District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2229057488
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

		OGRID	OGRID 1092		
Contact Name Jeffery Tew C		Contact To	Contact Telephone 575-625-2222		
Contact email jtew@aecnm.com Incident		Incident #	(assigned by OCD) nAPP2229057488		
Contact mailing address	PO Box 1973,	Roswell, NM 882	02		
		Location	of Release So	ource	
Latitude 32.942522			Longitude _	-103.304927	
		(NAD 83 in dec	cimal degrees to 5 decin	nal places)	
Site Name SV K	im Harris #003		Site Type	Oil Well	
Date Release Discovere	d 10/16/22		API# (if app	olicable) 30-025-33894	
Unit Letter Section	Township	Range	Cour	ity	
B 12	16S	36E	Lea		
Surface Owner: State Federal Tribal X Private (Name: Clayton Revocable Trust					
		Nature and	d Volume of l	Release	
Mater	ial(s) Released (Select a	ll that apply and attach	calculations or specific	justification for the volumes provided below)	
Crude Oil	Volume Release	ed (bbls)		Volume Recovered (bbls)	
X Produced Water	Volume Release	ed (bbls) 18		Volume Recovered (bbls) 8	
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?		X Yes No			
Condensate			Volume Recovered (bbls)		
Natural Gas Volume Released (Mcf)		Volume Recovered (Mcf)			
Other (describe) Volume/Weight Released (provide units)		Volume/Weight Recovered (provide units)			
Cause of Release				1	
Developed a hole in the water leg of the heater treater that resulted in a release of produced water.					

Received by OCD: 12/16/2022 3:49:48 PM State of New Mexico
Page 2 Oil Conservation Division

Page 2 of 188

Incident ID	nAPP2229057488
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?			
19.15.29.7(A) NMAC?				
Yes X No				
If VES, was immediate no	otice given to the OCD? By whom? To wh	nom? When and by what means (phone, email, etc)?		
	en by Kyle Alpers to Kerry Fortner on 1			
Tromes gr.	en of 11/10 impose to 11011/j i orandi on i	ov 17/22 via pilonoi		
	Initial R	esponse		
The responsible	party must undertake the following actions immediated	y unless they could create a safety hazard that would result in injury		
x The source of the rele	ease has been stopped.			
X The impacted area ha	s been secured to protect human health and	the environment.		
X Released materials ha	ave been contained via the use of berms or o	ikes, absorbent pads, or other containment devices.		
	ecoverable materials have been removed an			
If all the actions described	d above have <u>not</u> been undertaken, explain	why:		
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred clease attach all information needed for closure evaluation.		
regulations all operators are public health or the environr failed to adequately investig	required to report and/or file certain release notinent. The acceptance of a C-141 report by the Cate and remediate contamination that pose a three	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger oCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws		
Printed Name:Jeffery	Tew	Title: Operations Engineer		
Signature:	y Tew com	Date: <u>12/16/2022</u>		
email: jtew@aecnm.c	om	Telephone: 575-625-2222		
OCD Only				
Received by:		Date:		

	Page 3 of 1	88
Incident ID	nAPP2229057488	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no taler than 20 days after the release discovery date.			
What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>51</u> (ft bgs)		
Did this release impact groundwater or surface water?	Yes X No		
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No		
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	Yes X No		
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	Yes X No		
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes X No		
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No		
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes X No		
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No		
Are the lateral extents of the release overlying a subsurface mine?	Yes X No		
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No		
Are the lateral extents of the release within a 100-year floodplain?	Yes X No		
Did the release impact areas not on an exploration, development, production, or storage site?	Yes X No		
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.			

Characterization Report Checklist: Each of the following items must be included in the report.

- X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- X Field data
- Data table of soil contaminant concentration data
- X Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- X Boring or excavation logs
- X Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/16/2022 3:49:48 PM State of New Mexico
Page 4 Oil Conservation Division

Page 4	of 188

Incident ID	nAPP2229057488
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	occ does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name: Jeffery Tew	Operations Engineer Title:
Signature:	Date:12/16/2022 Telephone:575-625-2222
OCD Only Received by: Jocelyn Harimon	Date: 12/16/2022

Page 5 of 188

Incident ID	nAPP2229057488
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.			
A scaled site and sampling diagram as described in 19.15.29.11 NMAC			
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office		
☐ Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)		
☐ Description of remediation activities			
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rehuman health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the coaccordance with 19.15.29.13 NMAC including notification with 19.15.29.1	ntions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in		
Signature: Oellary Town	Date: 12/16/2022		
Signature:	Telephone: 575-625-2222		
OCD Only			
Received by: Jocelyn Harimon	Date: 12/16/2022		
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.		
Closure Approved by:	Date: 01/13/2023		
Closure Approved by:	Title: _Environmental Specialist A		

December 16, 2022

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe. New Mexico 87505

Re: Closure Request

SV Kim Harris #003

Incident Number nAPP2229057488

Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of Armstrong Energy Corporation (AEC), has prepared this *Closure Request* to document assessment, delineation, excavation, and soil sampling activities performed at the SV Kim Harris #003 (Site), located in Unit B, Section 12, Township 16 South, Range 36 East, in Lea County, New Mexico (**Figure 1**). The purpose of the Site assessment, delineation, excavation, and soil sampling activities was to remediate impacts to soil resulting from a release of produced water from a hole in the water leg of the heater treater. Based on field observations and screening activities, excavation activities, and laboratory analytical results, AEC is submitting this *Closure Request* for Incident Number nAPP2229057488.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Lea County, New Mexico (32.942522° N, 103.304927° W) and is associated with oil and gas exploration and production operations on private land. **Figure 2** depicts the Site.

On October 16, 2022, a hole developed in the water flowline associated with the heater treater, which resulted in the release of 18 barrels (bbls) of produced water into the earthen secondary containment berm; approximately 8 bbls of fluid was recovered. AEC notified the New Mexico Oil Conservation Division (NMOCD) of the release via phone call on October 17, 2022 and subsequently through the Notification of Release portal on October 21, 2022 through a Release Notification Form C-141 (Form C-141). NMOCD assigned the release with Incident Number nAPP2229057488.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on **Figure 1**.

Depth to groundwater at the Site is estimated to be between 51 feet and 100 feet below ground surface (bgs) based on a data collected from New Mexico Office of the State Engineer (NM OSE) well permit L 06618, which is located 0.19 miles north of the Site. The well has a depth to water of 60 feet

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 705 W. Wadley, Suite 210 | Midland, TX 78209 | ensolum.com
Texas PG Firm No. 50588 | Texas PE Firm No. F-21843

bgs and total well depth of 95 feet bgs. In addition, there are five wells within ½-mile of the Site with groundwater measurements within the last 25 years indicating depth to water in the region is between 60 feet and 110 feet bgs. The Well Records and Logs are included in **Appendix A**.

The closest continuously flowing or significant watercourse to the Site is greater than 300 feet away. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area).

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH) Gasoline Range Organics (GRO) and TPH Diesel Range Organics (DRO) Combined: 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

SITE ASSESSMENT ACTIVITIES

On October 28, 2022, Site assessment activities were conducted to evaluate the release based on information provided by AEC and visual observations during the assessment. Ensolum personnel advanced three boreholes (BH01 through BH03) inside the secondary containment and release extent and three boreholes (PH04 through PH06) and one pothole (PH08, associated with Incident Number NAPP2218940551) outside of the release to define the lateral exent of the release. The boreholes were advanced via hand auger and the pothole was advanced via backhoe to depths ranging from 1-foot to 4 feet bgs. Refusal was observed throughout the assessment area due to shallow, competent bedrock, at depths ranging from 1-foot to 4 feet bgs. Discrete soil samples were collected from each location and field screened for volatile oraganic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride utilizing Hach® chloride QuanTab® test strips, respectively. The soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was conducted during the Site visit. A photographic log is included in Appendix B. Field screening results and observations from the potholes were documented on lithologic/soil sampling logs, which which are included as Appendix C.

At a minimum, two soil samples were retained from each borehole and pothole for laboratory analysis; soil exhibiting the highest field screening results and soil at the terminus of the pothole. The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following chemicals of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH- GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for delineation soil sample BH03 indicated the aggregate concentration of TPH-GRO and TPH-DRO exceeded the Site Closure Criteria. Soil from borehole BH01, BH02, and BH04 through BH06 and pothole PH08 indicated concentrations of all COCs were compliant with the Closure Criteria. In addition, pothole PH08 and borehole BH06, located at the edge of the well pad to the north and east, respectively, indicated COC concentrations were in compliance with the strictest

Table I Closure Criteria, confirming the release did not extend off pad. Laboratory analytical results depicted on **Figure 2** and are summarized in **Table 1**. The complete laboratory analytical report is included as **Appendix d**.

Due to the presence of impacted soil exceeding the Closure Criteria was detected during delineation activities, excavation of the impacted soil appeared warranted. As the pad is currently in use for oil and gas production activities and waste-containing soil was not detected in areas not in use for oil and gas production (pasture), reclamation activities related to this release did not appear warranted.

EXCAVATION AND ADDITIONAL DELINEATION ACTIVITIES

Based on soil analytical results from delineation activities, remediation of TPH-impacted soil appeared warranted. As such, Ensolum oversaw the excavation and proper disposal of impacted soil on November 17 and 18, 2022. Excavation activities were directed by previously failed soil sample location (BH03) and field screening for VOCs and chloride. Impacted soil was excavated via hand shovels and a backhoe. The excavation was completed up against a 3-foot soil berm to the north and it extended to the north in the vicinity of the heater treater. The excavation extent to the west and east was bound by the earthen berm. Upon identifying field screening results indicating impacted soils were adequately remediated, Ensolum proceeded to collect confirmation soil samples from the floor and sidewalls of the excavation. The total areal extent of the excavation was approximately 325 square feet in size and with total excavated depths ranging from 4 feet to 5 feet bgs, totaling approximately 8 cubic yards of impacted material removed from the Site. The impacted soil was properly disposed of at a New Mexico-permitted land farm.

