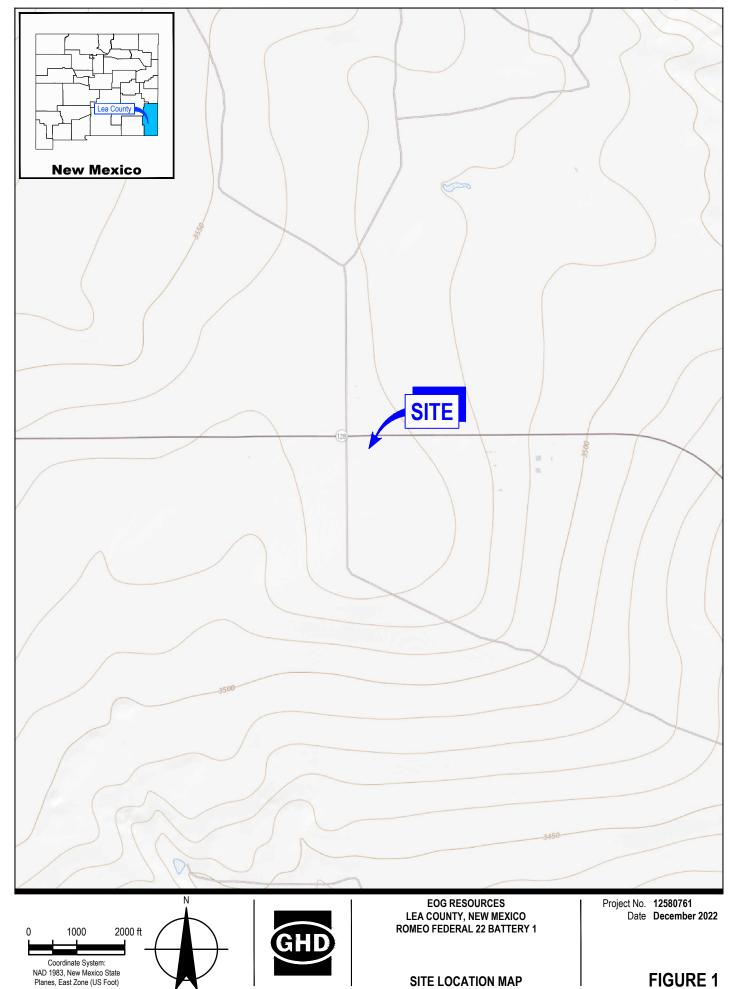
NR/jt/2

Encl. Figure 1 – Site Location Map

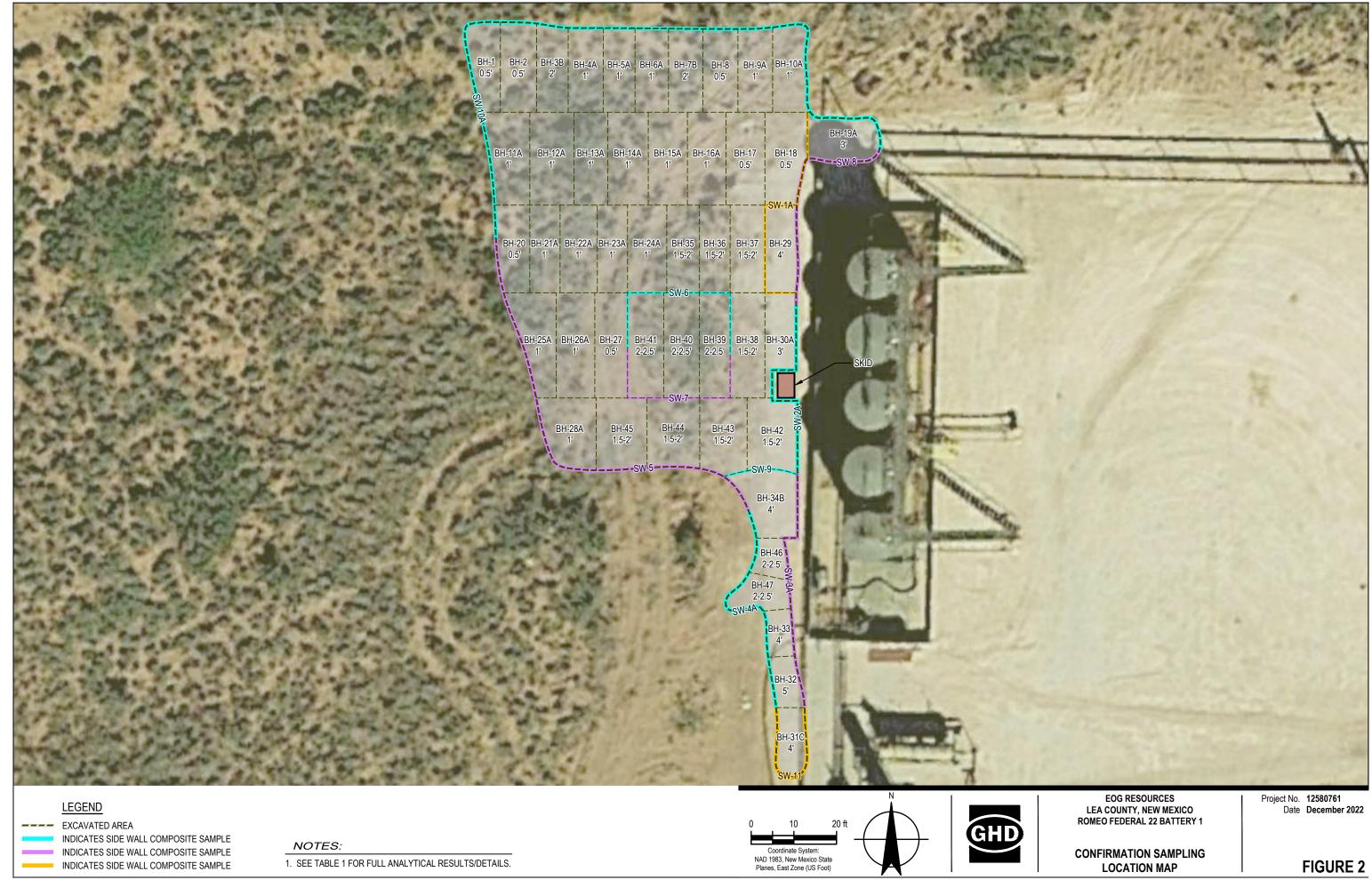
Figure 2 – Confirmation Sampling Location Map

Table 1 - Summary of Soil Analytical Data

Table 2 – Soil Disposal Summary


Attachment A – Laboratory Analytical Reports and Chain-of-Custody Documentation

Attachment B – Photographic Log


Attachment C - Sampling Notifications and Extensions

cc: Nikki Mishler

Figures

Received by OCD: 12/12/2022 2:35:40 PM

Tables

Table 1 Summary of Soil Analytical Data Romeo Federal 22 Battery 1 Centennial Resources Production Lea County, New Mexico

									Total Pet	roleum Hydroca	rbons (TPH)		
			Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO(C6-C10)	DRO(C10- C28)	GRO + DRO	MRO (C28- C35)	Total GRO/DRO/MRO	Chloride
Sample ID	Sample Date	Depth (ft bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Date	(It bys)			Ta	able I Closure C	riteria for Soil	s >100 feet Dept	h to Groundwa	ter 19.15.29 NMA	C		
			10 mg/kg				50 mg/kg	-	-	1,000 mg/kg		2,500 mg/kg	20,000 mg/kg
	_				Bottom He	ole Confirmation	n Samples						
BH-1	4/19/22	0.5'	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<49.9	47.3	47.3	<49.9	47.3	12.8
BH-2	4/19/22	0.5'	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<50.0	72.0	72.0	<50.0	72.0	15.4
BH-3	4/19/22	0.5'	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	25.4	272	297	≥50.0	297	22.8
BH-3A	7/11/22	+	0.00256	0.00205	0.00345	0.0204	0.0285	30.9	18.3	49.2	56.6	106	1 9.5/
BH-3B	8/22/22	2'	<0.000387	<0.000459	<0.000568	<0.00102	<0.00102	41.0	<15.0	41.0	40.0	81.0	14.6
BH-4	4/20/22	0.5'	<0.00199	<0.00199	<0.00199	<0.00398	<0.09398	249.0	564	564	142	706	24.2
BH-4A	7/11/22	1'	<0.000384	0.000768	0.000705	0.00170	0.00317	20.1	18.6	38.7	48.8	87.5	9.08
BH-5	4/20/22	0.5'	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	24.0	329	353.9	98.7	453	20.3
BH-5A	7/11/22	1'	0.000605	0.00132	0.000682	0.00115	0.00376	18.7	18.8	37.5	45.0	82.5	8.40
BH-6	4/20/22	0.5'	<0.00201	<0.00201	<0. 002 01	<0.00402	<0.00402	₹50.0	105	105	54:6	160	14.9_
BH-6A	7/11/22	1'	<0.000384	<0.000455	<0.000564	<0.00101	<0.00101	19.7	17.7	37.4	41.3	78.7	13.3
BH-7	4/20/22	0.5	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	₹50.0	91.0	91.0	53.4	144	14.1
BH-7A	7/11/22	+	<0.000383	<0.000454	<0.000563	<0.00401	<0.00101	39.4	40.4	79.5	49.4	123	10.4
BH-7B	8/22/22	2'	<0.000386	<0.000457	<0.000566	<0.00101	<0.00101	40.8	<14.9	40.8	34.9	75.7	12.7
BH-8	4/20/22	0.5'	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	28.1	18.5	46.6	<49.9	46.6	7.79
BH-9	4/20/22	0.5'	<0.00199	<0 .001 99	<0. 00 199	0.00471	0.00471	22.3	99.2	121.5	44.8	166	39.5
BH-9A	7/11/22	1'	<0.000383	<0.000453	<0.000562	<0.00100	<0.00100	20.1	<15.0	20.1	42.6	62.7	6.25
BH-10	4/20/22	0.5	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	15.4	214	229	67.3	297	12.8
BH-10A	7/11/22	1'	<0.000386	0.000563	<0.000566	<0.00101	<0.00101	21.4	<15.0	21.4	43.1	64.5	4.11
BH-11	4/20/22	0.5'	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	17.4	197	154.1	47.8	202	74.4
BH-11A	7/11/22	1'	<0.000387	<0.000458	0.000638	<0.00101	<0.00101	18.3	17.7	36.0	40.1	76.1	7.66
BH-12	4/20/22	0.5'	<0.00200	<0.00200	<0.00200	<0 .00 401	<0.00401	18.7	200	219	64.8	284	17.1
BH-12A	7/11/22	1'	<0.000389	<0.000461	<0.000571	<0.00102	<0.00102	24.0	<15.0	24.0	41.3	65.3	5.82
BH-13	4/20/22	0.5	<0.00199	<0.00199	<0.00199	0.0179	0.0179	15.8	112	128	43.7	172	16.4
BH-13A	7/11/22	1'	<0.000384	0.00143	<0.000564	<0.00101	0.00143	20.5	<15.0	20.5	46.0	66.5	8.46
BH-14	4/20/22	0.5'	<0.00200	<0.00200	<0.00200	0.00245	0.00245	249.0	182	182	47.9	230	14.8
BH-14A	7/11/22	1'	0.000459	0.000646	0.000642	0.00115	0.00290	21.5	<15.0	21.5	37.2	58.7	5.14
BH-15	4/20/22	0.5'	<0.00199	<0.00199	<0.00199	0.00291	0.00291	249.0	459	459	62.2	524	34.7
BH-15A	7/11/22	1'	<0.000384	0.00267	<0.000564	0.00297	0.00564	23.9	15.0	38.9	35.9	74.8	11.0
BH-16	4/21/22	0.5'	<0.00201	<0.00201	<0.00201	0.00460	0.00460	16.9	278	295	49.2	344	51.0
BH-16A	7/11/22	1'	<0.000388	<0.000460	<0.000570	<0.00102	<0.00102	<14.9	33.3	33.3	<14.9	33.3	9.54
BH-17	4/21/22	0.5'	<0.00200	0.00148	<0.00200	0.00504	0.00652	<50.0	<50.0	<50.0	<50.0	<50.0	7.20
BH-18	4/21/22	0.5'	<0.00201	0.00209	<0.00201	0.00693	0.00902	<50.0	<50.0	<50.0	<50.0	<50.0	29.8
BH-19	4/24/22	2-2.5	<0.00202	<0.00202	<0.00202	0.0148	0.0148	38:2	1,670	1,708	285	1,990	522
BH-19A	7/12/22	3	<0.0000768	<0.0000910	<0.000113	<0.000202	<0.000202	<15.0	<15.0	<15.0	<15.0	<15.0	24.8

									Total Pet	roleum Hydroca	rbons (TPH)		
			Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO(C6-C10)	DRO(C10- C28)	GRO + DRO	MRO (C28- C35)	Total GRO/DRO/MRO	Chloride
Sample ID	Sample	Depth	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
•	Date	(ft bgs)			Т	able I Closure C	Criteria for Soil	s >100 feet Dept	h to Groundwa	ter 19.15.29 NMA	C		
			10 mg/kg				50 mg/kg	-		1,000 mg/kg		2,500 mg/kg	20,000 mg/kg
BH-20	4/20/22	0.5'	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	26.5	<50.0	26.5	33.7	60.2	4.92
BH-21	4/20/22	0.5'	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	20.1	139	159.1	35.4	195	8.70
BH-21A	7/12/22	1	<0.0000775	<0.0000918	<0.000114	<0.000203	<0.000203	<15.0	25.6	25.6	<15.0	25.6	3.67
BH-22	4/20/22	0.5'	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	25.6	110	136	34.4	170	34.4
BH-22A	7/12/22	1	<0.0000765	0.000245	<0.000112	<0.000201	<0.000201	<15.0	29.5	29.5	<15.0	29.5	9.93
BH-23	4/20/22	0.5'	<0.00201	0.00488	0.00136	0.0134	0.0167	≥50.0	709	769	128	837	28.6
BH-23A	7/12/22	1	<0.0000768	<0.0000910	<0.000113	<0.000202	<0.000202	<15.0	26.0	26.0	<15.0	26.0	3.15
BH-24	4/24/22	0.5'	<0.00198	0.009663	<0.00198	0.00237	0.00303	₹49.9	41.8	41.8	61.0	103	17.0
BH-24A	7/12/22	1	<0.0000768	<0.0000910	<0.000113	<0.000202	<0.000202	<15.0	25.0	<15.0	<15.0	25.0	15.9
BH-25	4/20/22	0.5'	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	20.1	37.4	57:2	45.3	103	11.4
BH-25A	7/12/22	1	<0.000386	0.00103	0.000592	0.00121	0.00121	<15.0	28.2	28.2	<15.0	28.2	5.30
BH-26	4720/22	0.5'	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	19.1	135	154	49.7	198	14.2
BH-26A	7/12/22	1	<0.000383	0.000646	<0.000563	<0.00101	<0.00101	<15.0	<15.0	<15.0	<15.0	<15.0	5.70
BH-27	4/21/22	0.5'	<0.00200	<0.00200	<0.00200	0.00103	0.00103	<50.0	53.4	53.4	<50.0	53.4	3.78
BH-28	4/20/22	0.5'	<0.00200	0.00236	<0.00200	0.00391	0.00627	25.9	84.6	110.5	39.0	150	19.4
BH-28A	7/12/22	1	<0.000384	0.00343	0.00125	0.00188	0.00656	<15.0	27.5	27.5	<15.0	27.5	14.4
BH-29	4/22/22	4	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<50.0	54.7	54.7	<50.0	54.7	92.9
BH-30	4721/22	1.5-2	<0.00201	0.00172	<0.00201	<0.00402	0.00472	≥50.0	217	217	45.3	262	88.4
BH-30A	7/12/22	3	0.000566	0.00421	0.00248	0.00366	0.0109	<15.0	25.1	25.1	<15.0	25.1	58.0
BH-31	4/21/22	1.5-2	<0.00202	0.00461	<0.00202	<0.00404	0.00461	<49.9	780	780	120	900	369
BH-31A	7/13/22	-3-	<0.000384	<0.000455	<0.000564	<0.00101	<0.00101	≥15.0	139	139	>15.0	139	35.4
BH-31B	8/23/22	3.5	< 0.000384	<0.000455	<0.000564	<0.00101	<0.00101	44.9	₹15.0	44.9	41.4	86.0	1,080
BH-31C	9/12/22	5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	875
BH-32-5'	4/25/2021	5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<49.9	24.8	24.8	<49.9	24.8	2,720
BH-32-6'	4/25/2021	6	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	16.4	22.5	38.9	<50.0	38.9	1.570
BH-32-7'	4/25/2021	7	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	17.6	26.0	43.6	<49.9	43.6	722
BH-33-4'	4/25/2021	4	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	<50.0	34.7	34.7	<50.0	34.7	2,290
BH-33-5'	4/25/2021	5	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	<49.9	20.6	20.6	<49.9	20.6	1,640
BH-33-6'	4/25/2021	6	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<50.0	20.5	20.5	<50.0	20.5	536
		7			ł			<50.0	20.5	20.5	<50.0	20.5	
BH-33-7'	4/25/2021		<0.00202	<0.00202	<0.00202	<0.00403	<0.00403						136
BH-34	4/21/22		<0.00200	0.000955	<0.00200	<0.00401	0.000955	249.0	592	592	7	711	143
BH-34A	7/13/22	3.5	<0.000383	<0.000453	<0.000562	<0.00100	<0.00400	₹15.Q	793	793	>15.0	733	11,50
BH-34B	8/23/22	4	<0.000386	0.000457	<0.000566	<0.00101	<0.00101	40.3	<15.0	40.3	37.0	77.3	80.9
BH-35	4/21/22	1.5-2	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	<50.0	<50.0	<50.0	44.5	44.5	5.43
BH-36	4/21/22	1.5-2	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	4.35
BH-37	4/25/22	1.5-2	<0.00199	0.00188	0.00128	0.00725	0.01041	<49.9	19.4	19.4	<49.9	19.4	23.9
BH-38	4/25/22	1.5-2	<0.00200	0.00226	0.00201	0.0168	0.0211	<50.0	23.6	23.6	<50.0	23.6	18.4
BH-39	4/25/22	2-2.5	<0.00200	0.000480	<0.00200	<0.00401	<0.00401	<50.0	35.6	35.6	<50.0	35.6	21.1
BH-40	4/25/22	2-2.5	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	24.4	23.1	47.5	<50.0	47.5	5.10
BH-41	4/25/22	2-2.5	< 0.00201	< 0.00201	< 0.00201	< 0.00402	< 0.00402	<49.9	22.4	22.4	<49.9	22.4	4.74

									Total Pet	roleum Hydroca	rbons (TPH)		
			Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO(C6-C10)	DRO(C10- C28)	GRO + DRO	MRO (C28- C35)	Total GRO/DRO/MRO	Chloride
Sample ID	Sample Date	Depth (ft bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Date	(It bys)			T	able I Closure C	riteria for Soil	s >100 feet Dept	h to Groundwa	ter 19.15.29 NMA	C		
			10 mg/kg				50 mg/kg	-	-	1,000 mg/kg		2,500 mg/kg	20,000 mg/kg
BH-42	4/26/22	1.5-2	<0.00200	0.00181	0.00184	0.00786	0.0115	42.5	28.7	71.2	<50.0	71.2	8.58
BH-43	4/27/22	1.5-2	<0.00199	0.000500	<0.00199	<0.00398	<0.00398	37.9	<50.0	37.9	<50.0	37.9	220
BH-44	4/27/22	1.5-2	<0.00200	0.000564	0.000735	<0.00399	0.00130	18.2	24.8	43.0	<50.0	43.0	38.9
BH-45	4/27/22	1.5-2	<0.00199	0.000559	0.000587	<0.00398	0.00115	28.3	17.5	45.8	<50.0	45.8	17.3
BH-46	4/27/22	2-2.5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<50.0	52.8	52.8	<50.0	52.8	294
BH-47	4/27/22	2-2.5	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	16.4	<49.9	16.4	<49.9	16.4	6.81
					Sidewal	Confirmation	Samples						
SW-1	4/21/22	Sidewall	<0.00199	0.000494	<0.00199	<0.00398	0.00424	249.9	309.0	309	≥49. 9√	309	596
SW-1A	7/13/22	Sidewall	<0.000386	0.00117	0.00138	0.0033	0.00585	<15.0	<15.0	<15.0	<15.0	<15.0	65.3
SW-2	4/21/22	Sidewall	0.0144	0.0396	0.0101	0.0550	0:146	₹50.0	 	318	42.6	361	93.5
SW-2A	7/13/22	Sidewall	<0.000384	<0.000455	<0.000564	<0.00101	<0.00101	<15.0	22.6	22.6	<15.0	22.6	9.92
3W-3	4/21/22	Sidewall	<0.00199	0.00559	0.0106	0.0667	0.0829	52.4	2,060	2,142	342	2,450	1,420
SW-3A	7/13/22	Sidewall	<0.000383	0.000539	<0.000562	<0.00100	<0.00100	<15.0	26.1	26.1	<15.0	26.1	245
SW-4	4/27/22	Sidewall	<0.00201	<0 .002 01	<0 .002 01	<0.00402	<0.00402	~49.9	39.6	39.6	≥49.8	39.6	626
SW-4A	7/13/22	Sidewall	<0.000381	<0.000451	<0.000559	<0.00100	<0.00100	<15.0	<15.0	<15.0	<15.0	<15.0	4.68
SW-5	4/27/22	Sidewall	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	<50.0	<50.0	<50.0	<50.0	<50.0	10.4
SW-6	4/27/22	Sidewall	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	<50.0	<50.0	<50.0	<50.0	<50.0	2.38
SW-7	4/27/22	Sidewall	<0.00200	0.000683	<0.00200	0.00618	0.00686	<49.9	<49.9	<49.9	<49.9	<49.9	11.8
SW-8	4/27/22	Sidewall	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	591
SW-9	4/27/22	Sidewall	<0.00199	0.00349	<0.00199	0.00884	0.0123	<50.0	<50.0	<50.0	<50.0	<50.0	9.61
SW-10	4/27/22	Sidewall	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	>49.9	# #	120	\\\\ \\\	120	
SW-10A	7/13/22	Sidewall	<0.000386	0.000457	<0.000566	<0.00101	<0.00101	<14.9	23.2	23.2	<14.9	23.2	19.6
SW-11	11/23/22	Sidewall	<0.000386	<0.000457	<0.000566	<0.00101	<0.00101	29.9	<15.0	29.9	<15.0	29.9	69.1

Notes:

- 1. Values reported in mg/kg
- values reported in highly
 < = Value Less than Reporting Limit (RL)
- 3. Bold Indicates Analyte Detected
- BTEX analyses by EPA Method SW 8021B.
- 5. TPH analyses by EPA Method SW 8015 Mod.
 - B-BH-2 Sample Point Excavated
- 6. GRO/DRO/MRO = Gasoline/Diesel/Motor Oil
- 7. Yellow shaded cells indicate analytical samples that exceed the NMAC 19.15.29.12 Table 1 Closure Criteria for the site.
- 8. Peach shaded cells indicate analytical samples that exceed the NMAC 19.15.29.13 Table 1 Closure Criteria for the site (Surface to 4 Feet Below Grade).
- 9. J the target analytes was positively identified below the quantitation limit and above the detection limit.
- 10.--- = not defined

CRP Romeo Federal 22 Battery Page 3 of 3

Table 2
Daily Disposal Summary
Romeo Federal 22 Battery 1
Centennial Resources
Eddy, County, New Mexico

Date of Disposal	Total Yards ³ Disposed
4/20/2022	320
4/26/2022	360
8/3/2022	208
Project Total	888

Attachment A Laboratory Analytical Reports and Chain-ofCustody Documentation

www.eurofinsus.com/Env

Released to Imaging: 1/10/2023 1:18:19 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-16810-1

Laboratory Sample Delivery Group: Lea County NM Client Project/Site: Romeo Federal 22 Battery 1

Revision: 1

For:

GHD Services Inc. 2135 South Loop 250 West Midland, Texas 79703

Attn: Becky Haskell

Debbie Simmons

Authorized for release by: 7/22/2022 5:43:27 PM

Debbie Simmons, Project Manager (832)986-6768

Debbie.Simmons@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1 Laboratory Job ID: 880-16810-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Client Sample Results	7
Surrogate Summary	18
QC Sample Results	20
QC Association Summary	25
_ab Chronicle	29
Certification Summary	33
Method Summary	34
Sample Summary	35
Chain of Custody	36
Receipt Chacklists	37

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: GHD Services Inc. Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1

SDG: Lea County NM

Qualifiers

ITL. VIJA	
00 10/1	

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1-	Surrogate recovery exceeds control limits, low biased.
U	Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1-	Surrogate recovery exceeds control limits, low biased.
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC	

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

MCL

Glossaly							
Abbreviation	These commonly used abbreviations may or may not be present in this report.						
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis						
%R	Percent Recovery						
CFL	Contains Free Liquid						
CFU	Colony Forming Unit						
CNF	Contains No Free Liquid						
DER	Duplicate Error Ratio (normalized absolute difference)						
Dil Fac	Dilution Factor						
DL	Detection Limit (DoD/DOE)						
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample						

DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present

EPA recommended "Maximum Contaminant Level"

NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	

QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

RL	Reporting Limit or Requested Limit (Radiochemistry)
----	---

RPD	Polativo Porcent Difference	a maggura of the relative	difference between two points

TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Definitions/Glossary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1

SDG: Lea County NM

Glossary (Continued)

Abbreviation

These commonly used abbreviations may or may not be present in this report.

TNTC

Too Numerous To Count

Case Narrative

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1

SDG: Lea County NM

Job ID: 880-16810-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-16810-1

Comments

per phone conversation with Heath Boyd, all samples collected this week from Romeo Battery should include a A after the ID

The report being provided is a revision of the original report sent on 7/19/2022. The report (revision 1) is being revised due to: per Becky Haskell sample ID should be BH-9A instead of BH-8A for sample 880-16810-6.

The samples were received on 7/12/2022 11:15 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.1° C.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 880-29773 and analytical batch 880-29894 was outside control limits. Sample matrix interference is suspected.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH-11A (880-16810-8). Evidence of matrix interference is present: therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B NM: The method blank for preparation batch 880-29622 and analytical batch 880-29609 contained Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015B NM: CCV biased low for gasoline range hydrocarbons, however an acceptable CCV was analyzed within the 12 hour window, therefore data was qualified and reported.

(CCV 880-29609/46)

Method 8015B NM: The method blank for preparation batch 880-29672 and analytical batch 880-29692 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-29572 and analytical batch 880-29761 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-29660 and analytical batch 880-29862 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Case Narrative

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1

SDG: Lea County NM

Job ID: 880-16810-1 (Continued)

Laboratory: Eurofins Midland (Continued)

Client: GHD Services Inc.

Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Client Sample ID: BH-3A Lab Sample ID: 880-16810-1 **Matrix: Solid**

Date Collected: 07/11/22 10:30 Date Received: 07/12/22 11:15

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00256		0.00201	0.000387	mg/Kg		07/14/22 16:44	07/18/22 12:48	1
Toluene	0.00205	F1	0.00201	0.000459	mg/Kg		07/14/22 16:44	07/18/22 12:48	1
Ethylbenzene	0.00345	F1	0.00201	0.000568	mg/Kg		07/14/22 16:44	07/18/22 12:48	1
m-Xylene & p-Xylene	0.0135	F1 F2	0.00402	0.00102	mg/Kg		07/14/22 16:44	07/18/22 12:48	1
o-Xylene	0.00687	F1 F2	0.00201	0.000346	mg/Kg		07/14/22 16:44	07/18/22 12:48	1
Xylenes, Total	0.0204	F1 F2	0.00402	0.00102	mg/Kg		07/14/22 16:44	07/18/22 12:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				07/14/22 16:44	07/18/22 12:48	1
1,4-Difluorobenzene (Surr)	107		70 - 130				07/14/22 16:44	07/18/22 12:48	1
Method: Total BTEX - Total	BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0284		0.00402	0.00102	mg/Kg			07/19/22 09:21	1

Analyte Total TPH	Result Qualifier 106	RL 49.9	MDL Unit 15.0 mg/Kg		Prepared	Analyzed 07/14/22 09:34	Dil Fac
Method: 8015B NM - Diesel R	Range Organics (DRO) (G	C)	MDI Unit	n	Propared	Analyzod	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	30.9	JB	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 15:38	1
Diesel Range Organics (Over C10-C28)	18.3	JB	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 15:38	1
Oll Range Organics (Over C28-C36)	56.6		49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4.011			70 100				07//0/00 00 0/	07//0/00 / 5 00	

Method: 300.0 - Anions, Ion Chrom	natography	- Soluble		
o-Terphenyl	111	70 - 130	07/13/22 09:24 07/13/22 15:38	1
1-Chlorooctane	98	70 - 130	07/13/22 09:24 07/13/22 15:38	1

Result Qualifier Analyte RLMDL Unit Prepared Analyzed Chloride 10.5 5.00 0.858 mg/Kg 07/15/22 14:51

Client Sample ID: BH-4A Date Collected: 07/11/22 10:40 Date Received: 07/12/22 11:15

Sample Depth: 1'

Method: 8021B - Volatile	Organic Compo	unds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000384	U	0.00200	0.000384	mg/Kg		07/14/22 16:44	07/18/22 13:09	1
Toluene	0.000768	J	0.00200	0.000455	mg/Kg		07/14/22 16:44	07/18/22 13:09	1
Ethylbenzene	0.000705	J	0.00200	0.000564	mg/Kg		07/14/22 16:44	07/18/22 13:09	1
m-Xylene & p-Xylene	0.00170	J	0.00399	0.00101	mg/Kg		07/14/22 16:44	07/18/22 13:09	1
o-Xylene	< 0.000343	U	0.00200	0.000343	mg/Kg		07/14/22 16:44	07/18/22 13:09	1
Xylenes, Total	0.00170	J	0.00399	0.00101	mg/Kg		07/14/22 16:44	07/18/22 13:09	1

Eurofins Midland

Lab Sample ID: 880-16810-2

Matrix: Solid

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

SDG: Lea County NM

Lab Sample ID: 880-16810-2

Matrix: Solid

Job ID: 880-16810-1

Date Collected: 07/11/22 10:40 Date Received: 07/12/22 11:15

Client Sample ID: BH-4A

Sample Depth: 1'

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104	70 - 130	07/14/22 16:44 07/18/22 13:09	1
1,4-Difluorobenzene (Surr)	93	70 - 130	07/14/22 16:44 07/18/22 13:09	1

1,4-Difluorobenzene (Surr) 93 70 - 130 07/14/22 16:44 07/18/22 13:09

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal TPH87.550.015.0mg/Kg07/14/22 09:341

Method: 8015B NM - Diesel Range Organics (DRO) (GC) RL **MDL** Unit D **Analyte** Result Qualifier Prepared Analyzed Dil Fac 15.0 mg/Kg **Gasoline Range Organics** 20.1 JB 50.0 07/13/22 09:24 07/13/22 15:59 (GRO)-C6-C10 **Diesel Range Organics (Over** 18.6 JB 50.0 15.0 mg/Kg 07/13/22 09:24 07/13/22 15:59 C10-C28) **Oll Range Organics (Over** 50.0 07/13/22 09:24 07/13/22 15:59 48.8 J 15.0 mg/Kg C28-C36)

 Surrogate
 %Recovery 1-Chlorooctane
 Qualifier 2-Chlorooctane
 Limits 2-Chlorooctane
 Prepared 2-Chlorooctane
 Analyzed 2-Chlorooctane
 Dil Fact 2-Chlorooctane

 o-Terphenyl
 98
 70 - 130
 07/13/22 09:24
 07/13/22 15:59
 1

 o-Terphenyl
 98
 70 - 130
 07/13/22 09:24
 07/13/22 15:59
 1

Client Sample ID: BH-5A

Date Collected: 07/11/22 10:50

Lab Sample ID: 880-16810-3

Matrix: Solid

Date Received: 07/12/22 11:15

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.000605	J	0.00199	0.000383	mg/Kg		07/14/22 16:44	07/18/22 13:29	1
Toluene	0.00132	J	0.00199	0.000453	mg/Kg		07/14/22 16:44	07/18/22 13:29	1
Ethylbenzene	0.000682	J	0.00199	0.000562	mg/Kg		07/14/22 16:44	07/18/22 13:29	1
m-Xylene & p-Xylene	0.00115	J	0.00398	0.00100	mg/Kg		07/14/22 16:44	07/18/22 13:29	1
o-Xylene	< 0.000342	U	0.00199	0.000342	mg/Kg		07/14/22 16:44	07/18/22 13:29	1
Xylenes, Total	0.00115	J	0.00398	0.00100	mg/Kg		07/14/22 16:44	07/18/22 13:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				07/14/22 16:44	07/18/22 13:29	1
1,4-Difluorobenzene (Surr)	99		70 - 130				07/14/22 16:44	07/18/22 13:29	1

 Analyte
 Result Total BTEX
 Qualifier Unit Qualifier Qualifier Unit Qualifier Qua

Job ID: 880-16810-1

Matrix: Solid

SDG: Lea County NM

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Lab Sample ID: 880-16810-3 Client Sample ID: BH-5A Date Collected: 07/11/22 10:50

Date Received: 07/12/22 11:15

Sample Depth: 1'

Method: 8015 NM - Diesel Ran	ige Organics (DRO) (GC))					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	82.5	49.9	15.0 mg/Kg			07/14/22 09:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	18.7	JB	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 16:42	1
Diesel Range Organics (Over C10-C28)	18.8	JB	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 16:42	1
Oll Range Organics (Over C28-C36)	45.0	J	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	83		70 - 130				07/13/22 09:24	07/13/22 16:42	1
o-Terphenyl	92		70 - 130				07/13/22 09:24	07/13/22 16:42	1

Method: 300.0 - Anions, Ion Ch	romatography - Solubl	е					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.40	5.00	0.858 mg/Kg			07/15/22 15:28	1

Lab Sample ID: 880-16810-4 **Client Sample ID: BH-6A** Matrix: Solid

Date Collected: 07/11/22 11:00

Date Received: 07/12/22 11:15

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000384	U	0.00200	0.000384	mg/Kg		07/14/22 16:44	07/18/22 13:49	1
Toluene	< 0.000455	U	0.00200	0.000455	mg/Kg		07/14/22 16:44	07/18/22 13:49	1
Ethylbenzene	< 0.000564	U	0.00200	0.000564	mg/Kg		07/14/22 16:44	07/18/22 13:49	1
m-Xylene & p-Xylene	<0.00101	U	0.00399	0.00101	mg/Kg		07/14/22 16:44	07/18/22 13:49	1
o-Xylene	< 0.000343	U	0.00200	0.000343	mg/Kg		07/14/22 16:44	07/18/22 13:49	1
Xylenes, Total	<0.00101	U	0.00399	0.00101	mg/Kg		07/14/22 16:44	07/18/22 13:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				07/14/22 16:44	07/18/22 13:49	1
4.4.0:(0	400		70 - 130				07/44/00 46:44	07/18/22 13:49	1
									,
Method: Total BTEX - Total	BTEX Calcula	tion Qualifier	70 - 730 RL	MDL	Unit	D	Prepared	Analyzed	•
Method: Total BTEX - Total Analyte Total BTEX	BTEX Calcula	Qualifier		MDL 0.00101		<u>D</u>			•
Method: Total BTEX - Total Analyte Total BTEX	BTEX Calcula Result <0.00101	Qualifier U	RL 0.00399			<u>D</u>		Analyzed	•
Method: Total BTEX - Total Analyte	BTEX Calcula Result <0.00101 Range Organic	Qualifier U	RL 0.00399	0.00101		<u>D</u>		Analyzed	Dil Fac
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel R Analyte	BTEX Calcula Result <0.00101 Range Organic	Qualifier U	RL 0.00399	0.00101	mg/Kg	=	Prepared	Analyzed 07/19/22 09:21	Dil Fac Dil Fac
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel R Analyte Total TPH	BTEX Calcula Result <0.00101 Range Organic Result 78.7	Qualifier U S (DRO) (O Qualifier	RL 0.00399 GC) RL 50.0	0.00101 MDL	mg/Kg	=	Prepared	Analyzed 07/19/22 09:21	Dil Fac
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel R	BTEX Calcula Result <0.00101 Range Organic Result 78.7 Range Organ	Qualifier U S (DRO) (O Qualifier	RL 0.00399 GC) RL 50.0	0.00101 MDL 15.0	mg/Kg	=	Prepared	Analyzed 07/19/22 09:21	Dil Fac
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel R Analyte Total TPH Method: 8015B NM - Diesel	BTEX Calcula Result <0.00101 Range Organic Result 78.7 Range Organ	Qualifier U S (DRO) (O Qualifier ics (DRO)	RL 0.00399 GC) RL 50.0	0.00101 MDL 15.0	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	Analyzed 07/19/22 09:21 Analyzed 07/14/22 09:34 Analyzed	Dil Fac

