

April 27, 2022

Mr. Bradford Billings State of New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

REVIEWED

By Nelson Velez at 9:09 am, Jan 10, 2023

Review of 2021 Semi-Annual Monitoring and Remedial Activities Report: <u>Content satisfactory</u>

1. Continued groundwater monitoring and sampling on a semi-annual basis.

- 2. Continue quarterly SVE events at VG-4.
- 3. Submit the 2022 Annual Monitoring Report to the OCD no later than June 30, 2023.

Re: 2021 Annual Monitoring and Remedial Activities Report ConocoPhillips – Vacuum Glorietta East Unit, 1RP-744 Lea County, New Mexico

Mr. Billings:

This report details the continuing groundwater monitoring and remedial activities at the ConocoPhillips Company ("COP") Vacuum Glorietta East Unit, Lea County, New Mexico (Site). The Site location is shown in Figure 1. The Site was assigned the identifier order No. 1RP-744 by the New Mexico Oil Conservation Division (NMOCD).

1.0 BACKGROUND AND PREVIOUS INVESTIGATIONS

Impacts to soil and groundwater are believed to be associated with a release that was reported to the NMOCD on October 28, 2002. Approximately 80 barrels of oil and 20 barrels of water were recovered after the release. The affected area was estimated to be approximately 80 feet by 150 feet in size.

An initial investigation was performed at the Site by B&H Environmental Services in November 2002. A total of seven shallow soil borings were advanced during the investigation and soil samples collected from the borings indicated the presence of chlorides and petroleum hydrocarbons above NMOCD Recommended Remedial Action Limits (RRALs).

Approximately 3,240 cubic yards (yd³) of petroleum-impacted soil was excavated in August 2004, and another 1,000 yd³ of soil was removed in November and December 2008 after additional assessment. One monitoring well (VG-1) was installed at this time, but was abandoned because it was located within the footprint of the excavation.

Backfilling and reseeding of the excavation was approved and performed in June 2009, and three monitoring wells were subsequently installed: VG-2 was installed downgradient of the excavation, VG-3 was installed upgradient of the excavation, and VG-4 was installed within the footprint of the excavation. Three additional groundwater monitoring wells (VG-5, VG-6, and VG-7) were installed between December

2021 Annual Groundwater Monitoring and Remedial Activities Report ConocoPhillips – Vacuum Glorietta East Unit, 1RP-744 Lea County, New Mexico April 27, 2022

4 and December 13, 2013 to further assess the northern, western, and southern extent of hydrocarbons and chlorides in the groundwater.

Small amounts of phase separated hydrocarbons (PSH) and concentrations of benzene, toluene, ethylbenzene, and total xylenes (collectively referred to as BTEX) and chlorides greater than New Mexico Water Quality Control Commission (NMWQCC) Groundwater Quality Standards have historically been documented in VG-4. Mobile du/al phase extraction (MDPE) has been used as a remediation method at the Site. The first four MDPE events at the Site took place at VG-4 in September 2014, May 2015, June 2019, and May 2020 by AcuVac Remediation, LLC (AcuVac) of Houston, Texas.

2.0 HYDROGEOLOGY

The water bearing zone consists of the Pliocene-age Ogallala aquifer under unconfined conditions at the site. The Ogallala aquifer is located at the base of the Ogallala Formation. In general, the Ogallala Formation consists of quartz sand and gravel that is poorly to well-cemented with calcium carbonate and contains minor amounts of clay. The wells installed at the Site were drilled to depths of approximately 70 to 80 feet below ground surface (bgs) with static groundwater water levels at approximately 65 feet bgs.

3.0 2021 GROUNDWATER MONITORING

3.1 Methodology

Prior to sampling the wells, each well was gauged to measure the depth to groundwater and PSH, if any. The water levels and the PSH measurements are summarized in Table 1, and well locations are shown in Figure 2. Monitoring wells containing PSH are gauged, but not sampled. Each monitoring well without measurable PSH was sampled utilizing low flow sampling techniques. The semi-annual groundwater monitoring events occurred in May and November 2021. Groundwater samples were collected and analyzed for BTEX by United States Environmental Protection Agency (EPA) Method 8260 and chlorides by Method 300.0. Groundwater samples were transported to Pace Analytical Services, LLC, in Mount Juliet, Tennessee under chain-of-custody control for the 2021 sampling events. Table 2 presents a summary of the groundwater analyses. The analytical reports and chain-of-custody documentation are presented in Appendix A.

3.2 2021 Groundwater Gradient

Groundwater gradient maps were generated for the May and November 2021 sampling events. The hydraulic gradient for the aquifer was generally to the southeast, and consistent with historical data. The May and November 2021 groundwater gradient maps are included in Figure 3 and Figure 4, respectively. The hydraulic gradient at the Site for the events in 2021 was 0.00141 and 0.00225, respectively; the average hydraulic gradient was approximately 0.00183.

3.3 2021 Phase Separated Hydrocarbon

The monitoring wells were gauged for the presence of PSH during groundwater sampling events. No PSH was detected during the May or November 2021 sampling events.

3.4 2021 Groundwater Analytical Results

During the May 2021 sampling event, monitoring wells VG-3, VG-4, VG-5, VG-6, and VG-7 were sampled. VG-2 did not contain enough water to sample. The reported concentrations of benzene (1.32 mg/L) and chlorides (532 mg/L) in the sample collected from monitoring well VG-4 exceeded the applicable NMWQCC Groundwater Quality Standards of 0.01 mg/L and 250 mg/L, respectively. No additional exceedances of the applicable NMWQCC standards were identified during the May 2021 sampling event.

During the November 2021 monitoring event, monitoring wells VG-3, VG-4, VG-5, VG-6, and VG-7, were sampled. No water was detected in VG-2; no water sample was collected. The reported concentrations of benzene (2.12 mg/L), total xylenes (0.952 mg/L), and chlorides (461 mg/L) in the sample collected from monitoring well VG-4 exceeded the applicable NMWQCC Groundwater Quality Standards of 0.01 mg/L, 0.62 mg/L, and 250 mg/L, respectively. The concentration of chlorides in the sample collected from VG-5 (331 mg/L) exceeded the applicable standard. No additional exceedances of the applicable NMWQCC standards were identified during the November 2021 sampling event.

4.0 **REMEDIAL ACTIVITIES**

In 2021, PSH recovery was conducted at the Site during four MDPE/soil vapor extraction (SVE) events. The events were conducted February 23 through 26, May 3 through 6, July 26 through 29, and November 8 through 11, 2021. During each event, Tetra Tech personnel mobilized to the Site to supervise remedial activities conducted by AcuVac. Each event conducted in 2021 was performed at VG-4. The events conducted in February and May consisted of MDPE; however, based on the lack of PSH present in VG-4, additional groundwater extraction was considered unnecessary, and the July and November events were SVE only.

The April event resulted in the recovery of 7.69 gallons of PSH vapor, the May event resulted in the recovery of 10.34 gallons of PSH vapor, the July event resulted in the recovery of 10.49 gallons of PSH vapor, and the November event resulted in the recovery of 12.39 gallons of PSH vapor, for a total of 40.91 gallons of PSH vapor recovered from VG-4 in 2021. The PSH vapor recoveries reported by AcuVac were calculated based on the TCEQ formula for emissions of the AcuVac System internal combustion engine presented in the AcuVac SVE reports. PSH vapor concentrations were based upon the undiluted well vapor samples obtained every 30 minutes throughout events with a modified Horiba photoionization detector (PID). AcuVac reports for 2021 remedial activities are presented in Appendix B.

2021 Annual Groundwater Monitoring and Remedial Activities Report ConocoPhillips – Vacuum Glorietta East Unit, 1RP-744 Lea County, New Mexico April 27, 2022

4.0 WORK PLAN

As no additional PSH has been detected in VG-4, the absorbent sock in that well has been removed. Quarterly SVE events at VG-4 are planned for 2022. Groundwater monitoring and sampling of the monitoring wells will be continued on a semi-annual basis, with annual reporting to the NMOCD.

If you have any questions, please call Julie Evans at (432) 258-3451.

Sincerely, **Tetra Tech, Inc.**

Julie Evans

Julie Evans Project Manager

Reviewed By:

Charles H. Terhune IV, P.G. Senior Project Manager

cc: Ms. Jenni Fortunato - ConocoPhillips

Attachments:

- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Groundwater Gradient Map May 2021
- Figure 4 Groundwater Gradient Map November 2021
- Figure 5 Benzene Concentration Map May 2021
- Figure 6 Benzene Concentration Map November 2021
- Figure 7 Chloride Concentration Map May 2021
- Figure 8 Chloride Concentration Map November 2021
- Table 1 Summary of Groundwater Elevations and PSH Thickness
- Table 2 Summary of Groundwater Analytical Data
- Appendix A Laboratory Analytical Data Packages
- Appendix B AcuVac Remediation, LLC Reports

•

FIGURES

Released to Imaging: 1/10/2023 9:13:41 AM

Received by OCD: 5/17/2022 3:14:33 PM

Page 6 of 138

BREIKAISEA HOLE BASIS DI BRO IZCH 9/160440,000 F. get Forder VI Client Conocolo2397A COP - Vacuum Glorietta 2022/2021 Annual Report Figures GISV Figure 2 Vacuum Glorietta.mxd By: troy.fegter

Contract State Contract State Stat

Kirkan Kan Kon Basi Sugrof Schedul States - Sector States - Sector - Sector

•

TABLES

Released to Imaging: 1/10/2023 9:13:41 AM

Table 1ConocoPhillipsVacuum GloriettaLea County, New MexicoSummary of Groundwater Elevations and PSH Thickness

			Depth to	Water	PSH	Product	Top of Casing	Groundwater
Well	Date	Well Total	Product	level (ft)		Elevation,	Elevation, feet	Elevation
Identification	Measured	Depth (ft)	(ft) (TOC)		(ft)	feet AMSL	AMSL	(ft)
VG-2	1/27/2014	70	-	65.41	-	-	3,930.56	3,865.15
	4/16/2014	70	-	65.38	-	-	3,930.56	3,865.18
	7/22/2014	70	-	65.32	-	-	3,930.56	3,865.24
	10/9/2014	70	-	64.03	-	-	3,930.56	3,866.53
	1/14/2015	70	-	64.3	-	-	3,930.56	3,866.26
	4/16/2015	70	-	64.37	-	-	3,930.56	3,866.19
	7/8/2015	70	-	64.85	-	-	3,930.56	3,865.71
	10/9/2015	70	-	65.15	-	-	3,930.56	3,865.41
	1/7/2016	70	-	65.25	-	-	3,930.56	3,865.31
	4/6/2016	70	-	65.29	-	-	3,930.56	3,865.27
	6/10/2016	70	-	65.35	-	-	3,930.56	3,865.21
	8/16/2017	70	-	65.58	-	-	3,930.56	3,864.98
	11/30/2017	70	-	65.57	-	-	3,930.56	3,864.99
	7/24/2018	-	-	65.79	-	-	3,930.56	3,864.77
	11/14/2018	67.7	-	65.9	-	-	3,930.56	3,864.66
	6/17/2019	67.89	-	66.44	-	-	3,930.56	3,864.12
	11/20/2019	67.89	-	66.42		-	3,930.56	3,864.14
	5/13/2020	67.7	-	66.51	-	-	3,930.56	3,864.05
	11/19/2020	67.7	-	66.74	-	-	3,930.56	3,863.82
	5/11/2021	67.7				Dry		
	11/17/2021	67.7				Dry		
VG-3	1/27/2014	70	-	64.71	-	-	3,931.15	3,866.44
	4/16/2014	70	-	64.66	-	-	3,931.15	3,866.49
	7/22/2014	70	-	64.59	-	-	3,931.15	3,866.56
	9/10/2014	70	-	63.3	-	-	3,931.15	3,867.85
	1/14/2015	70	-	63.58	-	-	3,931.15	3,867.57
	4/16/2015	70	-	63.63	-	-	3,931.15	3,867.52
	8/7/2015	70	-	64.11	-	-	3,931.15	3,867.04
	9/10/2015	70	-	64.38	-	-	3,931.15	3,866.77
	7/1/2016	70	-	64.48	-	-	3,931.15	3,866.67
	6/4/2016	70	-	64.54	-	-	3,931.15	3,866.61
	6/10/2016	70	-	64.61	-	-	3,931.15	3,866.54
	8/16/2017	70	-	64.86	-	-	3,931.15	3,866.29
	11/30/2017	70	-	64.87	-	-	3,931.15	3,866.28
	7/24/2018	-	-	65.02	-	-	3,931.15	3,866.13
	11/14/2018	68.48	-	65.21	-	-	3,931.15	3,865.94
	6/17/2019	68.61	-	65.56	-	-	3,931.15	3,865.59
	11/19/2019	68.61	-	65.66	-	-	3,931.15	3,865.49
	5/12/2020	68.3	-	65.78	-	-	3,931.15	3,865.37
	11/19/2020	68.3	-	65.98	-	-	3,931.15	3,865.17
	5/11/2021	68.41	-	66.59	-	-	3,931.15	3,864.56
	11/17/2021	68.41		67.23	-	-	3,931.15	3,863.92
VG-4	1/27/2014	78	65.52	65.56	0.04	3,866.41	3,931.93	3,866.40
10-4	4/16/2014	78	65.48	65.49	0.04	3,866.45	3,931.93	3,866.45
	7/22/2014	78	65.44	65.45	0.01	3,866.49	3,931.93	3,866.49
	10/9/2014	78	-	63.93	-	-	3,931.93	3,868.00
	1/14/2015	78	-	64.48			3,931.93	3,867.45
	4/16/2015	78	-	64.53	-	-	3,931.93	3,867.40
4	1,10,2013	78	_	65.02	-		3,931.93	0,007.40

Table 1ConocoPhillipsVacuum GloriettaLea County, New MexicoSummary of Groundwater Elevations and PSH Thickness

			Depth to	Water	PSH	Product	Top of Casing	Groundwater
Well	Date	Well Total	Product			Elevation,	Elevation, feet	Elevation
Identification	Measured	Depth (ft)	(ft) (TOC)	· · ·	(ft)	feet AMSL	AMSL	(ft)
	40/0/0045	70	(11) (100)		(11)	Idel AWSL		
VG-4 continued	10/9/2015	78	-	65.25	-	-	3,931.93	3,866.68
	1/7/2016	78	-	65.33	-	-	3,931.93	3,866.60
	4/6/2016	78	65.35	65.36	0.01	3,866.58	3,931.93	3,866.58
	10/6/2016	78	-	65.46	-	-	3,931.93	3,866.47
	8/16/2017	78	-	65.75	-	-	3,931.93	3,866.18
	11/30/2017	78	-	68.42	-	-	3,931.93	3,863.51
	7/24/2018	-	65.13	65.92	0.79	3,866.80	3,931.93	3,866.64
	11/14/2018	-	66.06	67.14	1.08	3,865.87	3,931.93	3,865.65
	6/17/2019	-	66.35	66.38	0.03	3,865.58	3,931.93	3,865.57
	11/19/2019	-	66.57	66.68	0.11	3,865.36	3,931.93	3,865.34
	5/13/2020	72.1	-	66.65	-	-	3,931.93	3,865.28
	11/18/2020	-	67.89	67.93	0.04	3,864.04	3,931.93	3,864.03
	5/12/2021	70.7	-	67.54	-	-	3,931.93	3,864.39
	7/14/2021	-	-	67.60	-	-	3,931.93	3,864.33
	11/17/2021	70.7	-	67.86	-	-	3,931.93	3,864.07
					-	-		
VG-5	1/27/2014	74	-	64.51	-	-	3,930.52	3,866.01
	4/16/2014	74	-	64.8	-	-	3,930.52	3,865.72
	7/22/2014	74	-	64.38	-	-	3,930.52	3,866.14
	10/9/2014	74	-	63.16	-	-	3,930.52	3,867.36
	1/14/2015	74	-	63.42	-	-	3,930.52	3,867.10
	4/16/2015	74	-	63.46	-	-	3,930.52	3,867.06
	7/8/2015	74	-	63.99	-	-	3,930.52	3,866.53
	10/9/2015	74	-	64.25	-	-	3,930.52	3,866.27
	1/7/2016	74	-	64.32	-	-	3,930.52	3,866.20
	4/6/2016	74	-	64.36	-	-	3,930.52	3,866.16
	10/6/2016	74	-	64.43	-	-	3,930.52	3,866.09
	8/16/2017	74	-	64.68	-	-	3,930.52	3,865.84
	11/30/2017	74	-	64.77	-	-	3,930.52	3,865.75
	7/24/2018	-	-	64.84	-	-	3,930.52	3,865.68
	11/14/2018	75.3	-	64.98	-	-	3,930.52	3,865.54
	6/17/2019	75.31	-	65.46	-	-	3,930.52	3,865.06
	11/20/2019	75.31	-	65.49	-	-	3,930.52	3,865.03
	5/13/2020	75.15	-	65.57	-	-	3,930.52	3,864.95
	11/19/2020	75.15	-	65.8	-	-	3,930.52	3,864.72
	5/11/2021	75.15	-	66.49	-	-	3,930.52	3,864.03
	11/17/2021	75.15	-	66.81	-	-	3,930.52	3,863.71
VG-6	1/27/2014	80	-	68.38	-	-	3,935.16	3,866.78
	4/16/2014	80	-	68.32	-	-	3,935.16	3,866.84
	7/22/2014	80	-	68.26	-	-	3,935.16	3,866.90
	10/9/2014	80	-	67.06	-	-	3,935.16	3,868.10
	1/14/2015	80	-	67.27	-	-	3,935.16	3,867.89
	4/16/2015	80	-	67.3	-	-	3,935.16	3,867.86
	7/8/2015	80	-	67.86	-	-	3,935.16	3,867.30
	10/9/2015	80	-	68.12	_	_	3,935.16	3,867.04
	1/7/2016	80	-	68.16	-	-	3,935.16	3,867.00
	4/6/2016	80	-	68.21	_	_	3,935.16	3,866.95
	10/6/2016	80	-	68.27	_	-	3,935.16	3,866.89
	8/16/2017	80	_	68.53	-	-	3,935.16	3,866.63
	11/30/2017	80	-	68.57	-	-	3,935.16	3,866.59
				00.07			0,000.10	0,000100

Table 1ConocoPhillipsVacuum GloriettaLea County, New MexicoSummary of Groundwater Elevations and PSH Thickness

Well Identification	Date Measured	Well Total Depth (ft)	Depth to Product (ft) (TOC)	. ,	PSH Thickness (ft)	Product Elevation, feet AMSL	Top of Casing Elevation, feet AMSL	Groundwater Elevation (ft)
VG-6 continued	7/24/2018	-	-	68.69	-	-	3,935.16	3,866.47
	11/14/2018	80	-	68.86	-	-	3,935.16	3,866.30
	6/17/2019	80.16	-	69.35	-	-	3,935.16	3,865.81
	11/19/2019	80.16	-	69.31	-	-	3,935.16	3,865.85
	5/12/2020	79.72	-	69.41	-	-	3,935.16	3,865.75
	11/18/2020	79.72	-	69.64	-	-	3,935.16	3,865.52
	5/12/2021	79.72	-	70.48	-	-	3,935.16	3,864.68
	11/17/2021	79.72	-	70.73	-	-	3,935.16	3,864.43
VG-7	1/27/2014	80	-	68.23	-	-	3,934.78	3,866.55
	4/16/2014	80	-	68.19	-	-	3,934.78	3,866.59
	7/22/2014	80	-	68.1	-	-	3,934.78	3,866.68
	10/9/2014	80	-	66.93	-	-	3,934.78	3,867.85
	1/14/2015	80	-	67.12	-	-	3,934.78	3,867.66
	4/16/2015	80	-	67.16	-	-	3,934.78	3,867.62
	7/8/2015	80	-	67.7	-	-	3,934.78	3,867.08
	10/9/2015	80	-	67.98	-	-	3,934.78	3,866.80
	1/7/2016	80	-	68.01	-	-	3,934.78	3,866.77
	4/6/2016	80	-	68.07	-	-	3,934.78	3,866.71
	10/6/2016	80	-	68.13	-	-	3,934.78	3,866.65
	8/16/2017	80	-	68.38	-	-	3,934.78	3,866.40
	11/30/2017	80	-	68.36	-	-	3,934.78	3,866.42
	7/24/2018	-	-	68.58	-	-	3,934.78	3,866.20
	11/14/2018	79.8	-	68.65	-	-	3,934.78	3,866.13
	6/17/2019	80.09	-	69.15	-	-	3,934.78	3,865.63
	11/19/2019	80.09	-	69.17	-	-	3,934.78	3,865.61
	5/12/2020	79.87	-	69.30	-	-	3,934.78	3,865.48
	11/18/2020	79.86	-	69.48	-	-	3,934.78	3,865.30
	5/12/2021	79.86	-	70.36	-	-	3,934.78	3,864.42
	11/17/2021	79.86	-	70.77	-	-	3,934.78	3,864.01

Notes:

ft	feet
PSH	phase separated hydrocarbons
TOC	top of casing
AMSL	above mean sea level
-	no measurement

.

Sample	Sample Date	Benzene	Toluene	Ethlybenzene	Yylono (mg/l)	Chlorides
Identification	-	(mg/L)	(mg/L)	(mg/L)	Xylene (mg/L)	(mg/L)
NMWQCC Grou	Indwater	0.01	0.750	0.75	0.62	250
Quality Standa	rds (mg/L)	0.01	0.750	0.75	0.02	230
VG-2	1/28/2014	<0.001	<0.001	<0.001	<0.003	125
	4/16/2014	<0.001	<0.001	<0.001	<0.003	134
	7/22/2014	<0.001	<0.001	<0.001	<0.003	146
	10/9/2014	<0.001	<0.001	<0.001	<0.003	111
DUP	10/9/2014	<0.001	<0.001	<0.001	<0.003	139
	1/14/2015	<0.001	<0.001	<0.001	<0.003	106
	4/16/2015	<0.001	<0.001	<0.001	<0.003	88.4
	7/8/2015	<0.001	<0.001	<0.001	<0.003	73.8
	10/9/2015	<0.001	<0.001	<0.001	<0.003	106
	1/7/2016	<0.001	<0.001	<0.001	<0.003	183
	4/6/2016	<0.001	<0.001	<0.001	<0.003	174
	10/6/2016	<0.001	<0.001	<0.001	<0.003	200
	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	200
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	195
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	173
DUP	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	169
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	175
	6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	193
	11/20/2019	<0.00100	<0.00100	<0.00100	<0.00300	192
	5/13/2020	<0.00100	<0.00100	<0.00100	<0.00300	176
	11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	117
	5/11/2021			Not Sampled - Dr	у	
	11/17/2021			Not Sampled - Dr	у	
				-		
VG-3	1/18/2014	<0.001	<0.001	<0.001	<0.003	45.2
	4/16/2014	<0.001	<0.001	<0.001	<0.003	46.7
	7/22/2014	<0.001	<0.001	<0.001	<0.003	44.4
	9/10/2014	<0.001	<0.001	<0.001	<0.003	38.2
	1/14/2015	<0.001	<0.001	<0.001	<0.003	50
	4/16/2015	<0.001	<0.001	<0.001	<0.003	45.7
	7/8/2015	<0.001	<0.001	<0.001	<0.003	44.2
	10/9/2015	<0.001	<0.001	<0.001	<0.003	41.6
	1/7/2016	<0.001	<0.001	<0.001	<0.003	40.4
	4/6/2016	<0.001	<0.001	<0.001	<0.003	40.9
	10/6/2016	<0.001	<0.001	<0.001	<0.003	40.3
	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	40.4
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	38.1
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	44.8
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	46.6
	6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	49.6
	11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	55.1

Sample	Sample Date	Benzene	Toluene	Ethlybenzene	Xylene (mg/L)	Chlorides			
Identification	-	(mg/L)	(mg/L)	(mg/L)	//j/one ((mg/L)			
NMWQCC Grou		0.01	0.750	0.75	0.62	250			
Quality Standa									
VG-3 continued	5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	56.8			
	11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	59.8			
	5/11/2021	0.000254 J	<0.00100	0.000335 J	0.000705 J	58.9			
	11/17/2021	<0.0020	<0.0050	<0.0020	<0.0060	51.7			
VG-4	10/28/2014	1.80	<0.05	0.82	0.20	4,140			
	1/14/2015	2.70	0.030	1.10	0.78	5,640			
	4/16/2015	5.60	0.037	1.70	0.80	3,080			
DUP	4/16/2015	5.00	0.030	1.30	0.31	-			
	7/8/2015	4.94	<0.05	1.57	<0.15	2,240			
DUP	7/8/2015	4.21	0.002	1.27	0.13	-			
	10/9/2015	4.18	<0.05	1.50	0.31	1,480			
	1/7/2016	4.12	<0.05	2.10	0.27	1,360			
DUP	1/7/2016	4.08	0.022	2.01	0.18	-			
	4/6/2016	3.61	<0.05	5.47	2.13	1,190			
DUP	4/6/2016	3.17	<0.05	2.95	0.99	-			
	10/6/2016	1.51	<0.05	0.54	0.26	1,490			
DUP	10/6/2016	1.58	<0.05	0.57	0.27	-			
	8/16/2017	0.77	<0.0050	0.12	0.04	1,180			
	11/30/2017	0.96	0.007	0.25	0.11	1,060			
DUP 1	11/30/2017	1.50	0.007	0.39	0.11	1,090			
	7/25/2018			lot Sampled - PS					
	11/14/2018	Not Sampled - PSH							
	6/17/2019			lot Sampled - PS lot Sampled - PS					
	11/19/2019								
	5/13/2020	1.59	0.0837	0.551	0.826	581			
	11/18/2020		N	lot Sampled - PS					
	5/12/2021	1.32	0.0246 J	0.296	0.111 J	532			
DUP	5/12/2021	1.12	<0.0500	0.321	0.0821 J	532			
	11/18/2021	2.12	0.0463	0.0911	0.952	461			
DUP	11/18/2021	2.15	<0.250	1.14	1.01	464			
VG-5	1/28/2014	<0.001	<0.001	<0.001	<0.003	304			
	4/16/2014	<0.001	<0.001	<0.001	<0.003	342			
DUP	4/16/2014	<0.001	<0.001	<0.001	<0.003	328			
	7/22/2014	<0.001	<0.001	<0.001	<0.003	140			
	10/9/2014	<0.001	<0.001	<0.001	<0.003	278			
	1/14/2015	<0.001	<0.001	<0.001	<0.003	228			
DUP	1/14/2015	<0.001	<0.001	<0.001	<0.003	200			
	4/16/2015	<0.001	<0.001	<0.001	<0.003	200			
	7/8/2015	<0.001	<0.001	<0.001	<0.003	232			

Sample	Sample Date	Benzene	Toluene	Ethlybenzene	Xylene (mg/L)	Chlorides
Identification	•	(mg/L)	(mg/L)	(mg/L)	Xylene (ilig/L)	(mg/L)
NMWQCC Grou		0.01	0.750	0.75	0.62	250
Quality Standa	rds (mg/L)	0.01	0.750	0.75	0.02	250
VG-5 continued	10/9/2015	<0.001	<0.001	<0.001	<0.003	204
DUP	10/9/2015	<0.001	<0.001	<0.001	<0.003	187
	1/7/2016	<0.001	<0.001	<0.001	<0.003	158
	4/6/2016	<0.001	<0.001	<0.001	<0.003	224
	10/6/2016	<0.001	<0.001	<0.001	<0.003	283
	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	298
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	417
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	225
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	180
DUP	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	177
	6/17/2019	0.000862 J	0.00439	0.000526 J	0.00244 J	188
	11/20/2019	<0.00100	<0.00100	<0.00100	<0.00300	176
	5/13/2020	<0.00100	<0.00100	<0.00100	<0.00300	295
	11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	368
	5/11/2021	0.000166 J	<0.00100	<0.00100	<0.00300	154
	11/18/2021	<0.00200	<0.00500	<.00200	<0.00600	331
VG-6	1/28/2014	<0.001	<0.001	<0.001	<0.003	88.3
	4/16/2014	<0.001	<0.001	<0.001	<0.003	78.1
	7/22/2014	<0.001	<0.001	<0.001	<0.003	95.3
	10/9/2014	<0.001	<0.001	<0.001	<0.003	113
	1/14/2015	<0.001	<0.001	<0.001	<0.003	88.4
	4/16/2015	<0.001	<0.001	<0.001	<0.003	82.3
	7/8/2015	<0.001	<0.001	<0.001	<0.003	99.9
	10/9/2015	<0.001	<0.001	<0.001	<0.003	134
	1/7/2016	<0.001	<0.001	<0.001	<0.003	111
	4/6/2016	<0.001	<0.001	<0.001	<0.003	86
	10/6/2016	<0.001	<0.001	<0.001	<0.003	139
	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	140
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	84.4
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	117
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	134
	6/17/2019	<0.00100	0.001	<0.00100	<0.00300	138
	11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	143
	5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	135
	11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	115
	5/12/2021	<0.00100	<0.00100	<0.00100	<0.00300	88.8
	11/17/2021	<0.0020	<0.0050	<0.0020	<0.0060	75.1
VG-7	1/28/2014	<0.001	<0.001	<0.001	<0.003	191
DUP	1/28/2014	<0.001	<0.001	<0.001	<0.003	201

.