Ensolum collected 5-point composite soil samples every 200 square feet from the sidewalls and floor of the excavations. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 and FS02 were collected from the floor of the excavations at a depth of 0.5 feet bgs. Based on the shallow depth of the excavation, soil from the sidewalls were incorporated into the composite soil samples. The excavation soil samples were collected, handled, and analyzed as described above. The excavation extents and excavation soil sample locations are presented on **Figure 3**. Photographic documentation of the excavation is presented in **Appendix B**.

Analytical results from the two confirmation soil samples indicate all COC concentrations were in compliance with the Closure Criteria. **Table 1** summarizes confirmation soil analytical results. The complete laboratory analytical report is included as **Appendix D**.

Since impacts were observed in the vicinity of borehole BH03, additional lateral delineation soil samples were collected to confirm the release did not encroach into the pasture or other locations on pad. Borehole BH07 was advanced west of borehole BH04; borehole BH08 was advanced east of borehole BH03, near the edge of the well pad; and borehole BH09 was advanced west of borehole BH03 on pad. All samples were handled and analyzed as described above. The additional delineation sample locations are depicted on Figure 2.

Analytical results confirmed the October 2022 release was contained on pad and did not go off pad into the pasture. Table 1 summarizes the delineation soil sample analytical results and the complete laboratory analytical report is included in Appendix D.

CLOSURE REQUEST

A release of 18 bbls of produced water inside an earthen berm secondary containment occurred on October 16, 2022 due to the corrosion and subsequent hole in a flowline associated with the heater

treater. Remedial actions to address the release included the recovery of 8 bbls of standing fluid and excavation of 8 cubic yards of impacted soil.

In total, 8 cubic yards of TPH-impacted soil were excavated and properly disposed of at a New Mexico permitted landfill. The excavation has been fenced off and non-waste containing caliche has been stockpiled next to the excavation in preparation of backfilling once NMOCD of this closure request.

Delineation soil analytical results indicated the release was contained on pad and did not encroach into the pasture. Waste-containing soil was not detected at the edge of the well pad. The well pad is currently in use for the production of oil and gas and is not subject to reclamation requirements per 19.15.29.13 NMAC.

Based on delineation and excavation activities, and results of the confirmation soil samples, it appears the remediation actions have been protective of human health, the environment, and groundwater. As such, AEC respectfully requests closure for Incident Number nAPP2229057488.

If you have any questions or comments, please contact Mr. Daniel Moir at (303) 887-2946 or dmoir@ensolum.com.

Sincerely, **Ensolum**, **LLC**

Daniel R. Moir, P.G.

Senior Managing Geologist

cc: Jeff Tew, Armstrong Energy Corporation

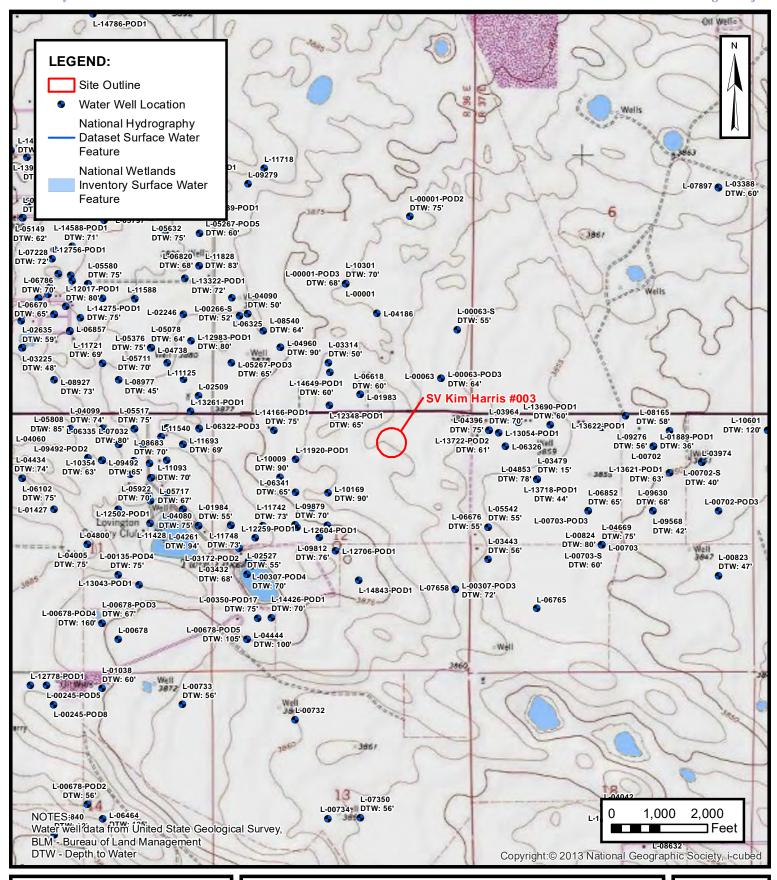
Appendices:

Figure 1 Site Receptor Map

Figure 2 Delineation Soil Sample Locations

Figure 3 Excavation Confirmation Soil Sample Locations

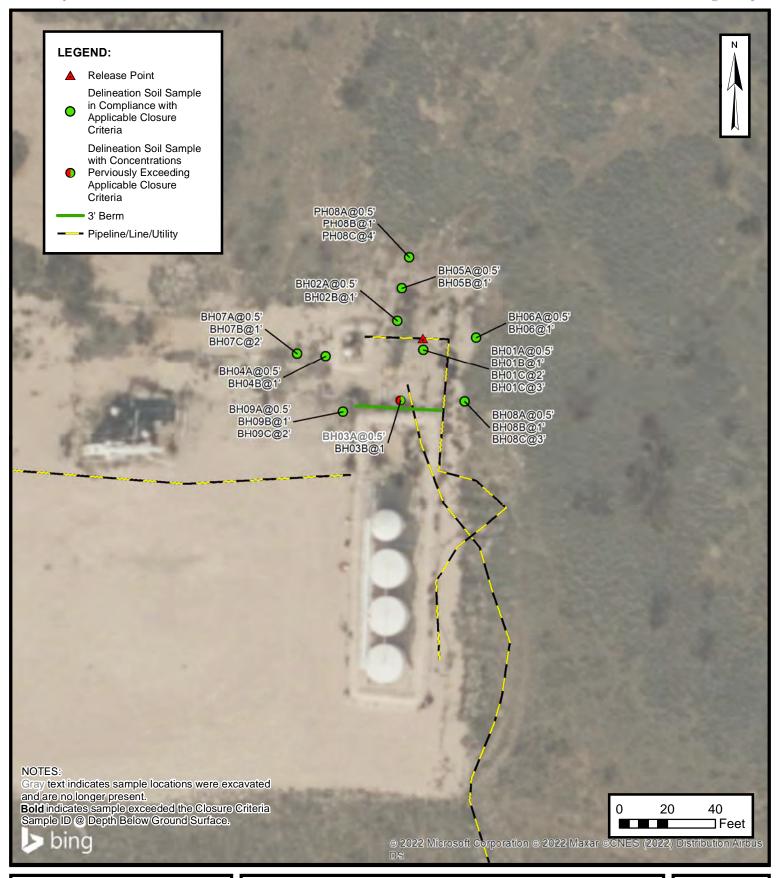
Table 1 Soil Sample Analytical Results


Appendix A Well Records
Appendix B Photographic Log

Appendix C Lithologic Soil Sampling Logs

Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation

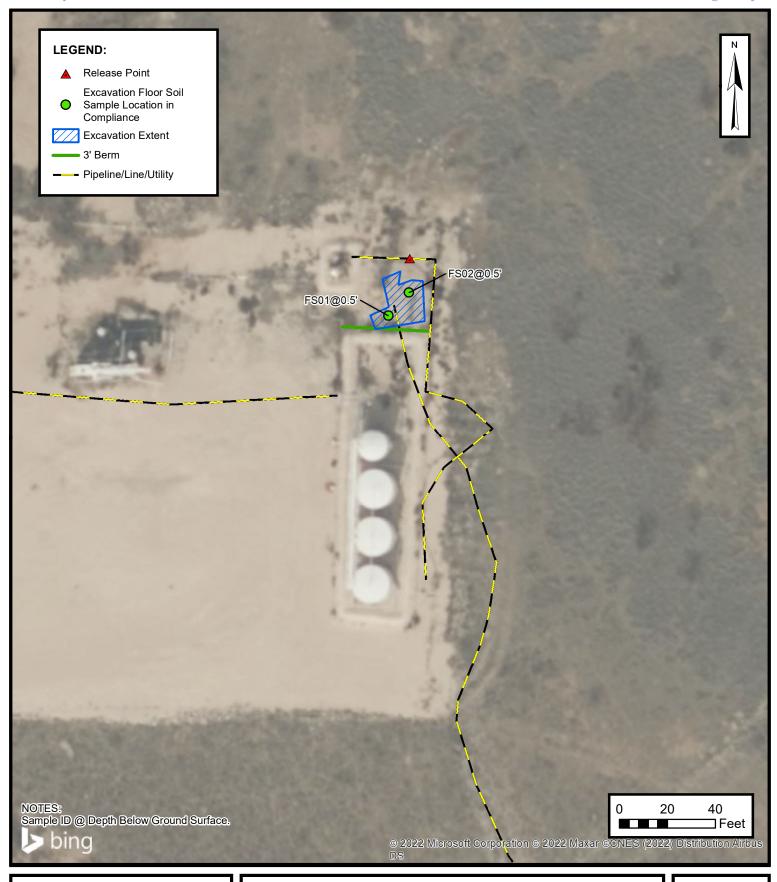
Figures



SITE RECEPTOR MAP

XTO ENERGY, INC SV KIM HARRIS #003 Incident Number nAPP2229057488 Unit B, Section 12, Township 16S, Range 36E Lea County, New Mexico **FIGURE**

