District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2201444794
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy OGRID 5380		
Contact Name Shelby Pennington	Contact Telephone 281-723-9353	
Contact email shelby.g.pennington@exxonmobil.com	Incident # (assigned by OCD)	
Contact mailing address 6401 Holiday Hill Rd Bldg 5, Midland, Texas, 79707		

Location of Release Source

Latitude 32.01937

Longitude103.94	214
(NAD 83 in decimal degrees to 5 decimal places)	

Site Name Ross Draw 25 NW	Site Type Tank Battery
Date Release Discovered 1/02/2022	API# (if applicable)

Unit Letter	Section	Township	Range	County
D	25	26S	29E	Eddy

Surface Owner: State 💌 Federal 🗌 Tribal 🗌 Private (Name: _____

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

▼ Crude Oil	Volume Released (bbls) 88.40	Volume Recovered (bbls) 88.00
Produced Water	Volume Released (bbls) 32.10	Volume Recovered (bbls) 32.00
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release Corros recove	ion caused a 2" welded nipple to release fluids both into red. A third-party contractor has been retained for reme	containment and onto pad. All free fluids were ediation purposes.

Oil	Conservation	Division
- Oli	Conservation	

Incident ID	NAPP2201444794
District RP	
Facility ID	
Application ID	

22	v
Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	A release equal to or greater than 25 barrels.
19.15.29.7(A) NMAC?	
Yes 🗌 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
Yes, by Adrian Baker to o	cd.enviro@state.nm.us; Bratcher, Mike, EMNRD; Hamlet, Robert, EMNRD on Monday, January 3, 2022 4:21
PM via email.	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

★ The source of the release has been stopped.

★ The impacted area has been secured to protect human health and the environment.

x Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Shelby G. Pennington Signature: Shelby.g.pennington@exxonmobil.com	Title: Environmental Manager Date: 1/14/22 Telephone: 281-723-9353	
OCD Only Received by:	Date: 1/14/2022	

Page 2

NA

NAPP2201444794

Location:	Ross Draw 25 NW Battery	
Spill Date:	1/2/2022	
	Area 1	
Approximate A	rea = 673.75	cu.ft.
	VOLUME OF LEAK	
Total Crude Oil	= 88.00	bbls
Total Produced	Water = 32.00	bbls
	Area 2	
Approximate A	rea = 636.00	sq. ft.
Average Satura	tion (or depth) of spill = 1.75	inches
Average Porosi	ty Factor = 0.03	
82 -	VOLUME OF LEAK	194
Total Crude Oil	· · · · · · · · · · · · · · · · · · ·	bbls
Total Produced	Water = 0.10	bbls
	ΤΟΤΑΙ VOLUME OF LEAK	

TOTAL VOLUME OF LEAK			
Total Crude Oil =	88.40	bbls	
Total Produced Water =	32.10	bbls	
TOTAL VOLUME RECOVERED			
Total Crude Oil =	88.00	bbls	
Total Produced Water =	32.00	bbls	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	72553
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

CONDITIONS

Created By	Condition	Condition Date
rmarcus	None	1/14/2022

Action 72553

Page Seof 137

Received by OCD: 10/20/2022 11:22:31 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 5 of 13	7
Incident ID	NAPP2201444794	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

	1			
What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> bgs)	<u>(</u> ft		
Did this release impact groundwater or surface water?	\square Yes \boxtimes	NT		
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant				
watercourse?	\Box Yes \boxtimes	No		
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🖂	No		
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔀	No		
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used				
by less than five households for domestic or stock watering purposes?				
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?		NT		
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh	🗌 Yes 🖂			
water well field?	🗌 Yes 🖂	No		
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🖂	No		
Are the lateral extents of the release overlying a subsurface mine?				
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🖂	No		
Are the lateral extents of the release within a 100-year floodplain?	\Box Yes \boxtimes	No		
	🗌 Yes 🖂	No		
Did the release impact areas not on an exploration, development, production, or storage site?	□ Yes 🛛	No		

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

Field data

Data table of soil contaminant concentration data

 \boxtimes Depth to water determination

Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release

Boring or excavation logs

Photographs including date and GIS information

- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/20	V2022 11:22:31 AM State of New Mexico			Page 6 of 137
			Incident ID	NAPP2201444794
Page 4	Oil Conservation Divisio	n	District RP	
			Facility ID	
			Application ID	
regulations all operators a public health or the enviro failed to adequately inves addition, OCD acceptance and/or regulations. Printed Name:Garre Signature: email: _garrett.green@	nformation given above is true and complete to the are required to report and/or file certain release report and/or file certain release report and remediate contamination that pose a the of a C-141 report does not relieve the operator and the of a C-141 report does not relieve the operator and the state of a C-141 report does not relieve the operator and the state of a C-141 report does not relieve the operator and complex to the state of a C-141 report does not relieve the operator and complex to the state of a C-141 report does not relieve the operator and complex to the state of a C-141 report does not relieve the operator and complex to the state of a C-141 report does not relieve the operator and complex to the state of a C-141 report does not relieve the operator and complex to the state of a C-141 report does not relieve the operator and complex to the operator and complex to the state of a C-141 report does not relieve the operator and complex to the operator	notifications and perform co ne OCD does not relieve the threat to groundwater, surfa r of responsibility for compl Title:Environmenta	orrective actions for rele e operator of liability sh ce water, human health liance with any other fe I Coordinator	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by: Jocel	yn Harimon	Date:10	/20/2022	

Page 6

Oil Conservation Division

	Page 7 of 137
Incident ID	NAPP2201444794
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following item	ns must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11	NMAC
Photographs of the remediated site prior to backfill or photos of must be notified 2 days prior to liner inspection)	the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC D	District office must be notified 2 days prior to final sampling)
Description of remediation activities	
I hereby certify that the information given above is true and complete and regulations all operators are required to report and/or file certain r may endanger public health or the environment. The acceptance of a should their operations have failed to adequately investigate and reme- human health or the environment. In addition, OCD acceptance of a compliance with any other federal, state, or local laws and/or regulation restore, reclaim, and re-vegetate the impacted surface area to the cond accordance with 19.15.29.13 NMAC including notification to the OCI	C-141 report by the OCD does not relieve the operator of liability diate contamination that pose a threat to groundwater, surface water, C-141 report does not relieve the operator of responsibility for ons. The responsible party acknowledges they must substantially itions that existed prior to the release or their final land use in
Printed Name:Garrett Green	
Signature: Sum D	Date:09/27/2022
email:Garrett.Green@ExxonMobil.com	Telephone:575-200-0729
OCD Only	
Received by: Jocelyn Harimon	Date: 10/20/2022
	liability should their operations have failed to adequately investigate and ter, human health, or the environment nor does not relieve the responsible regulations.
Closure Approved by:	Date: 01/13/2023
Printed Name: Jocelyn Harimon	Title: Environmental Specialist

September 27, 2022

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

Re: Closure Request Addendum Ross Draw 25 NW Tank Battery Incident Number NAPP2201444794 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared the following Addendum to a Closure Request submitted on June 24, 2022 for a release at the Ross Draw 25 NW Tank Battery (Site; Figure 1). This Addendum provides an update to the delineation and excavation activities completed at the Site in response to the denial by the New Mexico Oil Conservation Division (NMOCD) of the previously submitted Closure Request. In the denial, NMOCD expressed concern the release was not horizontally delineated at a secondary containment wall. Based on previous delineation and excavation and excavation sampling activities and additional sampling results described below, XTO is requesting no further action (NFA) for Incident Number NAPP2201444794.

BACKGROUND

On January 2, 2022, corrosion on a 2-inch welded nipple resulted in the release of approximately 88.4 barrels (bbls) of crude oil and approximately 32.10 bbls produced water into a lined secondary containment and onto the well pad surface. A vacuum truck was immediately dispatched to the Site to recover free-standing fluids; approximately 88 bbls of crude oil and 32 bbls of produced water were recovered. XTO reported the release to the NMOCD on January 3, 2022 and with a subsequent Release Notification Form C-141 (Form C-141) on January 14, 2022. The release was assigned Incident Number NAPP2201444794.

A Closure Request detailing site characterization and application of Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) assigned the following Closure Criteria:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)- gasoline range organice (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 601 North Marienfeld Street | Midland, TX 79701 | ensolum.com Texas PG Firm No. 50588 | Texas PE Firm No. F-21843 Ross Draw 25 NW Tank Battery

E ENSOLUM

Site assessment activities were conducted to assess for the presence or absence of impacts to soil resulting from the produced water and crude oil release. The liner was determined to be in good condition; however, Ensolum observed surficial staining in the release area outside the containment. As a result, excavation of stained soil was completed to a depth of 2 feet bgs across a 350 square foot area.

Laboratory analytical results for excavation confirmation samples indicated all concentrations of chemicals of concern (COC) were compliant with the Table 1 Closure Criteria and compliant with the most stringent Table 1 Closure Criteria. Additionally, the release was horizontally delineated to below the most stringent Table 1 Closure Criteria as indicated by three soil samples collected outside of the release footprint. Laboratory analytical results from the sampling activities are summarized in Table 1 and soil sample locations are depicted on Figures 2 and 3, which were presented in the original Closure Request. Because the excavation abutted the secondary containment wall and the liner inspection indicated the liner was not compromised, no sidewall or delineation samples were collected at the containment. On July 15, 2022, NMOCD denied the Closure Request for Incident Number NAPP2201444794 for the following reason:

• "The closure request is denied. The release should be horizontally delineated on all sides, including up against the secondary containment wall. Please verify that the release did not go under the secondary containment."

ADDITIONAL DELINEATION ACTIVITIES

On August 3, 2022, Ensolum personnel returned to the Site to collect one additional horizontal confirmation soil sample against the secondary containment wall. Soil sample, SW03 was collected from the sidewall of the excavation from the ground surface to 2 feet bgs. The 5-point composite sample was collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the sample by thoroughly mixing. The soil sample was placed directly into pre-cleaned glass jar, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil sample was transported at or below 4 degrees Celsius (°C) under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following COCs: BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH- GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0. The soil sample location is depicted on Figure 3.

Laboratory analytical results for SW03 indicate all COC concentrations were compliant with Site Closure Criteria and provided horizontal delineation to below the most stringent Table 1 Closure Criteria. The soil sample analytical results are summarized on Table 1 and the complete laboratory analytical reports are included as Appendix A.

CLOSURE REQUEST

XTO requested NFA of Incident Number NAPP2201444794 on June 24, 2022 based on site assessment and remediation activities that followed requirements set forth in 19.15.29 NMAC. Additional assessment activities were completed at the Site to assess for the presence or absence of impacts to soil resulting from the January 2, 2022, crude oil and produced water release. Based on the laboratory analytical results of the newly collected confirmation sidewall sample SW03 and previously reported samples indicating the excavation is in compliance with the Site Closure Criteria and horizontal delineation soil samples providing additional data indicating compliance with the most stringent Table 1 Closure Criteria, XTO respectfully request NFA for Incident Number NAPP2201444794.

If you have any questions or comments, please contact Ms. Ashley Ager at (970) 496-1093 or <u>aager@ensolum.com</u>.

Received by OCD: 10/20/2022 11:22:31 AM

Ross Draw 25 NW Tank Battery

E N S O L U M

Sincerely, Ensolum, LLC

opalm

Anita Thapalia, PG Project Geologist

cc: Garrett Green, XTO Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Preliminary Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Table 1
 Soil Sample Analytical Results
- Appendix A 2022 Laboratory Analytical Report

Ashley L. Ager

Ashley Ager, PG Program Director

FIGURES

Received by OCD: 10/20/2022 11:22:31 AM

Released to Imaging: 1/13/2023 2:22:48 PM

3

Ross Draw 25 NW NAPP2201444794 Unit D, Sec 25, T26S, R29E Eddy County, New Mexico

Released to Imaging: 1/13/2023 2:22:48 PM

Environmental & Hydrogeologic Consultants

TABLES

.

E N S O L U M

				Ross [TABLE 1 PLE ANALYTICA Draw 25 NW Tank XTO Energy, Inc y County, New M	Battery				
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 C	losure Criteria ((NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	10,000
				Pre	liminary Soil San	ıples				
SS01	02/14/2022	0.5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	10,400
SS02	02/14/2022	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	51.3
SS03	02/14/2022	0.5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	152
SS04	02/14/2022	0.5	<0.00202	<0.00404	<50.0	<50.0	<50.0	<50.0	<50.0	46.1
				Exca	avation Floor Sar	nples				
FS01	05/18/2022	2	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	128
FS02	05/18/2022	2	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	255
				Excav	ation Sidewall S	amples				
SW01	05/18/2022	0 - 2	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	118
SW02	05/18/2022	0 - 2	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	57.5
SW03	08/03/2022	0 - 2	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	37.7

GRO: Gasoline Range Organics

TPH: Total Petroleum Hydrocarbon

DRO: Diesel Range Organics

ORO: Oil Range Organics

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in bold exceed the NMOCD Table 1 Closure Criteria or reclamation standard where applicable.

Ensolum

.

APPENDIX A

2022 Laboratory

Analytical Reports

Received by OCD: 10/20/2022 11:22:31 AM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1943-1

Laboratory SDG: 31403236.022.0129. task 19.02 Client Project/Site: Ross Draw 25 NM Battery

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 2/22/2022 3:42:24 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

Released to Imaging: 1/13/2023 2:22:48 PM

Laboratory Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

2

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Qualifiers

Client: WSP USA Inc.

Quaimers		- 3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	-
S1+	Surrogate recovery exceeds control limits, high biased.	5
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	7
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	10
U	Indicates the analyte was analyzed for but not detected.	
Glossary		11
Abbreviation	These commonly used abbreviations may or may not be present in this report.	10
a	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	4.0
CFL	Contains Free Liquid	13
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	

 CNF
 Contains No Free Liquid

 DER
 Duplicate Error Ratio (normalized absolute difference)

Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

 MCL
 EPA recommended "Maximum Contaminant Level"

 MDA
 Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

MPN Most Probable Number

MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit PRES Presumptive

QC Quality Control

 RER
 Relative Error Ratio (Radiochemistry)

 RL
 Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Job ID: 890-1943-1

Client: WSP USA Inc.

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1943-1

Receipt

The sample was received on 2/15/2022 9:25 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS04 (890-1943-1) and (880-11299-A-1-J). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-19793 and analytical batch 880-19796 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-19555 and analytical batch 880-19569 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (880-11287-A-38-E MS). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-19775 and analytical batch 880-19870 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: WSP USA Inc.

Client Sample ID: SS04

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Lab Sample ID: 890-1943-1

Matrix: Solid

5

Date Collected: 02/14/22 12:10 Date Received: 02/15/22 09:25 Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		02/18/22 09:11	02/19/22 22:58	1
Toluene	<0.00202	U	0.00202	mg/Kg		02/18/22 09:11	02/19/22 22:58	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		02/18/22 09:11	02/19/22 22:58	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		02/18/22 09:11	02/19/22 22:58	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		02/18/22 09:11	02/19/22 22:58	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		02/18/22 09:11	02/19/22 22:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	168	S1+	70 - 130			02/18/22 09:11	02/19/22 22:58	1
1,4-Difluorobenzene (Surr)	92		70 - 130			02/18/22 09:11	02/19/22 22:58	1
Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			02/22/22 12:09	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	• · ·	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			02/17/22 13:29	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 19:37	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 19:37	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 19:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130			02/16/22 08:38	02/16/22 19:37	1
o-Terphenyl	95		70 - 130			02/16/22 08:38	02/16/22 19:37	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
,								

Surrogate Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-11299-A-1-H MS	Matrix Spike	144 S1+	81		
880-11299-A-1-I MSD	Matrix Spike Duplicate	139 S1+	96		
890-1943-1	SS04	168 S1+	92		- 2
LCS 880-19793/1-A	Lab Control Sample	115	89		
LCSD 880-19793/2-A	Lab Control Sample Dup	145 S1+	89		
MB 880-19708/5-A	Method Blank	102	77		
MB 880-19793/5-A	Method Blank	103	77		
Surrogate Legend					
BFB = 4-Bromofluorobe	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		13
880-11287-A-38-E MS	Matrix Spike	71	66 S1-		
880-11287-A-38-F MSD	Matrix Spike Duplicate	84	77		
890-1943-1	SS04	91	95		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix:	Solid
---------	-------

Lab Sample ID LCS 880-19555/2-A	Client Sample ID Lab Control Sample	1CO2 (70-130) 108	OTPH2 (70-130) 123	Percent Surrogate Recovery (Acceptance Limits)
LCSD 880-19555/3-A MB 880-19555/1-A	Lab Control Sample Dup Method Blank	102 82	118 91	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

6

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-19708/5-A								Client S	ample ID: Meth	
Matrix: Solid									Prep Type:	
Analysis Batch: 19796									Prep Bate	:h: 1970
Analyta		MB MB ult Qualifi	or	RL	Unit		D	Propared	Analyzod	Dil Fa
Analyte Benzene	<0.002		0.002		0111 mg/Kg	~		Prepared 02/18/22 08:00	Analyzed 02/19/22 07:56	
Toluene	< 0.002		0.002			-)2/18/22 08:00)2/18/22 08:00	02/19/22 07:56	
					mg/Kg	-				
Ethylbenzene	<0.002		0.002		mg/Kg			02/18/22 08:00	02/19/22 07:56	
m-Xylene & p-Xylene	< 0.004		0.004		mg/Kg			02/18/22 08:00	02/19/22 07:56	
o-Xylene	<0.002		0.002		mg/Kg	-		02/18/22 08:00	02/19/22 07:56	
Xylenes, Total	< 0.004	00 U	0.004	00	mg/Kg	g	0	02/18/22 08:00	02/19/22 07:56	
		ИВ МВ								
Surrogate	%Recov	ery Qualifi	er Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		02	70 - 13	0			C)2/18/22 08:00	02/19/22 07:56	
1,4-Difluorobenzene (Surr)		77	70 - 13	0			C	02/18/22 08:00	02/19/22 07:56	
								0		
Lab Sample ID: MB 880-19793/5-A Matrix: Solid								Client S	ample ID: Meth	
									Prep Type:	
Analysis Batch: 19796									Prep Bate	:n: 1979
		MB MB					_			
Analyte		ult Qualifi		RL	Unit		<u>D</u>	Prepared	Analyzed	Dil Fa
Benzene	<0.002		0.002		mg/K)2/18/22 09:11	02/19/22 22:03	
Toluene	<0.002		0.002		mg/K	-)2/18/22 09:11	02/19/22 22:03	
Ethylbenzene	<0.002	200 U	0.002	200	mg/K	9	0)2/18/22 09:11	02/19/22 22:03	
m-Xylene & p-Xylene	< 0.004	00 U	0.004	00	mg/Kg	9	C	02/18/22 09:11	02/19/22 22:03	
o-Xylene	<0.002	200 U	0.002	200	mg/Kg	9	C	02/18/22 09:11	02/19/22 22:03	
Xylenes, Total	< 0.004	00 U	0.004	00	mg/Kg	3	C)2/18/22 09:11	02/19/22 22:03	
		ИВ МВ								
Surrogate	%Recov	ery Qualifi	er Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		03	70 - 13	0			0	02/18/22 09:11	02/19/22 22:03	
1,4-Difluorobenzene (Surr)		77	70 - 13	0			C	02/18/22 09:11	02/19/22 22:03	
							0			
Lab Sample ID: LCS 880-19793/1-4	4						Clie	ent Sample	ID: Lab Contro	
Matrix: Solid									Prep Type:	
Analysis Batch: 19796									Prep Bate	n: 1979
			Spike		LCS				%Rec.	
Analyte			Added		Qualifier	Unit		D %Rec	Limits	
Benzene			0.100	0.07587		mg/Kg		76	70 - 130	
Toluene			0.100	0.07526		mg/Kg		75	70 - 130	
Ethylbenzene			0.100	0.07693		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene			0.200	0.1567		mg/Kg		78	70 ₋ 130	
o-Xylene			0.100	0.07923		mg/Kg		79	70 - 130	
	LCS I	.cs								
Surrogate %	Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	115		70 - 130							
1,4-Difluorobenzene (Surr)	89		70 - 130							
Lab Sample ID: LCSD 880-19793/2	-A					Cli	ent S	ample ID: L	ab Control Sar	
Matrix: Solid									Prep Type:	
Analysis Batch: 19796									Prep Bate	
			Spike	1000	1000				%Rec.	RPD
			Spike	LCSD	LCSD				%Rec.	

Eurofins Carlsbad

18

5

7

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

0.09073

mg/Kg

91

70 - 130

0.100

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-1 Matrix: Solid						- 10			Lab Contro	Type: To	
Analysis Batch: 19796			Spike	1.080	LCSD				%Rec.	Batch:	RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Toluene			0.100	0.09648	Quanner	mg/Kg		96	70 - 130	25	3
Ethylbenzene			0.100	0.08867		mg/Kg		89	70 - 130 70 - 130	14	3
m-Xylene & p-Xylene			0.200	0.1910		mg/Kg		96	70 - 130	20	
o-Xylene			0.100	0.1058		mg/Kg		106	70 ₋ 130	29	3
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)		S1+	70 - 130								
1,4-Difluorobenzene (Surr)	89		70 - 130								
		Sample	Spike	MS	MS				%Rec.		
		•	Spike	MS	MS				%Rec.		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00200		0.0996	0.08199		mg/Kg		82	70 - 130		
Toluene	<0.00200		0.0996	0.07571		mg/Kg		76	70 - 130		
Ethylbenzene	<0.00200	UF1	0.0996	0.06193		mg/Kg		62	70 - 130		
m-Xylene & p-Xylene	< 0.00399		0.199	0.1174		mg/Kg		59	70 - 130		
o-Xylene	<0.00200	UF1	0.0996	0.06428	F1	mg/Kg		65	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	144	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	81		70 - 130								
Lab Sample ID: 880-11299-/	A-1-I MSD					CI	ient Sa	ample IC): Matrix Sp	oike Dur	olicat
Matrix: Solid	-									ype: To	
Analysis Batch: 19796										Batch:	
· · · · · · · · · · · · · · · · · · ·	• •	Sample	Spike	MSD	MSD				%Rec.		RF

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.100	0.07496		mg/Kg		75	70 - 130	9	35
Toluene	<0.00200	U F1	0.100	0.06880	F1	mg/Kg		69	70 - 130	10	35
Ethylbenzene	<0.00200	U F1	0.100	0.05698	F1	mg/Kg		57	70 - 130	8	35
m-Xylene & p-Xylene	<0.00399	U F1	0.200	0.1075	F1	mg/Kg		54	70 - 130	9	35
o-Xylene	<0.00200	U F1	0.100	0.06171	F1	mg/Kg		62	70 - 130	4	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	139	S1+	70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

96

Lab Sample ID: MB 880-19555/1-A Matrix: Solid Analysis Batch: 19569	МВ	МВ				Client Sa	mple ID: Metho Prep Type: ⊺ Prep Batch	Total/NA
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0	Qualifier	RL 50.0	 Unit mg/Kg	<u> </u>	Prepared 02/16/22 08:38	Analyzed 02/16/22 11:41	Dil Fac

70 - 130

5

Eurofins Carlsbad

1,4-Difluorobenzene (Surr)

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

Prep Batch: 19555

Dil Fac

Dil Fac

1

1

1

1

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Analyzed

02/16/22 11:41

02/16/22 11:41

Analyzed

02/16/22 11:41

02/16/22 11:41

Prep Type: Total/NA

Prep Batch: 19555

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Lab Sample ID: MB 880-19555/1-A Matrix: Solid Analysis Batch: 19569 MB MB Analyte Result Qualifier RL Unit D Prepared <50.0 U 50.0 02/16/22 08:38 Diesel Range Organics (Over mg/Kg C10-C28) 50.0 02/16/22 08:38 Oll Range Organics (Over C28-C36) <50.0 U mg/Kg MB MB Surrogate %Recovery Qualifier Limits Prepared 1-Chlorooctane 82 70 - 130 02/16/22 08:38 91 70 - 130 02/16/22 08:38 o-Terphenyl Lab Sample ID: LCS 880-19555/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Analysis Batch: 19569

	Spike	LCS	LCS		%Rec	
Analyte	Added	Result	Qualifier Unit	D %	Rec Limits	;
Gasoline Range Organics	1000	1005	mg/Kg	g	100 70 - 13	30
(GRO)-C6-C10						
Diesel Range Organics (Over	1000	1044	mg/K	g	104 70 - 13	30
C10-C28)						

	LUS LUS					
Surrogate	%Recovery	Qualifier	Limits			
1-Chlorooctane	108		70 - 130			
o-Terphenyl	123		70 - 130			

Lab Sample ID: LCSD 880-19555/3-A Matrix: Solid Analysis Batch: 19569				Clier	nt Sam	ple ID:		ol Sample Type: Toto Batch:	tal/NA
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	975.8		mg/Kg		98	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	1000	1013		mg/Kg		101	70 - 130	3	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	118		70 - 130

Lab Sample ID: 880-11287-A-38-E MS	
Matrix: Solid	
Analysis Batch: 19569	

Analysis Batch: 19569									Prep	D Batch: 1	9555
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.0	U F2	1000	933.5		mg/Kg		91	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.0	U F1	1000	1195		mg/Kg		120	70 - 130		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	71		70 - 130
o-Terphenyl	66	S1-	70 - 130