Matrix: Solid

Matrix: Solid

Job ID: 880-16810-1

Lab Sample ID: 880-16810-4

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Client Sample ID: BH-6A Date Collected: 07/11/22 11:00

Date Received: 07/12/22 11:15

Sample Depth: 1'

Method: 8015B NM - Diesel	Range Organ	ics (DRO)	(GC) (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	41.3	J	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130				07/13/22 09:24	07/13/22 17:03	1
o-Terphenyl	95		70 - 130				07/13/22 09:24	07/13/22 17:03	1

	Method: 300.0 - Anions, Ion Ch	romatogra	phy - Solub	ole						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	13.3		4.97	0.853	mg/Kg			07/15/22 15:37	1

Lab Sample ID: 880-16810-5 **Client Sample ID: BH-7A** Date Collected: 07/11/22 11:10 Date Received: 07/12/22 11:15

Method: 8021B - Volatile O Analyte	•	Qualifier	RL	MDI	Unit	D	Droporod	Analyzad	Dil Fac
							Prepared	Analyzed	DII Fac
Benzene	<0.000383	U	0.00199	0.000383	mg/Kg		07/14/22 16:44	07/18/22 14:10	1
Toluene	< 0.000454	U	0.00199	0.000454	mg/Kg		07/14/22 16:44	07/18/22 14:10	1
Ethylbenzene	< 0.000563	U	0.00199	0.000563	mg/Kg		07/14/22 16:44	07/18/22 14:10	1
m-Xylene & p-Xylene	<0.00101	U	0.00398	0.00101	mg/Kg		07/14/22 16:44	07/18/22 14:10	1
o-Xylene	< 0.000343	U	0.00199	0.000343	mg/Kg		07/14/22 16:44	07/18/22 14:10	1
Xylenes, Total	<0.00101	U	0.00398	0.00101	mg/Kg		07/14/22 16:44	07/18/22 14:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				07/14/22 16:44	07/18/22 14:10	
1,4-Difluorobenzene (Surr)	95		70 - 130				07/14/22 16:44	07/18/22 14:10	1
Method: Total BTEX - Total	I BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00101	U	0.00398	0.00101	mg/Kg			07/19/22 09:21	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00101	U	0.00398	0.00101	mg/Kg			07/19/22 09:21	•
- Method: 8015 NM - Diesel Ra	ange Organic	s (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	123		49.9	15.0	mg/Kg			07/14/22 09:34	1
- Method: 8015B NM - Diesel I	Range Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	33.1	JB	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 17:24	1
(GRO)-C6-C10									
Diesel Range Organics (Over	40.4	JB	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 17:24	
C10-C28)									
Oll Range Organics (Over	49.1	J	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 17:24	•
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	94		70 - 130				07/13/22 09:24	07/13/22 17:24	
o-Terphenyl	101		70 - 130				07/13/22 09:24	07/13/22 17:24	

Date Collected: 07/11/22 11:10

Date Received: 07/12/22 11:15

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1 SDG: Lea County NM

Client Sample ID: BH-7A Lab Sample ID: 880-16810-5

Matrix: Solid

Sample Depth: 1'

١	Method: 300.0 - Anions, Ion Ch	romatogra	phy - Solub	ole						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	10.4		4.95	0.850	mg/Kg			07/15/22 16:05	1

Client Sample ID: BH-9A Lab Sample ID: 880-16810-6

Date Collected: 07/11/22 11:20 Matrix: Solid

Date Received: 07/12/22 11:15

Sample Depth: 1'

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000383	U	0.00199	0.000383	mg/Kg		07/14/22 16:44	07/18/22 14:30	1
Toluene	< 0.000453	U	0.00199	0.000453	mg/Kg		07/14/22 16:44	07/18/22 14:30	1
Ethylbenzene	< 0.000562	U	0.00199	0.000562	mg/Kg		07/14/22 16:44	07/18/22 14:30	1
m-Xylene & p-Xylene	<0.00100	U	0.00398	0.00100	mg/Kg		07/14/22 16:44	07/18/22 14:30	1
o-Xylene	< 0.000342	U	0.00199	0.000342	mg/Kg		07/14/22 16:44	07/18/22 14:30	1
Xylenes, Total	<0.00100	U	0.00398	0.00100	mg/Kg		07/14/22 16:44	07/18/22 14:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				07/14/22 16:44	07/18/22 14:30	1
1,4-Difluorobenzene (Surr)	95		70 - 130				07/14/22 16:44	07/18/22 14:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00100	U	0.00398	0.00100	mg/Kg			07/19/22 09:21	1
Г., .,		(550) (6							

Method: 8015 NM - Diesel Rang	e Organics (DRO) (GC	;)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	62.7	49.9	15.0 mg/Kg			07/14/22 09:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	20.1	JB	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 17:46	1
Diesel Range Organics (Over C10-C28)	<15.0	U	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 17:46	1
Oll Range Organics (Over C28-C36)	42.6	J	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	82		70 - 130				07/13/22 09:24	07/13/22 17:46	1

Method: 300.0 - Anions, Ion Ch	romatogra	phy - Solu	ıble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.25		5.01	0.860	mg/Kg			07/15/22 16:14	1

70 - 130

91

Eurofins Midland

07/13/22 09:24 07/13/22 17:46

Client: GHD Services Inc.

Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Client Sample ID: BH-10A Lab Sample ID: 880-16810-7 **Matrix: Solid**

Date Collected: 07/11/22 11:30 Date Received: 07/12/22 11:15

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000386	U	0.00200	0.000386	mg/Kg		07/14/22 16:44	07/18/22 14:51	
Toluene	0.000563	J	0.00200	0.000457	mg/Kg		07/14/22 16:44	07/18/22 14:51	•
Ethylbenzene	< 0.000566	U	0.00200	0.000566	mg/Kg		07/14/22 16:44	07/18/22 14:51	
m-Xylene & p-Xylene	<0.00101	U	0.00401	0.00101	mg/Kg		07/14/22 16:44	07/18/22 14:51	
o-Xylene	< 0.000345	U	0.00200	0.000345	mg/Kg		07/14/22 16:44	07/18/22 14:51	
Xylenes, Total	<0.00101	U	0.00401	0.00101	mg/Kg		07/14/22 16:44	07/18/22 14:51	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	94		70 - 130				07/14/22 16:44	07/18/22 14:51	
1,4-Difluorobenzene (Surr)	94		70 - 130				07/14/22 16:44	07/18/22 14:51	•
Method: Total BTEX - Total	BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00101	U	0.00401	0.00101	mg/Kg			07/19/22 09:21	•
Method: 8015 NM - Diesel F	Range Organic	s (DRO) (0	3C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	64.5		50.0	15.0	mg/Kg			07/14/22 09:34	
Method: 8015B NM - Diesel	l Range Organ	ics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	21.4	JB	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 18:07	-
Diesel Range Organics (Over C10-C28)	<15.0	U	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 18:07	,
Oll Range Organics (Over C28-C36)	43.1	J	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 18:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	86		70 - 130				07/13/22 09:24	07/13/22 18:07	
o-Terphenyl	98		70 - 130				07/13/22 09:24	07/40/00 40:07	

RLMDL Unit Prepared Analyte Result Qualifier Analyzed Chloride 4.11 J F1 5.00 0.858 mg/Kg 07/16/22 15:21 Client Sample ID: BH-11A Lab Sample ID: 880-16810-8

Date Collected: 07/11/22 11:40 Date Received: 07/12/22 11:15

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000387	U	0.00201	0.000387	mg/Kg		07/14/22 16:44	07/18/22 15:11	1
Toluene	<0.000458	U	0.00201	0.000458	mg/Kg		07/14/22 16:44	07/18/22 15:11	1
Ethylbenzene	0.000638	J	0.00201	0.000567	mg/Kg		07/14/22 16:44	07/18/22 15:11	1
m-Xylene & p-Xylene	<0.00101	U	0.00402	0.00101	mg/Kg		07/14/22 16:44	07/18/22 15:11	1
o-Xylene	< 0.000345	U	0.00201	0.000345	mg/Kg		07/14/22 16:44	07/18/22 15:11	1
Xylenes, Total	< 0.00101	U	0.00402	0.00101	mg/Kg		07/14/22 16:44	07/18/22 15:11	1

Eurofins Midland

Matrix: Solid

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1 SDG: Lea County NM

Matrix: Solid

Lab Sample ID: 880-16810-8

Client Sample ID: BH-11A

Date Collected: 07/11/22 11:40 Date Received: 07/12/22 11:15

Sample Depth: 1'

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	50	S1-	70 - 130	07/14/22 16:44	07/18/22 15:11	1
1,4-Difluorobenzene (Surr)	95		70 - 130	07/14/22 16:44	07/18/22 15:11	1

FM. (L.) T. () DTEV T. () DTEV O. I.					
1,4-Difluorobenzene (Surr)	95	70 - 130	07/14/22 16:44	07/18/22 15:11	1
4-Bromofluorobenzene (Surr)	50 S1-	70 - 130	07/14/22 16:44	07/18/22 15:11	1

	Method: Total BTEX - Total BTEX	on								
	Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total BTEX	<0.00101 l	J	0.00402	0.00101	mg/Kg			07/19/22 09:21	1

Method: 8015 NM - Diesel Ran	ge Organics (DRO) (GC	5)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	76.1	50.0	15.0 mg/Kg			07/14/22 09:34	1

Method: 8015B NM - Diesel	Range Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	18.3	JB	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 18:28	1
Diesel Range Organics (Over C10-C28)	17.7	JB	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 18:28	1
Oll Range Organics (Over C28-C36)	40.1	J	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 18:28	1
Sumanata	9/ D agayamı	Ovalifian	l imita				Dramarad	Amalumad	Dil For

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130	07/13/22 09:24	07/13/22 18:28	1
o-Terphenyl	92		70 - 130	07/13/22 09:24	07/13/22 18:28	1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	7.66		4.99	0.857	mg/Kg			07/16/22 15:48	1

Client Sample ID: BH-12A Lab Sample ID: 880-16810-9 Date Collected: 07/11/22 11:50 **Matrix: Solid**

Date Received: 07/12/22 11:15

Sample Depth: 1'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000389	U	0.00202	0.000389	mg/Kg		07/14/22 16:44	07/18/22 15:32	1
Toluene	< 0.000461	U	0.00202	0.000461	mg/Kg		07/14/22 16:44	07/18/22 15:32	1
Ethylbenzene	< 0.000571	U	0.00202	0.000571	mg/Kg		07/14/22 16:44	07/18/22 15:32	1
m-Xylene & p-Xylene	<0.00102	U	0.00404	0.00102	mg/Kg		07/14/22 16:44	07/18/22 15:32	1
o-Xylene	< 0.000347	U	0.00202	0.000347	mg/Kg		07/14/22 16:44	07/18/22 15:32	1
Xylenes, Total	<0.00102	U	0.00404	0.00102	mg/Kg		07/14/22 16:44	07/18/22 15:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				07/14/22 16:44	07/18/22 15:32	1
1,4-Difluorobenzene (Surr)	95		70 - 130				07/14/22 16:44	07/18/22 15:32	1

Method: Total BTEX - Total BTE	EX Calculati	ion							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00102	U	0.00404	0.00102	mg/Kg			07/19/22 09:21	1

Client: GHD Services Inc.

Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Client Sample ID: BH-12A

Date Collected: 07/11/22 11:50 Date Received: 07/12/22 11:15

Sample Depth: 1'

Lab Sample ID: 880-16810-9

07/13/22 09:24 07/13/22 18:49

Matrix: Solid

Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 50.0 07/14/22 09:34 **Total TPH** 15.0 mg/Kg 65.3

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 07/13/22 09:24 07/13/22 18:49 **Gasoline Range Organics** 24.0 JB 50.0 15.0 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <15.0 U 50.0 15.0 mg/Kg 07/13/22 09:24 07/13/22 18:49 C10-C28) **Oll Range Organics (Over** 41.3 J 50.0 15.0 mg/Kg 07/13/22 09:24 07/13/22 18:49 C28-C36) Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

o-Terphenyl 96 70 - 130 07/13/22 09:24 07/13/22 18:49 Method: 300.0 - Anions, Ion Chromatography - Soluble

70 - 130

87

Result Qualifier RL **MDL** Unit Prepared Analyte Dil Fac Analyzed Chloride 5.82 4.97 0.853 mg/Kg 07/16/22 15:57

Lab Sample ID: 880-16810-10 Client Sample ID: BH-13A Date Collected: 07/11/22 12:00 **Matrix: Solid**

Date Received: 07/12/22 11:15

Sample Depth: 1'

1-Chlorooctane

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000384	U	0.00200	0.000384	mg/Kg		07/14/22 16:44	07/18/22 15:52	1
Toluene	0.00143	J	0.00200	0.000455	mg/Kg		07/14/22 16:44	07/18/22 15:52	1
Ethylbenzene	< 0.000564	U	0.00200	0.000564	mg/Kg		07/14/22 16:44	07/18/22 15:52	1
m-Xylene & p-Xylene	<0.00101	U	0.00399	0.00101	mg/Kg		07/14/22 16:44	07/18/22 15:52	1
o-Xylene	< 0.000343	U	0.00200	0.000343	mg/Kg		07/14/22 16:44	07/18/22 15:52	1
Xylenes, Total	<0.00101	U	0.00399	0.00101	mg/Kg		07/14/22 16:44	07/18/22 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				07/14/22 16:44	07/18/22 15:52	1
1,4-Difluorobenzene (Surr)	98		70 - 130				07/14/22 16:44	07/18/22 15:52	1

Method: Total BTEX - Total BTE	EX Calculation						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00143 J	0.00399	0.00101 mg/Kg			07/19/22 09:21	1

Method: 8015 NM - Diesel Ran	ge Organic	s (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	66.5		49.9	15.0	mg/Kg			07/14/22 09:34	1

Method: 8015B NM - Diesel F	Method: 8015B NM - Diesel Range Organics (DRO) (GC)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Gasoline Range Organics (GRO)-C6-C10	20.5	JB	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 19:10	1				
Diesel Range Organics (Over C10-C28)	<15.0	U	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 19:10	1				

Job ID: 880-16810-1

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

ah Sample ID: 880-16810-10

Client Sample ID: BH-13A

Date Collected: 07/11/22 12:00

Date Received: 07/12/22 11:15

Lab Sample ID: 880-16810-10 Matrix: Solid

SDG: Lea County NM

Sample Depth: 1'

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Oll Range Organics (Over	46.0	J	49.9	15.0	mg/Kg		07/13/22 09:24	07/13/22 19:10	1		

C28-C36)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130	07/13/22 09:24	07/13/22 19:10	1
o-Terphenyl	97		70 - 130	07/13/22 09:24	07/13/22 19:10	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.46	4.99	0.857 mg/Kg			07/16/22 16:07	1

Client Sample ID: BH-14A Lab Sample ID: 880-16810-11

Date Collected: 07/11/22 00:00 Matrix: Solid

Date Received: 07/12/22 11:15

Method: 8021B - Volatile O	rganic Compo	unds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.000459	J	0.00199	0.000383	mg/Kg		07/14/22 16:44	07/18/22 17:45	1
Toluene	0.000646	J	0.00199	0.000453	mg/Kg		07/14/22 16:44	07/18/22 17:45	1
Ethylbenzene	0.000642	J	0.00199	0.000562	mg/Kg		07/14/22 16:44	07/18/22 17:45	1
m-Xylene & p-Xylene	0.00115	J	0.00398	0.00100	mg/Kg		07/14/22 16:44	07/18/22 17:45	1
o-Xylene	< 0.000342	U	0.00199	0.000342	mg/Kg		07/14/22 16:44	07/18/22 17:45	1
Xylenes, Total	0.00115	J	0.00398	0.00100	mg/Kg		07/14/22 16:44	07/18/22 17:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				07/14/22 16:44	07/18/22 17:45	1
1,4-Difluorobenzene (Surr)	96		70 - 130				07/14/22 16:44	07/18/22 17:45	1

Method: Total BTEX - Total BT	EX Calculation						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00290 J	0.00398	0.00100 mg/Kg			07/19/22 09:21	1

Method: 8015 NM - Diesel Ran	ge Organics (DRO) (GO	;)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	58.7	50.0	15.0 mg/Kg			07/14/22 09:34		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	21.5	JB	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 19:31	1
Diesel Range Organics (Over C10-C28)	<15.0	U	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 19:31	1
Oll Range Organics (Over C28-C36)	37.2	J	50.0	15.0	mg/Kg		07/13/22 09:24	07/13/22 19:31	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130	07/13/22 09:24	07/13/22 19:31	1
o-Terphenyl	94		70 - 130	07/13/22 09:24	07/13/22 19:31	1

Method: 300.0 - Anions, Ion Cl	nromatography - Solubl	е						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	5.14	5.00	0.858 mg/Kg			07/16/22 16:47		

Eurofins Midland

2

3

_

6

8

9

10

12

14

Client: GHD Services Inc.

Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Client Sample ID: BH-15A Lab Sample ID: 880-16810-12

Matrix: Solid

Date Collected: 07/11/22 00:00 Date Received: 07/12/22 11:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.000384	U	0.00200	0.000384	mg/Kg		07/14/22 16:44	07/18/22 18:05	
Toluene	0.00267		0.00200	0.000455	mg/Kg		07/14/22 16:44	07/18/22 18:05	
Ethylbenzene	< 0.000564	U	0.00200	0.000564	mg/Kg		07/14/22 16:44	07/18/22 18:05	
m-Xylene & p-Xylene	0.00297	J	0.00399	0.00101	mg/Kg		07/14/22 16:44	07/18/22 18:05	
o-Xylene	< 0.000343	U	0.00200	0.000343	mg/Kg		07/14/22 16:44	07/18/22 18:05	
Xylenes, Total	0.00297	J	0.00399	0.00101	mg/Kg		07/14/22 16:44	07/18/22 18:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		70 - 130				07/14/22 16:44	07/18/22 18:05	
1,4-Difluorobenzene (Surr)	104		70 - 130				07/14/22 16:44	07/18/22 18:05	
Method: Total BTEX - Total	BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.00564		0.00399	0.00101	mg/Kg			07/19/22 09:21	
Method: 8015 NM - Diesel R Analyte		s (DRO) (O Qualifier	GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	74.8								
			50.0	15.0	mg/Kg			07/14/22 09:34	
Method: 8015B NM - Diesel		ics (DRO)		15.0	mg/Kg			07/14/22 09:34	
	Range Organ	ics (DRO) Qualifier		15.0 MDL		D	Prepared	07/14/22 09:34 Analyzed	Dil Fa
Analyte Gasoline Range Organics	Range Organ		(GC)	MDL		<u>D</u>	<u> </u>		Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Range Organ Result	Qualifier	(GC)	MDL 15.0	Unit	<u>D</u>	07/13/22 09:24	Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Range Organ Result 23.9	Qualifier J B J B	(GC) RL 50.0	MDL 15.0	Unit mg/Kg	<u>D</u>	07/13/22 09:24 07/13/22 09:24	Analyzed 07/13/22 19:52	Dil Fa
Method: 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Range Organ Result 23.9	Qualifier J B J B J B	(GC) RL 50.0	MDL 15.0	Unit mg/Kg mg/Kg	<u>D</u>	07/13/22 09:24 07/13/22 09:24	Analyzed 07/13/22 19:52 07/13/22 19:52	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Range Organ Result 23.9 15.0 35.9	Qualifier J B J B J B	(GC) RL 50.0 50.0	MDL 15.0	Unit mg/Kg mg/Kg	<u> </u>	07/13/22 09:24 07/13/22 09:24 07/13/22 09:24	Analyzed 07/13/22 19:52 07/13/22 19:52 07/13/22 19:52 Analyzed	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	Range Organ Result 23.9 15.0 35.9 %Recovery	Qualifier J B J B J B	(GC) RL 50.0 50.0 50.0 Limits	MDL 15.0	Unit mg/Kg mg/Kg	<u> </u>	07/13/22 09:24 07/13/22 09:24 07/13/22 09:24 Prepared 07/13/22 09:24	Analyzed 07/13/22 19:52 07/13/22 19:52 07/13/22 19:52 Analyzed	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Range Organ Result 23.9 15.0 35.9 %Recovery 83 93	Qualifier JB JB J Qualifier	(GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	MDL 15.0	Unit mg/Kg mg/Kg	<u>D</u>	07/13/22 09:24 07/13/22 09:24 07/13/22 09:24 Prepared 07/13/22 09:24	Analyzed 07/13/22 19:52 07/13/22 19:52 07/13/22 19:52 Analyzed 07/13/22 19:52	

Client Sample ID: BH-16A Lab Sample ID: 880-16810-13 Date Collected: 07/11/22 00:00 **Matrix: Solid**

4.99

11.0

0.857 mg/Kg

Date Received: 07/12/22 11:15

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000388	U	0.00202	0.000388	mg/Kg		07/14/22 16:44	07/18/22 18:26	1
Toluene	<0.000460	U	0.00202	0.000460	mg/Kg		07/14/22 16:44	07/18/22 18:26	1
Ethylbenzene	<0.000570	U	0.00202	0.000570	mg/Kg		07/14/22 16:44	07/18/22 18:26	1
m-Xylene & p-Xylene	<0.00102	U	0.00403	0.00102	mg/Kg		07/14/22 16:44	07/18/22 18:26	1
o-Xylene	< 0.000347	U	0.00202	0.000347	mg/Kg		07/14/22 16:44	07/18/22 18:26	1
Xylenes, Total	<0.00102	U	0.00403	0.00102	mg/Kg		07/14/22 16:44	07/18/22 18:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				07/14/22 16:44	07/18/22 18:26	1
1,4-Difluorobenzene (Surr)	92		70 - 130				07/14/22 16:44	07/18/22 18:26	1

Eurofins Midland

07/16/22 17:15

Client Sample Results

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1 al 22 Battery 1 SDG: Lea County NM

Lab Sample ID: 880-16810-13

Client Sample ID: BH-16A

Date Collected: 07/11/22 00:00

Lab Sample ID:

Matrix: Solid

Method: Total BTEX - Total B7	TEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00102	U	0.00403	0.00102	mg/Kg			07/19/22 09:21	1
Method: 8015 NM - Diesel Rar	nge Organic	s (DRO) (0	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	33.3	J	49.8	14.9	mg/Kg			07/14/22 09:34	1
Method: 8015B NM - Diesel R	ange Organi	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<14.9	U	49.8	14.9	mg/Kg		07/13/22 15:06	07/14/22 18:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	33.3	J	49.8	14.9	mg/Kg		07/13/22 15:06	07/14/22 18:05	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<14.9	U	49.8	14.9	mg/Kg		07/13/22 15:06	07/14/22 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	67	S1-	70 - 130				07/13/22 15:06	07/14/22 18:05	1
o-Terphenyl	80		70 - 130				07/13/22 15:06	07/14/22 18:05	1
Method: 300.0 - Anions, Ion C	hromatogra	phy - Solu	ıble						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.54		5.04	0.065	mg/Kg			07/16/22 17:24	

2

3

5

7

9

11

12

13

Surrogate Summary

Client: GHD Services Inc. Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

			Perce	nt Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-16810-1	BH-3A	115	107	
880-16810-1 MS	BH-3A	113	92	
880-16810-1 MSD	BH-3A	87	96	
880-16810-2	BH-4A	104	93	
880-16810-3	BH-5A	97	99	
880-16810-4	BH-6A	115	103	
880-16810-5	BH-7A	112	95	
880-16810-6	BH-9A	110	95	
880-16810-7	BH-10A	94	94	
880-16810-8	BH-11A	50 S1-	95	
880-16810-9	BH-12A	114	95	
880-16810-10	BH-13A	98	98	
880-16810-11	BH-14A	107	96	
880-16810-12	BH-15A	92	104	
880-16810-13	BH-16A	108	92	
LCS 880-29773/1-A	Lab Control Sample	106	100	
	Lab Control Sample Dup	106	96	
LCSD 880-29773/2-A		97	96	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-16810-1	BH-3A	98	111	
880-16810-2	BH-4A	85	98	
880-16810-3	BH-5A	83	92	
880-16810-4	BH-6A	84	95	
880-16810-5	BH-7A	94	101	
880-16810-6	BH-9A	82	91	
880-16810-7	BH-10A	86	98	
880-16810-8	BH-11A	81	92	
880-16810-9	BH-12A	87	96	
880-16810-10	BH-13A	86	97	
880-16810-11	BH-14A	85	94	
880-16810-12	BH-15A	83	93	
880-16810-13	BH-16A	67 S1-	80	
LCS 880-29622/2-A	Lab Control Sample	100	117	
LCS 880-29672/2-A	Lab Control Sample	97	110	
LCSD 880-29622/3-A	Lab Control Sample Dup	108	125	
LCSD 880-29672/3-A	Lab Control Sample Dup	113	126	
MB 880-29622/1-A	Method Blank	87	113	
MB 880-29672/1-A	Method Blank	88	102	

1CO = 1-Chlorooctane

Surrogate Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

OTPH = o-Terphenyl

Job ID: 880-16810-1 SDG: Lea County NM

_

3

4

_

9

11

12

13

QC Sample Results

Client: GHD Services Inc.

Job ID: 880-16810-1

Project/Site: Romeo Federal 22 Battery 1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-29773/5-A

Matrix: Solid

Analysis Batch: 29894

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29773

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000385	U	0.00200	0.000385	mg/Kg		07/14/22 16:44	07/18/22 12:19	1
Toluene	< 0.000456	U	0.00200	0.000456	mg/Kg		07/14/22 16:44	07/18/22 12:19	1
Ethylbenzene	< 0.000565	U	0.00200	0.000565	mg/Kg		07/14/22 16:44	07/18/22 12:19	1
m-Xylene & p-Xylene	<0.00101	U	0.00400	0.00101	mg/Kg		07/14/22 16:44	07/18/22 12:19	1
o-Xylene	< 0.000344	U	0.00200	0.000344	mg/Kg		07/14/22 16:44	07/18/22 12:19	1
Xylenes, Total	<0.00101	U	0.00400	0.00101	mg/Kg		07/14/22 16:44	07/18/22 12:19	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130	07/14/22 16:44 07/18/22 12:19	1
1,4-Difluorobenzene (Surr)	96		70 - 130	07/14/22 16:44 07/18/22 12:19	1

Lab Sample ID: LCS 880-29773/1-A

Matrix: Solid

Analysis Batch: 29894

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 29773

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 70 - 130 0.100 0.09535 mg/Kg 95 Toluene 0.100 mg/Kg 70 - 130 0.09420 94 Ethylbenzene 0.100 0.09196 mg/Kg 92 70 - 130 0.200 97 m-Xylene & p-Xylene 0.1938 mg/Kg 70 - 130 o-Xylene 0.100 0.1030 mg/Kg 103 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-29773/2-A

Matrix: Solid

Analysis Batch: 29894

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 29773

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08621		mg/Kg		86	70 - 130	10	35
Toluene	0.100	0.09273		mg/Kg		93	70 - 130	2	35
Ethylbenzene	0.100	0.09255		mg/Kg		93	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.1968		mg/Kg		98	70 - 130	2	35
o-Xylene	0.100	0.1055		mg/Kg		105	70 - 130	2	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1.4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: 880-16810-1 MS

Matrix: Solid

Analysis Batch: 29894

Client Sample ID: BH-3A
Prep Type: Total/NA

Prep Batch: 29773

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.00256		0.100	0.07776		mg/Kg	_	75	70 - 130	
Toluene	0.00205	F1	0.100	0.08486		mg/Kg		82	70 - 130	

Eurofins Midland

1

2

3

5

7

10

12

QC Sample Results

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-16810-1 MS

Matrix: Solid

Analysis Batch: 29894

Client Sample ID: BH-3A

Prep Type: Total/NA Prep Batch: 29773

MS MS %Rec Sample Sample Spike Analyte **Result Qualifier** Added Result Qualifier Unit %Rec Limits Ethylbenzene 0.00345 F1 0.100 0.08141 mg/Kg 78 70 - 130 m-Xylene & p-Xylene 0.0135 F1 F2 0.201 0.1739 mg/Kg 80 70 - 130o-Xylene 0.00687 F1 F2 0.100 0.09279 86 70 - 130 mg/Kg

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	92		70 - 130

Client Sample ID: BH-3A

Prep Type: Total/NA

Prep Batch: 29773

Analysis Batch: 29894

Matrix: Solid

Lab Sample ID: 880-16810-1 MSD

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.00256		0.0994	0.07907		mg/Kg		77	70 - 130	2	35
Toluene	0.00205	F1	0.0994	0.06554	F1	mg/Kg		64	70 - 130	26	35
Ethylbenzene	0.00345	F1	0.0994	0.05957	F1	mg/Kg		56	70 - 130	31	35
m-Xylene & p-Xylene	0.0135	F1 F2	0.199	0.1176	F1 F2	mg/Kg		52	70 - 130	39	35
o-Xylene	0.00687	F1 F2	0.0994	0.06403	F1 F2	mg/Kg		58	70 - 130	37	35

MSD MSD

Surrogate	%Recovery Qual	lifier Limits
4-Bromofluorobenzene (Surr)	87	70 - 130
1,4-Difluorobenzene (Surr)	96	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-29622/1-A

Matrix: Solid

Analysis Batch: 29609

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 29622

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Gasoline Range Organics 17.22 J 50.0 15.0 mg/Kg 07/13/22 09:24 07/13/22 11:02 (GRO)-C6-C10 Diesel Range Organics (Over 20.90 J 50.0 15.0 mg/Kg 07/13/22 09:24 07/13/22 11:02 C10-C28) Oll Range Organics (Over C28-C36) <15.0 U 50.0 15.0 mg/Kg 07/13/22 09:24 07/13/22 11:02

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	87	·	70 - 130	07/13/22 09:24	07/13/22 11:02	1
o-Terphenyl	113		70 - 130	07/13/22 09:24	07/13/22 11:02	1

Lab Sample ID: LCS 880-29622/2-A

Matrix: Solid

Analysis Batch: 29609

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 29622

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 846.2 85 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1044 mg/Kg 104 70 - 130

C10-C28)

Client: GHD Services Inc. Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-29622/2-A

Matrix: Solid

Analysis Batch: 29609

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29622

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	100	70 - 130
o-Terphenyl	117	70 - 130

Lab Sample ID: LCSD 880-29622/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 29609

Prep Type: Total/NA

Prep Batch: 29622

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics 1000 776.1 mg/Kg 78 70 - 130 9 20 (GRO)-C6-C10 1000 Diesel Range Organics (Over 1129 mg/Kg 113 70 - 130 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	108	70 - 130
o-Terphenyl	125	70 - 130

Lab Sample ID: MB 880-29672/1-A

Matrix: Solid

Analysis Batch: 29692

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29672

	IVID	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	19.99	J	50.0	15.0	mg/Kg		07/13/22 15:06	07/14/22 09:52	1
Diesel Range Organics (Over C10-C28)	<15.0	U	50.0	15.0	mg/Kg		07/13/22 15:06	07/14/22 09:52	1
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/13/22 15:06	07/14/22 09:52	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130	07/13/22 15:06	07/14/22 09:52	1
o-Terphenyl	102		70 - 130	07/13/22 15:06	07/14/22 09:52	1

Lab Sample ID: LCS 880-29672/2-A

Matrix: Solid

Analysis Batch: 29692

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29672

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	 1000	989.6		mg/Kg		99	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	865.7		mg/Kg		87	70 - 130	
040 000)								

C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	97		70 - 130
o-Terphenyl	110		70 - 130

Client: GHD Services Inc. Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-29672/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 29692 Prep Batch: 29672

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1004		mg/Kg		100	70 - 130	1	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1051		mg/Kg		105	70 - 130	19	20

C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 113 o-Terphenyl 126 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-29572/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29761

MB MB Result Qualifier RL MDL Unit Analyte Prepared Analyzed Dil Fac 5.00 Chloride <0.858 U 0.858 mg/Kg 07/15/22 12:24

Lab Sample ID: LCS 880-29572/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29761

Spike LCS LCS %Rec Analyte Added Result Qualifier Limits Unit D %Rec Chloride 250 266.6 mg/Kg 107 90 - 110

Lab Sample ID: LCSD 880-29572/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29761

LCSD LCSD RPD Spike %Rec **Analyte** Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 267.0 mg/Kg 107 90 - 110 0

Lab Sample ID: 880-16810-2 MS Client Sample ID: BH-4A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29761

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 9.08 F1 Chloride 250 287.0 F1 mg/Kg 111 90 - 110

Lab Sample ID: 880-16810-2 MSD Client Sample ID: BH-4A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29761

MSD MSD %Rec **RPD** Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 250 Chloride 9.08 F1 287.6 F1 112 90 - 110 mg/Kg

QC Sample Results

Client: GHD Services Inc.