Sample Identification	Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethlybenzene (mg/L)	Xylene (mg/L)	Chlorides (mg/L)
NMWQCC Grou Quality Standa		0.01	0.750	0.75	0.62	250
VG-7 continued	4/16/2014	<0.001	<0.001	<0.001	< 0.003	211
	7/22/2014	<0.001	<0.001	<0.001	< 0.003	201
DUP	7/22/2014	-	-	-	-	203
	10/9/2014	<0.001	<0.001	<0.001	< 0.003	189
	1/14/2015	<0.001	<0.001	<0.001	< 0.003	246
	4/16/2015	<0.001	<0.001	<0.001	< 0.003	270
	7/8/2015	<0.001	<0.001	<0.001	< 0.003	203
	10/9/2015	<0.001	<0.001	<0.001	<0.003	154
	1/7/2016	<0.001	<0.001	<0.001	<0.003	121
	4/6/2016	<0.001	<0.001	<0.001	<0.003	148
	10/6/2016	<0.001	<0.001	<0.001	<0.003	172
	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	134
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	164
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	254
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	229
	6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	207
DUP	6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	207
	11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	149
DUP	11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	145
	5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	129
DUP	5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	129
	11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	122
DUP	11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	125
	5/12/2021	<0.00100	<0.00100	<0.00100	<0.00300	127
	11/17/2021	<0.0020	<0.0050	<0.0020	<0.0060	137

Notes:

mg/L	milligrams per liter
NMWQCC	New Mexico Water Quality Control Comission
-	not analyzed
	result exceeds NMWQCC groundwater quality standards
DUP	duplicate sample
J	The reported value is an estimate
PSH	phase separated hydrocarbons

APPENDIX A LABORATORY ANALYTICAL DATA

Released to Imaging: 1/10/2023 9:13:41 AM

Received by OCD: 5/17/2022 3:14:33 PM

Page 23 of 138

ce Analytical [®]	ANALYTIC May 3	CAL REPORT	¹ Cp
			² Tc
(ConocoPhillips - Tetra	Tech	³ Ss
ç	Sample Delivery Group:	L1353557	⁺Cn
ç	Samples Received:	05/14/2021	⁵ Sr
F	Project Number:	212C-MD-02397	
Γ	Description:	COP- Vacuum Glorietta	⁶ Qc
F	Report To:	Julie Evans	⁷ Gl
		901 West Wall	⁸ Al
		Suite 100	
		Midland, TX 79701	[®] Sc

Entire Report Reviewed By:

Erica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 170/2023 9:13:41 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02397

SDG: L1353557

DATE/TIME: 05/31/21 10:09 PAGE: 1 of 18

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-5 L1353557-01	5
VG-3 L1353557-02	6
VG-6 L1353557-03	7
VG-7 L1353557-04	8
VG-4 L1353557-05	9
DUP L1353557-06	10
Qc: Quality Control Summary	11
Wet Chemistry by Method 9056A	11
Volatile Organic Compounds (GC/MS) by Method 8260B	13
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

Â

Sc

Page 24 of 138

Released to Imaging: 170/2023 9:13:41 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02397

SDG: L1353557

DATE/TIME: 05/31/21 10:09

PAGE: 2 of 18 Received by OCD: 5/17/2022 3:14:33 PM

SAMPLE SUMMARY

Page 25 of 138

Ср

Tc

Ss

Cn

Sr

Qc

GI

Â

Sc

VG-5 L1353557-01 GW			Collected by Preston Poitevint	Collected date/time 05/11/21 12:50	Received da 05/14/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677670 WG1674268	5 1	05/27/21 08:08 05/21/21 13:36	05/27/21 08:08 05/21/21 13:36	ELN ADM	Mt. Juliet, TN Mt. Juliet, TN
VG-3 L1353557-02 GW			Collected by Preston Poitevint	Collected date/time 05/11/21 14:15	Received da 05/14/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677670 WG1674703	1 1	05/27/21 08:20 05/21/21 01:47	05/27/21 08:20 05/21/21 01:47	ELN ACG	Mt. Juliet, TN Mt. Juliet, TN
VG-6 L1353557-03 GW			Collected by Preston Poitevint	Collected date/time 05/12/21 11:50	Received da 05/14/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677670 WG1674703	1 1	05/27/21 08:31 05/21/21 02:07	05/27/21 08:31 05/21/21 02:07	ELN ACG	Mt. Juliet, TN Mt. Juliet, TN
VG-7 L1353557-04 GW			Collected by Preston Poitevint	Collected date/time 05/12/21 13:00	Received da 05/14/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677678 WG1674703	5 1	05/27/21 12:36 05/21/21 02:27	05/27/21 12:36 05/21/21 02:27	GB ACG	Mt. Juliet, TN Mt. Juliet, TN
VG-4 L1353557-05 GW			Collected by Preston Poitevint	Collected date/time 05/12/21 14:05	Received da 05/14/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677678 WG1674961	10 50	05/27/21 13:03 05/21/21 16:26	05/27/21 13:03 05/21/21 16:26	GB DWR	Mt. Juliet, TN Mt. Juliet, TN
DUP L1353557-06 GW			Collected by Preston Poitevint	Collected date/time 05/12/21 00:00	Received da 05/14/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677678 WG1674961	10 50	05/27/21 13:16 05/21/21 16:46	05/27/21 13:16 05/21/21 16:46	GB DWR	Mt. Juliet, TN Mt. Juliet, TN

PROJECT: 212C-MD-02397

SDG: L1353557 DATE/TIME: 05/31/21 10:09

PAGE: 3 of 18

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica Mc Neese

Erica McNeese Project Manager

SDG: L1353557

PAGE: 4 of 18

Received by OCD: 5/17/2022 3:14:33 PM

SAMPLE RESULTS - 01 L1353557

Collected date/time: 05/11/21 12:50

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	– Cp
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	154		1.90	5.00	5	05/27/2021 08:08	WG1677670	⁻Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Co	ompound	s (GC/MS)	(GC/MS) by Method 8260B				³ Ss	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4 (Cr
Benzene	0.000166	J	0.0000941	0.00100	1	05/21/2021 13:36	WG1674268	
Toluene	U		0.000278	0.00100	1	05/21/2021 13:36	WG1674268	5
Ethylbenzene	U		0.000137	0.00100	1	05/21/2021 13:36	WG1674268	Sr
Total Xylenes	U		0.000174	0.00300	1	05/21/2021 13:36	WG1674268	
(S) Toluene-d8	100			80.0-120		05/21/2021 13:36	WG1674268	⁶ Qc
(S) 4-Bromofluorobenzene	97.4			77.0-126		05/21/2021 13:36	WG1674268	GC
(S) 1,2-Dichloroethane-d4	113			70.0-130		05/21/2021 13:36	WG1674268	7

SDG: L1353557

DATE/TIME: 05/31/21 10:09 PAGE: 5 of 18

Received by OCD: 5/17/2022 3:14:33 PM

SAMPLE RESULTS - 02 L1353557

Â

Sc

Collected date/time: 05/11/21 14:15

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	- Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	58.9		0.379	1.00	1	05/27/2021 08:20	WG1677670	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic C	ompound	nds (GC/MS) by Method 8260B					3	Ss	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	L	
Analyte	mg/l		mg/l	mg/l		date / time		4	Cn
Benzene	0.000254	J	0.0000941	0.00100	1	05/21/2021 01:47	WG1674703		CII
Toluene	U		0.000278	0.00100	1	05/21/2021 01:47	WG1674703	5	
Ethylbenzene	0.000335	J	0.000137	0.00100	1	05/21/2021 01:47	WG1674703		Śr
Total Xylenes	0.000705	J	0.000174	0.00300	1	05/21/2021 01:47	WG1674703		
(S) Toluene-d8	98.4			80.0-120		05/21/2021 01:47	WG1674703	6	Qc
(S) 4-Bromofluorobenzene	102			77.0-126		05/21/2021 01:47	WG1674703		QC
(S) 1,2-Dichloroethane-d4	89.8			70.0-130		05/21/2021 01:47	WG1674703	7	GI

Released to Imaging: 10/2023 9:13:41 AM ConocoPhillips - Tetra Tech

SAMPLE RESULTS - 03 L1353557

Page 29 of 138

Collected date/time: 05/12/21 11:50

Wet Chemistry by Method 9056A

		Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
An	alyte	mg/l		mg/l	mg/l		date / time		2
Ch	loride	88.8		0.379	1.00	1	05/27/2021 08:31	WG1677670	⁻Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Co	ompound	ds (GC/MS)	GC/MS) by Method 8260B				³ Ss	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4 Cr
Benzene	U		0.0000941	0.00100	1	05/21/2021 02:07	WG1674703	
Toluene	U		0.000278	0.00100	1	05/21/2021 02:07	WG1674703	5
Ethylbenzene	U		0.000137	0.00100	1	05/21/2021 02:07	WG1674703	ັSr
Total Xylenes	U		0.000174	0.00300	1	05/21/2021 02:07	WG1674703	
(S) Toluene-d8	104			80.0-120		05/21/2021 02:07	WG1674703	⁶ Qo
(S) 4-Bromofluorobenzene	108			77.0-126		05/21/2021 02:07	WG1674703	
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		05/21/2021 02:07	WG1674703	7

Sc

Received by OCD: 5/17/2022 3:14:33 PM

SAMPLE RESULTS - 04 L1353557

Collected date/time: 05/12/21 13:00

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	127		1.90	5.00	5	05/27/2021 12:36	WG1677678	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic C	ompound	ompounds (GC/MS) by Method 8260B					3	³ Ss	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	L	
Analyte	mg/l		mg/l	mg/l		date / time		4	4 Cr
Benzene	U		0.0000941	0.00100	1	05/21/2021 02:27	WG1674703		CI
Toluene	U		0.000278	0.00100	1	05/21/2021 02:27	WG1674703		5
Ethylbenzene	U		0.000137	0.00100	1	05/21/2021 02:27	WG1674703	Ŭ	⁵ Sr
Total Xylenes	U		0.000174	0.00300	1	05/21/2021 02:27	WG1674703		
(S) Toluene-d8	103			80.0-120		05/21/2021 02:27	WG1674703	6	⁶ Qc
(S) 4-Bromofluorobenzene	95.1			77.0-126		05/21/2021 02:27	WG1674703		
(S) 1,2-Dichloroethane-d4	91.6			70.0-130		05/21/2021 02:27	WG1674703	7	⁷ Gl

Â

Sc

SAMPLE RESULTS - 05 L1353557

Collected date/time: 05/12/21 14:05

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	532		3.79	10.0	10	05/27/2021 13:03	<u>WG1677678</u>	ЪС

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic C	ompound	ompounds (GC/MS) by Method 8260B						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	1.32		0.00471	0.0500	50	05/21/2021 16:26	WG1674961	
Toluene	0.0246	J	0.0139	0.0500	50	05/21/2021 16:26	WG1674961	
Ethylbenzene	0.296		0.00685	0.0500	50	05/21/2021 16:26	WG1674961	
Total Xylenes	0.111	J	0.00870	0.150	50	05/21/2021 16:26	WG1674961	
(S) Toluene-d8	98.0			80.0-120		05/21/2021 16:26	WG1674961	
(S) 4-Bromofluorobenzene	90.3			77.0-126		05/21/2021 16:26	WG1674961	
(S) 1,2-Dichloroethane-d4	90.4			70.0-130		05/21/2021 16:26	WG1674961	[

SAMPLE RESULTS - 06 L1353557

Â

Sc

Collected date/time: 05/12/21 00:00 Wet Chemistry by Method 9056A

								 1 Cm
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	532		3.79	10.0	10	05/27/2021 13:16	WG1677678	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	1.12		0.00471	0.0500	50	05/21/2021 16:46	WG1674961
Toluene	U		0.0139	0.0500	50	05/21/2021 16:46	WG1674961
Ethylbenzene	0.321		0.00685	0.0500	50	05/21/2021 16:46	WG1674961
otal Xylenes	0.0821	J	0.00870	0.150	50	05/21/2021 16:46	WG1674961
(S) Toluene-d8	103			80.0-120		05/21/2021 16:46	WG1674961
(S) 4-Bromofluorobenzene	88.4			77.0-126		05/21/2021 16:46	WG1674961
(S) 1,2-Dichloroethane-d4	86.1			70.0-130		05/21/2021 16:46	WG1674961

Sample Narrative:

L1353557-06 WG1674961: Target compounds too high to run at a lower dilution.

SDG: L1353557

DATE/TIME: 05/31/21 10:09

Regen et by DED: 5/17/2022 3:14:33 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1353557-01,02,03

Method Blank (MB)

(MB) R3659926-1 05/	/27/21 00:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

L1353487-01 Original Sample (OS) • Duplicate (DUP)

L1353487-01 01	- · ·	. , .				
(OS) L1353487-01 05/	/27/21 01:38 • (DUP)	R3659926-3	05/27/21	01:50		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	68.6	68.6	1	0.105		15

L1353487-10 Original Sample (OS) • Duplicate (DUP)

L1353487-10 (Driginal Sample	(OS) • Dup	olicate (l	OUP)			
(OS) L1353487-10 (05/27/21 05:51 • (DUP)	R3659926-6	05/27/21	06:02			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Chloride	6.99	7.00	1	0.229		15	

Laboratory Control Sample (LCS)

(LCS) R3659926-2 05/2	7/21 01:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.8	99.5	80.0-120	

L1353487-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1353487-01 05/27/2	21 01:38 • (MS) F	3659926-4 0	5/27/21 02:01 •	(MSD) R36599	926-5 05/27/2	1 02:13						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	68.6	44.4	114	90.3	90.2	1	80.0-120	F	F	0.0385	1

L1353487-10 Original Sample (OS) • Matrix Spike (MS)

(OS) L1353487-10 05/27/2	1 05:51 • (MS) R	3659926-7 0	5/27/21 06:14				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	6.99	58.9	104	1	80.0-120	

Released to Imaging ACFAU 2023 9:13:41 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02397

SDG: L1353557

DATE/TIME: 05/31/21 10:09

PAGE:

11 of 18

Page 33 of 138

Ср

Τс

Ss

Корсина во С. В. 17/2022 3:14:33 РМ

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1353557-04,05,06

Method Blank (MB)

(MB) R3660957-1 05/	27/21 08:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

L1353557-04 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits
Analyte ma/l ma/l % %

Original Sample (OS) • Duplicate (DUP)

Original Sample	(OS) • Duplic	ate (DUP)					⁷ Gl
(OS) • (DUP) R366095	7-6 05/27/2115:1	5					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte		mg/l		%		%	
Chloride		U	10	0.000		15	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3660957-2 05/27	7/21 08:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	37.7	94.3	80.0-120	

L1351415-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1351415-01 05/27/21	11:43 • (MS) R30	660957-3 05/	27/21 11:57 • (N	ISD) R3660957	-4 05/27/2112	2:10						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	2.49	53.6	52.2	102	99.5	1	80.0-120			2.52	15

L1353656-01 Original Sample (OS) • Matrix Spike (MS)

`	DISSS000-01 05/2//2	115:42 • (MS) R	3660957-7 0	5/27/21 15:55				
		Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Ana	lyte	mg/l	mg/l	mg/l	%		%	
Chlo	oride	50.0	1.91	49.4	94.9	1	80.0-120	

Released to Imaging ACEAU 2023 9:13:41 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02397

SDG: L1353557

DATE/TIME: 05/31/21 10:09

PAGE: 12 of 18 Тс

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

)							
(MB) R3657884-2 05/21/21 09:51								
	MB Result	MB Qualifier	MB MDL	MB RDL		Ī		
Analyte	mg/l		mg/l	mg/l				
Benzene	U		0.0000941	0.00100		l		
Ethylbenzene	U		0.000137	0.00100				
Toluene	U		0.000278	0.00100				
Xylenes, Total	U		0.000174	0.00300		1		
(S) Toluene-d8	103			80.0-120				
(S) 4-Bromofluorobenzene	95.9			77.0-126				
(S) 1,2-Dichloroethane-d4	108			70.0-130				

Laboratory Control Sample (LCS)

(LCS) R3657884-1 05/21/21 09:11									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	[′] Gl			
Analyte	mg/l	mg/l	%	%					
Benzene	0.00500	0.00574	115	70.0-123		8			
Ethylbenzene	0.00500	0.00477	95.4	79.0-123		A			
Toluene	0.00500	0.00496	99.2	79.0-120		9			
Xylenes, Total	0.0150	0.0154	103	79.0-123		Sc			
(S) Toluene-d8			102	80.0-120					
(S) 4-Bromofluorobenzene			99.7	77.0-126					
(S) 1,2-Dichloroethane-d4			115	70.0-130					

DATE/TIME: 05/31/21 10:09 PAGE: 13 of 18 Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1353557-02,03,04

Method Blank (MB)

Method Blank (MB))							
(MB) R3657624-2 05/20/21 19:36								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/l		mg/l	mg/l				
Benzene	U		0.0000941	0.00100				
Ethylbenzene	U		0.000137	0.00100				
Toluene	U		0.000278	0.00100				
Xylenes, Total	U		0.000174	0.00300				
(S) Toluene-d8	104			80.0-120				
(S) 4-Bromofluorobenzene	95.8			77.0-126				
(S) 1,2-Dichloroethane-d4	98.0			70.0-130				

Laboratory Control Sample (LCS)

(LCS) R3657624-1 05/20/2118:56								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI		
Analyte	mg/l	mg/l	%	%				
Benzene	0.00500	0.00545	109	70.0-123		8		
Ethylbenzene	0.00500	0.00433	86.6	79.0-123				
Toluene	0.00500	0.00455	91.0	79.0-120		9		
Xylenes, Total	0.0150	0.0126	84.0	79.0-123		Sc		
(S) Toluene-d8			94.6	80.0-120				
(S) 4-Bromofluorobenzene			83.8	77.0-126				
(S) 1,2-Dichloroethane-d4			96.9	70.0-130				

DATE/TIME: 05/31/21 10:09

PAGE: 14 of 18

Page 36 of 138

Qc
Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 37 of 138

Ср

Τс

Ss

Cn

Sr

[°]Qc

Method Blank (MB)

(MB) R3658544-3 05/21/2	21 09:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0000941	0.00100
Ethylbenzene	U		0.000137	0.00100
Toluene	U		0.000278	0.00100
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	109			80.0-120
(S) 4-Bromofluorobenzene	100			77.0-126
(S) 1,2-Dichloroethane-d4	97.2			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3658544-1 05/21/2	21 08:31 • (LCSE)) R3658544-2	2 05/21/21 08:5	51							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	[′] Gl
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00539	0.00563	108	113	70.0-123			4.36	20	8
Ethylbenzene	0.00500	0.00428	0.00438	85.6	87.6	79.0-123			2.31	20	A
Toluene	0.00500	0.00481	0.00460	96.2	92.0	79.0-120			4.46	20	9
Xylenes, Total	0.0150	0.0133	0.0128	88.7	85.3	79.0-123			3.83	20	Sc
(S) Toluene-d8				95.4	95.6	80.0-120					
(S) 4-Bromofluorobenzene				88.0	89.4	77.0-126					
(S) 1,2-Dichloroethane-d4				89.4	86.1	70.0-130					

SDG: L1353557 DATE/TIME: 05/31/21 10:09 PAGE: 15 of 18

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

1	The identification of the analyte is acceptable; the reported value is an estimate.
5	

J

SDG: L1353557

Received by OCD: 5/17/2022 3:14:33 PM CCREDITATIONS & LOCATIONS

Page 39 of 138	Page	<u>39</u>	of	138
----------------	------	-----------	----	-----

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
alifornia	2932	New Mexico ¹	TN00003
olorado	TN00003	New York	11742
onnecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina ¹	DW21704
eorgia	NELAP	North Carolina ³	41
ieorgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
linois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
lansas	E-10277	Rhode Island	LAO00356
entucky ¹⁶	KY90010	South Carolina	84004002
entucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
laine	TN00003	Texas ⁵	LAB0152
laryland	324	Utah	TN000032021-11
lassachusetts	M-TN003	Vermont	VT2006
lichigan	9958	Virginia	110033
linnesota	047-999-395	Washington	C847
lississippi	TN00003	West Virginia	233
lissouri	340	Wisconsin	998093910
lontana	CERT0086	Wyoming	A2LA
2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
PA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1353557 DATE/TIME: 05/31/21 10:09 Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

			Billing Infor	mation:		T			Analysis / Contai	ner / Preservative		Chain of Custody	Page of
ConocoPhillips - Tetra 901 West Wall Suite 100	Tech		901 Wes Suite 100	A. WHALEBER		Pres Chk						- Pace A Nutional Cent	nalytical * ter for Testing & Innovatio
Midland TX 79701 Report to:				ilie.evans@tetrate	ch.com							12065 Lebanon Rd	同群編画
Julie Evans			Contra sec. po	and the second of second	CLART							Mount Juliet, TN 3712 Phone: 615-758-5858	
Project Description: COP- Vacuum Glorie	tta			City/State Collected:	a Compty A	M						Phone: 800-767-5859 Fax: 615-758-5859	000
Phone: 432-687-8137 Fax:	Client Project #	26-10-	02397	Lab Project # COPTETRA-V/	11		125mlHDPE-NoPres	Ę				L# [)- J17	5
Collected by (print): Meston Poiterit	Site/Facility ID	Ħ		P.O. #			HDPE-	40mlAmb-HCl				Acctnum: COP1	
Collected by (signature)	Same Day	ib MUST Be f / Five D 5 Day	ау	Quote # Date Resu	Its Noodod							Template: T151 Prelogin: P714 TSR: 526 - Chris	613
Immediately Packed on Ice N Y	Two Day Three Day	10 Day	(Rad Only)			No. of	ORIDE	V8260BTEX				PB: Shipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntr	居	V82				Remarks	Sample # (lab on y)
V6 1-5		GW		5-11-21	1250	1	X	X					-01
V6 15.3		GW		5-11-21	1415	4	X	X					-02
115 10-6		GW		5-12-21	150	4	Х	X					-03
V6		GW		5-12-21	1300	4	X	X					-04
VO My-4		GW		5-12-24	1405	+	x	X					-05
DUP		GW		and the		4	X	X					-06
		GW				4	X	X					
		GW				4	Х	X					
		GW				4	X	X					
* Matrix:	Remarks:										COC Seal I	ple Receipt Che Present/Intact:	RILL PN
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater									pH	Temp Other	COC Signed Bottles an Correct bo	d/Accurate: crive intact: ottles used:	
DW - Drinking Water OT - Other	Samples return		ier	Tra	acking #			424			VOA Sero I	t volume sent: <u>If Applicarl</u> Weadspace:	YN
Relinquished by : (Signature)	5-	Date:		ime: Re A.W R	ceived by stana	iture)	C	/	Trip Blank Rec	eived: Yes No HCL / MeoH TBR		ion Correct/Che	
Relinduished by : (Signature)		Date: 6-13-	T	7-00 S	ceived by: (Signa	iture)			29:1-	C Bottles Received:		on required by Logi	
Relinquished by : (Signature)	:13:41 AM	Date:	T	îme: Re	ceived for tab by	: (Signat	tyre)	tsac	Date: 5/1/4/21	Time: 8:00	Hold:		Condition