1



DELINEATION SOIL SAMPLE LOCATIONS

ARMSTRONG ENERGY CORPORATION SV KIM HARRIS #003 NAPP2229057488 Unit B, Section 12, Township 16S, Range 36E Lea County, New Mexico **FIGURE**

2

EXCAVATION SOIL SAMPLE LOCATIONS

ARMSTRONG ENERGY CORPORATION
SV KIM HARRIS #003
NAPP2229057488
Unit B, Section 12, Township 16S, Range 36E
Lea County, New Mexico

FIGURE

3

Table

E NSOLUM

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Armstrong Energy Corporation - SV Kim Harris #003 Lea County, New Mexico Ensolum Project No. 09C2041003 Total TPH Sample Depth Benzene Total BTEX **TPH GRO** TPH DRO TPH MRO TPH GRO + DRO Chloride Sample I.D. (GRO+DRO+MRO Date (feet bas) (ma/ka) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) IMOCD Closure Criteria for Soils Impacted by a 10 50 NE NE NE 1,000 2,500 10,000 Release (Groundwater 51-100 feet bgs) BH01A 10/28/2022 0.5 < 0.00202 < 0.00403 <50.0 77.7 <50.0 77.7 77.7 4.680 BH01B 10/28/2022 1.0 < 0.00200 < 0.00399 <49.8 <49.8 50.1 <49.8 50.1 3.970 BH01C 10/28/2022 2 <0.00199 <0.00398 <50.0 <50.0 <50.0 <50.0 <50.0 1,160 BH01C 11/17/2022 <0.00200 <0.00401 <49.9 <49.9 <49.9 <49.9 <49.9 625 3 10/28/2022 0.5 < 0.00403 489 107 BH02A < 0.00202 <49.9 489 140 629 BH02B 10/28/2022 1 <0.00200 <0.00401 <50.0 130 <50.0 130 130 83.6 BH03B 10/28/2022 <0.00199 <0.00398 159 181 <50.0 561 561 720 BH04A 10/28/2022 0.5 < 0.00200 < 0.00399 <49.8 <49.8 <49.8 <49.8 <49.8 948 BH04B 10/28/2022 <0.00200 <0.00401 <49.8 <49.8 <49.8 <49.8 <49.8 3 150 BH05A 10/28/2022 0.5 <0.00202 <0.00404 <49.9 159 97.2 159 256 482 <0.00398 483 BH05B 10/28/2022 <0.00199 <50.0 <50.0 <50.0 <50.0 <50.0 10/28/2022 0.5 16.5 BH06A < 0.00200 < 0.00399 <50.0 <50.0 <50.0 <50.0 <50.0 BH06B 10/28/2022 1 < 0.00199 <0.00398 <49.9 <49.9 <49.9 <49.9 <49.9 16.1 11/17/2022 0.5 <0.00201 <0.00402 22.6 BH07A <50.0 <50.0 <50.0 <50.0 <50.0 11/17/2022 <0.00199 <0.00398 BH07B 28.9 <49.9 <49.9 <49.9 <49.9 <49.9 BH07C 11/17/2022 2 < 0.00199 < 0.00398 <49.9 <49.9 <49.9 <49.9 <49.9 28.7 BH08A 11/17/2022 0.5 < 0.00201 < 0.00402 <50.0 <50.0 <50.0 <50.0 <50.0 67.2 BH08B 11/17/2022 <0.00199 <0.00398 <49.9 <49.9 <49.9 <49.9 <49.9 43.2 BH08C 11/17/2022 3 <0.00201 <0.00402 <49.9 <49.9 <49.9 <49.9 <49.9 38.2 11/17/2022 0.5 <0.00401 63.0 BH09A < 0.00200 <50.0 <50.0 <50.0 <50.0 <50.0 BH09B 11/17/2022 1 < 0.00202 < 0.00403 <50.0 <50.0 <50.0 <50.0 <50.0 23.6 BH09C 11/17/2022 <0.00200 <0.00399 19.7 <50.0 <50.0 <50.0 <50.0 <50.0 0.5' 29.6 PH08A* 10/28/2022 <0.00199 <0.00398 <49.9 <49.9 <49.9 <49.9 <49.9

Notes:

bgs: below ground surface

J: The target analyte was positively identified below the quantitation limit and above the detection limit

1'

4'

0.5

0.5

< 0.00200

<0.00199

<0.00200

< 0.00199

< 0.00399

<บ บบรอช

<0.00399

< 0.00398

10/28/2022

10/28/2022

11/17/2022

11/17/2022

mg/kg: milligrams per kilogram

NA: Not Applicable

NE: Not Established

PH08B*

PH08C

FS01

FS02

NS: Not Sampled

NMOCD: New Mexico Oil Conservation Division

PID: Photoionization Detector

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

<49.9

<40 0

318

110

GRO: Gasoline Range Organics

<49.9

<40 0

<50.0

<49.8

DRO: Diesel Range Organics

MRO: Motor Oil/Lube Oil Range Organics

TPH: Total Petroleum Hydrocarbon

<49.9: indicates result less than the stated laboratory reporting limit (RL)

Concentrations in **bold** and shaded exceed the New Mexico Oil Conservation Division Table 1 Closure Criteria for Soils

<49.9

<40 a

<50.0

<49.8

<49.9

<40 0

318

110

<49.9

<40 0

318

110

20.9

10.5

58.6

164

Impacted by a Release

Gray text indicates sample locations were excavated and are no longer present

* - samples collected for Incident Number

APPENDIX A

Well Records

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

 \mathbf{X}

L 12348 POD1 1 12 16S 36E 658080 3646393

Driller License: 1626 **Driller Company:** TAYLOR, ROY ALLEN

Driller Name: TAYLOR, ROY ALLEN

Drill Start Date: 01/28/2009 **Drill Finish Date:**

01/30/2009

Plug Date:

Shallow

Log File Date:

02/11/2009

PCW Rcv Date:

Source:

Pump Type:

Pipe Discharge Size:

Estimated Yield:

20 GPM

Casing Size:

5.00

Depth Well:

186 feet **Depth Water:** 65 feet

Water Bearing Stratifications:

Top Bottom Description

70

185 Sandstone/Gravel/Conglomerate

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

7/22/22 9:19 AM

POINT OF DIVERSION SUMMARY

Transaction Summary

72121 All Applications Under Statute 72-12-1

Transaction Number: 488145 **Transaction Desc:** L 12348 **File Date:** 12/16/2008

Primary Status: PMT Permit

Secondary Status: LOG Well Log Received

Person Assigned: ******

Applicant: BRIAN CUNNINGHAM

\mathbf{F}	1 7	6	n	te

	Date	Type	Description	Comment	Processed By
get images	12/16/2008	APP	Application Received	*	*****
	12/17/2008	FIN	Final Action on application		*****
	12/17/2008	WAP	General Approval Letter		*****
get images	02/11/2009	LOG	Well Log Received	*	*****
	11/01/2011	QAT	Quality Assurance Completed	IMAGES	*****
	12/31/2013	ARW	WRAB Main File Rm Arch Sect	L 12348 Archived	*****

Change To:

WR File Nbr Acres Diversion Consumptive Purpose of Use

L 12348

**Point of Diversion

L 12348 POD1

658080

Consumptive Purpose of Use

DOL 72-12-1 DOMESTIC AND LIVESTOCK WATERING

Conditions

- 1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- Total diversion from all wells under this permit number shall not exceed 3 acrefeet per annum.
- 11 This permit authorizes the diversion of water for domestic use to serve a single household. The total diversion of water under this permit shall not exceed 3 acrefeet per year. The diversion of water for domestic use may include the watering of non-commercial trees, lawn and garden not to exceed one acre.
- 14 This permit authorized the diversion of water for watering livestock. The total diversion of water under this permit shall not exceed 3 acre-feet per year.
- Any diversion of water made in excess of the authorized maximum diversion amount shall be repaid with twice the amount of the over-diversion during the following calendar year. Repayment shall be made by either: (a) reducing the diversion from the well that is the source of the over-diversion; or (b) acquiring or

leasing a valid, existing consumptive use water right in an amount equal to the repayment amount and submitting to the State Engineer for his approval a plan for the proposed repayment.

O This well permit shall automatically expire unless the well is completed and the

well record is filed with the State Engineer within one year of the date of issuance of the permit. It is the responsibility of the permit holder to ensure that the well record has been properly filed with the State Engineer.

Action of the State Engineer

THIS APPLICATION IS APPROVED FOR THE USE INDICATED, SUBJECT TO ALL GENERAL CONDITIONS AND TO SPECIFIC CONDITIONS LISTED ABOVE.