Job ID: 880-16810-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 880-29660/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29862

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 5.00 0.858 mg/Kg 07/16/22 14:53 Chloride <0.858 U

Lab Sample ID: LCS 880-29660/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29862

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 264.9 90 - 110 mg/Kg 106

Lab Sample ID: LCSD 880-29660/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29862

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Limits **RPD** Limit Unit D %Rec Chloride 250 264.8 106 90 - 110 20 mg/Kg

Lab Sample ID: 880-16810-7 MS Client Sample ID: BH-10A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29862

Spike MS MS %Rec Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride 4.11 J F1 250 287.0 F1 90 - 110 mg/Kg 113

Lab Sample ID: 880-16810-7 MSD Client Sample ID: BH-10A

Matrix: Solid

Analysis Batch: 29862

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 4.11 J F1 250 289.5 F1 114 20 mg/Kg 90 - 110

Eurofins Midland

Prep Type: Soluble

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1 SDG: Lea County NM

GC VOA

Prep Batch: 29773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-1	BH-3A	Total/NA	Solid	5035	
880-16810-2	BH-4A	Total/NA	Solid	5035	
880-16810-3	BH-5A	Total/NA	Solid	5035	
880-16810-4	BH-6A	Total/NA	Solid	5035	
880-16810-5	BH-7A	Total/NA	Solid	5035	
880-16810-6	BH-9A	Total/NA	Solid	5035	
880-16810-7	BH-10A	Total/NA	Solid	5035	
880-16810-8	BH-11A	Total/NA	Solid	5035	
880-16810-9	BH-12A	Total/NA	Solid	5035	
880-16810-10	BH-13A	Total/NA	Solid	5035	
880-16810-11	BH-14A	Total/NA	Solid	5035	
880-16810-12	BH-15A	Total/NA	Solid	5035	
880-16810-13	BH-16A	Total/NA	Solid	5035	
MB 880-29773/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29773/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29773/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-16810-1 MS	BH-3A	Total/NA	Solid	5035	
880-16810-1 MSD	BH-3A	Total/NA	Solid	5035	

Analysis Batch: 29894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-1	BH-3A	Total/NA	Solid	8021B	29773
880-16810-2	BH-4A	Total/NA	Solid	8021B	29773
880-16810-3	BH-5A	Total/NA	Solid	8021B	29773
880-16810-4	BH-6A	Total/NA	Solid	8021B	29773
880-16810-5	BH-7A	Total/NA	Solid	8021B	29773
880-16810-6	BH-9A	Total/NA	Solid	8021B	29773
880-16810-7	BH-10A	Total/NA	Solid	8021B	29773
880-16810-8	BH-11A	Total/NA	Solid	8021B	29773
880-16810-9	BH-12A	Total/NA	Solid	8021B	29773
880-16810-10	BH-13A	Total/NA	Solid	8021B	29773
880-16810-11	BH-14A	Total/NA	Solid	8021B	29773
880-16810-12	BH-15A	Total/NA	Solid	8021B	29773
880-16810-13	BH-16A	Total/NA	Solid	8021B	29773
MB 880-29773/5-A	Method Blank	Total/NA	Solid	8021B	29773
LCS 880-29773/1-A	Lab Control Sample	Total/NA	Solid	8021B	29773
LCSD 880-29773/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29773
880-16810-1 MS	BH-3A	Total/NA	Solid	8021B	29773
880-16810-1 MSD	BH-3A	Total/NA	Solid	8021B	29773

Analysis Batch: 30031

Released to Imaging: 1/10/2023 1:18:19 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-1	BH-3A	Total/NA	Solid	Total BTEX	
880-16810-2	BH-4A	Total/NA	Solid	Total BTEX	
880-16810-3	BH-5A	Total/NA	Solid	Total BTEX	
880-16810-4	BH-6A	Total/NA	Solid	Total BTEX	
880-16810-5	BH-7A	Total/NA	Solid	Total BTEX	
880-16810-6	BH-9A	Total/NA	Solid	Total BTEX	
880-16810-7	BH-10A	Total/NA	Solid	Total BTEX	
880-16810-8	BH-11A	Total/NA	Solid	Total BTEX	
880-16810-9	BH-12A	Total/NA	Solid	Total BTEX	

Eurofins Midland

2

3

4

6

8

4.6

11

13

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1

SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 30031 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-10	BH-13A	Total/NA	Solid	Total BTEX	
880-16810-11	BH-14A	Total/NA	Solid	Total BTEX	
880-16810-12	BH-15A	Total/NA	Solid	Total BTEX	
880-16810-13	BH-16A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 29609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-1	BH-3A	Total/NA	Solid	8015B NM	29622
880-16810-2	BH-4A	Total/NA	Solid	8015B NM	29622
880-16810-3	BH-5A	Total/NA	Solid	8015B NM	29622
880-16810-4	BH-6A	Total/NA	Solid	8015B NM	29622
880-16810-5	BH-7A	Total/NA	Solid	8015B NM	29622
880-16810-6	BH-9A	Total/NA	Solid	8015B NM	29622
880-16810-7	BH-10A	Total/NA	Solid	8015B NM	29622
880-16810-8	BH-11A	Total/NA	Solid	8015B NM	29622
880-16810-9	BH-12A	Total/NA	Solid	8015B NM	29622
880-16810-10	BH-13A	Total/NA	Solid	8015B NM	29622
880-16810-11	BH-14A	Total/NA	Solid	8015B NM	29622
880-16810-12	BH-15A	Total/NA	Solid	8015B NM	29622
MB 880-29622/1-A	Method Blank	Total/NA	Solid	8015B NM	29622
LCS 880-29622/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29622
LCSD 880-29622/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29622

Prep Batch: 29622

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-1	BH-3A	Total/NA	Solid	8015NM Prep	
880-16810-2	BH-4A	Total/NA	Solid	8015NM Prep	
880-16810-3	BH-5A	Total/NA	Solid	8015NM Prep	
880-16810-4	BH-6A	Total/NA	Solid	8015NM Prep	
880-16810-5	BH-7A	Total/NA	Solid	8015NM Prep	
880-16810-6	BH-9A	Total/NA	Solid	8015NM Prep	
880-16810-7	BH-10A	Total/NA	Solid	8015NM Prep	
880-16810-8	BH-11A	Total/NA	Solid	8015NM Prep	
880-16810-9	BH-12A	Total/NA	Solid	8015NM Prep	
880-16810-10	BH-13A	Total/NA	Solid	8015NM Prep	
880-16810-11	BH-14A	Total/NA	Solid	8015NM Prep	
880-16810-12	BH-15A	Total/NA	Solid	8015NM Prep	
MB 880-29622/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29622/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29622/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Prep Batch: 29672

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-13	BH-16A	Total/NA	Solid	8015NM Prep	
MB 880-29672/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29672/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29672/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1 SDG: Lea County NM

GC Semi VOA

Analysis Batch: 29692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-13	BH-16A	Total/NA	Solid	8015B NM	29672
MB 880-29672/1-A	Method Blank	Total/NA	Solid	8015B NM	29672
LCS 880-29672/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29672
LCSD 880-29672/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29672

Analysis Batch: 29712

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-1	BH-3A	Total/NA	Solid	8015 NM	
880-16810-2	BH-4A	Total/NA	Solid	8015 NM	
880-16810-3	BH-5A	Total/NA	Solid	8015 NM	
880-16810-4	BH-6A	Total/NA	Solid	8015 NM	
880-16810-5	BH-7A	Total/NA	Solid	8015 NM	
880-16810-6	BH-9A	Total/NA	Solid	8015 NM	
880-16810-7	BH-10A	Total/NA	Solid	8015 NM	
880-16810-8	BH-11A	Total/NA	Solid	8015 NM	
880-16810-9	BH-12A	Total/NA	Solid	8015 NM	
880-16810-10	BH-13A	Total/NA	Solid	8015 NM	
880-16810-11	BH-14A	Total/NA	Solid	8015 NM	
880-16810-12	BH-15A	Total/NA	Solid	8015 NM	
880-16810-13	BH-16A	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 29572

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-1	BH-3A	Soluble	Solid	DI Leach	
880-16810-2	BH-4A	Soluble	Solid	DI Leach	
880-16810-3	BH-5A	Soluble	Solid	DI Leach	
880-16810-4	BH-6A	Soluble	Solid	DI Leach	
880-16810-5	BH-7A	Soluble	Solid	DI Leach	
880-16810-6	BH-9A	Soluble	Solid	DI Leach	
MB 880-29572/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29572/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29572/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-16810-2 MS	BH-4A	Soluble	Solid	DI Leach	
880-16810-2 MSD	BH-4A	Soluble	Solid	DI Leach	

Leach Batch: 29660

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-7	BH-10A	Soluble	Solid	DI Leach	
880-16810-8	BH-11A	Soluble	Solid	DI Leach	
880-16810-9	BH-12A	Soluble	Solid	DI Leach	
880-16810-10	BH-13A	Soluble	Solid	DI Leach	
880-16810-11	BH-14A	Soluble	Solid	DI Leach	
880-16810-12	BH-15A	Soluble	Solid	DI Leach	
880-16810-13	BH-16A	Soluble	Solid	DI Leach	
MB 880-29660/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29660/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29660/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-16810-7 MS	BH-10A	Soluble	Solid	DI Leach	
880-16810-7 MSD	BH-10A	Soluble	Solid	DI Leach	

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1 SDG: Lea County NM

HPLC/IC

Analysis Batch: 29761

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-1	BH-3A	Soluble	Solid	300.0	29572
880-16810-2	BH-4A	Soluble	Solid	300.0	29572
880-16810-3	BH-5A	Soluble	Solid	300.0	29572
880-16810-4	BH-6A	Soluble	Solid	300.0	29572
880-16810-5	BH-7A	Soluble	Solid	300.0	29572
880-16810-6	BH-9A	Soluble	Solid	300.0	29572
MB 880-29572/1-A	Method Blank	Soluble	Solid	300.0	29572
LCS 880-29572/2-A	Lab Control Sample	Soluble	Solid	300.0	29572
LCSD 880-29572/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29572
880-16810-2 MS	BH-4A	Soluble	Solid	300.0	29572
880-16810-2 MSD	BH-4A	Soluble	Solid	300.0	29572

Analysis Batch: 29862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16810-7	BH-10A	Soluble	Solid	300.0	29660
880-16810-8	BH-11A	Soluble	Solid	300.0	29660
880-16810-9	BH-12A	Soluble	Solid	300.0	29660
880-16810-10	BH-13A	Soluble	Solid	300.0	29660
880-16810-11	BH-14A	Soluble	Solid	300.0	29660
880-16810-12	BH-15A	Soluble	Solid	300.0	29660
880-16810-13	BH-16A	Soluble	Solid	300.0	29660
MB 880-29660/1-A	Method Blank	Soluble	Solid	300.0	29660
LCS 880-29660/2-A	Lab Control Sample	Soluble	Solid	300.0	29660
LCSD 880-29660/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29660
880-16810-7 MS	BH-10A	Soluble	Solid	300.0	29660
880-16810-7 MSD	BH-10A	Soluble	Solid	300.0	29660

Eurofins Midland

1

2

Л

_

0

9

11

13

Lab Chronicle

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

SDG: Lea County NM

Job ID: 880-16810-1

Lab Sample ID: 880-16810-1 Client Sample ID: BH-3A

Date Collected: 07/11/22 10:30 **Matrix: Solid** Date Received: 07/12/22 11:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 12:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 15:38	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29572	07/12/22 16:02	KS	XEN MID
Soluble	Analysis	300.0		1			29761	07/15/22 14:51	CH	XEN MID

Client Sample ID: BH-4A Lab Sample ID: 880-16810-2 Date Collected: 07/11/22 10:40 **Matrix: Solid**

Date Received: 07/12/22 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 13:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 15:59	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29572	07/12/22 16:02	KS	XEN MID
Soluble	Analysis	300.0		1			29761	07/15/22 15:00	CH	XEN MID

Client Sample ID: BH-5A Lab Sample ID: 880-16810-3 Date Collected: 07/11/22 10:50 **Matrix: Solid**

Date Received: 07/12/22 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 13:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 16:42	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29572	07/12/22 16:02	KS	XEN MID
Soluble	Analysis	300.0		1			29761	07/15/22 15:28	CH	XEN MID

Client Sample ID: BH-6A Lab Sample ID: 880-16810-4 Date Collected: 07/11/22 11:00 Matrix: Solid

Date Received: 07/12/22 11:15

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 13:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID

Client: GHD Services Inc.

Client Sample ID: BH-6A Date Collected: 07/11/22 11:00

Date Received: 07/12/22 11:15

Project/Site: Romeo Federal 22 Battery 1

Lab Sample ID: 880-16810-4

Matrix: Solid

Job ID: 880-16810-1

SDG: Lea County NM

Batch Batch Dil Initial Batch Final Prepared Method Number or Analyzed **Prep Type** Type Run **Factor Amount** Amount Analyst Lab Total/NA 8015 NM 29712 07/14/22 09:34 SM XEN MID Analysis Total/NA 10.01 g Prep 8015NM Prep 10 mL 29622 07/13/22 09:24 DM **XEN MID** Total/NA Analysis 8015B NM 29609 07/13/22 17:03 SM XEN MID 1 07/12/22 16:02 KS 5.03 g 29572 XEN MID Soluble Leach DI Leach 50 mL Soluble Analysis 300.0 29761 07/15/22 15:37 CH XEN MID 1

Client Sample ID: BH-7A Lab Sample ID: 880-16810-5

Date Collected: 07/11/22 11:10 **Matrix: Solid** Date Received: 07/12/22 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 14:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 17:24	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29572	07/12/22 16:02	KS	XEN MID
Soluble	Analysis	300.0		1			29761	07/15/22 16:05	CH	XEN MID

Client Sample ID: BH-9A Lab Sample ID: 880-16810-6

Date Collected: 07/11/22 11:20 Date Received: 07/12/22 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 14:30	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 17:46	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	29572	07/12/22 16:02	KS	XEN MID
Soluble	Analysis	300.0		1			29761	07/15/22 16:14	CH	XEN MID

Client Sample ID: BH-10A Lab Sample ID: 880-16810-7 Date Collected: 07/11/22 11:30 **Matrix: Solid**

Date Received: 07/12/22 11:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 14:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	29622 29609	07/13/22 09:24 07/13/22 18:07	DM SM	XEN MID XEN MID

Eurofins Midland

Matrix: Solid

Job ID: 880-16810-1 SDG: Lea County NM

Client Sample ID: BH-10A

Date Collected: 07/11/22 11:30 Date Received: 07/12/22 11:15 Lab Sample ID: 880-16810-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 15:21	CH	XEN MID

Lab Sample ID: 880-16810-8 Client Sample ID: BH-11A Matrix: Solid

Date Collected: 07/11/22 11:40 Date Received: 07/12/22 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 15:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 18:28	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 15:48	CH	XEN MID

Lab Sample ID: 880-16810-9 Client Sample ID: BH-12A Date Collected: 07/11/22 11:50 **Matrix: Solid**

Date Received: 07/12/22 11:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 15:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 18:49	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 15:57	CH	XEN MID

Client Sample ID: BH-13A Lab Sample ID: 880-16810-10 Date Collected: 07/11/22 12:00 Matrix: Solid

Date Received: 07/12/22 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 15:52	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 19:10	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 16:07	CH	XEN MID

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1

SDG: Lea County NM

Client Sample ID: BH-14A Date Collected: 07/11/22 00:00

Lab Sample ID: 880-16810-11

Matrix: Solid

Date Received: 07/12/22 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 17:45	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29622	07/13/22 09:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29609	07/13/22 19:31	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 16:47	CH	XEN MID

Client Sample ID: BH-15A Lab Sample ID: 880-16810-12

Date Collected: 07/11/22 00:00 **Matrix: Solid** Date Received: 07/12/22 11:15

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA 5035 29773 07/14/22 16:44 MR XEN MID Prep 5.01 g 5 mL Total/NA 8021B 5 mL 29894 07/18/22 18:05 MR XEN MID Analysis 5 mL 1 Total/NA Analysis **Total BTEX** 1 30031 07/19/22 09:21 SM XEN MID Total/NA 8015 NM **XEN MID** Analysis 1 29712 07/14/22 09:34 SM Total/NA Prep 8015NM Prep 10.00 g 10 mL 29622 07/13/22 09:24 DM XEN MID Total/NA 8015B NM 29609 Analysis 1 07/13/22 19:52 SM XEN MID Soluble 29660 DI Leach 5.01 g 50 mL 07/13/22 12:39 SMC XEN MID Leach 300.0 07/16/22 17:15 CH Soluble Analysis 1 29862 **XEN MID**

Client Sample ID: BH-16A Lab Sample ID: 880-16810-13

Date Collected: 07/11/22 00:00 Date Received: 07/12/22 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	29773	07/14/22 16:44	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29894	07/18/22 18:26	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30031	07/19/22 09:21	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29712	07/14/22 09:34	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	29672	07/13/22 15:06	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/14/22 18:05	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 17:24	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Matrix: Solid

Accreditation/Certification Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1 SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analyte	s are included in this repo	rt but the laboratory is r	not certified by the governing authority.	This list may include analytes for w
the agency does not	•	,	iot corumed by the governing duthonty.	This list may molade analytes for w
the agency does not a Analysis Method	•	Matrix	Analyte	This list may include unarytes for w
0 ,	offer certification.	,		This ist may include analytes for w

Eurofins Midland

5

3

4

5

<u>о</u>

8

10

12

13

Method Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
3015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 55 of 188

Sample Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16810-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-16810-1	BH-3A	Solid	07/11/22 10:30	07/12/22 11:15	1'
880-16810-2	BH-4A	Solid	07/11/22 10:40	07/12/22 11:15	1'
880-16810-3	BH-5A	Solid	07/11/22 10:50	07/12/22 11:15	1'
880-16810-4	BH-6A	Solid	07/11/22 11:00	07/12/22 11:15	1'
880-16810-5	BH-7A	Solid	07/11/22 11:10	07/12/22 11:15	1'
880-16810-6	BH-9A	Solid	07/11/22 11:20	07/12/22 11:15	1'
880-16810-7	BH-10A	Solid	07/11/22 11:30	07/12/22 11:15	1'
880-16810-8	BH-11A	Solid	07/11/22 11:40	07/12/22 11:15	1'
880-16810-9	BH-12A	Solid	07/11/22 11:50	07/12/22 11:15	1'
880-16810-10	BH-13A	Solid	07/11/22 12:00	07/12/22 11:15	1'
880-16810-11	BH-14A	Solid	07/11/22 00:00	07/12/22 11:15	
880-16810-12	BH-15A	Solid	07/11/22 00:00	07/12/22 11:15	
880-16810-13	BH-16A	Solid	07/11/22 00:00	07/12/22 11:15	

4

Δ

0

8

9

10

10

13

Recei	ved i	by OC	CD: 1		2/202		:35	<u>:40 </u>	<u>PM</u>	1			,				ء ا		~ I							Page 56 of 1	188
	mr.pasined Dy	relieve.	Rohnquished by	Reimquished by:	Wikk My 11 - Commit											5 ∉ (iab use only)	ORDER #:) } }	(lab use only)							XCINCO Lalbora	
i :	1		lish:	uishe		-	<u> </u>					-			<u> </u>		45	5	se or	m	******	0	0	\sim	~	(ivit:	
	i oy		E (رِّ اللهِ الله	5 5	5	BT-12	18 H	-H2	BH-9	BH-7	8H-4	5-4B	149	SH-		1.5	•	Ē	Sampler Signature	Felephone No	City/State/Zip	Company Address	Company Name	Project Manager.	ST (C)	
			B	I by Da	cno	SH-13	-1	十	1	-	1	-	5	1	1					pler	phoi	Stat	pan	pan	ect N	enta F	
			'	2	- 10	, (J	5	=	9	-	7	σ	71		W	(,	Sig	ne k	e/Zi	y Ac	V Z	√an;		
-				(2	?	1				*										natu	ō	D	ddre	ame	agei		
				È	, 6 6											FIELD CODE				E.G	٠ ر	1	SS	1		Texa	
				100 K	2	1										CC				111	432-	2	2	10	E	is here	
				2	, <u>s</u>	:										DE				K)		2	2135	7	1	9	
-		<u> </u>	1	15																1	989	M: dland	01	まり	Į,	Lalboratories	
	D		1/4	5	· K																86	8	à		+	6.6	
	Date	Date	/11/22	ale	4						l										C	-			9		
-			1	\dashv	5	-				_		-	_		_		\dashv				CO	14	معصا		K		
	Ħ	=	1450		Becky, Heath											Beginning Depth					2	7	9		baskelle GAD.		
	Time	Time	0			7								_	<u> </u>	Ending Depth									0		
-	- 2	7(8	1 2		Ş				-	\dashv		\dashv			_		-					L	32		4		
	Received by ELOT		Conven by		Direct										1							79	250		#		
	ed by	September 1		2	1	X -			\dashv	\dashv	\dashv	-+	\dashv	-	11/2	Date Sampled						0			V		
	ELO		B		19119					_	1		_		22		-					W	E		0		
	-1	\	β	Atta	6	200	1150	945	220	170	- 3		3	1040	0										20		1
!	k	$ \downarrow $			Ce	\mathcal{G}	6	0	2 1	3	,	5	3	σ	020	Time Sampled				e-mail	Fax No				7		Ė
		1//	/ ==	ot	3															<u>a</u>	No.						
		12	F	7	(entennia)	_		_		_	_		4	_		Field Filtered	-		1	*							
		1	Ξ,	V: ICK		_	-	_ -	- -	4	-	4	-	4	-	Total # of Containers	-			Hearth						0 =	
		1}	\approx	L.	Resources	+		\dashv	+		+	+	\dashv	\dashv		HNO ₃	Pres			13						CHAI 12600 West I-20 Odessa, Texas 7	
		18	8		8	\dashv	\dashv	\dashv	$\neg \neg$	\dagger		\dashv	\dashv	+	\dashv	HCI	reservation & # of			(m)) We sa, ĭ	
		1			5	7		1			\top			\dashv		H ₂ SO ₄	ion &		d	600						CHAI st I-20 I	
		1						_								NaOH							1			CHAIN OF 12600 West I-20 East Odessa, Texas 79765	
-		_			Production	\downarrow	_			+	_			+	\dashv	Na ₂ S ₂ O ₃	Containers		- 1	(D)						IN OF East 79765	
	7	2		,	£	+	+	1 '	+	+	<u>' </u>	1	+		\dashv	None Other (Specify)	S,E			E E						cu	
	Date	Date Date	Date		2			-	1		-	\dagger		1	-	DW=Drinking Water SL=Sludge	7		ſ	# 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1 1	ì	ı		870.	
	\	<u>ې</u>			5	8-	+	+	╅	+	十	\top	\dagger	. \		GW = Groundwater S=Soil/Solid	Matrix			9	교 8 5			**	ซ	DY I	
	Time	=	뒥		7	ς .	€ -	K 7	< 8	+	< 	7	; 7	5 7		NP=Non-Potable Specify Other		П		ζ.	Report Format:		70 2. *1	Project Name: Fowe	3	N OF CUSTODY RECORL East '9765	
	ime Z	Time	Time		F.	+	+	+	10	+	1	+	+	+		TPH TX 1005 TX 1006	1		To part of the last	2	rma .)d 1,001	Project Loc-	TO NA	÷	ORL	
len	1	San	Cus	San	Lab						Ţ				. (Cations (Ca Mg Na K)			ratemeter	ŗ	· (# Og # 0.57.7.7.		me:		, ,	
nper	by C	nple by Si	els o tody	nple SsFr	orat	_	_		_	_	1	-	4	_		Anions (Cl SO4 Alkalinity)	TOTAL.	TCLP	NI COLONIA		∇	1	0 0	i Š	v	880	Ē
ature	oune	Hand Hand	n co seal	Cont	ory (_	-			+	- -	+	-	+		SAR / ESP / CEC		P	The second second	Stalltait	1	1	P			880-16810	
Upo	by Courier? UPS	Sample Hand Delivered by Sampler/Client Rep	ntain s on	Sample Containers Intact? VOCs Free of Headspace?	Laboratory Comments.	\dashv	+	+	+	+	-	+	+	+	+	Vetals As Ag Ba Cd Cr Pb Hg S	200		Analyze	1910		(001	0	t		Ē
in Re	, ⊏	cool livers	er(s)	rs Ini adsp	men	+	+	+	+	+	+	+	\dagger	+		Semivolatiles	+		yze F			000	0	i de	i	Chain	Ē
Temperature Upon Receipt		el'(s) ed ?ep ?	Labels on container(s) Custody seals on container(s)	Sample Containers Intact? VOCs Free of Headspace?	<u>s</u>	7	,	7	ايم)	-	אר	8	7	7	7 <u>B</u>	STEX 8021B/5030 or BTEX 8260	0		For		-	7		- 46		of C	Ē
	DH As	-	(s)	-		Ţ				\perp	Ţ	1	\prod			RCI		_	Section 2	7.		4		F		of Custody	
W	₹ead								+	1		-	1			IORM				÷				7	1	Y	
_	<u> </u>	k < <		< <	7	5 76	- ×	7	<u> </u> K	\	7	1~	7	1	10	Horide 300 m			و در	_	_	YOM		2			İ
-	nrected	r			-	+	+	†	\dagger	\dagger	\dagger	+	\dagger	+	+			4		L N		Z		Bettery			!
°C	Lone Star rected	ZZZ	222	ZZ		İ									R	USH TAT (Pre-Schedule) 24 4	8 ~2 h	ırs		NPDES				tes	,		
	======================================				~	0	8	1	8	8	6	ठ	ठ	-	s St	andard TAT					-			4			

Login Sample Receipt Checklist

Client: GHD Services Inc. Job Number: 880-16810-1 SDG Number: Lea County NM

List Source: Eurofins Midland

Login Number: 16810

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Eurofins Midland

Released to Imaging: 1/10/2023 1:18:19 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-16876-1

Laboratory Sample Delivery Group: Lea County NM Client Project/Site: Romeo Federal 22 Battery 1

For:

GHD Services Inc. 2135 South Loop 250 West Midland, Texas 79703

Attn: Becky Haskell

Debbie Simmons

Authorized for release by: 7/21/2022 11:25:19 AM

Debbie Simmons, Project Manager (832)986-6768

Debbie.Simmons@et.eurofinsus.com

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 1/10/2023 1:18:19 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

-

Α

5

6

Ω

9

4 4

12

13

Н

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1 Laboratory Job ID: 880-16876-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receint Checklists	27

2

3

4

6

8

10

1 2

13

Definitions/Glossary

Client: GHD Services Inc. Job ID: 880-16876-1

Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Qualifiers

GC VOA Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

В Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid Colony Forming Unit **CFU** Contains No Free Liquid CNF

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit

MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1 SDG: Lea County NM

Job ID: 880-16876-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-16876-1

Comments

per phone conversation with Heath Boyd, all samples collected this week from Romeo Battery should include a A after the ID

The samples were received on 7/13/2022 11:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.4° C.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-30096 recovered above the upper control limit for o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-30143 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-30143/20).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B NM: The method blank for preparation batch 880-29794 and analytical batch 880-29786 contained Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: GHD Services Inc. Job ID: 880-16876-1

Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Lab Sample ID: 880-16876-1 Client Sample ID: BH-19A

Date Collected: 07/12/22 10:40 **Matrix: Solid** Date Received: 07/13/22 11:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0000768	U	0.000399	0.0000768	mg/Kg		07/20/22 13:38	07/20/22 20:50	
Toluene	<0.0000910	U	0.000399	0.0000910	mg/Kg		07/20/22 13:38	07/20/22 20:50	•
Ethylbenzene	<0.000113	U	0.000399	0.000113	mg/Kg		07/20/22 13:38	07/20/22 20:50	•
m-Xylene & p-Xylene	<0.000202	U	0.000798	0.000202	mg/Kg		07/20/22 13:38	07/20/22 20:50	
o-Xylene	<0.0000687	U	0.000399	0.0000687	mg/Kg		07/20/22 13:38	07/20/22 20:50	
Xylenes, Total	<0.000202	U	0.000798	0.000202	mg/Kg		07/20/22 13:38	07/20/22 20:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	89		70 - 130				07/20/22 13:38	07/20/22 20:50	
1,4-Difluorobenzene (Surr)	106		70 - 130				07/20/22 13:38	07/20/22 20:50	•
Method: Total BTEX - Total B	ΓEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000202	U	0.000798	0.000202	mg/Kg			07/21/22 08:55	1
- Method: 8015 NM - Diesel Rai	nge Organic	s (DRO) (0	GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.0	U	49.9	15.0	mg/Kg			07/18/22 09:00	
Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	49.9	15.0	mg/Kg		07/15/22 08:39	07/15/22 14:24	
Diesel Range Organics (Over C10-C28)	<15.0	U	49.9	15.0	mg/Kg		07/15/22 08:39	07/15/22 14:24	,
Oll Range Organics (Over C28-C36)	<15.0	U	49.9	15.0	mg/Kg		07/15/22 08:39	07/15/22 14:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	92		70 - 130				07/15/22 08:39	07/15/22 14:24	
o-Terphenyl	101		70 - 130				07/15/22 08:39	07/15/22 14:24	1
Method: 300.0 - Anions, Ion C	_								
		O			1114	_			
Analyte	Result	Qualifier	RL 4.95	MDL	mg/Kg	D	Prepared	Analyzed 07/16/22 17:43	Dil Fa

Client Sample ID: BH-21A Lab Sample ID: 880-16876-2 Date Collected: 07/12/22 10:50 **Matrix: Solid**

Date Received: 07/13/22 11:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0000775	U	0.000402	0.0000775	mg/Kg		07/20/22 13:38	07/20/22 21:17	1
Toluene	<0.0000918	U	0.000402	0.0000918	mg/Kg		07/20/22 13:38	07/20/22 21:17	1
Ethylbenzene	< 0.000114	U	0.000402	0.000114	mg/Kg		07/20/22 13:38	07/20/22 21:17	1
m-Xylene & p-Xylene	<0.000203	U	0.000805	0.000203	mg/Kg		07/20/22 13:38	07/20/22 21:17	1
o-Xylene	<0.0000692	U	0.000402	0.0000692	mg/Kg		07/20/22 13:38	07/20/22 21:17	1
Xylenes, Total	<0.000203	U	0.000805	0.000203	mg/Kg		07/20/22 13:38	07/20/22 21:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130				07/20/22 13:38	07/20/22 21:17	1
1,4-Difluorobenzene (Surr)	93		70 - 130				07/20/22 13:38	07/20/22 21:17	1

Client: GHD Services Inc.

86

Job ID: 880-16876-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Lab Sample ID: 880-16876-2 **Client Sample ID: BH-21A**

Matrix: Solid

07/15/22 08:39 07/15/22 14:45

Date Collected: 07/12/22 10:50 Date Received: 07/13/22 11:00

Method: Total BTEX - Total BTEX Calculation

Analyte Total BTEX	Result <0.000203	Qualifier U	RL 0.000805	MDL 0.000203	Unit mg/Kg	<u>D</u> .	Prepared	Analyzed 07/21/22 08:55	Dil Fac
Method: 8015 NM - Diesel Ran	ge Organic	s (DRO) (G0	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	25.6	J	50.0	15.0	mg/Kg		-	07/18/22 09:00	1
Method: 8015B NM - Diesel Ra	nge Organ	ics (DRO) (0	GC)						
Analysta	•	Qualifier	DI DI	MDI	Linit	D	Droporod	Analyzad	Dil Eco

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 14:45	1
Diesel Range Organics (Over C10-C28)	25.6	JB	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 14:45	1
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130				07/15/22 08:39	07/15/22 14:45	1

Method: 300.0 - Anions, Ion Cl	hromatogra	phy - Solu	ble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.67	J	4.98	0.855	mg/Kg			07/16/22 17:52	1

70 - 130

Lab Sample ID: 880-16876-3 Client Sample ID: BH-22A Date Collected: 07/12/22 11:00 **Matrix: Solid**

Date Received: 07/13/22 11:00

Released to Imaging: 1/10/2023 1:18:19 PM

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0000765	U	0.000398	0.0000765	mg/Kg		07/20/22 13:38	07/20/22 23:03	1
Toluene	0.000245	J	0.000398	0.0000907	mg/Kg		07/20/22 13:38	07/20/22 23:03	1
Ethylbenzene	< 0.000112	U	0.000398	0.000112	mg/Kg		07/20/22 13:38	07/20/22 23:03	1
m-Xylene & p-Xylene	<0.000201	U	0.000795	0.000201	mg/Kg		07/20/22 13:38	07/20/22 23:03	1
o-Xylene	<0.0000684	U	0.000398	0.0000684	mg/Kg		07/20/22 13:38	07/20/22 23:03	1
Xylenes, Total	<0.000201	U	0.000795	0.000201	mg/Kg		07/20/22 13:38	07/20/22 23:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				07/20/22 13:38	07/20/22 23:03	
1,4-Difluorobenzene (Surr)	98		70 - 130				07/00/00 40:00	07/20/22 23:03	1
Method: Total BTEX - Total		tion	70 - 130				01/20/22 13.36	01/20/22 23.03	
Method: Total BTEX - Total	BTEX Calcula	tion Qualifier	70 - 130 RL	MDL	Unit	D	Prepared	Analyzed	
Method: Total BTEX - Total Analyte	BTEX Calcula	Qualifier		MDL 0.000201	Unit mg/Kg	<u>D</u>			Dil Fac
Method: Total BTEX - Total Analyte Total BTEX	BTEX Calcula Result 0.000245	Qualifier J	RL 0.000795			<u>D</u>		Analyzed	
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel R	BTEX Calcula Result 0.000245 ange Organic	Qualifier J	RL 0.000795	0.000201		<u>D</u>		Analyzed	
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel R Analyte	BTEX Calcula Result 0.000245 ange Organic	Qualifier J s (DRO) (Qualifier	RL 0.000795	0.000201	mg/Kg	_ =	Prepared	Analyzed 07/21/22 08:55	Dil Fac
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel R Analyte Total TPH	BTEX Calcula Result 0.000245 ange Organic Result 29.5	Qualifier J s (DRO) (O Qualifier J	RL 0.000795 GC) RL 50.0	0.000201	mg/Kg	_ =	Prepared	Analyzed 07/21/22 08:55	Dil Fac
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel R Analyte Total TPH Method: 8015B NM - Diesel	BTEX Calcula Result 0.000245 ange Organic Result 29.5 Range Organ	Qualifier J s (DRO) (O Qualifier J	RL 0.000795 GC) RL 50.0	0.000201 MDL 15.0	mg/Kg	_ =	Prepared	Analyzed 07/21/22 08:55	Dil Fac
	BTEX Calcula Result 0.000245 ange Organic Result 29.5 Range Organ	Qualifier J S (DRO) (O Qualifier J ics (DRO) Qualifier	RL 0.000795 RL 50.0 (GC)	0.000201 MDL 15.0	mg/Kg Unit mg/Kg	<u>-</u> <u>D</u>	Prepared Prepared	Analyzed 07/21/22 08:55 Analyzed 07/18/22 09:00 Analyzed	Dil Fac

| 1

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

SDG: Lea County NM

Client Sample ID: BH-22A
Date Collected: 07/12/22 11:00
Date Received: 07/13/22 11:00

Lab Sample ID: 880-16876-3

Matrix: Solid

Job ID: 880-16876-1

Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC) (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 15:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	76		70 - 130				07/15/22 08:39	07/15/22 15:06	1
o-Terphenyl	81		70 - 130				07/15/22 08:39	07/15/22 15:06	1

Method: 300.0 - Anions, Ion Chromatography - SolubleAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacChloride9.935.000.858mg/Kg07/16/22 18:011

 Chloride
 9.93
 5.00
 0.858 mg/Kg
 07/16/22 18:01
 1

 Client Sample ID: BH-23A
 Lab Sample ID: 880-16876-4

Date Collected: 07/12/22 11:10 Date Received: 07/13/22 11:00 Lab Sample ID: 880-16876-4
Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Dil Fac Analyte Result Qualifier **MDL** Unit Prepared RL Analyzed Benzene <0.0000768 U 0.000399 0.0000768 mg/Kg 07/20/22 13:38 07/20/22 23:29 07/20/22 13:38 07/20/22 23:29 Toluene <0.0000910 U 0.000399 0.0000910 mg/Kg Ethylbenzene <0.000113 U 0.000399 0.000113 mg/Kg 07/20/22 13:38 07/20/22 23:29 <0.000202 U 0.000798 0.000202 mg/Kg 07/20/22 13:38 07/20/22 23:29 m-Xylene & p-Xylene o-Xylene <0.0000687 U 0.000399 0.0000687 mg/Kg 07/20/22 13:38 07/20/22 23:29 0.000798 Xylenes, Total <0.000202 U 0.000202 mg/Kg 07/20/22 13:38 07/20/22 23:29 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 96 4-Bromofluorobenzene (Surr) 70 - 130 07/20/22 13:38 07/20/22 23:29 1,4-Difluorobenzene (Surr) 93 70 - 130 07/20/22 13:38 07/20/22 23:29

Method: Total BTEX - Total BTEX CalculationAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal BTEX<0.000202</td>U0.0007980.000202mg/Kg07/21/22 08:551

Method: 8015 NM - Diesel Range Organics (DRO) (GC)AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal TPH26.0J49.915.0mg/KgDPreparedAnalyzedDil Fac

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac <15.0 U 49.9 07/15/22 08:39 Gasoline Range Organics 15.0 mg/Kg 07/15/22 15:52 (GRO)-C6-C10 **Diesel Range Organics (Over** 49.9 15.0 mg/Kg 07/15/22 08:39 07/15/22 15:52 26.0 JB C10-C28) Oll Range Organics (Over C28-C36) <15.0 U 49.9 15.0 mg/Kg 07/15/22 08:39 07/15/22 15:52 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 70 - 130 07/15/22 08:39 07/15/22 15:52 79 85 70 - 130 07/15/22 08:39 07/15/22 15:52 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography - SolubleAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacChloride3.15J5.050.867mg/Kg07/16/22 18:291

Eurofins Midland

3

5

8

10

12

Client: GHD Services Inc.