Page 41 of 138

ConocoF	hillips - Te	tra Tech	
Sample Deli	very Group:	L1433918	
Samples Red	ceived:	11/20/2021	
Project Num	per:	212C-MD-02397	
Description:		COP- Vacuum Glorietta	
Site:		COPTETRA-VACCUM	
Report To:		Julie Evans	
		901 West Wall	
		Suite 100	
		Midland, TX 79701	

Entire Report Reviewed By: Chu, forman

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be Analytical National is performed per guidance provided in laboratory where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory where applicable, sampling conducted by Pace National Statement of the laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical Services, LLC -Dallas

400 W. Bethany Drive Suite 190 Allen, TX 75013 972-727-1123 800-767-5859 www.pacenational.com

Released to Imaging: 01/10/2023 9:13:41 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02397

SDG: L1433918

DATE/TIME: 12/03/21 22:12 PAGE: 1 of 18

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-3 L1433918-01	5
VG-6 L1433918-02	6
VG-7 L1433918-03	7
VG-5 L1433918-04	8
VG-4 L1433918-05	9
DUP L1433918-07	10
Qc: Quality Control Summary	11
Wet Chemistry by Method 9056A	11
Volatile Organic Compounds (GC/MS) by Method 8260	12
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

Released to Imaging: 170/2023 9:13:41 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02397

SDG: L1433918 DATE/TIME:

12/03/21 22:12

PAGE: 2 of 18

SAMPLE SUMMARY

Page 43 of 138

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time		
VG-3 L1433918-01 GW			Matthew Castrejan	11/17/21 13:20	11/20/21 08:37	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1778470	10	11/22/21 14:29	11/22/21 14:29	JAP	Allen, TX
Volatile Organic Compounds (GC/MS) by Method 8260	WG1779763	1	11/24/21 16:27	11/24/21 16:27	NSR	Allen, TX
			Collected by	Collected date/time	Received date	/time
VG-6 L1433918-02 GW			Matthew Castrejan	11/17/21 14:35	11/20/21 08:37	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1778470	20	11/22/21 14:47	11/22/21 14:47	JAP	Allen, TX
Volatile Organic Compounds (GC/MS) by Method 8260	WG1779763	1	11/24/21 16:45	11/24/21 16:45	NSR	Allen, TX
			Collected by	Collected date/time	Received date	/time
VG-7 L1433918-03 GW			Matthew Castrejan	11/17/21 15:50	11/20/21 08:37	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1778470	20	11/22/21 15:05	11/22/21 15:05	JAP	Allen, TX
Volatile Organic Compounds (GC/MS) by Method 8260	WG1779763	1	11/24/21 17:03	11/24/21 17:03	NSR	Allen, TX
			Collected by	Collected date/time	Received date	/time
VG-5 L1433918-04 GW			Matthew Castrejan	11/18/21 10:55	11/20/21 08:37	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1778470	50	11/22/21 15:58	11/22/21 15:58	JAP	Allen, TX
Volatile Organic Compounds (GC/MS) by Method 8260	WG1779763	1	11/24/21 17:21	11/24/21 17:21	NSR	Allen, TX
			Collected by	Collected date/time	Received date	/time
VG-4 L1433918-05 GW			Matthew Castrejan	11/18/21 13:05	11/20/21 08:37	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1778470	100	11/22/21 16:16	11/22/21 16:16	JAP	Allen, TX
Volatile Organic Compounds (GC/MS) by Method 8260	WG1779763	1	11/24/21 17:39	11/24/21 17:39	NSR	Allen, TX
Volatile Organic Compounds (GC/MS) by Method 8260	WG1782576	50	11/30/21 18:21	11/30/21 18:21	NSR	Allen, TX
			Collected by	Collected date/time	Received date	/time
DUP L1433918-07 GW			Matthew Castrejan	11/18/21 00:00	11/20/21 08:37	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Locatior
Wet Chemistry by Method 9056A	WG1778470	100	11/22/21 16:34	11/22/21 16:34	JAP	Allen, TX
Volatile Organic Compounds (GC/MS) by Method 8260	WG1782576	50	11/30/21 18:38	11/30/21 18:38	NSR	Allen, TX

PROJECT: 212C-MD-02397

SDG: L1433918 DATE/TIME: 12/03/21 22:12

PAGE: 3 of 18

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 1/10/2023 9:13:41 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02397

SDG: L1433918 DATE/TIME: 12/03/21 22:12

E: ::12 PAGE: 4 of 18

SAMPLE RESULTS - 01 L1433918

Collected date/time: 11/17/21 13:20

Wet Chemist	try by Method S	9056A						1
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	51.7		0.541	8.00	10	11/22/2021 14:29	WG1778470	Tc

Volatile Organic Compounds (GC/MS) by Method 8260

Volatile Organic Compounds (GC/MS) by Method 8260									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			4
Benzene	U		0.000493	0.00200	1	11/24/2021 16:27	WG1779763		
Ethylbenzene	U		0.000462	0.00200	1	11/24/2021 16:27	WG1779763		5
Toluene	U		0.000998	0.00500	1	11/24/2021 16:27	WG1779763		۳S
Xylenes, Total	U		0.00132	0.00600	1	11/24/2021 16:27	WG1779763		
(S) 1,2-Dichloroethane-d4	114			70.0-130		11/24/2021 16:27	WG1779763		6 G
(S) 4-Bromofluorobenzene	103			70.0-130		11/24/2021 16:27	WG1779763		
(S) Toluene-d8	99.5			70.0-130		11/24/2021 16:27	WG1779763		7

GI Â Sc

SAMPLE RESULTS - 02 L1433918

Collected date/time: 11/17/21 14:35

Wet Chemis	try by Method S	9056A						1
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	75.1		1.08	16.0	20	11/22/2021 14:47	<u>WG1778470</u>	Tc

Volatile Organic Compounds (GC/MS) by Method 8260

Volatile Organic Compounds (GC/MS) by Method 8260										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l		date / time		4 Cr		
Benzene	U		0.000493	0.00200	1	11/24/2021 16:45	WG1779763			
Ethylbenzene	U		0.000462	0.00200	1	11/24/2021 16:45	WG1779763	5		
Toluene	U		0.000998	0.00500	1	11/24/2021 16:45	WG1779763	Sr		
Xylenes, Total	U		0.00132	0.00600	1	11/24/2021 16:45	WG1779763			
(S) 1,2-Dichloroethane-d4	114			70.0-130		11/24/2021 16:45	WG1779763	⁶ Q		
(S) 4-Bromofluorobenzene	105			70.0-130		11/24/2021 16:45	WG1779763			
(S) Toluene-d8	99.0			70.0-130		11/24/2021 16:45	WG1779763	7		

Sc

SAMPLE RESULTS - 03 L1433918

Тс

Â

Sc

Collected date/time: 11/17/21 15:50

Wet Chemistry by N	lethod 90	56A					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	137		1.08	16.0	20	11/22/2021 15:05	WG1778470

Volatile Organic Compounds (GC/MS) by Method 8260

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000493	0.00200	1	11/24/2021 17:03	WG1779763
Ethylbenzene	U		0.000462	0.00200	1	11/24/2021 17:03	WG1779763
Toluene	U		0.000998	0.00500	1	11/24/2021 17:03	WG1779763
Xylenes, Total	U		0.00132	0.00600	1	11/24/2021 17:03	WG1779763
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		11/24/2021 17:03	WG1779763
(S) 4-Bromofluorobenzene	104			70.0-130		11/24/2021 17:03	WG1779763
(S) Toluene-d8	169	<u>J1</u>		70.0-130		11/24/2021 17:03	WG1779763

SAMPLE RESULTS - 04 L1433918

Collected date/time: 11/18/21 10:55

Wet Chemis	try by Method 9)056A						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Chloride	331		2.70	40.0	50	11/22/2021 15:58	WG1778470	

Volatile Organic Compounds (GC/MS) by Method 8260

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000493	0.00200	1	11/24/2021 17:21	WG1779763
Ethylbenzene	U		0.000462	0.00200	1	11/24/2021 17:21	WG1779763
Foluene	U		0.000998	0.00500	1	11/24/2021 17:21	WG1779763
Kylenes, Total	U		0.00132	0.00600	1	11/24/2021 17:21	WG1779763
(S) 1,2-Dichloroethane-d4	115			70.0-130		11/24/2021 17:21	WG1779763
(S) 4-Bromofluorobenzene	104			70.0-130		11/24/2021 17:21	WG1779763
(S) Toluene-d8	99.5			70.0-130		11/24/2021 17:21	WG1779763

Тс

AI

Sc

SAMPLE RESULTS - 05

3

Sc

Collected date/time: 11/18/21 13:05

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	461		5.41	80.0	100	11/22/2021 16:16	WG1778470	Tc

Volatile Organic Compounds (GC/MS) by Method 8260

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	2.12		0.0247	0.100	50	11/30/2021 18:21	WG1782576	
Ethylbenzene	0.911		0.0231	0.100	50	11/30/2021 18:21	WG1782576	
Foluene	0.0463		0.000998	0.00500	1	11/24/2021 17:39	WG1779763	
Kylenes, Total	0.952		0.0660	0.300	50	11/30/2021 18:21	WG1782576	
(S) 1,2-Dichloroethane-d4	109			70.0-130		11/24/2021 17:39	WG1779763	
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		11/30/2021 18:21	<u>WG1782576</u>	
(S) 4-Bromofluorobenzene	98.9			70.0-130		11/24/2021 17:39	WG1779763	
(S) 4-Bromofluorobenzene	93.0			70.0-130		11/30/2021 18:21	WG1782576	
(S) Toluene-d8	108			70.0-130		11/24/2021 17:39	WG1779763	
(S) Toluene-d8	74.8			70.0-130		11/30/2021 18:21	WG1782576	

SAMPLE RESULTS - 07 L1433918

Collected date/time: 11/18/21 00:00

Wet Chemis	try by Method S	9056A						1
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	464		5.41	80.0	100	11/22/2021 16:34	WG1778470	Тс

Volatile Organic Compounds (GC/MS) by Method 8260

Volatile Organic Co	Volatile Organic Compounds (GC/MS) by Method 8260										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cr			
Benzene	2.15		0.0247	0.100	50	11/30/2021 18:38	WG1782576				
Ethylbenzene	1.14		0.0231	0.100	50	11/30/2021 18:38	WG1782576	5			
Toluene	U		0.0499	0.250	50	11/30/2021 18:38	WG1782576	ຶSr			
Xylenes, Total	1.01		0.0660	0.300	50	11/30/2021 18:38	WG1782576				
(S) 1,2-Dichloroethane-d4	92.9			70.0-130		11/30/2021 18:38	WG1782576	⁶ Qc			
(S) 4-Bromofluorobenzene	100			70.0-130		11/30/2021 18:38	WG1782576				
(S) Toluene-d8	97.1			70.0-130		11/30/2021 18:38	WG1782576	7			

GI Â Sc

SDG: L1433918

Reserved by DED: 5/17/2022 3:14:33 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1433918-01,02,03,04,05,07

Page 51 of 138

GI

Â

Sc

Method Blank (MB)

					1
(MB) R3732656-1	11/22/21 12:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	-
Chloride	U		0.0541	0.800	
					3

Laboratory Control Sample (LCS)

Laboratory Cont	rol Sample (LCS)				4
(LCS) R3732656-2 11/2	22/21 12:42					Cn
	Spike Amou	nt LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	5
Analyte	mg/l	mg/l	%	%		Sr
Chloride	5.00	5.22	104	80.0-120		

L1433923-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1433923-04 11/22/2	OS) L1433923-04 11/22/21 17:46 • (MS) R3732656-3 11/22/21 18:03 • (MSD) R3732656-4 11/22/21 18:21											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	103	160	160	115	115	10	80.0-120	E	E	0.00469	20

L1433923-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1433923-06 11/22/2	(OS) L1433923-06 11/22/21 19:33 • (MS) R3732656-5 11/22/21 19:51 • (MSD) R3732656-6 11/22/21 20:08											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	100	76.5	183	182	106	106	20	80.0-120			0.256	20

SDG: L1433918

DATE/TIME: 12/03/21 22:12

PAGE: 11 of 18 Volatile Organic Compounds (GC/MS) by Method 8260

QUALITY CONTROL SUMMARY

Method Blank (MB)

vietuod Biank (MB	9				
MB) R3733560-2 11/24/2	21 11:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.000493	0.00200	
Ethylbenzene	U		0.000462	0.00200	
Toluene	U		0.000998	0.00500	
Xylenes, Total	U		0.00132	0.00600	
(S) 1,2-Dichloroethane-d4	111			70.0-130	
(S) 4-Bromofluorobenzene	104			70.0-130	
(S) Toluene-d8	99.7			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3733560-1 11/24/2	21 11:15					Ē
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/l	mg/l	%	%		L
Benzene	0.0200	0.0195	97.5	73.0-131		ſ
Ethylbenzene	0.0200	0.0209	105	76.0-129		
Toluene	0.0200	0.0197	98.5	73.0-130		ſ
Xylenes, Total	0.0600	0.0601	100	78.0-124		
(S) 1,2-Dichloroethane-d4			104	70.0-130		L
(S) 4-Bromofluorobenzene			100	70.0-130		
(S) Toluene-d8			101	70.0-130		

L1434330-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1434330-01 11/24/21	13:29 • (MS) R3	3733560-3 11/2	24/21 13:46 • (M	SD) R3733560	-4 11/24/21 14:0	04						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0200	U	0.0206	0.0203	103	102	1	74.0-130			1.47	20
Ethylbenzene	0.0200	U	0.0220	0.0218	110	109	1	77.0-127			0.913	20
Toluene	0.0200	U	0.0208	0.0206	104	103	1	74.0-127			0.966	20
Xylenes, Total	0.0600	U	0.0634	0.0620	106	103	1	71.0-133			2.23	20
(S) 1,2-Dichloroethane-d4					106	105		70.0-130				
(S) 4-Bromofluorobenzene					98.6	99.6		70.0-130				
(S) Toluene-d8					102	102		70.0-130				

SDG: L1433918 DATE/TIME: 12/03/21 22:12

PAGE: 12 of 18 Qc

GI

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260

QUALITY CONTROL SUMMARY

Method Blank (MB)

)				
(MB) R3735882-2 11/30/2	.1 17:27				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.000493	0.00200	
Ethylbenzene	U		0.000462	0.00200	
Toluene	U		0.000998	0.00500	
Xylenes, Total	U		0.00132	0.00600	
(S) 1,2-Dichloroethane-d4	79.4			70.0-130	
(S) 4-Bromofluorobenzene	93.7			70.0-130	
(S) Toluene-d8	95.5			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3735882-1 11/30/2	21 15:56					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/l	mg/l	%	%		
Benzene	0.0200	0.0198	99.0	73.0-131		8
Ethylbenzene	0.0200	0.0214	107	76.0-129		AI
Toluene	0.0200	0.0200	100	73.0-130		9
Xylenes, Total	0.0600	0.0599	99.8	78.0-124		Sc
(S) 1,2-Dichloroethane-d4			91.6	70.0-130		
(S) 4-Bromofluorobenzene			99.0	70.0-130		
(S) Toluene-d8			98.3	70.0-130		

DATE/TIME: 12/03/21 22:12

PAGE: 13 of 18

Page 53 of 138

Qc

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

Surrogate recovery limits have been exceeded; values are outside upper control limits.

SDG: L1433918

Received by OCD: 5/17/2022 3:14:33 PM CCREDITATIONS & LOCATIONS

Pace Analytical Services, LLC -Dallas 400 W. Bethany Drive Suite 190 Allen, TX 75013

Arkansas	88-0647	Kansas	E10388
Florida	E871118	Texas	T104704232-20-32
lowa	408	Oklahoma	8727
Louisiana	30686		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Released to Imaging: 1/10/2023 9:13:41 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02397

SDG: L1433918 DATE/TIME: 12/03/21 22:12

P. 15

PAGE: 15 of 18

			Billing Info	ormation:					Analysis / Col	ntainer / Preserva	tive		Chain of Custody	Page of 1		
ConocoPhillips - Tetra 901 West Wall Suite 100 Midland, TX 79701	a Tech	Accounts Payable 901 West Wall Suite 100 Midland, TX 79701				Pres Chk							Pace/ Netone Ca	Analytical * now for Techny & inconsist		
Report to: Julie Evans	Email To: julie.evans@tetr			ulie.evans@tetra	tech.com								12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58			
Project Description: COP- Vacuum Glori	etta		1	City/State Collected:								-	Phone: 800-767-58 Fax: 615-758-5859	⁵⁹		
Phone: 432-687-8137 Fax:	Client Project 212C-MD			Lab Project # COPTETRA-\	ACUUM		125mlHDPE-NoPres	Ę					L# L14 Table #	33918		
Collected by (print): Matthew Castrigan	Site/Facility ID) #		PO#			-340H	40mlAmb-HCI					Acctnum: CO			
Collected by (signature): Muture ut of free Immediately Packed on Ice N Y	Same Da	ab MUST Be ay Five D y 5 Day r 10 Da	ay (Rad Only)	Quote # Date Res	Date Results Needed		esults Needed								Template:T15 Prelogin: P71 TSR: 526 - Chr PB:	4613
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs	CHLORIDE	V8260BTEX					Shipped Via: Remarks	Sample # (lab only)		
VG-3	G	GW		11-17-21	1320	4	X	X						+01		
VG-6	G	GW		11-17-21		4	Х	X						+02		
V6-7	G	GW		11-17-21		4	X	X						-03		
V6-5	6	GW		11-18-21		4	X	X						-04		
VG-4	G	GW		11-18-21		4	X	X						-05		
Dup	G	GW				4	X	X						-07		
	8	GW				4	X	X								
		GW				4	X	X								
		GW			1	4	X	X								
		N.			1											
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay VW - WasteWater	Remarks:			I			,		pH _	Temp Other		COC Seal COC Sign Bottles	<pre>mple Receipt - Present/Intac ed/Accurate: arrive intact: bottles used:</pre>	$t : \{Y} \{Y} \{Y}$		
W - Drinking Water T - Other	Samples return UPSFeo	ned via: JEx Cour	ier	TI	racking #							Sufficient VOA Zero	nt volume sent <u>If Applica</u> Headspace:	:Y Y		
elinquished by : (Signature)	1	Date: 11-19-		Ime: C('w	RA WE ISTB	nature)	/	C	Trip Blank	TBR	/ MeoH		tion Correct/C			
elinguished to : (Signatu/e)		Date:	2(Diw (eceived by: (Sig	SUNC	(Temp:	°C Bottles R	leceived:		tion required by L			
elinquished by : (Bignature) (974)	·	Date:	U	Ime: 0837	eceived for lab l	by: (Signal	ture)	2	Date:	Time:	37	Hold:		Condition: NCF / OK		

\sim	Document Name:	Document Revised: 7/27/20						
Pace Analytical	Sample Condition Upon Receip							
	Document No.: F-DAL-C-001-rev 14	Issuing Authority:						
	Sample Condition Upon	Pace Dallas Quality Office						
□Dallas								
	errworth Ceorpu:	s christi 🗆 Austin						
Client Name: <u>Conoco</u> <u>Pluilliv</u> Courier FedEX © UPS © USPS © Client © LSO Tracking #:	Project Work orde	r (piace label): - L1433918						
Custody Seal on Cooler/Box: Yes No to Received on ice: Wet Blue No ice A Receiving Lab 1 Thermometer Used: Receiving Lab 2 Thermometer Used:	Cooler Temp °C: 3.9	(Recorded) <u>0. 2</u> (Correction Factor) <u>3.</u> 7 (Actual (Recorded) (Correction Factor) (Actual						
		ccipt in which evidence of cooling is acceptable						
Triage Person: Date	1							
Chain of Custody relinquished	Yes N	0 🗅						
Sampler name & signature on COC	Yes 🖉 N	0 🗆						
Short HT analyses (<72 hrs)	Yes 🗆 N	0 🗆						
Login Person: Date Sufficient Volume received	1.1120/21 Yes DN	0 🗆						
Correct Container used	Yes 🖬 N	0 []						
Container Intact	Yes 🖬 N	Yes No 🗆						
Sample pH Acceptable	Yes 🗆 N	O D NA D						
pH Strips: Residual Chlorine Present	Yes 🗆 N	O D NA d						
Cl Strips: Sulfide Present Lead Acetate Strips:	Yes 🗆 N	OD NAS						
Are soil samples (volatiles, TPH) receiv (not applicable to TCLP VOA or PST Progr		O D NA V						
Unpreserved 5035A soil frozen within	48 hrs Yes 🗆 N	Yes D NO D NA 3						
Headspace in VOA (>6mm)	Yes 🗆 N	Yes D No NA D						
Project sampled in USDA Regulated Ar Texas State Sampled:	ea outside of Yes D N	Yes D NO D NA						
Non-Conformance(s):	Yes 🗆 N	Yes 🗆 No 🖉						

Labeling Person (if different than log-in): ______ Date: _____

Released to Imaging: 1/10/2023 9:13:41 AM

Page 57 of 138

		and the second sec		
PRI PPD	19NOV21 01:	39P **	LABEL **	
	Schd	GLI 1454	G	LI 3089782608
Pcs: 1	of 1 DALLAS, TX			
		ICAL WEST TEXAS		
	RECV PACE ANALYT	ICAL WEST TEXAS		
÷ s	HFPU		1	Manual Wght: 50.0
		- 1 A		Tariff Wght:
	DALLAS, TX	75202	1. A. M.	50.0
	Phone: 432-	202-4238	PO	/Ref #:
	Priority			
	· · · · · · · · · · · · · · · · · · ·	: (214)747-8859	WWW.SHII	PGREYHOUND . COM
PRI PPD	19NOV21 01::	39P ** 0)	RIGIN **	
FRI FFD			G	LI 3089782608
	44 A	GLI 1454		
Pcs: 1	of 1	S MEDIAN DU		
lar De l	and the second se	A MIDLAND, TX	14 million (1997)	
	TO: DALLA	S, TX		
	Priority	· · ·	12	
	1		÷	
	PE	PRS \$ 30.00	C EXPRS	
	P VZ	LUE	C VALUE	

1433918

sed to Imaging: 1/10/2023 9:13:41 AM

Page 58 of 138

APPENDIX B ACUVAC REMEDIATION, LLC REPORTS

March 2, 2021

Ms. Julie Evans Hydrogeologist/Environmental Project Manager Tetra Tech 1500 City West Boulevard, Suite 1000 Houston, TX 77042

Dear Julie:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #5)

At your request, AcuVac Remediation, LLC (AcuVac) performed four Mobile Dual Phase Extraction (MDPE) Events: #5A, #5B, #5C and #5D as outlined in the table below at the above referenced site (Site). The following is the report and a copy of the operating data collected during Event #5. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#5A	VG-4	MDPE	10.0	02/23/2021
#5B	VG-4	MDPE	10.0	02/24/2021
#5C	VG-4	MDPE	10.0	02/25/2021
#5D	VG-4	MDPE	8.0	02/26/2021

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical pipeline release.

OBJECTIVES

The objectives of the MDPE Events:

- Evaluate the potential for removing liquid and vapor phase LNAPL from the groundwater and soils in the subsurface formations.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the groundwater and contaminant specific yields with high induced vacuums.
- Provide an induced hydraulic gradient to gain hydraulic control of the area during the Event period.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

	Equipment and Instrumentation Employed by AcuVac									
Measurement Equipment	Data Element									
Extraction Well Induced Vacuum and Flow										
Dwyer Magnehelic Gauges	Extraction Well Vacuum									
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow									
Observation Wells										
Dwyer Digital Manometer	Vacuum / Pressure Influence									
Extraction Well Vapor Monitoring										
V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection									
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration									
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content									
NAPL Thickness (if present)										
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater									
Groundwater Depression / Upwelling										
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells									
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure									
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls									
Atmospheric Conditions										
Testo Model 511	Relative and Absolute Barometric Pressure									

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through two of three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine.

The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #5

The Recovery Summary Table below lists the groundwater and LNAPL recovery data for Event #5 (MDPE) and compares the results with Events #4 (MDPE) and #3 (SVE) performed on the dates shown. Events #1 and #2 were omitted from this report due to the elapsed time since the events.