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	38-F MSD					Ŭ): Matrix Sp Bron 1	Гуре: То	
Analysis Batch: 19569											
Analysis Batch. 19509	Samplo	Sample	Spike	MSD	MSD				%Rec.	Batch:	RPI
Analyto		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Analyte Gasoline Range Organics	<50.0		998 -	1256					70 - 130		2
(GRO)-C6-C10	<50.0	0 F2	990	1250	FΖ	mg/Kg		123	70 - 130	29	2
Diesel Range Organics (Over	<50.0	U F1	998	1394	F1	mg/Kg		140	70 - 130	15	2
C10-C28)											_
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	84		70 - 130								
o-Terphenyl	77		70 - 130								
ethod: 300.0 - Anions, Io Lab Sample ID: MB 880-19775 Matrix: Solid Analysis Batch: 19870		ography						Client S	ample ID: Prep	Method Type: S	
		MB MB									
Analyte	R	esult Qualifier		RL	Unit		D P	repared	Analyz	zed	Dil Fa
Chloride	<	<5.00 U		5.00	mg/K	g			02/18/22	21:44	
Lab Sample ID: LCS 880-1977 Matrix: Solid Analysis Batch: 19870	5/2-A						Client	Jampie	e ID: Lab Co Prep	Type: S	
			Spike	1.00	LCS				a/ -		
			Spike	LUS	L03				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	%Rec. Limits		
			-			Unit mg/Kg	<u> </u>	%Rec 102			
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid	775/3-A		Added	Result		mg/Kg		102	Limits 90 - 110 Lab Contro	ol Sampl Type: S	
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid	775/3-A		Added 250	Result 254.5	Qualifier	mg/Kg		102	Limits 90 - 110 Lab Contro Prep		olub
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870	775/3-A		Added 250 Spike	Result 254.5 LCSD	Qualifier	mg/Kg Clie	ent San	102	Limits 90 - 110 Lab Contro Prep %Rec.	Type: S	olub RP
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte	775/3-A		Added 250 Spike Added	Result 254.5 LCSD Result	Qualifier	mg/Kg Clie		102	Limits 90 - 110 Lab Contro Prep %Rec. Limits	Type: S	olub RP Lim
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte	 775/3-A		Added 250 Spike	Result 254.5 LCSD	Qualifier	mg/Kg Clie	ent San	102	Limits 90 - 110 Lab Contro Prep %Rec.	Type: S	olubl RP Lim
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride			Added 250 Spike Added	Result 254.5 LCSD Result	Qualifier	mg/Kg Clie	ent San	102 nple ID: 1 %Rec 107	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110	Type: So	olubi RP Lim
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1-			Added 250 Spike Added	Result 254.5 LCSD Result	Qualifier	mg/Kg Clie	ent San	102 nple ID: 1 %Rec 107	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: So RPD 5 : Matrix	olubl RP Lim 2 Spik
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid			Added 250 Spike Added	Result 254.5 LCSD Result	Qualifier	mg/Kg Clie	ent San	102 nple ID: 1 %Rec 107	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: So	olubl RP Lim 2 Spik
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid	 K MS		Added 250 Spike Added 250	Result 254.5 LCSD Result 268.2	Qualifier LCSD Qualifier	mg/Kg Clie	ent San	102 nple ID: 1 %Rec 107	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep	Type: So RPD 5 : Matrix	olubl RP Lim 2 Spik
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid Analysis Batch: 19870	K MS Sample	Sample	Added 250 Spike Added 250 Spike	Result 254.5 LCSD Result 268.2 MS	Qualifier LCSD Qualifier MS	Unit mg/Kg	ent San	102 102 107 %Rec 107 Client	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	Type: So RPD 5 : Matrix	olubl RP Lim 2 Spik
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid Analysis Batch: 19870 Analyte	K MS Sample	Qualifier	Added 250 Spike Added 250	Result 254.5 LCSD Result 268.2 MS	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie	ent San	102 nple ID: 1 %Rec 107	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep	Type: So RPD 5 : Matrix	olub RP Lim 2 Spik
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid	K MS Sample <u>Result</u> 158	Qualifier	Added 250 Spike Added 250 Spike Added	Result 254.5 LCSD Result 268.2 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	ent San D	102 102 107 107 Client <u>%Rec</u> 67	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 	Type: So <u>RPD</u> 5 : Matrix Type: So	olub RP
Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid	K MS Sample Result 158 L MSD	Qualifier F1	Added 250 Spike Added 250 Spike Added 253	Result 254.5 LCSD Result 268.2 MS Result 327.2	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	ent San D	102 102 107 107 Client <u>%Rec</u> 67	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 D: Matrix Sp Prep	Type: So <u>RPD</u> 5 : Matrix Type: So 	olubl RP Lim 2 Spik olubl
Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19870 Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid Analyte Chloride Lab Sample ID: 890-1935-A-1- Matrix: Solid Analyte Analysis Batch: 19870 Analyte	K MS Sample Result 158 CL MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 254.5 LCSD Result 268.2 MS Result 327.2	Qualifier LCSD Qualifier MS Qualifier F1	Unit mg/Kg	ent San D	102 102 107 107 Client <u>%Rec</u> 67	Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 	Type: So <u>RPD</u> 5 : Matrix Type: So 	olubi RP Lim 2 Spik olubi

QC Association Summary

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

Client Sample ID

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Method Blank

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

SS04

Method Blank

Matrix Spike

SS04

Method Blank

GC VOA

Prep Batch: 19708 Lab Sample ID

MB 880-19708/5-A

Prep Batch: 19793 Lab Sample ID

MB 880-19793/5-A

LCS 880-19793/1-A

LCSD 880-19793/2-A

880-11299-A-1-H MS

880-11299-A-1-I MSD

Lab Sample ID

MB 880-19708/5-A

MB 880-19793/5-A

LCS 880-19793/1-A

LCSD 880-19793/2-A

880-11299-A-1-H MS

890-1943-1

Analysis Batch: 19796

890-1943-1

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Method

Method

5035

5035

5035

5035

5035

5035

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

8015 NM

5035

Prep Batch

Prep Batch

Prep Batch

19793

19708 19793

19793

19793

19793

19793

5 8

880-11299-A-1-I MSD Analysis Batch: 20044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1943-1	SS04	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 19555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1943-1	SS04	Total/NA	Solid	8015NM Prep	
MB 880-19555/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-19555/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-19555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-11287-A-38-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-11287-A-38-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 19569

890-1943-1

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1943-1	SS04	Total/NA	Solid	8015B NM	19555
MB 880-19555/1-A	Method Blank	Total/NA	Solid	8015B NM	19555
LCS 880-19555/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	19555
LCSD 880-19555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	19555
880-11287-A-38-E MS	Matrix Spike	Total/NA	Solid	8015B NM	19555
880-11287-A-38-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	19555
Analysis Batch: 19700					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Total/NA

SS04

QC Association Summary

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Method Blank

Matrix Spike

SS04

Method Blank

Matrix Spike

SS04

HPLC/IC

Leach Batch: 19775

Lab Sample ID

MB 880-19775/1-A

LCS 880-19775/2-A

LCSD 880-19775/3-A

890-1935-A-1-K MS

890-1935-A-1-L MSD

Lab Sample ID

MB 880-19775/1-A

LCS 880-19775/2-A

890-1935-A-1-K MS

890-1935-A-1-L MSD

LCSD 880-19775/3-A

890-1943-1

Analysis Batch: 19870

890-1943-1

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Method

DI Leach

DI Leach

DI Leach

DI Leach

DI Leach

DI Leach

Method

300.0

300.0

300.0

300.0

300.0

300.0

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Prep Batch

Prep Batch

19775

19775

19775

19775

19775

19775

2 3 4 5 6

Eurofins Carlsbad

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Lab Sample ID: 890-1943-1 Matrix: Solid

Client Sample ID: SS04 Date Collected: 02/14/22 12:10 Date Received: 02/15/22 09:25

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			19793	02/18/22 09:11	KL	XEN MID
Total/NA	Analysis	8021B		1	19796	02/19/22 22:58	MR	XEN MID
Total/NA	Analysis	Total BTEX		1	20044	02/22/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	19700	02/17/22 13:29	AJ	XEN MID
Total/NA	Prep	8015NM Prep			19555	02/16/22 08:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1	19569	02/16/22 19:37	AJ	XEN MID
Soluble	Leach	DI Leach			19775	02/17/22 21:52	СН	XEN MID
Soluble	Analysis	300.0		1	19870	02/18/22 23:00	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 1/13/2023 2:22:48 PM

Accreditation/Certification Summary

10

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

Project/Site: Ross Draw 25 NM Battery

Client: WSP USA Inc.

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pr	ogram	Identification Number	Expiration Date
exas	NE	ELAP	T104704400-21-22	06-30-22
I ne tollowing analytes a	ire included in this report in	It the laboratory is not certit	ied by the governing authority. This list ma	w include analytes for w
the agency does not offe	er certification.	-		
• ,	• •	Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Method Summary

Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XEN MID
otal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
00.0	Anions, Ion Chromatography	MCAWW	XEN MID
035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
I Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

Client: WSP USA Inc.

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Page 32 of 137

Sample Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1943-1 SDG: 31403236.022.0129. task 19.02

				Depth	
SS04	Solid	02/14/22 12:10	02/15/22 09:25	0.5	
	SS04	SS04 Solid	SS04 Solid 02/14/22 12:10	SS04 Solid 02/14/22 12:10 02/15/22 09:25	SS04 Solid 02/14/22 12:10 02/15/22 09:25 0.5

.

Project Wanger (Name Kalle Jannings (Malle Jannings) Total Notice (Malle Jannings) Total Not			4		0		6
Pork Orde			-15-27 092	0)	of the		Vayes
Ag SiO2	Received by: (Signatu	Relinquished by: (Signature)	Date/Time	Signature)	Received by: (ignature)	Relinquished by: (S
Ag SiO2	terms and conditions ices beyond the control ously negotiated.	ates and subcontractors. It assigns standard he client if such losses are due to circumstat ad. These terms will be enforced unless prev	t company to Xenco, its affilia ses or expenses incurred by th itted to Xenco, but not analyze	valid purchase order from clie le any responsibility for any los rge of \$5 for each sample subr	samples constitutes a s and shall not assum ach project and a cha	ment and relinquishment of a only for the cost of sample of \$75.00 will be applied to e	tice: Signature of this docu service. Xenco will be liabl Xenco. A minimum charge
Manager: Kalei Jennings Hobs.MI (375 392 7550) Phoemu.XZ (480.455.900) Atmus (All (776.446.9500)) Timus (All (776.466.9500)) Timus (All (776.446.9500))	Ag SiO2	Cd Ca Cr Co Cu Fe Pb Mg N Cr Co Cu Pb Mn Mo Ni Se	Al Sb As Ba Be B (A Sb As Ba Be Cd	A 13PPM Texas 11 . P / SPLP 6010 : 8RCF	8RCR alyzed TC I	200.8 / 6020: and Metal(s) to be an	Total 200.7 / 6010 Circle Method(s)
Manager: Kalei Jennings Hobs.MI (375 392 7550) Phome.XZ (480.455 900) Alma,GA (770-449.690) Tampe FL (13 - 62.000) Timpe						6	
Manager: Kalei Jennings Hobba, MI (55-392-7550) Phoenix, AZ (480-355-9900) Atamis, GA (770-449-8900) Turn, GA (770-449-8900) Turn, GA (770-449-8900) Turn, GA (770-449-8900) Turn, Gamma, Fill (10: (440-950-900) Turn, Gamma, GA (770-449-8900) Turn, Gamma, GA (770-449-890							
Manager: Kalei Jennings Hobbs/MI (57:592:756) Phoemix/Z (48:035:5900) Amy Full. Figure (11:57:57) Fig							
Manager: Kalel Jennings Hobbs.MM (575-392-7550) Phaenix,AZ (480-055-0900) Mam,GA (770-449-9800) Tampa,FL (813-650/2000) Munthager yry Name: WSP USA Company, Name: X10 Energy. Andress: 300 North A Street Andress: 3104 E Green Street Program: UST/PST Progra: UST/PST Program: UST/PST					_		
Hobbs.NM (575-592-7550) Phoenix,AZ (480-355-9900) Alama,GA (770-449-8800) Tampa FL (813-820-2000) Yumane: Manager: Kalei Jennings Bill to: (# dilearent) Anny Ruth Anny Ruth Frogram: UST/PST (State of Project: State of Project: State of Project: State of Project: Reporting Level II Diversible: Company Name: XTO Energy State of Project: Reporting Level II Diversible: Diversible: Program: UST/PST (State of Project: Reporting Level II Diversible: Diversible: Program: UST/PST (State of Project: Reporting Level II Diversible: Diversible: Program: UST/PST (State of Project: Reporting Level II Diversible: Diversible:<							
Hobbs.NM (575-392-7550) Proemix,AZ (480-355-0900) Attain GA (770-449-8800) Tampa,FL (813-620-2000) type Manager: Kalei Jennings Bill to: (# affween) Amy Ruth Frogram: UST/PST Frogram: UST/PST Program: UST/PST Program: UST/PST State of Project: s: 3300 North A Street Address: 3104 E Green Street Address: 3104 E Green Street Feporing: Level II Deporing:							
Hobbs,MM (575-392, 750) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-820-2000) Yum Manager: Kalei Jennings Bill to: (# different) Amy Ruth Amy Ruth Program: UST/PST [Program: UST/PST [Program: UST/PST [State of Project: Program: UST/PST [Nonthal: Rown, ruth@exxonmobil.com.aimee.cole@wsp.com Program: UST/PST [Program: UST/PST [State of Project: State of Project: Project: Project: State of Project: <			×			S	SS04
Hobbs.NM (575-392-7560) Namager: Kalei Jennings Bill to: (# affreent) Amy Ruth Program: UST/PST State of Project: ate ZIP: Midland, Texas 79705 City, State ZIP: Carlsbad, NM 88220 Diate of Project: Pr			TPH (E BTEX (Depth			Sample Identific
Hobbs.NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) Manager: Name: WSP USA Company Name: XTO Energy Anny Ruth Program: UST/PST [s: 3300 North A Street Address: 3104 E Green Street Program: UST/PST [State of Project: s: Midland, Texas 79705 City, State ZIP: Carlsbad, NM 88220 Program: UST/PST [d: Amy number: 3104 E Green Street Program: UST/PST [State of Project: name: Ross Draw 25 NM Battery Email: amy.ruth@exxonmobil.com.aimee.cole@wsp.com Deliverables: EDD Deliverables: EDD Name: NaPP2201444794 Flush: Anny Picer Picer AnAL YSIS REOUEST Name: NaPP2201444794 Flush: Analysis Reouest Picer ables: EDD PLE RECEIPT Temp Blank: As Anny Hole Picer ables Bill to '''' State of Project: Yei No Themmometer ID Bill to ''''' Bill to '''''' Bill to '''''' Address: Yei No Themmometer ID Bill to ''''''''''''''''''''''''''''''''''			PA 80 EPA 0		Total Co	No.	ample Custody Seals:
Hobbs,NM (575-392-7560) Phoenix,AZ (480-355-0900) Atlanta.GA (770-449-8800) Tampa,FL (813-620-2000) MM Manager: Kalei Jennings Bill to: (# different) Amy Ruth Program: UST/PST Program: UST/PST Program: UST/PST State of Project: sv: 3300 North A Street Address: 3104 E Green Street Address: 3104 E Green Street Program: UST/PST State of Project: state ZIP: Midland, Texas 79705 City, State ZIP: Carlsbad, NM 88220 Peloting:Level II Diverables: EDD Name: Ross Draw 25 NM Battery Tum Around Tum Around AMLYSIS REQUEST Peloverables: EDD Diverables: EDD Diverables: EDD Diverables: EDD Diverables: EDD Diverables: EDD State of Custody Name: Mercy Rotich. Due Date: Due Date: State of Custody State of Custody rs Name: Mercy Rotich. Due Date: Due Date: State of Custody State of Custody gi Intact: Or of UNT M Thermometer ID Integer State of Custody State of Custody		-	15))=80	50	Correction	No	ooler Custody Seals:
Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Allanta, GA (770-449-8800) Tampa, FL (813-620-2000) WM Manager: Kalei Jennings Bill to: (if alliven) Amy Ruth Frogram: UST/PST [Frogram: UST/PST [State of Project: State of Project: Name: Address: 3104 E Green Street Frogram: UST/PST [State of Project: State of Project: Name: Ros Draw 25 NM Battery Cuty, State ZIP: Carlsbad, NM 88220 Email: amy.ruth@exxonmobil.com.aimee.cole@wsp.com Deliverables: EDD Emain o			121)		MM	Yeg Z	eceived Intact:
Hobbs.NM (575-392-7550) Phoenix.AZ (480-355-0900) Atlanta.GA (770-449-8800) Tampa.FL (813-620-2000) Wmmanager: Name: WSP USA Bill to: (if different) Amy Ruth Frogram: UST/PST [State of Project: State of Project: State of Project: State of Project: Reporting:Level II I III Program: UST/PST [State of Project: Reporting:Level II III III IIII IIII IIIII IIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	tody	890-1943 Chain of Cus				V	
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Manager: Kalei Jennings Bill to: (# different) Amy Ruth Program: UST/PST [State of Project: State of Project: State of Project: State of Project: Program: UST/PST [State of Project: Program: UST/PST [State of Project: State of Project: Program: UST/PST [Program: UST/PST [Program: UST/PST [Program: UST/PST [State of Project:				Yes	No	-	
Manager: Kalei Jennings Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) Wumpan,FL (813-620-2000) Program: UST/PST (State ZIP: 200) Program: UST/PST (State ZIP: 200) Program: UST/PST (State ZIP: 200) State of Project: 200 State of Project: 200 State of Project: 200 Program: UST/PST (State ZIP: 200) Pro				Due Date:		rcy Rotich.	
Manager: Kalei Jennings Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Manager: Kalei Jennings Bill to: (if dilferent) Amy Ruth Amy Ruth Frogram: UST/PST [Program: UST/PST [State of Program: UST/PST [State of Project: Reporting:Level II [[[Policy: EDD Name: State of Project: Reporting:Level II [[[Perogram: UST/PST [State of Project: Reporting:Level II [Rush:	+-	NAPP2201444794	.O. Number:
Manager: Kalei Jennings Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Manager: Kalei Jennings Bill to: (if different) Army Ruth Army Ruth Program: UST/PST [ny Name: WSP USA Company Name: XTO Energy Program: UST/PST [Program: UST/PST [s: 3300 North A Street Address: 3104 E Green Street Program: UST/PST [ate ZIP: Midland, Texas 79705 City, State ZIP: Carlsbad, NM 88220 Program: UST/PST [432: 704 5178 Email: army.ruth@exxonmobil.com,aimee.cole@wsp.com Deliverables: EDD Deliverables: EDD Name: Ross Draw 25 NM Battery Turn Around ANALYSIS REQUEST					9 Task 19.02	31403236.022.0129	roject Number:
Manager: Kalei Jennings Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM ny Name: WSP USA Bill to: (if different) Amy Ruth Amy Ruth Program: UST/PST [State of Project: Deliverables: EDD Deliverables		ANALYSIS REQUEST		Turn Around	ery	ss Draw 25 NM Batte	
Hobbs,NM (575-392-7560) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) WWW.Xencc er: Kalei Jennings Bill to: (# different) Amy Ruth Muth Work O e: WSP USA Company Name: XTO Energy Program: UST/PST C Work O 3300 North A Street Address: 3104 E Green Street State of Project: State of Project: Midland, Texas 79705 City, State ZIP: Carlsbad, NM 88220 Reporting:Level II evel III			nmobil.com,aimee.cole	Email: amy.ruth@exxc		2 704 5178	
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Kalei Jennings Bill to: (if different) Amy Ruth Program: UST/PST [Program: UST/PST [State of Project: 3300 North A Street Address: 3104 E Green Street State of Project: State of Project:	evel III	Repo	Carlsbad, NM 88220	City, State ZIP:		lland, Texas 79705	
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Kalei Jennings Bill to: (# different) Army Ruth Program: UST/PST [WSP USA Company Name: XTO Energy Program: UST/PST [ä	St	3104 E Green Street	Address:		00 North A Street	
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Kalei Jennings Bill to: (if different) Amy Ruth Image: Compare the second seco	L	Progr	XTO Energy	Company Name:		SP USA	_
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	Work Order C		Amy Ruth	Bill to: (if different)		lei Jennings	
			480-355-0900) Atlanta,GA (575-392-7550) Phoenix,AZ (Hobbs,NM		
		A - A - IN IN TY IN AN END 9004	1				

Page 34 of 137

Job Number: 890-1943-1

List Source: Eurofins Carlsbad

SDG Number: 31403236.022.0129. task 19.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1943 List Number: 1

Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-1943-1

List Source: Eurofins Midland

List Creation: 02/16/22 12:10 PM

SDG Number: 31403236.022.0129. task 19.02

		50
Login Number: 1943		
List Number: 2		
Creator: Kramer, Jessica		
Question	Answer	Comment
	Answer True	Comment

Sample custody seals, il present, are intact.	The
The cooler or samples do not appear to have been compromise tampered with.	ed or True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received an	nd the COC. True
Samples are received within Holding Time (excluding tests with HTs)	immediate True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	True
There is sufficient vol. for all requested analyses, incl. any requ MS/MSDs	ested True
Containers requiring zero headspace have no headspace or bu <6mm (1/4").	Ibble is N/A
Received by OCD: 10/20/2022 11:22:31 AM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1944-1

Laboratory SDG: 31403236.022.0129.task.19.02 Client Project/Site: Ross Draw 25 NM Batery

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 2/22/2022 3:37:57 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** Ask-The Expert Visit us at: www.eurofinsus.com/Env

Laboratory Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Qualifiers

Client: WSP USA Inc.

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	4
F1	MS and/or MSD recovery exceeds control limits.	
S1+ U	Surrogate recovery exceeds control limits, high biased.	5
	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	1
%R	Percent Recovery	
CFL	Contains Free Liquid	4
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NO		

NC Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown) ND NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL PRES Presumptive QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count

Eurofins Carlsbad

4

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Job ID: 890-1944-1

Client: WSP USA Inc.

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1944-1

Receipt

The sample was received on 2/15/2022 9:25 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS03 (890-1944-1) and (880-11299-A-1-J). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-19793 and analytical batch 880-19796 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-19555 and analytical batch 880-19569 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (880-11287-A-38-E MS). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Client Sample ID: SS03

Project/Site: Ross Draw 25 NM Batery

Date Collected: 02/14/22 13:20 Date Received: 02/15/22 09:25

Sample Depth: 0.5

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/18/22 09:11	02/19/22 23:26	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/18/22 09:11	02/19/22 23:26	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/18/22 09:11	02/19/22 23:26	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/18/22 09:11	02/19/22 23:26	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/18/22 09:11	02/19/22 23:26	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/18/22 09:11	02/19/22 23:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130			02/18/22 09:11	02/19/22 23:26	1
1,4-Difluorobenzene (Surr)	102		70 - 130			02/18/22 09:11	02/19/22 23:26	1
Method: Total BTEX - Total BTEX	K Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/22/22 12:09	1
Method: 8015 NM - Diesel Range	• Organics (DR	D) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			02/17/22 13:29	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 19:57	1
GRO)-C6-C10						00/40/00 55 55	00/40/00 /	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 19:57	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 19:57	1
	2	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate	%Recoverv					02/16/22 08:38	02/16/22 19:57	1
	% <i>Recovery</i> 		70 - 130					
1-Chlorooctane			70 - 130 70 - 130			02/16/22 08:38	02/16/22 19:57	1
1-Chlorooctane D-Terphenyl	94 100	Coluble						1
Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro Analyte	94 100 omatography -	Soluble Qualifier		Unit	D			1 Dil Fac

2/22/2022

Lab Sample ID: 890-1944-1

5

Surrogate Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Batery

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-11299-A-1-H MS	Matrix Spike	144 S1+	81	·	- 5
880-11299-A-1-I MSD	Matrix Spike Duplicate	139 S1+	96		
890-1944-1	SS03	134 S1+	102		2
LCS 880-19793/1-A	Lab Control Sample	115	89		
LCSD 880-19793/2-A	Lab Control Sample Dup	145 S1+	89		
MB 880-19708/5-A	Method Blank	102	77		
MB 880-19793/5-A	Method Blank	103	77		
Surrogate Legend					
BFB = 4-Bromofluorobe	nzene (Surr)				1

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		13
880-11287-A-38-E MS	Matrix Spike	71	66 S1-		_
880-11287-A-38-F MSD	Matrix Spike Duplicate	84	77		
890-1944-1	SS03	94	100		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix:	Solid
---------	-------

				Percent Surrogate Recovery (Acceptance Limits
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-19555/2-A	Lab Control Sample	108	123	
LCSD 880-19555/3-A	Lab Control Sample Dup	102	118	
MB 880-19555/1-A	Method Blank	82	91	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

ruge 45 0J	13/
ts	
Job ID: 890-1944-1	
SDG: 31403236.022.0129.task.19.02	
Client Sample ID: Method Blank	
Prep Type: Total/NA	
Prep Batch: 19708	

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 19793

_
Lab Sample ID: MB 880-19708/5-A
Matrix: Solid
Analysis Batch: 19796

	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/18/22 08:00	02/19/22 07:56	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/18/22 08:00	02/19/22 07:56	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/18/22 08:00	02/19/22 07:56	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/18/22 08:00	02/19/22 07:56	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/18/22 08:00	02/19/22 07:56	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/18/22 08:00	02/19/22 07:56	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			02/18/22 08:00	02/19/22 07:56	1
1,4-Difluorobenzene (Surr)	77		70 - 130			02/18/22 08:00	02/19/22 07:56	1

Lab Sample ID: MB 880-19793/5-A Matrix: Solid Analysis Batch: 19796

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/18/22 09:11	02/19/22 22:03	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/18/22 09:11	02/19/22 22:03	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/18/22 09:11	02/19/22 22:03	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/18/22 09:11	02/19/22 22:03	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/18/22 09:11	02/19/22 22:03	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/18/22 09:11	02/19/22 22:03	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			02/18/22 09:11	02/19/22 22:03	1
1,4-Difluorobenzene (Surr)	77		70 - 130			02/18/22 09:11	02/19/22 22:03	1

Lab Sample ID: LCS 880-19793/1-A Matrix: Solid

.