Job ID: 880-16876-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Client Sample ID: BH-24A

Date Collected: 07/12/22 11:20 Date Received: 07/13/22 11:00

Lab Sample ID: 880-16876-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000768	U	0.000399	0.0000768	mg/Kg		07/20/22 13:38	07/20/22 23:54	1
Toluene	<0.0000910	U	0.000399	0.0000910	mg/Kg		07/20/22 13:38	07/20/22 23:54	1
Ethylbenzene	< 0.000113	U	0.000399	0.000113	mg/Kg		07/20/22 13:38	07/20/22 23:54	1
m-Xylene & p-Xylene	<0.000202	U	0.000798	0.000202	mg/Kg		07/20/22 13:38	07/20/22 23:54	1
o-Xylene	<0.0000687	U	0.000399	0.0000687	mg/Kg		07/20/22 13:38	07/20/22 23:54	1
Xylenes, Total	<0.000202	U	0.000798	0.000202	mg/Kg		07/20/22 13:38	07/20/22 23:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		70 - 130				07/20/22 13:38	07/20/22 23:54	1
1,4-Difluorobenzene (Surr)	96		70 - 130				07/20/22 13:38	07/20/22 23:54	1

Method: Total BTEX - Total BTEX Calculation

C10-C28)

Analyte RL **MDL** Unit Analyzed Dil Fac Result Qualifier D Prepared Total BTEX <0.000202 U 0.000798 0.000202 mg/Kg 07/21/22 08:55

Method: 8015 NM - Diesel Ran	ge Organic	s (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TDU	25.0	T	40.0	15.0	ma/Ka			07/18/22 00:00	

Lotal IPH	25.0	J	49.9	15.0	mg/Kg			07/18/22 09:00	1
Method: 8015B NM - Diesel Ra	nge Organi	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	49.9	15.0	mg/Kg		07/15/22 08:39	07/15/22 16:13	1
Diesel Range Organics (Over	25.0	JB	49.9	15.0	ma/Ka		07/15/22 08:39	07/15/22 16:13	1

Oll Range Organics (Over C28-C36)	<15.0 U	49.9	15.0 mg/Kg	07/15/22 08:39	07/15/22 16:13	1
Surrogate	%Recovery Qua	lifier Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	80	70 - 130		07/15/22 08:39	07/15/22 16:13	1
o-Terphenyl	87	70 - 130		07/15/22 08:39	07/15/22 16:13	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit Prepared Analyzed 5.04 Chloride 15.9 0.865 mg/Kg 07/16/22 18:38

Client Sample ID: BH-25A Lab Sample ID: 880-16876-6 Date Collected: 07/12/22 11:30 **Matrix: Solid**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000386	U	0.00200	0.000386	mg/Kg		07/15/22 09:11	07/20/22 18:32	1
Toluene	0.00103	J	0.00200	0.000457	mg/Kg		07/15/22 09:11	07/20/22 18:32	1
Ethylbenzene	0.000592	J	0.00200	0.000566	mg/Kg		07/15/22 09:11	07/20/22 18:32	1
m-Xylene & p-Xylene	0.00121	J	0.00401	0.00101	mg/Kg		07/15/22 09:11	07/20/22 18:32	1
o-Xylene	<0.000345	U	0.00200	0.000345	mg/Kg		07/15/22 09:11	07/20/22 18:32	1
Xylenes, Total	0.00121	J	0.00401	0.00101	mg/Kg		07/15/22 09:11	07/20/22 18:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				07/15/22 09:11	07/20/22 18:32	1
1,4-Difluorobenzene (Surr)	96		70 - 130				07/15/22 09:11	07/20/22 18:32	1

Eurofins Midland

Date Received: 07/13/22 11:00

Client: GHD Services Inc.

Job ID: 880-16876-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Lab Sample ID: 880-16876-6 **Client Sample ID: BH-25A**

Date Collected: 07/12/22 11:30 Matrix: Solid Date Received: 07/13/22 11:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00283	J	0.00401	0.00101	mg/Kg			07/21/22 08:55	1
Method: 8015 NM - Diesel Rai	nge Organic	s (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	28.2	J	50.0	15.0	mg/Kg			07/18/22 09:00	1
- Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 16:56	1
Diesel Range Organics (Over C10-C28)	28.2	JB	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 16:56	1
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130				07/15/22 08:39	07/15/22 16:56	1

Method: 300.0 - Anions, Ion Cl	nromatogra	phy - Solu	ble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.30		5.04	0.865	mg/Kg			07/16/22 19:06	1

Client Sample ID: BH-26A Lab Sample ID: 880-16876-7 Date Collected: 07/12/22 11:40 **Matrix: Solid**

Date Received: 07/13/22 11:00

Released to Imaging: 1/10/2023 1:18:19 PM

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000383	U	0.00199	0.000383	mg/Kg		07/15/22 09:11	07/20/22 18:52	1
Toluene	0.000646	J	0.00199	0.000454	mg/Kg		07/15/22 09:11	07/20/22 18:52	1
Ethylbenzene	< 0.000563	U	0.00199	0.000563	mg/Kg		07/15/22 09:11	07/20/22 18:52	1
m-Xylene & p-Xylene	<0.00101	U	0.00398	0.00101	mg/Kg		07/15/22 09:11	07/20/22 18:52	1
o-Xylene	< 0.000343	U	0.00199	0.000343	mg/Kg		07/15/22 09:11	07/20/22 18:52	1
Xylenes, Total	<0.00101	U	0.00398	0.00101	mg/Kg		07/15/22 09:11	07/20/22 18:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				07/15/22 09:11	07/20/22 18:52	1
4 4 5 77 1 (0)	00		70 400				07/45/00 00:44	07/00/00 40-50	4
	98 I BTEX Calcula	tion	70 - 130				07/15/22 09:11	07/20/22 18:52	1
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total Analyte	I BTEX Calcula Result	Qualifier	RL	MDL 0.00101		<u>D</u>	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Tota Analyte Total BTEX	I BTEX Calcula Result <0.00101	Qualifier U	RL 0.00398	MDL 0.00101		<u>D</u>			
Method: Total BTEX - Tota	I BTEX Calcula Result <0.00101 Range Organic	Qualifier U	RL 0.00398	0.00101		<u>D</u>		Analyzed	
Method: Total BTEX - Tota Analyte Total BTEX Method: 8015 NM - Diesel	I BTEX Calcula Result <0.00101 Range Organic	Qualifier U s (DRO) (Qualifier	RL 0.00398	0.00101	mg/Kg Unit	=	Prepared	Analyzed 07/21/22 08:55	Dil Fac
Method: Total BTEX - Tota Analyte Total BTEX Method: 8015 NM - Diesel Analyte	I BTEX Calcula Result <0.00101 Range Organic Result <15.0	Qualifier U s (DRO) (O Qualifier U	RL 0.00398 GC) RL 50.0	0.00101 MDL	mg/Kg Unit	=	Prepared	Analyzed 07/21/22 08:55	Dil Fac
Method: Total BTEX - Tota Analyte Total BTEX Method: 8015 NM - Diesel Analyte	I BTEX Calcula Result <0.00101 Range Organic Result <15.0 I Range Organ	Qualifier U s (DRO) (O Qualifier U	RL 0.00398 GC) RL 50.0	0.00101 MDL 15.0	mg/Kg Unit	=	Prepared	Analyzed 07/21/22 08:55	Dil Fac
Method: Total BTEX - Tota Analyte Total BTEX Method: 8015 NM - Diesel Analyte Total TPH Method: 8015B NM - Diese	I BTEX Calcula Result <0.00101 Range Organic Result <15.0 I Range Organ	Qualifier U S (DRO) (C Qualifier U ics (DRO) Qualifier	RL 0.00398 GC) RL 50.0	0.00101 MDL 15.0	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 07/21/22 08:55 Analyzed 07/18/22 09:00 Analyzed	Dil Fac

Job ID: 880-16876-1

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Lab Sample ID: 880-16876-7 Client Sample ID: BH-26A Date Collected: 07/12/22 11:40

Matrix: Solid

Date Received: 07/13/22 11:00

Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC) (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 17:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				07/15/22 08:39	07/15/22 17:17	1
o-Terphenyl	99		70 - 130				07/15/22 08:39	07/15/22 17:17	1

Method: 300.0 - Anions, Ion Ch	romatogra	phy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.70		4.98	0.855	mg/Kg			07/16/22 19:15	1

Lab Sample ID: 880-16876-8 **Client Sample ID: BH-28A** Date Collected: 07/12/22 11:50 **Matrix: Solid**

Date Received: 07/13/22 11:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000384	U	0.00200	0.000384	mg/Kg		07/15/22 09:11	07/20/22 19:13	1
Toluene	0.00343		0.00200	0.000455	mg/Kg		07/15/22 09:11	07/20/22 19:13	1
Ethylbenzene	0.00125	J	0.00200	0.000564	mg/Kg		07/15/22 09:11	07/20/22 19:13	1
m-Xylene & p-Xylene	0.00188	J	0.00399	0.00101	mg/Kg		07/15/22 09:11	07/20/22 19:13	1
o-Xylene	< 0.000343	U	0.00200	0.000343	mg/Kg		07/15/22 09:11	07/20/22 19:13	1
Xylenes, Total	0.00188	J	0.00399	0.00101	mg/Kg		07/15/22 09:11	07/20/22 19:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	107		70 - 130				07/15/22 09:11	07/20/22 19:13	1
1,4-Difluorobenzene (Surr)	88		70 - 130				07/15/22 09:11	07/20/22 19:13	1
Method: Total BTEX - Total B	ΓEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00656		0.00399	0.00101	mg/Kg			07/21/22 08:55	
: Method: 8015 NM - Diesel Rar	nge Organic	s (DRO) (G	SC)						
Method: 8015 NM - Diesel Rai Analyte	•	s (DRO) (G	RL	MDL		D	Prepared	Analyzed	Dil Fac
	•	Qualifier	•		Unit mg/Kg	<u>D</u>	Prepared	Analyzed 07/18/22 09:00	
Analyte	Result 27.5	Qualifier J	RL 49.9			<u>D</u>	Prepared		
Analyte Total TPH	Result 27.5	Qualifier J	RL 49.9		mg/Kg	<u>D</u>	Prepared Prepared		Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel R	Result 27.5	Qualifier J ics (DRO) Qualifier	RL 49.9	15.0 MDL	mg/Kg			07/18/22 09:00	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ranalyte Gasoline Range Organics	Result 27.5 ange Organ Result	Qualifier J ics (DRO) Qualifier U	RL 49.9 (GC)	15.0 MDL 15.0	mg/Kg Unit		Prepared 07/15/22 08:39	07/18/22 09:00 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Ranalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 27.5 ange Organ Result <15.0	Qualifier J ics (DRO) Qualifier U JB	RL 49.9 (GC) RL 49.9	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39	07/18/22 09:00 Analyzed 07/15/22 17:38	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ranalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 27.5	Qualifier J ics (DRO) Qualifier U JB	RL 49.9 (GC) RL 49.9 49.9	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39 07/15/22 08:39 Prepared	07/18/22 09:00 Analyzed 07/15/22 17:38 07/15/22 17:38 07/15/22 17:38 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ranalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 27.5 ange Organ Result <15.0 27.5 <15.0	Qualifier J ics (DRO) Qualifier U JB	RL 49.9 (GC) RL 49.9 49.9	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39 07/15/22 08:39	07/18/22 09:00 Analyzed 07/15/22 17:38 07/15/22 17:38	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ranalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 27.5	Qualifier J ics (DRO) Qualifier U JB	RL 49.9 (GC) RL 49.9 49.9	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39 07/15/22 08:39 Prepared 07/15/22 08:39	07/18/22 09:00 Analyzed 07/15/22 17:38 07/15/22 17:38 07/15/22 17:38 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Ranalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 27.5 27.5	Qualifier J Qualifier U J B U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39 07/15/22 08:39 Prepared 07/15/22 08:39	07/18/22 09:00 Analyzed 07/15/22 17:38 07/15/22 17:38 07/15/22 17:38 Analyzed 07/15/22 17:38	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ranalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result 27.5 27.5	Qualifier J Qualifier U J B U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39 07/15/22 08:39 Prepared 07/15/22 08:39	07/18/22 09:00 Analyzed 07/15/22 17:38 07/15/22 17:38 07/15/22 17:38 Analyzed 07/15/22 17:38	1

Eurofins Midland

7/21/2022

Client Sample ID: BH-30A Date Collected: 07/12/22 12:00

Client: GHD Services Inc.

Job ID: 880-16876-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Lab Sample ID: 880-16876-9

Matrix: Solid

Analyte	ınic Compoi Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.000566	J	0.00201	0.000387	mg/Kg		07/15/22 09:11	07/20/22 19:33	1
Toluene	0.00421		0.00201	0.000459	mg/Kg		07/15/22 09:11	07/20/22 19:33	1
Ethylbenzene	0.00248		0.00201	0.000568	mg/Kg		07/15/22 09:11	07/20/22 19:33	1
m-Xylene & p-Xylene	0.00299	J	0.00402	0.00102	mg/Kg		07/15/22 09:11	07/20/22 19:33	1
o-Xylene	0.000673	J	0.00201	0.000346	mg/Kg		07/15/22 09:11	07/20/22 19:33	1
Xylenes, Total	0.00366	J	0.00402	0.00102	mg/Kg		07/15/22 09:11	07/20/22 19:33	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		70 - 130				07/15/22 09:11	07/20/22 19:33	1
1,4-Difluorobenzene (Surr)	96		70 - 130				07/15/22 09:11	07/20/22 19:33	•
Method: Total BTEX - Total B1	ΓEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte Total BTEX	0.0109	Qualifier	0.00402	0.00102		<u>D</u>	Prepared	Analyzed 07/21/22 08:55	
Total BTEX Method: 8015 NM - Diesel Rar	0.0109 nge Organic	s (DRO) (0	0.00402 GC)	0.00102	mg/Kg			07/21/22 08:55	1
Total BTEX Method: 8015 NM - Diesel Rar Analyte	0.0109 nge Organic Result	s (DRO) (O	0.00402 GC)	0.00102 MDL	mg/Kg Unit	<u>D</u>	Prepared Prepared	07/21/22 08:55 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Rar	0.0109 nge Organic	s (DRO) (O	0.00402 GC)	0.00102 MDL	mg/Kg			07/21/22 08:55	1
Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Ra	0.0109 nge Organic Result 25.1 ange Organi	s (DRO) (O Qualifier J	0.00402 GC) RL 50.0	0.00102 MDL 15.0	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	07/21/22 08:55 Analyzed 07/18/22 09:00	Dil Fac
Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte	0.0109 nge Organic Result 25.1 ange Organic Result	s (DRO) (O Qualifier J ics (DRO) Qualifier	0.00402 RL 50.0 (GC) RL	0.00102 MDL 15.0 MDL	mg/Kg Unit mg/Kg Unit		Prepared Prepared	07/21/22 08:55 Analyzed 07/18/22 09:00 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Ra	0.0109 nge Organic Result 25.1 ange Organi	s (DRO) (O Qualifier J ics (DRO) Qualifier	0.00402 GC) RL 50.0	0.00102 MDL 15.0 MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	07/21/22 08:55 Analyzed 07/18/22 09:00 Analyzed	Dil Fac
Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	0.0109 nge Organic Result 25.1 ange Organic Result	s (DRO) (O Qualifier J ics (DRO) Qualifier	0.00402 RL 50.0 (GC) RL	0.00102 MDL 15.0 MDL 15.0	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared 07/15/22 08:39	07/21/22 08:55 Analyzed 07/18/22 09:00 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Rar Analyte Gasoline Range Organics (GRO)-C6-C10	0.0109 nge Organic Result 25.1 ange Organic Result <15.0	s (DRO) (O Qualifier J ics (DRO) Qualifier U	0.00402 RL 50.0 (GC) RL 50.0	0.00102 MDL 15.0 MDL 15.0	mg/Kg Unit mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared 07/15/22 08:39 07/15/22 08:39	07/21/22 08:55 Analyzed 07/18/22 09:00 Analyzed 07/15/22 17:59	Dil Fac
Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	0.0109 nge Organic Result 25.1 ange Organic Result <15.0 25.1	s (DRO) (O Qualifier J ics (DRO) Qualifier U	0.00402 RL 50.0 (GC) RL 50.0	0.00102 MDL 15.0 MDL 15.0	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	<u>D</u>	Prepared Prepared 07/15/22 08:39 07/15/22 08:39	07/21/22 08:55 Analyzed 07/18/22 09:00 Analyzed 07/15/22 17:59 07/15/22 17:59	Dil Fac
Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	0.0109 nge Organic Result 25.1 ange Organic Result <15.0 25.1 <15.0	s (DRO) (O Qualifier J ics (DRO) Qualifier U	0.00402 RL 50.0 RL 50.0 S0.0 50.0	0.00102 MDL 15.0 MDL 15.0	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	<u>D</u>	Prepared 07/15/22 08:39 07/15/22 08:39 07/15/22 08:39 Prepared	07/21/22 08:55 Analyzed 07/18/22 09:00 Analyzed 07/15/22 17:59 07/15/22 17:59	Dil Fac

4.99

58.0

0.857 mg/Kg

Eurofins Midland

07/16/22 19:33

Chloride

Surrogate Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-16876-1	BH-19A	89	106	
880-16876-2	BH-21A	85	93	
880-16876-3	BH-22A	103	98	
880-16876-4	BH-23A	96	93	
880-16876-5	BH-24A	80	96	
880-16876-6	BH-25A	109	96	
880-16876-7	BH-26A	107	98	
880-16876-8	BH-28A	107	88	
880-16876-9	BH-30A	102	96	
LCS 880-29817/1-A	Lab Control Sample	109	97	
LCS 880-30144/1-A	Lab Control Sample	102	108	
LCSD 880-29817/2-A	Lab Control Sample Dup	101	95	
LCSD 880-30144/2-A	Lab Control Sample Dup	102	97	
MB 880-29817/5-A	Method Blank	98	96	
MB 880-30144/5-A	Method Blank	74	96	
Surrogate Legend				
BFB = 4-Bromofluorob	(0)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recover	ery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	70-130)	
880-16876-1	BH-19A	92	101	
880-16876-2	BH-21A	81	86	
880-16876-3	BH-22A	76	81	
880-16876-4	BH-23A	79	85	
880-16876-5	BH-24A	80	87	
880-16876-6	BH-25A	80	87	
880-16876-7	BH-26A	88	99	
880-16876-8	BH-28A	79	83	
880-16876-9	BH-30A	80	87	
LCS 880-29794/2-A	Lab Control Sample	108	118	
LCSD 880-29794/3-A	Lab Control Sample Dup	114	122	
MB 880-29794/1-A	Method Blank	103	119	

Eurofins Midland

OTPH = o-Terphenyl

QC Sample Results

Client: GHD Services Inc. Job ID: 880-16876-1 Project/Site: Romeo Federal 22 Battery 1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-29817/5-A

Lab Sample ID: LCS 880-29817/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 30096

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29817

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000385	U	0.00200	0.000385	mg/Kg		07/15/22 09:11	07/20/22 12:46	1
Toluene	< 0.000456	U	0.00200	0.000456	mg/Kg		07/15/22 09:11	07/20/22 12:46	1
Ethylbenzene	< 0.000565	U	0.00200	0.000565	mg/Kg		07/15/22 09:11	07/20/22 12:46	1
m-Xylene & p-Xylene	<0.00101	U	0.00400	0.00101	mg/Kg		07/15/22 09:11	07/20/22 12:46	1
o-Xylene	< 0.000344	U	0.00200	0.000344	mg/Kg		07/15/22 09:11	07/20/22 12:46	1
Xylenes, Total	<0.00101	U	0.00400	0.00101	mg/Kg		07/15/22 09:11	07/20/22 12:46	1
	MR	MR							

MB MB

Surrogate	%Recovery Quality	fier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	70 - 130	07/15/22 09:11	07/20/22 12:46	1
1,4-Difluorobenzene (Surr)	96	70 - 130	07/15/22 09:11	07/20/22 12:46	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29817

Analysis Batch: 30096 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Benzene 105 70 - 130 0.100 0.1048 mg/Kg Toluene 0.100 0.1037 mg/Kg 70 - 130 104 Ethylbenzene 0.100 0.1069 mg/Kg 107 70 - 130 m-Xylene & p-Xylene 0.200 0.2278 mg/Kg 114 70 - 130 o-Xylene 0.100 0.1203 mg/Kg 120 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 30096

Lab Sample ID: LCSD 880-29817/2-A

Prep Type: Total/NA Prep Batch: 29817

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.09444		mg/Kg		94	70 - 130	10	35	
Toluene	0.100	0.09316		mg/Kg		93	70 - 130	11	35	
Ethylbenzene	0.100	0.09138		mg/Kg		91	70 - 130	16	35	
m-Xylene & p-Xylene	0.200	0.1945		mg/Kg		97	70 - 130	16	35	
o-Xylene	0.100	0.1025		mg/Kg		103	70 - 130	16	35	

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	95	70 - 130

Lab Sample ID: MB 880-30144/5-A

Matrix: Solid

Analysis Batch: 30143

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 30144

	INIB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0000770	U	0.000400	0.0000770	mg/Kg		07/20/22 13:38	07/20/22 16:53	1
Toluene	<0.0000912	U	0.000400	0.0000912	mg/Kg		07/20/22 13:38	07/20/22 16:53	1

QC Sample Results

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-30144/5-A

Matrix: Solid

Analysis Batch: 30143

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 30144

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<0.000113	U	0.000400	0.000113	mg/Kg		07/20/22 13:38	07/20/22 16:53	1
m-Xylene & p-Xylene	<0.000202	U	0.000800	0.000202	mg/Kg		07/20/22 13:38	07/20/22 16:53	1
o-Xylene	<0.0000688	U	0.000400	0.0000688	mg/Kg		07/20/22 13:38	07/20/22 16:53	1
Xylenes, Total	<0.000202	U	0.000800	0.000202	mg/Kg		07/20/22 13:38	07/20/22 16:53	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analys	zed Dil Fa	ac
4-Bromofluorobenzene (Surr)	74		70 - 130	07/20/22 13:38 07/20/22	16:53	1
1,4-Difluorobenzene (Surr)	96		70 - 130	07/20/22 13:38 07/20/22	16:53	1

Lab Sample ID: LCS 880-30144/1-A

Matrix: Solid

Analysis Batch: 30143

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 30144

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09565		mg/Kg		96	70 - 130	
Toluene	0.100	0.08912		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.09670		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	0.200	0.1865		mg/Kg		93	70 - 130	
o-Xylene	0.100	0.1011		mg/Kg		101	70 - 130	

LCS LCS

Surrogate	%Recovery Qualitier	Limits
4-Bromofluorobenzene (Surr)	102	70 - 130
1,4-Difluorobenzene (Surr)	108	70 - 130

Lab Sample ID: LCSD 880-30144/2-A

Matrix: Solid

Analysis Batch: 30143

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 30144

_	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08707		mg/Kg		87	70 - 130	9	35
Toluene	0.100	0.08620		mg/Kg		86	70 - 130	3	35
Ethylbenzene	0.100	0.09094		mg/Kg		91	70 - 130	6	35
m-Xylene & p-Xylene	0.200	0.1750		mg/Kg		87	70 - 130	6	35
o-Xylene	0.100	0.09566		mg/Kg		96	70 - 130	6	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-29794/1-A

Matrix: Solid

Analysis Batch: 29786

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 29794

	MB	B MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	15.50	J	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 10:08	1
(GRO)-C6-C10									

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-29794/1-A

Matrix: Solid

Analysis Batch: 29786

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 29794

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	15.19	J	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 10:08	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 10:08	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130	07/15/22 08:39 07/15/22 10:08	1
o-Terphenyl	119		70 - 130	07/15/22 08:39 07/15/22 10:08	1

Lab Sample ID: LCS 880-29794/2-A

Matrix: Solid

Analysis Batch: 29786

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 29794

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	967.8		mg/Kg		97	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	935.7		mg/Kg		94	70 - 130	
C10_C28\								

C10-C28)

LCS LCS Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 108 70 - 130 o-Terphenyl 118

Lab Sample ID: LCSD 880-29794/3-A

Matrix: Solid **Analysis Batch: 29786** Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 29794

Spike LCSD LCSD %Rec **RPD Analyte** Added Result Qualifier Unit D %Rec Limits RPD Limit Gasoline Range Organics 1000 1074 mg/Kg 107 70 - 130 10 20 (GRO)-C6-C10 70 - 130 Diesel Range Organics (Over 1000 1032 mg/Kg 103 10 20

C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	114		70 - 130
o-Terphenyl	122		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-29660/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 29862

Prep Type: Soluble

MB MB Analyte Result Qualifier RL MDL Unit Analyzed D Prepared Dil Fac Chloride <0.858 U 5.00 0.858 mg/Kg 07/16/22 14:53

QC Sample Results

Client: GHD Services Inc. Job ID: 880-16876-1

Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-29660/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29862 LCS LCS Spike %Rec Analyte Added Result Qualifier Unit Limits D %Rec

250

Lab Sample ID: LCSD 880-29660/3-A Client Sample ID: Lab Control Sample Dup

264.9

mg/Kg

106

90 - 110

Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 29862

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 90 - 110 264.8 mg/Kg 106 0

Lab Sample ID: 880-16876-3 MS Client Sample ID: BH-22A

Matrix: Solid Prep Type: Soluble

Analysis Batch: 29862

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec Chloride 9.93 250 276.3 90 - 110 mg/Kg

Client Sample ID: BH-22A **Prep Type: Soluble**

Matrix: Solid

Chloride

Analysis Batch: 29862

Released to Imaging: 1/10/2023 1:18:19 PM

MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 9.93 250 276.0 106 mg/Kg 90 - 110

Eurofins Midland

Spike Sample Sample

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1 SDG: Lea County NM

GC VOA

Prep Batch: 29817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-6	BH-25A	Total/NA	Solid	5035	
880-16876-7	BH-26A	Total/NA	Solid	5035	
880-16876-8	BH-28A	Total/NA	Solid	5035	
880-16876-9	BH-30A	Total/NA	Solid	5035	
MB 880-29817/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29817/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29817/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 30096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-6	BH-25A	Total/NA	Solid	8021B	29817
880-16876-7	BH-26A	Total/NA	Solid	8021B	29817
880-16876-8	BH-28A	Total/NA	Solid	8021B	29817
880-16876-9	BH-30A	Total/NA	Solid	8021B	29817
MB 880-29817/5-A	Method Blank	Total/NA	Solid	8021B	29817
LCS 880-29817/1-A	Lab Control Sample	Total/NA	Solid	8021B	29817
LCSD 880-29817/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29817

Analysis Batch: 30143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-1	BH-19A	Total/NA	Solid	8021B	30144
880-16876-2	BH-21A	Total/NA	Solid	8021B	30144
880-16876-3	BH-22A	Total/NA	Solid	8021B	30144
880-16876-4	BH-23A	Total/NA	Solid	8021B	30144
880-16876-5	BH-24A	Total/NA	Solid	8021B	30144
MB 880-30144/5-A	Method Blank	Total/NA	Solid	8021B	30144
LCS 880-30144/1-A	Lab Control Sample	Total/NA	Solid	8021B	30144
LCSD 880-30144/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	30144

Prep Batch: 30144

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-1	BH-19A	Total/NA	Solid	5035	
880-16876-2	BH-21A	Total/NA	Solid	5035	
880-16876-3	BH-22A	Total/NA	Solid	5035	
880-16876-4	BH-23A	Total/NA	Solid	5035	
880-16876-5	BH-24A	Total/NA	Solid	5035	
MB 880-30144/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-30144/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-30144/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 30197

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-1	BH-19A	Total/NA	Solid	Total BTEX	
880-16876-2	BH-21A	Total/NA	Solid	Total BTEX	
880-16876-3	BH-22A	Total/NA	Solid	Total BTEX	
880-16876-4	BH-23A	Total/NA	Solid	Total BTEX	
880-16876-5	BH-24A	Total/NA	Solid	Total BTEX	
880-16876-6	BH-25A	Total/NA	Solid	Total BTEX	
880-16876-7	BH-26A	Total/NA	Solid	Total BTEX	
880-16876-8	BH-28A	Total/NA	Solid	Total BTEX	
880-16876-9	BH-30A	Total/NA	Solid	Total BTEX	

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1 SDG: Lea County NM

GC Semi VOA

Analysis Batch: 29786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-1	BH-19A	Total/NA	Solid	8015B NM	29794
880-16876-2	BH-21A	Total/NA	Solid	8015B NM	29794
880-16876-3	BH-22A	Total/NA	Solid	8015B NM	29794
880-16876-4	BH-23A	Total/NA	Solid	8015B NM	29794
880-16876-5	BH-24A	Total/NA	Solid	8015B NM	29794
880-16876-6	BH-25A	Total/NA	Solid	8015B NM	29794
880-16876-7	BH-26A	Total/NA	Solid	8015B NM	29794
880-16876-8	BH-28A	Total/NA	Solid	8015B NM	29794
880-16876-9	BH-30A	Total/NA	Solid	8015B NM	29794
MB 880-29794/1-A	Method Blank	Total/NA	Solid	8015B NM	29794
LCS 880-29794/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29794
LCSD 880-29794/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29794

Prep Batch: 29794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-1	BH-19A	Total/NA	Solid	8015NM Prep	
880-16876-2	BH-21A	Total/NA	Solid	8015NM Prep	
880-16876-3	BH-22A	Total/NA	Solid	8015NM Prep	
880-16876-4	BH-23A	Total/NA	Solid	8015NM Prep	
880-16876-5	BH-24A	Total/NA	Solid	8015NM Prep	
880-16876-6	BH-25A	Total/NA	Solid	8015NM Prep	
880-16876-7	BH-26A	Total/NA	Solid	8015NM Prep	
880-16876-8	BH-28A	Total/NA	Solid	8015NM Prep	
880-16876-9	BH-30A	Total/NA	Solid	8015NM Prep	
MB 880-29794/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29794/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29794/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 29903

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-1	BH-19A	Total/NA	Solid	8015 NM	
880-16876-2	BH-21A	Total/NA	Solid	8015 NM	
880-16876-3	BH-22A	Total/NA	Solid	8015 NM	
880-16876-4	BH-23A	Total/NA	Solid	8015 NM	
880-16876-5	BH-24A	Total/NA	Solid	8015 NM	
880-16876-6	BH-25A	Total/NA	Solid	8015 NM	
880-16876-7	BH-26A	Total/NA	Solid	8015 NM	
880-16876-8	BH-28A	Total/NA	Solid	8015 NM	
880-16876-9	BH-30A	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 29660

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-1	BH-19A	Soluble	Solid	DI Leach	
880-16876-2	BH-21A	Soluble	Solid	DI Leach	
880-16876-3	BH-22A	Soluble	Solid	DI Leach	
880-16876-4	BH-23A	Soluble	Solid	DI Leach	
880-16876-5	BH-24A	Soluble	Solid	DI Leach	
880-16876-6	BH-25A	Soluble	Solid	DI Leach	
880-16876-7	BH-26A	Soluble	Solid	DI Leach	

Eurofins Midland

Page 18 of 27

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1 SDG: Lea County NM

HPLC/IC (Continued)

Leach Batch: 29660 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-8	BH-28A	Soluble	Solid	DI Leach	
880-16876-9	BH-30A	Soluble	Solid	DI Leach	
MB 880-29660/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29660/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29660/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-16876-3 MS	BH-22A	Soluble	Solid	DI Leach	
880-16876-3 MSD	BH-22A	Soluble	Solid	DI Leach	

Analysis Batch: 29862

Released to Imaging: 1/10/2023 1:18:19 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16876-1	BH-19A Soluble		Solid	300.0	29660
880-16876-2	BH-21A	Soluble	Solid	300.0	29660
880-16876-3	BH-22A	Soluble	Solid	300.0	29660
880-16876-4	BH-23A	Soluble	Solid	300.0	29660
880-16876-5	BH-24A	Soluble	Solid	300.0	29660
880-16876-6	BH-25A	Soluble	Solid	300.0	29660
880-16876-7	BH-26A	Soluble	Solid	300.0	29660
880-16876-8	BH-28A	Soluble	Solid	300.0	29660
880-16876-9	BH-30A	Soluble	Solid	300.0	29660
MB 880-29660/1-A	Method Blank	Soluble	Solid	300.0	29660
LCS 880-29660/2-A	Lab Control Sample	Soluble	Solid	300.0	29660
LCSD 880-29660/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29660
880-16876-3 MS	BH-22A	Soluble	Solid	300.0	29660
880-16876-3 MSD	BH-22A	Soluble	Solid	300.0	29660

Eurofins Midland

1

3

A

5

7

9

10

12

14

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1

SDG: Lea County NM

Client Sample ID: BH-19A

Date Collected: 07/12/22 10:40 Date Received: 07/13/22 11:00

Lab Sample ID: 880-16876-1

07/16/22 17:52 CH

29862

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 20:50	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30197	07/21/22 08:55	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29903	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 14:24	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 17:43	CH	XEN MID

Client Sample ID: BH-21A Lab Sample ID: 880-16876-2 Date Collected: 07/12/22 10:50 **Matrix: Solid**

Date Received: 07/13/22 11:00

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Number or Analyzed Type Run **Factor Amount** Amount **Analyst** Lab Total/NA Prep 5035 30144 07/20/22 13:38 MR XEN MID 4.97 g 5 mL Total/NA 8021B 5 mL 30143 07/20/22 21:17 MR XEN MID Analysis 1.0 mL 1 Total/NA Total BTEX Analysis 1 30197 07/21/22 08:55 SM XEN MID Total/NA 8015 NM XEN MID Analysis 1 29903 07/18/22 09:00 SM Total/NA Prep 8015NM Prep 10.00 g 10 mL 29794 07/15/22 08:39 DM XEN MID Total/NA 8015B NM 29786 07/15/22 14:45 SM XEN MID Analysis 1 Soluble 50 mL 29660 07/13/22 12:39 SMC XEN MID Leach DI Leach 5.02 g

Client Sample ID: BH-22A Lab Sample ID: 880-16876-3 Matrix: Solid

1

Date Collected: 07/12/22 11:00 Date Received: 07/13/22 11:00

Analysis

300.0

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 23:03	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30197	07/21/22 08:55	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29903	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 15:06	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 18:01	CH	XEN MID

Client Sample ID: BH-23A Lab Sample ID: 880-16876-4 **Matrix: Solid**

Released to Imaging: 1/10/2023 1:18:19 PM

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 23:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30197	07/21/22 08:55	SM	XEN MID

Eurofins Midland

XEN MID

Date Collected: 07/12/22 11:10 Date Received: 07/13/22 11:00

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Lab Sample ID: 880-16876-4

Matrix: Solid

Job ID: 880-16876-1

SDG: Lea County NM

Client Sample ID: BH-23A Date Collected: 07/12/22 11:10 Date Received: 07/13/22 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29903	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 15:52	SM	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 18:29	CH	XEN MID

Client Sample ID: BH-24A Lab Sample ID: 880-16876-5 Date Collected: 07/12/22 11:20 **Matrix: Solid**

Date Received: 07/13/22 11:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 23:54	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30197	07/21/22 08:55	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29903	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 16:13	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 18:38	CH	XEN MID

Lab Sample ID: 880-16876-6 Client Sample ID: BH-25A Date Collected: 07/12/22 11:30 **Matrix: Solid**

Date Received: 07/13/22 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29817	07/15/22 09:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30096	07/20/22 18:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30197	07/21/22 08:55	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29903	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 16:56	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 19:06	CH	XEN MID

Client Sample ID: BH-26A Lab Sample ID: 880-16876-7 Date Collected: 07/12/22 11:40 **Matrix: Solid**

Date Received: 07/13/22 11:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	29817	07/15/22 09:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30096	07/20/22 18:52	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30197	07/21/22 08:55	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29903	07/18/22 09:00	SM	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	29794 29786	07/15/22 08:39 07/15/22 17:17	DM SM	XEN MID XEN MID

Eurofins Midland

Page 21 of 27

Lab Chronicle

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1 SDG: Lea County NM

Lab Sample ID: 880-16876-7

Client Sample ID: BH-26A

Date Collected: 07/12/22 11:40 Matrix: Solid Date Received: 07/13/22 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 19:15	CH	XEN MID

Client Sample ID: BH-28A Lab Sample ID: 880-16876-8 Date Collected: 07/12/22 11:50 Matrix: Solid

Date Received: 07/13/22 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29817	07/15/22 09:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30096	07/20/22 19:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30197	07/21/22 08:55	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29903	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 17:38	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 19:24	CH	XEN MID

Lab Sample ID: 880-16876-9 Client Sample ID: BH-30A Date Collected: 07/12/22 12:00 **Matrix: Solid**

Date Received: 07/13/22 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29817	07/15/22 09:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30096	07/20/22 19:33	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30197	07/21/22 08:55	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29903	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 17:59	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29660	07/13/22 12:39	SMC	XEN MID
Soluble	Analysis	300.0		1			29862	07/16/22 19:33	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1 Job ID: 880-16876-1

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		rogram ELAP	Identification Number T104704400-22-24	Expiration Date 06-30-23
The following analyte the agency does not o	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

Method Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16876-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-16876-1	BH-19A	Solid	07/12/22 10:40	07/13/22 11:00
880-16876-2	BH-21A	Solid	07/12/22 10:50	07/13/22 11:00
880-16876-3	BH-22A	Solid	07/12/22 11:00	07/13/22 11:00
880-16876-4	BH-23A	Solid	07/12/22 11:10	07/13/22 11:00
880-16876-5	BH-24A	Solid	07/12/22 11:20	07/13/22 11:00
880-16876-6	BH-25A	Solid	07/12/22 11:30	07/13/22 11:00
880-16876-7	BH-26A	Solid	07/12/22 11:40	07/13/22 11:00
880-16876-8	BH-28A	Solid	07/12/22 11:50	07/13/22 11:00
880-16876-9	BH-30A	Solid	07/12/22 12:00	07/13/22 11:00