	Recovery Summary Well VG-4										
Event Number		Event #5D	Event #5C	Event #5B	Event #5A	Event #5	Event #4	Event #3			
Event Date		02/26/2021	02/25/2021	02/24/2021	02/23/2021	Total	05/07/2020	06/13/2019			
Event Hours		8.0	10.0	10.0	10.0	38.0	28.0	28.0			
Data Element											
Groundwater Recovery	gals	1,140	1,570	2,095	2,306	7,111	5,065	0			
LNAPL Recovery											
Liquid	gals	0	0	0	0	0	0	0			
Vapor	gals	1.58	1.76	2.25	2.10	7.69	11.88	9.78			
Total	gals	1.58	1.76	2.25	2.01	7.69	11.88	9.78			
Gallons/Hour	gph	0.20	0.18	023	0.21	0.20	0.42	0.35			

• Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA[®] data recorded. The HORIBA[®] analytical data from the influent vapor samples are compared with previous events in the Influent Vapor Data Table below:

	Influent Vapor Data Well VG-4											
Event Number		Event #5D	Event #5C	Event #5B	Event #5A	Event #4C	Event #3C					
Event Date		02/26/2021	02/25/2021	02/24/2021	02/23/2021	05/07/2020	06/13/2019					
Event Hours		8.0	10.0	10.0	10.0	8.0	8.0					
Data Element				•	•							
TPH- Maximum	ppmv	5,580	5,740	6,670	6,700	14,560	11,140					
TPH- Average	ppmv	5,214	5,190	6,353	6,371	11,068	9,749					
TPH- Minimum	ppmv	4,440	4,300	5,720	5,360	7,850	4,970					
TPH- Initial	ppmv	4,910	4,300	5,720	5,360	7,850	4,970					
TPH- Ending	ppmv	5,190	5,160	6,460	6,640	13,890	10,940					
CO ₂	%	9.73	9.83	11.63	11.61	9.51	8.90					
CO	%	0	0	0	0	0.02	0.01					
O ₂	%	4.50	4.73	1.89	2.12	2.48	3.0					
H₂S	ppm	0	0	0	0	2.94	3.10					

• The TPH vapor concentrations from the influent vapor samples for Event #5 are presented in the graph below:

• The extraction well induced vacuum and well vapor flow for Event #3 through Event #5 is compared in the table below. The Well Vapor Flow graph compares the well flow during Events #5 and #4.

Well Vacuum and Well Vapor Flow Well VG-4									
Event Number		Event #5D	Event #5C	Event #5B	Event #5A	Event #4C	Event #3C		
Event Date		02/26/2021	02/25/2021	02/24/2021	02/23/2021	05/07/2020	06/13/2019		
Event Hours		8.0	10.0	10.0	10.0	8.0	8.0		
Data Element									
Well Vacuum- Maximum	"H₂O	64.00	63.00	63.00	60.00	90.00	75.00		
Well Vacuum- Average	"H ₂ O	63.06	58.35	62.00	60.00	82.94	70.59		
Well Vacuum- Minimum	"H ₂ O	60.00	50.00	60.00	60.00	80.00	65.00		
Well Vapor Flow- Maximum	scfm	18.27	16.20	16.96	15.41	17.13	16.67		
Well Vapor Flow- Average	scfm	17.59	15.70	16.41	15.27	16.75	16.33		
Well Vapor Flow- Minimum	scfm	15.43	13.86	15.37	15.19	16.17	16.01		

• The groundwater pump rates for Event #3 through Event #5 are contained in the table below.

	Groundwater Pump Data Well MW-VG-4										
Event Number Event #5D Event #5C Event #5B Event #5A Event #4C Event #3C											
Event Date		02/26/2021	02/25/2021	02/24/2021	02/23/2021	05/07/2020	06/13/2019				
Event Hours		8.0	10.0	10.0	10.0	8.0	8.0				
Data Element											
Maximum GW Pump Rate	gpm	3.60	3.33	3.83	5.17	-	-				
Average GW Pump Rate	gpm	2.38	2.48	3.54	3.92	-	-				

• The LNAPL thickness recorded at the start and conclusion of each event is contained in the table below.

LNAPL Thickness Data Well VG-4										
Event Number		Event #5D	Event #5C	Event #5B	Event #5A	Event #4C	Event #3C			
Event Date		02/26/2021	02/25/2021	02/24/2021	02/23/2021	05/07/2020	06/13/2019			
Event Hours		8.0	10.0	10.0	10.0	8.0	8.0			
Event Start										
Depth to Groundwater	Ft BTOC	67.09	67.12	67.08	67.10	66.67	66.34			
Depth to LNAPL	Ft BTOC	-	-	-	67.02	-	66.33			
LNAPL Thickness	ft	-	-	-	0.08	-	0.01			
Hydro Equivalent	Ft BTOC	67.09	67.12	67.08	67.04	66.67	66.33			
Event Conclusion										
Depth to Groundwater	Ft BTOC	67.70	67.18	67.42	67.45	67.35	64.91			
Depth to LNAPL	Ft BTOC	-	-	-	-	-	-			
LNAPL Thickness	ft	-	-	-	-	-	-			
Hydro Equivalent	Ft BTOC	67.70	67.18	67.42	67.45	67.35	64.91			

ADDITIONAL INFORMATION

- Overall, the TPH vapor concentrations were lower for Event #5 than previous events. Event #5 was conducted the week following a hard freeze in the area. The effect of the freezing temperatures on the radiant cooling of the soil cannot be determined, but it may have impacted the volatilization of the TPH vapors in the soil.
- As shown in the Well Vapor Flow graph on page 4, the vapor flow during Event #5 and #4 was mostly steady. The well flow was generally lower for Events #4A and #5A and then increased with subsequent days during each event.
- All LNAPL volume recovered, 7.69 gals, was burned as IC engine fuel.
- During the first hour of Event #5C, the color of the groundwater changed, and biomass was observed in the site glass. The source of the biomass is not known, although it is believed that some type of "breakthrough in the formation" occurred. A sample of the groundwater was obtained and sent to a lab for analysis.

- At event hour 4.5 of Event #5C, a warning message was observed on the pump controller. The pump was pulled from the well, and the backup was installed. It is most likely that silt or other materials from the formation were drawn into the pump causing the failure.
- At the start of Event #5D, the water line connected to the in-well pump was frozen. The groundwater pump was not started until event hour 2.0.
- At the conclusion of Event #5D, the bottom of the well was tagged, and approximately 0.5 ft of material had been removed from the well bottom as the total depth of the well measured 72.70 ft BTOC, and the initial total depth was measured at 72.20 ft BTOC at the start of Event #5A.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO₂.

The formula used to calculate the emission rate is: ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E⁻⁷ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Description of the Enhanced Vapor Recovery Process
- Recorded Data
- Photographs of the AcuVac System and well VG-4.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

March

Paul D. Faucher President

Summary Well Data Table #1

Event		5A	5B	5C	5D					
WELL NO.	-	VG-4	VG-4	VG-4	VG-4					
Current Event Hours		10.0	10.0	10.0	8.0					
Total Event Hours		98.0	108.0	118.0	126.0					
TD (estimated)	ft BGS	72.2	72.2	72.2	72.7					
Well Screen	ft BGS	unknown	unknown	unknown	unknown					
Well Size	in	4.0	4.0	40	4.0					
Well Data			-	-	-					
Depth to Groundwater - Static - Start Event	ft BTOC	67.10	67.08	67.12	67.09					
Depth to LNAPL - Static - Start Event	ft BTOC	67.02	-	-	-					
LNAPL Thickness	ft	0.08	-	-	-					
Hydro-Equivalent- Beginning	ft BTOC	67.04	67.08	67.12	67.09					
Depth to Groundwater - End Event	ft BTOC	67.45	67.42	67.18	67.70					
Depth to LNAPL - End Event	ft BTOC	-	-	-	-					
LNAPL Thickness	ft	-	-	-	-					
Hydro-Equivalent- Ending	ft BTOC	67.45	67.42	67.18	67.70					
Extraction Data										
Maximum Extraction Well Vacuum	"H ₂ O	60.00	63.00	63.00	64.00					
Average Extraction Well Vacuum	"H₂O	60.00	62.00	58.35	63.06					
Minimum Extraction Well Vacuum	"H₂O	60.00	60.00	50.00	60.00					
Maximum Extraction Well Vapor Flow	scfm	15.41	16.96	16.20	18.27					
Average Extraction Well Vapor Flow	scfm	15.27	16.41	15.70	17.59					
Minimum Extraction Well Vapor Flow	scfm	15.19	15.37	13.86	15.43					
Influent Data										
Maximum TPH	ppmv	6,700	6,670	5,740	5,580					
Average TPH	ppmv	6,371	6,353	5,190	5,214					
Maximum TPH	ppmv	5,360	5,720	4,300	4,440					
Initial TPH	ppmv	5,360	5,720	4,300	4,910					
Final TPH	ppmv	6,640	6,460	5,160	5,190					
Average CO ₂	%	11.61	11.63	9.83	9.73					
Average CO	%	0	0	0	0					
Average O ₂	%	2.12	1.89	4.73	4.50					
Average H ₂ S	ppm	0	0	0	0					

.

Summary Recovery Data Table #2

Event		5A	5B	5C	5D
WELL NO.		VG-4	VG-4	VG-4	VG-4
Recovery Data- Current Event				•	
Total Liquid Volume Recovered	gals	2,306	2,095	1,570	1,140
Total Liquid LNAPL Recovered	gals	-	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-
Total Vapor LNAPL Recovered	gals	2.10	2.25	1.76	1.58
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	2.10	2.25	1.76	1.58
Average LNAPL Recovery	gals/hr	0.21	0.23	0.18	0.20
Total LNAPL Recovered	lbs	14.72	15.77	12.33	11.08
Total Volume of Well Vapors	cu. ft	9,162	9,846	9,940	8,429
Recovery Data- Cumulative					
Total Liquid Volume Recovered	gals	15,355	17,450	19,020	20,160
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	36.35	38.60	40.36	41.94
Total Vapor and Liquid LNAPL Recovered	gals	44.33	46.59	48.35	49.93
Average LNAPL Recovery	gals/hr	0.45	0.43	0.41	0.40
Total LNAPL Recovered	lbs	1,148	1,164	1,176	1,187
Total Volume of Well Vapors	cu. ft	96,203	106,049	115,469	123,898

.

	AcuVac Remediation			т# 54	1	. /		
			DATA – EVEN	<u>T# → ⁄7</u>				
Loca	tion: Vacuum Glorietta	Date	2-23-21		<u> </u>	Sject wanag	ers: Hendle	y / George
Well	I# VG-4	Time	0700	0730	<i>A</i> E-00	0830	0900	0930
	m V 🔍 ,	Hr Meter	0700	0/50				
	Engine Speed	RPM	1800	1800	1200	1800	1200	1800
Ш	Oil Pressure	psi	50	50	50	50	50	50
PLOW	Water Temp	°F	180	14	14	14	14	130
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	60	60	60	60	60	60
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	15,41	15,41	15,38	15,35	15,32	15,31
HUN/	Influent Vapor Temp.	°F	53	53	55	57	59	60
VACL	Air Temp	°F	38	43	50	54	61	63
	Barometric Pressure	"Hg	30,06	30,05	30,05	30,04	30,03	29.99
L,	ТРН	ppmv		5360	-	6320	-	6440
LUEN	CO ₂	%	1	11.16	_	11.82		11.86
/ INF	со	%		0,00		0,00		0.00
VAPOR / INFLUENT	O ₂	%		3.0		7.8	<u>~</u>	1.7
*	H ₂ S	ppm	_		-			
NOTES	Arrived at site meeting, Eien event,		607	100, T	PH vq	DG40.	terilgak lover to	o Sahahay
	Totalizer // 35	gals	11356	11511	11637	11751	11 868	
/ERY	Pump Rate	gals/min	5,16	4.2	3.8	3.9	3,77	3.80
RECOVERY	Total Volume	gals	0	135	28/	398	512	625
Ω.	NAPL	% Vol						
	NAPL	Gals	A 10	11.10	9 11	- 0-		100
		64 ft	5,12	4,60	3,11	2,80	7,22	2,20 ,44
<u>a</u>	GW Depression	ft	(2,481	(1.10)	(0,47)	(0,16)	, 42	, 74
-	Extraction Well	DTNAPL	67,02					
	Extraction Well	DTGW	0.08					

Released to Imaging: 1/10/2023 9:13:41 AM 0, 08

	AcuVac Remediation			IT# 5A	PAGE #	2		IDPE SYSTE
	tion: Vacuum Glorietta			11#			ers: Hendle	
LUUd		Date	2:23:2/		1			, coorge
Wel	1# VG-4	Time	1000	1030	1100	1130	1200	1230
	000	Hr Meter						
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
VER	Oil Pressure	psi	50	50	50	50	50	50
BLOV	Water Temp	°F	130	135	135	135	135	140
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	/20	120	120	120	120	120
_	Extraction Well Vac.	"H₂O	60	60	60	60	60	60
IERE / AIR	Extraction Well Flow	scfm	15,31	15,28	15,07	15,77	15.25	15.02
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	60	62	63	63	64	66
VACI	Air Temp	°F	64	66	68	69	70	72
	Barometric Pressure	"Hg	29.97	29.95	39.93	29,90	29.88	29.85
ΥT	ТРН	ppmv		6280		6360	~	6556
LUE	CO2	%	~	11.22	1	11,36	-	11.64
/ INF	со	%		0.00		0.00	l	0,00
VAPOR / INFLUENT	O ₂	%	}	2.6	-	24	\sim	1.9
>	H ₂ S	ppm	1	-	-		~	-
NOTES	At 122 Sui Vupor readings	tehed t	ined cu	propre nsisten	tank ti	te lour	er prope	ne torsk
	Totalizer	gals	12095	12214	12328	12445	12560	12674
۲. ۲	Pump Rate	gals/min	3,97	3,80	3,90	3.83	3,80	3,83
RECOVERY	Total Volume	gals	739	858	972	1089	1204	1318
R	NAPL	% Vol				1		
	NAPL	Gals						
	Data Logger Head 2.6	4 ft	2.18	2,19	2,20	2,15	2,18	2.15
N I	GW Depression	ft	, 46	,45	,44	,49	, 46	.49
-	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

Released to Imaging: 1/10/2023 9:13:41 AM

	AcuVac Remediation							
V		PERATING	DATA – EVEN	IT# 54	PAGE #	3	ACUVAC M	IDPE SYSTE
Location: Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley								y / George
		Date	2-23-21					
Wel	1# V6-4	Time	1300	1330	1400	1430	1500	1530
		Hr Meter				:		
	Engine Speed	RPM	1800	1800	1800	1800	1800	1200
NER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	140	140	140	140	140	140
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
ATMOSPHERE VACUUM / AIR	Extraction Well Vac.	"H₂O	60	60	60	60	60	60
	Extraction Well Flow	scfm	15,22	15.19	15.19	15.19	15,19	15,19
HUN	Influent Vapor Temp.	۴	66	68	68	68	68	68
VACL	Air Temp	۴	72	73	73	73	75	75
	Barometric Pressure	"Hg	2-9,80	29,79	29.77	29.77	29,75	29.74
E	ТРН	ppmv		6510		6550	_	6700
LUEN	CO ₂	%		11,66		11.70		11.82
VAPOR / INFLUENT	со	%		0,00		0,00	~	900
POR	O ₂	%		1,9		1.8		1.5
۹>	H₂S	ppm			-	_		~
NOTES								
	Totalizer	gals	12789	12904	13020	13130	13243	13355
ÈRY	Pump Rate	gals/min	3,83	3,87	3.67	3.77	3,73	3,70
RECOVERY	Total Volume	gals	1433	1548	1664	1774	1887	1999
	NAPL	% Vol						
	NAPL	Gals		2.1/	, 29	2		
EW		64 ft	7.16	2.16	2,18	2,15	2,14	2,08
	GW Depression	ft	,40	,48	.46	, 47	,50	156
	Extraction Well	DTNAPL			5	23 1911 - 1913		
	Extraction Well	DTGW						

Released to Imaging: 1/10/2023 9:13:41 AM

$\underline{4}$	AcuVac Remediation		ATA – EVEN	т# <u>5</u> А	PAGE #	4	ACUVACI	MDPE SYSTEN
Loca	tion: Vacuum Glorietta	Site, Lea C	County, NM		Pro	ject Manag	jers: Hendle	ey / George
Wel	# VG-4	Date Time Hr Meter	2-23-21 1600	1630	1700			
ENGINE / BLOWER	Engine Speed	RPM	1800	18ce	1800			
	Oil Pressure	psi	50	50	50		<u> </u>	
	Water Temp	₽0. °F	140	140	140			
	Alternator	Volts	14	14	14			
ENGII	Intake Vacuum	"Hg	14	14	14			
	Gas Flow Fuel/Propane	cfh	120	120	120			
ERE AIR	Extraction Well Vac.	"H₂O	60	60	60			
	Extraction Well Flow	scfm	15,19	15,19	15.19			
	Influent Vapor Temp.	۴F	68	68	60			
ATMOSPHERE VACUUM / AIR	Air Temp	°F	75	75	75			
	Barometric Pressure	"Hg	29.74	29.74	39.74			
F	ТРН	ppmv	_	6640	-			
LUEN	CO ₂	%	-	11.86	_			
VAPOR / INFLUENT	со	%		0,00				
POR	O ₂	%	_	1.6				
۸	H ₂ S	ppm	-					
	Event step @	1700.	Changes	1 0+	top p	pone	tark.	Garged
	V6-4. No		prese		ant sit	1		
ន			•					
NOTES								
-								
r.		· · · ·						
			1-400	1 2			1	
	Totalizer	gals	<u> 3466</u> 3.73	13578 2.8	13267			
RECOVERY	Pump Rate	gals/min	3.13					
	Total Volume	gals	0110	3335	9,00			
	NAPL	% Vol						
EW		Gals	2,10	2.14	2,14			
	GW Depression	ft	,54	,50	,50			
	Extraction Well	π DTNAPL	0.1		-			
	Extraction Well	DTGW			67,45			

Released to Imaging: 1/10/2023 9:13:41 AM

0,00

1

$\mathbf{0}$	AcuVac Remediation	ERATING [DATA – EVEN	IT# 58	PAGE #	ŧ /	ACUVAC N	IDPE SYSTEI	
OPERATING DATA - EVENT # 5 B PAGE # ACUVAC MDPE SYSTEM Location: Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley / George									
Date			2-2421						
Well# VG-4 Time		0630	0700	0730	0800	0830	0900		
_		Hr Meter							
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800	
WER	Oil Pressure	psi	30	50	50	50	50	30	
ENGINE / BLOWER	Water Temp	°F	130	130	130	130	130	130	
INE /	Alternator	Volts	14	14	14	14	14	14	
ENG	Intake Vacuum	"Hg	14	14	14	14	14	14	
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120	
	Extraction Well Vac.	"H₂O	60	60	60	60	60	60	
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	15.46	15,46	15.43	15,41	15,38	15,37	
NUM.	Influent Vapor Temp.	°F	50	50	52	53	55	56	
VACI	Air Temp	°F	34	36	39	41	44	46	
	Barometric Pressure	"Hg	30, 11	30,11	30.13	30,14	3014	30.15	
٩T	ТРН	ppmv	-	5720	3	6160		6230	
VAPOR / INFLUENT	CO ₂	%	-	11.49		11.84	~	11-86	
/ INF	со	%	-	0,00	-	0.00	<u> </u>	000	
POR	O ₂	%	4	2,3	-	1.9	_	1.9	
ž	H ₂ S	ppm	_	-	-		-	~	
	Arrived at site 0610. Tanker arrived 0615, Tailgake								
	Stely meeting Event stort at 0630. TPH studity								
NOTES	1								
o z						<u></u>			
							<u> </u>		
	Totalizer 13663	gals	13662	13777	13 885	13993	14102	14205	
≿	Pump Rate	gals/min	3,83	3.60	3.60	3,63	3.43	3,77	
RECOVERY	Total Volume	gals	0	115	223	331	440	543	
RECO	NAPL	% Vol							
	NAPL	Gals							
z	Data Logger Head	57 ft	3.76	2,66	2.31	2,30	7,20	5.18	
	GW Depression	ft	(1,247	(.14)	,21	, 22	,32	,34	
Ē	Extraction Well	DTNAPL	-						
	Extraction Well	DTGW	67.08						

Released to Imaging: 1/10/2023 9:13:41 AM 0.00
	Remediation			10		1		
¥			DATA - EVEN		PAGE #			IDPE SYSTI
Loca	tion: Vacuum Glorietta			1	Pro	oject Manag	jers: Hendle	y / George
Wel	1# VG-9	Date Time Hr Meter	2-24-21	1000	1030	1100	1130	1200
_	Engine Speed	RPM	1800	1800	1800	1800	1800	1200
ÆR	Oil Pressure	psi	50	50	50	50	50	50
BLOW	Water Temp	°F	130	130	130	130	130	135
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	 cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H ₂ O	60	63	63	63	63	63
AIR	Extraction Well Flow	scfm	15,37	16,96	16.96	16,96	16.96	16,93
	Influent Vapor Temp.	°F	56	58	58	58	58	60
ATMOSPHERE VACUUM / AIR	Air Temp	°F	48	50	52	54	55	55
	Barometric Pressure	"Hg	30,14	30,14	30,13	30.11	30,09	30,07
_	ТРН	ppmv		6360		6670		6430
	CO ₂	%		12,02	-	12.16		11.56
VAPOR / INFLUENT	со	%	_	0,00	-	0,00	_	0,00
POR	O ₂	%	-	1.6	-	1,3	~	2,3
2	H ₂ S	ppm	-	-		~	_	~
NOTES	At 0730 inc. from 15,37 to	16,96		Suitche	63Ho J Lk		1 flow i epace)	hc-ase 1140,
	Totalizer	gals	14 <i>318</i>	14430	14540	14647	14753	14848
-	Pump Rate	gals/min	3,73	3.67	3,57	3,53	3,17	3,70
	Total Volume	gaismin gals	656	768	878	985	1091	1486
RECOVERY	NAPL	% Vol					- •	-
	NAPL	Gals						
	Data Logger Head	53 ft	5,18	2.16	2,14	2,17	2,15	<i>)</i> , 93
	GW Depression	ft	,34	.36	,38	, 3.5	, 37	,30
			i					
·	Extraction Well	DTNAPL			1			

	AcuVac Remediation					5.1		
V	c		DATA – EVEN	IT# 52	PAGE #	¥ <u>3</u>		DPE SYSTE
Loca	tion: Vacuum Gloriett	a Site, Lea (County, NM		Pre	oject Manag	ers: Hendle	y / George
		Date	2-24-21	1				
Wel	I# VG-4	Time	1230	1300	1330	1400	1430	1500
		Hr Meter						
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	۴	140	140	140	140	140	140
engine / Blower	Alternator	Volts	14	14	14	140	14	14
ENG	Intake Vacuum	"Hg	14	14	14	140	14	14
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	63	63	63	63	63	63
IERE / AIR	Extraction Well Flow	scfm	16,91	16.89	16,88	16. LE	16.88	16.88
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	61	62	63	63	63	63
VACI	Air Temp	۴	56	57	58	59	61	61
	Barometric Pressure	"Hg	30.05	30.04	30,07	30,00	29,98	29.97
L7	ТРН	ppmv		6450	_	6430	::	6620
VAPOR / INFLUENT	CO ₂	%		11.62		10,98		11.48
/ INF	со	%		0, 10		0,00	1	0,00
APOR	O ₂	%	_	0,1		2.1	1	1.7
*	H ₂ S	ppm	(0 -			1	-
NOTES							· · · · · · · · · · · · · · · · · · ·	
	Totalizer	gals	14959		15170	15769		
ĒRY	Pump Rate	gals/min	3,50	3,53		3.30	3.27	3, 73
RECOVERY	Total Volume	gals	1297	1403	1508	1607	1706	1804
ž	NAPL	% Vol						
	NAPL	Gals						
		2,52 ft	222	2:02	2,24	2.25	2,30	2,31
Ň	GW Depression	ft	.30	,30	<i>,</i> 38	127	,92	.21
-	Extraction Well	DTNAPL						
	Extraction Well	DTGW	1					

\mathbf{k}	AcuVac Remediation	PERATING I	DATA – EVEN	IT# 5,	B PAGE #	+ 4	ACUVAC	MDPE SYSTE
Loca	tion: Vacuum Glorietta	Site, Lea	County, NM	· · ·		_		ey / George
	11011	Date	2-24-21					
Wel	1# VG-4	Time	1530	1600	1630			
		Hr Meter						
	Engine Speed	RPM	1800	1800	1800			
WER	Oil Pressure	psi	50	50	573			
ENGINE / BLOWER	Water Temp	°F	140	140	140			
INE /	Alternator	Volts	14	14	14			_
ENG	Intake Vacuum	"Hg	14	14	14			
	Gas Flow Fuel/Propane	cfh	120	120	120			
	Extraction Well Vac.	"H ₂ O	63	63	63			
HERE	Extraction Well Flow	scfm	16.88	16.28	16.80			
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	۴F	63	63	63			
VAC	Air Temp	°F	61	61	61			
	Barometric Pressure	"Hg	29.97	29.97	29.97			
Ļ	ТРН	ppmv		6460				
ירטפו	CO ₂	%	-	11,32	-			
K/INF	со	%	-	0,00				
VAPOR / INFLUENT	O ₂	%		1.9				
>	H ₂ S	ppm	_	-	-			
	GPM & last	4 3-4	1 hours	of e	vert.	Event	Occure	d the
	neek alte	heavy	· I w	eek f	1 188281	Frent	ende	1630,
S	Pilled pump	fe'	quoge.	No M	VAPL,	Obser	ved 3	ione
NOTES	Sand on p	cmp.	Raise	d pu	np fran	1 1.5	for	bollo in
	of well of	1.0	= 2.5	fran	n bollon	m of	aell 7	her next
	day 1							
			1-50	1				1
	Totalizer	gals	223	15660	15757		1	
	Pump Rate	gals/min	5.42	3.23	7200-			
RECOVERY	Total Volume	gals	1901	1998	2095			
"	NAPL	% Vol						
		Gals	2,31	7,30	5,30			
	Data Logger HeadDescriptionGW Depression		,21	,32	,27			
	Extraction Well		, , ,		100			
	Extraction Well	DTNAPL						
		DTGW						