** See Image For Any Additional Conditions of Approval **

 Approval Code:
 A - Approved

 Action Date:
 12/17/2008

 Log Due Date:
 12/31/2009

State Engineer: John R. D Antonio,

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/22/22 9:19 AM TRANSACTION SUMMARY

28	STAT
	€m
L	严型
Ö	-3
	- ===
	高高
D	E 5

	POD MUMBER (%	TELL NUMBER)	<u></u>			OSE FILE NU	(DES(5)	(0) =	24			
JON							L-1231	40 c	XIOC CO			
CAT	WELL OWNER N	· · ·	\ \ \.			975-390-8207						
3	ļ	AILENG ADDRESS	ininghar	<u> </u>		CITY	5-290-1	STATE	ZDP			
AND WELL LOCATION		inderson	, Drive			۱	gton		88260			
PA.	WELL		DEGREES		ONDS							
3	LOCATION (PROM OPS)	LATTTUDE	32		<u>я Е.б</u>]	' REQUERED: ONE TEN DUTRED: WGS \$4	VIH OF A SECON	D			
GENERAL		LONGITUDE	103		w 85	DATO	ZDIAED. WOOD 14					
 G	DESCRIPTION R	ELATING WELL LOCA	TON TO STREET ADDRE	55 AND COMMON LAND	MARKS							
				····								
	(2.5 ACRE)	(I9 ACRE)	(40 ACRE)	(169 ACRE)	SECTION		TOWNSHIP	MORTE R	ANGE			
3	¼	SE"	NE"	NW	<u> </u>	2	16	Shorm	360 Dweet			
OPTIONAL	SUPPLIVISION NA	AME T			LOT NUM	BER	BLOCK NUMBER	U	NET/TRACT			
2.0	HYDROGRAPHIC	SURVEY					MAP NUMBER	18	ACT NUMBER			
	LICENSE NUMBE	R NAME OF LIN	CENSED DRILLER				NAME OF WELL D	ELLENG COMPAN	iv			
	WD1626 Roy Taylor EcolEnvroDrillin											
	DRILLING START	1	_	PLETED WELL (FT)		A DEPTH (FT)	DEPTH WATER FIL	ST ENCOUNTER	ED (FT)			
NO	1-28-1	09 1-30-	<u>ती ।</u>	86	1	STATIC WATER LEVEL IN COMPLETED WELL (PT)						
DRILLING INTORMATION	COMPLETED WE	LL IS: ARTESIA	AN DRY HOLE	MHALLOW (UNIC	CONFINED)		STATIC WATER LEVEL IN COMPLETED WELL (PT)					
0		. AR	∑A.wo	ADDITIVES SP	ecify:							
2	DRILLING METH	OD: MEDIARY	HAMMER	CABLE TOOL	ОТНЕ	R – SPECIFY:						
3	DEPTH (FT) BORE HO	XLB (CASING		ECTION	INSIDE DIA.	CASING W				
2		O DIA. (IN	0 м	ATERIAL	TYPE	(CASING)	CASING (IN)	THICKNESS	(IN) SIZE (IN)			
rri		<u> </u>		/C	1 - 1	<u>e</u> _	5.135	1 . 214	- NA			
	90 (8	0 10		246	GIL	re_	5.033	,200	.635			
					 		<u> </u>					
	рергн (гт) THICKNE	res Fr	DRMATION DESCRIE	TION OF P	PINCIPAL W	ATED READING &	TRATA	AIRTD			
4		O (FI)		(INCLUDE WATER					(GPM)			
	70 18	5 115	Reddi	sh tan	Sand	lan	d sands	tone	20			
ဋ္ဌ												
3					_							
2						·						
WATER BEARING STRATA) (IPPNA) Trades =	V) COMMA / A PT V PT P P	F WATER-BEARING STOL									
×		^	F WATER-BRIAKING STILL	IIA.			TOTAL ESTIMATEL	MET AESTD (Q	PM)			
*	11	np Pun	<u>^P</u>					<u></u>	LALLA			
	FOR OSE INTI	RNALUSE					Wei i brown	PD A I CO	-0011			
	FILE NUMBER 1-12348 POD NUMBER TRN NUMBER 420105											
	LOCATION		12.124					PA	GE 1 OF 2			

Don/Stk

			BUBMEI	PRIE	[] JET	☐ NO PUMP – WELL NOT EQUIPPED			
	TYPE O	PUMP:	TURBIN		☐ CYLINDER	OTHER - SPECIFY:			
SEAL AND PUMP			DEPTI	(FT)	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT	METH	
LAI		JLAR	FROM	TO		31-11-21	(CUBIC FI)	1-1-	174211
AT S		L PACK	20	186	10	3/8" Fill more	122	The state of the s	70
uś		_				· · · · · · · · · · · · · · · · · · ·			
	DEPT	H (PT)	THICK	NESS		COLOR AND TYPE OF MATERIAL ENCOUNT	ERED	WA	TER
	FROM	TO	(F)	רו	(INCL	UDE WATER-BEARING CAVITIES OR FRACT	URE ZONES)	BEAF	ano?
	0	2	2		Black	(tap 50')		☐ YES	13NO
	2	(0	8		whit	re caliche rock		☐ YES	12 NO
i	10	20	10		Tan	sand		☐ YES	Вио
	20	25	<u> </u>	<u>.</u>	Red	dish Rock		☐ YES	27 /00
3	25	185	16	0	Kede	dish Itan sand and	Sandeton	YES YES	□ NO
Gtologic Log of Well	185	186	<u> </u>		Rec	d clay		☐ YES	B 740
40						<u> </u>		☐ YES	□ NO
9								☐ YES	□ NO
								☐ YES	□ NO
8								☐ YES	□ NO
3								☐ YES	□ MO
٤			<u> </u>			•		☐ YES	□NO
								☐ YES	□ NO
								☐ YES	☐ NO
	_							☐ YES	□ NO
							· · · · · · · · · · · · · · · · · · ·	1 YES	□ NO
				<u> </u>				☐ YES	□ MO
			ATTACH	ADDITION	AL PAGES AS NE	EDED TO FULLY DESCRIBE THE GEOLOGIC	LOG OF THE WELL	, man	****
٤	neer 1	retoerri	METHOD:	BAILE		AIR LIFT OTHER - SPECIFY:		-3	
NAL ENFO	WEIL	IESI	AND A TAE	LTS - ATTA LE SHOWD	CH A COPY OF D IG DISCHARGE	ATA COLLECTED DURING WELL TESTING, I AND DRAWDOWN OVER THE TESTING PERIO	NCLUDING START TI OD,	ME, ESSO TI	ASS.
Q	ADDITION	al Statem	ENTS OR EXPL	ANATIONS:				60	E G
& ADDITIO									
7								D	
TEST								= 3	20
F .								0 3	7
								<u> </u>	
SIGNATURE	CORREC	TRECOR	D OF THE AB	OVE DESCR	LIBED HOLE AND	ET OF HIS OR HER KNOWLEDGE AND BEILE O THAT HE OR SHE WILL FILE THIS WELL RI ON OF WELL DRILLING:	P, THE FOREGOING I CORD WITH THE STA	S A TRUE A LTE ENGINE	ND ER AND
T. Y	1		<i>A</i>		TON OUR DATE	_			
	<u>K</u> o	4 /	ulo			2-1-09			
26		7	SIGNATUR	E OF DRILL	ER	DATE			
			<u> </u>						

FOR OSE INTERI	NAL USE	WELL RECORD & LOG (Version 6/9/08)				
FILE NUMBER	L- 12348	POD NUMBER	TRN NUMBER 420108			
LOCATION	16.36.12.124		PAGE 2 OF 2			

Don/Stk

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64 Q16 Q4 Sec Tws Rng

 \mathbf{X} \mathbf{Y}

L 14166 POD1 2 1 1 12 16S 36E

657735 3646232

32 🌍

Driller License: 1044 Driller Company: EADES WELL DRILLING & PUMP SERVICE

Driller Name: ALAN G EADES

Drill Start Date: 08/17/2016

5.14

Drill Finish Date:

08/17/2016 **Plug Date:**

C1. - 11 - ---

Log File Date: 08/24/2016

PCW Rcv Date:

Source:

Shallow

Pump Type:

Pipe Discharge Size:

Estimated Yield:

Casing Size:

Depth Well:

190 feet

Depth Water:

75 feet

Water Bearing Stratifications: Top Bottom Description

75 164 Sandstone/Gravel/Conglomerate
 164 190 Sandstone/Gravel/Conglomerate

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

7/22/22 9:24 AM

POINT OF DIVERSION SUMMARY

Transaction Summary

72121 All Applications Under Statute 72-12-1

Transaction Number: 591224 **Transaction Desc:** L 14166 POD1 **File Date:** 07/19/2016

Primary Status: PMT Permit

Secondary Status: LOG Well Log Received

Person Assigned: ******

Applicant: MICHAEL B HARTGRAVES **Applicant:** MARILYN J HARTGRAVES

Events

	Date	Type	Description	Comment	Processed By
get images	07/19/2016	APP	Application Received	*	*****
	08/04/2016	FIN	Final Action on application		*****
	08/04/2016	WAP	General Approval Letter		*****
get images	08/24/2016	LOG	Well Log Received	ж	*****
	10/03/2016	QAT	Quality Assurance Completed	DATA PMT & W/L	*****
	10/13/2016	QAT	Quality Assurance Completed	IMAGE	*****

Change To:

WR File Nbr Acres Diversion Consumptive Purpose of Use
L 14166 1 DOM 72-12-1 DOMESTIC ONE
**Point of Diversion HOUSEHOLD

L 14166 POD1 657735 3646232

Conditions

- 1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- Total diversion from all wells under this permit number shall not exceed 1 acrefeet per annum.
- 11 This permit authorizes the diversion of water for domestic use to serve a single household. The total diversion of water under this permit shall not exceed 1 acrefeet per year. The diversion of water for domestic use may include the watering of non-commercial trees, lawn and garden not to exceed one acre.

Action of the State Engineer

** See Image For Any Additional Conditions of Approval **

Approval Code: A - Approved
Action Date: 08/04/2016
Log Due Date: 08/04/2017
State Engineer: Tom Blaine, P.E.