Analysis Batch: 19796							Prep Ba	atch: 19793
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07587		mg/Kg		76	70 _ 130	
Toluene	0.100	0.07526		mg/Kg		75	70 _ 130	
Ethylbenzene	0.100	0.07693		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene	0.200	0.1567		mg/Kg		78	70 ₋ 130	
o-Xylene	0.100	0.07923		mg/Kg		79	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	115		70 - 130
1,4-Difluorobenzene (Surr)	89		70 - 130

Lab Sample ID: LCSD 880-19793/2-A Matrix: Solid				Clier	nt Sam	ple ID:	Lab Contro Prep 1	l Sampl Type: To	
Analysis Batch: 19796							Prep	Batch:	19793
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09073		mg/Kg		91	70 - 130	18	35

Eurofins Carlsbad

7 8

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Batery

SDG: 31403236.022.0129.task.19.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-1	9793/2-A					Clie	nt Sam	iple ID:	Lab Contro		
Matrix: Solid									Prep T	Гуре: То	tal/N/
Analysis Batch: 19796									Prep	Batch:	1979
			Spike	LCSD	LCSD				%Rec.		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.09648		mg/Kg		96	70 - 130	25	3
Ethylbenzene			0.100	0.08867		mg/Kg		89	70 - 130	14	3
m-Xylene & p-Xylene			0.200	0.1910		mg/Kg		96	70 - 130	20	3
o-Xylene			0.100	0.1058		mg/Kg		106	70 ₋ 130	29	3
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	145	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	89		70 - 130								
Lab Sample ID: 880-11299-A	\-1-H MS							Client	Sample ID:	: Matrix	Spik
Matrix: Solid										Type: To	
Analysis Batch: 19796										Batch:	
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00200	U	0.0996	0.08199		mg/Kg		82	70 - 130		
Toluene	<0.00200	U F1	0.0996	0.07571		mg/Kg		76	70 _ 130		
Ethylbenzene	<0.00200	U F1	0.0996	0.06193	F1	mg/Kg		62	70 - 130		
m-Xylene & p-Xylene	<0.00399	U F1	0.199	0.1174	F1	mg/Kg		59	70 _ 130		
o-Xylene	<0.00200	U F1	0.0996	0.06428	F1	mg/Kg		65	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	144	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	81		70 - 130								
Lab Sample ID: 880-11299-A	-1-I MSD					CI	ient Sa	ample IC): Matrix Sp	oike Dur	olicate
Matrix: Solid										Type: To	
Analysis Batch: 19796										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec.	Daterin	RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene	<0.00200		0.100	0.07496		ma/Ka		75	70 - 130	9	3

	Sample	Sample	Spike	NISD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.100	0.07496		mg/Kg		75	70 - 130	9	35
Toluene	<0.00200	U F1	0.100	0.06880	F1	mg/Kg		69	70 - 130	10	35
Ethylbenzene	<0.00200	U F1	0.100	0.05698	F1	mg/Kg		57	70 - 130	8	35
m-Xylene & p-Xylene	<0.00399	U F1	0.200	0.1075	F1	mg/Kg		54	70 - 130	9	35
o-Xylene	<0.00200	U F1	0.100	0.06171	F1	mg/Kg		62	70 - 130	4	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	139	S1+	70 - 130								

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

96

Lab Sample ID: MB 880-19555/1-A Matrix: Solid Analysis Batch: 19569	MB	МВ				Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 11:41	1

Eurofins Carlsbad

1,4-Difluorobenzene (Surr)

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Batery

(GRO)-C6-C10

Diesel Range Organics (Over

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Lab Sample ID: MB 880-19555/1-A

Lab Sample ID: MB 880-19555/1-A Matrix: Solid Analysis Batch: 19569								C	Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
	MB	MB									
Analyte	Result	Qualifier	RL		Unit		D	Pre	epared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0		mg/K	g		02/16/	/22 08:38	02/16/22 11:41	1
C10-C28)											
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/K	g		02/16/	/22 08:38	02/16/22 11:41	1
	МВ	MB									
Surrogate	%Recovery	Qualifier	Limits					Pre	epared	Analyzed	Dil Fac
1-Chlorooctane	82		70 - 130					02/16/	/22 08:38	02/16/22 11:41	1
o-Terphenyl	91		70 _ 130					02/16/	/22 08:38	02/16/22 11:41	1
Lab Sample ID: LCS 880-19555/2-A							C	lient S	Sample I	D: Lab Control	Sample
Matrix: Solid										Prep Type: ⁻	Total/NA
Analysis Batch: 19569										Prep Batcl	
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Gasoline Range Organics			1000	1005		mg/Kg			100	70 - 130	

1000

1044

mg/Kg

104

70 - 130

C10-C28)			
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	108		70 - 130
o-Terphenvl	123		70 - 130

Lab Sample ID: LCSD 880-19555/3-A Matrix: Solid Analysis Batch: 19569				Clie	nt Sam	nple ID:		ol Sample Type: Toto Batch:	tal/NA
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	975.8		mg/Kg		98	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	1000	1013		mg/Kg		101	70 - 130	3	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	118		70 - 130

Lab Sample ID: 880-11287-A-38-E MS
Matrix: Solid
Analysis Batch: 19569

Analysis Batch: 19569									Pre	Batch: 19555
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U F2	1000	933.5		mg/Kg		91	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.0	U F1	1000	1195		mg/Kg		120	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	71		70 _ 130
o-Terphenyl	66	S1-	70 - 130

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Page 45 of 137

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Batery Page 46 of 137

SDG: 31403236.022.0129.task.19.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-11287-A-3 Matrix: Solid						Ŭ	lient S			Гуре: То	tal/NA
Analysis Batch: 19569										Batch:	
Analysis Daten. 19909	Sample	Sample	Spike	MSD	MSD				%Rec.	Daten.	RPD
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<50.0		998	1256	-	mg/Kg		123	70 - 130	29	2
(GRO)-C6-C10	-00.0	012	000	1200		mg/rtg		120	10-100	20	-
Diesel Range Organics (Over	<50.0	U F1	998	1394	F1	mg/Kg		140	70 - 130	15	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	84		70 - 130								
o-Terphenyl	77		70 - 130								
· · ·											
lethod: 300.0 - Anions, Io	on Chromat	ography									
Lab Sample ID: MB 880-19776	5/1- A							Client S	Sample ID:	Method	Blan
Matrix: Solid									Prep	Type: S	olubl
Analysis Batch: 19882											
		MB MB									
Analyte	Re	esult Qualifier		RL	Unit		D F	repared	Analyz	zed	Dil Fa
Chloride	<	5.00 U		5.00	mg/K	g			02/20/22	17:28	
	6/2-A						Clien	t Sample	D: Lab C		
Matrix: Solid	6/2- A						Clien	t Sample		ontrol S Type: S	
Matrix: Solid	6/2-A		0.11		1.00		Clien	t Sample	Prep		
Matrix: Solid Analysis Batch: 19882	6/2-A		Spike		LCS			-	Prep %Rec.		
Matrix: Solid Analysis Batch: 19882 Analyte	6/2-A		Added	Result	LCS Qualifier	Unit	Clien D	%Rec	Prep %Rec. Limits		
Matrix: Solid Analysis Batch: 19882 ^{Analyte}	6/2-A		-			- <mark>Unit</mark> mg/Kg		-	Prep %Rec.		
Matrix: Solid Analysis Batch: 19882 Analyte Chloride			Added	Result		mg/Kg	D	%Rec	Prep %Rec. Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197			Added	Result		mg/Kg	D	%Rec	Prep %Rec. Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid			Added	Result		mg/Kg	D	%Rec	Prep %Rec. Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid			Added 250	Result 256.5	Qualifier	mg/Kg	D	%Rec	Prep %Rec. Limits 90 - 110 Lab Contro Prep	Type: S	e Du olubi
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882			Added 250 Spike	Result 256.5 LCSD	Qualifier	mg/Kg Clie	D_	%Rec 103 nple ID:	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec.	Type: S	e Du olubi olubi RP
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte			Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie	D	%Rec 103 nple ID: %Rec	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits	Type: S DI Sampl Type: S RPD	e Du olubi olubi RP Lim
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte			Added 250 Spike	Result 256.5 LCSD	Qualifier	mg/Kg Clie	D_	%Rec 103 nple ID:	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec.	Type: S	e Du olubi olubi RP Lim
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte Chloride	776/3-A		Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie	D_	%Rec 103 mple ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110	Type: S DI Sampl Type: S <u>RPD</u> 1	e Du olubi olubi RP Lim 2
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-	776/3-A		Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie	D_	%Rec 103 mple ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: S ol Sampl Type: S <u></u> 1 : Matrix	e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid	776/3-A		Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie	D_	%Rec 103 mple ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	Type: S DI Sampl Type: S <u>RPD</u> 1	e Du olubi olubi <u>RPI</u> <u>Lim</u> 2 Spik
Lab Sample ID: LCS 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882			Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier	mg/Kg Clie	D_	%Rec 103 mple ID: %Rec 104	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep	Type: S ol Sampl Type: S <u></u> 1 : Matrix	e Duj olubli Olubli RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882	776/3-A M MS Sample	Sample	Added 250 Spike Added 250 Spike	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier MS	Unit mg/Kg	D	%Rec 103 nple ID: %Rec 104 Client	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	Type: S ol Sampl Type: S <u></u> 1 : Matrix	e Du olubi olubi <u>RPI</u> <u>Lim</u> 2 Spik
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882 Analyte	76/3-A M MS Sample Result	Sample Qualifier	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier	Unit Unit Unit	D_	%Rec 103 nple ID: %Rec 104 Client	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits	Type: S ol Sampl Type: S <u></u> 1 : Matrix	e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882 Analyte	776/3-A M MS Sample	-	Added 250 Spike Added 250 Spike	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier MS	Unit mg/Kg	D	%Rec 103 nple ID: %Rec 104 Client	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	Type: S ol Sampl Type: S <u></u> 1 : Matrix	e Du olubi RP Lim 2 Spik
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882 Analyte Chloride	276/3-A M MS Sample Result 89.9	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit mg/Kg	D	%Rec 103 mple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: S DI Sampl Type: S RPD 1 C: Matrix Type: S	olubi e Du olubi RP Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-	276/3-A M MS Sample Result 89.9	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit mg/Kg	D	%Rec 103 mple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: S OI Sampl Type: S RPD 1 S: Matrix Type: S pike Dup	e Du olubi RP Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid	276/3-A M MS Sample Result 89.9	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit mg/Kg	D	%Rec 103 mple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: S DI Sampl Type: S RPD 1 C: Matrix Type: S	e Du olubi RP Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882 Analyte Chloride	776/3-A M MS Sample Result 89.9 N MSD	Qualifier	Added 250 Spike Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0 MS Result 327.9	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	D	%Rec 103 mple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 0: Matrix Sp Prep	Type: S OI Sampl Type: S RPD 1 S: Matrix Type: S pike Dup	e Du olubi RP Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-197 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6- Matrix: Solid	776/3-A M MS Sample Result 89.9 N MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result 327.9	Qualifier LCSD Qualifier MS	Unit mg/Kg	D	%Rec 103 mple ID: %Rec 104 Client %Rec 95	Prep %Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	Type: S OI Sampl Type: S RPD 1 S: Matrix Type: S pike Dup	e Du olubi RPI Lim 2 Spik olubi

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Batery Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

5 6

GC VOA

Prep	Batch:	19708
Г		

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
MB 880-19708/5-A	Method Blank	Total/NA	Solid	5035	
rep Batch: 19793					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-1944-1	SS03	Total/NA	Solid	5035	
MB 880-19793/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-19793/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-19793/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-11299-A-1-H MS	Matrix Spike	Total/NA	Solid	5035	
880-11299-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 19796	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
890-1944-1	SS03	Prep Type Total/NA	Matrix Solid	<u>Method</u> 8021B	Prep Batc 1979
MB 880-19708/5-A	Method Blank	Total/NA	Solid	8021B	1970
MB 880-19793/5-A	Method Blank	Total/NA	Solid	8021B	1979
LCS 880-19793/1-A	Lab Control Sample	Total/NA	Solid	8021B	1979
LCSD 880-19793/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	1979
880-11299-A-1-H MS	Matrix Spike	Total/NA	Solid	8021B	1979
880-11299-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	1979
nalysis Batch: 20045					
•	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
Lab Sample ID					

GC Semi VOA

Prep Batch: 19555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-1944-1	SS03	Total/NA	Solid	8015NM Prep		
MB 880-19555/1-A	Method Blank	Total/NA	Solid	8015NM Prep		
LCS 880-19555/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-19555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
880-11287-A-38-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep		
880-11287-A-38-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		

Analysis Batch: 19569

890-1944-1

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1944-1	SS03	Total/NA	Solid	8015B NM	19555
MB 880-19555/1-A	Method Blank	Total/NA	Solid	8015B NM	19555
LCS 880-19555/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	19555
LCSD 880-19555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	19555
880-11287-A-38-E MS	Matrix Spike	Total/NA	Solid	8015B NM	19555
880-11287-A-38-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	19555
Analysis Batch: 19701					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Total/NA

Solid

8015 NM

SS03

QC Association Summary

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Batery

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Method Blank

Matrix Spike

SS03

Method Blank

Matrix Spike

SS03

HPLC/IC

Leach Batch: 19776

Lab Sample ID

MB 880-19776/1-A

LCS 880-19776/2-A

LCSD 880-19776/3-A

890-1938-A-6-M MS

890-1938-A-6-N MSD

Lab Sample ID

MB 880-19776/1-A

LCS 880-19776/2-A

LCSD 880-19776/3-A

890-1938-A-6-M MS

890-1938-A-6-N MSD

890-1944-1

Analysis Batch: 19882

890-1944-1

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Method

DI Leach

DI Leach

DI Leach

DI Leach

DI Leach

DI Leach

Method

300.0

300.0

300.0

300.0

300.0

300.0

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Page 48 of 137

Prep Batch

Prep Batch

19776

19776

19776

19776

19776

19776

7 8 9 10

Eurofins Carlsbad

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Lab Sample ID: 890-1944-1 Matrix: Solid

Client Sample ID: SS03 Date Collected: 02/14/22 13:20 Date Received: 02/15/22 09:25

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			19793	02/18/22 09:11	KL	XEN MID
Total/NA	Analysis	8021B		1	19796	02/19/22 23:26	MR	XEN MID
Total/NA	Analysis	Total BTEX		1	20045	02/22/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	19701	02/17/22 13:29	AJ	XEN MID
Total/NA	Prep	8015NM Prep			19555	02/16/22 08:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1	19569	02/16/22 19:57	AJ	XEN MID
Soluble	Leach	DI Leach			19776	02/17/22 21:54	СН	XEN MID
Soluble	Analysis	300.0		5	19882	02/20/22 19:42	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Accreditation/Certification Summary

Page 50 of 137

10

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Project/Site: Ross Draw 25 NM Batery Laboratory: Eurofins Midland

Client: WSP USA Inc.

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pi	rogram	Identification Number	Expiration Date
exas	N	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, be	ut the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for
the agency does not c	ffer certification.			
• ,		Matrix	Analyte	
the agency does not c	ffer certification.	Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Method Summary

Page 51 of 137 3 4 5 6 7 8 9 10

Project/Site: Ross Draw 25 NM Batery

Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

Client: WSP USA Inc.

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Batery Job ID: 890-1944-1 SDG: 31403236.022.0129.task.19.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1944-1	SS03	Solid	02/14/22 13:20	02/15/22 09:25	0.5	4
						5
						8
						9
						12

Relinquished by: (Signature)	or Aerico. A minimum charge of \$75	Notice: Signature of this document a of service. Xenco will be liable only of Yenco A minimum charge of \$75	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed				SS03	Sample Identification		Cooler Custody Seals:	<u> </u>	SAMPLE RECEIPT	Sampler's Name: Mercy Rotich.		er:	Name:	Phone: 432 704 5178	City, State ZIP: Midland			Project Manager: Kalei Jennings	
\bigcirc	no will be abbiled to each	and relinquishment of sam for the cost of samples an	200.8 / 6020: / Metal(s) to be analy	¢			S	Matrix	No.	Yes No WA		Temp Blank:	Rotich.	NAPP2201444794	31403236.022.0129 Task 19.02	Ross Draw 25 NM Battery	4 5178	Midland, Texas 79705	3300 North A Street	SA	ennings	AT DRIES
Received by: (Signature)	project allu a chaige or so c	ples constitutes a valid pur d shall not assume any res	8P				02/14/22 13:20	Date Time Sampled Sampled	Total Containers:	Correction Factor:	Thermometer ID	No Wet Ice:	Due Date:	Rush:	Ro	Ти	Email:					Houston, Midland Hobbs,NM (575-392-
	ioi each seinbic scon	chase order from clie ponsibility for any los for each sample subm	Texas 11 5010: 8RCF				0.5'	Depth		19.19		tes No	Date:		ine V	Turn Around	amy.ruth@exxc	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	TX (281) 240-4200 ,TX (432-704-5440) 7550) Phoenix,AZ (
0-15/2 8125		nt company to Xenco, its a ses or expenses incurred hitted to Xenco, but not any	Sb As Ba Be Sb As Ba Be				1 × × ×	Numb TPH (E BTEX Chlorie	PA 80	15) =802	1)	5					Email: amy.ruth@exxonmobil.com,aimee.cole@wsp.com	Carlsbad, NM 88220	3104 E Green Street	XTO Energy	Amy Ruth	Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)7 575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tam
Relinquished by: (Signature)		Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of an incimum charge of the cost of samples and a charge of 55 for each sample submitted to Xenco. but not analyzed. These terms will be enforced unless previously negotiated.	B Cd Ca Cr Co Cu Fe Pt Cd Cr Co Cu Pb Mn Mo								800-1944 Ch					ANALYSIS REQUEST	cole@wsp.com	20	eet			Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)
		s standard terms and conditions ircumstances beyond the control iless previously negotiated.	CuFePbMgMnMoNiKSe/ 5 MnMoNiSeAgTIU							-	800-1944 Chain of Custody					EST	Deliverables: EDD	Reporting:Level II evel III	- Ħ	Program: UST/PST		
Received by: (Signature)	() 		Ag SiO2 Na Sr TI Sn U 1631/245.1/747		_			Sa	lab	TAT star				CC: 1		Wa	ADaPT			RP prownfields RC	Work Order Comments	Work Order No:
Date/Time			Na Sr TI Sn U V Zn 1631/245.1/7470 /7471 : Hg				Discrete	Sample Comments	lab, if received by 4:30pm	TAT starts the day recevied by the				CC: 1056301001		Work Order Notes	Other:			RC ¶perfund [ίσ Ι	of

Page 53 of 137

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1944 List Number: 1

Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	False	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-1944-1

List Source: Eurofins Carlsbad

SDG Number: 31403236.022.0129.task.19.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1944

List Number: 2

<6mm (1/4").

Job Number: 890-1944-1

SDG Number: 31403236.022.0129.task.19.02

List Source: Eurofins Midland 5 6 7 8 9 10 11 12 13 List Creation: 02/16/22 12:10 PM

14

Creator: Kramer, Jessica			
Question	Answer	Comment	
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is	N/A		

Received by OCD: 10/20/2022 11:22:31 AM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1945-1

Laboratory SDG: 31403236.022.0129task19.02 Client Project/Site: Ross Draw 25 NM Battery

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 2/22/2022 3:38:00 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at:

www.eurofinsus.com/Env Released to Imaging: 1/13/2023 2:22:48 PM

•

Laboratory Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Client: WSP USA Inc.

Qualifiers		- 3
GC VOA		
Qualifier	Qualifier Description	_ 4
F1	MS and/or MSD recovery exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	5
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	-
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	_
U	Indicates the analyte was analyzed for but not detected.	
Glossary		-
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	- 10
%R	Percent Recovery	
CFL	Contains Free Liquid	4.9
CFU	Colony Forming Unit	13
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Relative Error Ratio (Radiochemistry)

Quality Control

QC

RER

RPD

RL

4

Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Job ID: 890-1945-1

Client: WSP USA Inc.

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1945-1

Receipt

The sample was received on 2/15/2022 9:36 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS02 (890-1945-1) and (880-11299-A-1-J). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-19793 and analytical batch 880-19796 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-19555 and analytical batch 880-19569 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (880-11287-A-38-E MS). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Lab Sample ID: 890-1945-1

Matrix: Solid

5

Client Sample ID: SS02 Date Collected: 02/14/22 12:02 Date Received: 02/15/22 09:36 Sample Depth: 0.5

Client: WSP USA Inc.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00199	U	0.00199	mg/Kg		02/18/22 09:11	02/19/22 23:53	
Toluene	<0.00199	U	0.00199	mg/Kg		02/18/22 09:11	02/19/22 23:53	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/18/22 09:11	02/19/22 23:53	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/18/22 09:11	02/19/22 23:53	
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/18/22 09:11	02/19/22 23:53	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/18/22 09:11	02/19/22 23:53	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)		S1+	70 - 130			02/18/22 09:11	02/19/22 23:53	
1,4-Difluorobenzene (Surr)	96		70 - 130			02/18/22 09:11	02/19/22 23:53	
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Fotal BTEX	<0.00398	U	0.00398	mg/Kg			02/22/22 12:09	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	<49.9	U	49.9	mg/Kg			02/17/22 13:29	
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/16/22 08:38	02/16/22 20:18	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/16/22 08:38	02/16/22 20:18	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/16/22 08:38	02/16/22 20:18	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
1-Chlorooctane	94		70 - 130			02/16/22 08:38	02/16/22 20:18	
p-Terphenyl	96		70 - 130			02/16/22 08:38	02/16/22 20:18	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Chloride	51.3		4.95	mg/Kg			02/20/22 20:01	

Surrogate Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-11299-A-1-H MS	Matrix Spike	144 S1+	81		
880-11299-A-1-I MSD	Matrix Spike Duplicate	139 S1+	96		6
890-1945-1	SS02	149 S1+	96		
LCS 880-19793/1-A	Lab Control Sample	115	89		
LCSD 880-19793/2-A	Lab Control Sample Dup	145 S1+	89		
MB 880-19708/5-A	Method Blank	102	77		8
MB 880-19793/5-A	Method Blank	103	77		
Surrogate Legend					9
BFB = 4-Bromofluorobe	nzene (Surr)				_

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		13
880-11287-A-38-E MS	Matrix Spike	71	66 S1-		
880-11287-A-38-F MSD	Matrix Spike Duplicate	84	77		
890-1945-1	SS02	94	96		
• · · ·					

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix:	Solid
---------	-------

_				Percent Surrogate Recovery (Acceptance Limits)
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-19555/2-A	Lab Control Sample	108	123	
LCSD 880-19555/3-A	Lab Control Sample Dup	102	118	
MB 880-19555/1-A	Method Blank	82	91	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 61 of 137

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-19708	/ 5-A								Client Sa	mple ID: Meth	
Matrix: Solid										Prep Type:	
Analysis Batch: 19796	MB	МВ								Prep Bato	:n: 19700
Analyte		Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/K	a	_		8/22 08:00	02/19/22 07:56	
Toluene	<0.00200		0.00200		mg/K	-			8/22 08:00	02/19/22 07:56	
Ethylbenzene	<0.00200		0.00200		mg/K	-			8/22 08:00	02/19/22 07:56	
m-Xylene & p-Xylene	<0.00400		0.00400		mg/K				8/22 08:00	02/19/22 07:56	
o-Xylene	< 0.00200	U	0.00200		mg/K				8/22 08:00	02/19/22 07:56	
Xylenes, Total	< 0.00400		0.00400		mg/K	-			8/22 08:00	02/19/22 07:56	
· · · · · · · · · · · · · · · · · · ·						3					
	MB	MB						_			
Surrogate	%Recovery	Qualifier	Limits						repared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		70 - 130						8/22 08:00	02/19/22 07:56	
1,4-Difluorobenzene (Surr)	77		70 - 130					02/1	8/22 08:00	02/19/22 07:56	
Lab Sample ID: MB 880-19793	/ 5- A								Client Sa	mple ID: Meth	od Blani
Matrix: Solid										Prep Type:	
Analysis Batch: 19796										Prep Bato	
	МВ	МВ								Trop But	
Analyte	Result		RL		Unit		D	Р	repared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		<u></u>	a	-		8/22 09:11	02/19/22 22:03	
Toluene	< 0.00200		0.00200		mg/K				8/22 09:11	02/19/22 22:03	
Ethylbenzene	<0.00200		0.00200		mg/K				8/22 09:11	02/19/22 22:03	
m-Xylene & p-Xylene	<0.00200		0.00200		mg/K				8/22 09:11	02/19/22 22:03	
o-Xylene	< 0.00400	U	0.00400		mg/K	-			8/22 09:11	02/19/22 22:03	
Xylenes, Total	<0.00200	U	0.00200		mg/K	-			8/22 09:11	02/19/22 22:03	
Aylenes, Total	~0.00+00	0	0.00400		iiig/it	9		02/1	0/22 03.11	02/19/22 22:03	
	MB	МВ									
Surrogate	%Recovery	Qualifier	Limits						repared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	103		70 - 130						8/22 09:11	02/19/22 22:03	
1,4-Difluorobenzene (Surr)	77		70 - 130					02/1	8/22 09:11	02/19/22 22:03	
Lab Sample ID: LCS 880-1979	3/1-A						С	lient	Sample	ID: Lab Contro	I Sample
Matrix: Solid										Prep Type:	
Analysis Batch: 19796										Prep Bato	
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.07587		mg/Kg			76	70 - 130	
Toluene			0.100	0.07526		mg/Kg			75	70 - 130	
Ethylbenzene			0.100	0.07693		mg/Kg			77	70 - 130	
m-Xylene & p-Xylene			0.200	0.1567		mg/Kg			78	70 - 130	
o-Xylene			0.100	0.07923		mg/Kg			79	70 - 130	
			0.100	0.01020							
	LCS LCS										
Surrogate	<u>_</u>	lifier	Limits								
4-Bromofluorobenzene (Surr)	115		70 - 130								
1,4-Difluorobenzene (Surr)	89		70 - 130								
Lab Sample ID: LCSD 880-197	93/2-4					C	iont	Sam	nle ID· L	ab Control Sar	nnle Duu
Matrix: Solid	VVIE-M						iont	Gail	.pic 10. L	Prep Type:	
										Prep Bate	
Analysis Ratch: 10706											
Analysis Batch: 19796			Spike		LCSD					%Rec.	RPI

Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

1 12 13

Eurofins Carlsbad

18

Benzene

0.09073

mg/Kg

91

70 - 130

0.100

35

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-1	9793/2-A					Clier	nt Sam	ple ID: I	Lab Contro		
Matrix: Solid										уре: То	
Analysis Batch: 19796										Batch:	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.09648		mg/Kg		96	70 - 130	25	35
Ethylbenzene			0.100	0.08867		mg/Kg		89	70 - 130	14	35
m-Xylene & p-Xylene			0.200	0.1910		mg/Kg		96	70 - 130	20	35
o-Xylene			0.100	0.1058		mg/Kg		106	70 - 130	29	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)		S1+	70 - 130								
1,4-Difluorobenzene (Surr)	89		70 - 130								
Lab Sample ID: 880-11299-4	A-1-H MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep 1	ype: To	tal/N/
Analysis Batch: 19796									Prep	Batch:	19793
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00200	U	0.0996	0.08199		mg/Kg		82	70 - 130		
Toluene	<0.00200	U F1	0.0996	0.07571		mg/Kg		76	70 _ 130		
Ethylbenzene	<0.00200	U F1	0.0996	0.06193	F1	mg/Kg		62	70 - 130		
m-Xylene & p-Xylene	<0.00399	U F1	0.199	0.1174	F1	mg/Kg		59	70 - 130		
o-Xylene	<0.00200	U F1	0.0996	0.06428	F1	mg/Kg		65	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	144	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	81		70 - 130								
Lab Sample ID: 880-11299-4	A-1-I MSD					CI	ient Sa	ample ID): Matrix Sp	oike Dur	olicate
Matrix: Solid										ype: To	
Analysis Batch: 19796										Batch:	
,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	•	•	•	Desult	Qualifian	Unit	D	%Rec	Limits	RPD	Linai
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	U	%Rec	Limits	RPD	Limi
Analyte Benzene	Result <0.00200	Qualifier	Added	0.07496	Quaimer	mg/Kg		75	70 - 130	9	35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

<0.00200 UF1

<0.00399 UF1

<0.00200 UF1

MSD MSD %Recovery Qualifier

139 S1+

96

Lab Sample ID: MB 880-19555/1-A Matrix: Solid Analysis Batch: 19569	MB	МВ				Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte		Qualifier	RL	Unit ma/Ka	<u> </u>	Prepared 02/16/22 08:38	Analyzed	Dil Fac
(GRO)-C6-C10	00.0	•	00.0			02,10,22,00,00	0	·

0.100

0.200

0.100

Limits

70 - 130

70 - 130

0.05698 F1

0.1075 F1

0.06171 F1

mg/Kg

mg/Kg

mg/Kg

57

54

62

70 - 130

70 - 130

70 - 130

Page 63 of 137

Eurofins Carlsbad

8

9

4

35

35

35

Ethylbenzene

o-Xylene

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: WSP USA Inc. Proje

Job ID: 890-1945-1 0task19.02

ethod: 8015B NM - Diese		manics (DP	20) (GC) (Co	ntinue	d)							
		games (Di		minue	,uj							
Lab Sample ID: MB 880-19555	/1-A								Client S	ample ID: N		
Matrix: Solid										Prep Ty		
Analysis Batch: 19569										Prep	Batch:	1955:
	_	MB MB					_	_				
Analyte		esult Qualifier			Unit		D		repared	Analyze		Dil Fac
Diesel Range Organics (Over C10-C28)	<	50.0 U	50.0		mg/K	g		02/16	6/22 08:38	02/16/22 1	1:41	1
OII Range Organics (Over C28-C36)	<	50.0 U	50.0		mg/K	n		02/16	6/22 08:38	02/16/22 1	1.41	1
		00.0 0	00.0		ingri	9		02,10	0,22 00.00	02/10/22 1		
		MB MB										
Surrogate	%Reco	very Qualifier	Limits				_	Pr	repared	Analyze	ed	Dil Fac
1-Chlorooctane		82	70 - 130					02/16	6/22 08:38	02/16/22 1	1:41	1
p-Terphenyl		91	70 - 130					02/16	6/22 08:38	02/16/22 1	1:41	1
Lab Sample ID: LCS 880-1955	5/2-4						Cli	iont	Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid	J/2-A						CII	ent	Sample			
										Prep Ty		
Analysis Batch: 19569			Spike	LCS	1.05					%Rec.	Batch:	19000
Analyte			Added		Qualifier	Unit		D	%Rec	Limits		
Analyte Gasoline Range Organics			1000	1005	quaimer			<u> </u>	100 %	70 - 130		
Gasoline Range Organics GRO)-C6-C10			1000	1005		mg/Kg			100	10 - 130		
Diesel Range Organics (Over			1000	1044		mg/Kg			104	70 - 130		
C10-C28)						0 0						
	105	LCS										
	200											
Surrogate	%Recovery	Qualifier	Limits									
Surrogate		Qualifier	Limits 70 - 130									
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195	%Recovery 108 123	Qualifier				CI	ient S	Sam	ple ID: L	ab Control		
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569	%Recovery 108 123	Qualifier	70 - 130 70 - 130 Spike	LCSD			ient S		-	Prep Ty Prep %Rec.	ype: To Batch:	tal/NA 19555 RPD
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte	%Recovery 108 123	Qualifier	70 - 130 70 - 130 Spike Added	Result	LCSD Qualifier	Unit	ient S	Sam	%Rec	Prep Ty Prep %Rec. Limits	pe: To Batch: RPD	tal/NA 19555 RPD Limit
I-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics	%Recovery 108 123	Qualifier	70 - 130 70 - 130 Spike				ient S		-	Prep Ty Prep %Rec.	ype: To Batch:	tal/NA 19555 RPD
I-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10	%Recovery 108 123	Qualifier	70 - 130 70 - 130 Spike Added 1000	Result 975.8		Unit mg/Kg	ient S		% Rec 98	Prep Ty Prep %Rec. Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 19555 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 108 123	Qualifier	70 - 130 70 - 130 Spike Added	Result		Unit	ient S		%Rec	Prep Ty Prep %Rec. Limits	pe: To Batch: RPD	tal/NA 19555 RPD Limit
I-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10	%Recovery 108 123 555/3-A		70 - 130 70 - 130 Spike Added 1000	Result 975.8		Unit mg/Kg	ient S		% Rec	Prep Ty Prep %Rec. Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 19555 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<u>%Recovery</u> 108 123 555/3-A		70 - 130 70 - 130 Spike Added 1000	Result 975.8		Unit mg/Kg	ient S		% Rec	Prep Ty Prep %Rec. Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 19555 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery 108 123 555/3-A LCSD %Recovery		70 - 130 70 - 130 Spike Added 1000 1000	Result 975.8		Unit mg/Kg	ient S		% Rec	Prep Ty Prep %Rec. Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 19555 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	<u>%Recovery</u> 108 123 555/3-А 555/3-А <i>LCSD</i> <u>%Recovery</u> 102		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 975.8		Unit mg/Kg	ient S		% Rec	Prep Ty Prep %Rec. Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 19555 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery 108 123 555/3-A LCSD %Recovery		70 - 130 70 - 130 Spike Added 1000 1000	Result 975.8		Unit mg/Kg	ient \$		% Rec	Prep Ty Prep %Rec. Limits 70 - 130	ype: To Batch: RPD 3	tal/NA 19555 RPD Limit
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl	%Recovery 108 123 555/3-A %Recovery 102 118		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 975.8		Unit mg/Kg	ient S		%Rec 98 101	Prep Ty Prep %Rec. Limits 70 - 130 70 - 130	ype: To Batch: RPD 3 3	otal/NA 19555 RPD Limit 20 20
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	%Recovery 108 123 555/3-A %Recovery 102 118		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 975.8		Unit mg/Kg	ient S		%Rec 98 101	Prep Ty Prep %Rec. Limits 70 - 130 70 - 130 70 - 130	ype: To Batch: RPD 3 3 3 Matrix	tal/NA 19555 RPC Limit 20 20
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3	%Recovery 108 123 555/3-A %Recovery 102 118		70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 975.8		Unit mg/Kg	ient S		%Rec 98 101	Prep Ty %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty	ype: To Batch: RPD 3 3 3 3 Matrix ype: To	tal/NA 19555 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid	%Recovery 108 123 555/3-A %Recovery 102 118	LCSD Qualifier	70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 975.8	Qualifier	Unit mg/Kg	ient S		%Rec 98 101	Prep Ty %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty	ype: To Batch: RPD 3 3 3 Matrix	tal/NA 19555 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid	%Recovery 108 123 555/3-A %Recovery 102 118 68-E MS Sample	LCSD Qualifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130	Result 975.8 1013 MS	Qualifier	Unit mg/Kg	ient \$		%Rec 98 101	Prep Ty %Rec. Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty Prep Ty Prep Ty Prep Ty Prep Ty	ype: To Batch: RPD 3 3 3 3 Matrix ype: To	tal/NA 19555 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics	%Recovery 108 123 555/3-A %Recovery 102 118 68-E MS Sample	LCSD Qualifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 975.8 1013 MS	Qualifier	Mg/Kg	ient \$ 	<u>D</u> .	%Rec 98 101	Prep Ty Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 8 8 8 9 7 9 7 9 7 9 7 9 7 9 7 9 7	ype: To Batch: RPD 3 3 3 3 Matrix ype: To	tal/NA 19555 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10	%Recovery 108 123 555/3-A %Recovery 102 118 88-E MS Sample Result <50.0	LCSD Qualifier Sample Qualifier U F2	70 - 130 70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 1000 Limits 1000	Result 975.8 1013 MS Result 933.5	Qualifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg	ient \$ 	<u>D</u> .	%Rec 98 101 Client %Rec 91	Prep Ty Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. Prep Ty Prep Ty %Rec. Limits 70 - 130	ype: To Batch: RPD 3 3 3 3 Matrix ype: To	tal/NA 19555 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics	%Recovery 108 123 555/3-A %Recovery 102 118 88-E MS Sample Result	LCSD Qualifier Sample Qualifier U F2	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 975.8 1013 MS Result	Qualifier	Unit mg/Kg mg/Kg	ient \$ 	<u>D</u> .	%Rec 98 101 Client	Prep Ty Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 8 9 9 9 9 8 8 9 7 9 7 9 9 9 7 9 9 7 9 7	ype: To Batch: RPD 3 3 3 3 Matrix ype: To	tal/NA 19555 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 108 123 555/3-A %Recovery 102 118 88-E MS Sample Result <50.0	LCSD Qualifier Qualifier U F2 U F1	70 - 130 70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 1000 Limits 1000	Result 975.8 1013 MS Result 933.5	Qualifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg	ient \$	<u>D</u> .	%Rec 98 101 Client %Rec 91	Prep Ty Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. Prep Ty Prep Ty %Rec. Limits 70 - 130	ype: To Batch: RPD 3 3 3 3 Matrix ype: To	tal/NA 19555 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 108 123 555/3-A %Recovery 102 118 88-E MS Sample Result <50.0	LCSD Qualifier Qualifier U F2 U F1	70 - 130 70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 1000 Limits 1000	Result 975.8 1013 MS Result 933.5	Qualifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg	ient \$	<u>D</u> .	%Rec 98 101 Client %Rec 91	Prep Ty Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. Prep Ty Prep Ty %Rec. Limits 70 - 130	ype: To Batch: RPD 3 3 3 3 Matrix ype: To	tal/NA 19555 RPC Limit 20 20 Spike
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-195 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl Lab Sample ID: 880-11287-A-3 Matrix: Solid Analysis Batch: 19569 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 108 123 555/3-A %Recovery 102 118 88-E MS Sample Result <50.0	LCSD Qualifier Qualifier U F2 U F1 MS	70 - 130 70 - 130 Spike Added 1000 1000 1000 1000 5pike 70 - 130 70 - 130 70 - 130 70 - 130 1000 1000 1000 1000	Result 975.8 1013 MS Result 933.5	Qualifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg	ient \$	<u>D</u> .	%Rec 98 101 Client %Rec 91	Prep Ty Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 %Rec. Prep Ty Prep Ty %Rec. Limits 70 - 130	ype: To Batch: RPD 3 3 3 3 Matrix ype: To	tal/NA 19555 RPC Limit 20 20 Spike

Eurofins Carlsbad

hod Blank : Total/NA tch: 19555 Dil Fac 1 1 Dil Fac 1 1 ol Sample : Total/NA tch: 19555

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid): Matrix Sp Prep 1	Type: To	
Analysis Batch: 19569										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec.	Batom	RPE
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<50.0		998	1256		mg/Kg		123	70 - 130	29	2
(GRO)-C6-C10	0010	0.1		.200				.20		_0	_
Diesel Range Organics (Over C10-C28)	<50.0	U F1	998	1394	F1	mg/Kg		140	70 - 130	15	2
	мер	MCD									
0	MSD		1 : :4								
Surrogate 1-Chlorooctane	%Recovery 84	Qualifier	Limits 70 - 130								
o-Terphenyl	84 77		70 - 130 70 - 130								
o-reiphenyi	//		70 - 730								
lethod: 300.0 - Anions, Ion	Chromat	ography									
Lab Sample ID: MB 880-19776/1	1-A							Client S	Sample ID:	Method	Blan
Matrix: Solid									Prep	Type: So	olubl
Analysis Batch: 19882											
		MB MB									
Analyte	Re	esult Qualifier	R	<u> </u>	Unit		D P	repared	Analyz	ed	Dil Fa
Chloride	<	5.00 U	5.0	0	mg/K	g			02/20/22	17:28	
Lab Sample ID: LCS 880-19776	/ 2-A						Client	Sample	BID: Lab Co	ontrol Sa	ampl
									_		
Matrix: Solid									Prep	Type: So	olubl
Matrix: Solid										Type: So	olubl
Matrix: Solid Analysis Batch: 19882			Spike		LCS				%Rec.	Type: So	olubl
Matrix: Solid Analysis Batch: 19882 ^{Analyte}			Added	Result	LCS Qualifier	Unit	D	%Rec	%Rec. Limits	Type: So	olubl
Matrix: Solid Analysis Batch: 19882 Analyte			•			Unit mg/Kg	D	%Rec 103	%Rec.	Type: So	olubl
Matrix: Solid Analysis Batch: 19882 Analyte Chloride			Added	Result		mg/Kg		103	%Rec. Limits 90 - 110		
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977	6/3-A		Added	Result		mg/Kg		103	%Rec. Limits 90 - 110		e Du
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid	'6/3-A		Added	Result		mg/Kg		103	%Rec. Limits 90 - 110		e Du
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid	'6/3-A		Added	Result 256.5	Qualifier	mg/Kg		103	%Rec. Limits 90 - 110 Lab Contro Prep		e Du olubi
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882	'6/3-A		Added 250 Spike	Result 256.5	Qualifier	mg/Kg Clie	ent Sam	103	%Rec. Limits 90 - 110 Lab Contro Prep %Rec.	ol Sampl Type: So	e Duj oluble RPI
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte	'6/3-A		Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie		103	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits	ol Sampl Type: So 	e Duj olubl RPI Lim
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte	6/3-A		Added 250 Spike	Result 256.5	Qualifier	mg/Kg Clie	ent Sam	103	%Rec. Limits 90 - 110 Lab Contro Prep %Rec.	ol Sampl Type: So	e Duj olubl RPI Lim
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride			Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie	ent Sam	103 pple ID: %Rec 104	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110	ol Sampl Type: So <u>RPD</u> 1	e Duj olubi RPI Lim 2
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M			Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie	ent Sam	103 ople ID: %Rec 104	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	ol Sampl Type: So <u>1</u> : Matrix	e Duj olubi RPI Lim 2 Spik
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid			Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie	ent Sam	103 ople ID: %Rec 104	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	ol Sampl Type: So <u>RPD</u> 1	e Duj olublo RPI Limi 2 Spiko
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid	IMS		Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier	mg/Kg Clie	ent Sam	103 ople ID: %Rec 104	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep	ol Sampl Type: So <u>1</u> : Matrix	e Duj olublo RPI Limi 2 Spiko
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid Analysis Batch: 19882	I MS Sample	-	Added 250 Spike Added 250 Spike	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	103 aple ID: %Rec 104 Client	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	ol Sampl Type: So <u>1</u> : Matrix	e Duj olubl RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid Analysis Batch: 19882 Analyte	I MS Sample Result	Sample Qualifier	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier	mg/Kg Clie Unit mg/Kg	ent Sam	103 pple ID: 1 %Rec 104 Client %Rec	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits	ol Sampl Type: So <u>1</u> : Matrix	e Duj olublo RPI Limi 2 Spiko
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid Analysis Batch: 19882 Analyte	I MS Sample	-	Added 250 Spike Added 250 Spike	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	103 aple ID: %Rec 104 Client	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	ol Sampl Type: So <u>1</u> : Matrix	e Duj olubl RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid Analysis Batch: 19882 Analyte Chloride	I MS Sample Result 89.9	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	ont Sam	103 nple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	el Sampl Type: So <u>RPD</u> 1 : Matrix Type: So	e Duj olubi RPI Lim 2 Spika olubi
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-N	I MS Sample Result 89.9	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	ont Sam	103 nple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	I Sampl Type: So <u>RPD</u> 1 : Matrix Type: So 	e Duj olubi RPI Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid	I MS Sample Result 89.9	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	ont Sam	103 nple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	el Sampl Type: So <u>RPD</u> 1 : Matrix Type: So	e Duj olubi RPI Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M Matrix: Solid	I MS Sample Result 89.9 MSD	Qualifier	Added 250 Spike Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0 MS Result 327.9	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg	ont Sam	103 nple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 O: Matrix Sp Prep	I Sampl Type: So <u>RPD</u> 1 : Matrix Type: So 	e Duy oluble Limi 2 Spike oluble
Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1977 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-6-M	I MS Sample Result 89.9 MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS 327.9	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	ont Sam	103 nple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	I Sampl Type: So <u>RPD</u> 1 : Matrix Type: So 	e Dup oluble RPE Limi 20 Spike oluble

Eurofins Carlsbad

QC Association Summary

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

Client Sample ID

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Method Blank

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

SS02

Method Blank

Matrix Spike

SS02

Method Blank

GC VOA

Prep Batch: 19708

MB 880-19708/5-A

Prep Batch: 19793 Lab Sample ID

MB 880-19793/5-A

LCS 880-19793/1-A

LCSD 880-19793/2-A

880-11299-A-1-H MS

880-11299-A-1-I MSD

Lab Sample ID

MB 880-19708/5-A

MB 880-19793/5-A

LCS 880-19793/1-A

LCSD 880-19793/2-A

880-11299-A-1-H MS

890-1945-1

Analysis Batch: 19796

Lab Sample ID

890-1945-1

Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Method

Method

5035

5035

5035

5035

5035

5035

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

8015 NM

5035

Prep Batch

Prep Batch

Prep Batch

19793

19708 19793

19793

19793

19793

19793

5 8

880-11299-A-1-I MSD Analysis Batch: 20046

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1945-1	SS02	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 19555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1945-1	SS02	Total/NA	Solid	8015NM Prep	
MB 880-19555/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-19555/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-19555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-11287-A-38-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-11287-A-38-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 19569

890-1945-1

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1945-1	SS02	Total/NA	Solid	8015B NM	19555
MB 880-19555/1-A	Method Blank	Total/NA	Solid	8015B NM	19555
LCS 880-19555/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	19555
LCSD 880-19555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	19555
880-11287-A-38-E MS	Matrix Spike	Total/NA	Solid	8015B NM	19555
880-11287-A-38-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	19555
Analysis Batch: 19702					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Total/NA

SS02

QC Association Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

SS02

Matrix Spike

Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Prep Batch

8

Eurofins Carlsbad

Client Sample ID Method Matrix Prep Type Soluble Solid DI Leach Method Blank Soluble Solid DI Leach Lab Control Sample Soluble Solid DI Leach DI Leach Lab Control Sample Dup Soluble Solid Soluble Solid DI Leach Matrix Spike Duplicate Soluble Solid DI Leach

Analysis Batch: 19882

HPLC/IC

Leach Batch: 19776

Lab Sample ID

MB 880-19776/1-A

LCS 880-19776/2-A

LCSD 880-19776/3-A

890-1938-A-6-M MS

890-1938-A-6-N MSD

890-1945-1

—					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1945-1	SS02	Soluble	Solid	300.0	19776
MB 880-19776/1-A	Method Blank	Soluble	Solid	300.0	19776
LCS 880-19776/2-A	Lab Control Sample	Soluble	Solid	300.0	19776
LCSD 880-19776/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	19776
890-1938-A-6-M MS	Matrix Spike	Soluble	Solid	300.0	19776
890-1938-A-6-N MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	19776

Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Lab Sample ID: 890-1945-1 Matrix: Solid

Client Sample ID: SS02 Date Collected: 02/14/22 12:02 Date Received: 02/15/22 09:36

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			19793	02/18/22 09:11	KL	XEN MID
Total/NA	Analysis	8021B		1	19796	02/19/22 23:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1	20046	02/22/22 12:09	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	19702	02/17/22 13:29	AJ	XEN MID
Total/NA	Prep	8015NM Prep			19555	02/16/22 08:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1	19569	02/16/22 20:18	AJ	XEN MID
Soluble	Leach	DI Leach			19776	02/17/22 21:54	СН	XEN MID
Soluble	Analysis	300.0		1	19882	02/20/22 20:01	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

10

Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Project/Site: Ross Draw 25 NM Battery

Client: WSP USA Inc.

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ithority		rogram	Identification Number	Expiration Date
xas	N	ELAP	T104704400-21-22	06-30-22
The following analytes the agency does not o	•	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w
0,		Matrix	Analyte	
Analysis Method 8015 NM	Prep Method	Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Method Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XEN MID
otal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
00.0	Anions, Ion Chromatography	MCAWW	XEN MID
035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
I Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 70 of 137

Sample Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1945-1 SDG: 31403236.022.0129task19.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1945-1	SS02	Solid	02/14/22 12:02	02/15/22 09:36	0.5	4
						5
						8
						9
						12
						13

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1945 List Number: 1

Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate ITs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-1945-1

SDG Number: 31403236.022.0129task19.02

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1945

Creator: Kramer, Jessica

List Number: 2

Job Number: 890-1945-1 SDG Number: 31403236.022.0129task19.02

> List Source: Eurofins Midland List Creation: 02/16/22 12:10 PM

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 10/20/2022 11:22:31 AM

eurofins 🔅

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1946-1

Laboratory SDG: 31403236.022.0129.task19.02 Client Project/Site: Ross Draw 25 NM Battery

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Kalei Jennings

RAMER

Authorized for release by: 2/22/2022 3:48:14 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** Ask-The Expert Visit us at: www.eurofinsus.com/Env

Released to Imaging: 1/13/2023 2:22:48 PM

Laboratory Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Project/Site: Ross Draw 25 NM Battery

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Qualifiers

Client: WSP USA Inc.

guunnero		 3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	_
F2	MS/MSD RPD exceeds control limits	5
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	8
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	9
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	4.0
CFL	Contains Free Liquid	13
CFU	Colony Forming Unit	

CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Project/Site: Ross Draw 25 NM Battery

4

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Job ID: 890-1946-1

Client: WSP USA Inc.