	AcuVac Remediation		5		,		
V		DATA – EVEN					DPE SYSTEM
Loca	tion: Vacuum Glorietta Site, Lea				ject Manag	ers: Hendle	George
Well	1 4		Ø700	0730	0800	0830	0900
	Hr Meter			0720			
	Engine Speed RPM	I.P. C.a.	1800	1800	1200	1800	1800
ĒR	Oil Pressure psi	50	50	50	50	50	50
NON	Water Temp °F	42.2	130	130	/30	130	130
ENGINE / BLOWER	Alternator voits	14	14	14	14	14	14
ENGII	Intake Vacuum "Hg	1.1	14	14	14	14	14
	Gas Flow Fuel/Propane cfh	1200	120	120	120	120	120
	Extraction Well Vac. "H ₂ O	63	63	63	63	63	63
AIR	Extraction Well Flow scfm	1670	16.00	16.19	16,19	16,17	16, 17
/ WN	Influent Vapor Temp. °F	52	52	53	53	54	54
ATMOSPHERE VACUUM / AIR	Air Temp °F	33	34	34	35	36	37
	Barometric Pressure "Hg	30,23	30,23	30,33	30,24	30,04	30,24
ц	TPH ppmv	<u> </u>	4300	· ·	4620		5460
VAPOR / INFLUENT	CO2 %	-	9,16		9.46		10,54
/ INF	CO %		0,00	-	0.00	1	0.00
APOR	O ₂ %	~	6.4	-	5.6	-	2.9
\$	H ₂ S ppm	-	-	_	-	_	-
	Arrived at site (7610,	Jail gat	4 safe	y meet	ing Fe	reat
	Start @ 0630,	Observe	2 early	chinge	, 14 Ca	ter of	ucher
S	in site glass. Too	k Samp	nte So	nd, gr.	it pre	esert 1	n bap
NOTES	of sample container.	Pemp	contro /4	ir "UC	" fe-	shikd	and
	godially raised c	enter ler	, Site	g/455 0	cleved	up bu	he he
	original color, Sad	not p	resert	any me	re,		
	Totalizer 15737 gals	15737	15784	15881	15981	16078	16175
ER (Pump Rate gals/min	1.57	3,23	3,33	3,73	3,23	3.10
RECOVERY	Total Volume gais	0	47	144	244	341	438
ж Н	NAPL % Vol						
	NAPL Gals						
	Data Logger Head 1, 75 ft	2,77	2,40	2,22	2.05	2,04	2.01
	GW Depression ft	21,027	. 657	(.47)	4307	129)	<u> <. 26</u>
-	Extraction Well DTNAPL	-					
	Extraction Well DTGW	67,12					

$\mathbf{\hat{v}}$	AcuVac Remediation	PATING I	DATA – EVEN	IT# 50	PAGE #	2		IDPE SYSTEI
Loca	tion: Vacuum Glorietta						ers: Hendle	
		Date	7-25-21					
Well	# V6-4	Time	0930	1000	1030	1100	1130	1200
		Hr Meter						
	Engine Speed	RPM	1800	1800	1800	1200	1800	1800
VER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	۴	130	130	/30	130	130	135
NE /	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	120	120	120	120	130	130
	Extraction Well Vac.	"H₂O	63	63	63		50	5 Ø
ere Air	Extraction Well Flow	scfm	16,17	16.14	16.14	-	13,86	14.73
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	54	56	56	56	58	58
VACL	Air Temp	°F	39	39	39	40	41	42
	Barometric Pressure	"Hg	30,74	30,03	30,22	30,31	30,17	30,15
н	ТРН	ppmv		5590	~	ND	-	5480
NEN	CO ₂	%	-	10.80		NP	-	10.14
/ INFI	со	%	-	0,00	_	ND	~	0,00
VAPOR / INFLUENT	O ₂	%	-	3.2	_	NID	~	4,3
¥	H ₂ S	ppm	~		_		~	~
	At 1050 pc	p con	tro 167	faile.	Pelleo	land y	replaced	pump
	Re-short at	1115	Pinp.	set at	date log	ger to	0,79	
s	It was defer	mined	to rais	se wax	er ini	ve 11 fe	/	
NOTES	pimping, Da	L los	sger y	631	Peny	, contra	14. 0	235
Z								
					1			· · ·
	Totalizer	gals	16268	16360	16450	-	16515	16590
ERY	Pump Rate	gals/min	3.07	3,00	3,17		2,50	2.0
RECOVERY	Total Volume	gals	531	623	713		778	853
ця.	NAPL	% Vol						
	NAPL	Gals			101	Reset		
		75 ft	7,00	2.03	1.96	,75	1.57	3.01
<u>∧</u>	GW Depression	ft	(,257	5.27/	51212		[.78]	7.76
-	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

	AcuVac Remediation			-				
Y	01	PERATING		it# 50	PAGE #	, 3	ACUVAC	DPE SYSTE
Loca	tion: Vacuum Glorietta	Site, Lea (County, NM		Pro	oject Manag	ers: Hendle	y / George
	NC 11	Date	2-25-21					-
Wel	1# VG-4	Time	1230	1300	1330	1400	1430	1500
		Hr Meter						
	Engine Speed	RPM	1800	1800	1800	18.00	1800	1800
ENGINE / BLOWER	Oil Pressure	psi	50	130	50	50	50	50
BLO	Water Temp	۴	135	135	135	135	135	135
INE /	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H ₂ O	50	50	50	50	60	60
ERE AIR	Extraction Well Flow	scfm	14.73	14.73	14.73	14,73	16.19	16.19
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	58	50	58	58	58	58
VACL	Air Temp	°F	42	45	45	46	146	46
	Barometric Pressure	"Hg	30,13	30.13	30.10	30.08	30.08	30,06
F	трн	ppmv	·	5740		4990	-	5370
LUEN	CO ₂	%		10.56		9.02	-	9.62
/ INF	со	%		6,00	-	0.00	<u> </u>	0.00
VAPOR / INFLUENT	O ₂	%	-	3.6		5.9	_	5.2
۸۷	H ₂ S	ppm	-	-		-	<u> </u>	~
	Cationally A	suns	control	les fo	250, 2	265,2	75 + 2	90,
	Amps = 6,2	not	chaging	. The		lac un	in u	e114
S	well flow t	,						
NOTES								
z								·
	Totalizer	gals	16650	16711	16771	16833	16907	17002
ERY	Pump Rate	gals/min	2.03	2,00	2,03	2,50	3.17	3,27
RECOVERY	Total Volume	gals	913	974	1034	1095	1170	1265
RE	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	75 ft	3,05	3,05	3,08	7,99	3,11	3,06
≥ [GW Depression	ft	\$,307	(2,30)	2,337	(2.24)	(2,36)	5.31
Ň	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

.

	AcuVac Remediation OPI	ERATING	DATA – EVEN	IT# 50	PAGE #	4		IDPE SYSTEN
Loca	tion: Vacuum Glorietta	Site, Lea (County, NM		Pro	ject Manag	ers: Hendle	y / George
		Date	2-25-21					
Wel	I = VG - 4	Time	1530	1600	1630			
		Hr Meter						
	Engine Speed	RPM	1800	1800	1800			
MER	Oil Pressure	psi	50	50	50			
ENGINE / BLOWER	Water Temp	۴F	135	135	135			
INE /	Alternator	Volts	14	14	14		_	
ENG	Intake Vacuum	"Hg	14	14	14			
	Gas Flow Fuel/Propane	cfh	120	120	120			
	Extraction Well Vac.	"H₂O	60	60	60			
ERE	Extraction Well Flow	scfm	16,19	16,19	16.19			
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	58	58	58			
ATMC	Air Temp	°F	46	46	46			
	Barometric Pressure	"Hg -	30,05	30,05	30,05			
L	ТРН	ppmv	-	5160				
VAPOR / INFLUENT	CO ₂	%	-	9.18	-			
/ INF	со	%		0,00	-			
POR	O ₂	%		5.5	-			
2	H ₂ S	ppm		-	-			
	At 1530 T Frend and C	6 30.	antaller	to 300	Amps	Strying	, e 6	
S								
NOTES								
-								
	Totalizer	gals	17100	17204	17307			
ERY	Pump Rate	gals/min	3,47	3,43	-			
RECOVERY	Total Volume	gals	1363	1467	1570			
R	NAPL	% Vol						
	NAPL	Gals		A - 1				
		75 ft	7.86	2,76	1.70			
EW	GW Depression	ft	$\langle 2, 11 \rangle$	<1.017	<1.05>			
	Extraction Well	DTNAPL						
	Extraction Well	DTGW			67,18			

	AcuVac Remediation			1T# 51)	7		
Y			DATA - EVEN		FAGE #			IDPE SYSTEM
Loca	tion: Vacuum Glorietta		1		Pro	oject Manag	ers: Hendle	y / George
Well	1# VG-4	Date	2-26-21	<u> </u>			0800	0836
vvei	I# V () /	Time	0600	0630	0700	0730	0000	- 0 30
		Hr Meter	10	10	1800	167,034		10
æ	Engine Speed	RPM	1800	1800 50		1000	1800	1800
OWE	Oil Pressure	psi	50		50	130	1800	1000
/BL	Water Temp	°F	130	130	130		130	130
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
EN EN	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	60	60	60	60	64	64
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	15,49	15.49		15,43	18,27	18,77
NUN	Influent Vapor Temp.	٩°	48	48	50	50	54	54
VAC	Air Temp	°F	26	27	78	34	37	43
	Barometric Pressure	"Hg	30,03	30,03	30.03	30.03	30.02	30,01
NT	ТРН	ppmv		4910		4440	-	5580
VAPOR / INFLUENT	CO ₂	%	_	10.72		9,54	~	10.54
I / INF	со	%	_	0,00	-	0,00	~	0.00
APOF	O ₂	%	-	3,9	~	4.9	~	3.4
17	H ₂ S	ppm	~		-	-		-
	Arrived at si	4 054	10, Ta.	ilgale_	Salety	meeting	. Event	shit
	at 0600, 1	Product	discl	Darap 1	line fro	202	Temp =	: 26°,7
s	facts like 1	9°F.	Sterk	ed svi	E und.	1 line	inf.	oze ad
NOTES	0815,				_			
-								
	Totalizer 3/	706 gals	31706	31706	31706	31706	31706	3/733
ERY	Pump Rate	gals/min			-	-		3.37
RECOVERY	Total Volume	gals	\$2	Ø	Ŕ	R	8	27
R	NAPL	% Vol						
	NAPL	Gals			6 - 1			
	Data Logger Head	,93 ft	5,15	5,74	5,76	5.83	5,80	3.92
M	GW Depression	ft	(4,22)	24.81/	(4, 83)	<4.89>	(4.87)	< <i>]</i> ,99
_	Extraction Well	DTNAPL						
	Extraction Well	DTGW	67,09					

\Diamond	AcuVac Remediation	FRATING	DATA – EVEN	т# 52	PAGE #	2		
Loca	tion: Vacuum Glorietta						ers: Hendle	
		Date	2-26-21					
Well	# VG-4	Time	0900	0930	1000	1030	1100	1130
		Hr Meter					-	
	Engine Speed	RPM	1800	180	1800	1800	1800	1800
NER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	130	130	130	130	135	135
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	64	64	64	64	64	64
IERE	Extraction Well Flow	scfm	18,25	18,23	18,23	18,02	18,20	18.16
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	55	56	57	57	58	60
ATM	Air Temp	۴	45	48	51	54	54	55
	Barometric Pressure	"Hg	30,00	29,97	29,95	29.93	29.91	29,89
Ļ	ТРН	ppmv		5310		5280	_	5420
VAPOR / INFLUENT	CO ₂	%	-	9,60	-	9.48	-	9,64
INF	со	%	_	0,00	-	0,00	-	0,00
APOR	O ₂	%		4.7	}	4.9		4.7
\$	H ₂ S	ppm	~		<u> </u>	_	-	
NOTES	0920 Suifely		low er	pro po	ine fan,	<u>k</u> . 093	ic icell	flee f
	Totalizer	gals	31834	31924	3.0000	32110	30718	32322
RY [Pump Rate	gals/min	3,60	3,20	3,00	3,60	3,47	3,47
RECOVERY	Total Volume	gals	128	328	324	414	522	626
R	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft	2,82	2.88	7.80	2,85	7.35	2,37
M	GW Depression	ft	(189)	(1.95]	(1.87)	(1.92)	(1.42)	(1.44)
۳ 	Extraction Well	DTNAPL	`					
	Extraction Well	DTGW						

\diamond	AcuVac Remediation		DATA – EVEN	IT# 5/	PAGE #	# 3	ACUVAC N	IDPE SYSTEI
Loca	tion: Vacuum Glorietta Site						ers: Hendle	y / George
		Date	2-26-21					
Wel	1# VG-4	Time	1200	1230	1300	1330	1400	
		Meter						
	Engine Speed	RPM	1800	1800	Peac	1800	1800	
NER	Oil Pressure	psi	50	50	50	50	50	
BLO	Water Temp	°F	135	135	135	135	135	
Engine / Blower	Alternator	Volts	14	14	14	135	135	-
ENG	Intake Vacuum	"Hg	14	14	14	14	14	
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	
	Extraction Well Vac.	"H ₂ O	64	64	64	64	64	
IERE	Extraction Well Flow	scfm	18,16	18.16	18,16	18.16	18.16	
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	۴	60	60	60	60	60	
VAC	Air Temp	۴F	57	59	62	64	64	
	Barometric Pressure	"Hg	29.87	29.85	29.84	29,84	29. <i>8</i> 4	
T	ТРН	ppmv	-	55EU		5190	-	
ILUE	CO ₂	%		9.98		9.36	· · · ·	
Z/ INF	со	%		0,00	=	0,00	-	
VAPOR / INFLUENT	O ₂	%	-	4.3		5.2		
>	H ₂ S	ppm		-	-			
	Event end 140	00,	Gaugeo	(well	: No N	apl, 1	0720 = 6	7.70
	gauged TD =	72	70,7	2 days	priar	72.2	0, V.	rime
S	of, 50 which	cl:	ent be	le ups	brake	through	h du	ing and
NOTES								
				22.52				
	Totalizer	gals	32426	32530	32636	32740	32846	
VER		als/min	3,47 730	3,53 834	3,41 940	5177	1150	(140)
RECOVERY	Total Volume NAPL	gals	120	027	110	1044		
	NAPL	% Vol						
	Data Logger Head	Gals	775	2.15	21B	2,08	2.06	··· <u>-</u> ··· ·
	GW Depression	ft ft	2,25	21,207	1.25)	(1.15)	1.13	
		π NAPL	X /	77	1.001	X		
		DTGW					67,70	

Released to Imaging: 1/10/2023 9:13:41 AM

0,00

May 11, 2021

Ms. Julie Evans Hydrogeologist/Environmental Project Manager Tetra Tech 1500 City West Boulevard, Suite 1000 Houston, TX 77042

Dear Julie:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #6)

At your request, AcuVac Remediation, LLC (AcuVac) performed four Mobile Dual Phase Extraction (MDPE) Events: #6A, #6B, #6C and #6D as outlined in the table below at the above referenced site (Site). The following is the report and a copy of the operating data collected during Event #6. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#6A	VG-4	MDPE	10.0	05/03/2021
#6B	VG-4	MDPE	10.0	05/04/2021
#6C	VG-4	MDPE	10.0	05/05/2021
#6D	VG-4	MDPE	8.0	05/06/2021

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical pipeline release.

OBJECTIVES

The objectives of the MDPE Events:

- Evaluate the potential for removing liquid and vapor phase LNAPL from the groundwater and soils in the subsurface formations.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the groundwater and contaminant specific yields with high induced vacuums.
- Provide an induced hydraulic gradient to gain hydraulic control of the area during the Event period.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac									
Measurement Equipment	Data Element								
Extraction Well Induced Vacuum and Flow									
Dwyer Magnehelic Gauges	Extraction Well Vacuum								
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow								
Observation Wells									
Dwyer Digital Manometer	Vacuum / Pressure Influence								
Extraction Well Vapor Monitoring									
V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection								
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration								
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content								
NAPL Thickness (if present)									
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater								
Groundwater Depression / Upwelling									
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells								
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure								
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls								
Atmospheric Conditions									
Testo Model 511	Relative and Absolute Barometric Pressure								

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through two of three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine.

The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #6

The Recovery Summary Table below lists the groundwater and LNAPL recovery data for Event #6 and compares the results with Events #5 and #4 performed on the dates shown.

	Recovery Summary Well VG-4										
Event Number	Event Number Event #6D Event #6C Event #6B Event #6A Event #6 Event #5 Event #4										
Event Date		05/06/2021	05/05/2021	05/04/2021	05/03/2021	Total	Total	05/07/2020			
Event Hours		8.0	10.0	10.0	10.0	38.0	38.0	28.0			
Data Element											
Groundwater Recovery	gals	1,470	1,772	2,071	1,921	7,234	7,111	5,065			
LNAPL Recovery											
Liquid	gals	0	0	0	0	0	0	0			
Vapor	Vapor gals 2.25 2.73 2.73 2.63 10.34 7.69 11.88										
Total	gals	2.25	2.73	2.73	2.63	10.34	7.69	11.88			
Gallons/Hour	gph	0.28	0.27	0.27	0.26	0.27	0.20	0.42			

 Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA[®] data recorded. In the Influent Vapor Data Table below, the HORIBA[®] analytical data from the influent vapor samples are compared with previous events.

	Influent Vapor Data Well VG-4											
Event Number		Event #6D	Event #6C	Event #6B	Event #6A	Event #5D	Event #4C					
Event Date		05/06/2021	05/05/2021	05/04/2021	05/03/2021	02/26/2021	05/07/2020					
Event Hours		8.0	10.0	10.0	10.0	8.0	8.0					
Data Element	Data Element											
TPH- Maximum	ppmv	7,460	7,580	7,330	6,900	5,580	14,560					
TPH- Average	ppmv	7,055	6,870	6,848	6,557	5,214	11,068					
TPH- Minimum	ppmv	6,540	6,250	5,580	5,890	4,440	7,850					
TPH- Initial	ppmv	6,910	6,350	5,580	5,890	4,910	7,850					
TPH- Ending	ppmv	7,460	6,250	6,930	6,610	5,190	13,890					
CO ₂	%	11.11	10.79	10.80	10.01	9.73	9.51					
CO	%	0	0	0	0	0	0.02					
O ₂	%	4.6	5.11	5.55	6.10	4.50	2.48					
H₂S	ppm	0	0	0	0	0	2.94					

• The TPH vapor concentrations from the influent vapor samples for Event #6 are presented in the graph below:

• The extraction well induced vacuum and well vapor flow for Event #4 through Event #6 is compared in the table below.

	Well Vacuum and Well Vapor Flow Well VG-4										
Event Number		Event #6D	Event #6C	Event #6B	Event #6A	Event #5D	Event #4C				
Event Date		05/06/2021	05/05/2021	05/04/2021	05/03/2021	02/26/2021	05/07/2020				
Event Hours		8.0	10.0	10.0	10.0	8.0	8.0				
Data Element											
Well Vacuum- Maximum	"H₂O	65.00	65.00	65.00	70.00	64.00	90.00				
Well Vacuum- Average	"H ₂ O	65.00	65.00	65.00	65.71	63.06	82.94				
Well Vacuum- Minimum	"H ₂ O	65.00	65.00	65.00	65.00	60.00	80.00				
Well Vapor Flow- Maximum	scfm	18.52	18.27	18.34	19.14	18.27	17.13				
Well Vapor Flow- Average	scfm	18.42	18.38	18.46	18.58	17.56	16.75				
Well Vapor Flow- Minimum	scfm	18.31	18.27	18.34	15.19	15.43	16.17				

• The groundwater pump rates for Event #4 through Event #6 are contained in the table below.

Groundwater Pump Data Well MW-VG-4												
Event Number Event #6D Event #6C Event #6B Event #6A Event #5D Event #4C												
Event Date 05/06/2021 05/05/2021 05/04/2021 05/03/2021 02/26/2021 05/07/2020												
Event Hours		8.0	10.0	10.0	10.0	8.0	8.0					
Data Element												
Maximum GW Pump Rate gpm 3.27 3.53 3.77 3.67 3.60 -												
Average GW Pump Rate	Average GW Pump Rate gpm 3.06 2.97 3.44 3.20 2.38 -											

• The LNAPL thickness recorded at the start and conclusion of each event is contained in the table on the following page.

	LNAPL Thickness Data Well VG-4										
Event Number		Event #6D	Event #6C	Event #6B	Event #6A	Event #5D	Event #4C				
Event Date		05/06/2021	05/05/2021	05/04/2021	05/03/2021	02/26/2021	05/07/2020				
Event Hours	8.0	10.0	10.0	10.0	8.0	8.0	8.0				
Event Start											
Depth to Groundwater	Ft BTOC	67.09	67.59	67.58	67.58	67.09	66.67				
Depth to LNAPL	Ft BTOC	-	-	-	-	-	-				
LNAPL Thickness	ft	-	-	-	-	-	-				
Hydro Equivalent	Ft BTOC	67.09	67.59	67.58	67.58	67.09	66.67				
Event Conclusion											
Depth to Groundwater	Ft BTOC	67.75	67.88	67.92	67.81	67.70	67.35				
Depth to LNAPL	Ft BTOC	-	-	-	-	-	-				
LNAPL Thickness	ft	-	-	-	-	-	-				
Hydro Equivalent	Ft BTOC	67.75	67.88	67.92	67.81	67.70	67.35				

ADDITIONAL INFORMATION

- TPH vapor concentrations were higher for Event #6 than Event #5 which was conducted the week following a hard freeze in the area.
- The average TPH concentration readings were on a mostly increasing trend during Event #6 indicating that a significant mass remains in the formation surrounding well VG-4.
- The average and maximum well vapor flows for Event #6 were higher than Event #5 and Event #4 indicating that the pathways are developing in the formation to improve recovery.
- All LNAPL volume recovered, 10.34 gals, was burned as IC engine fuel.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane, CO and CO₂. The formula used to calculate the emission rate is: ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E⁻⁷ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

Principard

Paul D. Faucher President

Summary Well Data Table #1

	Table				
Event		6A	6B	6C	6D
WELL NO.	-	VG-4	VG-4	VG-4	VG-4
Current Event Hours		10.0	10.0	10.0	8.0
Total Event Hours		136.0	146.0	156.0	164.0
TD (estimated)	ft BGS	72.2	72.2	72.2	72.7
Well Screen	ft BGS	unknown	unknown	unknown	unknown
Well Size	in	4.0	4.0	40	4.0
Well Data			-	-	-
Depth to Groundwater - Static - Start Event	ft BTOC	67.58	67.58	67.59	67.09
Depth to LNAPL - Static - Start Event	ft BTOC	-	-	-	-
LNAPL Thickness	ft	-	-	-	-
Hydro-Equivalent- Beginning	ft BTOC	67.58	67.58	67.59	67.09
Depth to Groundwater - End Event	ft BTOC	67.81	67.92	67.88	67.75
Depth to LNAPL - End Event	ft BTOC	-	-	-	-
LNAPL Thickness	ft	-	-	-	-
Hydro-Equivalent- Ending	ft BTOC	67.81	67.92	67.88	67.75
Extraction Data					-
Maximum Extraction Well Vacuum	"H ₂ O	70.00	65.00	65.00	65.00
Average Extraction Well Vacuum	"H ₂ O	65.71	65.00	65.00	65.00
Minimum Extraction Well Vacuum	"H ₂ O	65.00	65.00	65.00	65.00
Maximum Extraction Well Vapor Flow	scfm	19.14	18.34	18.27	18.52
Average Extraction Well Vapor Flow	scfm	18.58	18.46	18.38	18.42
Minimum Extraction Well Vapor Flow	scfm	15.19	18.34	18.27	18.31
Influent Data					
Maximum TPH	ppmv	6,900	7,330	7,580	7,460
Average TPH	ppmv	6,557	6,848	6,870	7,055
Maximum TPH	ppmv	5,890	5,580	6,250	6,540
Initial TPH	ppmv	5,890	5,580	6,350	6,910
Final TPH	ppmv	6,610	6,930	6,250	7,460
Average CO ₂	%	10.01	10.80	10.79	11.11
Average CO	%	0	0	0	0
Average O ₂	%	6.10	5.55	5.11	4.6
Average H₂S	ppm	0	0	0	0

.