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/22/22 9:25 AM

TRANSACTION SUMMARY

STATE ENGINEER OFFICE ROSWELL NEW MOVING

2016 AUG 24 MM 2: 30

	the Control						100			· :	
	OSE POD NU	JMBER (V	WELL NUMBER)	· · · · · · · · · · · · · · · · · · ·		<u> </u>		OSE FILE NUI	MBER(S)		
NO								L 14166			
AT.	WELL OWN	ER NAME	(S)		······································			PHONE (OPTI	ONAL)		·
ğ	MICHAEL	B. HAR	TGRAVES of MARIL	YN J. HARTGRA	VES						
77	WELL OWN	ER MAILI	NG ADDRESS					CITY		STATE	ZIP
≪	PO BOX 13	595				·=•·		LOVINGTO	ON	NM	88260
QN	WELL		D	EGREES	MINUTES	SECO	NDS			· · · · · · · · · · · · · · · · · · ·	
AL.	LOCATIO	N I	ATITUDE	N32	56	34.	34 N	* ACCURACY	REQUIRED; ONE TEN	TH OF A SECOND	
KER	(FROM GP	PS)	ONGITUDE	W103	18	45	58 W	* DATUM REG	QUIRED: WGS 84		
GENERAL AND WELL LOCATION	DESCRIPTION	ON RELA	TING WELL LOCATION T	O STREET ADDRES	S AND COMMON	N LANDM	ARKS PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABLE	
1.	3012 E. AV	ÆNUE I), LOVINGTON, NM								
	LICENSE NU	MBER	NAME OF LICENSE	D DRILLER			tera a producti		NAME OF WELL DR	ILLING COMPANY	
	WD 1044		ALAN G. EADES						EADES DRILLIN	G & PUMP SERVIC	E
	DRILLING ST	TARTED	DRILLING ENDED	DEPTH OF COMP	LETED WELL (F	T)	BORE HOL	E DEPTH (FT)	DEPTH WATER FIR	ST ENCOUNTERED (FT)	1
%	08-17-16	·	08-17-16	190	·	· · · •	190		75		
	COMPLETED	. 11.757 F TG	s: ARTESIAN	DRY HOLE	SHALLOV	B7 /T BACCO	AZIZIATI CIO N		STATIC WATER LEV	VEL IN COMPLETED WI	LL (FT)
ON O	COMPLETE	, METT'E	S: ARTESIAN		NZ SUSTEC	w (ONCO	NEINED)		~75		
IATI	DRILLING F	LUID:	AIR	MUD MUD	ADDITIV	ES ~ SPE	CIFY:		<u> </u>		
JRV	DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTH									 	· -
DRILLING & CASING INFORMATION	DEPTH ((feet bgl	BORE HOLE		ATERIAL AND)/OR	CA	SING	CASING	CASING WALL	SLOT
Š	FROM TO		DIAM	1	GRADE h casing string,	and	CONN	ECTION	INSIDE DIAM.	THICKNESS	SIZE
ASI			(inches)	note sections of screen)			T	YPE	(inches)	(inches)	(inches)
38	0	20	9.875	PVC			SLIP	JOINT	5.135	.214	
ING	20	110	8.75	PVC			SLIP	JOINT	5.135	.214	
111	110	190	8.75	PVC	PVC SCREEN			JOINT	5.135	.214	
2. DF					**					<u> </u>	
12											
1				-							
										 -	
ļ											
7	DEPTH ((feet bgl)	BORE HOLE	LIST	ANNULAR SE	AI MA	TERIAL A	ND	AMOUNT	метно	D OF
¥.	FROM	TO	DIAM. (inches)	1	L PACK SIZE-			· · · · · · · · · · · · · · · · · · ·	(cubic feet)	PLACEN	
E E	0	20	9,875	BE	NTONITE CH	IPS – H	YDRATED		7	GRAVIT	/ FED
TAT	20	190	8.75		GRA	AVEL			44	GRAVII	/ FED
E E	-										
a l											
ANNULAR MATERIAL											
щ. Г											
].			<u> </u>					······································		
	OSE INTERN	NAL US	E / /						7 7	LOG (Version 06/0	3/2012)
	NUMBER	 	4166	3 1 0	POD NUI	MBER	1_	TRN N	IUMBER 50()	724	107.4
	1		· L / 1 1 1 1								

						· · · · · · · · · · · · · · · · · · ·					
	DEPTH (feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONE (attach supplemental sheets to fully describe all units)	WATER S BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)					
	0	1	1	TOP SOIL	□Y □N						
1	1	12	11	CALICHE	□Y □N	•					
	12	15	3	SANDSTONE	□y □n						
	15	32	□ч □и								
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	32	75	43	SAND & SANDSTONE STRINGERS	□ч □и						
	75	164	89	SAND	⊠y □n						
VEL	164	190	26	SAND & GRAVEL	⊠y □n						
OF.	190	-	- 1	RED CLAY	□Y □N						
8					□Y □N	 					
ICI					□Y □N						
9					□ч □и						
OH					□ч □и	· · · · · · · · · · · · · · · · · · ·					
Š			·		□Y □N						
4 HYDROGROLOGIC LOG OF WELL					□Y □N	•					
4					□Y □N	·					
					□Y □N						
					□Y □N						
					ПА Пи						
		•			ПА Пи						
					□ч □и						
					□Y □N						
******	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING STRATA:	TOTAL ESTIMATED						
	☐ AIR LIFT	. 🗆	BAILER 🔯	OTHER - SPECIFY: Eades Drilling did not test pump this well.	WELL YIELD (gpm):	unknown					
ON	WELL TEST			.CH A COPY OF DATA COLLECTED DURING WELL TESTING, INC IE, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVI		-					
.VIS	MISCELLAN	EOUS INF	ORMATION:	and the second of the second s	<u>an Maria II. Ilan kan kan 1980 Pe</u> bb						
TEST; RIG SUPERVISION											
S											
ľ, Ri											
SE	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:										
S.											
		,, ,.,	 								
TURE	CORRECT R	ECORD OF	THE ABOVE DE	ES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELLI SCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RI DAYS AFTER COMPLETION OF WELL DRILLING:	EF, THE FOREGOING IS ECORD WITH THE STAT	A TRUE AND TE ENGINEER					
6. SIGNATURE	_ ll	an	Ead	66/ALAN EADES	08/17/16						
		/SIGNATI	RE OF DEALER	PRINT SIGNEE NAME	/ / DATE						
HON	OSE INTERN				I DECORD & LOC (V-						

POD NUMBER

Released to Imaging: 1/13/2023 10:08:17 AM

FILE NUMBER

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

EADES WELL DRILLING & PUMP SERVICE

Well Tag **POD Number**

Q64 Q16 Q4 Sec Tws Rng

22216 L 14649 POD1

Drill Start Date:

3 01 16S 36E

658079 3646597

Driller License: 1044 **Driller Company: Driller Name:**

06/18/2019

EADES, ALANESL.G. HAYDENAS

Drill Finish Date: 06/18/2019 Plug Date:

Log File Date: 09/09/2019 **PCW Rcv Date: Pump Type:** Pipe Discharge Size:

Source: Artesian **Estimated Yield:** 24 GPM

Casing Size: Depth Well: 5.00 173 feet Depth Water: 60 feet

> Water Bearing Stratifications: Top Bottom Description

> > 60 Sandstone/Gravel/Conglomerate 148 Sandstone/Gravel/Conglomerate

Casing Perforations: Top Bottom

> 133 173

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/22/22 9:16 AM

POINT OF DIVERSION SUMMARY

Transaction Summary

72121 All Applications Under Statute 72-12-1

Transaction Number: 640561 **Transaction Desc:** L 14649 POD1 **File Date:** 03/14/2018

Primary Status: PMT Permit

Secondary Status: LOG Well Log Received

Person Assigned: ******

Applicant: ASHLEY JAMESON **Applicant:** CADEN JAMESON

Events

	Date	Type	Description	Comment	Processed By
get images	03/14/2018	APP	Application Received	*	*****
	03/19/2019	FIN	Final Action on application		*****
	03/19/2019	WAP	General Approval Letter		*****
get images	09/09/2019	LOG	Well Log Received	*	*****
	10/11/2019	QAT	Quality Assurance Completed	DATA	*****
	10/28/2019	QAT	Quality Assurance Completed	IMAGE	*****

Change To:

WR File Nbr Acres Diversion Consumptive Purpose of Use

L 14649 1 DOM 72-12-1 DOMESTIC ONE HOUSEHOLD

**Point of Diversion

L 14649 POD1 658079 3646597

Conditions

- 1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- 4 Use shall be limited to household, non-commercial trees, lawn and garden not to exceed one acre and/or stock use.
- Total diversion from all wells under this permit number shall not exceed 1 acrefeet per annum.
- This permit authorizes the diversion of water for domestic use to serve a single household. The total diversion of water under this permit shall not exceed 1 acrefeet per year. The diversion of water for domestic use may include the watering of non-commercial trees, lawn and garden not to exceed one acre.