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-1946-1

Receipt

The sample was received on 2/15/2022 9:25 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-19710 and analytical batch 880-19783 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-19555 and analytical batch 880-19569 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (880-11287-A-38-E MS). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

Method: 8021B - Volatile Organic Compounds (GC)

Client Sample ID: SS01

Date Collected: 02/14/22 11:58 Date Received: 02/15/22 09:25

Sample Depth: 0.5

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Lab Sample ID: 890-1946-1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U F2 F1	0.00199	mg/Kg		02/18/22 08:30	02/19/22 12:24	1
Toluene	<0.00199	U F2 F1	0.00199	mg/Kg		02/18/22 08:30	02/19/22 12:24	1
Ethylbenzene	<0.00199	U F2 F1	0.00199	mg/Kg		02/18/22 08:30	02/19/22 12:24	1
m-Xylene & p-Xylene	<0.00398	U F2 F1	0.00398	mg/Kg		02/18/22 08:30	02/19/22 12:24	1
o-Xylene	<0.00199	U F2 F1	0.00199	mg/Kg		02/18/22 08:30	02/19/22 12:24	1
Xylenes, Total	<0.00398	U F2 F1	0.00398	mg/Kg		02/18/22 08:30	02/19/22 12:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130			02/18/22 08:30	02/19/22 12:24	1
1,4-Difluorobenzene (Surr)	103		70 - 130			02/18/22 08:30	02/19/22 12:24	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/21/22 19:46	1
– Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			02/17/22 13:29	1
– Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 20:38	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 20:38	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 20:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130			02/16/22 08:38	02/16/22 20:38	1
o-Terphenyl	101		70 - 130			02/16/22 08:38	02/16/22 20:38	1
_ Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10400		101	mg/Kg			02/20/22 20:08	20

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-1946-1	SS01	128	103	
890-1946-1 MS	SS01	120	109	
890-1946-1 MSD	SS01	138 S1+	120	
LCS 880-19710/1-A	Lab Control Sample	113	95	
LCSD 880-19710/2-A	Lab Control Sample Dup	113	90	
MB 880-19707/5-A	Method Blank	119	98	
MB 880-19710/5-A	Method Blank	136 S1+	106	
Surrogate Legend				

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-11287-A-38-E MS	Matrix Spike	71	66 S1-		_
880-11287-A-38-F MSD	Matrix Spike Duplicate	84	77		
890-1946-1	SS01	98	101		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

				Percent Surrogate Recovery (Acceptance Limits)
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-19555/2-A	Lab Control Sample	108	123	
LCSD 880-19555/3-A	Lab Control Sample Dup	102	118	
MB 880-19555/1-A	Method Blank	82	91	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-19707/ Matrix: Solid	5-A								Client Sa	mple ID: Meth	
										Prep Type:	
Analysis Batch: 19783	м	B MB								Prep Bato	n: 1970
Analyte		lt Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil Fa
Benzene	<0.0020	00 U	0.00200		mg/K	a	_		8/22 08:00	02/19/22 00:17	
Toluene	<0.0020		0.00200		mg/K	-			8/22 08:00	02/19/22 00:17	
Ethylbenzene	<0.0020		0.00200		mg/K	-			8/22 08:00	02/19/22 00:17	
m-Xylene & p-Xylene	< 0.0040		0.00400		mg/K				8/22 08:00	02/19/22 00:17	
o-Xylene	< 0.0020		0.00200		mg/K	-			8/22 08:00	02/19/22 00:17	
Xylenes, Total	<0.0020		0.00200		mg/K	-			8/22 08:00	02/19/22 00:17	
						5					
	M							_			
Surrogate	%Recove		Limits						repared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	11		70 - 130						8/22 08:00	02/19/22 00:17	
1,4-Difluorobenzene (Surr)	S	98	70 - 130					02/1	8/22 08:00	02/19/22 00:17	
Lab Sample ID: MB 880-19710/	5-A								Client Sa	mple ID: Meth	od Blani
Matrix: Solid										Prep Type:	
Analysis Batch: 19783										Prep Bato	
,	м	B MB									
Analyte	Resu	It Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil Fa
Benzene	<0.0020		0.00200			mg/Kg		02/18/22 08:30		02/19/22 11:55	
Toluene	<0.0020		0.00200		-	mg/Kg		02/18/22 08:30		02/19/22 11:55	
Ethylbenzene	< 0.0020		0.00200		mg/Kg			02/18/22 08:30		02/19/22 11:55	
m-Xylene & p-Xylene	<0.0040	0 U	0.00400		mg/K				8/22 08:30	02/19/22 11:55	
o-Xylene	<0.0020		0.00200		mg/K	-			8/22 08:30	02/19/22 11:55	
Xylenes, Total	<0.0040		0.00400		mg/K	-		02/18/22 08:30		02/19/22 11:55	
Surrogate	%Recove	B MB ry Qualifier	Limits						repared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		-	70 - 130						8/22 08:30	02/19/22 11:55	
1,4-Difluorobenzene (Surr)	10		- 70 - 130 70 - 130				02/18/22 08:30			02/19/22 11:55	
-											
Lab Sample ID: LCS 880-19710	/1 -A						С	lient	Sample	ID: Lab Contro	
Matrix: Solid										Prep Type:	
Analysis Batch: 19783										Prep Bato	h: 19710
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.08299		mg/Kg			83	70 - 130	
Toluene			0.100	0.09093		mg/Kg			91	70 - 130	
Ethylbenzene			0.100	0.08868		mg/Kg			89	70 - 130	
m-Xylene & p-Xylene			0.200	0.1786		mg/Kg			89	70 - 130	
o-Xylene			0.100	0.09383		mg/Kg			94	70 - 130	
	LCS L	cs									
Surrogate		ualifier	Limits								
4-Bromofluorobenzene (Surr)	113		70 - 130								
1,4-Difluorobenzene (Surr)	95		70 - 130								
-								_			
Lab Sample ID: LCSD 880-1971	10/2-A					Cli	ient	Sam	ple ID: L	ab Control San	
										Prep Type:	Total/N/
Matrix: Solid											
Matrix: Solid Analysis Batch: 19783										Prep Bato	
			Spike Added		LCSD Qualifier	Unit		D	%Rec	Prep Bato %Rec. Limits RF	RPI

4

Page 81 of 137

5

7 8

Job ID: 890-1946-1

SDG: 31403236.022.0129.task19.02

Benzene

0.07991

mg/Kg

80

70 - 130

0.100

35

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

								Drop T	Long L To	
								Fieh i	ype: To	tal/NA
								Prep	Batch:	1971
		Spike	LCSD	LCSD				%Rec.		RPI
		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
		0.100	0.09096		mg/Kg		91	70 - 130	0	3
		0.100	0.09346		mg/Kg		93	70 - 130	5	3
		0.200	0.1837		mg/Kg		92	70 - 130	3	3
		0.100	0.09380		mg/Kg		94	70 - 130	0	3
	ICSD									
		l imits								
	Quanner									
30		10 - 150								
NS								Client Sar	nple ID:	SS0
								Prep T	ype: To	tal/N/
								Prep	Batch:	1971
Sample	Sample	Spike	MS	MS				%Rec.		
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
<0.00199	U F2 F1	0.100	0.01806	F1	mg/Kg		18	70 - 130		
<0.00199	U F2 F1	0.100	0.01388	F1	mg/Kg		14	70 - 130		
<0.00199	U F2 F1	0.100	0.01685	F1			17	70 - 130		
		0.200	0.01635	F1			8	70 - 130		
		0.100			mg/Kg		18	70 - 130		
	МС									
		l imits								
	quamer									
ISD								Client Sar	nple ID:	SS0
								Prep T	ype: To	tal/N/
								Prep	Batch:	1971
Sample	Sample	Spike	MSD	MSD				%Rec.		RPI
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
< 0.00199	U F2 F1	0.0998	0.07436	F2	mg/Kg		75	70 - 130	122	3
<0.00199	U F2 F1	0.0998	0.06677	F2 F1	mg/Kg		67	70 - 130	131	3
<0.00199	U F2 F1	0.0998	0.06714	F2 F1	mg/Kg		67	70 - 130	120	3
<0.00398	U F2 F1	0.200	0.1285	F2 F1	mg/Kg		64	70 - 130	155	3
		0.0998			mg/Kg		66	70 - 130	116	3
Med	MED									
		l imite								
	011									
	%Recovery 113 90 AS Sample Result <0.00199	113 90 113 90 AS Sample Qualifier <0.00199	0.100 0.100 0.200 0.100 LCSD LCSD %Recovery Qualifier Limits 113 70 - 130 90 70 - 130 90 70 - 130 90 70 - 130 Added Spike Result Qualifier Added <0.00199	0.100 0.09096 0.100 0.09346 0.200 0.1837 0.100 0.09380 LCSD LCSD %Recovery Qualifier Limits 113 70 - 130 90 70 - 130 MS MS Result Qualifier Added Result <0.00199	0.100 0.09096 0.100 0.09346 0.200 0.1837 0.100 0.09380 LCSD LCSD %Recovery Qualifier Limits 113 70 - 130 90 70 - 130 MS MS Result Qualifier Added Result Qualifier 0.00199 U F2 F1 0.100 0.01806 F1 0.00199 U F2 F1 0.100 0.01885 F1 0.00199 U F2 F1 0.100 0.01885 F1 0.00199 U F2 F1 0.100 0.01756 F1 0.00199 U F2 F1 0.100 0.01756 F1 0.00199 U F2 F1 0.100 0.01756 F1 Qualifier Limits Qualifier Qualifier	0.100 0.09096 mg/Kg 0.100 0.09346 mg/Kg 0.200 0.1837 mg/Kg 0.100 0.09380 mg/Kg 0.100 0.09380 mg/Kg %Recovery Qualifier Limits 113 70 - 130 90 90 70 - 130 MS MS Ass Ms Ms Ms - 0.0199 UF2 F1 0.100 0.01806 F1 mg/Kg 0.00199 UF2 F1 0.100 0.01808 F1 mg/Kg 0.00199 UF2 F1 0.100 0.01685 F1 mg/Kg 0.00199 UF2 F1 0.100 0.01756 F1 mg/Kg 0.00199 UF2 F1 0.100 0.01756 F1 mg/Kg 70 - 130 109 70 - 130 109 70 - 130 MSD MSD	Image: Second system Second system Second system MSD MSD	Sample Sample Spike MS MS - 0.100 0.0936 mg/Kg 91 0.100 0.09346 mg/Kg 93 0.200 0.1837 mg/Kg 92 0.100 0.09380 mg/Kg 94 LCSD LCSD LCSD LCSD Ualifier Limits 113 70 - 130 90 70 - 130 90 70 - 130 SS Sample Sample Added Result Qualifier Unit D %Rec <0.00199	Image: Sample Sample Spike MS MS Client Sample Spike MSD MSD	Image: Sample sample source Spike source MS MS source MS MS source Client Sample lD: Prep Type: To Prep Batch: wkec. MSD 0.000 0.01685 F1 mg/Kg 9 70.130 0 MSD MSD 0.000 0.09380 mg/Kg 94 70.130 3 0.100 0.09380 mg/Kg 94 70.130 3 0 0.000 0.09380 mg/Kg 94 70.130 3 0 0.000 0.09380 mg/Kg 94 70.130 0 MS MS MS MS Prep Type: To Prep Type: To Prep Batch: %Rec. MREC Limits 70.130 </td

Lab Sample ID: MB 880-19555/1-A Matrix: Solid Analysis Batch: 19569						Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		02/16/22 08:38	02/16/22 11:41	1
(GRO)-C6-C10								

5

Page 82 of 137

		Q	C Sample I	Resu	lts					
Client: WSP USA Inc. Project/Site: Ross Draw 25 NM E	Battery						S	DG: 31403	Job ID: 89 236.022.0129.	
Method: 8015B NM - Diese		anics (DR	RO) (GC) (Co	ntinue	ed)					
Lab Sample ID: MB 880-19555	5/1-A							Client S	ample ID: Meth	od Blan
Matrix: Solid									Prep Type:	
Analysis Batch: 19569									Prep Bat	
	M	IB MB								
Analyte	Resu	ult Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (Over		.0 U	50.0		mg/K	g		/16/22 08:38	02/16/22 11:41	
C10-C28) Oll Range Organics (Over C28-C36)	<50	.0 U	50.0		mg/K	g	02	/16/22 08:38	02/16/22 11:41	
	M	IB MB								
Surrogate	%Recove	ry Qualifier	Limits					Prepared	Analyzed	Dil Fa
1-Chlorooctane		- 82	70 - 130				02	2/16/22 08:38	02/16/22 11:41	
o-Terphenyl	9	91	70 - 130				02	2/16/22 08:38	02/16/22 11:41	
Lab Sample ID: LCS 880-1955	5/2-A						Clie	nt Sample	ID: Lab Contro	ol Sample
Matrix: Solid									Prep Type:	Total/N/
Analysis Batch: 19569									Prep Bat	
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics			1000	1005		mg/Kg		100	70 - 130	
(GRO)-C6-C10			1000							
Diesel Range Organics (Over			1000	1044		mg/Kg		104	70 - 130	
C10-C28)										
	LCS L	cs								
Surrogate	%Recovery Q	ualifier	Limits							
1-Chlorooctane	108		70 - 130							
o-Terphenyl	123		70 - 130							
Lab Sample ID: LCSD 880-195	55/3-A					CI	ient Sa	mple ID: L	ab Control Sa	mple Dup
Matrix: Solid									Prep Type:	Total/NA
Analysis Batch: 19569									Prep Bat	ch: 1955
			Spike	LCSD	LCSD				%Rec.	RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits R	PD Limi
Gasoline Range Organics			1000	975.8		mg/Kg		98	70 - 130	3 20
(GRO)-C6-C10 Diesel Range Organics (Over			1000	1013		ma/Ka		101	70 - 130	3 20
C10-C28)			1000	1013		mg/Kg		101	10 - 150	5 20
010-020)										
	LCSD L									
Surrogate	%Recovery Q	ualifier	Limits							
1-Chlorooctane	102		70 - 130							
o-Terphenyl _	118		70 - 130							
Lab Sample ID: 880-11287-A-3	8-E MS							Client	Sample ID: Ma	trix Spike
Materia: Oallal									Data Tana	Tetel/NL

Client Sample ID: Matrix Spike Prep Type: Total/NA

Pron Batch: 10555

Analysis Batch: 19569									Pre	p Batch: 19555
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U F2	1000	933.5		mg/Kg		91	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.0	U F1	1000	1195		mg/Kg		120	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	71		70 - 130
o-Terphenyl	66	S1-	70 - 130

Eurofins Carlsbad

ample ID: Method Blank Prep Type: Total/NA Prep Batch: 19555 Dil Fac 1 1 Dil Fac 1 1 **ID: Lab Control Sample** Prep Type: Total/NA Prep Batch: 19555

Matrix: Solid

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid									Prep 1	Гуре: То	tal/N/
Analysis Batch: 19569										Batch:	
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<50.0	U F2	998	1256	F2	mg/Kg		123	70 - 130	29	2
Diesel Range Organics (Over C10-C28)	<50.0	U F1	998	1394	F1	mg/Kg		140	70 - 130	15	2
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	84		70 - 130								
o-Terphenyl	77		70 - 130								
lethod: 300.0 - Anions, Lab Sample ID: MB 880-197 Matrix: Solid Analysis Batch: 19882								Client S	Sample ID: Prep	Method Type: S	
	_	MB MB								_	
Analyte Chloride		esult Qualifier 5.00 U		RL	Unit mg/K		<u> </u>	Prepared	Analyz		Dil Fa
Lab Sample ID: LCS 880-19	776/2-A						Clien	t Sample	D: Lab C		
Matrix: Solid									Pren	IVDe' S	olub
									Prep	Type: S	olub
			Spike	LCS	LCS				Prep %Rec.	Type: S	olubi
Analysis Batch: 19882			Spike Added		LCS Qualifier	Unit	D	%Rec		Type: S	olub
Analysis Batch: 19882 Analyte			-			- <mark>Unit</mark> mg/Kg	<u>D</u>	%Rec 103	%Rec.	Type: 5	olub
Analysis Batch: 19882 Analyte Chloride	9776/3-A		Added	Result		mg/Kg		103	%Rec. Limits		
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid	9776/3-A		Added	Result		mg/Kg		103	%Rec. Limits 90 - 110		le Du
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid	 9776/3-A		Added 250	Result 256.5	Qualifier	mg/Kg		103	%Rec. Limits 90 - 110 Lab Contro Prep		e Du olub
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882	 9776/3-A		Added 250 Spike	Result 256.5 LCSD	Qualifier	mg/Kg Clie	nt Sar	103 mple ID:	%Rec. Limits 90 - 110 Lab Contro Prep %Rec.	ol Sampl Type: S	e Du olub RF
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte	9776/3-A		Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie Unit		103 nple ID: %Rec	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits	ol Sampl Type: S RPD	le Du olub RF Lin
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte	9776/3-A 		Added 250 Spike	Result 256.5 LCSD	Qualifier	mg/Kg Clie	nt Sar	103 mple ID:	%Rec. Limits 90 - 110 Lab Contro Prep %Rec.	ol Sampl Type: S	le Du olub RF Lin
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid			Added 250 Spike Added	Result 256.5 LCSD Result	Qualifier	mg/Kg Clie Unit	nt Sar	103 mple ID: %Rec 104	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID	DI Sampl Type: S 	le Du olub RF Lin 2 Spik
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid	 6-M MS		Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier	mg/Kg Clie Unit	nt Sar	103 mple ID: %Rec 104	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep	DI Sampl Type: S RPD 1 : Matrix	le Du olubi RP Lim 2 Spik
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882			Added 250 Spike Added 250 Spike	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	103 mple ID: 	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	DI Sampl Type: S RPD 1 : Matrix	le Du olubi RP Lim 2 Spik
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte	6-M MS Sample Result	Sample Qualifier	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier	mg/Kg Clie Unit mg/Kg	nt Sar	103 mple ID: %Rec 104 Client	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits	DI Sampl Type: S RPD 1 : Matrix	le Du olubi RP Lim 2 Spik
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte		-	Added 250 Spike Added 250 Spike	Result 256.5 LCSD Result 259.0	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	103 mple ID: 	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec.	DI Sampl Type: S RPD 1 : Matrix	le Du olub RF Lin Spik
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A-	6-M MS Sample Result 89.9	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	nt Sar D	103 mple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	DI Sampl Type: S RPD 1 : Matrix Type: S	le Du olub RF Lin Spik olub
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid	6-M MS Sample Result 89.9	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	nt Sar D	103 mple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	ol Sampl Type: S <u>RPD</u> 1 : Matrix Type: S	le Du olub RF Lin Spik olub
Analysis Batch: 19882 Analyte Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid	-6-M MS Sample 	-	Added 250 Spike Added 250 Spike Added	Result 256.5 LCSD Result 259.0 MS Result 327.9	Qualifier LCSD Qualifier MS	Unit Unit mg/Kg	nt Sar D	103 mple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110	ol Sampl Type: S <u>RPD</u> 1 : Matrix Type: S	le Du olub RP Linr 2 Spik olub
Matrix: Solid Analysis Batch: 19882 Chloride Lab Sample ID: LCSD 880-1 Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte Chloride Lab Sample ID: 890-1938-A- Matrix: Solid Analysis Batch: 19882 Analyte	6-M MS Sample Result 89.9 6-N MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added 250	Result 256.5 LCSD Result 259.0 MS Result 327.9	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg	nt Sar D	103 mple ID: %Rec 104 Client %Rec 95	%Rec. Limits 90 - 110 Lab Contro Prep %Rec. Limits 90 - 110 Sample ID Prep %Rec. Limits 90 - 110 O: Matrix Sp Prep	ol Sampl Type: S <u>RPD</u> 1 : Matrix Type: S	le Du olub RF Lin 2 Spik olub

QC Association Summary

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

Client Sample ID

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Method Blank

SS01

SS01

SS01

Method Blank

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Method

Method

5035

5035

5035

5035

5035

5035

5035

Prep Batch

Prep Batch

)	
	{	3	
		9	

Analysis Batch: 19783

GC VOA

Prep Batch: 19707 Lab Sample ID

MB 880-19707/5-A

Prep Batch: 19710 Lab Sample ID

MB 880-19710/5-A

LCS 880-19710/1-A

890-1946-1 MS

890-1946-1 MSD

LCSD 880-19710/2-A

890-1946-1

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1946-1	SS01	Total/NA	Solid	8021B	19710
MB 880-19707/5-A	Method Blank	Total/NA	Solid	8021B	19707
MB 880-19710/5-A	Method Blank	Total/NA	Solid	8021B	19710
LCS 880-19710/1-A	Lab Control Sample	Total/NA	Solid	8021B	19710
LCSD 880-19710/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	19710
890-1946-1 MS	SS01	Total/NA	Solid	8021B	19710
890-1946-1 MSD	SS01	Total/NA	Solid	8021B	19710

Analysis Batch: 20002

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1946-1	SS01	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 19555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1946-1	SS01	Total/NA	Solid	8015NM Prep	
MB 880-19555/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-19555/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-19555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-11287-A-38-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-11287-A-38-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 19569

890-1946-1

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1946-1	SS01	Total/NA	Solid	8015B NM	19555
MB 880-19555/1-A	Method Blank	Total/NA	Solid	8015B NM	19555
LCS 880-19555/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	19555
LCSD 880-19555/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	19555
880-11287-A-38-E MS	Matrix Spike	Total/NA	Solid	8015B NM	19555
880-11287-A-38-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	19555
Analysis Batch: 19703					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Total/NA

Solid

8015 NM

SS01

QC Association Summary

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Method Blank

Matrix Spike

SS01

Method Blank

Matrix Spike

SS01

HPLC/IC

Leach Batch: 19776

Lab Sample ID

MB 880-19776/1-A

LCS 880-19776/2-A

LCSD 880-19776/3-A

890-1938-A-6-M MS

890-1938-A-6-N MSD

Lab Sample ID

MB 880-19776/1-A

LCS 880-19776/2-A

LCSD 880-19776/3-A

890-1938-A-6-M MS

890-1938-A-6-N MSD

890-1946-1

Analysis Batch: 19882

890-1946-1

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Method

DI Leach

DI Leach

DI Leach

DI Leach

DI Leach

DI Leach

Method

300.0

300.0

300.0

300.0

300.0

300.0

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Page 86 of 137

Prep Batch

Prep Batch

19776

19776

19776

19776

19776

19776

8

Project/Site: Ross Draw 25 NM Battery

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Lab Sample ID: 890-1946-1 Matrix: Solid

Client Sample ID: SS01 Date Collected: 02/14/22 11:58 Date Received: 02/15/22 09:25

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			19710	02/18/22 08:30	KL	XEN MID
Total/NA	Analysis	8021B		1	19783	02/19/22 12:24	MR	XEN MID
Total/NA	Analysis	Total BTEX		1	20002	02/21/22 19:46	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	19703	02/17/22 13:29	AJ	XEN MID
Total/NA	Prep	8015NM Prep			19555	02/16/22 08:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1	19569	02/16/22 20:38	AJ	XEN MID
Soluble	Leach	DI Leach			19776	02/17/22 21:54	СН	XEN MID
Soluble	Analysis	300.0		20	19882	02/20/22 20:08	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 1/13/2023 2:22:48 PM

Accreditation/Certification Summary

Page 88 of 137

10

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Project/Site: Ross Draw 25 NM Battery Laboratory: Eurofins Midland

Client: WSP USA Inc.

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	I	Program	Identification Number	Expiration Date
xas	Ī	NELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report,	but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for v
the agency does not of	fer certification.			
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Released to Imaging: 1/13/2023 2:22:48 PM

Project/Site: Ross Draw 25 NM Battery

Method Summary

5 6

11 12 13

Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Method	Method Description	Protocol	Laborator
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

Client: WSP USA Inc.