Re	eceive	ed by 6	CD: i	12/12/ elis	/202	2 2:	35:4	1 0 1	PM				·	Π	T	_AB # (iab use o	10	बि							83 83 87 WILLIAM OF Texas Page Pag	of 18 ≭ ∥
	i i	rjuishe	alinquished by	W. K	pecial Instructions: Plase					_				18_	lin.	1		=	"		0	0	0	7	knyi	.D <u>□</u>
		d by	d by	ed by	struct		42	がた	ガエ	42	H2- H21	BH.	BH-22	カスー	かち	880-16876			Sampler Signature.	Telephone No	City/State/Zip	Company Address	Company Name	Project Manager	eumo Ommo	7. 2.
			0.		ions:		7	1		-25	25	- 73	7	7	1	- 1			ler S	hone	tale/.	any ,	any	ot Ma	ntal l	alse L. L
		j	Vi	Mishler@ UNLOE. com	E S		00	2	7	5	-	N	^	-		Chain of			ignat	No	Zip	Addr	Nam	ınage	o de"	
			\	(5)	x														me.		٨	ess	O	면	*Tex	<u>)</u> 5
				VIV	Email Becky, Heath,											Custody FIELD CODE			X	\int_{1}^{∞}	3	2135	3	Decky.	d # E	T.
				108	17.											Ď			/	h i	Midlend	W	O I O	CC	<u>.</u> == ==	ૐ 록 :
	-	-		15	sec															r	ſ	. ` '		#	_	D A
		Date	Pate	Date	7															00	1	\in		5		
		Ō	77	6	南															ć				20	-	
			7				\top				1					Beginning Depth				00		Loop		Jaskall		
		Time	Time	lime	Direct		۲,	-,	-, -	1	1		-		M	Ending Depth				8	79703			0		
		R ec	R P	Rec		\top	\top	\top	1	1	十	\dagger	1		7/						3	250		OHD	-	
		Received by		Received	B:11:8	-	78_	+	+	+	+	+	\dashv	-	12	Date Sampled							The state of the s	J		
		by E	7	1	4										22							E				
			1),	न	6	-	בוקט בו	7 7	= =	= =		5	= 1	1050					•	•				Com		
		0		NIKE	enternial	So	9	, 2	1 20	200	2 0	, ç	3	0	040	Time Sampled			e-	Fax No				5		
		3	1	12	627														e-mail·	No:						
		0			5	1	+	1	\bot			_	_	\downarrow		Field Filtered			#	. j						
		10			<u> </u>			+		+	+	<u> </u>		4	-	Total # of Containers Ice			50	1					0 %	
		1			lesouries.					1	\top			+		HNO ₃	Prese		5						CHAI 12600 West I-20 Odessa, Texas 7	
					50			1		Ţ		I	1	\prod		HCI	valion		0						West a, Te	
				1	y -	+	+	+	-	+	+	+	+	+	-	H₂SO₄ NaOH	Preservation & # o		Boyd						CHAI (1-20 exas 7	
				Š	£ -	+-	+-	+	+	+	+	+	+	\dagger		Na ₂ S ₂ O ₃	5 - 2		1							
ſ		7	~1	}	4.4.5		Ţ		I	1		1	1			None	Containers		/						9 1-C1	
	Date	Dale 3	Dale Dale		3		-	-	-		-	+	+	-	-	Other (Specify) DV=Drinking Water SL=Sludge			57						JST	
		183	2			8	1-	+	\uparrow	+	+	+	+		7	GW = Groundwater S=Soil/Solid	Matrix		Ú	Rep				_	<i>N OF CUSTODY RECORD AND ANALYSIS REQUEST</i> East Phone: 432-563-1800 9765 Fax: 432-563-1713	
	-		2 < ∃		-	<u> </u>	-		-		 -	-	-	+		NP=Non-Potable Specify Other			Con	Report Format		Pro	Mary .	Project Name: Lonco	'RE(
	lme				-	~	7	7	17	イ	1	7	7	+	-	<u>TPH. 418 1 8015M 80</u> TPH TX 1005 TX 1006	15B	To TITI Confession	2	orma	פר	Project Loc:	Project#:	ct Na	COR	
1	Ten) Cus	San	2									士		Cations (Ca Mg Na K)		XX MILES		ř.	PO#:	Loc:	ct #:	me:	D AA	
	npera	nple I by Sa by Co	els or tody tody	nple ()s Fr	Orafi	+-	_	-	-	<u> </u>	<u> </u>	-	+	+	-+-	Anions (CI SO4 Alkalinity)	TOTAL	IOL.		S		Ce	2	<u>£</u> 4	JD A	
-	ture (Hand imple	n con seals seals	Conta Conta	- N	+	-	-	1	+	-	-	+	+		AR / ESP / CEC Metals As Ag Ba Cd Cr Pb Hg !		7.1		Standard		8	S	ā	NAL Phi Fa	
	Upon	Deliv r/Clies	taine on c	viners	3	\top	+			\dagger	-	-	+	\dagger		olatiles		Analyze		ard		0	8	73	4LYS/ hone: Fax:	
	A Temperature Upon Receipt	Sample Hand Delivered by Sampler/Client Rep by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Sample Containers Intact? VOCs Free of Headspace?	aboratory Comments								I	I		emivolatiles	\prod	ze For		_	-	6	Ĭ	de	IALYSIS REQUEST Phone: 432-563-1800 Fax: 432-563-1713	
,	1 dle	2 P	ner(s	ct?	-	×	7	K	14	7%	X	X	<u> </u>	7		TEX 8021B/5030 or BTEX 626	10), J					~	deral	S REQUESY 432-563-1800 432-563-1713	
1	As Read	머니	•		-	-			-		-	-	-	+		ORM				TRRP	+	2+2		N	EST 1800 1713	
1	-	FedEx				*	X	×	К.	~	~	×	7	7	5/	hloride 300 m	1				1	.	1.	(V		
1	Corrected	_ ₩ < < -	< < < -	< <											_							3		Der He		
1	ected	.one s	2 2 2 2	zz	-					سره صدر			<u> </u>	-	l _R	USH TAT (Pre-Schedule) 24 4				NPDES		2	7	E		
		olar.			-	7	8	~	\approx	~	κ1	<u> </u>	~	X		andard TAT				S	-	7		` ~		
						<u> </u>	<u> </u>		لت		1	·	- O	/ /\	!					ı	I	1	1	~		

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 880-16876-1

SDG Number: Lea County NM

List Source: Eurofins Midland

Login Number: 16876 List Number: 1

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	

Euronnis Milalana

Released to Imaging: 1/10/2023 1:18:19 PM

1

2

А

5

7

11

42

14

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-16923-1

Laboratory Sample Delivery Group: Lea County, NM Client Project/Site: Romeo Federal 22 Battery 1

For:

GHD Services Inc. 2135 South Loop 250 West Midland, Texas 79703

Attn: Becky Haskell

Debbie Simmons

Authorized for release by: 7/21/2022 11:33:49 AM

Debbie Simmons, Project Manager (832)986-6768

Debbie.Simmons@et.eurofinsus.com

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 1/10/2023 1:18:19 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

5

6

8

<u>11</u>

13

Н

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1 Laboratory Job ID: 880-16923-1 SDG: Lea County, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	19
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

2

3

4

6

8

11

13

14

Definitions/Glossary

Client: GHD Services Inc. Job ID: 880-16923-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County, NM

Qualifiers

GC VOA

Qualifier **Qualifier Description** Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Description В

Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid CNF

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC

Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit

ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

MDL

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RΙ

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Job ID: 880-16923-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-16923-1

Receipt

The samples were received on 7/14/2022 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.1°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The method blank for preparation batch 880-29794 and analytical batch 880-29786 contained Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Client Sample ID: BH-31A

Date Collected: 07/13/22 10:10 Date Received: 07/14/22 10:30

Sample Depth: 2.5'

Lab Sample ID: 880-16923-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000384	U	0.00200	0.000384	mg/Kg		07/15/22 13:29	07/17/22 22:29	1
Toluene	< 0.000455	U	0.00200	0.000455	mg/Kg		07/15/22 13:29	07/17/22 22:29	1
Ethylbenzene	< 0.000564	U	0.00200	0.000564	mg/Kg		07/15/22 13:29	07/17/22 22:29	1
m-Xylene & p-Xylene	<0.00101	U	0.00399	0.00101	mg/Kg		07/15/22 13:29	07/17/22 22:29	1
o-Xylene	< 0.000343	U	0.00200	0.000343	mg/Kg		07/15/22 13:29	07/17/22 22:29	1
Xylenes, Total	<0.00101	U	0.00399	0.00101	mg/Kg		07/15/22 13:29	07/17/22 22:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				07/15/22 13:29	07/17/22 22:29	1
1,4-Difluorobenzene (Surr)	85		70 - 130				07/15/22 13:29	07/17/22 22:29	1
· Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00101	U	0.00399	0.00101	mg/Kg			07/18/22 15:39	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	139		50.0	15.0	mg/Kg			07/18/22 09:00	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	50.0	15.0	mg/Kg		07/15/22 14:19	07/15/22 23:18	1
Diesel Range Organics (Over C10-C28)	139		50.0	15.0	mg/Kg		07/15/22 14:19	07/15/22 23:18	1
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 14:19	07/15/22 23:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				07/15/22 14:19	07/15/22 23:18	1
o-Terphenyl	94		70 - 130				07/15/22 14:19	07/15/22 23:18	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-34A Date Collected: 07/13/22 10:20

Date Received: 07/14/22 10:30

Sample Depth: 3.5'

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000383	U	0.00199	0.000383	mg/Kg		07/15/22 13:29	07/17/22 22:49	1
Toluene	< 0.000453	U	0.00199	0.000453	mg/Kg		07/15/22 13:29	07/17/22 22:49	1
Ethylbenzene	<0.000562	U	0.00199	0.000562	mg/Kg		07/15/22 13:29	07/17/22 22:49	1
m-Xylene & p-Xylene	<0.00100	U	0.00398	0.00100	mg/Kg		07/15/22 13:29	07/17/22 22:49	1
o-Xylene	< 0.000342	U	0.00199	0.000342	mg/Kg		07/15/22 13:29	07/17/22 22:49	1
Xylenes, Total	<0.00100	U	0.00398	0.00100	mg/Kg		07/15/22 13:29	07/17/22 22:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				07/15/22 13:29	07/17/22 22:49	1

4.99

0.857 mg/Kg

35.4

Eurofins Midland

07/20/22 07:43

Matrix: Solid

Lab Sample ID: 880-16923-2

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Client Sample ID: BH-34A

Date Collected: 07/13/22 10:20 Date Received: 07/14/22 10:30

Sample Depth: 3.5'

Lab Sample ID: 880-16923-2

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	84	70 - 130	07/15/22 13:29	07/17/22 22:49	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00100 U	0.00398	0.00100 mg/Kg			07/18/22 15:39	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

method. of to this - Dieser Range (organics (Ditto) (GG)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TDH	722	49.9	15.0 mg/Kg		-	07/18/22 09:00	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method. of 130 MM - Dieser Kang	method. 0013b Mm - bleser Kange Organics (bKO) (GC)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	49.9	15.0	mg/Kg		07/15/22 14:19	07/15/22 23:39	1				
Diesel Range Organics (Over C10-C28)	733		49.9	15.0	mg/Kg		07/15/22 14:19	07/15/22 23:39	1				
Oll Range Organics (Over C28-C36)	<15.0	U	49.9	15.0	mg/Kg		07/15/22 14:19	07/15/22 23:39	1				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac				

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	90	70 - 130	07/15/22 14:19	07/15/22 23:39	1
o-Terphenyl	97	70 - 130	07/15/22 14:19	07/15/22 23:39	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11500		99.4	17.1	mg/Kg			07/20/22 07:50	20

Client Sample ID: SW-1A Lab Sample ID: 880-16923-3 **Matrix: Solid**

Date Collected: 07/13/22 10:30 Date Received: 07/14/22 10:30

Sample Depth: 1'-4'

Mothod: 9021R - V	Volatila Organic	Compounds (GC)
MICHIOU. OUZ ID •	VUIALIIE OLUAIIIC	CUIIIDUUIIUS (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000386	U	0.00200	0.000386	mg/Kg		07/15/22 13:29	07/17/22 23:10	1
Toluene	0.00117	J	0.00200	0.000457	mg/Kg		07/15/22 13:29	07/17/22 23:10	1
Ethylbenzene	0.00138	J	0.00200	0.000566	mg/Kg		07/15/22 13:29	07/17/22 23:10	1
m-Xylene & p-Xylene	0.00330	J	0.00401	0.00101	mg/Kg		07/15/22 13:29	07/17/22 23:10	1
o-Xylene	< 0.000345	U	0.00200	0.000345	mg/Kg		07/15/22 13:29	07/17/22 23:10	1
Xylenes, Total	0.00330	J	0.00401	0.00101	mg/Kg		07/15/22 13:29	07/17/22 23:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130				07/15/22 13:29	07/17/22 23:10	1
1,4-Difluorobenzene (Surr)	88		70 - 130				07/15/22 13:29	07/17/22 23:10	1

ı						
ı	Mothod	Total	DTEV	Total	DTEV	Calculation

Analyte	Result Qualifier	RL		Jnit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00585	0.00401	0.00101 n	ng/Kg			07/18/22 15:39	1

Marthault COAF NIME Discoul	D	(DDO)	100
Method: 8015 NM - Diese	Range Organics	(DKO)	(GC)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.0 U	49.9	15.0 mg/Kg			07/18/22 09:00	1

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Client Sample ID: SW-1A

Date Collected: 07/13/22 10:30

Date Received: 07/14/22 10:30

Sample Depth: 1'-4'

.ab	Samp	le ID:	880-1	6923-3

Matrix: Solid

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	49.9	15.0	mg/Kg		07/15/22 14:19	07/16/22 00:01	1
Diesel Range Organics (Over C10-C28)	<15.0	U	49.9	15.0	mg/Kg		07/15/22 14:19	07/16/22 00:01	1
Oll Range Organics (Over C28-C36)	<15.0	U	49.9	15.0	mg/Kg		07/15/22 14:19	07/16/22 00:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130				07/15/22 14:19	07/16/22 00:01	
o-Terphenyl	96		70 - 130				07/15/22 14:19	07/16/22 00:01	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	65.3		4.98	0.855	mg/Kg		-	07/20/22 08:14	1

Client Sample ID: SW-2A Lab Sample ID: 880-16923-4 Matrix: Solid

Date Collected: 07/13/22 10:40 Date Received: 07/14/22 10:30

Sample Depth: 2'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000384	U	0.00200	0.000384	mg/Kg		07/15/22 13:29	07/17/22 23:30	1
Toluene	< 0.000455	U	0.00200	0.000455	mg/Kg		07/15/22 13:29	07/17/22 23:30	1
Ethylbenzene	< 0.000564	U	0.00200	0.000564	mg/Kg		07/15/22 13:29	07/17/22 23:30	1
m-Xylene & p-Xylene	<0.00101	U	0.00399	0.00101	mg/Kg		07/15/22 13:29	07/17/22 23:30	1
o-Xylene	< 0.000343	U	0.00200	0.000343	mg/Kg		07/15/22 13:29	07/17/22 23:30	1
Xylenes, Total	<0.00101	U	0.00399	0.00101	mg/Kg		07/15/22 13:29	07/17/22 23:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				07/15/22 13:29	07/17/22 23:30	1
1,4-Difluorobenzene (Surr)	87		70 - 130				07/15/22 13:29	07/17/22 23:30	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00101	U	0.00399	0.00101	mg/Kg			07/18/22 15:39	1
			0.00399	0.00101	mg/Kg			07/18/22 15:39	1
Total BTEX Method: 8015 NM - Diesel Range Analyte	Organics (DR		0.00399 RL		mg/Kg Unit		Prepared	07/18/22 15:39 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC) Qualifier		MDL		D	Prepared		
Method: 8015 NM - Diesel Range Analyte Total TPH	Organics (DR Result 22.6	O) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang	Organics (DR) Result 22.6 e Organics (DI)	O) (GC) Qualifier	RL	MDL 15.0	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Organics (DR) Result 22.6 e Organics (DI)	O) (GC) Qualifier J RO) (GC) Qualifier	RL 49.9	MDL 15.0	Unit mg/Kg			Analyzed 07/18/22 09:00	Dil Fac
Method: 8015 NM - Diesel Range Analyte	Organics (DR Result 22.6 e Organics (DI Result	O) (GC) Qualifier J RO) (GC) Qualifier	RL 49.9	MDL 15.0 MDL	Unit mg/Kg		Prepared	Analyzed 07/18/22 09:00 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Organics (DR Result 22.6 e Organics (DI Result	Qualifier J RO) (GC) Qualifier U	RL 49.9	MDL 15.0 MDL	Unit mg/Kg		Prepared	Analyzed 07/18/22 09:00 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Organics (DR/Result 22.6 e Organics (D/Result <15.0 22.6	O) (GC) Qualifier J RO) (GC) Qualifier U	RL 49.9 RL 49.9	MDL 15.0 MDL 15.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39	Analyzed 07/18/22 09:00 Analyzed 07/15/22 18:21 07/15/22 18:21	Dil Fac Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Organics (DR/Result 22.6 e Organics (D/Result < 15.0	O) (GC) Qualifier J RO) (GC) Qualifier U	RL 49.9 RL 49.9	MDL 15.0 MDL 15.0	Unit mg/Kg Unit mg/Kg		Prepared 07/15/22 08:39	Analyzed 07/18/22 09:00 Analyzed 07/15/22 18:21	Dil Fac Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Organics (DR/Result 22.6 e Organics (D/Result <15.0 22.6	O) (GC) Qualifier J RO) (GC) Qualifier U J B	RL 49.9 RL 49.9	MDL 15.0 MDL 15.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39	Analyzed 07/18/22 09:00 Analyzed 07/15/22 18:21 07/15/22 18:21	Dil Fac Dil Fac 1 1 1
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Organics (DR/Result 22.6 e Organics (D/Result <15.0 22.6 <p>15.0</p>	O) (GC) Qualifier J RO) (GC) Qualifier U J B	RL 49.9 RL 49.9 49.9	MDL 15.0 MDL 15.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 07/15/22 08:39 07/15/22 08:39	Analyzed 07/18/22 09:00 Analyzed 07/15/22 18:21 07/15/22 18:21	Dil Fac Dil Fac 1

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Client Sample ID: SW-2A

Date Collected: 07/13/22 10:40 Date Received: 07/14/22 10:30

Sample Depth: 2'

Lab Sample ID: 880-16923-4

Matrix: Solid

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.92		5.01	0.860	mg/Kg			07/20/22 08:22	1

Client Sample ID: SW-3A Lab Sample ID: 880-16923-5 Matrix: Solid

Date Collected: 07/13/22 10:50 Date Received: 07/14/22 10:30

Sample Depth: 4'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000383	U	0.00199	0.000383	mg/Kg		07/15/22 13:29	07/17/22 23:51	
Toluene	0.000539	J	0.00199	0.000453	mg/Kg		07/15/22 13:29	07/17/22 23:51	
Ethylbenzene	<0.000562	U	0.00199	0.000562	mg/Kg		07/15/22 13:29	07/17/22 23:51	
m-Xylene & p-Xylene	<0.00100	U	0.00398	0.00100	mg/Kg		07/15/22 13:29	07/17/22 23:51	
o-Xylene	<0.000342	U	0.00199	0.000342	mg/Kg		07/15/22 13:29	07/17/22 23:51	
Xylenes, Total	<0.00100	U	0.00398	0.00100	mg/Kg		07/15/22 13:29	07/17/22 23:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	107		70 - 130				07/15/22 13:29	07/17/22 23:51	
1,4-Difluorobenzene (Surr)	87		70 - 130				07/15/22 13:29	07/17/22 23:51	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00100	U	0.00398	0.00100	mg/Kg			07/18/22 15:39	•
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	26.1	J	50.0	15.0	mg/Kg			07/18/22 09:00	•
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 18:42	•
Diesel Range Organics (Over C10-C28)	26.1	JB	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 18:42	
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 18:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	81		70 - 130				07/15/22 08:39	07/15/22 18:42	
o-Terphenyl	90		70 - 130				07/15/22 08:39	07/15/22 18:42	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	245		4.97		mg/Kg			07/20/22 08:30	

Released to Imaging: 1/10/2023 1:18:19 PM

Client: GHD Services Inc.

Client Sample ID: SW-4A

Project/Site: Romeo Federal 22 Battery 1

Lab Sample ID: 880-16923-6

Matrix: Solid

Job ID: 880-16923-1

SDG: Lea County, NM

Date Collected: 07/13/22 11:00 Date Received: 07/14/22 10:30

Sample Depth: 4'

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000381	U	0.00198	0.000381	mg/Kg		07/15/22 13:29	07/18/22 00:11	1
Toluene	< 0.000451	U	0.00198	0.000451	mg/Kg		07/15/22 13:29	07/18/22 00:11	1
Ethylbenzene	< 0.000559	U	0.00198	0.000559	mg/Kg		07/15/22 13:29	07/18/22 00:11	1
m-Xylene & p-Xylene	<0.00100	U	0.00396	0.00100	mg/Kg		07/15/22 13:29	07/18/22 00:11	1
o-Xylene	< 0.000341	U	0.00198	0.000341	mg/Kg		07/15/22 13:29	07/18/22 00:11	1
Xylenes, Total	<0.00100	U	0.00396	0.00100	mg/Kg		07/15/22 13:29	07/18/22 00:11	1
1 2 .									

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110	70 - 130	07/15/22 13:29	07/18/22 00:11	1
1,4-Difluorobenzene (Surr)	77	70 - 130	07/15/22 13:29	07/18/22 00:11	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00100	U	0.00396	0.00100	mg/Kg			07/18/22 15:39	1

Method: 8015 NM - Diesel Range (Organics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.0 U	50.0	15.0 mg/Kg			07/18/22 09:00	1

Iotal IFII	10.0	U	30.0	13.0	mg/rkg			01/10/22 09.00	'
Method: 8015B NM - Diesel Rang	ge Organics (DF	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 19:03	1

50.0

15.0 mg/Kg

07/15/22 08:39

07/15/22 19:03

<15.0 U

Oll Range Organics (Over C28-C36)	<15.0 U	50.0	15.0 mg/Kg	07/15/22 08:39	07/15/22 19:03	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	83	70 - 130		07/15/22 08:39	07/15/22 19:03	1
o-Terphenyl	93	70 - 130		07/15/22 08:39	07/15/22 19:03	1

Method: 300.0 - Anions, Ion Chron	natography - Soluble							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	4 68 .I	4 98	0.855 mg/Kg			07/20/22 08:38		

Client Sample ID: SW-10A Lab Sample ID: 880-16923-7 **Matrix: Solid**

Date Collected: 07/13/22 11:10 Date Received: 07/14/22 10:30

Diesel Range Organics (Over

C10-C28)

Sample Depth: 3'

Method: 8021B - Volatile Organic Compou	inde /CC	١.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000386	U	0.00200	0.000386	mg/Kg		07/15/22 13:29	07/18/22 00:31	1
Toluene	< 0.000457	U	0.00200	0.000457	mg/Kg		07/15/22 13:29	07/18/22 00:31	1
Ethylbenzene	< 0.000566	U	0.00200	0.000566	mg/Kg		07/15/22 13:29	07/18/22 00:31	1
m-Xylene & p-Xylene	<0.00101	U	0.00401	0.00101	mg/Kg		07/15/22 13:29	07/18/22 00:31	1
o-Xylene	< 0.000345	U	0.00200	0.000345	mg/Kg		07/15/22 13:29	07/18/22 00:31	1
Xylenes, Total	<0.00101	U	0.00401	0.00101	mg/Kg		07/15/22 13:29	07/18/22 00:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				07/15/22 13:29	07/18/22 00:31	1

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Matrix: Solid

Lab Sample ID: 880-16923-7

07/15/22 19:24

Client Sample ID: SW-10A

Date Collected: 07/13/22 11:10 Date Received: 07/14/22 10:30

Diesel Range Organics (Over

C10-C28)

Sample Depth: 3'

Method: 8021B - Volatile Organic Compounds (GC) (Continued)								
Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac		
1,4-Difluorobenzene (Surr)	87		70 - 130	07/15/22 13:29	07/18/22 00:31	1		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00101	U	0.00401	0.00101	mg/Kg			07/18/22 15:39	1
- Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	23.2	J	49.8	14.9	mg/Kg			07/18/22 09:00	1
- Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.9	U	49.8	14.9	mg/Kg		07/15/22 08:39	07/15/22 19:24	1

OII Range Organics (Over C28-C36)	<14.9 U	49.8	14.9 mg/Kg	07/15/22 08:39	07/15/22 19:24	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	79	70 - 130		07/15/22 08:39	07/15/22 19:24	1
o-Terphenyl	87	70 - 130		07/15/22 08:39	07/15/22 19:24	1

49.8

23.2 JB

14.9 mg/Kg

07/15/22 08:39

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19.6		5.00	0.858	mg/Kg			07/20/22 08:45	1

Surrogate Summary

Client: GHD Services Inc. Job ID: 880-16923-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate F
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-16923-1	BH-31A	95	85	
880-16923-2	BH-34A	107	84	
880-16923-3	SW-1A	111	88	
880-16923-4	SW-2A	91	87	
880-16923-5	SW-3A	107	87	
880-16923-6	SW-4A	110	77	
880-16923-7	SW-10A	91	87	
.CS 880-29859/1-A	Lab Control Sample	100	98	
.CSD 880-29859/2-A	Lab Control Sample Dup	101	99	
MB 880-29772/5-A	Method Blank	97	89	
MB 880-29859/5-A	Method Blank	89	83	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-16923-1	BH-31A	86	94	
80-16923-2	BH-34A	90	97	
80-16923-3	SW-1A	85	96	
80-16923-4	SW-2A	79	88	
80-16923-5	SW-3A	81	90	
80-16923-6	SW-4A	83	93	
80-16923-7	SW-10A	79	87	
CS 880-29794/2-A	Lab Control Sample	108	118	
CS 880-29867/2-A	Lab Control Sample	111	127	
CSD 880-29794/3-A	Lab Control Sample Dup	114	122	
CSD 880-29867/3-A	Lab Control Sample Dup	93	104	
1B 880-29794/1-A	Method Blank	103	119	
1B 880-29867/1-A	Method Blank	101	121	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-29772/5-A

Matrix: Solid

Analysis Batch: 29882

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29772

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000385	U	0.00200	0.000385	mg/Kg		07/14/22 16:34	07/17/22 15:57	1
Toluene	<0.000456	U	0.00200	0.000456	mg/Kg		07/14/22 16:34	07/17/22 15:57	1
Ethylbenzene	<0.000565	U	0.00200	0.000565	mg/Kg		07/14/22 16:34	07/17/22 15:57	1
m-Xylene & p-Xylene	<0.00101	U	0.00400	0.00101	mg/Kg		07/14/22 16:34	07/17/22 15:57	1
o-Xylene	<0.000344	U	0.00200	0.000344	mg/Kg		07/14/22 16:34	07/17/22 15:57	1
Xylenes, Total	< 0.00101	U	0.00400	0.00101	mg/Kg		07/14/22 16:34	07/17/22 15:57	1

MB MB

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	97	70 - 130
1 4-Difluorobenzene (Surr)	89	70 - 130

Prepared Dil Fac Analyzed 07/14/22 16:34 07/17/22 15:57 07/14/22 16:34 07/17/22 15:57

Lab Sample ID: MB 880-29859/5-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 29859

Analysis	Batch:	29882			
				MB	MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000385	U	0.00200	0.000385	mg/Kg		07/15/22 13:29	07/17/22 21:05	1
Toluene	<0.000456	U	0.00200	0.000456	mg/Kg		07/15/22 13:29	07/17/22 21:05	1
Ethylbenzene	<0.000565	U	0.00200	0.000565	mg/Kg		07/15/22 13:29	07/17/22 21:05	1
m-Xylene & p-Xylene	<0.00101	U	0.00400	0.00101	mg/Kg		07/15/22 13:29	07/17/22 21:05	1
o-Xylene	<0.000344	U	0.00200	0.000344	mg/Kg		07/15/22 13:29	07/17/22 21:05	1
Xylenes, Total	<0.00101	U	0.00400	0.00101	mg/Kg		07/15/22 13:29	07/17/22 21:05	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130	07/15/22 13	29 07/17/22 21:05	1
1,4-Difluorobenzene (Surr)	83		70 - 130	07/15/22 13	29 07/17/22 21:05	1

Lab Sample ID: LCS 880-29859/1-A

Matrix: Solid

Analysis Batch: 29882

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 29859

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09047		mg/Kg		90	70 - 130	
Toluene	0.100	0.08792		mg/Kg		88	70 - 130	
Ethylbenzene	0.100	0.09113		mg/Kg		91	70 - 130	
m-Xylene & p-Xylene	0.200	0.1803		mg/Kg		90	70 - 130	
o-Xylene	0.100	0.09914		mg/Kg		99	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifie	er Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1,4-Difluorobenzene (Surr)	98	70 - 130

Lab Sample ID: LCSD 880-29859/2-A

Matrix: Solid

Analysis Batch: 29882

Client Sample ID:	: Lab Control Sample Dup)
	Dean Time, Tetal/N/	

Prep Type: Total/NA

Prep Batch: 29859

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09400	mg/Kg		94	70 - 130	4	35

QC Sample Results

Job ID: 880-16923-1 Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-29859/2-A

Matrix: Solid Analysis Batch: 29882 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 29859

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09138		mg/Kg		91	70 - 130	4	35
Ethylbenzene	0.100	0.09441		mg/Kg		94	70 - 130	4	35
m-Xylene & p-Xylene	0.200	0.1860		mg/Kg		93	70 - 130	3	35
o-Xylene	0.100	0.1024		mg/Kg		102	70 - 130	3	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-29794/1-A

Matrix: Solid

Analysis Batch: 29786

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29794

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	15.50	J	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 10:08	1
Diesel Range Organics (Over C10-C28)	15.19	J	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 10:08	1
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 08:39	07/15/22 10:08	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130	07/15/22 08:39	07/15/22 10:08	1
o-Terphenyl	119		70 - 130	07/15/22 08:39	07/15/22 10:08	1

Lab Sample ID: LCS 880-29794/2-A

Matrix: Solid

Analysis Batch: 29786

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29794

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	967.8		mg/Kg		97	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	935.7		mg/Kg		94	70 - 130	
C10_C28\								

C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	108		70 - 130
o-Terphenyl	118		70 - 130

Lab Sample ID: LCSD 880-29794/3-A

Matrix: Solid

Analysis Batch: 29786

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29794

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier L	Unit D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1074	n	mg/Kg	107	70 - 130	10	20
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1032	n	mg/Kg	103	70 - 130	10	20
C10-C28)								

Client: GHD Services Inc.