Summary Recovery Data Table #2

Event		6A	6B	6C	6D
WELL NO.		VG-4	VG-4	VG-4	VG-4
Recovery Data- Current Event				•	
Total Liquid Volume Recovered	gals	1,921	2,071	1,772	1,470
Total Liquid LNAPL Recovered	gals	-	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-
Total Vapor LNAPL Recovered	gals	2.63	2.73	2.73	2.25
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	2.63	2.73	2.73	2.25
Average LNAPL Recovery	gals/hr	0.26	0.27	0.27	0.28
Total LNAPL Recovered	lbs	18.43	19.13	19.10	15.73
Total Volume of Well Vapors	cu. ft	11,148	11,076	11,028	8,842
Recovery Data- Cumulative					
Total Liquid Volume Recovered	gals	22,081	24,152	25,924	27,394
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	44.58	47.31	50.04	52.29
Total Vapor and Liquid LNAPL Recovered	gals	52.56	55.30	58.03	60.27
Average LNAPL Recovery	gals/hr	0.39	0.38	0.37	0.37
Total LNAPL Recovered	lbs	1,206	1,225	1,244	1,260
Total Volume of Well Vapors	cu. ft	135,046	146,122	157,150	165,992

	uVac ediation				,					
Y	OF	PERATING	DATA - EVEN	NT # 6A	PAGE	#	ACUVACI	MDPE SYSTE		
Location:	Vacuum Glorietta	Site, Lea C		·	Pr	oject Manaç	gers: Hendle	ey / George		
	10 11	Date	5-3-21							
Well #	VG-4	Time	0700	0730	0800	0830	0900	0930		
		Hr Meter								
	ne Speed	RPM	1800	1800	1800	1700	1700	1700		
Oil P Wate Alter	ressure	psi	55	55	55	55	55	55		
G Wate	er Temp	°F	170	175	180	175	175	170		
Alter	nator	Volts	14	14	M	14	14	14		
Intak	e Vacuum	"Hg	15	15	15	16	16	16		
Gas	Flow Fuel/Propane	cfh	120	120	120	130	130	130		
	action Well Vac.	"H₂O	70	70	70	65	65	65		
Extra	action Well Flow	scfm	1829	1.8.29	18.29	18.45	18.41	18.41		
ATMOSPHER VACUUM / AIR VACUUM / AIR VACUUM / AIR	ent Vapor Temp.	°F	66	66	60	66	68	68		
Air Te	emp	°F	60	61	63	63	64	66		
	metric Pressure	"Hg	29.61	29.61	29.61	29.61	29.61	39,61		
F TPH		ppmv		5890	-	5960		6450		
CO2		%		9.48	-	9.58	-	9.98		
L CO		%		0,0		0.6	_	6,0		
		%	-	7.3	-	6.9		6.2		
\$ H₂S		ppm	1					-		
1	trived at	silo	0630	. Tail	lack S.	164 "	actives .	Mobe		
U.	nit. Sta	La de	went a	1 0700	Vacu	m ca	fer ap			
s 30	montes to	add	approx	3' 10	uster ce	/	Spilea	ping		
	Slouly, No usible signs in sight glass of debris, 1									
- pu	mp sute 6	080	0.							
ĺ ĺ										
		····								
Totali	zer <u>327</u>	so gals	32750	32750	32830	32932	33036	33/46		
Pump	Rate	gals/min		2.67	3,40	3,47	3,67	3,40		
ມ ມ	Volume	gals		0	80	182	286	396		
	· · · ·	% Vol	<u>^</u>	-	-	-	-	-		
NAPL		Gals	-	-	-		-	-		
	ogger Head	132 ft	. 9 <i>3</i>	3.02	1.10	,76	, 76	,70		
GW D	epression	— ft	~	2.80	. 83	.54	.54	. 78		
	tion Well	DTNAPL	-							
Extrac	tion Well	DTGW	67.58							

	AcuVac Remediation							
V			DATA - EVEN	IT# 6A	PAGE #	# 2		IDPE SYSTE
Loca	tion: Vacuum Glorietta	Site, Lea (County, NM		Pro	oject Manag	ers: Hendle	y / George
		Date	5-3-21					
Well	# 16-4	Time	1000	1030	1100	1/30	1200	1230
		Hr Meter						
	Engine Speed	RPM	1700	1700	1700	1700	1700	1700
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	۴	170	170	160	160	150	145
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	130	125	125	125	125	125
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
IERE AIR	Extraction Well Flow	scfm	18.41	18.38	18.34	1834	18.34	18.39
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	۴	68	70	72	72	72	72
VACI	Air Temp	۴F	66	68	70	72	73	73
	Barometric Pressure	"Hg	29.61	29,60	29.60	29.59	29.59	2958
Ę	ТРН	ppmv	_	6480	~	6690		6880
	CO ₂	%		9,76		10,06	-	10.02
IN	со	%		0,0)	0,0)	0-0
VAPOR / INFLUENT	O ₂	%		6.3	(5,9	1	5.6
\$	H ₂ S	ppm				-)	
NOTES				~				
	Totalizer	gals	33248	32350	33452	33 55 5	33658	
ERY	Pump Rate	gals/min	3,40	3,40	3.43	3. 43	3,50	3.33
RECOVERY	Total Volume	gals	498	600	702	805	908	1013
8	NAPL	% Vol		-	-	-	-	-
\square	NAPL	Gals				-	-	
	Data Logger Head	, 22 ft	,60	,58	,56	,54	.50	,50
	GW Depression	ft	.38	.36	.34	.32	.28	.28
"	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

	AcuVac Remediation				Λ						
V	OP	ERATING	DATA – EVEN	it# 67	PAGE	¥ 3	ACUVAC	IDPE SYSTE			
Location: Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley / George											
	I# VG-4	Date	5-3-31								
Well	# VG-7	Time	1300	1330	1400	1430	1500	1530			
		Hr Meter									
	Engine Speed	RPM	1700	1700	1700	1700	1700	1700			
WER	Oil Pressure	psi	55	55	55	55	55	55			
вго	Water Temp	°F	145	150	155	150	150	150			
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14			
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16			
	Gas Flow Fuel/Propane	cfh	125	125	125	125	125	125			
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65			
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	18.33	18,33	18.31	1214	(9,14	18,14			
	Influent Vapor Temp.	۴	73	73	73	74	74	74			
ATMO	Air Temp	°F	74	75	75	75	75	78			
	Barometric Pressure	"Hg	29.57	29.56	29.55	29.55	29.55	29.55			
F	ТРН	ppmv		6860	_	6850	_	6900			
LUEN	CO ₂	%		10,38		10,32		10.40			
VAPOR / INFLUENT	со	%	<u> </u>	0,0		6,0	~	0,0			
POR	O ₂	%	~	5,5	-	5.8	-	5.6			
A A	H ₂ S	ppm	-	<u> </u>	-	-	~				
				·	,						
		·									
s											
NOTES	i	<u></u>									
z											
			_								
	Totalizer	gals	33863	33963	34067	34168	34276	34380			
₩ [Pump Rate	gals/min	3.33	3. 47	3,37	3,60	3.47	3,60			
RECOVERY	Total Volume	gals	1113	1213	13/7	1418	1526	1630			
RE	NAPL	% Vol									
	NAPL	Gals									
	Data Logger Head	27 ft	,46	, 42	,42	.40	,40	,40			
N.	GW Depression	ft	.24	. 20	.20	.18	. 18	.18			
ш	Extraction Well	DTNAPL					-				
	Extraction Well	DTGW									

	AcuVac Remediation	PERATING (DATA – EVEI	NT# 67	PAGE #	- 4	ACUVAC	MDPE SYSTEN
Loca	tion: Vacuum Glorietta	Site, Lea	County, NM				gers: Hendl	
	I# VG-4	Date Time Hr Meter	5-3-2 1600		1700			
	Engine Speed	RPM	1700	1700	1700			
ER I	Oil Pressure	psi	55	55	55		_	
ENGINE / BLOWER	Water Temp	۴	145	145	145			
NE / B	Alternator	Volts	14	14	14			
ENGI	Intake Vacuum	"Hg	16	16	16			
	Gas Flow Fuel/Propane	cfh	125	125	125			
	Extraction Well Vac.	"H₂O	65	65	65			
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	19.14	19.14	12.14			
	Influent Vapor Temp.	٦°	74	74	74			
ATMC	Air Temp	°F	79	79	79			
	Barometric Pressure	"Hg	29.55	29.55	29.55	-		
E	ТРН	ppmv		6610)			
VAPOR / INFLUENT	CO ₂	%		10,14				
/ INF	со	%	ſ	0,0	-			
POR	O2	%		5,9	-			
2	H ₂ S	ppm	-	-	_			
NOTES								
	Totalizer	gals		34593	34671			
ΈRΥ	Pump Rate	gals/min	3,50	2.60	-			
RECOVERY	Total Volume	gals	1738	1843	1921			
R	NAPL	% Vol						
	NAPL	Gals		20				
	Data Logger Head	כן _{ft}	138	,38	150			
N Li	GW Depression	ft	.16	.16	.16			
	Extraction Well	DTNAPL			67.81			
	Extraction Well	DTGW			6101			

0.00

¢	AcuVac Remediation	ERATING [DATA – EVEN	IT# 67	B PAGE #	. /	ACUVAC N	IDPE SYSTE				
Loca	Location: Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley / George											
		Date	5-4-21									
Wel	1# V6-4	Time	0630	0700	0730	0800	0830	099				
		Hr Meter										
	Engine Speed	RPM	1800	1800	1800	1800	1800	180 c				
NER	Oil Pressure	psi	55	55	55	55	55	58				
BLO	Water Temp	°F	130	130	130	130	130	130				
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14				
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16				
	Gas Flow Fuel/Propane	cfh	120	120	130	120	120	120				
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65				
IERE	Extraction Well Flow	scfm	18,54	18,54	1854	18,54	18.54	18,52				
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	61	61	61	61	61	62				
VACI	Air Temp	°F	48	48	50	52	52	52				
	Barometric Pressure	"Hg	30.11	30,11	30,11	30,11	30, 12	30,12				
Ļ	ТРН	ppmv	_	5580	_	7030		6960				
LUE	CO2	%]	8,98		11.26	_	11.18				
/ INF	со	%	-	0.0	-	0.0		0.0				
VAPOR / INFLUENT	O ₂	%	(8.5		5.3	/	5.2				
*	H ₂ S	ppm	Ŧ	1	-	l	-					
	Arrived psite	0610	, Tail	gale so	fly me	eting,	Event	Storfat				
1	0630. State	d vo	cum	indi 1	appre	x. 3'	1 in	un des				
S	column States	J pc.	n ping	@ 070	20. P.	Aled a	rater 5	ample				
NOTES	and observed	Srif	subs	face 1	In Say	ple. 1	mps e	on piny				
	remained con	stat	@ 7-	7.5 an	ps. A	108	30 1	pimp				
	controller to	300 .	Amps	775	7,8	aps.						
	Totalizer 346	7/ gals	34671	34671	34768		349.80					
/ERY	Pump Rate	gals/min		3,23	3,50	3,57	3,70	3,77				
RECOVERY	Total Volume	gals	C	0	97.	203	309	420				
æ	NAPL	% Vol										
	NAPL	Gals	211	210	7 4 3	111) Uni	110				
		52 ft	2,16	3,60	2,03	1,61	1,44	1,18				
Σ.	GW Depression	ft	1.64	5.0.0	1.51	1.09	.92	.66				
	Extraction Well	DTNAPL	67.58									
	Extraction Well	DTGW	01,00									

	AcuVac Remediation		DATA – EVEN	177.4	B PAGE	# 2		
Loca	tion: Vacuum Glorietta						ers: Hendle	IDPE SYSTE
		Date	5-4-21					
Well	I# V6-4	Time	0930	1000	1030	1100	1130	1200
		Hr Meter						
	Engine Speed	RPM	1700	1700	1700	1700	1700	1700
VER	Oil Pressure	psi	55	55	55	55	55	55
BLOV	Water Temp	°F	130	130	130	130	130	130
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
ERE	Extraction Well Flow	scfm	18,52	18.52	18,50	18.50	18.48	18.48
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	62	62	63	63	64	64
ATMO	Air Temp	°F	52	54	54	54	54	55
	Barometric Pressure	"Hg	30.11	30,11	30.10	30,08	30 06	30,05
ţ.	ТРН	ppmv		6940	-	6610	-	6700
LUEN	CO ₂	%	-	11.06	_	10,44		10,68
/ INF	со	%	-	0.0	-	0.0	-	0.0
VAPOR / INFLUENT	O ₂	%)	5.3	_	6.1	-	5.6
4×	H ₂ S	ppm	-	Ţ		~	_	-
NOTES								
	Totalizer	gals	35204		35424			
ERY	Pump Rate	gals/min	3,63		3,70		3.70	
RECOVERY	Total Volume	gals	533	642	753	864	975	1086
R	NAPL	% Vol						
	NAPL	Gals						
-	Data Logger Head	152 ft	1.06	1.04	1.03	, 98	.96	, 98
2	GW Depression	ft	.54	.52	.51	. 46	.47	.46
-	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

	OF	PERATING	DATA – EVEN	IT # 6 B	PAGE #	15	ACUVAC N	IDPE SYSTE
Location: Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley / George								
		Date	5-4-21					
Wel	I# VG-4	Time	1230	1300	1330	1400	1430	1500
		Hr Meter						
_	Engine Speed	RPM	1700	1700	1700	1700	1700	1700
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	140	140	140	140	140	145
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
IERE AIR	Extraction Well Flow	scfm	18,45	18.41	18.41	18.41	18.41	18,38
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	66	68	68	68	68	70
ATM	Air Temp	°F	56	58	60	61	61	63
	Barometric Pressure	"Hg	30,04	30,00	30,00	29.98	29,97	29,95
L,	ТРН	ppmv		7330		7310		7090
LUEN	CO ₂	%	8 	11.56	-	11. 3É		11.06
/ INF	со	%	ļ	0.0	(0,0	1	0.0
VAPOR / INFLUENT	O ₂	%	1	4.4	1	4,6	~	5,2
\$	H ₂ S	ppm)	_	1		-	1
NOTES							·····	
D2								
			·		_			
	Totalizer	gals	35 868	35 9 79	36091	36202	36313	36424
Ę	Pump Rate	gals/min		3,73	3.70		3,70	3,70
VECOVERT	Total Volume	gals	1197	1308	1420	1531	1642	1753
	NAPL	% Vol						
	NAPL	Gals		-				
	Data Logger Head	152 ft	.96	.94	-90	, 90	. 91	.89
	GW Depression	ft	.44	.42	.38	.38	.38	.31
	Extraction Well	DTNAPL						
		DINALL						

•

$\mathbf{\wedge}$	AcuVac Remediation		DATA – EVEN	it# 65	PAGE #	+ 4		IDPE SYSTE
Loca	tion: Vacuum Glorietta			-		· · · · · · · · · · · · · · · · · · ·	gers: Hendle	
		Date	5-4-21					
Wel	1# VG-4	Time	1530	1600	1630			
		Hr Meter						
	Engine Speed	RPM	1700	1700	Moc			1
VER	Oil Pressure	psi	55	55	55	d		
BLOV	Water Temp	°F	145	145	145			
ENGINE / BLOWER	Alternator	Volts	14	14	14			
ENG	Intake Vacuum	"Hg	16	16	16			
	Gas Flow Fuel/Propane	cfh	120	120	120			С
	Extraction Well Vac.	"H₂O	65	65	65			
IERE / AIR	Extraction Well Flow	scfm	18,34	18,39	18.34			
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	٦°	72	72	72			
VACI	Air Temp	°F	63	64	64			
	Barometric Pressure	"Hg	29.94	29,94	29.94			
Ļ	ТРН	ppmv	4	6930				
En El	CO ₂	%	(10.42	-			
INF /	со	%)	6.0				
VAPOR / INFLUENT	O ₂	%	1	5,3				
ž	H ₂ S	ppm	(-	-			
NOTES								
Ż								
	Totalizer	gals	36535	36646	36742			
/ERY	Pump Rate	gals/min	3,70	3,20	~			
RECOVERY	Total Volume	gals	1864	1975	2071			
¥	NAPL	% Vol						
	NAPL	Gals	1.72	110				
	Data Logger Head	ft	1.16	1.10	1,12	4		
A H	GW Depression	ft	.64	,58	. 60			
	Extraction Well	DTNAPL			(2.0)			
	Extraction Well	DTGW			57,92			

\mathbf{k}	AcuVac Remediation		DATA – EVEN	т# 6	PAGE :	H /	ACUVACI	NDPE SYSTEN
Loca	tion: Vacuum Glorietta S					oject Manag		
		Date	5-5-21					
Wel	1# VG-4	Time	0630	0700	0730	0800	0830	0900
	,	Hr Meter						
	Engine Speed	RPM	1800	1800	1800	1000	1800	1800
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	130	130	130	130	130	130
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
BNB	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	125	125	125	125	125	125
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
IERE AIR	Extraction Well Flow	scfm	18,48	18,48	18,48	18,48	18,45	18,45
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	64	64	64	64	66	66
ATM	Air Temp	°F	55	56	57	57	61	63
	Barometric Pressure	"Hg	30,11	30,11	30,11	30,11	30,10	30,09
Ę	ТРН	ppmv		6350	_	7/30		6860
LUEN	CO ₂	%	(10,26	~	11.30	-	10.98
/ INF	со	%		6.0	-	0,0	-	0.0
VAPOR / INFLUENT	O2	%		6.1	~	4.7	2	4.8
đ٨	H ₂ S	ppm	-		~	-		-
	Arrived at site	06 15 m * e.	. Gugo	d we	11. Tai Upustko	I gate		neeting 1 then
NOTES	Staded pump Subsequent inte	, Too, Sup	k water tes she	semplos wed les	e obse s g rit	4 1	to Sam	grit.
		マン gals	36722	36722	10/12	36 891		37086
/ERY	Pump Rate	gals/min	9	2,37	3,27	3,27	3,03	3, 23
RECOVERY	Total Volume	gals	0	6	7/	169	267	364
2	NAPL	% Vol		-	-	-	-	-
	NAPL	Gals	10	0				-
		37 ft	.60	3,20	2.24	1,57	1.27	1,17
A E	GW Depression	ft	.23	283	1.87	1.20	. 80	- 80
	Extraction Well	DTNAPL	67,59					
	Extraction Well	DTGW		¢**				

Λ	AcuVac Remediation							
Y		PERATING	DATA - EVEN	IT# 60	PAGE #	2	ACUVAC	
Location: Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley / George								
		Date	5-5-21					
Well	# VG-4	Time	0930	1000	1030	1100	1130	1200
		Hr Meter						
	Engine Speed	RPM	1700	1700	1700	1700	1700	1700
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	130	130	130	130	140	140
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	125	125	125	125	125	125
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
IERE / AIR	Extraction Well Flow	scfm	18,45	18,41	18.41	18,38	18,38	18,34
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	66	68	68	70	70	72
ATM	Air Temp	۴	64	67	70	73	75	フラ
	Barometric Pressure	"Hg	30 08	30.00	30,05	30,04	30,03	30.01
١T	ТРН	ppmv	/	7580	~	6990		6740
ILUEN	CO ₂	%	_	11.74	1	11.02	~	10.62
/ INF	со	%	-	0.0	-	6,0	-	0.0
VAPOR / INFLUENT	O ₂	%		3,8	~	4.7		5.2
*	H ₂ S	ppm	-		-	-	-	-
	Ew pump to	ite gro	I willy	10930	o, the	$n \uparrow A$	a 3,53	(4)
ŝ								
NOTES								-
						<u></u>		
	Totalizer	gals	37182	37279	37385	37471	37567	37663
≿	Pump Rate	gais gals/min	3,20		2.87	3,20	3,20	3.20
RECOVERY	Total Volume	gaismin	461	557	663	749	845	941
REC	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	,37 ft	I.A	1.10	1.08	1,05	1.04	1.04
2	GW Depression	, ft	-82	.73	.71	- 68	(0,017	(a oi)
EW	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

Λ	AcuVac Remediation							
V	0	PERATING	DATA – EVEN	it# 6 ⊂	PAGE #	3	ACUVAC N	IDPE SYSTE
Loca	tion: Vacuum Glorietta	Site, Lea (County, NM		Pro	oject Manag	ers: Hendle	y / George
	1011	Date	5-5-21					
Wel	I# VG-4	Time	1230	1300	1330	1400	1430	1500
		Hr Meter						
	Engine Speed	RPM	1700	1700	Hac	1700	1700	1700
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	۴	140	145	145	145	145	145
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	125	125	125	125	125	125
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
IERE	Extraction Well Flow	scfm	18,34	18,34	18,31	18,31	18,31	18,29
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	۴	72	73	74	74	74	75
ATM	Air Temp	°۴	78	79	80	81	81	81
	Barometric Pressure	"Hg	30,00	29.98	29.96	29.94	29,93	29.92
Ļ	ТРН	ppmv	· !	6850	1	6620		7330
LUEN	CO ₂	%	—	10,66		10.16		11.22
/ INF	со	%	j.	00	1	0.0	-	6.0
VAPOR / INFLUENT	O ₂	%	j	5.3	ļ	5.9	1	4.1
٨٨	H ₂ S	ppm	1	-	Ì	-	-	
	Pemp rate slig	Lthy V	, fer re	stota	kay,			
		<i>r</i> –						
s								
NOTES								
~								
	Totalizer	gals	37759	37855	37950	38046	38 137	38235
ERY	Pump Rate	gals/min	3,20	3.17	3,20	3,03	3,27	3,27
RECOVERY	Total Volume	gals	1037	1133	1228	1324	14 15	1513
ž	NAPL	% Vol						
	NAPL	Gals					1.1	
	Data Logger Head	, 37 ft	1,05	1.05	1,10	1.08	1.16	1.11
Ň	GW Depression	ft	68	.68	_73	.71	.79	.74
~	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

¥	0	PERATING	DATA – EVEN	IT# 6 C	PAGE #	ŧ 7	ACUVAC	MDPE SYSTE
Loca	tion: Vacuum Glorietta	a Site, Lea			Pro	oject Mana	gers: Hendl	ey / George
	I# V6-4	Date	5-5-21					
Wel	I# VG-1	Time Hr Meter	1530	1600	1630			
	Engine Speed	RPM	1700	1700	1700			
VER	Oil Pressure	psi	55	55	55			
BLOV	Water Temp	°F	145	145	145			
ENGINE / BLOWER	Alternator	Volts	14	14	14			
ENGI	Intake Vacuum	"Hg	16	16	16			
	Gas Flow Fuel/Propane	cfh	125	125	125			
	Extraction Well Vac.	"H₂O	65	65	65			
AIR	Extraction Well Flow	scfm	18.29	18,27	18,27			
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	75	76	78			
VACI	Air Temp	°F	82	82	83			
	Barometric Pressure	"Hg	79.90	29,88	29.88			
F	ТРН	ppmv		6250				
LUEN	CO2	%		9.88)			
	со	%		0,0	-			
VAPOR / INFLUENT	O ₂	%		6.5	~			
*	H ₂ S	ppm		-	-			
NOTES							<u> </u>	
Ŷ								
		·			······································			
	Totalizer	gals	38333	38428	38794			
È	Pump Rate	gals/min	3,17	7,20				
кесолеку	Total Volume	gals	1611	1706	1772			
ЧЧ Ч	NAPL	% Vol						
	NAPL	Gals						~
	Data Logger Head	137 ft	1.07	1.05	1.04			
	GW Depression	ft	,70	-68	. 67			
"	Extraction Well	DTNAPL						
	Extraction Well	DTGW			67.88			

. .

.

$\boldsymbol{\Lambda}$	AcuVac Remediation			< n		1		
Y		5	DATA – EVEN	IT# 6 V	PAGE #			IDPE SYSTEM
Loca	tion: Vacuum Glorietta		T		Pro	oject Manag	ers: Hendle	y / George
Wel	1# V6-4	Date	5-6-21	0630	0700	0730	0800	0830
vven	# 06-7	Time Hr Meter	0000	00.30		0 130	Cre Cre	0050
<u> </u>	Facine Creed		17.3	1775	1-04	1700	1700	1
e e	Engine Speed	RPM	1700	1700	1700		1700 55	1700
OWE	Oil Pressure	psi	55	130	55	55		
=/BL	Water Temp	°F	130	14	14	130	130 14	130
ENGINE / BLOWER	Alternator	Volts	16	16	16	14		16
Ē	Intake Vacuum	"Hg	120	120	120	120	16	120
	Gas Flow Fuel/Propane	cfh	65	65	65	65	65	65
ЖК	Extraction Well Vac.	"H₂O	18,52	18,52	° 5 18,50	18,50	6 5 18,48	18.48
PHEF M / A	Extraction Well Flow	scfm		62	63	63	64	64
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	٦°	62 52	53	54			· · ·
τ¥ γ	Air Temp	۴	30, 16	30,16		57	60 30,16	62 30,16
	Barometric Pressure	"Hg	20,10		30,16	30,16 6850	30,10	
ENT	ТРН	ppmv		6910				7/20
NFLU	CO ₂	%		11.22		11.18	-	11.40
VAPOR / INFLUENT	СО	%		0,0		0,0 4,5		0,0
VAPC	O ₂	%	~	4,4		7,5		4.2
	H ₂ S	ppm	~			1	- 1	
	Arrived at site	. /	· · · · · · · · · · · · · · · · · · ·		,		()	had of ac
	Ren Vaccum unt.		, , , , , , , , , , , , , , , , , , , ,	and the last of the second	/	- pump		ventues
NOTES	Consistent d	-ing t	the day	with	Vacuu.	m + 6,	PM p	mp rote
NO								
	Totalizer 38	194 gals	38 494	38538	38835	30722	38819	38917
RY	Pump Rate	gals/min	1.47	2,90	3,23	3,23	3,27	3,23
RECOVERY	Total Volume	gals	*	44	131	228	325	423
REC	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	, 40 ft	3.03	1.67	1.39	1.09	1.10	1.11
EN	GW Depression	ft	263	1.27	. 99	969	-70	.70
ω	Extraction Well	DTNAPL						
	Extraction Well	DTGW	67.70					

0	AcuVac Remediation	PERATING (DATA – EVEN	IT# 6D	PAGE #	6D2	ACUVAC	IDPE SYSTE
Location: Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley / George								
		Date	5-6-21					
Well	# VG-4	Time	0900	0930	1000	1030	1100	1130
		Hr Meter						
	Engine Speed	RPM	1700	1700	1700	1700	1700	100
WER	Oil Pressure	psi	55	55	55	55	55	-55
ENGINE / BLOWER	Water Temp	°F	140	140	140	140	140	140
INE /	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
AIR	Extraction Well Flow	scfm	18,45	18,45	18.45	18,41	18,38	18,38
HASO	Influent Vapor Temp.	۴	66	66	66	68	70	70
ATMOSPHERE VACUUM / AIR	Air Temp	۴	64	64	66	67	68	70
	Barometric Pressure	"Hg	30,18	30,18	30,17	30.16	30,15	30, K
E	TPH	ppmv	-	7180	_	7130	_	6540
	CO ₂	%		11.06	~	11.28		10,22
VAPOR / INFLUENT	со	%)	0.0	+	0,0	-	6.0
POR	O ₂	%		4.5		4.5	<u> </u>	5.8
\$	H ₂ S	ppm	/	_	~	_	-	-
NOTES				· · · · · · · · · · · · · · · · · · ·				
	Totalizer	gals	390/4 3,27	39112	39209		39403	
RECOVERY	Pump Rate	gals/min	The second se		3.23	3.73	3,23	3,23
	Total Volume	gals	520	618	715	812	909	1006
	NAPL	% Vol						
	NAPL	Gals						
F	Data Logger Head	.90 ft	1.09	1.06	1.03	1.04	1.01	, 97
& ⊢	GW Depression	ft	.68	,66	,63	.64	.61	.57
-	Extraction Well	DTNAPL		-				·
	Extraction Well	DTGW						

AcuVac

0.00

Remediation	OPERATING	DATA – EVEN	NT # 6D	PAGE	# 🔰		
Location: Vacuum Glo	rietta Site, Lea	County, NM		Pr	oject Mana	gers: Hendle	y / George
	Date	5-6-21					
Well #	Time	1200	1230	1300	1330	1400	
	Hr Meter						
Engine Speed	RPM	1200	1700	1700	1700	1700	
Oil Pressure	psi	55	55	55	55	55	
Oil Pressure Water Temp Alternator	°F	145.	145	145	145	145	
Alternator	Volts	14	14	14	14	14	
Intake Vacuum	"Hg	16	16	16	16	16	
Gas Flow Fuel/Propa	ane cfh	120	120	120	120	120	
Extraction Well Vac.	"H₂O	65	65	65	65	65	
Extraction Well Flow Influent Vapor Temp Air Temp	scfm	18.38	18,34	18, 34	18,31	18,31	
Influent Vapor Temp	• °F	70	72	72	74	74	
Air Temp	°F	72	72	75	76	76	
Barometric Pressure	"Hg	30,14	30,12	30,10	30,09	30,09	
н трн	ppmv		7250		7460		
	%		11.08	-	11,42	~	
CO ⁻	%	~	0.0		0,0	\sim	
	%	~	4.5	-	4.4	-	
₩ ₂ S	ppm	_	~				
Safe							
Totalizer	gals	39597	39694		39 888	39964	
Pump Rate Total Volume	gals/min	3,23	3.23	3,23	2.53		
Total Volume	gals	1103	1200	1297	1394	1470	
	% Vol						
NAPL	Gals						_
Data Logger Head	, 40 ft	, 93	. 92	.91	,90	192	
GW Depression	ft	.53	.52	.51	,50	.52	
Extraction Well	DTNAPL					-	
Extraction Well	DTGW					6785	

August 3, 2021

Ms. Julie Evans Hydrogeologist/Environmental Project Manager Tetra Tech 1500 City West Boulevard, Suite 1000 Houston, TX 77042

Dear Julie:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #7)

At your request, AcuVac Remediation, LLC (AcuVac) performed four Soil Vapor Extraction (SVE) Events: #7A, #7B, #7C and #7D as outlined in the table below at the above referenced site (Site). The following is the report and a copy of the operating data collected during Event #7. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#7A	VG-4	SVE	9.0	07/26/2021
#7B	VG-4	SVE	10.0	07/27/2021
#7C	VG-4	SVE	10.0	07/28/2021
#7D	VG-4	SVE	8.0	07/29/2021

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical pipeline release.