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: WSP USA Inc. Project/Site: Ross Draw 25 NM Battery Job ID: 890-1946-1 SDG: 31403236.022.0129.task19.02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1946-1 SS01	SS01	Solid	02/14/22 11:58	02/15/22 09:25	0.5	4
						5
						8
						9
						11
						12
						13

Heade MIL (137:562)25200 (Interview) Non-watch (137:562)25200 (Interview) Non-watch (137:562) Non-watch (137:56	nd conditions ond the control gotiated. Received by: (Signature)		4		~		9		
Hotop Municips State 2000 Nume (Colspan="2") Nume (Colspan="2") Nume (Colspan="2") Nume (Colspan="2") Nume (Colspan="2") Nume (Colspan="2") State 200 Nume (Colspan="2") State 200 Nume (Colspan="2") State 200 Nume (Colspan="2") State 200 Colspan="2" Nume (Colspan="2") State 200 Nume (Colspan="2") State 200 Colspan="2" Nume (Colspan="2") State 200 Colspan="2" Nume (Colspan="2") Colspan="2" Nume (Colspan="2") Colspan="2" Nume (Colspan="2") Colspan="2" Nume (Colspan="2") Colspan= 200 Colspan="2" Colspan="2" Colspan="2" Colspan="2" Nume (Colspan="2") Colspan="2" Colspan="2" Colspan="2" Colspan= 200 Colspan= 200 Colspan= 200 Colspan= 200 Colspan= 200 Colspan= 200	nd conditions ond the control gottated. Received by: (Signatur		1.15.2209252		-		NATER		
Habe, NM (E75-6327 SB) Nume: (CIC) With Cick (SS 000) Nume: (CIC) With Cick (SS 000) With	ind conditions ond the control gotiated.	Relinquished by: (Signature)	Date/Time	nature)	Received by: (Sig	nature)	Relinquished by: (Sig		
HobbuMI(STS-382-750) Numage: N		ates and subcontractors. It assigns standard terms : he client if such losses are due to circumstances bey ed. These terms will be enforced unless previously n	t company to Xenco, its affilia es or expenses incurred by ti tted to Xenco, but not analyza	id purchase order from clien ty responsibility for any loss of \$5 for each sample subm	samples constitutes a va s and shall not assume a sch project and a charge	nt and relinquishment of s nly for the cost of samples 175.00 will be applied to ea	ice: Signature of this docume ervice. Xenco will be liable o enco. A minimum charge of :		
Manager: Kalei Jennings Hobbs.MM (375-392-7560) Monager. Kalei Jennings Dill C: (ensue) Man Ruh Trans Richt Bill C: (ensue) Man Ruh	Ag SiO2	Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Cr Co Cu Pb Mn Mo Ni Se Ag Ti	A Sb As Ba Be B (A Sb As Ba Be Cd	13PPM Texas 11 . / SPLP 6010 : 8RCR.	8RCRA alyzed TCLP	200.8 / 6020: d Metal(s) to be an:	Total 200.7 / 6010 Circle Method(s) an		
Manager: Kalei Jennings Hobbs.MI (375-392-759) Phome.XZ (480-555-000) Attins (Av(770-440-600)) Tampe FL (31-362-200) WW wight 300 North A Street Crister Address STO Eren Street State of Project:									
Hobbs MM (575-392-7550) Manager: Kalei Jannings Sumple (10: (# datusen) Manager: Kalei Jannings Minings Minings <th <="" colspan="2" t<="" td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>						-		
Manager: Kalei Jannings Hobas.MN (575-392-755) Manager: Kalei Jannings Fill for gramma Kar (480-555-0600) Mann (Arr) Fuch Fill for gramma Kar (480-55-0600) Mann (Arr) Fuch State of Project: State of Project: <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Manager: Kalei Jennings Hobbs.NM (575-392-755) Phoemik,AZ (480-355-0900) Amn (CA (770-449-800) Tum (Participation) Amn (CA (770-449-800) Tum (CA (770-449-800) Tum (CA (770-449-800) Tum (CA (770-449-800) Tum (CA (770-449-800)) Tum (CA (770-449-80)) Tum (CA (770-449-80)) Tum (CA (770-449-80)) Tum (CA (770-449-80)) Tum (C									
Manager: Kalei Jennings Hobbs.NM (975-392-7550) Phoenix,AZ (480-355-090) Mains GA (770-449-6800) Tampe,FL (81-602-2000) With and the second sec									
Manager: Kalei Jennings Hobbs, MI (575-392-7550) Phoenik, AZ (480-355-0900) Atmit, GA (770-449-8600) Tampe, FL (613-620-2000) Tumpe, Minit GA (770-449-8600) Tampe, FL (613-620-2000) Tumpe, Manager: Name: Name: Name: Name: Name: Name: Store of Project: Pogram: UST/PS1 Pogram: UST/PS									
Hobbs.NM (575-392-7550) Namager: Kalei Jennings Bill to: (# diseave) Amy Ruh Manager: Kalei Jennings Bill to: (# diseave) Amy Ruh Forgam: UST/PS (% Colspan="2">Porgam: UST/PS (% Colspan="2">Porgam: UST/PS (% Colspan="2">Porgam: UST/PS (% Colspan="2">Porgam: UST/PS (% Colspan="2">Name: Address: 3104 E Green Street Address: 3104 E Green Street State of Project: State of Project: Porgam: UST/PS (% Colspan="2">State of Project: Name: Ross Draw 25 NM Battery Email: amy.ruh@exxonmobil.com.almee.cole@wsp.com AnALYSIS REOUEST No No </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Manager: Kalei Jennings Hobes,MI (57-392-7550) Photenix,AZ (480-355-0900) Attinis,GA (770-449-6800) Tampa FL (81-360-2000) With Manager: Kalei Jennings Bill LD; (if difeerent) Amy Ruth Amy Ruth Frogram: UST/PST (100-1000) State of Project: North A Street Importing:Level II Deptring:Level II									
Hobbs.NM (575-392-7550) All of anna, FL (813-620-2000) yu Aamager, Kalei Jennings Figure of Amy Ruth Manager, Kalei Jennings Bill to; (# diferent) Amy Ruth Amy Ruth Figure of Project; State of Project; Sta			×	0.5'		S	SS01		
Hobes,MM (575-392-7550) Atlanta,GA (770-449-8800) Tumpa FL (813-820-2000) yumane: Mindland, Carlos Company Name, XTO Energy Tum Around Address: Giny Ruth s:: 3300 North A Street Address: 3104 E Green Street State of Project: State of Project: State of Project: Rate o			BTEX	Depth			Sample Identificat		
Hobbs, NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) ym Manager: Kalei Jennings Bill to: (# difeeen) Amy Ruth Frogram: UST/PST Frogram: UST/PST State of Project: State of Project: State of Project: State of Project: Rogram: UST/PST Image: State of Project: State of Project: Rogram: UST/PST Image: Name: State of Project: Rogram: UST/PST Image: Rogram: UST/PST State of Project: Rogram: UST/PST Rogram: UST/PST Image: Rogram: UST/PST Image: Rogram: UST/PST Rogra: UST/PST			EPA		Total Conta	No	mple Custody Seals:		
Hobbs,NM (575-392.7550) Phoenix,AZ (480-355.0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620.2000) Yum Manager: Kalei Jennings Bill to: (rt different) Amy Ruth Amy Ruth Program: UST/PST (State of Project: State of Project: Project: <td< td=""><td>_</td><td>_</td><td>0=8</td><td>7.02</td><td>Correction F</td><td>No</td><td>oler Custody Seals:</td></td<>	_	_	0=8	7.02	Correction F	No	oler Custody Seals:		
Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) Wimpager: Manager: Kalei Jennings Bill to: (# diflerent) Amy Ruth Amy Ruth Frogram: UST/PST [ny, Name: WSP USA Street Address: 3104 E Green Street Frogram: UST/PST [s: 3300 North A Street Address: 3104 E Green Street Frogram: UST/PST [state of Project: Address: 3104 E Green Street Frogram: UST/PST [state of Project: Address: 3104 E Green Street Frogram: UST/PST [state of Project: Frogram: UST/PST [State of Project: Reporting: Level II Frogram: UST/PST [number: 432 704 5178 Email: amy, ruth @exxonmobil.com.almee.cole@wsp.com Deliverables: EDD Forgram: UST/PST [Number: 31403236.022.0129 Task 19.02 Routine 47 AnALYSIS REOUEST Forgram: UST/PST [Number: NAPP2201444794 Fus Due Date: Image: Color Image: Color Image: Color Image: Color PLE RECEIPT Temp Blank: Vet ice: <			021)		Thur-		ceived Intact:		
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Attanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Manager: Kalei Jennings Bill to: (# diflerent) Amy Ruth Frogram: UST/PST [Program: UST/PST [State of Project: Program: UST/PST [Deporting:Level II Deliverables: EDD Email: amy ruth@exxonmobil.com.aimee.cole@wsp.com Deliverables: EDD Deliverables: EDD Deliverables: EDD Email: amy ruth@exxonmobil.com.aimee.cole@wsp.com Deliverables: EDD Deliverables: EDD Deliverables: EDD Email: State of Project: State of Project: State of Project: Email: Email: Bill to: (Tim Around Tim Around Email: Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: <					Thermor	ile	mperature (°C):		
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Attanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Manager: Kalei Jennings Bill to: (# different) Amy Ruth Amy Ruth Frogram: UST/PST [ny Name: WSP USA Street Address: 3100 Energy Name: XTO Energy Program: UST/PST [s: 3300 North A Street Address: 3104 E Green Street Program: UST/PST [State of Project: State of Project: State of Project: State of Project: Program: UST/PST [State of Project: Program: UST/PST [State of Project: State of Project: Program: UST/PST [State of Project: Project: State of Project: Project: Program: UST/PST [State of Project: P				Yes No	No		SAMPLE RECEIPT		
Manager: Kalei Jennings Hobs.NM (575-392-7550) Phoenix,AZ (480-355-0900) Attanta,GA (770-449-8800) Tampa,FL (813-620-2000) WM Manager: Kalei Jennings Bill to: (If different) Amy Ruth Amy Ruth Frogram: UST/PST [Program: UST/PST [Program: UST/PST [State of Project: Program: UST/PST [State of Project: State of Project: State of Project: State of Project: Program: UST/PST [State of Project: Program: UST/PST [State of Project: State of Project: Program: UST/PST [State of Project: Program: UST/PST [Program: UST/PST [Program: UST/PST [State of Project: Program: UST/PST [Program: UST/PST [State of Project: Program: UST/PST [Prog				Due Date:		/ Rotich.			
Manager: Kalei Jennings Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Attanta, GA (770-449-8800) Tampa, FL (813-620-2000) wm Manager: Kalei Jennings Bill to: (# different) Amy Ruth Amy Ruth Frogram: UST/PST [Program: UST/PST [State of Project: Reporting:Level II I				Rush:		NAPP2201444794	O. Number:		
Manager: Kalei Jennings Hobs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Attanta, GA (770-449-8800) Tampa, FL (813-620-2000) WM Manager: Kalei Jennings Bill to: (If different) Amy Ruth Amy Ruth Program: UST/PST [Program: UST/PST [State of Project: Bill to: (If different) Address: 3104 E Green Street Hobs, NM 88220 Bill to: (If different) State of Project: State of Project: State of Project: Bill to:			_			31403236.022.0129			
Manager: Kalei Jennings Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Attanta, GA (770-449-8800) Tampa, FL (813-620-2000) WM ny Name: WSP USA Bill to: (if different) Amy Ruth Amy Ruth Program: UST/PST [Program: UST/PST [State of Project: Peporting: Level II I <td< td=""><td></td><td>ANALYSIS REQUEST</td><td></td><td>Turn Around</td><td>ry .</td><td>Draw 25 NM Batter</td><td></td></td<>		ANALYSIS REQUEST		Turn Around	ry .	Draw 25 NM Batter			
Pr: Kalei Jennings Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Attanta,GA (770-449-8800) Tampa,FL (813-620-2000) wm e: WSP USA Bill to: (if different) Amy Ruth 3300 North A Street Company Name: XTO Energy Midland, Texas 79705 City, State ZIP: Carlsbad, NM 88220			nmobil.com,aimee.col	mail: amy.ruth@exxo		04 5178			
Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) WM Kalei Jennings Bill to: (If different) Amy Ruth Amy Ruth Program: UST/PST [WSP USA Company Name: XTO Energy Program: UST/PST [State of Project: 3300 North A Street Address: 3104 E Green Street State of Project:		Reporting:Le	Carlsbad, NM 88220	City, State ZIP:		nd, Texas 79705			
Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) WM Kalei Jennings Bill to: (# different) Amy Ruth Program: UST/PST WSP USA Program: UST/PST Pro	1	State of	3104 E Green Street	Address:		North A Street			
Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) WM Kalei Jennings Bill to: (if different) Amy Ruth Image: Compare the second	D _R p	Program: U	XTO Energy	Company Name:		USA			
Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	Work Order C		Amy Ruth	Bill to: (if different)		Jennings			
	www.xenco.com		80-355-0900) Atlanta,GA (-392-7550) Phoenix,AZ (4	Hobbs,NM (575				
		Househon TX (2011) 240-42000 Dallas TX (214) 002-0200 San Antonio TX (210) 509-3334	0000_000 11 101 VT	I DUGY OVO 14 OUD AT	L)				

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1946 List Number: 1

Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Eurofins Carlsbad Released to Imaging: 1/13/2023 2:22:48 PM 14

Job Number: 890-1946-1

List Source: Eurofins Carlsbad

SDG Number: 31403236.022.0129.task19.02

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

Login Sample Receipt Checklist

Answer

True

True

N/A

Comment

Client: WSP USA Inc.

Login Number: 1946

Creator: Kramer, Jessica

List Number: 2

Question

Job Number: 890-1946-1

SDG Number: 31403236.022.0129.task19.02

List Source: Eurofins Midland List Creation: 02/16/22 12:10 PM

The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 10/20/2022 11:22:31 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 1/13/2023 2:22:48 PM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2319-1

Laboratory Sample Delivery Group: 03E1558028 Client Project/Site: Ross Draw 25 battery

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

Authorized for release by: 5/26/2022 4:17:51 PM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Page 95 of 137

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
-	22

	Demittoria/Giossary		
Client: Ensolur		Job ID: 890-2319-1	2
-	Ross Draw 25 battery	SDG: 03E1558028	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
F2	MS/MSD RPD exceeds control limits		5
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA	A Contraction of the second		
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			8
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		9
Glossary			40
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		15
DER	Duplicate Error Ratio (normalized absolute difference)		TP
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		

Most Probable Number

Not Calculated

Presumptive

Quality Control

Negative / Absent Positive / Present

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

MPN

MQL

NC

ND NEG

POS PQL

PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

Job ID: 890-2319-1 SDG: 03E1558028

Job ID: 890-2319-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2319-1

Receipt

The samples were received on 5/18/2022 4:13 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.0°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-25961 and analytical batch 880-25945 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: SW02 (890-2319-4). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00199 U

<0.00199 U

<0.00199 U

<0.00398 U

<0.00199 U

<0.00398 U

%Recovery Qualifier

RL

0.00199

0.00199

0.00199

0.00398

0.00199

0.00398

Limits

Job ID: 890-2319-1 SDG: 03E1558028

Client Sample ID: EX01

Project/Site: Ross Draw 25 battery

Date Collected: 05/18/22 13:45 Date Received: 05/18/22 16:13

Sample Depth: 2

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Γ...

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Client: Ensolum

Lab Sample ID: 890-2319-1

Analyzed

05/21/22 14:38

05/21/22 14:38

05/21/22 14:38

05/21/22 14:38

05/21/22 14:38

05/21/22 14:38

Analyzed

Matrix: Solid

Dil Fac

1

1

1

1

1

Dil Fac

5

1 Dromofly orobonzono (Surr)	120		70 - 130			05/20/22 15:30	05/21/22 14:38	
4-Bromofluorobenzene (Surr)								
1,4-Difluorobenzene (Surr)	96		70 - 130			05/20/22 15:30	05/21/22 14:38	
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			05/23/22 11:27	
Method: 8015 NM - Diesel Range (Organics (DR	0) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			05/23/22 09:09	
Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		05/20/22 09:19	05/21/22 05:24	
GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		05/20/22 09:19	05/21/22 05:24	
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/20/22 09:19	05/21/22 05:24	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	107		70 - 130			05/20/22 09:19	05/21/22 05:24	
p-Terphenyl	118		70 - 130			05/20/22 09:19	05/21/22 05:24	
Method: 300.0 - Anions, Ion Chror	natography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	128		5.00	mg/Kg			05/24/22 16:01	
Client Sample ID: EX02						Lab Sar	nple ID: 890-	2319-
ate Collected: 05/18/22 14:00							-	x: Soli
ate Received: 05/18/22 16:13								

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

05/20/22 15:30

05/20/22 15:30

05/20/22 15:30

05/20/22 15:30

05/20/22 15:30

05/20/22 15:30

Prepared

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		05/20/22 15:30	05/21/22 15:05	1
Toluene	<0.00201	U	0.00201	mg/Kg		05/20/22 15:30	05/21/22 15:05	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		05/20/22 15:30	05/21/22 15:05	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		05/20/22 15:30	05/21/22 15:05	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		05/20/22 15:30	05/21/22 15:05	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		05/20/22 15:30	05/21/22 15:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130			05/20/22 15:30	05/21/22 15:05	1

Eurofins Carlsbad

Released to Imaging: 1/13/2023 2:22:48 PM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery

<0.00402

<50.0 U

95

Result Qualifier

Ū

Result Qualifier

Result Qualifier

<50.0 U

<50.0 U

255

Qualifier

Limits

70 - 130

RL

RL

50.0

RL

50.0

50.0

24.8

0.00402

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

5

Matrix: Solid

Job ID: 890-2319-1 SDG: 03E1558028

Client Sample ID: EX02

Project/Site: Ross Draw 25 battery

Date Collected: 05/18/22 14:00 Date Received: 05/18/22 16:13

Sample Depth: 2

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

C10-C28)

Chloride

Total TPH

Total BTEX

Client: Ensolum

Analyzed

05/21/22 15:05

Analyzed

05/23/22 11:27

Analyzed

05/23/22 09:09

Analyzed

05/21/22 05:45

05/21/22 05:45

05/24/22 16:29

Lab Sample ID: 890-2319-3

Prepared

05/20/22 15:30

Prepared

Prepared

Prepared

05/20/22 09:19

05/20/22 09:19

D

D

D

Lab Sample ID: 890-2319-2 Matrix: Solid

5

Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	05/20/22 09	:19 05/21/22 05:45	1
Surrogate	%Recovery	Qualifier	Limits		Prepareo	d Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130		05/20/22 09	05/21/22 05:45	1
o-Terphenyl	115		70 - 130		05/20/22 09	0:19 05/21/22 05:45	1
Method: 300.0 - Anions, Ion Chro		Soluble Qualifier	RL	Unit	D Proparor	d Analvzed	Dil Fac
Analyte	Result	Qualifier	RL	Unit	D Prepared	a Analyzed	DilFac

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Client	Sample	יחו	SW/01	

Date Collected: 05/18/22 14:15 Date Received: 05/18/22 16:13 Sample Depth: 2

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 05/20/22 15:30 05/21/22 15:32 Toluene <0.00200 U 0.00200 mg/Kg 05/20/22 15:30 05/21/22 15:32 1 Ethylbenzene <0.00200 U 0.00200 05/20/22 15:30 05/21/22 15:32 mg/Kg 05/21/22 15:32 m-Xylene & p-Xylene <0.00399 U 0.00399 05/20/22 15:30 mg/Kg o-Xylene <0.00200 U 0.00200 mg/Kg 05/20/22 15:30 05/21/22 15:32 Xylenes, Total <0.00399 U 0.00399 mg/Kg 05/20/22 15:30 05/21/22 15:32 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 70 - 130 4-Bromofluorobenzene (Surr) 129 05/20/22 15:30 05/21/22 15:32 1 1,4-Difluorobenzene (Surr) 97 70 - 130 05/20/22 15:30 05/21/22 15:32 1 Method: Total BTEX - Total BTEX Calculation Analvte RL D Result Qualifier Unit Prepared Analyzed Dil Fac Total BTEX <0.00399 Ū 0.00399 mg/Kg 05/23/22 11:27 Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac <50.0 U Total TPH 50.0 mg/Kg 05/23/22 09:09 1

Client Sample Results

Job ID: 890-2319-1 SDG: 03E1558028

Matrix: Solid

Lab Sample ID: 890-2319-3

Client Sample ID: SW01

Project/Site: Ross Draw 25 battery

Date Collected: 05/18/22 14:15 D

Client: Ensolum

Date Received: 05/18/22 16:13
Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/20/22 09:19	05/21/22 06:04	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/20/22 09:19	05/21/22 06:04	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/20/22 09:19	05/21/22 06:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130			05/20/22 09:19	05/21/22 06:04	1
o-Terphenyl	114		70 - 130			05/20/22 09:19	05/21/22 06:04	1

Method: 300.0 - Anions, ion Chron	hatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	118	5.04	mg/Kg			05/26/22 13:04	1

Client Sample ID: SW02

Date Collected: 05/18/22 14:20 Date Received: 05/18/22 16:13

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/20/22 15:30	05/21/22 16:00	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/20/22 15:30	05/21/22 16:00	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		05/20/22 15:30	05/21/22 16:00	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/20/22 15:30	05/21/22 16:00	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		05/20/22 15:30	05/21/22 16:00	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/20/22 15:30	05/21/22 16:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130			05/20/22 15:30	05/21/22 16:00	1
1,4-Difluorobenzene (Surr)	96		70 - 130			05/20/22 15:30	05/21/22 16:00	1
		Qualifier U	RL 0.00398	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/23/22 11:27	
Total BTEX Method: 8015 NM - Diesel Range	<0.00398	U (GC)	0.00398	mg/Kg		<u>`</u>	05/23/22 11:27	1
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH	<0.00398	U O) (GC) Qualifier			D	Prepared		Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	<0.00398 Organics (DR Result ge Organics (D) Result	U O) (GC) Qualifier U RO) (GC) Qualifier	0.00398	mg/Kg Unit mg/Kg Unit		Prepared	05/23/22 11:27 Analyzed 05/23/22 09:09 Analyzed	1 Dil Fac 1 Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	co.00398 corganics (DR) Result c49.9 ge Organics (DR)	U O) (GC) Qualifier U RO) (GC) Qualifier	0.00398RL49.9	mg/Kg Unit mg/Kg	D	Prepared	05/23/22 11:27 Analyzed 05/23/22 09:09	1 Dil Fac 1 Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<0.00398 Organics (DR Result ge Organics (D) Result	U Qualifier U RO) (GC) Qualifier U	0.00398	mg/Kg Unit mg/Kg Unit	D	Prepared	05/23/22 11:27 Analyzed 05/23/22 09:09 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<pre><0.00398 corganics (DR corganics (DR corganics (DR corganics (D) corganics (D) corganics (D) corganics (D) corganics (A) co</pre>	U O) (GC) Qualifier U RO) (GC) Qualifier U U	0.00398	mg/Kg Unit mg/Kg Unit unit mg/Kg	D	Prepared Prepared 05/20/22 09:19	05/23/22 11:27 Analyzed 05/23/22 09:09 Analyzed 05/21/22 06:24	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte	co.00398 corganics (DR) corganics (DR) c49.9 ge Organics (D) ge Organics (D) c49.9 c49.9 c49.9	U O) (GC) Qualifier U RO) (GC) Qualifier U U U	0.00398	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared Prepared 05/20/22 09:19 05/20/22 09:19	05/23/22 11:27 Analyzed 05/23/22 09:09 Analyzed 05/21/22 06:24 05/21/22 06:24	1 Dil Fac

Eurofins Carlsbad

05/21/22 06:24

05/20/22 09:19

o-Terphenyl

70 - 130

133 S1+

1

		Client	Sample Res	sults					1
Client: Ensolum Project/Site: Ross Draw 25 battery							Job ID: 890 SDG: 03E1		2
Client Sample ID: SW02 Date Collected: 05/18/22 14:20						Lab Sa	mple ID: 890- Matri	2319-4 ix: Solid	3
Date Received: 05/18/22 16:13 Sample Depth: 2									4
Method: 300.0 - Anions, Ion Chroma Analyte		Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	57.5		4.97	mg/Kg		riepareu	05/26/22 13:13	1	6
									7
									8
									9
									10
									11
									12
									13
									14

Eurofins Carlsbad

.

Project/Site: Ross Draw 25 battery

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Rec
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2317-A-5-C MS	Matrix Spike	124	92	
890-2317-A-5-D MSD	Matrix Spike Duplicate	121	82	
890-2319-1	EX01	120	96	
890-2319-2	EX02	124	95	
890-2319-3	SW01	129	97	
890-2319-4	SW02	126	96	
LCS 880-25961/1-A	Lab Control Sample	116	103	
LCSD 880-25961/2-A	Lab Control Sample Dup	115	99	
MB 880-25948/5-A	Method Blank	86	88	
MB 880-25961/5-A	Method Blank	89	86	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

M	at	rix:	So	lid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-14972-A-21-F MS	Matrix Spike	105	98	
880-14972-A-21-G MSD	Matrix Spike Duplicate	101	97	
890-2319-1	EX01	107	118	
890-2319-2	EX02	104	115	
890-2319-3	SW01	104	114	
890-2319-4	SW02	120	133 S1+	
LCS 880-25960/2-A	Lab Control Sample	89	89	
LCSD 880-25960/3-A	Lab Control Sample Dup	116	116	
MB 880-25960/1-A	Method Blank	114	126	

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Job ID: 890-2319-1

Prep Type: Total/NA

Page 102 of 137

Prep Type: Total/NA

Client: Ensolum Project/Site: Ross Draw 25 battery

Method: 8021B - Volatile Organic Compounds (GC)

									c	Client Sa	mple ID: Metl	nod E	Blank
Matrix: Solid											Prep Type		
Analysis Batch: 25945											Prep Bat		
		ΜВ	МВ										
Analyte	Re	sult	Qualifier	RL		Uni	it	D	Pre	epared	Analyzed	I	Dil Fac
Benzene	<0.000	400	U	0.000400		mg	/Kg	_	05/20/	/22 09:18	05/20/22 17:07		1
Toluene	<0.000	400	U	0.000400		mg	/Kg		05/20/	/22 09:18	05/20/22 17:07		1
Ethylbenzene	<0.000	400	U	0.000400		mg	/Kg		05/20/	/22 09:18	05/20/22 17:07		1
m-Xylene & p-Xylene	<0.000	800	U	0.000800		mg	/Kg		05/20/	/22 09:18	05/20/22 17:07		1
o-Xylene	<0.000	400	U	0.000400		mg	/Kg		05/20/	/22 09:18	05/20/22 17:07		1
Xylenes, Total	<0.000	800	U	0.000800		mg	/Kg		05/20/	/22 09:18	05/20/22 17:07		1
		ΜВ	МВ										
Surrogate	%Reco		Qualifier	Limits					Pre	epared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)	////////	86	Quanner	70 - 130						/22 09:18	05/20/22 17:07		1
1,4-Difluorobenzene (Surr)		88		70 - 130						/22 09:18	05/20/22 17:07		1
		00		101100					00,20,	22 00.10	00,20,22 11.01		,
Lab Sample ID: MB 880-25961/5-A									C	lient Sa	mple ID: Metl	nod E	Blank
Matrix: Solid											Prep Type	: Tot	al/NA
Analysis Batch: 25945											Prep Bat	ch: 2	25961
		ΜВ	MB										
Analyte	Re	sult	Qualifier	RL		Un	it	D	Pre	epared	Analyzed		Dil Fac
Benzene	<0.00	200	U	0.00200		mg	/Kg		05/20/	/22 09:25	05/21/22 06:40		1
Toluene	<0.00	200	U	0.00200		mg	/Kg		05/20/	/22 09:25	05/21/22 06:40		1
Ethylbenzene	<0.00	200	U	0.00200		mg	/Kg		05/20/	/22 09:25	05/21/22 06:40		1
m-Xylene & p-Xylene	<0.00	400	U	0.00400		mg	/Kg		05/20/	/22 09:25	05/21/22 06:40		1
o-Xylene	<0.00	200	U	0.00200		mg	/Kg		05/20/	/22 09:25	05/21/22 06:40		1
Xylenes, Total	<0.00	400	U	0.00400		mg	/Kg		05/20/	/22 09:25	05/21/22 06:40		1
		ΜВ	МВ										
Surrogate	%Reco		Qualifier	Limits					Pre	epared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)	,	89								/22 09:25	05/21/22 06:40		1
1,4-Difluorobenzene (Surr)		86		70 - 130						/22 09:25	05/21/22 06:40		1
Lab Sample ID: LCS 880-25961/1-A								C	lient S	Sample	D: Lab Contro	ol Sa	mple
Matrix: Solid											Prep Type	: Tot	al/NA
Analysis Batch: 25945											Prep Bat	ch: 2	25961
				Spike	LCS	LCS					%Rec		
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits		
Benzene				0.100	0.1251		mg/Kg			125	70 - 130		
Toluene				0.100	0.1152		mg/Kg			115	70 - 130		
Ethylbenzene				0.100	0.1121		mg/Kg			112	70 - 130		
m-Xylene & p-Xylene				0.200	0.2264		mg/Kg			113	70 - 130		
o-Xylene				0.100	0.1126		mg/Kg			113	70 - 130		
	LCS	100											
Surrogate %R	Recovery			Limits									
4-Bromofluorobenzene (Surr)	116			70 - 130									
1,4-Difluorobenzene (Surr)	103			70 - 130									
Lab Sample ID: LCSD 880-25961/2-	4						Cli	ent	Samp	ole ID: L	ab Control Sa	mple	Dup
Matrix: Solid											Prep Type	: Tot	al/NA
Analysis Batch: 25945											Prep Bat	ch: 2	25961
				Spike	LCSD	LCSD					%Rec		RPD
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits R	PD	Limit
Benzene				0 100	0 1100		ma/Ka			111	70 130	12	35