Action of the State Engineer

** See Image For Any Additional Conditions of Approval **

 Approval Code:
 A - Approved

 Action Date:
 03/19/2019

 Log Due Date:
 03/19/2020

State Engineer: John R. D Antonio,

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

7/22/22 9:17 AM TRANSACTION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

				· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · ·	····					
	OSE POD N	O. (WELL N	0.)		WELL TAG ID NO).		OSE FILE N	iO(S).	·		1	
Z					2221	6		L-1-	L-14649				
WELL LOCATION		NER NAME(•	····	·			PHONE (OF	TIONAL	-)			· · · · · · · · · · · · · · · · · · ·
8	Cade	n James	on - Ashley Jame	eson								•	
T	WELL OW	VER MAILIN	IG ADDRESS	·	····			CITY		·	STAT	2	ZIP
E	1308	West A	venue N					Lovir	ngton		N	M .	ZIP 88260
A			n	EGREES MINUTES SECONDS								_====	
AND	WELL	í		00 50 405			ACCURACY REQUIRED: ONE TENTH OF A SECOND						
₹	LOCATH	1 4	ATITUDE	<u> </u>							NIO OT A	SECOND	
GENERAL	(FROM G	rs) L	ONGETUDE	103	32.1 W *DATUM REQUIRED: WGS 84								
E E	DESCRIPT	ION RELAT	ING WELL LOCATION TO	O STREET ADDI	RESS AND COMMO	N LANDM	LARKS - PLS	SECTION,	TOWNSI	LIIP, RANGE) W	HERE AV	AILABLE	
=	Section	on 1, To	wnship 16S, Ran	ge 36E				!					
_=				 _								<u> </u>	
	LICENSE N		NAME OF LICENSEI					1	- 1	ME OF WELL D			
		1044	Alan G. Ead							des Drillin	-	•	
	DRILLINGS		DRILLING ENDED		MPLETED WELL (F	T)	BORE HOL	E DEPTH (FT) DE	PTH WATER FI		UNTERED	(FT)
	06-18	5-19	06-18-19	<u> </u>	173 						60 		
	COMPLETE	DWFII IS:	ARTESIAN	DRY HOL	E F SWALLO	W a may	ONFINED)	1	STA	TIC WATER LI		OMPLETED	WELL (FT)
Z	COMIDEIL		MI AKIESIAN	, DAT HOL		W (DITCE	JAPANED)	i	1		-60		
TIC	DRILLING F	LUID:	AIR	MUD ADDITIVES - SPECIFY:									
CASING INFORMATION	DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER - SPECIFY:												
NFO	DEPTH	(feet bgl)	BORE HOLE	CASING	MATERIAL ANI	O/OR				CASING	T		. 7
G	FROM TO DIAM		1	GRADE			SING ECTION	- 1	SIDE DIAM.		ING WAL ICKNESS	,	
SIN			(inches)	(include each casing string, and note sections of screen) (add of			Т	YPE		(inches)		inches)	(inches)
	0	20	9.875	PVC			SLIP	ng diameter) JOIN1	 -	5.135	 	.214	
3	20	133	8:75	PVC			SLIP	JOINT	┿	5.135	┼	214	
Z	133	173	8.75	PVC SCREEN			SEP JOINT		+	5.135	 	.214	.020
DRILLING				 -					+		 		
<u> </u>				<u> </u>	·				+		+		
``								+-	+-		+-	٠	
- 1									╫		+		 -
1					· · · · · · · · · · · · · · · · · · ·				+		+		
Ì				 					+		 		-
				 					+		+		_
ᆿ	DEPTH	(feet hal)	BORE HOLE	1 15	T ANNULAR SE	AL MA	TERIAL A	4D	 	AMOUNT	T	MET	HOD OF
او	FROM	TO	DIAM. (inches)	1	VEL PACK SIZE-			1		(cubic feet)			EMENT
1	0	20	9.875	 	BENTONITE CH	IFS - H	YDRAIED		╅─	- 7 -		GRAV	ILY FED
	20	173	8.75		GR	WEL		 -	┼	40		GKAV	NY FED
Ž				 -	· 			······································	+-				
ANNULAR MATERIAL									┿-		-+		
夏			 	 					 				
									—	 	+		
۳.				ļ					 -			 -	
1	i			L					<u></u>				
U∩D :	OSE INTER	MAI TIOT						WR_	20 V	LL RECORD	കാരം	Version (4	5/30/175

NS. 34E.1.342

TRN NO.

WELL TAGID NO. 22216

PAGE 1 OF 2

Dom

FILE NO.

LOCATION

											W. 3 - W. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	DEPTH (feet bgl)	THICKNESS (feet)	INCLUDE WAT	IND TYPE OF MATERIAL TER-BEARING CAVITIES Replemental sheets to full	S OR FRA	CTURE ZONI	es .	WAT BEARI (YES /	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
1	0	2	2	<u> </u>	TOP SOIL				Y		ZOI (Epili)
	2	26	24		CALICHE		<u> </u>		Y -		
	26 60 34 SAND									N	
	60	148	88		SAND				Y	N N	see note below
ł	148	173	25	<u> </u>	SAND & GRAVE	T.			Y	N N	see note below
l _	173 - RED CLAY								Y	N	
4. HYDROGEOLOGIC LOG OF WELL									Y		
¥ .	<u> </u>									N	
0							 -		Y	N	
3			ļ	****					Y	N	<u> </u>
ğ							· · · · · · · · · · · · · · · · · · ·		Y	N	
ğ	<u> </u>				·				Y	N	
5									Y	N	
Į Š		···-							Y	N	
4. H									 -	N	
	<u> </u>								Y	N	
		<u>_</u> _		·					Y	N	
		 			· · · · · · · · · · · · · · · · · · ·				Y	N	
									Y	N	
}									Y	N	
	 			· · · · · · · · · · · · · · · · · · ·		 			Y	N	
	METHOD III	RED TO EG	TIMATE VIELD	OF WATER-BEARIN	YC STD ATA			TOT	Y Y	N	
						see note	halam.		AL EST <u>IM</u> Z LL YIELD (unknown
	PUMP		R LIFT	BAILER •O	THER - SPECIFY:	See note	below				
ION	WELL TEST				TA COLLECTED DURING HOWING DISCHARGE A						
SVIS	MISCELLAN	EOUS INF	ORMATION:					-			
TEST; RIG SUPERVISI					np this well to determ						
IG SI				r, the water beari np installed in thi	ing zones are capabl	e of pro	ducing at k	east 2	24 gpm b	ased o	on the
F. R.	penoma	ance or u	ie i.onr pui	np installed in thi	is well.						
res	PRINT NAM	E(S) OF DR	ULL RIG SUPER	VISOR(S) THAT PRO	OVIDED ONSITE SUPER	VISION O	F WELL CON	STRUC	CTION OTI	ER TH	AN LICENSEE:
Nô.	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:										
	THE UNDER	SIGNED H	EREBY CERTIF	ES THAT, TO THE E	BEST OF HIS OR HER KI	NOWLED	GE AND BEL	EF, TI	HE FOREG	OING IS	A TRUE AND
6. SIGNATURE	CORRECT R AND THE PE	ECORD OF ERMIT HOL	THE ABOVE D DER WITHIN 30	ESCRIBED HOLE AND DAYS AFTER COM	ND THAT HE OR SHE W PLETION OF WELL DRI	ILL FILE ILLING:	THIS WELL F	ECOR	D WITH T	HE STA	TE ENGINEER
VAT	\bigcap	~ /	α . τ	,							
Sig	1100	(L) 9	a destre	2 /AIAI	1 LANGS		i)7	-12-	19	. }
ا ف	_ //	AIGNA TO	IRE OF DRILLAGI	R / PRINT SIGNEE	NAME			<i>/ [</i>	10	ATE	———
1		II.L	The			<u></u>					
	OSE INTERN	AL USE			<u></u>		WR-20 WEI	L REC	CORD & LC	XG (Ver	sion 06/30/2017)
	E NO.			· · · · · · · · · · · · · · · · · · ·	POD NO.		TRN NO.				
roc	ATION					WELL	TAG ID NO.				PAGE 2 OF 2

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

 \mathbf{X}

L 15209 POD1

20F73

12 16S 36E

Driller License: 1753

658035 3645701

Driller Company:

VANGUARD WATER WELLS

Driller Name: JACOB FRIESSEN

12/17/2021

Drill Finish Date:

12/17/2021 Plug Date:

Shallow

Log File Date:

Drill Start Date:

01/18/2022

PCW Rcv Date:

Source:

Pump Type:

Pipe Discharge Size:

Estimated Yield:

15 GPM

Casing Size:

5.00

Depth Well:

200 feet

Depth Water:

110 feet

Water Bearing Stratifications: Top Bottom Description

23

Sandstone/Gravel/Conglomerate

189

Sandstone/Gravel/Conglomerate

Casing Perforations:

Top Bottom

160 200

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/22/22 9:26 AM

POINT OF DIVERSION SUMMARY

Transaction Summary

72121 All Applications Under Statute 72-12-1

Transaction Number: 704320 Transaction Desc: L 15209 POD1 File Date: 08/13/2021

Primary Status: PMT Permit

Secondary Status: LOG Well Log Received

Person Assigned: ******

Applicant: KENNETH WALLACE

Events

	Date	Type	Description	Comment	Processed By
get images	08/13/2021	APP	Application Received	*	*****
	08/18/2021	FIN	Final Action on application		*****
	08/18/2021	WAP	General Approval Letter		*****
	09/14/2021	QAT	Quality Assurance Completed	DATA	*****
	10/27/2021	QAT	Quality Assurance Completed	IMAGE	*****
	10/27/2021	ARW	WRAB Main File Rm Arch Sect	L 15209 Archived	*****
get images	01/18/2022	LOG	Well Log Received	*	*****
	03/31/2022	QAT	Quality Assurance Completed	DATA	*****
	04/11/2022	QAT	Quality Assurance Completed	IMAGES	****

Change To:

WR File Nbr	Acres	Diversion	Consumptive Purpose of Use
L 15209		3	DOL 72-12-1 DOMESTIC AND
**Point of Diversion			LIVESTOCK WATERING
L 15209 POD1		658035	3645701

Conditions

- 1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- 4 Use shall be limited to household, non-commercial trees, lawn and garden not to exceed one acre and/or stock use.
- Total diversion from all wells under this permit number shall not exceed 3 acrefeet per annum.
- 19 This permit authorizes the diversion of water for domestic use to serve a single household and livestock. The maximum combined total diversion of water under this permit shall not exceed 3 acre-feet per year.