OBJECTIVES

The objectives of the MDPE Events:

- Evaluate the potential for removing liquid and vapor phase LNAPL from the groundwater and soils in the subsurface formations.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the groundwater and contaminant specific yields with high induced vacuums.
- Provide an induced hydraulic gradient to gain hydraulic control of the area during the Event period.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

	Equipment and Instrumentation Employed by AcuVac							
Measurement Equipment	Data Element							
Extraction Well Induced Vacuum and Flow								
Dwyer Magnehelic Gauges	Extraction Well Vacuum							
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow							
Observation Wells								
Dwyer Digital Manometer Vacuum / Pressure Influence								
Extraction Well Vapor Monitoring								
V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection							
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration							
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content							
NAPL Thickness (if present)								
Solinst Interface Probes Model 122 Depth to LNAPL and Depth to Groundwater								
Atmospheric Conditions								
Testo Model 511	Relative and Absolute Barometric Pressure							

THE ACUVAC MOBILE DUAL PHASE SYSTEM

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through two of three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine. The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #7

Recovery Summary Well VG-4									
Event Number		Event #7A	Event #7B	Event #7C	Event #7D	Event #7	Event #6	Event #5	
Event Date		07/26/2021	07/27/2021	07/28/2021	07/29/2021	Total	Total	Total	
Event Hours		9.0	10.0	10.0	8.0	37.0	38.0	38.0	
Data Element									
Groundwater Recovery	gals	0	0	0	0	0	7,234	7,111	
LNAPL Recovery									
Liquid	gals	0	0	0	0	0	0	0	
Vapor	gals	2.67	2.85	2.63	2.34	10.49	10.34	7.69	
Total	gals	2.67	2.85	2.63	2.34	10.49	10.34	7.69	
Gallons/Hour	gph	0.30	0.28	0.26	0.29	0.28	0.28	0.20	

The Recovery Summary Table below lists the vapor and groundwater and LNAPL recovery data for Event #7 and compares the results with Events #6 and #5 performed on the dates shown.

 Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA[®] data recorded. In the Influent Vapor Data Table below, the HORIBA[®] analytical data from the influent vapor samples are compared with previous events.

Influent Vapor Data Well VG-4									
Event Number		Event #7A	Event #7B	Event #7C	Event #7D	Event #6D	Event #5D		
Event Date		07/26/2021	07/27/2021	07/28/2021	07/29/2021	05/06/2021	02/26/2021		
Event Hours		9.0	10.0	10.0	8.0	8.0	8.0		
Data Element									
TPH- Maximum	ppmv	7,820	7,430	7,070	7,560	7,460	5,580		
TPH- Average	ppmv	7,516	7,193	6,658	7,229	7,055	5,214		
TPH- Minimum	ppmv	7,060	6,840	6,130	6,910	6,540	4,440		
TPH- Initial	ppmv	7,060	6,840	6,940	6,980	6,910	4,910		
TPH- Ending	ppmv	7,570	7,110	6,710	7,560	7,460	5,190		
CO ₂	%	11.49	11.01	11.46	11.35	11.11	9.73		
CO	%	0	0	0	0	0	0		
O ₂	%	3.4	4.0	3.8	3.5	4.6	4.5		
H₂S	ppm	0	0	0	0	0	0		

• The TPH vapor concentrations from the influent vapor samples for Event #7 are presented in the graph below:

• The extraction well induced vacuum and well vapor flow for Event #5 through Event #7 is compared in the table below.

Well Vacuum and Well Vapor Flow Well VG-4									
Event Number		Event #7A	Event #7B	Event #7C	Event #7D	Event #6D	Event #5D		
Event Date		07/26/2021	07/27/2021	07/28/2021	07/29/2021	05/06/2021	02/26/2021		
Event Hours		9.0	10.0	10.0	8.0	8.0	8.0		
Data Element									
Well Vacuum- Maximum	"H₂O	65.00	65.00	65.00	70.00	65.00	64.00		
Well Vacuum- Average	"H ₂ O	65.00	65.00	64.52	67.65	65.00	63.06		
Well Vacuum- Minimum	"H₂O	65.00	65.00	60.00	65.00	65.00	60.00		
Well Vapor Flow- Maximum	scfm	18.41	18.43	18.45	19.01	18.52	18.27		
Well Vapor Flow- Average	scfm	18.28	18.30	18.30	18.73	18.42	17.56		
Well Vapor Flow- Minimum	scfm	18.22	18.21	17.79	18.38	18.31	15.43		
• The groundwater pump rates for Event #5 through Event #7 are contained in the table below. Events #5 and #6 were MDPE Events and Event #7 was an SVE Event.

	Groundwater Pump Data Well MW-VG-4										
Event Number		Event #7A	Event #7B	Event #7C	Event #7D	Event #6D	Event #5D				
Event Date 07/26/2021 07/27/2021 07/28/2021 07/29/2021 05/06/2021 02/26/2021											
Event Hours		9.0	10.0	10.0	8.0	8.0	8.0				
Data Element											
Maximum GW Pump Rate gpm - - - 3.27 3.60											
Average GW Pump Rate	gpm	-	-	-	-	3.06	2.38				

• The LNAPL thickness recorded at the start and conclusion of each event is contained in the table on the following page.

		LNAP	PL Thickness Well VG-4	Data		-	-
Event Number		Event #7A	Event #7B	Event #7C	Event #7D	Event #6D	Event #5D
Event Date		07/26/2021	07/27/2021	07/28/2021	07/29/2021	05/06/2021	02/26/2021
Event Hours		9.0	10.0	10.0	8.0	8.0	8.0
Event Start							
Depth to Groundwater	Ft BTOC	67.61	67.76	67.73	67.75	67.60	67.09
Depth to LNAPL	Ft BTOC	-	-	-	-	-	-
LNAPL Thickness	ft	-	-	-	-	-	-
Hydro Equivalent	Ft BTOC	67.61	67.76	67.73	67.75	67.60	67.09
Event Conclusion							
Depth to Groundwater	Ft BTOC	67.81	67.30	67.41	67.38	67.75	67.70
Depth to LNAPL	Ft BTOC	-	-	-	-	-	-
LNAPL Thickness	ft		-	-	-	-	-
Hydro Equivalent	Ft BTOC	67.81	67.30	67.41	67.38	67.75	67.70

ADDITIONAL INFORMATION

- All LNAPL volume recovered, 10.49 gals, was burned as IC engine fuel. The LNAPL recovery for Event #7 was slightly greater than the 10.34 gals recovered during Event #6 indicating that a significant mass remains in the formation surrounding well VG-4.
- Although the average TPH concentration readings were on a slightly decreasing trend during Event #7. Average TPH vapor concentrations remained higher for Event #7 than Event #6.
- The average and maximum well vapor flows for Event #7 were higher than Event #6 and Event #5 indicating that the pathways are developing in the formation to improve recovery.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane, CO and CO₂. The formula used to calculate the emission rate is: ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr

(hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

ward

Paul D. Faucher President

Summary Well Data Table #1

Event		7A	7B	7C	7D
	-				
WELL NO.	<u> </u>	VG-4	VG-4	VG-4	VG-4
Current Event Hours		9.0	10.0	10.0	8.0
Total Event Hours		173.0	183.0	193.0	201.0
TD (estimated)	ft BGS	72.2	72.2	72.2	72.2
Well Screen	ft BGS	unknown	unknown	unknown	unknown
Well Size	in	4.0	4.0	40	4.0
Well Data					
Depth to Groundwater - Static - Start Event	ft BTOC	67.61	67.76	67.73	67.75
Depth to LNAPL - Static - Start Event	ft BTOC	-	-	-	-
LNAPL Thickness	ft	-	-	-	-
Hydro-Equivalent- Beginning	ft BTOC	67.61	67.76	67.73	67.75
Depth to Groundwater - End Event	ft BTOC	67.81	67.30	67.41	67.38
Depth to LNAPL - End Event	ft BTOC	-	-	-	-
LNAPL Thickness	ft	-	-	_	-
Hydro-Equivalent- Ending	ft BTOC	67.81	67.30	67.41	67.38
Extraction Data	-	-	-		
Maximum Extraction Well Vacuum	"H ₂ O	65.00	65.00	65.00	70.00
Average Extraction Well Vacuum	"H₂O	65.00	65.00	64.52	67.65
Minimum Extraction Well Vacuum	"H₂O	65.00	65.00	60.00	65.00
Maximum Extraction Well Vapor Flow	scfm	18.41	18.43	18.45	19.01
Average Extraction Well Vapor Flow	scfm	18.28	18.30	18.30	18.73
Minimum Extraction Well Vapor Flow	scfm	18.22	18.21	17.79	18.38
Influent Data					
Maximum TPH	ppmv	7,820	7,430	7,070	7,560
Average TPH	ppmv	7,516	7,193	6,658	7,229
Maximum TPH	ppmv	7,060	6,840	6,130	6,910
Initial TPH	ppmv	7,060	6,840	6,940	6,980
Final TPH	ppmv	7,570	7,110	6,710	7,560
Average CO ₂	%	11.49	11.01	11.46	11.35
Average CO	%	0	0	0	0
Average O ₂	%	3.4	4.0	3.8	3.5
Average H ₂ S	ppm	0	0	0	0

.

Summary Recovery Data Table #2

Event		7 A	7B	7C	7D
WELL NO.	VG-4	VG-4	VG-4	VG-4	
Recovery Data- Current Event					
Total Liquid Volume Recovered	gals	-	-	-	-
Total Liquid LNAPL Recovered	gals	-		-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-
Total Vapor LNAPL Recovered	gals	2.67	2.85	2.63	2.34
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	2.67	2.85	2.63	2.34
Average LNAPL Recovery	gals/hr	0.30	0.28	0.26	0.29
Total LNAPL Recovered	lbs	18.71	19.92	18.43	16.39
Total Volume of Well Vapors	cu. ft	9,871	10,980	10,980	8,990
Recovery Data- Cumulative					
Total Liquid Volume Recovered	gals	27,394	27,394	27,394	27,394
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	54.96	57.80	60.44	62.78
Total Vapor and Liquid LNAPL Recovered	gals	62.94	65.79	68.42	70.76
Average LNAPL Recovery	gals/hr	0.36	0.36	0.35	0.35
Total LNAPL Recovered	lbs	1,278	1,298	1,317	1,333
Total Volume of Well Vapors	cu. ft	175,863	186,843	197,823	206,813

	AcuVac Remediation			- 1	e.	/		
V			DATA - EVEI	NT# 7A				IDPE SYSTE
	tion: Vacuum Glorietta	Site, Lea	1		Pro	oject Manag	ers: Hendle	y / George
Date	I# V6-4		72621		0800	0.000	0900	0930
Wel		Time	0700	0730	0000	0830	0700	0750
		Hr Meter		10.	1800	100 -	10	10-
æ	Engine Speed	RPM	1800	1800		1800	1800	1800
OWE	Oil Pressure	psi	55	55	55	55	55	55
ENGINE / BLOWER	Water Temp	۴	130	180	140	140	140	140
SINE	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	140	140	140	140	140	140
LU or	Extraction Well Vac.	"H ₂ O	65	65	65	65	65	65
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	18,71	18,41	18,38	18.34	18,34	18,34
	Influent Vapor Temp.	°F	68	68	70	72	72	72
ATM	Air Temp	۴	72	73	75	79	80	81
	Barometric Pressure	"Hg	29.99	29,94	29.94	29.94	29.94	29,93
	ТРН	ppmv	_	7060		7560		7470
VAPOR /	CO2	%	—	11.00	<u> </u>	11.64		11.16
VAP	O ₂	%		3, 8	-	3.4		3,4
-	H₂S	ppm	_		—		-	
	Arrived at	site e	0635,	Taile	ate set	L me	etro,	Mobe
	site, Event	sht	e 07.	0		C.		
					/			
ES								
NOTE								
		····.			······································			
	Totalizer	gals		1				
2	Pump Rate	gals/min						
0 VEF	Total Volume							
RECOVERY	NAPL	gals % Vol						
-	NAPL	% vor Gals						
	Data Logger Head	ft						
	GW Depression							
EW		ft						
}	Extraction Well	DTNAPL	67.71					
	Extraction Well	DTGW	01.11	l				

0,00

.

AcuVac	OPERATING		NT # 7.4	PAGE	# 2		NDPE SYSTE
Location: Vacuum G					" oject Manag		
Date Well# V6-	4 Time	7-26-21 1000	10 30	1100	1130	1200	1230
Environ Oncord	Hr Meter	1800	18cc	1800	1800	1800	1800
Engine Speed Oil Pressure	RPM		55	55	55	55	55
Water Temp	psi	55	150	150	160	160	160
Oil Pressure Water Temp Alternator Intake Vacuum	°F			14	14		14
2 Intake Vacuum	Volts	14	14	14	14	14	14
Gas Flow Fuel/Pro	"Hg	140	140	140	140	140	140
Extraction Well Va		65	65	65	65	65	65
Extraction Well Flo	1120	18,31	18,77	18.27	18.24	18,24	18,24
Influent Vapor Ten		TCI JI	76	76	78	78	70
Extraction Well Flor Market Manual Science Sci	np. °F	Ø	24	EE	BE	89	90
Barometric Pressu		29.93	29.92	29,91	29.90	29.90	39.90
ТРН			7560	-	7820		7690
	ppmv %		11.67		11.32	-	11.76
	%		3,7		29		30
> <u>Z</u> U ₂ H ₂ S	ppm	-		-	-	~	
NOTES							
Totalizer	gais						
Pump Rate	gals/min						
Arrow Pump Rate O Total Volume O NAPL	gais						
NAPL	% Vol						
NAPL	Gals						
Data Logger Head	ft						=
GW Depression	ft						
Extraction Well	DTNAPL						
Extraction Well	DTGW						

Received by OCD: 5/17/2022 3:14:33 PM

	AcuVac Bernediation					_		
		PERATING	DATA – EVE	NT# 74	PAGE	# 3		MDPE SYSTE
Loca	ation: Vacuum Glorietta	Site, Lea	County, NM		Pr	oject Manaç	ers: Hendle	y / George
Date			7-2621					
Wel	1# V6-4	Time	1300	1330	1400	1430	1500	1530
		Hr Meter						
	Engine Speed	RPM	1800	1200	1800	1200	1800	1800
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	۴	155	155	155	155	160	160
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	140	140	140	140	140	140
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	18.24	18,74	18,22	18,27	18.22	18,22
	Influent Vapor Temp.	°F	78	78	79	79	79	79
ATMC /ACL	Air Temp	°F	90	92	97	93	92	9/
~~	Barometric Pressure	"Hg	29.88	29.87	29,86	29.85	29,84	29,84
	ТРН	ppmv	_	7540	-	7370		7570
VAPOR / INFLUENT	CO ₂	%	1	11.34)	10, 62		12.14
VAP	O ₂	%	1	3.4	<u> </u>	3. 8	~	3,2
-	H ₂ S	ppm	~	-				-
NOTES								
	Totalizer	gais						
ERY	Pump Rate	gals/min						
RECOVERY	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
EW	GW Depression	ft						
ΰu I	Extraction Well	DTNAPL				1		
	Extraction Well	DTGW						

	AcuVac Remediation OPERATING	B DATA EVE	NT# 7/	4 PAGE	# 4	ACUVAC	MDPE SYSTE
	tion: Vacuum Glorietta Site, Lea	County, NM	1	Pr	oject Manag	gers: Hendle	ey / George
Date Wel	I# VGーム Time Hr Meter		7-26-21				
	Engine Speed RPM						
ER	Oil Pressure psi						
NOT	Water Temp °F	1/4					
ENGINE / BLOWER	Alternator Volts	1.1			1		
NGIN	Intake Vacuum "Hg	111					
ш	Gas Flow Fuel/Propane cfh	1			-		
	Extraction Well Vac. "H ₂ O	10					
ATMOSPHERE VACUUM / AIR	Extraction Well Flow scfm	18.24					
SPHI N / NU	Influent Vapor Temp. °F	78					
VACUU	Air Temp °F	86					
	Barometric Pressure "Hg	29,88					
	TPH ppmv	-					
ENT	CO ₂ %	-					
VAPOR / INFLUENT	O ₂ %	-					
	H₂S ppm				=		
NOTES	Stop work called lightning of Shet Check Storm She Called for rema	kun in Lis, N	t die it and bre 5th 1 hour	noved	to ju	1	ground arear puorte
	Totalizer gals						
RY	Pump Rate gals/min						
RECOVERY	Total Volume gals						
REC	NAPL % Vol						
	NAPL Gals						
	Data Logger Head ft						
2	GW Depression ft						
EV	Extraction Well DTNAPL						
	Extraction Well DTGW						

Received by OCD: 5/17/2022 3:14:33 PM

	AcuVac							
	01	PERATING	DATA – EVEI	NT# 7/	PAGE	# /		NDPE SYSTE
Loca	tion: Vacuum Glorietta	Site, Lea	County, NM		Pro	oject Manag	ers: Hendle	y / George
Date			7-27.21					
Wel	1# V6-4	Time Hr Meter	0630	0700	0730	18a	0830	0900
	Engine Speed	RPM	1800	1800	1800	1000	1600	1800
VER	Oil Pressure	psi	60	60	55	55	55	55
ENGINE / BLOWER	Water Temp	٦°	130	130	130	135	135	140
VE / B	Alternator	Volts	14	14	14	14	14	14
INGI	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cſh	140	140	140	140	140	140
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	18.43	18,41	18.41	18.34	18,38	18,38
HUN /	Influent Vapor Temp.	۴	67	68	68	69	70	70
ACU	Air Temp	۴	70	.70	72	72	73	76
~	Barometric Pressure	"Hg	79,99	79.99	29,99	29.9E	29,98	29,98
	ТРН	ppmv	<u> </u>	6840		7276	(740
VAPOR / INFLUENT	CO ₂	%		11.46		10.26	~	10,34
VAP	O ₂	%	-	4.2		4.2	<u> </u>	4.0
	H₂S	ppm	-	-	-		-	
NOTES	Hinned at s." Event shit No NAPL	1	615,	7a:/ 5v E	gate	gu ig	nee f cd l	ng : 76-4=
	Totalizer	gals						
ERY	Pump Rate	gals/min						
RECOVERY	Total Volume	gals						
Ϋ́Υ	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
A I	GW Depression	ft						
Ξ.	Extraction Well	DTNAPL	- Mail					
	Extraction Well	DTGW	67.76					

0,00

	AcuVac							
-	OPER	ATING	DATA – EVEN	NT# $7B$	PAGE	# 2	ACUVAC N	NDPE SYSTEM
Loca	tion: Vacuum Glorietta Site	e, Lea (Pr	oject Manag	ers: Hendle	y / George
Date			797-21					
Wel		Time Meter	0930	1000	1030	1100	1130	1200
	Engine Speed	RPM	1800	18cc	1800	1eac	1800	1800
NER	Oil Pressure	psi	55	55	55	55	55	55
BLOV	Water Temp	۴F	140	140	145	150	150	150
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
IS NO	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cfh	140	140	140	140	140	140
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	18,34	18,31	18,31	18.29	18,29	18.07
1dSC	Influent Vapor Temp.	°F	72	74	74	75	75	76
ATMO	Air Temp	۴F	79	E1	84	86	86	88
	Barometric Pressure	"Hg	29.98	29.97	29.96	79,95	79.94	29.94
	ТРН	ppmv	-	7360		7230		7780
VAPOR /	CO ₂	%	<u> </u>	11.66	-	10,88		1.46
VAP	O ₂	%		3.8		4.1		3.8
	H₂S	ppm		<u> </u>		-		~
NOTES								
	Totalizer	gals						
ERY		als/min						
RECOVERY	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
EW	GW Depression	ft						
	Extraction Well DT	NAPL						
	Extraction Well	DTGW						

	AcuVac Remediation		DATA - EVEN	1T# 76	PAGE	# 3		IDPE SYSTE
Loca	tion: Vacuum Glorietta				TAGE		ers: Hendle	
Date		34	7-27-31					
Wel	1# V6-4	Time	1230	1300	1330	1400	1430	1500
		Hr Meter						
	Engine Speed	RPM	1800	10.00	1000	1800	1800	1000
VER	Oil Pressure	psi	55	55	55	55	55	55
ENGINE / BLOWER	Water Temp	۴	150	150	150	160	160	160
NE /	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	15	15	15	15	15	15
-	Gas Flow Fuel/Propane	cfh	140	140	140	140	140	140
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	18. 26	18, 26	18,34	18,24	18,04	18,77
	Influent Vapor Temp.	٦°	77	フフ	78	78	759	71
	Air Temp	°F	90	90	90	91	91	91
	Barometric Pressure	"Hg	29.93	29.92	29.91	27.90	29,90	29.90
	ТРН	ppmv		7306	7430		7070	\sim
VAPOR /	CO2	%		11.10	10, 82		11. 28	
VAP	O₂	%		3,7	3,5		4.2	
-	H₂S	ppm	-		-			
NOTES								
	Totalizer	gals						
RECOVERY	Pump Rate	gals/min						
ECO.	Total Volume	gals						
α α	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
M	GW Depression	ft						
	Extraction Well	DTNAPL						<u></u>
	Extraction Well	DTGW						

1	Hernedenen	PERATING	DATA – EVE	NT# 72	B PAGE	# 4	ACUVAC	MDPE SYSTEM
Loca	ation: Vacuum Glorietta	Site, Lea C	County, NM		Pro	ject Manag	jers: Hendle	ey / George
Date			7-77-31					
Wel	1# VE4	Time	1530	1600	1630			
		Hr Meter						
	Engine Speed	ŔPM	1800	1800	1200			
VER	Oil Pressure	psi	55	55	55			
BLO	Water Temp	°F	160	160	160			
NE /	Alternator	Volts	14	14	14			
ENGINE / BLOWER	Intake Vacuum	"Hg	15	15	15			
laged	Gas Flow Fuel/Propane	cfh	140	140	140			
ATMOSPHERE VACUUM / AIR	Extraction Well Vac.	"H₂O	65	65	65			
	Extraction Well Flow	scfm	18.21	18, 21	18,21			
HdSC	Influent Vapor Temp.	۴F	80	Ê0	80			
ACU	Air Temp	۴F	97	93	93			
~/	Barometric Pressure	"Hg	79.88	29,87	77.87			
	трн	ppmv		7110	_			
OR /	COz	%		10.24				
VAPOR / INFLUENT	O ₂	%		4.0				
-	H ₂ S	ppm	-	~	-			
NOTES						· · · · · · · · · · · · · · · · · · ·		
	Totalizer	gals						
ERY	Pump Rate	gals/min						
RECOVERY	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
EW	GW Depression	ft						
ίΨ.	Extraction Well	DTNAPL			_			
	Extraction Well	DTGW			67.30			