5

Job ID: 890-2319-1

SDG: 03E1558028

Benzene

0.1109

mg/Kg

111

70 - 130

0.100

35

Client: Ensolum Project/Site: Ross Draw 25 battery Job ID: 890-2319-1 SDG: 03E1558028

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-2 Matrix: Solid	5961/2-A					Clie	nt Sam	nple ID:	Lab Contro Prep 1	ol Sampl Type: To	
Analysis Batch: 25945									Prep	Batch:	25961
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.09968		mg/Kg		100	70 - 130	14	35
Ethylbenzene			0.100	0.1006		mg/Kg		101	70 - 130	11	35
m-Xylene & p-Xylene			0.200	0.2035		mg/Kg		102	70 - 130	11	35
o-Xylene			0.100	0.1018		mg/Kg		102	70 - 130	10	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								

70 - 130

	110	
1,4-Difluorobenzene (Surr)	99	
-		

Lab Sample ID: 890-2317-A-5-C MS Matrix: Solid

Analysis Batch: 25945

Analysis Daton. 20040									1100	Dutch. 20001
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U F2 F1	0.100	0.02880	F1	mg/Kg		29	70 - 130	
Toluene	<0.00199	U F2 F1	0.100	0.03226	F1	mg/Kg		32	70 - 130	
Ethylbenzene	<0.00199	U F2 F1	0.100	0.03096	F1	mg/Kg		31	70 - 130	
m-Xylene & p-Xylene	<0.00398	U F2 F1	0.200	0.06426	F1	mg/Kg		32	70 - 130	
o-Xylene	<0.00199	U F2 F1	0.100	0.03583	F1	mg/Kg		36	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	124		70 - 130
1,4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: 890-2317-A-5-D MSD Matrix: Solid Analysis Batch: 25945

Surrogate

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 25945									Prep	Batch:	25961
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U F2 F1	0.101	0.09361	F2	mg/Kg		93	70 - 130	106	35
Toluene	<0.00199	U F2 F1	0.101	0.09356	F2	mg/Kg		93	70 - 130	97	35
Ethylbenzene	<0.00199	U F2 F1	0.101	0.08576	F2	mg/Kg		85	70 - 130	94	35
m-Xylene & p-Xylene	<0.00398	U F2 F1	0.202	0.1698	F2	mg/Kg		84	70 - 130	90	35
o-Xylene	<0.00199	U F2 F1	0.101	0.08523	F2	mg/Kg		84	70 - 130	82	35
	MSD	MSD									

Limits

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

121

82

Lab Sample ID: MB 880-25960/1-A Matrix: Solid Analysis Batch: 25938	МВ	МВ				Client Sa	mple ID: Metho Prep Type: ⊺ Prep Batcł	Total/NA
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		05/20/22 09:19	05/20/22 22:11	1
(GRO)-C6-C10								

Eurofins Carlsbad

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 25961

5

7

Client: Ensolum Project/Site: Ross Draw 25 battery

Lab Sample ID: MB 880-25960/1-A

Matrix: Solid

Analyte

C10-C28)

Surrogate

1-Chlorooctane o-Terphenyl

Matrix: Solid

Analyte

C10-C28)

Analysis Batch: 25938

Gasoline Range Organics (GRO)-C6-C10

Diesel Range Organics (Over

Analysis Batch: 25938

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Lab Sample ID: LCS 880-25960/2-A

Method: 8015B NM - Diesel Range

		-										
											90-2319-1	2
										SDG: 03	E1558028	4
ige Or	gar	nics (DR	(O) (GC) (C	continue	ed)							3
									Client Sa	ample ID: Meth	nod Blank	
										Prep Type		4
										Prep Bat	ch: 25960	
	MB	МВ										5
		Qualifier	F	۲L	Unit		D	P	repared	Analyzed	Dil Fac	
<	50.0	U	50	.0	mg/Kg	9		05/2	0/22 09:19	05/20/22 22:11	1	6
<	50.0	U	50	0.0	mg/Kg	3		05/2	0/22 09:19	05/20/22 22:11	1	
	мр	МВ										7
%Reco			Limits					P	repared	Analyzed	Dil Fac	0
,	114		70 - 130)					0/22 09:19	05/20/22 22:11		0
	126		70 - 130)				05/2	0/22 09:19	05/20/22 22:11	1	0
												3
							С	lient	Sample	ID: Lab Contro		10
										Prep Type		
			Spike	LCS	1.05					Preр Баt %Rec	ch: 25960	11
			Added		Qualifier	Unit		D	%Rec	Limits		
			1000	1081		mg/Kg			108	70 - 130		12
			1000	857.0		mg/Kg			86	70 - 130		13
	LCS		Limito									14
ecovery 89	Qua		Limits 70 - 130									
89			70 - 130 70 - 130									
L						Cli	ent	Sam	ple ID: L	ab Control Sa		
										Prep Type		
			. .								ch: 25960	
			Spike	LCSD		Unit			% Boo	%Rec	RPD DD Limit	
			Added	Result	Qualifier	Unit		<u> </u>	%Rec	Limits R	PD Limit	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane			70 - 130
o-Terphenyl	89		70 - 130

Lab Sample ID: LCSD 880-25960/3-A Matrix: Solid Analysis Batch: 25938				Clier	nt Sam	nple ID:		ol Sampl Type: To Batch:	tal/NA
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1191		mg/Kg		119	70 - 130	10	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1019		mg/Kg		102	70 - 130	17	20
C10-C28)									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	116		70 - 130
o-Terphenyl	116		70 - 130

Lab Sample ID: 880-14972-A-21-F MS
Matrix: Solid
Assolution Defails 05000

Analysis Batch: 25938									Pre	p Batch: 25960
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	1000	1099		mg/Kg		107	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.0	U	1000	780.4		mg/Kg		78	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	105		70 - 130
o-Terphenyl	98		70 - 130

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Page 105 of 137

Client: Ensolum Project/Site: Ross Draw 25 battery

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

- 									Matrix Or		
Lab Sample ID: 880-14972-/ Matrix: Solid	A-21-G MSD						client S	ample IL): Matrix Sp		
										Type: To	
Analysis Batch: 25938										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.0	U	999	948.0		mg/Kg		92	70 - 130	15	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	999	759.9		mg/Kg		76	70 - 130	3	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	101		70 - 130								
o-Terphenyl	97		70 - 130								
Method: 300.0 - Anions,	Ion Chromate	ography									
Lab Sample ID: MB 880-259	007/1-A							Client S	Sample ID:	Method	Blank
Matrix: Solid										Type: S	
Analysis Batch: 26071											
		MB MB									
Analyte	Re	esult Qualifier		RL	Unit		DF	Prepared	Analyz	ed	Dil Fac
Chloride	<	5.00 U	5	.00	mg/K	g			05/24/22	13:24	1

Lab Sample ID: LCS 880-25907/2-A Matrix: Solid Analysis Batch: 26071

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 	250	256.5		mg/Kg		103	90 - 110	

Lab Sample ID: LCSD 880-25907/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Soluble** Analysis Batch: 26071 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 250.1 mg/Kg 100 90 - 110 3 20

Lab Sample ID: 890-2319-1 MS Matrix: Solid Analysis Batch: 26071									Client Sa Prep	mple ID: Type: So	
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	128		250	384.6		mg/Kg		103	90 - 110		
Lab Sample ID: 890-2319-1 MSD									Client Sa	mple ID:	EX01
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 26071											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	128		250	391.2		mg/Kg		105	90 - 110	2	20

Job ID: 890-2319-1

Page 106 of 137

Job ID: 890-2319-1 SDG: 03E1558028

Client Sample ID: Lab Control Sample

Prep Type: Soluble

QC Association Summary

Client: Ensolum Project/Site: Ross Draw 25 battery

5

Job ID: 890-2319-1 SDG: 03E1558028

GC VOA

Analysis Batch: 25945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2319-1	EX01	Total/NA	Solid	8021B	25961
890-2319-2	EX02	Total/NA	Solid	8021B	25961
890-2319-3	SW01	Total/NA	Solid	8021B	25961
890-2319-4	SW02	Total/NA	Solid	8021B	25961
MB 880-25948/5-A	Method Blank	Total/NA	Solid	8021B	25948
MB 880-25961/5-A	Method Blank	Total/NA	Solid	8021B	25961
LCS 880-25961/1-A	Lab Control Sample	Total/NA	Solid	8021B	25961
LCSD 880-25961/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	25961
890-2317-A-5-C MS	Matrix Spike	Total/NA	Solid	8021B	25961
890-2317-A-5-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	25961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-25948/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 25961

LCS 880-25961/1-A	Lab Control Sample	Iotal/NA	Solid	8021B	25961	
LCSD 880-25961/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	25961	8
890-2317-A-5-C MS	Matrix Spike	Total/NA	Solid	8021B	25961	
890-2317-A-5-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	25961	9
Prep Batch: 25948						10
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
MB 880-25948/5-A	Method Blank	Total/NA	Solid	5035		11
Prep Batch: 25961						40
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	12
890-2319-1	EX01	Total/NA	Solid	5035		4.2
890-2319-2	EX02	Total/NA	Solid	5035		13
890-2319-3	SW01	Total/NA	Solid	5035		
890-2319-4	SW02	Total/NA	Solid	5035		14
MB 880-25961/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-25961/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-25961/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
890-2317-A-5-C MS	Matrix Spike	Total/NA	Solid	5035		
890-2317-A-5-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		

Analysis Batch: 26096

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2319-1	EX01	Total/NA	Solid	Total BTEX	
890-2319-2	EX02	Total/NA	Solid	Total BTEX	
890-2319-3	SW01	Total/NA	Solid	Total BTEX	
890-2319-4	SW02	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 25938

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2319-1	EX01	Total/NA	Solid	8015B NM	25960
890-2319-2	EX02	Total/NA	Solid	8015B NM	25960
890-2319-3	SW01	Total/NA	Solid	8015B NM	25960
890-2319-4	SW02	Total/NA	Solid	8015B NM	25960
MB 880-25960/1-A	Method Blank	Total/NA	Solid	8015B NM	25960
LCS 880-25960/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	25960
LCSD 880-25960/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	25960
880-14972-A-21-F MS	Matrix Spike	Total/NA	Solid	8015B NM	25960
880-14972-A-21-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	25960
Prep Batch: 25960					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2319-1	EX01	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Ensolum Project/Site: Ross Draw 25 battery

GC Semi VOA (Continued)

Prep Batch: 25960 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2319-2	EX02	Total/NA	Solid	8015NM Prep	
890-2319-3	SW01	Total/NA	Solid	8015NM Prep	
890-2319-4	SW02	Total/NA	Solid	8015NM Prep	
MB 880-25960/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-25960/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-25960/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-14972-A-21-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-14972-A-21-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 26035					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
890-2319-1	EX01	Total/NA	Solid	8015 NM
890-2319-2	EX02	Total/NA	Solid	8015 NM
890-2319-3	SW01	Total/NA	Solid	8015 NM
890-2319-4	SW02	Total/NA	Solid	8015 NM

HPLC/IC

Leach Batch: 25907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2319-1	EX01	Soluble	Solid	DI Leach	
890-2319-2	EX02	Soluble	Solid	DI Leach	
890-2319-3	SW01	Soluble	Solid	DI Leach	
890-2319-4	SW02	Soluble	Solid	DI Leach	
MB 880-25907/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-25907/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-25907/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2319-1 MS	EX01	Soluble	Solid	DI Leach	
890-2319-1 MSD	EX01	Soluble	Solid	DI Leach	

Analysis Batch: 26071

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2319-1	EX01	Soluble	Solid	300.0	25907
890-2319-2	EX02	Soluble	Solid	300.0	25907
890-2319-3	SW01	Soluble	Solid	300.0	25907
890-2319-4	SW02	Soluble	Solid	300.0	25907
MB 880-25907/1-A	Method Blank	Soluble	Solid	300.0	25907
LCS 880-25907/2-A	Lab Control Sample	Soluble	Solid	300.0	25907
LCSD 880-25907/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	25907
890-2319-1 MS	EX01	Soluble	Solid	300.0	25907
890-2319-1 MSD	EX01	Soluble	Solid	300.0	25907

Page 108 of 137

Job ID: 890-2319-1 SDG: 03E1558028
9

Job ID: 890-2319-1 SDG: 03E1558028

Lab Sample ID: 890-2319-1 Matrix: Solid

Lab Sample ID: 890-2319-2

Lab Sample ID: 890-2319-3

Lab Sample ID: 890-2319-4

Matrix: Solid

Matrix: Solid

Date Collected: 05/18/22 13:45 Date Received: 05/18/22 16:13

Client Sample ID: EX01

Project/Site: Ross Draw 25 battery

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	25961	05/20/22 15:30	MR	XEN MID
Total/NA	Analysis	8021B		1			25945	05/21/22 14:38	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			26096	05/23/22 11:27	SM	XEN MID
Total/NA	Analysis	8015 NM		1			26035	05/23/22 09:09	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	25960	05/20/22 09:19	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25938	05/21/22 05:24	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	25907	05/20/22 12:45	СН	XEN MID
Soluble	Analysis	300.0		1			26071	05/24/22 16:01	СН	XEN MID

Client Sample ID: EX02

Date Collected: 05/18/22 14:00

Date Received: 05/18/22 16:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	25961	05/20/22 15:30	MR	XEN MID
Total/NA	Analysis	8021B		1			25945	05/21/22 15:05	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			26096	05/23/22 11:27	SM	XEN MID
Total/NA	Analysis	8015 NM		1			26035	05/23/22 09:09	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	25960	05/20/22 09:19	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25938	05/21/22 05:45	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	25907	05/20/22 12:45	СН	XEN MID
Soluble	Analysis	300.0		5			26071	05/24/22 16:29	СН	XEN MID

Client Sample ID: SW01

Date Collected: 05/18/22 14:15

Date	Recei	ved:	05/18/22	2 16:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	25961	05/20/22 15:30	MR	XEN MID
Total/NA	Analysis	8021B		1			25945	05/21/22 15:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			26096	05/23/22 11:27	SM	XEN MID
Total/NA	Analysis	8015 NM		1			26035	05/23/22 09:09	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25960	05/20/22 09:19	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25938	05/21/22 06:04	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	25907	05/20/22 12:45	СН	XEN MID
Soluble	Analysis	300.0		1			26071	05/26/22 13:04	СН	XEN MID

Client Sample ID: SW02 Date Collected: 05/18/22 14:20 Date Received: 05/18/22 16:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	25961	05/20/22 15:30	MR	XEN MID
Total/NA	Analysis	8021B		1			25945	05/21/22 16:00	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			26096	05/23/22 11:27	SM	XEN MID

Eurofins Carlsbad

Matrix: Solid

Page 109 of 137

Job ID: 890-2319-1 SDG: 03E1558028

Matrix: Solid

Lab Sample ID: 890-2319-4

Client Sample ID: SW02 Date Collected: 05/18/22 14:20

Project/Site: Ross Draw 25 battery

Date Received: 05/18/22 16:13

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			26035	05/23/22 09:09	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25960	05/20/22 09:19	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25938	05/21/22 06:24	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	25907	05/20/22 12:45	СН	XEN MID
Soluble	Analysis	300.0		1			26071	05/26/22 13:13	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 1/13/2023 2:22:48 PM

Accreditation/Certification Summary

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: Ross Drav	w 25 battery			Job ID: 890-2319-1 SDG: 03E1558028	2
Laboratory: Eurofi	ins Midland				
Unless otherwise noted, all a	analytes for this laboratory	were covered under each acc	reditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas		NELAP	T104704400-21-22	06-30-22	
The following analytes	are included in this report	, but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which	5
the agency does not of	fer certification.	•			
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM Total BTEX		Solid Solid	Total TPH Total BTEX		
		Solid			
					8
					9
					10
					13

Eurofins Carlsbad

.

Page 111 of 137

Method Summary

Client: Ensolum Project/Site: Ross Draw 25 battery Job ID: 890-2319-1 SDG: 03E1558028

Vethod	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	XEN MID
lotal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
3015NM Prep	Microextraction	SW846	XEN MID
OI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 113 of 137

12 13 14

Job ID: 890-2319-1 SDG: 03E1558028

Client: Ensolum Project/Site: Ross Draw 25 battery

Lab Sample ID 890-2319-1 890-2319-2 890-2319-3

890-2319-4

Client Sample ID	Matrix	Collected	Received	Depth
EX01	Solid	05/18/22 13:45	05/18/22 16:13	2
EX02	Solid	05/18/22 14:00	05/18/22 16:13	2
SW01	Solid	05/18/22 14:15	05/18/22 16:13	2
SW02	Solid	05/18/22 14:20	05/18/22 16:13	2

Work Order No:	www.xenco.com Page / of /	Work Order Comments	UST/PST PRP Brownfields RRC Superfund		vel II 🗌 Level III 🗍 PST/UST 🗍 TRRP 🗍 Level IV 🗍	EDD ADaPT Other:	Preservative Codes	None: NO DI Water: H ₂ O		H.SO .: H. NO .: HNO .: H.		NaHSO .: NABIS	Na 25 203: NaSO 3	Zn Acetate+NaOH: Zn	NaOH+Ascorbic Acid: SAPC	Sample Comments	Inc. #	WAP? 2201 444 794				Se Ag SiO, Na Sr TI Sn U V Zn	Hg: 1631/245.1/7470 /747		Received by: (Signature) Date/Time		
Chain of Custody Houston, TX (281) 240-4200, Dalas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hoths, DXX (575) 555-3443, Lubbock, TX (806) 794-1296	392-7350, Larisbad, NM (272) 988-3139	Advian Baker	ENERSY Program:	3104 E. C. Peers 5 6. State of Project:	COVIS bad, NM 88226 Reporting: Level II	ensolum.com	ANALYSIS REQUEST					890-2319 Chain of Custody		×	J	1	× × ×	× × ×				As Ba Be B Cd Ca Cr Co Cu Fe Pb Ma Mn Mo Ni K	:	Notice: Signature of this document and relinquishment of samples contrantes available from center of samples and relind the control of service. In a manuales and submitted for the cost of samples and shall not assume available for any tosses or expression cancel by the client firstch losses are due to circumstances beyond the control of service. Second minum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Date/Time Relinquished by: (Signature)	18/22 4132	
	HODDS, NM (5/2)	Bill to: (if different)				nail:	Tum Around	KRout		TAT starts the day received by the lab, if received by 4.30pm	Wet Ice.	1-/M-mar	-0.) Pa		Corrected Temperature: 5.0	Time Depth Grab/ # of Sampled Comp Cont	13:45 3' C 1	14:00 3° C 1 X	14:15 2 C 1 >	14:30 3, 6 1 x		RCRA 13PPM Texas 11 AI Sh As	TCLP/SPLP6010 : 8RCRA 5b As Be Be TCLP/SPLP6010 : 8RCRA 5b As Be Be	s a valid purchase order from chert company to curonits a not assume any responsibility for any losses or expenses ir ct and a charge of \$5 for each sample submitted to Eurofii	RgCeived by: (Signature)	0	
ofins Environment Testing Xenco		Killo: Jenning	201:1	3122 Nacional Park Hwy	1.0	7-683-	Ross Draw 25 Buckery	1.00	Eddy county, MM	Eric carroli	Tomo Blank.	res No Thern	Yes No NHA	Kes No N/A	Corrected	tification Matrix Date	5.18.13		~	N/ S		-0008 / 8000 01	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	cument and relinquishment of samples constitute will be liable only for the cost of samples and shall num charge of \$85.00 will be applied to each proje	y: (Signature) Receive	N.	
💸 eurofins		Droiore Managor.	Company Name	Address:	City. State ZIP:	Phone:	Project Name	Project Number:	Project Location:	Sampler's Name:	PO #:	Samples Received Intact:	Cooler Custody Seals:	Sample Custody Seals:	Total Containers:	Sample Identification	FVNI	60X4	SWOI	SWO			Total 200.7 / 6010 Circle Method(s) ar	Notice: Signature of this do of service. Eurofins Xenco of Eurofins Xenco. A minitr	Relinquished by: (Signature)	Ecci Ca	

5/26/2022

Page 114 of 137

Job Number: 890-2319-1 SDG Number: 03E1558028

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2319 List Number: 1 Creator: Olivas, Nathaniel

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-2319-1 SDG Number: 03E1558028

List Source: Eurofins Midland

List Creation: 05/20/22 10:39 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2319 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 10/20/2022 11:22:31 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 1/13/2023 2:22:48 PM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2717-1

Laboratory Sample Delivery Group: 03E1558028 Client Project/Site: Ross Draw 25

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Kalei Jennings

RAMER

Authorized for release by: 8/11/2022 10:43:18 AM Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

SDG: 03E1558028

Page 118 of 137

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Page 119 of 137

cived by OCD		Page 119 of 1	57
	Definitions/Glossary		
Client: Ensolum	ו Job ID:	: 890-2717-1	
Project/Site: Ro	SDG: 0	03E1558028	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			5
Qualifier	Qualifier Description		
*1	LCS/LCSD RPD exceeds control limits.		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		8
F1	MS and/or MSD recovery exceeds control limits.		
F2	MS/MSD RPD exceeds control limits		9
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER Dil Fac	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac DL	Dilution Factor		
DL DL, RA, RE, IN	Detection Limit (DoD/DOE) Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DL, RA, RE, IN DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive Quality Control

PQL

QC

RER

RL RPD

TEF

TEQ TNTC

PRES

Page 120 of 137

4

5

Job ID: 890-2717-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2717-1

Receipt

The sample was received on 8/3/2022 2:47 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 25.6°C

Receipt Exceptions

The following sample was received at the laboratory outside the required temperature criteria: SW03 (890-2717-1). This does not meet regulatory requirements. The client was contacted regarding this issue, and the laboratory was instructed to <CHOOSE_ONE> proceed with/cancel analysis. Sample received out of temp range, client notified and wished to proceed with sampling.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-31570/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-31570 and analytical batch 880-31633 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-31833 and analytical batch 880-31871 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.MSD misinjected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00201 U

<0.00201 U

RL

0.00201

0.00201

Unit

mg/Kg

mg/Kg

D

Prepared

08/09/22 14:20

08/09/22 14:20

Job ID: 890-2717-1 SDG: 03E1558028

Client Sample ID: SW03

Project/Site: Ross Draw 25

Date Collected: 08/03/22 10:00 Date Received: 08/03/22 14:47

Sample Depth: 0.2'

Client: Ensolum

Analyte

Benzene

Toluene

Lab Sample ID: 890-2717-1 Matrix: Solid

Analyzed

08/10/22 23:30

08/10/22 23:30

Dil Fac

1

1

				5 5				
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		08/09/22 14:20	08/10/22 23:30	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		08/09/22 14:20	08/10/22 23:30	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		08/09/22 14:20	08/10/22 23:30	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		08/09/22 14:20	08/10/22 23:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			08/09/22 14:20	08/10/22 23:30	1
1,4-Difluorobenzene (Surr)	89		70 - 130			08/09/22 14:20	08/10/22 23:30	1
— Method: Total BTEX - Total BTEX	K Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			08/11/22 10:57	1
– Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			08/08/22 11:44	1
– Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1	50.0	mg/Kg		08/05/22 10:50	08/06/22 13:26	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		08/05/22 10:50	08/06/22 13:26	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0		50.0	malKa		08/05/22 10:50	08/06/22 13:26	1
Oli Range Organics (Over C26-C30)	<50.0	0	50.0	mg/Kg		08/03/22 10:50	08/00/22 13.20	I
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130			08/05/22 10:50	08/06/22 13:26	1
o-Terphenyl	99		70 - 130			08/05/22 10:50	08/06/22 13:26	1
 Method: 300.0 - Anions, Ion Chr	omatography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37.7	F1 F2	4.98	mg/Kg			08/09/22 20:31	1

Eurofins Carlsbad

Released to Imaging: 1/13/2023 2:22:48 PM

Matrix: Solid

Job ID: 890-2717-1 SDG: 03E1558028

Prep Type: Total/NA

Prep Type: Total/NA

5 6 7

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2717-1	SW03	112	89	
890-2717-1 MS	SW03	104	93	
890-2717-1 MSD	SW03	103	94	
LCS 880-31852/1-A	Lab Control Sample	104	93	
_CSD 880-31852/2-A	Lab Control Sample Dup	117	93	
MB 880-31852/5-A	Method Blank	100	87	
MB 880-31859/5-A	Method Blank	99	88	
Surrogate Legend				

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Sample ID	Client Sample ID	(70-130)	(70-130)	
2-A-1-C MS	Matrix Spike	77	85	
I2-A-1-D MSD	Matrix Spike Duplicate	92	101	
7-1	SW03	88	99	
)-31570/2-A	Lab Control Sample	135 S1+	133 S1+	
880-31570/3-A	Lab Control Sample Dup	111	130	
80-31570/1-A	Method Blank	91	105	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Page 122 of 137