Job ID: 880-16923-1

SDG: Lea County, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-29794/3-A

Project/Site: Romeo Federal 22 Battery 1

Matrix: Solid

Analysis Batch: 29786

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29794

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 114 70 - 130 o-Terphenyl 122 70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29867

Lab Sample ID: MB 880-29867/1-A **Matrix: Solid**

Analysis Batch: 29786

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<15.0	U	50.0	15.0	mg/Kg		07/15/22 14:19	07/15/22 20:28	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<15.0	U	50.0	15.0	mg/Kg		07/15/22 14:19	07/15/22 20:28	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		07/15/22 14:19	07/15/22 20:28	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	101	70 - 130	07/15/22 14:19	07/15/22 20:28	1
o-Terphenyl	121	70 - 130	07/15/22 14:19	07/15/22 20:28	1

Lab Sample ID: LCS 880-29867/2-A

Matrix: Solid

Analysis Batch: 29786

Client Sample	ID: Lab	Control	Sam
---------------	---------	---------	-----

Prep Type: Total/NA

Prep Batch: 29867

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	976.0		mg/Kg		98	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	996.5		mg/Kg		100	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery Qu	alifier	Limits
1-Chlorooctane	111		70 - 130
o-Terphenyl	127		70 - 130

Lab Sample ID: LCSD 880-29867/3-A

Matrix: Solid

Analysis Batch: 29786

Client	Sample	ID: Lab	Control	Sample	Dup

Prep Type: Total/NA Prep Batch: 29867

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	997.8	-	mg/Kg	<u></u>	100	70 - 130	2	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	867.3		mg/Kg		87	70 - 130	14	20	

C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	93		70 - 130
o-Terphenyl	104		70 - 130

QC Sample Results

Client: GHD Services Inc. Job ID: 880-16923-1 Project/Site: Romeo Federal 22 Battery 1 SDG: Lea County, NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-29758/1-A

Matrix: Solid

Analysis Batch: 29939

MB MB

Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloride <0.858 U 5.00 0.858 mg/Kg 07/20/22 05:06

Lab Sample ID: LCS 880-29758/2-A

Matrix: Solid

Analysis Batch: 29939

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 274.8 mg/Kg 110 90 - 110

Lab Sample ID: LCSD 880-29758/3-A

Matrix: Solid

Analysis Batch: 29939

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit Limits **RPD** Limit Chloride 250 272.4 109 90 - 110 20 mg/Kg

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1 SDG: Lea County, NM

GC VOA

Prep Batch: 29772

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-29772/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 29859

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-1	BH-31A	Total/NA	Solid	5035	_
880-16923-2	BH-34A	Total/NA	Solid	5035	
880-16923-3	SW-1A	Total/NA	Solid	5035	
880-16923-4	SW-2A	Total/NA	Solid	5035	
880-16923-5	SW-3A	Total/NA	Solid	5035	
880-16923-6	SW-4A	Total/NA	Solid	5035	
880-16923-7	SW-10A	Total/NA	Solid	5035	
MB 880-29859/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29859/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29859/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 29882

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-1	BH-31A	Total/NA	Solid	8021B	29859
880-16923-2	BH-34A	Total/NA	Solid	8021B	29859
880-16923-3	SW-1A	Total/NA	Solid	8021B	29859
880-16923-4	SW-2A	Total/NA	Solid	8021B	29859
880-16923-5	SW-3A	Total/NA	Solid	8021B	29859
880-16923-6	SW-4A	Total/NA	Solid	8021B	29859
880-16923-7	SW-10A	Total/NA	Solid	8021B	29859
MB 880-29772/5-A	Method Blank	Total/NA	Solid	8021B	29772
MB 880-29859/5-A	Method Blank	Total/NA	Solid	8021B	29859
LCS 880-29859/1-A	Lab Control Sample	Total/NA	Solid	8021B	29859
LCSD 880-29859/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29859

Analysis Batch: 29994

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-1	BH-31A	Total/NA	Solid	Total BTEX	
880-16923-2	BH-34A	Total/NA	Solid	Total BTEX	
880-16923-3	SW-1A	Total/NA	Solid	Total BTEX	
880-16923-4	SW-2A	Total/NA	Solid	Total BTEX	
880-16923-5	SW-3A	Total/NA	Solid	Total BTEX	
880-16923-6	SW-4A	Total/NA	Solid	Total BTEX	
880-16923-7	SW-10A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 29786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-1	BH-31A	Total/NA	Solid	8015B NM	29867
880-16923-2	BH-34A	Total/NA	Solid	8015B NM	29867
880-16923-3	SW-1A	Total/NA	Solid	8015B NM	29867
880-16923-4	SW-2A	Total/NA	Solid	8015B NM	29794
880-16923-5	SW-3A	Total/NA	Solid	8015B NM	29794
880-16923-6	SW-4A	Total/NA	Solid	8015B NM	29794
880-16923-7	SW-10A	Total/NA	Solid	8015B NM	29794
MB 880-29794/1-A	Method Blank	Total/NA	Solid	8015B NM	29794

Eurofins Midland

Page 16 of 26

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1 SDG: Lea County, NM

GC Semi VOA (Continued)

Analysis Batch: 29786 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-29867/1-A	Method Blank	Total/NA	Solid	8015B NM	29867
LCS 880-29794/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29794
LCS 880-29867/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29867
LCSD 880-29794/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29794
LCSD 880-29867/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29867

Prep Batch: 29794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-4	SW-2A	Total/NA	Solid	8015NM Prep	
880-16923-5	SW-3A	Total/NA	Solid	8015NM Prep	
880-16923-6	SW-4A	Total/NA	Solid	8015NM Prep	
880-16923-7	SW-10A	Total/NA	Solid	8015NM Prep	
MB 880-29794/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29794/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29794/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Prep Batch: 29867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-1	BH-31A	Total/NA	Solid	8015NM Prep	
880-16923-2	BH-34A	Total/NA	Solid	8015NM Prep	
880-16923-3	SW-1A	Total/NA	Solid	8015NM Prep	
MB 880-29867/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29867/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29867/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 29904

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-1	BH-31A	Total/NA	Solid	8015 NM	
880-16923-2	BH-34A	Total/NA	Solid	8015 NM	
880-16923-3	SW-1A	Total/NA	Solid	8015 NM	
880-16923-4	SW-2A	Total/NA	Solid	8015 NM	
880-16923-5	SW-3A	Total/NA	Solid	8015 NM	
880-16923-6	SW-4A	Total/NA	Solid	8015 NM	
880-16923-7	SW-10A	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 29758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-1	BH-31A	Soluble	Solid	DI Leach	_
880-16923-2	BH-34A	Soluble	Solid	DI Leach	
880-16923-3	SW-1A	Soluble	Solid	DI Leach	
880-16923-4	SW-2A	Soluble	Solid	DI Leach	
880-16923-5	SW-3A	Soluble	Solid	DI Leach	
880-16923-6	SW-4A	Soluble	Solid	DI Leach	
880-16923-7	SW-10A	Soluble	Solid	DI Leach	
MB 880-29758/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29758/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29758/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

HPLC/IC

Analysis Batch: 29939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16923-1	BH-31A	Soluble	Solid	300.0	29758
880-16923-2	BH-34A	Soluble	Solid	300.0	29758
880-16923-3	SW-1A	Soluble	Solid	300.0	29758
880-16923-4	SW-2A	Soluble	Solid	300.0	29758
880-16923-5	SW-3A	Soluble	Solid	300.0	29758
880-16923-6	SW-4A	Soluble	Solid	300.0	29758
880-16923-7	SW-10A	Soluble	Solid	300.0	29758
MB 880-29758/1-A	Method Blank	Soluble	Solid	300.0	29758
LCS 880-29758/2-A	Lab Control Sample	Soluble	Solid	300.0	29758
LCSD 880-29758/3-A	Lab Control Sample Dun	Soluble	Solid	300.0	29758

Job ID: 880-16923-1

SDG: Lea County, NM

Client Sample ID: BH-31A

Date Collected: 07/13/22 10:10 Date Received: 07/14/22 10:30 Lab Sample ID: 880-16923-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29859	07/15/22 13:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29882	07/17/22 22:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29994	07/18/22 15:39	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29904	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29867	07/15/22 14:19	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 23:18	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29758	07/14/22 13:04	SMC	XEN MID
Soluble	Analysis	300.0		1			29939	07/20/22 07:43	CH	XEN MID

Client Sample ID: BH-34A Lab Sample ID: 880-16923-2

Date Collected: 07/13/22 10:20

Date Received: 07/14/22 10:30

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29859	07/15/22 13:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29882	07/17/22 22:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29994	07/18/22 15:39	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29904	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29867	07/15/22 14:19	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 23:39	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29758	07/14/22 13:04	SMC	XEN MID
Soluble	Analysis	300.0		20			29939	07/20/22 07:50	CH	XEN MID

Client Sample ID: SW-1A Lab Sample ID: 880-16923-3 Date Collected: 07/13/22 10:30 **Matrix: Solid**

Date Received: 07/14/22 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29859	07/15/22 13:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29882	07/17/22 23:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29994	07/18/22 15:39	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29904	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29867	07/15/22 14:19	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/16/22 00:01	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29758	07/14/22 13:04	SMC	XEN MID
Soluble	Analysis	300.0		1			29939	07/20/22 08:14	CH	XEN MID

Client Sample ID: SW-2A Lab Sample ID: 880-16923-4 Date Collected: 07/13/22 10:40 **Matrix: Solid**

Date Received: 07/14/22 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29859	07/15/22 13:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29882	07/17/22 23:30	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29994	07/18/22 15:39	SM	XEN MID

Eurofins Midland

Page 19 of 26

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Client Sample ID: SW-2A

Date Collected: 07/13/22 10:40 Date Received: 07/14/22 10:30 Lab Sample ID: 880-16923-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29904	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 18:21	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	29758	07/14/22 13:04	SMC	XEN MID
Soluble	Analysis	300.0		1			29939	07/20/22 08:22	CH	XEN MID

Client Sample ID: SW-3A Lab Sample ID: 880-16923-5

Date Received: 07/14/22 10:30

Date Collected: 07/13/22 10:50 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29859	07/15/22 13:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29882	07/17/22 23:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29994	07/18/22 15:39	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29904	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 18:42	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29758	07/14/22 13:04	SMC	XEN MID
Soluble	Analysis	300.0		1			29939	07/20/22 08:30	CH	XEN MID

Client Sample ID: SW-4A Lab Sample ID: 880-16923-6

Date Collected: 07/13/22 11:00 Date Received: 07/14/22 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	29859	07/15/22 13:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29882	07/18/22 00:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29994	07/18/22 15:39	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29904	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 19:03	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29758	07/14/22 13:04	SMC	XEN MID
Soluble	Analysis	300.0		1			29939	07/20/22 08:38	CH	XEN MID

Client Sample ID: SW-10A Lab Sample ID: 880-16923-7

Date Collected: 07/13/22 11:10 Date Received: 07/14/22 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29859	07/15/22 13:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29882	07/18/22 00:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29994	07/18/22 15:39	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29904	07/18/22 09:00	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	29794	07/15/22 08:39	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29786	07/15/22 19:24	SM	XEN MID

Eurofins Midland

Page 20 of 26

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Lab Sample ID: 880-16923-7

Matrix: Solid

Client Sample ID: SW-10A Date Collected: 07/13/22 11:10 Date Received: 07/14/22 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	29758	07/14/22 13:04	SMC	XEN MID
Soluble	Analysis	300.0		1			29939	07/20/22 08:45	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Dat	
Texas	NE	ELAP	T104704400-22-24	06-30-23	
The following analytes the agency does not of	•	ut the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes fo	
Analysis Method	Prep Method	Matrix	Analyte		
Analysis Melliou	i ieb menion	Mann	Analyte		
8015 NM	i iep Metilou	Solid	Total TPH		

Method Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea C

County, NM	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 880-16923-1

SDG: Lea County, NM

		,	
h			

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-16923-1	BH-31A	Solid	07/13/22 10:10	07/14/22 10:30	2.5'
880-16923-2	BH-34A	Solid	07/13/22 10:20	07/14/22 10:30	3.5'
880-16923-3	SW-1A	Solid	07/13/22 10:30	07/14/22 10:30	1'-4'
880-16923-4	SW-2A	Solid	07/13/22 10:40	07/14/22 10:30	2'
880-16923-5	SW-3A	Solid	07/13/22 10:50	07/14/22 10:30	4'
880-16923-6	SW-4A	Solid	07/13/22 11:00	07/14/22 10:30	4'
880-16923-7	SW-10A	Solid	07/13/22 11:10	07/14/22 10:30	3'

16923	`		1	ſ						TAT bisbri	د (۱۵	/ J.	X	J.Y.	X	×	12		T	T		 78	
Ċ	6	5				☐ NPDES		EJ	4 Z.,	15H TAT (Pre-Schedule) 24 48	ie									Z	ZZZZ	N N Lone Star	o de
و	7			7	ľ	물		1			4	1_		_	<u> </u>			_		-		_	Corrected
	P	8	'	3				_		/ = = 20130IW	7	+	 	()						→	>>>	- ≻ (<u>5</u>
, 0	<u>۾</u> ک	اد				_		-		1 00E 3bisol		丫	ᅩ	X	ᆚ	义	لد			1		(4)	\$ 60
ALYSIS REQUEST Phone: 432-563-1800				1		∐ TRRP	1	-		N R O		-					+	+	+	1	~		As Read
:QU,	432-563-1	6		persty		_	1,	_}	П	TEX 8021 B/5030 or BTEX 8260		الا	R	又	V	ע	되	+	+-	. 23	Labels on container(s) Custody seals on container(s) Custody seals on container(s) Custody seals on cooler(s)		
; RE	432		g	3			Analyza Ear		\vdash	salilalovima							7	\dashv	+	ents	spac (s) Infair	Feet I Reg UPS	Rece
SIS/	0	0		۵		Ģ	1		\sqcap	zellist	٨					Í	寸	1	1	mm ters	iner Sin siner Siner Siner Siner Siner Siner Siner Siner Siner Siner Sin	Clien	noc
4L)	Fay:	170827	6	9	-	🛚 Standard	Ą		ŧ	elals. As Ag Ba Cd Cr Pb Hg Se	٧									Laboratory Comments. Sample Containers Intact?	contains of also	Sample Hand Delivered by Sampler/Client Rep by Couner? UPS	Temperature Upon Receipt
AN	į			3		Sta		10101	TOTAL	AR / ESP / CEC	s				\dashv	_		\perp		atory e Co	on c on c ly se ly se	Sam Cour	ratrii
QN		1 ~	- >	.) -		\square		1-	위	nions (Ci SO4 Alkailnity)					_	_	_			bora	bels istod istod	d A	mpe
D A	ame	17	ָבָּרָ אָּרָ יַבְּרָ אָרָ	507	 O	at	Į		-	ations (Ca Mg Na K)		-				-	-	+		285	<u> </u>	8	-Fa
20.R	7 7	20,040	Project #	Project Loc:	<u>.</u>	orm	İ		5	PH, 418 1 8015M 8015 PH TX 1005 TX 1005		人	<u>v</u>	X	الع	又	丈	+-	+		Time 755		2
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST t I-20 East Phone: 432-563-1800	Fax Project Name: Rome	, 13		5		Report Format	ᆜ		+	I samo funada anasura-rinti-r	+	-	\dashv		귀	$\stackrel{\sim}{+}$	4	╁	+-	preduction	7.35 CM		-
)Y.	0		•			geb Geb	3		Matrix	Filoévios=8 1918wbnug-3 = W	5	S	3	Δ		S	N			F			
roi					. '	<u> </u>			2	W=Drinking Water SL=Sludge	1		7 1		N					Ž	Dale 3/2	L Date	,
Sus				,			いたなって		6	Other (Specify)		\dashv	_	_	_	_		_	$\perp \downarrow$	Ž	Dale CC/S/L	ä <u>I</u> ä	
OF (3					\	ઊ		Preservation & # of Containers	Ne ₂ S ₂ O ₃		-	_	}	_	\perp		-	┼┤	`			
VIN (17) Ea: 7.97	?					19	3		S	HOEN	\vdash	\dashv	+	\dashv	+	+		-	+	$\ddot{\mathcal{S}}$	0	1	
CH12							3		18#	OS ² H	17	\dashv	+	\dashv	+	\dashv	+	+	+	3			
Vest							3		valior	HÇI	7	十	十	_	\top	+	+	†	H	Š	1		
CHAIN OF 12600 West I-20 East Odessa, Taxas 79765							انح		reser	FONH				\top	\top	\top	Ť		1	ontonial resources		1	
126 Ode							1			108										N'KL	8		
	- 1					=	E]			enanighnoO to # isioT	1	-		- -	-	-[15 6	O	1	
	اے ا									Fleid Fillered	_	-	-	_	\perp	4			`.	\$.		M	.
	Ş				Fax No	- 1	ğ							١,							5	$\parallel \parallel$	
					Fax	d	5			Time Sampled	200	020		위 1	010	2 =	2			2 2	\mathcal{A}		
)		3	N							2	9 !	050	3 1	2 2	3 =	3		7	\$ 2 E	\mathcal{A}	\ F	
jo j	D			Ğ		1					2	十	1	1	\dagger	1	+-		17.07.13	4		ved by ELOT	
of Custody	ごあ		SS	1					- [Date Sampled	13/2	1	\perp			1.	,		ì	3 /			
in of	\A			29						bolamo2 olad					T	1>	4		ä			100	
880-16923 Chain	Haskenle		N						ŀ		-	-	+	+	+-	4	-		_	å	- 19		
33	3		1		. 0	}				Ending Depth	7.7	्र 🕏	1/\	له اد	- 5	ابر	7		2	_		$\sum_{i=1}^{n}$	
ğ	9		8	X	35					Begiining Depth		·_	7	\top		~	\sqcap		2000		뭐	2.3	í
===== 8	Ŋ		7	(0				-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		+	1	7	$\sqrt{\mathcal{N}}$	-	4-1	_				7	_
	7		١	4	Ò														Heath	و الأ	7/13/2Z Dale	رب و	
			S	7	-92		lΓ		\exists										3	S (K)	5 4	7/13/ Date	
Ŋ	1		.	Midland	29	.h													7	3	10.	0	_
-	ᅫ		12	J		W													1	ر ج	=		
Ō	Becky	い汚	2135	4	-254	M			1	FIELD CODE									3	3	'	5	
T N	171	\square	2	2	7					2									ħ	7		\sim	
₽ 3 F	Ļ.	av.	SS			ure.				FIE	r d	-				_			13	94	1	7	
ية في	ıage	ame	ddre	<u>.c</u>	9)กลใ	1.			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7 7	7	3A	ঝ	A01-			N.	1,5		A	
ភា 🖺	Mari	Z Z	y A	te/Z	ne i	Š				121 6	7 1	14	1	- 6	₩ h -				13:	3	المم		
Jent:	ect	ıpar.	pan	Stal	ôld	ple					I A	12	3	3	3	3			ctio	31.	(M) <)	
	Project Manager	Сотрапу Name	Company Address	City/State/Zip	Felephone No	Sampler Signature.	(2)	: :		. (9	3/6	V	S	V)	$ \vee \rangle$	V /			stru	言	, 幅	No.	
M. Invited	-)	v	U		Ų	je or	ث ند			Ť	1			\vdash	1	\dashv	+	al lu	Mischer @ VINCE.Landinguished by	uished		; {
Xenco Laboratories ne envionnental Lab of Terras							(lab tise only)	Obbe e	3	(viro seu de) = g i-						- 1			Special Instructions: ACSC Eve.	Ni (C)	1	4 pentinumished 1/2	I
	ina- 1	1/10	/202	2 1.1	0.10	D14			71	Page 25 of 2	5								(0)	<u>'ڪ</u>	14	7 /21/2	2 022
leased to Imag	ıng: 1	/10/	4043	1.1	U.17	I IVI																	

Login Sample Receipt Checklist

Client: GHD Services Inc. Job Number: 880-16923-1

SDG Number: Lea County, NM

List Source: Eurofins Midland Login Number: 16923 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-18467-1

Laboratory Sample Delivery Group: Lea County, NM

Client Project/Site: Romeo

For:

eurofins

GHD Services Inc. 2135 South Loop 250 West Midland, Texas 79703

Attn: James (J.T.) Murrey

Debbie Simmons

Authorized for release by: 9/6/2022 5:48:27 PM

Debbie Simmons, Project Manager (832)986-6768

Debbie.Simmons@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GHD Services Inc. Laboratory Job ID: 880-18467-1 Project/Site: Romeo

SDG: Lea County, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receint Checklists	22

5

Definitions/Glossary

Client: GHD Services Inc. Job ID: 880-18467-1 Project/Site: Romeo SDG: Lea County, NM

Qualifiers

00			
GC	V	U	Α

Qualifier	Qualifier Description
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
U	Indicates the analyte was analyzed for but not detected

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.			
¤	isted under the "D" column to designate that the result is reported on a dry weight basis			
%R	Percent Recovery			
CFL	Contains Free Liquid			
CFU	Colony Forming Unit			
CNF	Contains No Free Liquid			
DER	Duplicate Error Ratio (normalized absolute difference)			
Dil Fac	Dilution Factor			
DL	Detection Limit (DoD/DOE)			
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample			

DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"

WIOL	Li A recommended Waximum Contaminant Level
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
	1.00

IVIDE	Wiction Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC.	Not Calculated

ND	Not Detected at the reporting limit (or MDL or EDL if shown)

NEG	Negative / Absent
POS	Positive / Present
POI	Practical Quantitation Limit

PQL	Practical Quantitation Limi

PRES	Presumptive
QC	Quality Control

RER	Relative Error Ratio	(Radiochemistry)
-----	----------------------	------------------

RI	Renor	tina Limit c	or Requested	I I imit (Ra	diochemistry)

	Relative Percent Difference, a measure of th	
RPD		

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: GHD Services Inc.

Project/Site: Romeo

Job ID: 880-18467-1

SDG: Lea County, NM

Job ID: 880-18467-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-18467-1

Comments

No additional comments.

Receipt

The samples were received on 8/24/2022 10:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.9° C.

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-33696 recovered above the upper control limit for Benzene, Toluene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-33696/82).

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-33696 recovered above the upper control limit for Toluene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-33696/113).

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-31B (880-18467-3), BH-34B (880-18467-4), (LCS 880-33658/1-A) and (LCSD 880-33658/2-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B NM: The method blank for preparation batch 880-32866 and analytical batch 880-32894 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

J

8

4.0

11

13

Job ID: 880-18467-1 SDG: Lea County, NM

Project/Site: Romeo

Client Sample ID: BH-3B

Lab Sample ID: 880-18467-1

Matrix: Solid

Date Collected: 08/22/22 11:15 Date Received: 08/24/22 10:40

Client: GHD Services Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000387	U	0.00201	0.000387	mg/Kg		08/31/22 14:40	09/02/22 00:23	
Toluene	< 0.000459	U	0.00201	0.000459	mg/Kg		08/31/22 14:40	09/02/22 00:23	
Ethylbenzene	<0.000568	U	0.00201	0.000568	mg/Kg		08/31/22 14:40	09/02/22 00:23	
m-Xylene & p-Xylene	<0.00102	U	0.00402	0.00102	mg/Kg		08/31/22 14:40	09/02/22 00:23	
o-Xylene	< 0.000346	U	0.00201	0.000346	mg/Kg		08/31/22 14:40	09/02/22 00:23	
Xylenes, Total	<0.00102	U	0.00402	0.00102	mg/Kg		08/31/22 14:40	09/02/22 00:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90		70 - 130				08/31/22 14:40	09/02/22 00:23	
1,4-Difluorobenzene (Surr)	103		70 - 130				08/31/22 14:40	09/02/22 00:23	
Method: Total BTEX - Total	BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00102	U	0.00402	0.00102	mg/Kg			09/02/22 11:24	
wemoa: 8015 NW - Diesel I		S (DRU) (L	3(J)						
Method: 8015 NM - Diesel F Analyte	•	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
	•		•		Unit mg/Kg	D	Prepared	Analyzed 08/26/22 09:25	
Analyte	Result 81.0	Qualifier	RL 49.9			<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diese	Result 81.0 I Range Organ	Qualifier	RL 49.9	15.0		<u>D</u>	Prepared Prepared		
Analyte Total TPH Method: 8015B NM - Diese Analyte Gasoline Range Organics	Result 81.0 I Range Organ	Qualifier ics (DRO)	RL 49.9	15.0 MDL	mg/Kg		Prepared	08/26/22 09:25	Dil Fa
Analyte Total TPH Method: 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 81.0 I Range Organ Result	Qualifier ics (DRO) Qualifier J B	RL 49.9 (GC)	15.0 MDL 15.0	mg/Kg Unit		Prepared 08/24/22 16:32	08/26/22 09:25 Analyzed	Dil Fa
Analyte Total TPH	Result 81.0 I Range Organ Result 41.0	Qualifier ics (DRO) Qualifier J B	RL 49.9 (GC) RL 49.9	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg		Prepared 08/24/22 16:32 08/24/22 16:32	08/26/22 09:25 Analyzed 08/25/22 17:35	Dil Fa
Analyte Total TPH Method: 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 81.0 I Range Organ Result 41.0 <15.0	Qualifier ics (DRO) Qualifier JB U J	RL 49.9 (GC) RL 49.9 49.9	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/24/22 16:32 08/24/22 16:32	08/26/22 09:25 Analyzed 08/25/22 17:35 08/25/22 17:35	Dil Fa
Analyte Total TPH Method: 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Result 81.0 I Range Organ Result 41.0 <15.0 40.0	Qualifier ics (DRO) Qualifier JB U J	RL 49.9 (GC) RL 49.9 49.9 49.9	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/24/22 16:32 08/24/22 16:32 08/24/22 16:32 Prepared	08/26/22 09:25 Analyzed 08/25/22 17:35 08/25/22 17:35	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 81.0 Range Organ Result 41.0 <15.0 40.0 %Recovery	Qualifier ics (DRO) Qualifier JB U J	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/24/22 16:32 08/24/22 16:32 08/24/22 16:32 Prepared 08/24/22 16:32	08/26/22 09:25 Analyzed 08/25/22 17:35 08/25/22 17:35 08/25/22 17:35 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 81.0 Range Organ Result 41.0 <15.0 40.0 %Recovery 85 89	Qualifier ics (DRO) Qualifier J B U J Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	15.0 MDL 15.0 15.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/24/22 16:32 08/24/22 16:32 08/24/22 16:32 Prepared 08/24/22 16:32	08/26/22 09:25 Analyzed 08/25/22 17:35 08/25/22 17:35 08/25/22 17:35 Analyzed 08/25/22 17:35	Dil Fa

Client Sample ID: BH-7B
Date Collected: 08/22/22 12:55
Lab Sample ID: 880-18467-2
Matrix: Solid

5.00

0.858 mg/Kg

14.6

Date Received: 08/24/22 10:40

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000386	U	0.00200	0.000386	mg/Kg		08/31/22 14:40	09/02/22 00:43	1
Toluene	<0.000457	U	0.00200	0.000457	mg/Kg		08/31/22 14:40	09/02/22 00:43	1
Ethylbenzene	<0.000566	U	0.00200	0.000566	mg/Kg		08/31/22 14:40	09/02/22 00:43	1
m-Xylene & p-Xylene	<0.00101	U	0.00401	0.00101	mg/Kg		08/31/22 14:40	09/02/22 00:43	1
o-Xylene	< 0.000345	U	0.00200	0.000345	mg/Kg		08/31/22 14:40	09/02/22 00:43	1
Xylenes, Total	<0.00101	U	0.00401	0.00101	mg/Kg		08/31/22 14:40	09/02/22 00:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				08/31/22 14:40	09/02/22 00:43	1
1,4-Difluorobenzene (Surr)	105		70 - 130				08/31/22 14:40	09/02/22 00:43	1

Eurofins Midland

08/30/22 05:41

2

3

5

_

_

10

12

Job ID: 880-18467-1

SDG: Lea County, NM

Client Sample ID: BH-7B

Client: GHD Services Inc.

Project/Site: Romeo

Date Collected: 08/22/22 12:55 Date Received: 08/24/22 10:40

Lab Sample ID: 880-18467-2

Matrix: Solid

Method: Total BTEX - Total	BTEX Calcula	ition							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00101	U	0.00401	0.00101	mg/Kg			09/02/22 11:24	1
- Method: 8015 NM - Diesel F	Range Organio	s (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	75.7		49.8	14.9	mg/Kg			08/26/22 09:25	1
- Method: 8015B NM - Diesel	l Range Organ	ics (DRO)	(GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	40.8	JB	49.8	14.9	mg/Kg		08/24/22 16:32	08/25/22 17:57	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<14.9	U	49.8	14.9	mg/Kg		08/24/22 16:32	08/25/22 17:57	1
C10-C28)									
Oll Range Organics (Over	34.9	J	49.8	14.9	mg/Kg		08/24/22 16:32	08/25/22 17:57	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				08/24/22 16:32	08/25/22 17:57	1
o-Terphenvl	78		70 - 130				08/24/22 16:32	08/25/22 17:57	1

Chloride 12.7 5.00 0.858 mg/Kg 08/30/22 05:50 Client Sample ID: BH-31B Lab Sample ID: 880-18467-3

RL

MDL Unit

Prepared

Analyzed

Date Collected: 08/23/22 10:45 Date Received: 08/24/22 10:40

Analyte

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000384	U	0.00200	0.000384	mg/Kg		09/02/22 15:18	09/05/22 13:02	1
Toluene	< 0.000455	U	0.00200	0.000455	mg/Kg		09/02/22 15:18	09/05/22 13:02	1
Ethylbenzene	< 0.000564	U	0.00200	0.000564	mg/Kg		09/02/22 15:18	09/05/22 13:02	1
m-Xylene & p-Xylene	<0.00101	U	0.00399	0.00101	mg/Kg		09/02/22 15:18	09/05/22 13:02	1
o-Xylene	< 0.000343	U	0.00200	0.000343	mg/Kg		09/02/22 15:18	09/05/22 13:02	1
Xylenes, Total	<0.00101	U	0.00399	0.00101	mg/Kg		09/02/22 15:18	09/05/22 13:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	137	S1+	70 - 130				09/02/22 15:18	09/05/22 13:02	1
1,4-Difluorobenzene (Surr)	93		70 - 130				09/02/22 15:18	09/05/22 13:02	1
Method: Total BTEX - Total	BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
								00/00/00 44 04	
Total BTEX	<0.00101	U	0.00399	0.00101	mg/Kg			09/02/22 11:24	1
				0.00101	mg/Kg			09/02/22 11:24	1
: Method: 8015 NM - Diesel F	Range Organic			0.00101 MDL	mg/Kg Unit	D	Prepared	09/02/22 11:24 Analyzed	1 Dil Fac
Total BTEX Method: 8015 NM - Diesel F Analyte Total TPH	Range Organic	s (DRO) (G	SC)		Unit	<u>D</u>	Prepared		Dil Fac
Method: 8015 NM - Diesel F Analyte Total TPH	Range Organic Result 86.0	S (DRO) (G Qualifier	RL 50.0	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel F Analyte	Range Organic Result 86.0 I Range Organ	S (DRO) (G Qualifier	RL 50.0	MDL	Unit mg/Kg	<u>D</u> D	Prepared Prepared	Analyzed	Dil Fac

Eurofins Midland

(GRO)-C6-C10

Dil Fac

Matrix: Solid

Job ID: 880-18467-1

Client: GHD Services Inc. Project/Site: Romeo

SDG: Lea County, NM

Client Sample ID: BH-31B

Lab Sample ID: 880-18467-3

Date Collected: 08/23/22 10:45 Date Received: 08/24/22 10:40

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<15.0	U	50.0	15.0	mg/Kg		08/24/22 16:32	08/25/22 18:18	1
C10-C28)									
Oll Range Organics (Over	41.1	J	50.0	15.0	mg/Kg		08/24/22 16:32	08/25/22 18:18	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130				08/24/22 16:32	08/25/22 18:18	1
o-Terphenyl	83		70 - 130				08/24/22 16:32	08/25/22 18:18	1

Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac 5.03 08/30/22 05:59 Chloride 1080 0.863 mg/Kg

Client Sample ID: BH-34B Lab Sample ID: 880-18467-4

Date Collected: 08/23/22 11:00 **Matrix: Solid**

Date Received: 08/24/22 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000386	U	0.00200	0.000386	mg/Kg		09/02/22 15:18	09/05/22 13:29	1
Toluene	< 0.000457	U	0.00200	0.000457	mg/Kg		09/02/22 15:18	09/05/22 13:29	1
Ethylbenzene	< 0.000566	U	0.00200	0.000566	mg/Kg		09/02/22 15:18	09/05/22 13:29	1
m-Xylene & p-Xylene	<0.00101	U	0.00401	0.00101	mg/Kg		09/02/22 15:18	09/05/22 13:29	1
o-Xylene	< 0.000345	U	0.00200	0.000345	mg/Kg		09/02/22 15:18	09/05/22 13:29	1
Xylenes, Total	<0.00101	U	0.00401	0.00101	mg/Kg		09/02/22 15:18	09/05/22 13:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	151	S1+	70 - 130				09/02/22 15:18	09/05/22 13:29	1
1,4-Difluorobenzene (Surr)	95		70 - 130				09/02/22 15:18	09/05/22 13:29	1
Method: Total BTEX - Total	BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
• •							•		
Total BTEX	<0.00101		0.00401	0.00101	mg/Kg			09/02/22 11:24	1
		U	0.00401	0.00101	mg/Kg		<u> </u>		1
Total BTEX	Range Organic	U	0.00401		mg/Kg Unit		Prepared		
Total BTEX Method: 8015 NM - Diesel F	Range Organic	U (DRO) (C	0.00401 GC)	MDL			Prepared	09/02/22 11:24	Dil Fac
Total BTEX Method: 8015 NM - Diesel F Analyte	Range Organic Result 77.3	es (DRO) (C	0.00401 GC) RL 49.9	MDL	Unit	<u>D</u>	Prepared	09/02/22 11:24 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel F Analyte Total TPH	Range Organic Result 77.3	es (DRO) (C	0.00401 GC) RL 49.9	MDL	Unit mg/Kg		Prepared Prepared	09/02/22 11:24 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel F Analyte Total TPH Method: 8015B NM - Diesel Analyte Gasoline Range Organics	Range Organic Result 77.3	es (DRO) (C Qualifier ics (DRO) Qualifier	0.00401 GC) RL 49.9 (GC)	MDL 15.0	Unit mg/Kg	_ =	<u> </u>	09/02/22 11:24 Analyzed 08/26/22 09:25 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel F Analyte Total TPH Method: 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Range Organic Result 77.3 I Range Organ Result	es (DRO) (C Qualifier ics (DRO) Qualifier J B	0.00401 GC) RL 49.9 (GC) RL	MDL 15.0 MDL 15.0	Unit mg/Kg	_ =	Prepared 08/24/22 16:32	09/02/22 11:24 Analyzed 08/26/22 09:25 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel F Analyte Total TPH Method: 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	Range Organic Result 77.3 I Range Organ Result 40.3	es (DRO) (Control of the control of	0.00401 RL 49.9 (GC) RL 49.9	MDL 15.0 MDL 15.0	Unit mg/Kg Unit mg/Kg	_ =	Prepared 08/24/22 16:32 08/24/22 16:32	09/02/22 11:24 Analyzed 08/26/22 09:25 Analyzed 08/25/22 18:39	Dil Fac
Total BTEX Method: 8015 NM - Diesel F Analyte Total TPH Method: 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Range Organic Result 77.3 I Range Organ Result 40.3	es (DRO) (Control of the control of	0.00401 RL 49.9 (GC) RL 49.9 49.9	MDL 15.0 MDL 15.0	Unit mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 08/24/22 16:32 08/24/22 16:32	09/02/22 11:24 Analyzed 08/26/22 09:25 Analyzed 08/25/22 18:39 08/25/22 18:39	Dil Fac
Total BTEX Method: 8015 NM - Diesel F Analyte Total TPH Method: 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Range Organic Result 77.3 I Range Organ Result 40.3 <15.0 37.0	es (DRO) (Control of the control of	0.00401 RL 49.9 (GC) RL 49.9 49.9 49.9	MDL 15.0 MDL 15.0	Unit mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 08/24/22 16:32 08/24/22 16:32 08/24/22 16:32	09/02/22 11:24 Analyzed 08/26/22 09:25 Analyzed 08/25/22 18:39 08/25/22 18:39 08/25/22 18:39 Analyzed	Dil Fac Dil Fac

Client Sample Results

Client: GHD Services Inc. Job ID: 880-18467-1 Project/Site: Romeo SDG: Lea County, NM

Lab Sample ID: 880-18467-4 **Client Sample ID: BH-34B**

Date Collected: 08/23/22 11:00 **Matrix: Solid** Date Received: 08/24/22 10:40

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

0.858 mg/Kg Chloride 80.9 5.00 08/30/22 06:27

Surrogate Summary

Client: GHD Services Inc. Job ID: 880-18467-1 Project/Site: Romeo SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

			Percent S	Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-18467-1	BH-3B	90	103	
880-18467-2	BH-7B	95	105	
880-18467-3	BH-31B	137 S1+	93	
880-18467-4	BH-34B	151 S1+	95	
LCS 880-33466/1-A	Lab Control Sample	94	99	
LCS 880-33658/1-A	Lab Control Sample	141 S1+	95	
LCSD 880-33466/2-A	Lab Control Sample Dup	96	101	
LCSD 880-33658/2-A	Lab Control Sample Dup	137 S1+	90	
MB 880-33371/5-A	Method Blank	103	69 S1-	
MB 880-33466/5-A	Method Blank	78	116	
	Method Blank	105	71	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-18467-1	BH-3B	85	89	
880-18467-2	BH-7B	77	78	
880-18467-3	BH-31B	81	83	
880-18467-4	BH-34B	76	79	
LCS 880-32866/2-A	Lab Control Sample	81	93	
LCSD 880-32866/3-A	Lab Control Sample Dup	92	108	
MB 880-32866/1-A	Method Blank	88	95	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: GHD Services Inc. Job ID: 880-18467-1 SDG: Lea County, NM Project/Site: Romeo

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-33371/5-A

Matrix: Solid

Analysis Batch: 33696

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 33371

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000385	U	0.00200	0.000385	mg/Kg		08/30/22 14:16	09/04/22 20:08	1
Toluene	< 0.000456	U	0.00200	0.000456	mg/Kg		08/30/22 14:16	09/04/22 20:08	1
Ethylbenzene	< 0.000565	U	0.00200	0.000565	mg/Kg		08/30/22 14:16	09/04/22 20:08	1
m-Xylene & p-Xylene	<0.00101	U	0.00400	0.00101	mg/Kg		08/30/22 14:16	09/04/22 20:08	1
o-Xylene	< 0.000344	U	0.00200	0.000344	mg/Kg		08/30/22 14:16	09/04/22 20:08	1
Xylenes, Total	<0.00101	U	0.00400	0.00101	mg/Kg		08/30/22 14:16	09/04/22 20:08	1
	MD	MB							

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 08/30/22 14:16 09/04/22 20:08 4-Bromofluorobenzene (Surr) 70 - 130 103 1,4-Difluorobenzene (Surr) 69 S1-70 - 130 08/30/22 14:16 09/04/22 20:08

Lab Sample ID: MB 880-33466/5-A

Matrix: Solid

Analysis Batch: 33557

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 33466

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Benzene 08/31/22 14:40 09/01/22 18:00 <0.000385 U 0.00200 0.000385 mg/Kg Toluene 0.000456 mg/Kg 08/31/22 14:40 09/01/22 18:00 <0.000456 U 0.00200 Ethylbenzene 0.00200 <0.000565 U 0.000565 mg/Kg 08/31/22 14:40 09/01/22 18:00 m-Xylene & p-Xylene <0.00101 U 0.00400 0.00101 mg/Kg 08/31/22 14:40 09/01/22 18:00 o-Xylene <0.000344 U 0.00200 0.000344 mg/Kg 08/31/22 14:40 09/01/22 18:00 Xylenes, Total 0.00101 mg/Kg 0.00400 08/31/22 14:40 09/01/22 18:00 <0.00101 U

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130	08/31/22 14:40	09/01/22 18:00	1
1,4-Difluorobenzene (Surr)	116		70 - 130	08/31/22 14:40 (09/01/22 18:00	1

Lab Sample ID: LCS 880-33466/1-A

Matrix: Solid

Surrogate

Analysis Batch: 33557

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 33466

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1098		mg/Kg		110	70 - 130	
Toluene	0.100	0.1103		mg/Kg		110	70 - 130	
Ethylbenzene	0.100	0.1076		mg/Kg		108	70 - 130	
m-Xylene & p-Xylene	0.200	0.1975		mg/Kg		99	70 - 130	
o-Xylene	0.100	0.1037		mg/Kg		104	70 - 130	

LCS LCS %Recovery Qualifier Limits 94 70 - 130

99

Lab Sample ID: LCSD 880-33466/2-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid**

Prep Type: Total/NA **Analysis Batch: 33557** Prep Batch: 33466 Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Analyte Unit %Rec Limits **RPD** Limit Benzene 0.100 0.1142 mg/Kg 114 70 - 130 4

70 - 130

Client: GHD Services Inc. Job ID: 880-18467-1 Project/Site: Romeo SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-33466/2-A