** See Image For Any Additional Conditions of Approval **

 Approval Code:
 A - Approved

 Action Date:
 08/18/2021

 Log Due Date:
 08/18/2022

State Engineer: John R. D Antonio,

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

7/22/22 9:26 AM TRANSACTION SUMMARY

PAGE 1 OF 2

WELL TAG ID NO. 20F73

	OSE POD NO. (WELL NO.) WELL TAG ID NO.						OSE FILE NO(S).						
ON	L-15209 POD1 20F73						L-15209						
ATI	WELL OWNER NAME(S)							PHONE (OPTIONAL)					
0C	KENNETH WALLACE												
LL	WELL OWNER MAILING ADDRESS						CITY STATE				ZIP		
AND WELL LOCATION	3317 ANDERSON DRIVE						LOVINGTON NM				88260		
	DEGREES AND WITE GROOM IS												
	WELL		DEGREES MINUTES SECONDS 32 56 17.4										
	LOCATIO	Last	TITUDE	N			N	* ACCURACY REQUIRED: ONE TENTH OF A SECOND					
Œ	(FROM GPS)		DNGITUDE 103 18 34.3 W					* DATUM REQUIRED: WGS 84					
GENERAL	DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS – PLSS (SECTION, TOWNSHJIP, RANGE) WHERE AVAILABLE												
-	SECTION 12 TOWNSHIP 16S RANGE 36E												
	L												
	LICENSE NO		NAME OF LICENSED	ED DRILLER JACOB FRIESSEN				NAME OF WELL DRILLING					
	WD-1	153										VANGUARD	
	DRILLING STARTED DRILLING ENDED						LE DEPTH (FT)		DEPTH WATER FIRST ENCOUNTERED (FT)				
	12/17/	2021	12/17/2021	200			200			110			
	COMPLETE	SWELL IC.	- Inmercial	C prv uo	r		n inn			STATIC WATER LEVEL IN COMPLETED WELL (FT)			
Z	COMPLETEI	WELL IS:	ARTESIAN	DRY HO	LE SHALLOW	V (UNCONI	·INED)	128					
TIC	DRILLING FI	LUID:	AIR	✓ MUD	ADDITIVE	ES – SPECIF	Y:						
MA	DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER – SPECIFY:												
CASING INFORMATION	Final Control												
	FROM TO		BORE HOLE	DIAM (include each casing string, and True)			ASING NECTION		CASING	CASING WALL		SLOT	
NG									INSIDE DIAM.		THICKNESS		
ASI			(inches)				TYPE (add coupling diameter)			(inches)	(inches)		(inches)
S C	-1	160	9.875	BLANK PVC SCH40			GLUE 5.5			5		.25	
NG	160	0 200 9.875		SCREEN PVC SCH40			GLUE 5.5			5		.25	.035
E													
9.875 SCREEN PVC SCH40 GLUE 5.5													
2.1													
										OPERATE TO	1000	00 4104	
										OSE DII JAN	10 20	ZZ PM4, ZJ	
	DEPTH (foot hel)						ND.			T			
1	DEPTH (feet bgl) BORE HOLE DIAM. (inches)		LIST ANNULAR SEAL MATERIAL AND				E 25 G		METHOD OF PLACEMENT				
RIA	FROM	то	1	GRAVEL PACK SIZE-RANGE BY INTERVAL									
TE	0	20	9.875	CONCRETE				7		POURED			
MA	20	150	9.875	GRAVEL				48		POURED			
ANNULAR MATERIAL	150	200	9.875	SILICA SAND					18 PG			POUR	ED
Į,													
AN													
€,													
FOR	OSE INTER	NAL LISE						w	R-20	WELL RECORD &	LOGA	ersion 04/30	/19)
			9-201		POD NO					O 2 1/2		CISIOII 04/30	(13)

16.36.12.441

LOCATION Doma STK

	DEPTH (feet bgl) FROM TO		THICKNESS (feet)	INCLUDE WATER-BEARING CAVITIES OR FRACTU			R FRACTURE	URE ZONES BEARIN			ESTIMATED YIELD FOR WATER- BEARING	
	0 1 1 TOPSOIL								Y	✓ N	ZONES (gpm)	
								Y	V N			
	1	23	22	CALICHE				V Y		10.00		
	23	189	166		SAND				V Y	N N	10.00	
	189	197	8		SAND & C						5.00	
	197	200	3		RED BE	D	vi		Y	N		
ELL									Y	N N		
4. HYDROGEOLOGIC LOG OF WELL									Y	N		
0 5									+			
07.									Y	N		
DGIC									Y	N		
700									Y	N		
OGE									Y	N N		
YDR							***************************************		Y	N		
4. H									Y	N		
									Y	N		
									Y	N	***************************************	
									Y	N		
									Y	N		
								···	Y	N		
									Y	N		
	METHOD I	METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA: TOTAL ESTIMATED										
								ELL YIELI		15.00		
SION	WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.											
	MISCELLANEOUS INFORMATION:											
PER												
SU	OSE DII JAN 18 2022 PM4:21											
TEST; RIG SUPERVI												
EST	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:											
5. T	PETE LOEWEN											
	BY SIGNING BELOW, I CERTIFY THAT TO THE BEST OF MY KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT											
URE	RECORD OF THE ABOVE DESCRIBED WELL. I ALSO CERTIFY THAT THE WELL TAG, IF REQUIRED, HAS BEEN INSTALLED AND THAT THIS WELL RECORD WILL ALSO BE FILED WITH THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE COMPLETION OF WELL DRILLING.											
SIGNATURE												
SIG	JACOB FRIESSEN 01/11/2022											
6.	SIGNATURE OF DRILLER / PRINT SIGNEE NAME DATE											
	OSE INTERI		2 202	1	non vo						sion 04/30/2019)	
-	ENO. L.		9-POD	1 34 1	POD NO.	<u></u>	TRN			20	PAGE 2 OF 2	
LO	CATION 🕍	uny	2115	16.36.1	2,44		WELL TAG I	D NO.	20 F	(3	PAGE 2 OF 2	

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number**

Q64 Q16 Q4 Sec Tws Rng

20FCA L 15245 POD1 12 16S 36E

658742 3645914

Driller License: 1477 **Driller Company:**

M & W WATERWELL SERVICE

Driller Name:

MAUCK, ROBERTR.ALIGENER

Drill Finish Date: 01/28/2022 Plug Date:

Drill Start Date: Log File Date:

01/28/2022 02/02/2022

PCW Rcv Date:

Shallow

Pump Type:

Pipe Discharge Size:

Source:

30 GPM

Casing Size:

5.00

Depth Well:

170 feet

Depth Water:

Estimated Yield:

72 feet

Water Bearing Stratifications:

Top Bottom Description

170 Sandstone/Gravel/Conglomerate

Casing Perforations:

Bottom Top

170

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

70

130

7/22/22 9:21 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer

Transaction Summary

72121 All Applications Under Statute 72-12-1

Transaction Number: 714530 **Transaction Desc:** L 15245 POD1 **File Date:** 11/22/2021

Primary Status: PMT Permit

Secondary Status: LOG Well Log Received

Person Assigned: ******

Applicant: STEVEN CLAYTON

177		- 4	
H.V	ei	1TC	

	Date	Type	Description	Comment	Processed By
get images	11/22/2021	APP	Application Received	*	*****
	12/13/2021	FIN	Final Action on application		*****
	12/13/2021	WAP	General Approval Letter		*****
get images	02/02/2022	LOG	Well Log Received	*	*****
	02/07/2022	QAT	Quality Assurance Completed	DATA	*****
	02/23/2022	QAT	Quality Assurance Completed	SQ2	*****
	03/03/2022	ARW	WRAB Main File Rm Arch Sect	L 15245 Archived	*****
	03/04/2022	QAT	Quality Assurance Completed	DATA	*****
	03/14/2022	QAT	Quality Assurance Completed	IMAGE	*****

Change To:

WR File Nbr Acres Diversion Consumptive Purpose of Use
L 15245
**Point of Diversion
L 15245 POD1 658742 3645914

Conditions

- S Construction of a water well by anyone without a valid New Mexico Well Driller License is illegal, and the landowner shall bear the cost of plugging the well by a licensed New Mexico well driller. This does not apply to driven wells, the casing of which does not exceed two and three-eighths inches outside diameter.
- 1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- Total diversion from all wells under this permit number shall not exceed 1 acrefeet per annum.
- 11 This permit authorizes the diversion of water for domestic use to serve a single household. The total diversion of water under this permit shall not exceed 1 acre-

feet per year. The diversion of water for domestic use may include the watering of non-commercial trees, lawn and garden not to exceed one acre.

Action of the State Engineer

IT IS THE PERMITTEES RESPONSIBILITY TO OBTAIN ALL AUTHORIZATIONS AND PERMISSIONS TO DRILL ON PROPERTY OF OTHER OWNERSHIP BEFORE COMMENCING ACTIVITIES UNDER THIS PERMIT.

** See Image For Any Additional Conditions of Approval **

Approval Code: A - Approved **Action Date:** 12/13/2021 **Log Due Date:** 12/13/2022

State Engineer: John R. D Antonio,

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/22/22 9:22 AM TRANSACTION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