Client: Ensolum Project/Site: Ross Draw 25

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-31852/5-A

Matrix: Solid Analysis Batch: 31883

-	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		08/09/22 14:20	08/10/22 23:09	1
Toluene	<0.00200	U	0.00200	mg/Kg		08/09/22 14:20	08/10/22 23:09	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		08/09/22 14:20	08/10/22 23:09	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		08/09/22 14:20	08/10/22 23:09	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		08/09/22 14:20	08/10/22 23:09	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		08/09/22 14:20	08/10/22 23:09	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			08/09/22 14:20	08/10/22 23:09	1
1,4-Difluorobenzene (Surr)	87		70 - 130			08/09/22 14:20	08/10/22 23:09	1

Lab Sample ID: LCS 880-31852/1-A Matrix: Solid

Analysis Batch: 31883

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07639		mg/Kg		76	70 - 130	
Toluene	0.100	0.07711		mg/Kg		77	70 - 130	
Ethylbenzene	0.100	0.08089		mg/Kg		81	70 - 130	
m-Xylene & p-Xylene	0.200	0.1645		mg/Kg		82	70 - 130	
o-Xylene	0.100	0.09143		mg/Kg		91	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	93		70 - 130

Lab Sample ID: LCSD 880-31852/2-A

Matrix: Solid

Analysis Batch: 31883							Prep	Batch:	31852
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07451		mg/Kg		75	70 - 130	2	35
Toluene	0.100	0.07796		mg/Kg		78	70 - 130	1	35
Ethylbenzene	0.100	0.08436		mg/Kg		84	70 - 130	4	35
m-Xylene & p-Xylene	0.200	0.1738		mg/Kg		87	70 - 130	6	35
o-Xylene	0.100	0.09756		mg/Kg		98	70 - 130	6	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	117		70 - 130
1,4-Difluorobenzene (Surr)	93		70 - 130

Lab Sample ID: 890-2717-1 MS Matrix: Solid

Analysia Bataby 21992

Analysis Batch: 31883									Prep	Batch: 31852
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.09566		mg/Kg		95	70 - 130	
Toluene	<0.00201	U	0.100	0.09695		mg/Kg		96	70 - 130	

Eurofins Carlsbad

Client Sample ID: SW03

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 31852

Prep Batch: 31852

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Job ID: 890-2717-1

Client: Ensolum Project/Site: Ross Draw 25

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2717-1 M	S									Client Sar	nple ID:	SW0
Matrix: Solid										Prep 1	Гуре: То	otal/N/
Analysis Batch: 31883										Prep	Batch:	3185
	Sample	Sam	ple	Spike	MS	MS				%Rec		
Analyte	Result	Qua	ifier	Added	Result	Qualifier	Unit		D %Rec	Limits		
Ethylbenzene	<0.00201	U		0.100	0.1007		mg/Kg		100	70 - 130		
m-Xylene & p-Xylene	< 0.00402	U		0.201	0.2015		mg/Kg		100	70 - 130		
o-Xylene	<0.00201	U		0.100	0.1109		mg/Kg		110	70 - 130		
		MS										
Surrogate	%Recovery	Qua	lifier	Limits								
4-Bromofluorobenzene (Surr)	104			70 - 130								
1,4-Difluorobenzene (Surr)	93			70 - 130								
Lab Sample ID: 890-2717-1 M	SD									Client Sar	nple ID:	swo
Matrix: Solid											Гуре: То	
Analysis Batch: 31883											Batch:	
-	Sample	Sam	ple	Spike	MSD	MSD				%Rec		RF
Analyte	Result	Qua	ifier	Added	Result	Qualifier	Unit		D %Rec	Limits	RPD	Lin
Benzene	<0.00201	U		0.0998	0.09159		mg/Kg		92	70 - 130	4	
Toluene	<0.00201	U		0.0998	0.09133		mg/Kg		91	70 - 130	6	
Ethylbenzene	<0.00201	U		0.0998	0.09450		mg/Kg		95	70 - 130	6	
m-Xylene & p-Xylene	<0.00402	U		0.200	0.1903		mg/Kg		95	70 - 130	6	
o-Xylene	<0.00201	U		0.0998	0.1047		mg/Kg		105	70 - 130	6	
	MSD	MSD	1									
Surrogate	%Recovery	Qua	lifier	Limits								
4-Bromofluorobenzene (Surr)	103			70 - 130								
1,4-Difluorobenzene (Surr)	94			70 - 130								
Lab Sample ID: MB 880-31859	9/5-A								Client S	ample ID:	Method	Blar
Matrix: Solid										Prep 1	Гуре: То	otal/N
Analysis Batch: 31883										Prep	Batch:	318
		ΜВ	MB									
Analyte			Qualifier	RL		Unit		D	Prepared	Analyz	zed	Dil F
Benzene	< 0.0	0200	U	0.00200		mg/Kg	g _		08/09/22 15:44	08/10/22	12:32	
Toluene	<0.0	0200	U	0.00200		mg/Kg	g		08/09/22 15:44	08/10/22	12:32	
Ethylbenzene	<0.0	0200	U	0.00200		mg/Kg			08/09/22 15:44			
m-Xylene & p-Xylene	<0.0	0400	U	0.00400		mg/Kg	g		08/09/22 15:44	08/10/22	12:32	
o-Xylene	<0.0	0200	U	0.00200		mg/Kg			08/09/22 15:44			
Xylenes, Total	<0.0	0400	U	0.00400		mg/Kg	g		08/09/22 15:44	08/10/22	12:32	
		MB	МВ									
	%Reco		Qualifier	Limits					Prepared	Analyz		Dil F
				70 400					08/09/22 15:44	08/10/22	12.32	
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)		99 88		70 - 130 70 - 130					08/09/22 15:44			

Lab Sample ID: MB 880-31570/1-A Matrix: Solid Analysis Batch: 31633	МВ	МВ				Client Sa	mple ID: Metho Prep Type: ⊺ Prep Batcł	Total/NA
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		08/05/22 10:50	08/06/22 10:56	1
(GRO)-C6-C10								

Client: Ensolum Project/Site: Ross Draw 25

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-3157	U/1-A									Client Sa	ample ID: M		
Matrix: Solid											Prep Ty		
Analysis Batch: 31633											Prep B	atch:	31570
		MB											
Analyte			Qualifier	RL		Unit		<u>D</u>		repared	Analyzec		Dil Fac
Diesel Range Organics (Over	<	<50.0	U	50.0		mg/K	g		08/0	5/22 10:50	08/06/22 10	:56	1
C10-C28) Oll Range Organics (Over C28-C36)	2	<50.0		50.0		mg/K	a		08/0	5/22 10:50	08/06/22 10	56	1
On Mange Organics (Over 626-650)		-00.0	0	50.0		iiig/it	9		00/0	5/22 10.50	00/00/22 10	.50	1
		MB	МВ										
Surrogate	%Reco	overy	Qualifier	Limits					P	repared	Analyzed	I	Dil Fac
1-Chlorooctane		91		70 - 130					08/0	5/22 10:50	08/06/22 10	:56	1
o-Terphenyl		105		70 - 130					08/0	5/22 10:50	08/06/22 10	:56	1
Lab Sample ID: LCS 880-315	70/2-4							С	lient	Sample	ID: Lab Con	trol S	amnle
Matrix: Solid								Ŭ		oumpio	Prep Ty		
Analysis Batch: 31633											Prep B		
Analysis Daton, 01000				Spike	LCS	LCS					%Rec	atoll.	51570
Analyte				Added		Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	1077	Quanner	mg/Kg		-	108	70 - 130		
(GRO)-C6-C10				1000	1011						100		
Diesel Range Organics (Over				1000	1004		mg/Kg			100	70 - 130		
C10-C28)													
	LCS	LCS											
Surrogate	%Recovery	Quali	ifier	Limits									
1-Chlorooctane	135	S1+		70 - 130									
o-Terphenyl	133	S1+		70 - 130									
Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31633	570/3-A			Spike	LCSD	LCSD	CI	ent	Sam	ріе і	ab Control S Prep Ty Prep E %Rec	oe: To	tal/NA
Analyte				Added		Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1000	860.0		mg/Kg		_	86	70 - 130	22	20
(GRO)-C6-C10				1000	000.0		mg/rtg			00	10-100		20
Diesel Range Organics (Over				1000	967.6		mg/Kg			97	70 - 130	4	20
C10-C28)													
	LCSD	1001	n										
Surrogate	%Recovery	Quali		Limits									
1-Chlorooctane	- <u>////////////////////////////////////</u>	Quan		70 - 130									
o-Terphenyl	130			70 - 130									
	100			10 - 100									
Lab Sample ID: 890-2712-A-1	I-C MS									Client S	Sample ID: I	/ atrix	Spike
Matrix: Solid											· Prep Ty		
Analysis Batch: 31633											Prep B		
-	Sample	Samp	ole	Spike	MS	MS					%Rec		
Analyte	Result	-		Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics	<49.9	U *1		999	994.7		mg/Kg		-	100	70 - 130		
(GRO)-C6-C10				005									
Diesel Range Organics (Over	<49.9	U		999	709.9		mg/Kg			71	70 - 130		
C10-C28)													
	MS	MS											
Surrogate	MS 		ifier	Limits									

5

Job ID: 890-2717-1

SDG: 03E1558028

77

85

1-Chlorooctane

o-Terphenyl

70 - 130

70 - 130

ject/Site: Ross Draw 25

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid												Prep	Type: To	otal/NA
Analysis Batch: 31633												Prep	Batch:	31570
	Sample	Sample	е	Spike	N	SD	MSD					%Rec		RPD
Analyte	Result	Qualifi	ier	Added	Re	sult	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1		999	84	0.2		mg/Kg		_	84	70 - 130	17	20
Diesel Range Organics (Over C10-C28)	<49.9	U		999	84	3.5		mg/Kg			84	70 - 130	17	20
,	MSD	MSD												
Surrogate	%Recovery		ïer	Limits										
1-Chlorooctane	92			70 - 130	-									
o-Terphenyl	101			70 - 130										
/lethod: 300.0 - Anions, I	on Chromat	ogra	phy											
Lab Sample ID: MB 880-3183	3/1-A										Client S	ample ID:	Method	Blank
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 31871														
		MB N	ИB											
Analyte	R	esult C	Qualifier		RL		Unit		D	P	repared	Analy	zed	Dil Fac
													40.00	
Lab Sample ID: LCS 880-318		<5.00 U	J		5.00		mg/Kg]	СІ	lient	Sample	08/09/22	ontrol S	ample
Lab Sample ID: LCS 880-318 Matrix: Solid		<5.00 U	J				_	3	CI	lient	Sample	ID: Lab C Prep		
Analysis Batch: 31871		<5.00 U	J	Spike	ı		LCS		CI			ID: Lab C Prep %Rec	ontrol S	ample
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte		<5.00 U	J 	Added	L Re	sult	_	Unit	CI	lient	%Rec	ID: Lab C Prep %Rec Limits	ontrol S	ample
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte		<5.00 U	J 	-	L Re		LCS		CI			ID: Lab C Prep %Rec	ontrol S	ample
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte	33/2-A 	<5.00 U	J 	Added	L Re	sult	LCS	Unit mg/Kg		<u>D</u>	%Rec 93	ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro	ontrol S Type: S	iample ioluble
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31	33/2-A 	<5.00 U	J 	Added	L Re	sult	LCS	Unit mg/Kg		<u>D</u>	%Rec 93	ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro	ontrol S Type: S	iample ioluble
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid	33/2-A 	<5.00 U	J 	Added	L 23	sult 1.7	LCS	Unit mg/Kg		<u>D</u>	%Rec 93	ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro	ontrol S Type: S	ample Soluble
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid	33/2-A 	<5.00 U	J 	Added 250	L Re: 23	sult 1.7 SD	LCS Qualifier	Unit mg/Kg		<u>D</u>	%Rec 93	 ID: Lab C Prep %Rec Limits 90 - 110 _ab Contro Prep 	ontrol S Type: S	ample coluble le Dup coluble
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31871	33/2-A 	<5.00 U	J 	Added 250 Spike	LC 	sult 1.7 SD	LCS Qualifier LCSD	Unit mg/Kg Cl		<u>D</u> Sam	%Rec 93 ple ID: I	PID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	ontrol S Type: S ol Samp Type: S	iample ioluble le Dup ioluble RPD
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31871 Analyte	33/2-A 833/3-A	<5.00 U	J 	Added 250 Spike Added	LC 	SD Sult	LCS Qualifier LCSD	Unit mg/Kg Cl		<u>D</u> Sam	%Rec 93 ple ID: I %Rec 94	PID: Lab C Prep %Rec Limits 90 - 110 -ab Contro Prep %Rec Limits	ontrol S Type: S DI Samp Type: S <u>RPD</u> 2	ie Dup coluble coluble coluble RPD Limit 20
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31871 Analyte Chloride	33/2-A 833/3-A	<5.00 U	J 	Added 250 Spike Added	LC 	SD Sult	LCS Qualifier LCSD	Unit mg/Kg Cl		<u>D</u> Sam	%Rec 93 ple ID: I %Rec 94	PID: Lab C Prep %Rec Limits 90 - 110 -ab Contro Prep %Rec Limits 90 - 110 Sample IE	ontrol S Type: S DI Samp Type: S <u>RPD</u> 2	ie Dup soluble soluble coluble RPD Limit 20 Spike
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: 880-17783-A- Matrix: Solid	33/2-A 833/3-A	<5.00 U	J 	Added 250 Spike Added	LC 	SD Sult	LCS Qualifier LCSD	Unit mg/Kg Cl		<u>D</u> Sam	%Rec 93 ple ID: I %Rec 94	PID: Lab C Prep %Rec Limits 90 - 110 -ab Contro Prep %Rec Limits 90 - 110 Sample IE	ontrol S Type: S ol Samp Type: S <u>RPD</u> 2 : Matrix	ie Dup soluble soluble coluble RPD Limit 20 Spike
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: 880-17783-A- Matrix: Solid	33/2-A 833/3-A 	Sample		Added 250 Spike Added 250 Spike	LC 23 LC <u>Re</u> 23	SD SD Sult 6.1	LCS Qualifier LCSD Qualifier	Unit mg/Kg Cl		<u>D</u> Sam	%Rec 93 ple ID: I %Rec 94	 ID: Lab C Prep %Rec Limits 90 - 110 ab Contro Prep %Rec Limits 90 - 110 Sample IE Prep %Rec 	ontrol S Type: S ol Samp Type: S <u>RPD</u> 2 : Matrix	ie Dup soluble soluble coluble RPD Limit 20 s Spike
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: 880-17783-A- Matrix: Solid Analysis Batch: 31871 Analyte	33/2-A 833/3-A 	Sample Qualifi		Added 250 Spike Added 250 Spike Added	LC 23 LC 23 Re: Re:	SD SUIL 6.1 MS Sult	LCS Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Cl Unit mg/Kg		<u>D</u> Sam	%Rec 93 ple ID: I %Rec 94 Client	 ID: Lab C Prep %Rec Limits 90 - 110 ab Contro Prep %Rec Limits 90 - 110 Sample IE Prep %Rec Limits 	ontrol S Type: S ol Samp Type: S <u>RPD</u> 2 : Matrix	ie Dup coluble coluble coluble RPD Limit 20 c Spike
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: 880-17783-A- Matrix: Solid Analysis Batch: 31871	33/2-A 833/3-A 	Sample Qualifi		Added 250 Spike Added 250 Spike	LC 23 LC 23 Re: Re:	SD SD Sult 6.1	LCS Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Cl		D Sam	%Rec 93 ple ID: I %Rec 94 Client	 ID: Lab C Prep %Rec Limits 90 - 110 ab Contro Prep %Rec Limits 90 - 110 Sample IE Prep %Rec 	ontrol S Type: S ol Samp Type: S <u>RPD</u> 2 : Matrix	ie Dup soluble soluble coluble RPD Limit 20 s Spike
Lab Sample ID: LCS 880-318 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: LCSD 880-31 Matrix: Solid Analysis Batch: 31871 Analyte Chloride Lab Sample ID: 880-17783-A- Matrix: Solid Analysis Batch: 31871 Analyte	33/2-A 833/3-A -1-E MS - - - - - - - - - - - - - - - - - - -	Sample Qualifi		Added 250 Spike Added 250 Spike Added	LC 23 LC 23 Re: Re:	SD SUIL 6.1 MS Sult	LCS Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Cl Unit mg/Kg	ient :	D_ Sam D_	%Rec 93 ple ID: I %Rec 94 Client %Rec 220	PID: Lab C Prep %Rec Limits 90 - 110 -ab Contro Prep %Rec Limits 90 - 110 Sample IE Prep %Rec Limits 90 - 110	ontrol S Type: S DI Samp Type: S <u>RPD</u> 2 C: Matrix Type: S	le Dup soluble le Dup soluble Limi 20 soluble soluble

Analysis Datch. 51071											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	53.2	F1	250	593.2	F1	mg/Kg		216	90 - 110	1	20

Eurofins Carlsbad

5

7

Job ID: 890-2717-1

SDG: 03E1558028

Client: Ensolum

Project/Site: Ross Draw 25

Job ID: 890-2717-1 SDG: 03E1558028

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-2717-1 MS Matrix: Solid									Client San Prep	nple ID: Type: S	
Analysis Batch: 31871											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	37.7	F1 F2	498	586.9		mg/Kg		110	90 - 110		
Lab Sample ID: 890-2717-1 MSD									Client San	nple ID:	SW03
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 31871											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	37.7	F1 F2	498	34.88	F1 F2	mg/Kg		-0.6	90 - 110	178	20

Client: Ensolum Project/Site: Ross Draw 25

31852

31852

Job ID: 890-2717-1 SDG: 03E1558028

GC VOA

Prep	Batch:	31852
------	--------	-------

_ ·						
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-2717-1	SW03	Total/NA	Solid	5035		
MB 880-31852/5-A	Method Blank	Total/NA	Solid	5035		5
LCS 880-31852/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-31852/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
890-2717-1 MS	SW03	Total/NA	Solid	5035		
890-2717-1 MSD	SW03	Total/NA	Solid	5035		
Prep Batch: 31859						8
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
MB 880-31859/5-A	Method Blank	Total/NA	Solid	5035		9
Analysis Batch: 31883	I					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-2717-1	SW03	Total/NA	Solid	8021B	31852	
MB 880-31852/5-A	Method Blank	Total/NA	Solid	8021B	31852	
MB 880-31859/5-A	Method Blank	Total/NA	Solid	8021B	31859	
LCS 880-31852/1-A	Lab Control Sample	Total/NA	Solid	8021B	31852	
LCSD 880-31852/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	31852	

Analysis Batch: 31991

SW03

SW03

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2717-1	SW03	Total/NA	Solid	Total BTEX	

Total/NA

Total/NA

Solid

Solid

8021B

8021B

GC Semi VOA

890-2717-1 MS

890-2717-1 MSD

Prep Batch: 31570

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2717-1	SW03	Total/NA	Solid	8015NM Prep	
MB 880-31570/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-31570/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-31570/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2712-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2712-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 31633

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2717-1	SW03	Total/NA	Solid	8015B NM	31570
MB 880-31570/1-A	Method Blank	Total/NA	Solid	8015B NM	31570
LCS 880-31570/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	31570
LCSD 880-31570/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	31570
890-2712-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	31570
890-2712-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	31570
Analysis Batch: 31744					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2717-1	SW03	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Ensolum Project/Site: Ross Draw 25

Page 129 of 137

Job ID: 890-2717-1 SDG: 03E1558028

HPLC/IC

Leach Batch: 31833

each Batch: 31833					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2717-1	SW03	Soluble	Solid	DI Leach	
MB 880-31833/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-31833/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-31833/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-17783-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-17783-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
890-2717-1 MS	SW03	Soluble	Solid	DI Leach	
890-2717-1 MSD	SW03	Soluble	Solid	DI Leach	

Analysis Batch: 31871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2717-1	SW03	Soluble	Solid	300.0	31833
MB 880-31833/1-A	Method Blank	Soluble	Solid	300.0	31833
LCS 880-31833/2-A	Lab Control Sample	Soluble	Solid	300.0	31833
LCSD 880-31833/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	31833
880-17783-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	31833
880-17783-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	31833
890-2717-1 MS	SW03	Soluble	Solid	300.0	31833
890-2717-1 MSD	SW03	Soluble	Solid	300.0	31833

Job ID: 890-2717-1 SDG: 03E1558028

Matrix: Solid

9

Lab Sample ID: 890-2717-1

Client Sample ID: SW03 Date Collected: 08/03/22 10:00

Project/Site: Ross Draw 25

Client: Ensolum

Date Received: 08/03/22 14:47

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	31852	08/09/22 14:20	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31883	08/10/22 23:30	SM	EET MID
Total/NA	Analysis	Total BTEX		1			31991	08/11/22 10:57	SM	EET MID
Total/NA	Analysis	8015 NM		1			31744	08/08/22 11:44	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31570	08/05/22 10:50	DM	EET MID
Total/NA	Analysis	8015B NM		1			31633	08/06/22 13:26	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	31833	08/09/22 08:39	AJ	EET MID
Soluble	Analysis	300.0		1			31871	08/09/22 20:31	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 1/13/2023 2:22:48 PM

Accreditation/Certification Summary

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	P	rogram	Identification Number	Expiration Date
xas	N	IELAP	T104704400-22-24	06-30-23
• •		out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w
the agency does not of		Matrix	Analyte	
Analysis Method	Prep Method	Matrix	Analyte	
8 ,		Matrix Solid Solid	Analyte Total TPH Total BTEX	

Page 131 of 137

10

Job ID: 890-2717-1

SDG: 03E1558028

Method Summary

Client: Ensolum Project/Site: Ross Draw 25 Job ID: 890-2717-1 SDG: 03E1558028

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
00.0	Anions, Ion Chromatography	MCAWW	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
l Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum Project/Site: Ross Draw 25 Job ID: 890-2717-1 SDG: 03E1558028

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-2717-1	SW03	Solid	08/03/22 10:00	08/03/22 14:47	0.2'	4
						5
						8
						9
						12
						13

5 2 - V	Relinquished by: (Signature)	Notice: Signature of this document of service. Eurofins Xenco will be li of Eurofins Xenco. A minimum chai	Total 200.7 / 6010 Circle Method(s) and			suras	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Samples Received Intact:	SAMPLE RECEIPT		Sampler's Name:	Project location:	37	Mamo R	6	City, State ZIP:	Address: 31	3	Project Manager:			🔅 eurofins
	nature) Received by: (Signatu)	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco. Its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. A minimum charge of \$55.00 will be applied to each project and a charge of \$55 for each sample submitted to Eurofins Xenco. Juit not analyzed. These terms will be enforced unless previously negotiated of services are control of the service.	Total 200.7 / 6010 200.8 / 6020: 8R Circle Method(s) and Metal(s) to be analyzed			5 8-3	ion Matrix Date Sampled	Corrected Temperature:	Yes No N/ Temperature Reading:	o MIA	Thern	Temp Blank: Yes No	- 11			511-4-9/114	iss Day 25	17-683-2503	lobal NM S	12 National Portes	nsolum !!	Glej Jennings		Environment Testing Xenco	
Sa Stuf 8	/: (Signature)	lid purchase order from client company to Eu ssume any responsibility for any losses or exp d a charge of \$5 for each sample submitted t	8RCRA 13PPM Texas 11 AI Sb TCLP/SPLP 6010 : 8RCRA Sb			1000 . L C 1	Time Depth Grab/ # of Sampled Comp Cont	125.	Reading: 25.8	C.C-	TAM-1	Wet Ice: Red No	-	TAT starts the day received by		Routine Rush Pres.	Around	Email: Kiennings@	City, State ZIP:	Hun Address:	Company Name:	Bill to: (if different)	Hobbs, NM		
13/32/1497	Date/Time Relinqu	rofins Xenco, its affiliates and subcontractors enses incurred by the client if such losses are b Eurofins Xenco, but not analyzed. These ter	A 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo N TCLP/SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U				CI B. T	TP,	x H	-								@ Pasolua.con	Carlsbed NM	3104 E Gree	XTO Energy	Gurrer Gie	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300
	Relinquished by: (Signature)	 It assigns standard terms and conditions due to circumstances beyond the control ms will be enforced unless previously negotia 	o Cu Fe Pb Mg Mn Mo Ni K Pb Mn Mo Ni Se Ag Ti U					890-2/1/ Cilani Ci	HINNING Chain of Custody								ANALYSIS REQUEST	Deliverables:	88220 Reporting:	Γ.	Program:	a a	8-3199	09-3334 -1296	0300
	Received by: (Signature)	red.	K Se Ag SiO ₂ Na Sr Tl Sn U V Z Hg: 1631/245.1/7470/7471							Na ₂ s	NaH	H ₃ PC	H ₂ SC	HCL: HC	Cool	Non			Reporting: Level II Level III PST/UST TRRP	ect:	UST/PST PRP Brownfields	Work Order Comments	www.xenco.com F	Work Order No:	
	Date/Time		n U V Zn 0 /7471		2 (30)001	122201 44426	Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na 2S 2O 3: NaSO 3	NaHSO 4: NABIS	H ₃ PO ₄ : HP	2			None: NO DI Water: H-O	Preservative Codes	Other:	ST TRRP Level IV		lds RRC Superfund	ents	Pageof		

14

Job Number: 890-2717-1 SDG Number: 03E1558028

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2717 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-2717-1 SDG Number: 03E1558028

List Source: Eurofins Midland

List Creation: 08/05/22 10:35 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2717 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	152320
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By	Condition	Condition Date
jharimon	None	1/13/2023

CONDITIONS

Page 137 of 137

Action 152320