Matrix: Solid

Analysis Batch: 33557

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 33466

LCSD LCSD %Rec **RPD** Spike Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Toluene 0.100 0.1143 mg/Kg 114 70 - 130 4 35 Ethylbenzene 0.100 0.1120 mg/Kg 112 70 - 130 4 35 m-Xylene & p-Xylene 0.200 0.2059 mg/Kg 70 - 130 35 103 0.100 35 o-Xylene 0.1080 mg/Kg 108 70 - 130

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	96	70 - 130
1,4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: MB 880-33658/5-A

Matrix: Solid

Analysis Batch: 33696

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 33658

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000385	U	0.00200	0.000385	mg/Kg		09/02/22 15:18	09/05/22 09:38	1
Toluene	< 0.000456	U	0.00200	0.000456	mg/Kg		09/02/22 15:18	09/05/22 09:38	1
Ethylbenzene	< 0.000565	U	0.00200	0.000565	mg/Kg		09/02/22 15:18	09/05/22 09:38	1
m-Xylene & p-Xylene	<0.00101	U	0.00400	0.00101	mg/Kg		09/02/22 15:18	09/05/22 09:38	1
o-Xylene	< 0.000344	U	0.00200	0.000344	mg/Kg		09/02/22 15:18	09/05/22 09:38	1
Xylenes, Total	<0.00101	U	0.00400	0.00101	mg/Kg		09/02/22 15:18	09/05/22 09:38	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130	09/02/22 15:18	09/05/22 09:38	1
1,4-Difluorobenzene (Surr)	71		70 - 130	09/02/22 15:18	09/05/22 09:38	1

Lab Sample ID: LCS 880-33658/1-A

Matrix: Solid

Analysis Batch: 33696

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33658

	Бріке	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1064		mg/Kg		106	70 - 130	
Toluene	0.100	0.1061		mg/Kg		106	70 - 130	
Ethylbenzene	0.100	0.09992		mg/Kg		100	70 - 130	
m-Xylene & p-Xylene	0.200	0.2000		mg/Kg		100	70 - 130	
o-Xylene	0.100	0.1148		mg/Kg		115	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	141	S1+	70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCSD 880-33658/2-A

Matrix: Solid

Client Sample	ID: Lab	Control	Sample Du	aı
			·	~ [~

Prep Type: Total/NA

Analysis batch: 33090							Prep =	oaten: 3	0000
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	 0.100	0.1115		mg/Kg		111	70 - 130	5	35
Toluene	0.100	0.1107		mg/Kg		111	70 - 130	4	35
Ethylbenzene	0.100	0.1018		mg/Kg		102	70 - 130	2	35

35

Client: GHD Services Inc. Job ID: 880-18467-1 SDG: Lea County, NM Project/Site: Romeo

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-33658/2-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid** Prep Type: Total/NA Prep Batch: 33658 **Analysis Batch: 33696** LCSD LCSD %Rec **RPD** Spike Added Result Qualifier Unit %Rec Limits RPD Limit m-Xylene & p-Xylene 0.200 0.2028 mg/Kg 101 70 - 130 35 1

0.1164

mg/Kg

15.0 mg/Kg

116

70 - 130

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 32866

0.100

		LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	137	S1+	70 - 130
1,4-Difluorobenzene (Surr)	90		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 32894** Prep Batch: 32866 MB MB **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Gasoline Range Organics 23.81 J 50.0 15.0 mg/Kg 08/24/22 16:32 08/25/22 10:52 (GRO)-C6-C10 08/24/22 16:32 08/25/22 10:52 Diesel Range Organics (Over <15.0 U 50.0 15.0 mg/Kg C10-C28) Oll Range Organics (Over C28-C36) <15.0 U 50.0 08/24/22 16:32 08/25/22 10:52

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130	08/24/22 16:32	08/25/22 10:52	1
o-Terphenyl	95		70 - 130	08/24/22 16:32	08/25/22 10:52	1

Lab Sample ID: LCS 880-32866/2-A **Matrix: Solid**

Lab Sample ID: MB 880-32866/1-A

Analysis Batch: 32894

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Gasoline Range Organics 1000 858.4 mg/Kg 86 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 863.3 mg/Kg 86 70 - 130

C10-C28)

o-Xylene

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	81	70 - 130
o-Terphenyl	93	70 - 130

Lab Sample ID: LCSD 880-32866/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 32894							Prep E	satch: 3	32866
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	926.7		mg/Kg		93	70 - 130	8	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	979.5		mg/Kg		98	70 - 130	13	20
C10-C28)									

Client: GHD Services Inc. Job ID: 880-18467-1 SDG: Lea County, NM Project/Site: Romeo

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-32866/3-A

Matrix: Solid

Analysis Batch: 32894

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: BH-31B

Prep Batch: 32866

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 92 70 - 130 o-Terphenyl 108 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-32918/1-A

Matrix: Solid

Analysis Batch: 33245

MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac <0.858 U 5.00 08/30/22 03:23 Chloride 0.858 mg/Kg

LCS LCS

Lab Sample ID: LCS 880-32918/2-A

Matrix: Solid

Analysis Batch: 33245

Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 251.2 mg/Kg 100 90 - 110

Lab Sample ID: LCSD 880-32918/3-A

Matrix: Solid

Analysis Batch: 33245

LCSD LCSD Spike %Rec **RPD** Added Analyte Result Qualifier Unit %Rec Limits RPD Limit 250 90 - 110 Chloride 251.4 mg/Kg 101

Lab Sample ID: 880-18467-3 MS

Matrix: Solid

Analysis Batch: 33245

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec 252 1080 1314 4 91 90 - 110 Chloride mg/Kg

Lab Sample ID: 880-18467-3 MSD

Released to Imaging: 1/10/2023 1:18:19 PM

Matrix: Solid

Analysis Batch: 33245

Sample Sample Spike MSD MSD %Rec Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Chloride 1080 252 1320 4 94 90 - 110 20 mg/Kg

Eurofins Midland

Client Sample ID: BH-31B **Prep Type: Soluble**

> **RPD** Limit

QC Association Summary

Client: GHD Services Inc.

Job ID: 880-18467-1
Project/Site: Romeo

SDG: Lea County, NM

GC VOA

Prep Batch: 33371

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-33371/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 33466

Lab Sample ID 880-18467-1	Client Sample ID BH-3B	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
880-18467-2	BH-7B	Total/NA	Solid	5035	
MB 880-33466/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-33466/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-33466/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 33557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18467-1	BH-3B	Total/NA	Solid	8021B	33466
880-18467-2	BH-7B	Total/NA	Solid	8021B	33466
MB 880-33466/5-A	Method Blank	Total/NA	Solid	8021B	33466
LCS 880-33466/1-A	Lab Control Sample	Total/NA	Solid	8021B	33466
LCSD 880-33466/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	33466

Analysis Batch: 33640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18467-1	BH-3B	Total/NA	Solid	Total BTEX	- <u></u> -
880-18467-2	BH-7B	Total/NA	Solid	Total BTEX	
880-18467-3	BH-31B	Total/NA	Solid	Total BTEX	
880-18467-4	BH-34B	Total/NA	Solid	Total BTEX	

Prep Batch: 33658

Lab Sample ID 880-18467-3	Client Sample ID BH-31B	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
880-18467-4	BH-34B	Total/NA	Solid	5035	
MB 880-33658/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-33658/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-33658/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 33696

Lab Sample ID 880-18467-3	Client Sample ID BH-31B	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 33658
880-18467-4	BH-34B	Total/NA	Solid	8021B	33658
MB 880-33371/5-A	Method Blank	Total/NA	Solid	8021B	33371
MB 880-33658/5-A	Method Blank	Total/NA	Solid	8021B	33658
LCS 880-33658/1-A	Lab Control Sample	Total/NA	Solid	8021B	33658
LCSD 880-33658/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	33658

GC Semi VOA

Prep Batch: 32866

_					
Lab Sample	D Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18467-1	BH-3B	Total/NA	Solid	8015NM Prep	
880-18467-2	BH-7B	Total/NA	Solid	8015NM Prep	
880-18467-3	BH-31B	Total/NA	Solid	8015NM Prep	
880-18467-4	BH-34B	Total/NA	Solid	8015NM Prep	
MB 880-3286	6/1-A Method Blank	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: GHD Services Inc.

Job ID: 880-18467-1

Project/Site: Romeo

SDG: Lea County, NM

GC Semi VOA (Continued)

Prep Batch: 32866 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-32866/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32866/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 32894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18467-1	BH-3B	Total/NA	Solid	8015B NM	32866
880-18467-2	BH-7B	Total/NA	Solid	8015B NM	32866
880-18467-3	BH-31B	Total/NA	Solid	8015B NM	32866
880-18467-4	BH-34B	Total/NA	Solid	8015B NM	32866
MB 880-32866/1-A	Method Blank	Total/NA	Solid	8015B NM	32866
LCS 880-32866/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32866
LCSD 880-32866/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32866

Analysis Batch: 33030

Lab Sample ID 880-18467-1	Client Sample ID BH-3B	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
880-18467-2	BH-7B	Total/NA	Solid	8015 NM	
880-18467-3	BH-31B	Total/NA	Solid	8015 NM	
880-18467-4	BH-34B	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 32918

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18467-1	BH-3B	Soluble	Solid	DI Leach	
880-18467-2	BH-7B	Soluble	Solid	DI Leach	
880-18467-3	BH-31B	Soluble	Solid	DI Leach	
880-18467-4	BH-34B	Soluble	Solid	DI Leach	
MB 880-32918/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32918/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32918/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-18467-3 MS	BH-31B	Soluble	Solid	DI Leach	
880-18467-3 MSD	BH-31B	Soluble	Solid	DI Leach	

Analysis Batch: 33245

Released to Imaging: 1/10/2023 1:18:19 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18467-1	BH-3B	Soluble	Solid	300.0	32918
880-18467-2	BH-7B	Soluble	Solid	300.0	32918
880-18467-3	BH-31B	Soluble	Solid	300.0	32918
880-18467-4	BH-34B	Soluble	Solid	300.0	32918
MB 880-32918/1-A	Method Blank	Soluble	Solid	300.0	32918
LCS 880-32918/2-A	Lab Control Sample	Soluble	Solid	300.0	32918
LCSD 880-32918/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32918
880-18467-3 MS	BH-31B	Soluble	Solid	300.0	32918
880-18467-3 MSD	BH-31B	Soluble	Solid	300.0	32918

Eurofins Midland

2

5

R

9

11

13

Job ID: 880-18467-1 SDG: Lea County, NM

Client Sample ID: BH-3B

Client: GHD Services Inc.

Project/Site: Romeo

Date Collected: 08/22/22 11:15 Date Received: 08/24/22 10:40 Lab Sample ID: 880-18467-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	33466	08/31/22 14:40	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33557	09/02/22 00:23	EL	EET MID
Total/NA	Analysis	Total BTEX		1			33640	09/02/22 11:24	AJ	EET MID
Total/NA	Analysis	8015 NM		1			33030	08/26/22 09:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32866	08/24/22 16:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	32894	08/25/22 17:35	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32918	08/25/22 09:42	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	33245	08/30/22 05:41	CH	EET MID

Client Sample ID: BH-7B

Date Collected: 08/22/22 12:55

Lab Sample ID: 880-18467-2

Matrix: Solid

Date Received: 08/24/22 10:40

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Number or Analyzed Type Run **Factor Amount** Amount **Analyst** Lab Total/NA Prep 5035 5 mL 33466 08/31/22 14:40 MR EET MID 4.99 g Total/NA 8021B 5 mL 33557 09/02/22 00:43 EL **EET MID** Analysis 5 mL 1 Total/NA Total BTEX 09/02/22 11:24 AJ Analysis 1 33640 **EET MID** Total/NA 8015 NM 33030 08/26/22 09:25 SM **EET MID** Analysis 1 Total/NA Prep 8015NM Prep 10.04 g 10 mL 32866 08/24/22 16:32 DM **EET MID** Total/NA 8015B NM 1 uL 32894 **EET MID** Analysis 1 uL 08/25/22 17:57 SM Soluble 50 mL 32918 08/25/22 09:42 KS Leach DI Leach 5 g **EET MID** Soluble 300.0 50 mL 08/30/22 05:50 CH Analysis 50 mL 33245 **EET MID**

Client Sample ID: BH-31B

Date Collected: 08/23/22 10:45

Lab Sample ID: 880-18467-3

Matrix: Solid

Date Received: 08/24/22 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33658	09/02/22 15:18	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33696	09/05/22 13:02	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			33640	09/02/22 11:24	AJ	EET MIC
Total/NA	Analysis	8015 NM		1			33030	08/26/22 09:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32866	08/24/22 16:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	32894	08/25/22 18:18	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32918	08/25/22 09:42	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	33245	08/30/22 05:59	CH	EET MI

Client Sample ID: BH-34B

Date Collected: 08/23/22 11:00

Lab Sample ID: 880-18467-4

Matrix: Solid

Date Received: 08/24/22 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	33658	09/02/22 15:18	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33696	09/05/22 13:29	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			33640	09/02/22 11:24	AJ	EET MID

Eurofins Midland

Page 16 of 22

Released to Imaging: 1/10/2023 1:18:19 PM

2

J

5

7

9

11

Lab Chronicle

Client: GHD Services Inc.

Project/Site: Romeo

Job ID: 880-18467-1
SDG: Lea County, NM

Client Sample ID: BH-34B

Date Collected: 08/23/22 11:00 Date Received: 08/24/22 10:40 Lab Sample ID: 880-18467-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	е Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			33030	08/26/22 09:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32866	08/24/22 16:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	32894	08/25/22 18:39	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32918	08/25/22 09:42	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	33245	08/30/22 06:27	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

0

4.0

11

13

Accreditation/Certification Summary

Client: GHD Services Inc. Job ID: 880-18467-1 Project/Site: Romeo SDG: Lea County, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		rogram ELAP	Identification Number T104704400-22-24	Expiration Date 06-30-23
The following analyte:	s are included in this rep	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
the agency does not o	offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

Method Summary

Client: GHD Services Inc. Project/Site: Romeo

Job ID: 880-18467-1 SDG: Lea County, NM

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
Ol Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 1/10/2023 1:18:19 PM

2

-

5

7

_

10

11

13

| | 4

Page 130 of 188

Sample Summary

Client: GHD Services Inc. Project/Site: Romeo

Job ID: 880-18467-1 SDG: Lea County, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-18467-1	BH-3B	Solid	08/22/22 11:15	08/24/22 10:40
880-18467-2	BH-7B	Solid	08/22/22 12:55	08/24/22 10:40
880-18467-3	BH-31B	Solid	08/23/22 10:45	08/24/22 10:40
880-18467-4	BH-34B	Solid	08/23/22 11:00	08/24/22 10:40

3

4

5

6

8

9

10

12

13

wednesding in the communication of the communicatio	GHK.	pecual in	1.55	701							des only)	ORDER #:	(lab use only)		_	0	<u> </u>	_	~	The Envir
a Dy	Wish Co &	pegial Instructions. Please		deline manufacture, principal principal del caracteristic del cara	**	=	二	F	カチーレス	ローン系	difference of the second	#:	ly)	Sampler Signature	lelephone No	City/State/Zip	Company Address	Company Name	Project Manager	17人GNCO Lalborat The knyironmental Lab of Texas
8,5	A S.	2.								FIELD CODE	**Annexes**			A	-254	Midlano	7135	(JHD)	M. M.	Labortatories
	Date	It. Murrey @								Beginning	Depth				686-C	1 + 1	,S		wiey (
Time	Time	C#0.				+			+	Ending De	pth				0086	1	600		0	
Recayed by Received by ELOT	3	Ce 31				1/63/26	125/	8	2/27/22	Date Sam	pled				6	79703	P 250		HD. CL	
	Attn.: x	Direct 3:11	880-18467			1100	1045	1255	1115	Time Sam	pled			e-mail.	Fax No:	8	D W.		Ors	
		3: 1: 40.	Chain of Custody			-	-	-	-	Field Filtered Total # of Con	tainers			#						
		Centina e	of Cus			-	-			Ice HNO ₃		Pre		all.					Caes	12600
			tody							HCI		Preservation & # of C		Z					sa, ie	CHAIN OF
		4			-	-	-			H ₂ SO ₄ NaOH		n & # o		Boyde)Xas	CHA.
								厂		₁√a₂S₂O₃		Container		10					9765	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST
		3- 1	1	, .	-	-	-	-		Other (Specifi	<u> </u>	Sterior		CHD			_			: CU:
	J61	1 1					S			DW≃Drinking Wat	r SL=Sludge	<u> </u>		. •	<u>∵</u> 1	, 1	1	ı		STOL
						~	4.	~	1 1	GW = Groundwate NP=Non-Potable	Specify Other	Matrix		CO 2	10G 9	i	NGN:		TO)Y R
	Time Time					6	1	7	-	TPH 418 1		15B)	Report Format:	4	Project ac-	֓֞֞֞֞֞֞֞֞֞֜֞֞֜֞֞֓֓֓֓֞֓֓֓֞֞֜֞֓֓֓֓֞֜֞֜֞֓֓֞֞֞֓֓֞֞֜֞֞֓֞֡֞֜֞֓֞֡֓֞	Project Name:	ECC
10 10	1 .					ļ	<u> </u>			TPH. TX 100		_	arrection.		mat:	บ - ÷	piect oc:		Z" 22 ∃)RD
Custody seals on contains Custody seals on cooler(s Sample Hand Delivered by Sampler/Client Rep by Courier? UPS	Laboratory Comments Sample Containers Intact? VOCs Free of Headspace? Labels on container(s)		-	\dashv						Cations (Ca My Anions (Cl SO4		_		,	7	ir	~ I_			ANL
ody s ody s ole H y Sar y Cou	rato ble C s Fre	+	+++	\dashv		-				SAR / ESP / CE		TOTAL.	TOID				0 5	<u> </u>	Fax:	/#/ C
eals eals and and mpler	onta e of con	, -	+++	+	-	-					a Cd Cr Pb Hg		-i /	2	Standard)		ć	3 Fauc.	Pho
on c on c Deliv	omin Iners Hea Iaine			$\neg \vdash$	\top					Volatiles			Analyze			5	2	Ċ) $\bar{\Xi}$	YS!
ionta ioole ioole /erec nt Re nt Re	nents Inta dspa									Semivolatiles			ze F						\$3 23	S 72.
~ ~ !!	s ncl? nce?					~	ヾ	7	-`+'		30 or BTEX 826	50	⊢ For ⊢		7	1	-		432-563-1713	<i>IALYSIS REQUEST</i> Phone: 432-563-1800
DHL DHL (s)		-	+							RCI					Todo				1171	IES:
D D D		-	++		-		_	4	!_	N O.R.M.	· Faa		سر ده توسی	7	·	Ì	2		ជី	
€ }*<<<	~ ~ ~	-	++			4	*	4	16	hbride	_ 300 p	u		Г	_	3	i			
			+++	-				+	\dashv				1	<u> </u>	7	د				
N N Lone Star	ZZZ	T					T		F	RUSH TAT (Pr	-Schedule) 24 .	48 T2 hrs		N C C C C						_
Ø1	1		TT		1 1	1	7	<	×	landard TAT	1		- mari	U.	.					-

Login Sample Receipt Checklist

Client: GHD Services Inc. Job Number: 880-18467-1 SDG Number: Lea County, NM

List Source: Eurofins Midland

Login Number: 18467 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2956-1

Laboratory Sample Delivery Group: 12580761 Client Project/Site: Romeo Federal 22 Battery 1

For:

eurofins

GHD Services Inc. 2135 South Loop 250 West Midland, Texas 79703

Attn: James (J.T.) Murrey

Debbie Simmons

Authorized for release by: 9/28/2022 5:00:56 PM

Debbie Simmons, Project Manager (832)986-6768

Debbie.Simmons@et.eurofinsus.com

EOL

Have a Question?

------ LINKS ------

Review your project results through

Visit us at:

www.eurofinsus.com/Env Released to Imaging: 1/10/2023 1:18:19 PM This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1 Laboratory Job ID: 890-2956-1

SDG: 12580761

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

Definitions/Glossary

Client: GHD Services Inc. Job ID: 890-2956-1 Project/Site: Romeo Federal 22 Battery 1

SDG: 12580761

Qualifiers

GC VOA Qualifier **Qualifier Description**

*+ LCS and/or LCSD is outside acceptance limits, high biased. S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid

CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 890-2956-1

SDG: 12580761

Job ID: 890-2956-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2956-1

Comments

No additional comments.

Receipt

The sample was received on 9/14/2022 1:29 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.6° C.

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-35226 recovered above the upper control limit for Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (CCV 880-35226/2). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (LCS 880-35092/1-A) and (LCSD 880-35092/2-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (CCV 880-35226/20). Evidence of matrix interferences is not obvious.

Method 8021B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 880-35092 and analytical batch 880-35226 recovered outside control limits for the following analytes: Ethylbenzene, m-Xylene & p-Xylene, o-Xylene and Xylenes, Total. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B NM: The surrogate recovery for the blank associated with preparation batch 880-34675 and analytical batch 880-34626 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

0

10

12

13

| | 4

Client Sample Results

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 890-2956-1

Lab Sample ID: 890-2956-1

SDG: 12580761

Matrix: Solid

Client Sample ID: BH-31 C

Date Collected: 09/12/22 13:30

Date Received: 09/14/22 13:29

Sample Depth: 4'

Method: 8021B - Volatile Orga Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	0.000383	mg/Kg		09/23/22 08:21	09/23/22 14:06	1
Toluene	< 0.00199	U	0.00199	0.000453			09/23/22 08:21	09/23/22 14:06	1
Ethylbenzene	<0.00199	U *+	0.00199	0.000562	mg/Kg		09/23/22 08:21	09/23/22 14:06	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	0.00100	mg/Kg		09/23/22 08:21	09/23/22 14:06	1
o-Xylene	< 0.00199	U *+	0.00199	0.000342	mg/Kg		09/23/22 08:21	09/23/22 14:06	1
Xylenes, Total	<0.00398	U *+	0.00398	0.00100	mg/Kg		09/23/22 08:21	09/23/22 14:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				09/23/22 08:21	09/23/22 14:06	1
1,4-Difluorobenzene (Surr)	84		70 - 130				09/23/22 08:21	09/23/22 14:06	1
Method: Total BTEX - Total B	TEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	0.00100	mg/Kg			09/26/22 12:34	1
Method: 8015 NM - Diesel Rai	nge Organic	s (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	15.0	mg/Kg			09/19/22 11:13	1
Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	15.0	mg/Kg		09/16/22 11:48	09/17/22 05:39	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	15.0	mg/Kg		09/16/22 11:48	09/17/22 05:39	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	15.0	mg/Kg		09/16/22 11:48	09/17/22 05:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				09/16/22 11:48	09/17/22 05:39	1
o-Terphenyl	96		70 - 130				09/16/22 11:48	09/17/22 05:39	1
Method: 300.0 - Anions, Ion C	hromatogra	nhy - Solu	ıble						
Method. 300.0 - Allions, lon C	in onlatogic	.p							
Analyte	_	Qualifier	RL 4.99		Unit mg/Kg	D	Prepared	Analyzed	Dil Fac

Surrogate Summary

Job ID: 890-2956-1 Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1

SDG: 12580761

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		BFB1	DFBZ1						
Lab Sample ID	Client Sample ID	(70-130)	(70-130)						
890-2956-1	BH-31 C	121	84						
LCS 880-35092/1-A	Lab Control Sample	138 S1+	126						
LCSD 880-35092/2-A	Lab Control Sample Dup	166 S1+	136 S1+						
MB 880-35092/5-A	Method Blank	121	113						
Surrogate Legend									

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		1001	OTPH1						
Lab Sample ID	Client Sample ID	(70-130)	(70-130)						
890-2956-1	BH-31 C	94	96						
LCS 880-34675/2-A	Lab Control Sample	125	117						
LCSD 880-34675/3-A	Lab Control Sample Dup	120	111						
MB 880-34675/1-A	Method Blank	135 S1+	145 S1+						

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 890-2956-1

SDG: 12580761

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-35092/5-A

Lab Sample ID: LCS 880-35092/1-A

Lab Sample ID: LCSD 880-35092/2-A

Matrix: Solid

Matrix: Solid

Matrix: Solid

m-Xylene & p-Xylene

o-Xylene

Analysis Batch: 35226

Analysis Batch: 35226

Analysis Batch: 35226

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35092

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	0.000385	mg/Kg		09/21/22 15:19	09/23/22 11:20	1
Toluene	<0.00200	U	0.00200	0.000456	mg/Kg		09/21/22 15:19	09/23/22 11:20	1
Ethylbenzene	<0.00200	U	0.00200	0.000565	mg/Kg		09/21/22 15:19	09/23/22 11:20	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	0.00101	mg/Kg		09/21/22 15:19	09/23/22 11:20	1
o-Xylene	<0.00200	U	0.00200	0.000344	mg/Kg		09/21/22 15:19	09/23/22 11:20	1
Xylenes, Total	<0.00400	U	0.00400	0.00101	mg/Kg		09/21/22 15:19	09/23/22 11:20	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130	09/21/22 15:19	09/23/22 11:20	1
1,4-Difluorobenzene (Surr)	113		70 - 130	09/21/22 15:19	09/23/22 11:20	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35092

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 70 - 130 0.100 0.09803 mg/Kg 98 Toluene 0.100 0.09879 mg/Kg 99 70 - 130 Ethylbenzene 0.100 mg/Kg 114 70 - 130 0.1144 0.200 m-Xylene & p-Xylene 0.2610 *+ mg/Kg 131 70 - 130o-Xylene 0.100 0.1269 mg/Kg 127 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	138	S1+	70 - 130
1,4-Difluorobenzene (Surr)	126		70 - 130

Client Sample ID: Lab Control Sample Dup

153

148

70 - 130

70 - 130

Prep Type: Total/NA Prep Batch: 35092 **RPD**

16

16

35

35

35

35

35

Spike LCSD LCSD %Rec Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Benzene 0.100 0.1127 mg/Kg 113 70 - 130 14 Toluene 0.100 0.1105 mg/Kg 110 70 - 130 11 Ethylbenzene 0.100 0.1355 *+ mg/Kg 136 70 - 130 17

0.3060 *+

0.1482 *+

mg/Kg

mg/Kg

0.200

0.100

LCSD LCSD %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 166 S1+ 1,4-Difluorobenzene (Surr) 136 S1+ 70 - 130

Client: GHD Services Inc. Project/Site: Romeo Federal 22 Battery 1

Job ID: 890-2956-1

SDG: 12580761

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-34675/1-A

Matrix: Solid

Analysis Batch: 34626

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 34675

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	15.0	mg/Kg		09/16/22 11:48	09/17/22 03:30	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	15.0	mg/Kg		09/16/22 11:48	09/17/22 03:30	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	15.0	mg/Kg		09/16/22 11:48	09/17/22 03:30	1
	Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Analyte Result Gasoline Range Organics <50.0 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 C10-C28)	Gasoline Range Organics <50.0 U (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U C10-C28)	Analyte Result Qualifier RL Gasoline Range Organics <50.0 U 50.0 (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) <50.0 U 50.0	Analyte Result Qualifier RL MDL Gasoline Range Organics <50.0 U 50.0 15.0 (GRO)-C6-C10 Oiesel Range Organics (Over C10-C28) <50.0 U 50.0 15.0	Analyte Result Qualifier RL MDL Unit Gasoline Range Organics <50.0 U 50.0 15.0 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) <50.0 U 50.0 15.0 mg/Kg	Analyte Result Qualifier RL MDL Unit D Gasoline Range Organics <50.0 U 50.0 15.0 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 15.0 mg/Kg C10-C28)	Analyte Result Qualifier RL MDL Unit D Prepared Gasoline Range Organics <50.0 U 50.0 15.0 mg/Kg 09/16/22 11:48 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 15.0 mg/Kg 09/16/22 11:48 C10-C28)	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Gasoline Range Organics <50.0 U 50.0 15.0 mg/Kg 09/16/22 11:48 09/17/22 03:30 (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) <50.0 U 50.0 15.0 mg/Kg 09/16/22 11:48 09/17/22 03:30

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	135	S1+	70 - 130	09/16/22 11:48	09/17/22 03:30	1
o-Terphenyl	145	S1+	70 - 130	09/16/22 11:48	09/17/22 03:30	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 34675

Prep Batch: 34675

Matrix: Solid Analysis Batch: 34626

Lab Sample ID: LCS 880-34675/2-A

-	Sp	ike	LCS	LCS				%Rec	
Analyte	Add	bet	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<u> </u>	000	1086		mg/Kg		109	70 - 130	 _
(GRO)-C6-C10									
Diesel Range Organics (Over	14	000	1082		mg/Kg		108	70 - 130	
C10-C28)									

LCS LCS

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	125	70 - 130
o-Terphenyl	117	70 - 130

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Lab Sample ID: LCSD 880-34675/3-A **Matrix: Solid**

Analysis Batch: 34626

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1081		mg/Kg		108	70 - 130	0	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1029		mg/Kg		103	70 - 130	5	20
C10-C28)									

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	120		70 - 130
o-Terphenyl	111		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-34666/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Soluble**

Analysis Batch: 34958

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 0.858 mg/Kg 09/21/22 03:24

QC Sample Results

Client: GHD Services Inc. Job ID: 890-2956-1 Project/Site: Romeo Federal 22 Battery 1

SDG: 12580761

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-34666/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble Matrix: Solid**

Analysis Batch: 34958

7									
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	250	255.4		mg/Kg		102	90 - 110		_

Lab Sample ID: LCSD 880-34666/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Soluble**

Analysis Batch: 34958

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	251.8		mg/Kg		101	90 - 110	1	20

QC Association Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 890-2956-1

SDG: 12580761

GC VOA

Prep Batch: 35092

Lab Sample ID 890-2956-1	Client Sample ID BH-31 C	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
MB 880-35092/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-35092/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-35092/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 35226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2956-1	BH-31 C	Total/NA	Solid	8021B	35092
MB 880-35092/5-A	Method Blank	Total/NA	Solid	8021B	35092
LCS 880-35092/1-A	Lab Control Sample	Total/NA	Solid	8021B	35092
LCSD 880-35092/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	35092

Analysis Batch: 35402

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2956-1	BH-31 C	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 34626

Lab Sample ID 890-2956-1	Client Sample ID BH-31 C	Prep Type Total/NA	Matrix Solid	Method 8015B NM	Prep Batch 34675
MB 880-34675/1-	A Method Blank	Total/NA	Solid	8015B NM	34675
LCS 880-34675/2	-A Lab Control Sample	Total/NA	Solid	8015B NM	34675
LCSD 880-34675	/3-A Lab Control Sample Dup	Total/NA	Solid	8015B NM	34675

Prep Batch: 34675

Lab Sample ID 890-2956-1	Client Sample ID BH-31 C	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-34675/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-34675/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-34675/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 34824

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2956-1	BH-31 C	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 34666

Lab Sample ID 890-2956-1	Client Sample ID BH-31 C	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
MB 880-34666/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-34666/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-34666/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 34958

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2956-1	BH-31 C	Soluble	Solid	300.0	34666
MB 880-34666/1-A	Method Blank	Soluble	Solid	300.0	34666
LCS 880-34666/2-A	Lab Control Sample	Soluble	Solid	300.0	34666
LCSD 880-34666/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	34666

Lab Chronicle

Client: GHD Services Inc.

Date Received: 09/14/22 13:29

Project/Site: Romeo Federal 22 Battery 1

Job ID: 890-2956-1

SDG: 12580761

Client Sample ID: BH-31 C Lab Sample ID: 890-2956-1 Date Collected: 09/12/22 13:30

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	35092	09/23/22 08:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35226	09/23/22 14:06	MR	EET MID
Total/NA	Analysis	Total BTEX		1			35402	09/26/22 12:34	SM	EET MID
Total/NA	Analysis	8015 NM		1			34824	09/19/22 11:13	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	34675	09/16/22 11:48	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	34626	09/17/22 05:39	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	34666	09/16/22 10:42	CH	EET MID
Soluble	Analysis	300.0		1			34958	09/21/22 05:21	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: GHD Services Inc. Job ID: 890-2956-1 Project/Site: Romeo Federal 22 Battery 1 SDG: 12580761

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date		
Texas	N	NELAP	T104704400-22-24	06-30-23		
The following analyte the agency does not on Analysis Method		port, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for which		
8015 NM		Solid Total TPH				
Total BTEX		Solid	Total BTEX			

Method Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 890-2956-1

SDG: 12580761

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

-

3

4

9

10

12

Page 146 of 188

Sample Summary

Client: GHD Services Inc.

Project/Site: Romeo Federal 22 Battery 1

Job ID: 890-2956-1

SDG: 12580761

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Depth

 890-2956-1
 BH-31 C
 Solid
 09/12/22 13:30
 09/14/22 13:29
 4'

3

4

5

0

10

12

13

Revised Date 08/25/2020 Rev 2020

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

Pate/Time

Received by: (Signature)

Relinquished by: (Signature)

13/19

1

1

2

3

4

6

9

11 12

13

Houst Environment Testing Midland

💸 eurofins

Chain of Custody
Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300
Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334
EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296
Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 998-3199

Work Order No:

	FT MILOPELL			Dill see, of diffe.						Work Order C	Work Order Comments	
Project Manager:	T WALLY			Bill to: (if different)	rent)					200	Commence of	
Company Name:	GHD			Company Name	ne:				Program:	UST/PST PRP	Brownfields	RRC Superfund
Address:	2135 S. COOP	r 250 W	3	Address:					State of Project:	ij		
e ZIP:	MIDLAND TX	1	103	City, State ZIP:					Reporting: L	evel II 🔲 Level II	Reporting: Level III Level III PST/UST TRRP Level IV	TRRP Level IV
	0	0086	Email:	JT.	MURRET	EL	Q+15 B	D. COM	Deliverables:	EDD	ADaPT Ot	Other:
Project Name:	Romes FEDERAL 22 BACTERY	22 BACE		Turn Around				ANALYSIS REQUEST)UEST		Preser	Preservative Codes
er:	12586761		Rout	Rush	Pres. Code						None:	DI Water: H ₂ O
	LEA COUNTY	W.	Due Date:								Cool:	MeOH: Me
Sampler's Name:	-7	7	TAT starts the	TAT starts the day received by			W				HCL: HC	HNO 3: HN
PO#: Rome	AL 22	Spreer 1	the lab, if rec	the lab, if received by 4:30pm	s		0			_	H2504: H2	NaOH: Na
SAMPLE RECEIPT	Temp Blank:	Yes (NO)	Wet Ice:	So No	eter	5	30				H ₃ PO ₄ : HP	
Samples Received Intact:	(fes) No	Thermometer ID:	r ID:	Inm-a	men		70				NaHSO 4: NABIS	ABIS
Cooler Custody Seals:	Yes No MA	Correction Factor:	actor:	-D.	Pa	_					Na 2 5 2 0 3: Na SO	aSO 3
Sample Custody Seals:	Yes No N/A	Temperature Reading:	Reading:	50.00			102	890-2956 Chain of Custody	of Custody		Zn Acetate+NaOH: Zn	·NaOH: Zn
Total Containers:		Corrected Temperature:	mperature:	5.6		17.	70°	-		-	NaOH+Asco	NaOH+Ascorbic Acid: SAPC
Sample Identification	ition	Date Sampled	Time Sampled	Depth Grab/	b/ # of np Cont	上	192				Samp	Sample Comments
BH-31 C	8	4/21/22	1330	. T	_	X	X					
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	200.8 / 6020: d Metal(s) to be ana		8RCRA 13PPM TCLP / SPLI	A 13PPM Texas 11 AI S TCLP / SPLP 6010 : 8RCRA	AI Sb RCRA St	AI Sb As Ba Be B CRA Sb As Ba Be C	Be B Cd C Be Cd Cr	b As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	Mo Ni	K Se Ag SiO ₂ 1 Hg: 1631 /	Ag SiO ₂ Na Sr Tl Sn U V Z Hg: 1631 / 245.1 / 7470 / 7471	. Zn .71
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions	nt and relinquishment of samp	es constitutes a va	alid purchase ord	er from client comp	vany to Eurofi	ıs Xenco, it	affiliates and sul	contractors. It assigns standard t	erms and conditions			
of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated	· liable only for the cost of sami raroe of \$85.00 will be applied	ples and shall not a	assume any respond a charge of \$5	insibility for any lost for each sample sul	ses or expense Smitted to Eur	s incurred i	by the client if sur	llity for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control ach sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously neg	beyond the control	Ġ.		