0,00

Received by OCD: 5/17/2022 3:14:33 PM

AcuVac

•

	OF	PERATING	DATA – EVE	NT# 70	PAGE	# /	ACUVAC I	MDPE SYSTE
Loca	ation: Vacuum Glorietta	Site, Lea (County, NM		Pr	oject Manag	ers: Hendle	y / George
Date		r	7-28-21					
Wel	I# V6-4	11110	0630	0700	0730	OEC	0830	0900
		Hr Meter		ļ			ļ	ļ
с	Engine Speed	RPM	1800	1800	1200	1000	18cc	1800
OWE	Oil Pressure	psi	60	60	55	55	55	55
ENGINE / BLOWER	Water Temp	°F	130	130	140	140	145	145
SINE	Alternator	Volts	14	14	14	14	14	14
ENC	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cfh	140	140	140	40	140	140
ш w	Extraction Well Vac.	"H₂O	60	60	65	65	65	65
HER I / AII	Extraction Well Flow	scfm	17.79	17,79	18,45	18,45	18,41	18,38
4SOI	Influent Vapor Temp.	°F	64	64	66	66	68	70
ATMOSPHERE VACUUM / AIR	Air Temp	°F	70	70	72	73	76	01
	Barometric Pressure	"Hg	30.02	30,03	30.01	30.01	30.01	30,00
<u>_</u> =	ТРН	ppmv	_	6940	-	6740		6130
VAPOR / INFLUENT	CO2	%		10,94	_	10,56		10,82
INFL NFL	O ₂	%		4.4		4.2	~	4.8
	H₂S	ppm	-	-	~		-	
	Arrived at 5.	te O	615,	Tail	gale s	iche Ly	meet	-ingi
	Gazed V6.	-4 2	No	NAP	L. E.	rit'sk	100	0630,
	SUE only,							
NOTES								
Ň	······							
			1					
	Totalizer	gals						
RECOVERY	Pump Rate	gals/min						
	Total Volume	gals						
R	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
A I	GW Depression	ft						
Ψ	Extraction Well	DTNAPL						
	Extraction Well	DTGW	67.73					

0.00

Received by OCD: 5/17/2022 3:14:33 PM

Loca	tion: Vacuum Glorietta	Site, Lea	County, NM		Pro	oject Manag	ers: Hendle	y / George
Date			7-28-21				1	
Well	I# V6-4	Time Hr Meter	0930	1000	1030	1100	1130	1200
	Engine Speed	RPM	18ac	1800	1800	1800	1800	1800
ER	Oil Pressure		55	55	55	55	55	55
ENGINE / BLOWER	Water Temp	psi °F	145	145	145	145	145	145
ш (В)	Alternator	Volts	14	14	14	14	14	14
ICIN	Intake Vacuum	"Hg	15	15	15	15	15	15-
Ω.	Gas Flow Fuel/Propane	cfh	140	140	140	140	140	140
	Extraction Well Vac.		65	65	65	65	65	65
NR NR	Extraction Well Flow	"H₂O scfm	18.34	18.34	18.34	18,34	18,34	18,34
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	scim °F	72	72	72	72	72	73
CUU	Air Temp	۴ ۶	87	80	81	60	79	77
42	Barometric Pressure	 "Hg	29.99	29,99	29,99	79.99	79.98	79,98
	TPH		-	7050	-	6310	-	2076
R/	CO ₂	ppmv %		11.42	•	D.94	<u> </u>	11.58
VAPOR / INFLUENT	O ₂	%	-	2.9	_	3.8	(3,5
> <u>z</u>	H ₂ S	 ppm		<i>d</i> ./	~	0		~
NOTES	At 1000 min		and c		: over ,			
	Totalizer	gals						
RY	Luman Linto	gals/min						
VERY	Pump Rate							
ECOVERY	Total Volume	gals						
RECOVERY	Total Volume NAPL	gals % Vol						
RECOVERY	Total Volume NAPL NAPL	gals						
кесолеку	Total Volume NAPL NAPL Data Logger Head	gals % Vol						
EW RECOVERY	Total Volume NAPL NAPL	gals % Vol Gals						

AcuVac

Loc	ation: Vacuum Glorietta	Site, Lea	County, NM		Pr	oject Manag	ers: Hendle	y / George
Date			7-29-21					
We	11# V6-4	Time	19230	1300	1330	1400	1430	150
		Hr Meter						
	Engine Speed	RPM	1800	1200	1800	1800	1800	18 cc
ENGINE / BLOWER	Oil Pressure	psi	55	55	55	55	55	55-
BLO	Water Temp	۴	145	145	145	145	145	145
NE /	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cfh	140	140	140	140	140	146
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
HERE	Extraction Well Flow	scfm	18.34	18,34	18,33	18,33	18,34	18,34
HASC	Influent Vapor Temp.	۴	70	72	73	73	72	23
ATMOSPHERE VACUUM / AIR	Air Temp	۴	29	79	80	81	67	82
	Barometric Pressure	"Hg	29.98	29,98	29.97	29.97	29.96	29.90
	ТРН	ppmv	•	760		6790	_	6280
OR /	COz	%)	11.72		11.32	\sim	11.94
VAPOR / INFLUENT	O ₂	%	_	348		3,8	_	3.7
-	H₂S	ppm	~	_		\sim	\sim	
NOTES								
l	Totalizer	gals						
	Pump Rate	gals/min						
ERΥ								
COVERY	Total Volume	gals						
RECOVERY		gals % Vol						
RECOVERY	Total Volume							
RECOVERY	Total Volume NAPL	% Vol						
	Total Volume NAPL NAPL	% Vol Gals						
EW RECOVERY	Total Volume NAPL NAPL Data Logger Head	% Vol Gals ft						

1	AcuVac							
				NT# 70	PAGE			MDPE SYSTEN
	ation: Vacuum Glorietta	Site, Lea (1	1	Pr	oject Mana	gers: Hendle	ey / George
Date We		Time	7-78-71	1600	1630			
		Hr Meter						
	Engine Speed	RPM	1800	1200	1800			
NER	Oil Pressure	psi	55	55	55			
ENGINE / BLOWER	Water Temp	۴	145	145	145			
NE /	Alternator	Volts	14	14	14			
ENGI	Intake Vacuum	"Hg	15	15	15			
	Gas Flow Fuel/Propane	cfh	140	140	140			
	Extraction Well Vac.	°H₂O	65	65	65			
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	18,34	18,33	18,33			
HASC NUN	Influent Vapor Temp.	°F	72	73	73			
ATMC /ACU	Air Temp	۴	82	Ø3	83			
~~	Barometric Pressure	"Hg	29.96	29.96	29,98			
	ТРН	ppmv		6710				
VAPOR / INFLUENT	CO2	%	<u> </u>	11.36	~			
VAP	O _z	%	~	3,4	\sim			
	H ₂ S	ppm	_	-	~			
NOTES								
	Totalizer	gals					1	
ERY	Pump Rate	gals/min						
RECOVERY	Total Volume	gals					1	
RE	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
M	GW Depression	ft						
w I	Extraction Well	DTNAPL			~			
	Extraction Well	DTGW			67. 4			

0,00

RECOVERY

EW

	OPERATING	DATA – EVEI	NT# 70	PAGE	# /		IDPE SYSTEM
Loca	ition: Vacuum Glorietta Site, Lea (County, NM		Pro	oject Manag	ers: Hendle	y / George
Date		7-29-31					
Wel	1# V6-4 Time	0600	0630	0700	6730	OEcc	0830
	Hr Meter						
	Engine Speed RPM	1êcc	1200	1800	1200	1800	1800
VER	Oil Pressure psi	55	55	55	55	55	55
BLOI	Water Temp °F	130	130	135	140	140	140
ENGINE / BLOWER	Alternator Volts	14	14	14	14	14	14
ISNG	Intake Vacuum "Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane cfh	140	140	140	140	140	140
	Extraction Well Vac. "H ₂ O	65	65	65	65	65	65
ATMOSPHERE VACUUM / AIR	Extraction Well Flow scfm	12,50	18,50	18.48	12,48	18,45	18.42
HUN/	Influent Vapor Temp. °F	67	63	64	64	60	68
	Air Temp °F	63	63	64	66	70	73
~>	Barometric Pressure "Hg	30,00	30,06	30,06	30,16	30,06	30,04
	TPH ppmv		69EC	-	7120	~	6916
VAPOR / INFLUENT	CO ₂ %		1438	(11.72	-	10.71
VAP(O ₂ %	~	30.6	\sim	3.5		4.2
-	H ₂ S ppm		-		_		<u> </u>
	Arrived at sik	0545	, Ta	ilga.he	Sale Ly	mee	Lingi
	Gauged V6-4.	No	NAPL	Ever	at star	1 1	0600
	SUE only,			· · · · · · · · · · · · · · · · · · ·			
ŝ							
NOTES							
					· · · · · · · · · · · · · · · · · · ·	<u></u>	
				<u></u>			
		, 0 , 1 .		<u> </u>			
	Totalizer gals						
ž	Pump Rate gals/min						
RECOVERY	Total Volume gals						
REC	NAPL % Vol						
	NAPL Gals						
	Data Logger Head ft						
2	GW Depression ft						
M M	Extraction Well DTNAPL	_					

67.75 0, 2

DTGW

Extraction Well

Received by OCD: 5/17/2022 3:14:33 PM

	AcuVac							
	OPE	RATING	DATA – EVEI	NT# 72	PAGE	# 2	ACUVAC I	NDPE SYSTE
Loca	tion: Vacuum Glorietta S	ite, Lea (County, NM		Pre	oject Manag	ers: Hendle	y / George
Date			7-29-21					
Wel	1# V6-4	Time	0900	0930	1000	1030	1100	1130
	-	Hr Meter						
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	145	145	145	145	145	145
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cſh	140	140	140	140	140	140
	Extraction Well Vac.	"H₂O	65	65	70	70	70	70
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	18.38	18.38	19.01	19.01	18,97	18.91
idso MUL	Influent Vapor Temp.	۴F	70	70	72	7)	74	74
ATM	Air Temp	۴	75	77	79	81	E D	83
~>	Barometric Pressure	"Hg	30.05	30,05	30.04	30,04	30,00	30,01
-	ТРН	ppmv		7310		7170		7260
VAPOR / INFLUENT	CO ₂	%		11.42	<u> </u>	11,64		11, 37
VAP	O ₂	%	~	3,4		3,4	$\widehat{}$	3,4
	H₂S	ppm	_		_	~		
NOTES		ur 11 	vac t	e 70 ,	4,0,13	Alled a	n b. Echia	f air
~								
	Totalizer	gals						
ERY	Pump Rate	gals/min						
RECOVERY	Total Volume	gals						
2	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
N EN	GW Depression	ft						
"	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

ACUVAC MDPE SYSTEM

Loca	tion: Vacuum Glorietta	Site, Lea (County, NM		Pro	oject Manag	ers: Hendle	y / George
Date	1.5.1.		7-29-21					
Wel	I# V6-4	Time	1200	1230	1300	1330	1400	
		Hr Meter						
	Engine Speed	RPM	1000	1600	1800	18 ac	1800	
WER	Oil Pressure	psi	55	55	55-	55	55	
ENGINE / BLOWER	Water Temp	°F	145	145	145	145	145-	
NE /	Alternator	Volts	14	14	14	14	14	
ENGI	Intake Vacuum	"Hg	15	15	15	15	15	
	Gas Flow Fuel/Propane	cfh	140	140	140	140	140	
	Extraction Well Vac.	"H₂O	70	70	70	70	70	
IERE AIR	Extraction Well Flow	scfm	18,97	18,97	18,96	18,96	18.96	
Hdsc IUM /	Influent Vapor Temp.	۴	74	74	75	75	75	
ATMOSPHERE VACUUM / AIR	Air Temp	۴F	84	64	26	88	70	
	Barometric Pressure	"Hg	30,00	30,00	29.97	79,99	29, 9C	
	ТРН	ppmv		7530		7560		
VAPOR / INFLUENT	CO ₂	%	-	11.64		11.54		
VAP	O ₂	%		3,3	_	2,9	-	
-	H₂S	ppm	-		-	~	~	
NOTES								
	Totalizer	gals						
RY	Pump Rate	gals/min						
RECOVERY	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
EW	GW Depression	ft						
ΞÚ	Extraction Well	DTNAPL						
	Extraction Well	DTGW					67.38	

0,00

November 13, 2021

Ms. Julie Evans Hydrogeologist/Environmental Project Manager Tetra Tech 1500 City West Boulevard, Suite 1000 Houston, TX 77042

Dear Julie:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #8)

At your request, AcuVac Remediation, LLC (AcuVac) performed four Soil Vapor Extraction (SVE) Events: #8A, #8B, #8C and #8D as outlined in the table below at the above referenced site (Site). The following is the report and a copy of the operating data collected during Event #8. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#8A	VG-4	SVE	10.0	11/08/2021
#8B	VG-4	SVE	10.0	11/09/2021
#8C	VG-4	SVE	10.0	11/10/2021
#8D	VG-4	SVE	8.0	11/11/2021

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH refers to both petroleum hydrocarbons and Non-Aqueous Phase Liquids (NAPL). The source of the PSH is a historical pipeline release.

For Event #8 Enhanced Vapor Recovery was used to attempt to volatilize the dissolved phase LNAPL in the groundwater. Enhanced Vapor Recovery is defined on page 3.

OBJECTIVES

The objectives of the SVE Events:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the liquid and vapor phase petroleum hydrocarbon specific yields with high induced vacuums.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

· ·	l Instrumentation I by AcuVac
Measurement Equipment	Data Element
Extraction Well Induced Vacuum and Flow	
Dwyer Magnehelic Gauges	Extraction Well Vacuum
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow
Observation Wells	
Dwyer Digital Manometer	Vacuum / Pressure Influence
Extraction Well Vapor Monitoring	
V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content
NAPL Thickness (if present)	
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater
Atmospheric Conditions	
Testo Model 511	Relative and Absolute Barometric Pressure

THE ACUVAC MOBILE DUAL PHASE SYSTEM

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and in the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine. The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

ENHANCED VAPOR RECOVERY

Enhanced Vapor Recovery (EVR) is not air sparging. There is often a misunderstanding about the methodology and effectiveness of EVR. EVR is a time tested and proven method for remediating contaminated groundwater. EVR consists of inserting an air hose into the extraction well and injecting 5 to 7 cfm of clean air at 3 to 5 psi, approximately one foot above the well bottom. The clean air is injected into the groundwater through an air diffuser. This enhances the volatilization of the free and dissolved phase contaminant in the groundwater.

The EVR process is controlled because the air is injected into and removed from the well bore. The injected air does not leave the well bore as the SVE vacuum is applied to remove the injected air and contaminant vapors as it rises above the static water level.

The AcuVac System contains a clean air positive displacement blower that is used to inject the clean air into the well. A special manifold has been designed that enables the control of both the volume of air and the pressure under which it is delivered to the well. The air is heated by the process and when mixed with the groundwater creates a natural circulation that draws more contaminant into the well bore.

The EVR process is very similar to an in-well air stripper in that the in-well air diffuser creates an interface between the water and the injected air, volatilizing the contaminant as the air bubbles through the groundwater. The SVE process then removes the contaminant from the well bore and the area immediately surrounding the well. EVR is most effective where the contaminant is NAPL as either free or dissolved phase NAPL.

RECOVERY SUMMARY FOR SVE EVENT #8

The Recovery Summary Table below lists the vapor and groundwater and LNAPL recovery data for Event #8 and compares the results with Events #7 and #6 performed on the dates shown.

	Recovery Summary Well VG-4												
Event Number		Event #8A	Event #8B	Event #8C	Event #8D	Event #8	Event #7	Event #6					
Event Date		11/08/2021	11/09/2021	11/10/2021	11/11/2021	Total	Total	Total					
Event Hours		10.0	10.0	10.0	8.0	38.0	37.0	38.0					
Data Element													
Groundwater Recovery	gals	0	0	0	0	0	0	7,234					
LNAPL Recovery													
Liquid	gals	0	0	0	0	0	0	0					
Vapor	gals	3.17	3.40	3.19	2.63	12.39	10.49	10.34					
Total	gals	3.17	3.40	3.19	2.63	12.39	10.49	10.34					
Gallons/Hour	gph	0.32	0.34	0.32	0.32	0.33	0.28	0.28					

 Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA[®] data recorded in the Influent Vapor Data Table below, the HORIBA[®] analytical data from the influent vapor samples are compared with previous events.

	Influent Vapor Data Well VG-4												
Event Number		Event #8A	Event #8A Event #8B Event #8C Even		Event #8D	Event #7D	Event #6D						
Event Date		11/08/2021	11/09/2021	11/10/2021	11/11/2021	07/29/2021	05/06/2021						
Event Hours		10.0	10.0	10.0	8.0	8.0	8.0						
Data Element													
TPH- Maximum	ppmv	7,870	9,960	7,820	7,710	7,560	7,460						
TPH- Average	ppmv	7,667	8,081	7,491	7,273	7,229	7,055						
TPH- Minimum	ppmv	7,330	7,330	7,040	6,680	6,910	6,540						
TPH- Initial	ppmv	7,330	7,330	7,040	6,680	6,980	6,910						
TPH- Ending	ppmv	7,740	7,530	7,160	7,140	7,560	7,460						
CO2	%	12.53	12.79	12.40	12.45	11.35	11.11						
0 ₂	%	5.3	2.3	2.8	2.8	3.5	4.6						
H₂S	ppm	0	0	0	0	0	0						

• The TPH vapor concentrations from the influent vapor samples for Event #8 are presented in the following graph.

• The extraction well induced vacuum and well vapor flow for Event #6 through Event #8 is compared in the following table.

	Well Vacuum and Well Vapor Flow Well VG-4												
Event Number		Event #8A	Event #8B	Event #8C	Event #8D	Event #7D	Event #6D						
Event Date		11/08/2021	11/09/2021	11/10/2021	11/11/2021	07/29/2021	05/06/2021						
Event Hours		10.0	10.0	10.0	8.0	8.0	8.0						
Data Element													
Well Vacuum- Maximum	"H ₂ O	85.00	75.00	85.00	85.00	70.00	65.00						
Well Vacuum- Average	"H₂O	75.95	74.29	76.90	79.41	67.65	65.00						
Well Vacuum- Minimum	"H ₂ O	75.00	70.00	70.00	70.00	65.00	65.00						
Well Vapor Flow- Maximum	scfm	19.66	19.85	21.72	21.98	19.01	18.52						
Well Vapor Flow- Average	scfm	19.11	19.49	19.71	20.90	18.73	18.42						
Well Vapor Flow- Minimum	scfm	18.09	18.39	16.72	18.43	18.38	18.31						

• The groundwater pump rates for Event #6 through Event #8 are contained in the table below. Event #6 was an MDPE Event, and Events #7 and #8 were an SVE Event.

Groundwater Pump Data Well MW-VG-4							
Event Number		Event #8A	Event #8B	Event #8C	Event #8D	Event #7D	Event #6D
Event Date		11/08/2021	11/09/2021	11/10/202	11/11/202	07/29/2021	05/06/2021
Event Hours		10.0	10.0	10.0	8.0	8.0	8.0
Data Element							
Maximum GW Pump Rate	gpm	-	-	-	-	-	3.27
Average GW Pump Rate	gpm	-	-	-	-	-	3.06

• The LNAPL thickness recorded at the start and conclusion of each event is contained in the table on the following page.

LNAPL Thickness Data Well VG-4							
Event Number		Event #8A	Event #8B	Event #8C	Event #8D	Event #7D	Event #6D
Event Date		11/08/2021	11/09/2021	11/10/2021	11/11/2021	07/29/2021	05/06/2021
Event Hours		10.0	10.0	.0	8.0	8.0	8.0
Event Start							
Depth to Groundwater	Ft BTOC	67.89	67.88	67.88	67.75	67.75	67.60
Depth to LNAPL	Ft BTOC	-	-	-	-	-	-
LNAPL Thickness	ft	-	-	-	-	-	-
Hydro Equivalent	Ft BTOC	67.89	67.88	67.88	67.75	67.75	67.60
Event Conclusion							
Depth to Groundwater	Ft BTOC	67.86	67.88	67.85	67.38	67.38	67.75
Depth to LNAPL	Ft BTOC	-	-	-	-	-	-
LNAPL Thickness	ft	-	-	-	-	-	-
Hydro Equivalent	Ft BTOC	67.86	67.88	67.85	67.38	67.38	67.75

ADDITIONAL INFORMATION

- All LNAPL volume recovered, 12.39 gals, was burned as IC engine fuel. The LNAPL recovery for Event #8 was slightly greater than the 10.49 gals recovered during Event #7 indicating that a mass remains in the formation surrounding well VG-4. The increased LNAPL vapor recovery is most likely the result of:
 - The weighted average TPH concentration readings were 7,647 ppmv for Event #8 compared with 7,145 ppmv for Event #7
 - The weighted average well vapor flows for Event #8 were 19.74 scfm compared with 18.39 scfm for Event #7.
- Graphical representations of the TPH vapor concentrations for the Event #5, #6 and #7, all of which were performed in 2021, are shown on page 6.
- Enhanced Vapor Recovery (EVR) was started after the SVE was commenced each day of Event #8. EVR was performed for approximately 50 minutes and then stopper 10 minutes before the well vapor samples were obtained so the oxygen content would be representative of the well vapors. The oxygen levels of the well vapor samples remained mostly steady, and as stated above the weighted average TPH vapor concentrations were greater for Event #8 over Event #7, and it appears that EVR contributed to the increase along with the increased well flow.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane, CO and CO₂ in accordance with the manufacturer's specifications.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr

(hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

Prindad

Paul D. Faucher President

Summary Well Data Table #1

Event		8A	8B	8C	8D		
WELL NO.		VG-4	VG-4	VG-4	VG-4		
Current Event Hours		10.0	10.0	10.0	8.0		
Total Event Hours		211.0	221.0	231.0	239.0		
TD (estimated)	ft BGS	72.2	72.2	72.2	72.2		
Well Screen	ft BGS	unknown	unknown	unknown	unknown		
Well Size	in	4.0	4.0	40	4.0		
Well Data		_	-	-			
Depth to Groundwater - Static - Start Event	ft BTOC	67.89	67.88	67.88	67.75		
Depth to LNAPL - Static - Start Event	ft BTOC	-	-	-	-		
LNAPL Thickness	ft	-	-	-	-		
Hydro-Equivalent- Beginning	ft BTOC	67.89	67.88	67.88	67.75		
Depth to Groundwater - End Event	ft BTOC	67.86	67.88	67.85	67.38		
Depth to LNAPL - End Event	ft BTOC	-	-	-	-		
LNAPL Thickness	ft	-	-	-	-		
Hydro-Equivalent- Ending	ft BTOC	67.86	67.88	67.85	67.38		
Extraction Data		-	-	-			
Maximum Extraction Well Vacuum	"H₂O	85.00	75.00	85.00	85.00		
Average Extraction Well Vacuum	"H₂O	75.95	74.29	76.90	79.41		
Minimum Extraction Well Vacuum	"H₂O	75.00	70.00	70.00	70.00		
Maximum Extraction Well Vapor Flow	scfm	19.66	19.85	21.72	21.98		
Average Extraction Well Vapor Flow	scfm	19.11	19.49	19.71	20.90		
Minimum Extraction Well Vapor Flow	scfm	18.09	18.39	16.72	18.43		
Influent Data		-	-	-			
Maximum TPH	ppmv	7,870	9,960	7,820	7,710		
Average TPH	ppmv	7,667	8,081	7,491	7,273		
Maximum TPH	ppmv	7,330	7,330	7,040	6,680		
Initial TPH	ppmv	7,330	7,330	7,040	6,680		
Final TPH	ppmv	7,740	7,530	7,160	7,140		
Average CO ₂	%	12.53	12.79	12.40	12.45		
Average O ₂	%	5.3	2.3	2.8	2.8		
Average H ₂ S	ppm	0	0	0	0		

.

Summary Recovery Data Table #2

Event		8A	8B	8C	8D
WELL NO.		VG-4	VG-4	VG-4	VG-4
Recovery Data- Current Event					
Total Liquid Volume Recovered	gals	-	-	-	-
Total Liquid LNAPL Recovered	gals	-	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-
Total Vapor LNAPL Recovered	gals	3.17	3.40	3.19	2.63
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	3.17	3.40	3.19	2.63
Average LNAPL Recovery	gals/hr	0.32	0.34	0.32	0.33
Total LNAPL Recovered	lbs	22.17	23.83	22.34	18.40
Total Volume of Well Vapors	cu. ft	11,486	11,694	11,826	10,032
Recovery Data- Cumulative					
Total Liquid Volume Recovered	gals	27,394	27,394	27,394	27,394
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	65.95	69.35	72.54	75.17
Total Vapor and Liquid LNAPL Recovered	gals	73.93	77.34	80.53	83.15
Average LNAPL Recovery	gals/hr	0.35	0.35	0.35	0.35
Total LNAPL Recovered	lbs	1,355	1,379	1,401	1,420
Total Volume of Well Vapors	cu. ft	218,279	229,973	241,799	251,831

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 107890

CONDITIONS Operator: OGRID: CONOCOPHILLIPS COMPANY 217817 600 W. Illinois Avenue Action Number: Midland, TX 79701 107890 Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Review of 2021 Semi-Annual Monitoring and Remedial Activities Report: Content satisfactory 1. Continued groundwater monitoring and sampling on a semi- annual basis. 2. Continue quarterly SVE events at VG-4. 3. Submit the 2022 Annual Monitoring Report to the OCD no later than June 30, 2023.	1/10/2023