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 890-2956-1

SDG Number: 12580761

Login Number: 2956 List Source: Eurofins Carlsbad

List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Euronnis Carisbau

3

4

6

-

9

11

9/28/2022

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 890-2956-1

SDG Number: 12580761

List Source: Eurofins Midland
List Number: 2
List Creation: 09/16/22 11:00 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

, c 1 / 2 o j 1 o o

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: James (J.T.) Murrey GHD Services Inc. 2135 South Loop 250 West Midland, Texas 79703

Generated 12/5/2022 5:47:03 PM

JOB DESCRIPTION

Romero Battery Release SDG NUMBER Rurual of Eunice, NM

JOB NUMBER

880-21947-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/5/2022 5:47:03 PM

Authorized for release by Debbie Simmons, Project Manager Debbie.Simmons@et.eurofinsus.com (832)986-6768

119

Client: GHD Services Inc. Project/Site: Romero Battery Release Laboratory Job ID: 880-21947-1 SDG: Rurual of Eunice, NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

2

3

4

6

8

11

13

Definitions/Glossary

Client: GHD Services Inc. Job ID: 880-21947-1 Project/Site: Romero Battery Release SDG: Rurual of Eunice, NM

Qualifiers

GC VOA

Qualifier **Qualifier Description** S1-Surrogate recovery exceeds control limits, low biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** В Compound was found in the blank and sample. F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

J. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

DL. RA. RE. IN

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL

DLC Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) **EDL**

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" MCL

Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit **PQL**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: GHD Services Inc.

Project/Site: Romero Battery Release

Job ID: 880-21947-1

SDG: Rurual of Eunice, NM

Job ID: 880-21947-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-21947-1

Receipt

The sample was received on 11/28/2022 1:46 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.5°C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SW-11 (880-21947-1).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-40456 and 880-40468 and analytical batch 880-40542 was outside the control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-40514 and analytical batch 880-40408 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-40514/2-A) and (LCSD 880-40514/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: SW-11 (880-21947-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: The method blank for preparation batch 880-40514 and analytical batch 880-40408 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-40514 and analytical batch 880-40408 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: GHD Services Inc.

Date Received: 11/28/22 13:46

Project/Site: Romero Battery Release

Job ID: 880-21947-1

SDG: Rurual of Eunice, NM

Lab Sample ID: 880-21947-1

Client Sample ID: SW-11 Date Collected: 11/23/22 09:30

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000386	U	0.00200	0.000386	mg/Kg		11/29/22 13:24	11/30/22 12:43	1
Toluene	<0.000457	U	0.00200	0.000457	mg/Kg		11/29/22 13:24	11/30/22 12:43	1
Ethylbenzene	<0.000566	U	0.00200	0.000566	mg/Kg		11/29/22 13:24	11/30/22 12:43	1
m-Xylene & p-Xylene	<0.00101	U	0.00401	0.00101	mg/Kg		11/29/22 13:24	11/30/22 12:43	1
o-Xylene	<0.000345	U	0.00200	0.000345	mg/Kg		11/29/22 13:24	11/30/22 12:43	1
Xylenes, Total	<0.00101	U	0.00401	0.00101	mg/Kg		11/29/22 13:24	11/30/22 12:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	109		70 - 130				11/29/22 13:24	11/30/22 12:43	1
1,4-Difluorobenzene (Surr)	110		70 - 130				11/29/22 13:24	11/30/22 12:43	1
Method: TAL SOP Total BTEX - 1	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00101		0.00401	0.00101	mg/Kg			11/30/22 14:30	1
Method: SW846 8015 NM - Diese Analyte		Qualifier	GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	29.9	J	50.0	15.0	mg/Kg			11/29/22 12:08	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	29.9	JBF2	50.0	15.0	mg/Kg		11/28/22 16:34	11/29/22 02:12	1
Diesel Range Organics (Over C10-C28)	<15.0	U F1	50.0	15.0	mg/Kg		11/28/22 16:34	11/29/22 02:12	1
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		11/28/22 16:34	11/29/22 02:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	139	S1+	70 - 130				11/28/22 16:34	11/29/22 02:12	1
o-Terphenyl	151	S1+	70 - 130				11/28/22 16:34	11/29/22 02:12	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble						
Method: MCAWW 300.0 - Anions Analyte		graphy - So Qualifier	oluble RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Surrogate Summary

Client: GHD Services Inc.

Job ID: 880-21947-1

Project/Site: Romero Battery Release

SDG: Rurual of Eunice, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Re
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-21947-1	SW-11	109	110	
LCS 880-40468/1-A	Lab Control Sample	91	108	
LCSD 880-40468/2-A	Lab Control Sample Dup	93	102	
MB 880-40456/5-A	Method Blank	63 S1-	97	
MB 880-40468/5-A	Method Blank	64 S1-	91	
Surrogate Legend BFB = 4-Bromofluorober				

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
b Sample ID	Client Sample ID	(70-130)	(70-130)	
80-21947-1	SW-11	139 S1+	151 S1+	
80-21947-1 MS	SW-11	120	106	
80-21947-1 MSD	SW-11	100	104	
S 880-40514/2-A	Lab Control Sample	135 S1+	139 S1+	
SD 880-40514/3-A	Lab Control Sample Dup	190 S1+	187 S1+	
B 880-40514/1-A	Method Blank	136 S1+	150 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

3

4

O

_

10

12

13

QC Sample Results

Client: GHD Services Inc. Job ID: 880-21947-1 Project/Site: Romero Battery Release SDG: Rurual of Eunice, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-40456/5-A

Matrix: Solid Analysis Batch: 40542 Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 40456

MB MB Dil Fac Analyte Result Qualifier RL MDL Unit Prepared Analyzed Benzene <0.000385 U 0.00200 0.000385 mg/Kg 11/28/22 12:33 11/29/22 11:44 Toluene <0.000456 U 0.00200 0.000456 mg/Kg 11/28/22 12:33 11/29/22 11:44 Ethylbenzene <0.000565 U 0.00200 0.000565 mg/Kg 11/28/22 12:33 11/29/22 11:44 m-Xylene & p-Xylene <0.00101 U 0.00400 0.00101 mg/Kg 11/28/22 12:33 11/29/22 11:44 o-Xylene <0.000344 U 0.00200 0.000344 mg/Kg 11/28/22 12:33 11/29/22 11:44 Xylenes, Total <0.00101 U 0.00400 0.00101 mg/Kg 11/28/22 12:33 11/29/22 11:44

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	63	S1-	70 - 130	11/28/22 12:33	11/29/22 11:44	1
1 4-Difluorobenzene (Surr)	97		70 - 130	11/28/22 12:33	11/29/22 11:44	1

Lab Sample ID: MB 880-40468/5-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 40468 Analysis Batch: 40542

	III.D	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000385	U	0.00200	0.000385	mg/Kg		11/28/22 14:12	11/30/22 01:56	1
Toluene	<0.000456	U	0.00200	0.000456	mg/Kg		11/28/22 14:12	11/30/22 01:56	1
Ethylbenzene	<0.000565	U	0.00200	0.000565	mg/Kg		11/28/22 14:12	11/30/22 01:56	1
m-Xylene & p-Xylene	<0.00101	U	0.00400	0.00101	mg/Kg		11/28/22 14:12	11/30/22 01:56	1
o-Xylene	<0.000344	U	0.00200	0.000344	mg/Kg		11/28/22 14:12	11/30/22 01:56	1
Xylenes, Total	<0.00101	U	0.00400	0.00101	mg/Kg		11/28/22 14:12	11/30/22 01:56	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	64	S1-	70 - 130	11/28/22 14:12	11/30/22 01:56	1
1,4-Difluorobenzene (Surr)	91		70 - 130	11/28/22 14:12	11/30/22 01:56	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 880-40468/1-A

Matrix: Solid Prep Type: Total/NA Analysis Batch: 40542 Prep Batch: 40468

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1124		mg/Kg		112	70 - 130	
Toluene	0.100	0.09729		mg/Kg		97	70 - 130	
Ethylbenzene	0.100	0.08761		mg/Kg		88	70 - 130	
m-Xylene & p-Xylene	0.200	0.1740		mg/Kg		87	70 - 130	
o-Xylene	0.100	0.09189		mg/Kg		92	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	91	70 - 130
1.4-Difluorobenzene (Surr)	108	70 - 130

Lab Sample ID: LCSD 880-40468/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 40542 Prep Batch: 40468

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.1194 mg/Kg 119 70 - 130

QC Sample Results

Client: GHD Services Inc. Job ID: 880-21947-1 SDG: Rurual of Eunice, NM Project/Site: Romero Battery Release

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-40468/2-A **Matrix: Solid**

Analysis Batch: 40542

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 40468

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.1035		mg/Kg		104	70 - 130	6	35
Ethylbenzene	0.100	0.09377		mg/Kg		94	70 - 130	7	35
m-Xylene & p-Xylene	0.200	0.1884		mg/Kg		94	70 - 130	8	35
o-Xylene	0.100	0.09769		mg/Kg		98	70 - 130	6	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-40514/1-A

Matrix: Solid

Analysis Batch: 40408

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 40514

MR MR

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	16.05	J	50.0	15.0	mg/Kg		11/28/22 16:34	11/29/22 06:30	1
Diesel Range Organics (Over C10-C28)	<15.0	U	50.0	15.0	mg/Kg		11/28/22 16:34	11/29/22 06:30	1
Oll Range Organics (Over C28-C36)	<15.0	U	50.0	15.0	mg/Kg		11/28/22 16:34	11/29/22 06:30	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	136	S1+	70 - 130	11/28/22 16:34	11/29/22 06:30	1
o-Terphenyl	150	S1+	70 - 130	11/28/22 16:34	11/29/22 06:30	1

Lab Sample ID: LCS 880-40514/2-A

Matrix: Solid

Analysis Batch: 40408

Prep Type: Total/NA

Prep Batch: 40514

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1074		mg/Kg		107	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	995.7		mg/Kg		100	70 - 130	
C10-C28)								

C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	135	S1+	70 - 130
o-Terphenyl	139	S1+	70 - 130

Lab Sample ID: LCSD 880-40514/3-A

Matrix: Solid

C10-C28)

Analysis Batch: 40408

Client Sample	ID:	Lab (Control	Samp	le C)up
---------------	-----	-------	---------	------	------	-----

Prep Type: Total/NA

Prep Batch: 40514

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	903.6		mg/Kg		90	70 - 130	17	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	990.3		mg/Kg		99	70 - 130	1	20	

Client: GHD Services Inc. Job ID: 880-21947-1 Project/Site: Romero Battery Release SDG: Rurual of Eunice, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-40514/3-A **Matrix: Solid**

Analysis Batch: 40408

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: SW-11

Prep Batch: 40514

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 190 S1+ 70 - 130 o-Terphenyl 187 S1+ 70 - 130

Lab Sample ID: 880-21947-1 MS Client Sample ID: SW-11

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 40408** Prep Batch: 40514

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 29.9 JBF2 999 1202 117 70 - 130Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 999 1382 F1 <15.0 U F1 mg/Kg 138 70 - 130C10-C28)

MS MS %Recovery Surrogate Qualifier Limits 70 - 130 1-Chlorooctane 120 106 70 - 130 o-Terphenyl

Lab Sample ID: 880-21947-1 MSD

Matrix: Solid

Analysis Batch: 40408

Prep Type: Total/NA Prep Batch: 40514 Sample Sample MSD MSD Spike

Analyte Result Qualifier hahhA Result Qualifier Unit %Rec Limits RPD Limit D Gasoline Range Organics 29.9 JBF2 997 926.9 F2 mg/Kg 90 70 - 130 26 20 (GRO)-C6-C10 Diesel Range Organics (Over <15.0 UF1 997 1267 mg/Kg 127 70 - 130 9 20 C10-C28)

MSD MSD %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 100 70 - 130 o-Terphenyl 104

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-40467/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 40515

MB MB Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloride <0.395 U 5.00 0.395 mg/Kg 11/28/22 18:35

Lab Sample ID: LCS 880-40467/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 40515

	Spike	LCS	LCS				%Rec	
Analyte	Added	l Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	261.2		mg/Kg	_	104	90 - 110	

QC Sample Results

Client: GHD Services Inc.

Job ID: 880-21947-1

Project/Site: Romero Battery Release

SDG: Rurual of Eunice, NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-40467/3-A

Client Sample ID: Lab Control Sample Dup
Matrix: Solid

Prep Type: Soluble

Analysis Batch: 40515

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	262.8		mg/Kg		105	90 - 110	1	20

4

5

7

8

10

12

13

QC Association Summary

Client: GHD Services Inc.

Project/Site: Romero Battery Release

Job ID: 880-21947-1 SDG: Rurual of Eunice, NM

GC VOA

Prep Batch: 40456

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-40456/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 40468

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-21947-1	SW-11	Total/NA	Solid	5035	
MB 880-40468/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-40468/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-40468/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 40542

Lab Sample ID 880-21947-1	Client Sample ID SW-11	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 40468
MB 880-40456/5-A	Method Blank	Total/NA	Solid	8021B	40456
MB 880-40468/5-A	Method Blank	Total/NA	Solid	8021B	40468
LCS 880-40468/1-A	Lab Control Sample	Total/NA	Solid	8021B	40468
LCSD 880-40468/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	40468

Analysis Batch: 40718

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-21947-1	SW-11	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 40408

Γ	a a				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-21947-1	SW-11	Total/NA	Solid	8015B NM	40514
MB 880-40514/1-A	Method Blank	Total/NA	Solid	8015B NM	40514
LCS 880-40514/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	40514
LCSD 880-40514/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	40514
880-21947-1 MS	SW-11	Total/NA	Solid	8015B NM	40514
880-21947-1 MSD	SW-11	Total/NA	Solid	8015B NM	40514

Prep Batch: 40514

Lab Sample ID 880-21947-1	Client Sample ID SW-11	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-40514/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-40514/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-40514/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-21947-1 MS	SW-11	Total/NA	Solid	8015NM Prep	
880-21947-1 MSD	SW-11	Total/NA	Solid	8015NM Prep	

Analysis Batch: 40605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-21947-1	SW-11	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 40467

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-21947-1	SW-11	Soluble	Solid	DI Leach	
MB 880-40467/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-40467/2-A	Lab Control Sample	Soluble	Solid	DI Leach	

QC Association Summary

Client: GHD Services Inc.

Project/Site: Romero Battery Release

Job ID: 880-21947-1 SDG: Rurual of Eunice, NM

HPLC/IC (Continued)

Leach Batch: 40467 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-40467/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 40515

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-21947-1	SW-11	Soluble	Solid	300.0	40467
MB 880-40467/1-A	Method Blank	Soluble	Solid	300.0	40467
LCS 880-40467/2-A	Lab Control Sample	Soluble	Solid	300.0	40467
LCSD 880-40467/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	40467

1

4

5

7

0

10

12

13

Lab Chronicle

Client: GHD Services Inc.

Job ID: 880-21947-1

Project/Site: Romero Battery Release

SDG: Rurual of Eunice, NM

Client Sample ID: SW-11 Lab Sample ID: 880-21947-1

Date Collected: 11/23/22 09:30

Date Received: 11/28/22 13:46

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	40468	11/29/22 13:24	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40542	11/30/22 12:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40718	11/30/22 14:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			40605	11/29/22 12:08	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	40514	11/28/22 16:34	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40408	11/29/22 02:12	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	40467	11/28/22 13:50	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40515	11/28/22 19:35	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

3

5

7

9

10

12

13

Accreditation/Certification Summary

Client: GHD Services Inc.

Job ID: 880-21947-1

Project/Site: Romero Battery Release

SDG: Rurual of Eunice, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report by	it the laboratory is not cortifi	ed by the governing authority. This list ma	av include analytes for
the agency does not of	• •	it the laboratory is not certifi	ed by the governing authority. This list his	ay include arialytes for
0 ,	• •	Matrix	Analyte	ay include analytes for
the agency does not of	fer certification.	•	, , ,	ay include analytes for v

_5

4.0

11

13

Method Summary

Client: GHD Services Inc.

Project/Site: Romero Battery Release

Job ID: 880-21947-1

SDG: Rurual of Eunice, NM

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
Ol Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: GHD Services Inc.

Project/Site: Romero Battery Release

Job ID: 880-21947-1

SDG: Rurual of Eunice, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-21947-1	SW-11	Solid	11/23/22 09:30	11/28/22 13:46

of service. Eurofins Xenco will be liable only for the cost of samples and of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each t

Relinquished by (Signature)

votice: Signature of this document and relinquishment of samples consi

Circle Method(s) and Metal(s) to be analyzed

Total 200.7 / 6010 200.8 / 6020:

💸 eurofins Xenco Environment Testing

City, State ZIP

Midland, TX 79703

2135 S Loop 250 West

361-252-6136

Address Company Name:

> GHD Services J T Murrey

Project Manager

Chain of Custody

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 Midland TX (432) 704-5440 San Antonio TX (210) 509-3334 EL Paso, TX (915) 585-3443 Lubbock, TX (806) 794-1296 Hobbs NM (575) 392 7550 Carlsbad NM (575) 988-3199

Work Order No: 2/947

Pet		Bill to (if different) Company Name Address.	me	Permia Permia	ın Reso	urces (1	ormer (Permian Resources (former Centennial) Permian Resources (former Centennial)	ıal)	<u> </u>	Program UST/PST	TS	Work Order C	Work Order Comments		Superfund
0 West		Address.		500 W	Illinoi	500 W Illinois Ave, Suite 500	Suite 5	8			State of Project			((
703		City, State ZIP	י פר	Mıdlar	Midland, TX 79701	79701				Reg	Reporting Level II		[reyel III	P \$T] /UST	IFF	Level
-0-merce	Email	Jt murrey@ghd com, nikki mishler@cdevinc com	ghd com	, nıkkı n	ushler (@cdevii	tc com			Del	Deliverables EDD	_		ADaPT 🔲		Other:
Release	Turn Around	und						Ą	ALYSIS	ANALYSIS REQUEST					Prese	Preservative Codes
Rou	Routine	Rush	Pres. Code			_		_		_			_	_	None NO	Di Water H ₂ O
e, NM	Due Date	12/1/2022				\dashv	-	\dashv					1		Cool Cool	МеОН Ме
TAT s	TAT starts the day receive	FAT starts the day received by the ab if received by 4 30pm	the l		.O)										HCL HC	HNO ₃ , HN
Ľ		oopii			OR										H ₂ S0 ₄ . H ₂	NaOH Na
Yes (No) We	Wet Ice:	(Yes) No			(O+			<u></u>							Н₃РО₄ НР	
Thermometer ID		HE			+DR				• • • • • • • • • • • • • • • • • • • •						NaHSO, NABIS	\BIS
Correction Factor		3	ters		RO-										Na ₂ S ₂ O ₃ , NaSO ₃	iSO ₃
Temperature Reading	19:	a c c	ame	В	I (G										Zn Acetate+NaOH Zn	NaOH Zn
Corrected Temperature	ure	83	Para	8021)15M	es									NaOH+Ascorbic Acid SAPC	orbic Acid S
Matrix Date Sampled Sa	Time Sampled	G Depth Ca	Grab/ # of Comp Cont	втех	TPH 80	Chloric							<u>-</u>		Samp	Sample Comments
	9 30				×	×							-		1	K
															462	
							H									
			-								-					ļ
						_					- 					
											<u> </u>					
						-		-			 œ =	880-21947	Chain	of Custody		
8RCRA 1	13PPM T	13PPM Texas 11 Al Sb	Ąs	Ba Be B	3 Cd Ca Cr	a Cr C	CL F	e Pb	ig Mn N	Co Cu Fe Pb Mg Mn Mo Ni K Se	§	SiO ₂ Na	Na Sr TI S	n U V Zn		ı
/zed TCLI	.P/SPLP	TCLP / SPLP 6010 8HCRA Sb As	RA Sb	As Ba B	e Cd (or Co (Du Pb I	Be Cd Cr Co Cu Pb Mn Mo Ni Se	Nı Se Ag	g TI U			Нg		1631 / 245 1 / 7470 / 7471	/7471
of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions	chase order fr	om client comp	any to Eurof	ins Xenco, i	ts affiliate:	s and subc	ontractors	It assign	s standard	terms and co	nditions					
ast of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control expenses incurred by the client if such losses are due to circumstances beyond the control expenses incurred by the client if such losses are due to circumstances beyond the control expenses and shall be enforced unless previously negotiated	e any respons ge of \$5 for e	ach sample sub	osses or expormitted to Eu	enses incuri	ed by the o, but not	client if su analyzed.	ch losses These term	are due to	circumstand nforced unle	es beyond t es previous	ne control y negotiateo	-				
Received by: (Signature)	ignature))	7	Date/Time	me		Relinqui	shed by	Relinquished by: (Signature)	ıre)		Receive	Received by: (Si	gnature)		Date/Time
			Ш	Be	1	7										
	4				199	r S							-	W. C. C. C. C. C. C. C. C. C. C. C. C. C.	1	
						6					1					

SW-11

Sample Identification

Sample Custody Seals:

Yes No Yes

8

ooler Custody Seals

Samples Received Intact: SAMPLE RECEIPT

CDEV ID 54383
Temp Blank:
(Ves) No

Sampler's Name

J T Murrey

Project Location

Rurual of Eunice, NM CDEV ID 54383 Romero Battery Release

Project Number

Project Name:

Revised Date 08/25/2020 Rev 2020.2

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 880-21947-1

SDG Number: Rurual of Eunice, NM

List Source: Eurofins Midland

List Number: 1

Login Number: 21947

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is https://example.com/ .	N/A	

Released to Imaging: 1/10/2023 1:18:19 PM

Attachment B Photographic Log

4/27/2022 - Northern area of excavation facing north.

4/27/2022 - Northern area of excavation facing northwest.

Site Photographic Log CRP Romeo Federal 22 Battery 1 Release Site

GHD | Report for CRP | 12580761

4/27/2022 - Southwest corner of upper excavation area facing northeast.

4/27/2022 - Southern area of excavation facing southeast.

Site Photographic Log CRP Romeo Federal 22 Battery 1 Release Site GHD | Report for CRP | 12580761

4/27/2022 - Southern area of excavation facing southeast.

4/27/2022 - Southern area of excavation facing east.

Site Photographic Log CRP Romeo Federal 22 Battery 1 Release Site GHD | Report for CRP | 12580761

4/27/2022 - Northern area of excavation facing east.

4/27/2022 - Northern area of excavation facing east.

Site Photographic Log CRP Romeo Federal 22 Battery 1 Release Site

GHD | Report for CRP | 12580761

4/27/2022 - Northern area of excavation facing east.

4/27/2022 - Northern area of excavation facing southeast.

Site Photographic Log CRP Romeo Federal 22 Battery 1 Release Site

GHD | Report for CRP | 12580761

4/27/2022 - Northern area of excavation facing south.

9/14/2022 - Southern tip of excavation facing north.

Site Photographic Log CRP Romeo Federal 22 Battery 1 Release Site GHD | Report for CRP | 12580761

8/25/2022 - Northern area of excavation facing north.

8/25/2022 - Northern area of excavation facing north.

Site Photographic Log CRP Romeo Federal 22 Battery 1 Release Site

Attachment C Sampling Notifications and Extensions

Nate Reece

From: J.T. Murrey

Sent: Thursday, December 8, 2022 10:34 AM

To: Nate Reece

Subject: FW: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling

Notification

DISABLEFILINGSTATUS: 0

J.T. Murrey

GHD

Proudly employee-owned | ghd.com 2135 S. Loop 250 West, Midland, TX 79703 USA M 361 252 6136 | E jt.murrey@ghd.com

GHD FIRST 24 Hour Emergency Response

US: 866 812 9565 Canada: 800 679 9082

→ The Power of Commitment

Connect

Please consider the environment before printing this email

From: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Sent: Friday, November 18, 2022 11:14 AM **To:** J.T. Murrey <JT.Murrey@ghd.com>

Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Nobui, Jennifer, EMNRD

<Jennifer.Nobui@emnrd.nm.gov>

Subject: RE: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

You don't often get email from ocd.enviro@emnrd.nm.gov. Learn why this is important

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Jocelyn Harimon • Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
1220 South St. Francis Drive | Santa Fe, NM 87505
(505)469-2821 | <u>Jocelyn.Harimon@emnrd.nm.gov</u>
http://www.emnrd.nm.gov

From: J.T. Murrey < JT.Murrey@ghd.com Sent: Friday, November 18, 2022 9:45 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov >

Subject: FW: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

To Whom it May Concern,

GHD on behalf of Centennial Resource Production, Inc., respectfully submits notification of sampling to be conducted at the below location.

Romeo Federal 22 Battery 1 D-22-24S-34E Lea County, NM nAPP2208051921

Sampling will begin at 9:00 a.m. on Wednesday, November 23, 2022.

Thank You,

J.T. Murrey

GHD

Proudly employee-owned | ghd.com 2135 S. Loop 250 West, Midland, TX 79703 USA M 361 252 6136 | E jt.murrey@ghd.com

GHD FIRST 24 Hour Emergency Response

US: 866 812 9565 Canada: 800 679 9082

→ The Power of Commitment

Connect

Please consider the environment before printing this email

From: Nobui, Jennifer, EMNRD < Jennifer. Nobui@state.nm.us>

Sent: Friday, September 9, 2022 10:06 AM **To:** J.T. Murrey < <u>JT.Murrey@ghd.com</u>>

Cc: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>;

Harimon, Jocelyn, EMNRD < Jocelyn. Harimon@state.nm.us>

Subject: FW: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

You don't often get email from jennifer.nobui@state.nm.us. Learn why this is important

J.T.

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks, Jennifer Nobui

From: Enviro, OCD, EMNRD < OCD. Enviro@state.nm.us>

Sent: Friday, September 9, 2022 8:27 AM

To: Bratcher, Mike, EMNRD < mike.bratcher@state.nm.us>; Nobui, Jennifer, EMNRD < Jocelyn.Harimon@state.nm.us>; Hamlet, Robert, EMNRD < Robert.Hamlet@state.nm.us>; Velez, Nelson, EMNRD < Nelson.Velez@state.nm.us>

Subject: Fw: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

From: J.T. Murrey < <u>JT.Murrey@ghd.com</u>>
Sent: Thursday, September 8, 2022 12:53 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@state.nm.us>

Cc: nikki.mishler@cdevinc.com < Nikki.Mishler@cdevinc.com >; Glenn Quinney < Glenn.Quinney@ghd.com >

Subject: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

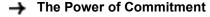
To Whom it May Concern,

GHD on behalf of Centennial Resource Production, Inc., respectfully submits notification of sampling to be conducted at the below location.

Romeo Federal 22 Battery 1 D-22-24S-34E Lea County, NM nAPP2208051921

Sampling will begin at 2:00 p.m. on Monday, September 12, 2022.

Thank You,


J.T. Murrey Senior Project Manager

GHD

Proudly employee-owned | ghd.com 2135 S. Loop 250 West, Midland, TX 79703 USA M 361 252 6136 | E jt.murrey@ghd.com

GHD FIRST 24 Hour Emergency Response

US: 866 812 9565 Canada: 800 679 9082

Connect

Please consider the environment before printing this email

From: J.T. Murrey

Sent: Tuesday, August 16, 2022 2:18 PM

To: ocd.enviro@state.nm.us

Cc: nikki.mishler@cdevinc.com; Heath Boyd < Heath.Boyd@ghd.com >; Glenn Quinney < Glenn.Quinney@ghd.com >

Subject: RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

To Whom it May Concern,

GHD on behalf of Centennial Resource Production, Inc., respectfully submits notification of sampling to be conducted at the below location.

Romeo Federal 22 Battery 1 D-22-24S-34E Lea County, NM nAPP2208051921

Sampling will begin at 12:00 p.m. on Monday, August 22, 2022 and will be continuous through Thursday, August 25, 2022.

Thank You,

J.T. Murrey Senior Project Manager

GHD

Proudly employee-owned | ghd.com

1712 S. Staples St., Corpus Christi, Texas 78404 **D** 1 361 232 4280 | **M** 361 252 6136 | **E** <u>it.murrey@ghd.com</u>

GHD FIRST 24 Hour Emergency Response

US: 866 812 9565 Canada: 800 679 9082

→ The Power of Commitment

Connect

Please consider the environment before printing this email

From: Becky Haskell < Becky.Haskell@ghd.com >

Sent: Thursday, April 14, 2022 2:31 PM

To: OCDOnline@state.nm.us

Cc: nikki.mishler@cdevinc.com; Zach Comino <Zach.Comino@ghd.com>; Becky Haskell <Becky.Haskell@ghd.com>

Subject: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

To Whom it May Concern,

GHD on behalf of Centennial Resource Production, Inc., respectfully submits notification of sampling to be conducted at the below location.

Romeo Federal 22 Battery 1 D-22-24S-34E Lea County, NM

nAPP2208051921

Sampling will begin at 1:45 p.m. on Tuesday, April 19, 2022 and will be continuous through Friday, April 22, 2022.

Thank You,

Thank You,

Becky Haskell Senior Project Manager

GHD

Proudly employee owned | ghd.com 2135 S. Loop 250 West, Midland, Texas 79703 D 432-686-0086 M 432-250-7917 E becky.haskell@ghd.com

→ The Power of Commitment

Connect

Please consider the environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

Becky Haskell

From: Heath Boyd

Sent: Wednesday, July 6, 2022 3:44 PM

To: OCD.enviro@state.nm.us

Cc: Becky Haskell; nikki.mishler@cdevinc.com; Heath Boyd; J.T. Murrey

Subject: Sampling notification

DISABLEFILINGSTA10

To Whom it May Concern,

GHD on behalf of Centennial Resource Production, Inc., respectfully submits notification of sampling to be conducted at the below location.

Romeo Federal 22 Battery 1 D-22-24S-34E Lea County, NM nAPP2208051921

Sampling will begin at 9:30 a.m. on Monday, July 11, 2022 and will be continuous through Friday, July 15, 2022.

Heath D. Boyd Enviornmental Technician

GHD

2135 S. Loop 250 W. Midland, TX 79703 Mobile: 432-210-7306 Office: 432-686-0086

Email: Heath.Boyd@GHD.com

From: Nobui, Jennifer, EMNRD

To: <u>J.T. Murrey</u>

Cc: Bratcher, Mike, EMNRD; Hamlet, Robert, EMNRD; Harimon, Jocelyn, EMNRD

Subject: FW: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

Date: Friday, September 9, 2022 10:06:41 AM

Attachments: image001.png

image002.png image003.png image004.png image005.png

You don't often get email from jennifer.nobui@state.nm.us. Learn why this is important

J.T.

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks,

Jennifer Nobui

From: Enviro, OCD, EMNRD < OCD. Enviro@state.nm.us>

Sent: Friday, September 9, 2022 8:27 AM

To: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Nobui, Jennifer, EMNRD

<Jennifer.Nobui@state.nm.us>; Harimon, Jocelyn, EMNRD <Jocelyn.Harimon@state.nm.us>;

Hamlet, Robert, EMNRD < Robert. Hamlet@state.nm.us>; Velez, Nelson, EMNRD

<Nelson.Velez@state.nm.us>

Subject: Fw: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

From: J.T. Murrey < <u>JT.Murrey@ghd.com</u>>

Sent: Thursday, September 8, 2022 12:53 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@state.nm.us >

Cc: <u>nikki.mishler@cdevinc.com</u> < <u>Nikki.Mishler@cdevinc.com</u>>; Glenn Quinney

<Glenn.Quinney@ghd.com>

Subject: [EXTERNAL] RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To Whom it May Concern,

GHD on behalf of Centennial Resource Production, Inc., respectfully submits notification of sampling to be conducted at the below location.

Romeo Federal 22 Battery 1 D-22-24S-34E Lea County, NM nAPP2208051921 Sampling will begin at 2:00 p.m. on Monday, September 12, 2022.

Thank You,

J.T. Murrey

Senior Project Manager

GHD

Proudly employee-owned | ghd.com

2135 S. Loop 250 West, Midland, TX 79703 USA **M** 361 252 6136 | **E** <u>it.murrey@ghd.com</u>

GHD FIRST 24 Hour Emergency Response

US: 866 812 9565 Canada: 800 679 9082

→ The Power of Commitment

Connect

Please consider the environment before printing this email

From: J.T. Murrey

Sent: Tuesday, August 16, 2022 2:18 PM

To: ocd.enviro@state.nm.us

Cc: nikki.mishler@cdevinc.com; Heath Boyd <Heath.Boyd@ghd.com>; Glenn Quinney

<<u>Glenn.Quinney@ghd.com</u>>

Subject: RE: Romeo Federal 22 Battery 1 (nAPP2208051921 Sampling Notification

To Whom it May Concern,

GHD on behalf of Centennial Resource Production, Inc., respectfully submits notification of sampling to be conducted at the below location.

Romeo Federal 22 Battery 1 D-22-24S-34E Lea County, NM nAPP2208051921

Sampling will begin at 12:00 p.m. on Monday, August 22, 2022 and will be continuous through Thursday, August 25, 2022.

Thank You,

J.T. Murrey

Senior Project Manager

GHD

Proudly employee-owned | ghd.com

1712 S. Staples St., Corpus Christi, Texas 78404

D 1 361 232 4280 | **M** 361 252 6136 | **E** <u>it.murrey@ghd.com</u>

Nate Reece

From: Nikki Mishler <Nikki.Mishler@permianres.com>

Sent: Monday, December 12, 2022 8:38 AM

To: Nate Reece

Subject: FW: -EXTERNAL- RE: [EXTERNAL] nAPP2208051921 - Request for Extension

You don't often get email from nikki.mishler@permianres.com. Learn why this is important

From: Nobui, Jennifer, EMNRD < Jennifer. Nobui@state.nm.us>

Sent: Wednesday, September 14, 2022 3:41 PM **To:** Nikki Mishler < Nikki.Mishler@cdevinc.com>

Cc: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>;

Harimon, Jocelyn, EMNRD < Jocelyn. Harimon@state.nm.us>

Subject: -EXTERNAL- RE: [EXTERNAL] nAPP2208051921 - Request for Extension

WARNING: The sender of this email could not be validated and may not match the person in the "From" field.

Hello Nikki

OCD approves a request for a 90-day extension to December 23, 2022 to submit a closure report. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks

Jennifer Nobui

From: Nikki Mishler < <u>Nikki.Mishler@cdevinc.com</u>> Sent: Wednesday, September 14, 2022 12:32 PM

To: Nobui, Jennifer, EMNRD < <u>Jennifer.Nobui@state.nm.us</u>> **Subject:** [EXTERNAL] nAPP2208051921 - Request for Extension

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon Jennifer,

I would like to request a 90-day extension to complete remediation activities and submit the closure report for the below release at the Romeo 22 Federal Battery. A few areas at the site required more excavation activities than originally anticipated and has delayed completion of field activities. At this time, final confirmation soil samples have been submitted to the laboratory. If laboratory analytical results indicate the release site has been remediated to the criteria referenced in the approved Remediation Plan, the site will be backfilled, and a closure report will be submitted to the OCD.

Thank you,

Nikki Mishler 432-634-8722 From: OCDOnline@state.nm.us < OCDOnline@state.nm.us>

Sent: Wednesday, June 22, 2022 11:14 AM **To:** Nikki Mishler < Nikki. Mishler@cdevinc.com>

Subject: -EXTERNAL- The Oil Conservation Division (OCD) has approved the application, Application ID: 117478

WARNING: The sender of this email could not be validated and may not match the person in the "From" field.

To whom it may concern (c/o Nikki Mishler for CENTENNIAL RESOURCE PRODUCTION, LLC),

The OCD has approved the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nAPP2208051921, with the following conditions:

 Remediation Plan Approved. Please request Deferral in final Remediation Summary Report once excavation activities have been completed.

The signed C-141 can be found in the OCD Online: Imaging under the incident ID (n#).

If you have any questions regarding this application, please contact me.

Thank you,
Jennifer Nobui
Environmental Specialist-Advanced
505-476-3441
Jennifer.Nobui@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

CAUTION: This email originated from outside of the organization. If it appears to be internal, check directly with assumed source

CAUTION: This email originated from outside of the organization. If it appears to be internal, check directly with assumed source

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 166198

CONDITIONS

Operator:	OGRID:
CENTENNIAL RESOURCE PRODUCTION, LLC	372165
1001 17th Street, Suite 1800	Action Number:
Denver, CO 80202	166198
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	Closure Report Approved.	1/10/2023