יבו	OSE POD NO.		o , ,	WELL TAG ID NO.		OSE FILE NO	-		de la compressión de	
LIOI	L-152		Pod /	20FCA			PHONE (OPTIONAL)			
GENERAL AND WELL LOCATION	Steve	,	Clayton	/		PHONE (OPTI	UNAL)			
UL L	WELL OWNE	R MAILING				CITY	-	STATE	ZIP	
WEI	3006	ANDE	SON Dr.			Loving	gtor 1	VM E	78260	
Q.	WELL				ONDS					
AL A	LOCATION	27111		2 56 24			REQUIRED: ONE TENT	TH OF A SECOND		
NER	(FROM GPS	LONG	GITUDE /O	3 18 07	.0 W	* DATUM REC	QUIRED: WGS 84			
	DESCRIPTIO	N RELATING	WELL LOCATION TO	STREET ADDRESS AND COMMON LAND	MARKS – PLS	SS (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABLE		
1.								2		
	LICENSE NO.	. 1	NAME OF LICENSED	DRILLER			NAME OF WELL DRI	ILLING COMPANY		
	WD-1	477	Robert	- MAUCK			m+W	(
	DRILLING ST		DRILLING ENDED	DEPTH OF COMPLETED WELL (FT)		LE DEPTH (FT)	1000000	ST ENCOUNTERED (F	T)	
	1-28-	22	1-28-22	170	17	70	72	/EL IN COMPLETED V	VELL (ET)	
Z	COMPLETED	WELL IS:	ARTESIAN	DRY HOLE SHALLOW (UNC	CONFINED)		7Z	VEL IN COMPLETED V	VELL(FI)	
VIIO	DRILLING FL	LUID:	☐ AIR	MUD ADDITIVES – SP	ECIFY:					
2. DRILLING & CASING INFORMATION	DRILLING M	ETHOD:	ROTARY	HAMMER CABLE TOOL	ОТНЕ	ER – SPECIFY:				
NFO	DEPTH	(feet bgl)	BORE HOLE	CASING MATERIAL AND/OR	T	ASING	CASING	CASING WALL	SLOT	
NGI	FROM	ТО	DIAM	GRADE (include each casing string, and	CON	NECTION	INSIDE DIAM.	THICKNESS	SIZE	
ASI			(inches)	note sections of screen)	(add coup	TYPE lling diameter)	(inches)	(inches)	(inches)	
8 0	0	130	9-8	SDR-26-160 SDR-21-200	6/		5"	3/6	BIAN	
ING	130	170	7/8	5012-21-200	610	u	54	14	,020	
H					101			-		
2. DI								-		
							05E DII FE	8 2 2022 PM214	.0	
	DEPTH	(feet bgl)	BORE HOLE	LIST ANNULAR SEAL M			AMOUNT		OD OF	
IAL	FROM	то	DIAM. (inches)	GRAVEL PACK SIZE-RANG	GE BY INTI	ERVAL	(cubic feet)		EMENT	
TER	0	20	9/8	3/9 Bertovite Hale	Play		1754			
ANNULAR MATERIAL	20	170	978	18" Gravel	, ,		2.8 ton.	S MAN	UA/	
LAR										
NI										
3. A.										
						William View View View View View View View View				
FOR	OSE INTER	NAL USF		**************************************		WR-2	0 WELL RECORD	& LOG (Version 04	3/30/19)	
	E NO. L	152	45	POD NO.		TRN		30		
LOC	CATION	J-1	-1	105-310F-12		WELL TAG I	D NO. 20F	A PAC	E 1 OF 2	
		• •					DOM-			

	DEPTH (feet bgl)	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES	WAT BEARI (YES /	NG?	ESTIMATED YIELD FOR WATER- BEARING
				(attach supplemental sheets to fully describe all units)			ZONES (gpm)
	0	2	2	topsoi/	Y	N	
	2	30	78	Limestone Brown SANDSTONE Limestone Red SANDSTONE	Y	Ø Ø	
	30	60	30	BROWN SANDSTONE	Y	2	
	60	70	10	L'imestore		N	7.0
	70	170	100	Ked SANDSTONE	<u>В</u>	N	30
ELL					Y	N	
4. HYDROGEOLOGIC LOG OF WELL					Y	N	
0 90	***************************************				Y	N	
272					Y	N	
150					Y	N	
EOL					Y	N	
503					Y	N	
YDR					Y	N	
4. H					Y	N	
			-		Y	N	
					Y	N	
					Y	N	
					Y	N	
					Y	N	
					Y	N	
	метнор и	JSED TO ES	TIMATE YIELD	OF WATER-BEARING STRATA:	TOTAL ESTIM		30
	PUM		· · · · · · · · · · · · · · · · · · ·		WELL YIELD	(gpm):	0.00
NOI	WELL TES	TEST		ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER			
5. TEST; RIG SUPERVIS	MISCELLA	NEOUS INI	FORMATION:	Dump @ 30GPM	E 011 FEB 2	2022	m2;41
5. TES	PRINT NAM	ME(S) OF D	RILL RIG SUPE	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONST	RUCTION 01	HER TH	IAN LICENSEE:
6. SIGNATURE	RECORD O	ORD WILL	OVE DESCRIBED	IAT TO THE BEST OF MY KNOWLEDGE AND BELIEF, THE FOREGO WELL. I ALSO CERTIFY THAT THE WELL TAG, IF REQUIRED, HAS DOWN THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE COMPLETED. OF THE PERMIT SIGNÉE NAME	BEEN INSTAI TION OF WEL	LLED AN L DRILI	ND THAT THIS
	000				DEGGE	00.00	
	E NO.	NAL USE	4	POD NO. TRN NO. 7	RECORD & I	OG (Ve	rsion 04/30/2019)
	CATION	-U~	1	LLS-36E-13 WELL TAG ID NO	nect	+	PAGE 2 OF 2

APPENDIX B

Photographic Log

ENSOLUM

Photographic Log

Armstrong Energy Corporation
SV Kim Harris #003
Incident Number nAPP2229057488

Photograph 1 Date: 10/25/2022

Description: View of heater treater and release area, view northeast

Photograph 2 Date: 11/18/2022

Description: Hand shoveled excavation area, view north-northwest

Photograph 3 Date: 11/18/2022 Description: view of southern excavation edge up against 3-foot berm, view west.

Photograph 4 Date: 11/18/2022

Description: Final excavation extent, view north-north
east

APPENDIX C

Lithologic / Soil Sampling Logs

								Sample Name: BH01	Date: 10/28/2022
							8.4	Site Name: SV Kim Harris #003	Dutc. 10/20/2022
			N	3	OL	_ U	M	Incident Number: nAPP222905748	8
								Job Number: 09C2041003	-
		LITHOL	OGI	C / SOIL S	SAMPLING	LOG		Logged By: JF	Method: hand auger
Coord		2.942522						Hole Diameter: N/A	Total Depth:
Comm	ents: Fie	ld screen	ing co	nducted w	ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respect	ively. Chloride test
perfor	med with	n 1:4 dilut	tion f	actor of soi	l to distilled	water. No co	orrection	factors included.	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	criptions
m	5,499	0.3	У	BH01A	@0.5' <u> </u>	L 0.5	cche	CALICHE, fg-cg sand, silty, classified brown, moist, slight stained	
m	3,909	0.2	n	BH01B	@1'	1	SW	_ · · · · · · · · · · · · · · · · · · ·	•
	2,505	3.2	''	2.1010		_	J.V	SAND, fg-cg, trace silt and cl no staining, slight odor	ay, uaik biowii, iiioist,
					+	_ 1.5		no stanning, slight odor	
m	<168	0	n	BH01C	@2'	2	SWS	SANDSTONE, fg-cg, trace silt me	
					<u> </u>	2.5		weathered, moist, no staining,	no odor
m	<168	0.1	n	BH01C	@3'*	3			
					1	_		TD = 3 feet bgs	
					4	3.5			
						4		Toping a light of an 17.77	/:I/::1
					_	4.5		*sample collected on 11/1/	/2022
					1	_			
					_	_ 5			
					4	5.5			
					4	6			
					4				
					1	_			
					4	_			
						_			
					-	-			
					1	<u>-</u>			
						_			
						- -			
					+	-			
						- -			
					+	-			
						- -			
					†	<u>-</u>			
					7	<u>-</u>			
					1	<u> </u>			

								Sample Name: BH02	Date: 10/28/2022			
				6	\circ		8.4	Site Name: SV Kim Harris #003				
			N	3	OL	. U	IVI	Incident Number: nAPP222905748	38			
								Job Number: 09C2041003				
		LITHOL	OGI	C / SOIL S	SAMPLING	LOG		Logged By: JF	Method: hand auger			
Coord		2.942522						Hole Diameter: N/A	Total Depth:			
					ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respect	ively. Chloride test			
perfor	med with	n 1:4 dilut	ion f	actor of soi	l to distilled	water. No co	orrection	factors included.				
Moisture Content	Content Content Chloride (hpm) Vapor Staining Sample ID Debth (tt pds) USCS/Rock Symbol				-	USCS/Rock Symbol	Lithologic Des	criptions				
m	<168 <168	0.7		вно2в	@0.5'	0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5 5	SWS	CALICHE, fg-cg sand, silty, clayey, brown-dk brown, moist, no staining, slight odor SANDSTONE, fg-cg, trace silt moderately cemented, weathered, moist, no staining or odor TD = 1 foot bgs				
						5.5 6 - - - - - - - - - - - -						

								Sample Name: BH03	Date: 10/28/2022		
	\neg		N I		~ I		8.4	Site Name: SV Kim Harris #003	Dutc. 10/20/2022		
			N	3	OL	_ U	M	Incident Number: nAPP222905748	88		
								Job Number: 09C2041003	· -		
1		LITHOL	OGI	C / SOIL S	SAMPLING	LOG		Logged By: JF	Method: hand auger		
Coord		2.942522				_ 		Hole Diameter: N/A	Total Depth:		
					ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respect	ively. Chloride test		
perfor	med with	n 1:4 dilut	tion f	actor of soi	l to distilled	water. No co	orrection	factors included.			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions			
m							cche	CALICHE, fg-cg sand, silty, cl	• •		
							CVA/C	brown, moist, no staining or			
m	207	0.4	n	BH03B	@1'	1	SWS	SANDSTONE, fg-cg, trace silt m weathered, moist, no staining o			
			1.5					weathered, moist, no staining (JI UUUI		
	1 1 2										
					-	2.5					
					1 T 1						
					- 3			TD = 1 foot bgs			
					3.5			11000005			
					-	- 4					
					_						
					_	4.5					
					4	5					
					-	5.5					
					-	6					
						_ 0					
					_	_					
					_	-					
					-	<u>-</u>					
					_	_ -					
					-	_					
						- -					
					-	-					
						- -					
					-	_					
						<u>-</u>					
					_	-					
					7	-					
					_	<u> </u>					
					4	_					
					-	-					

								Sample Name: BH04	Date: 10/28/2022	
			N I	6	\circ		8.4	Site Name: SV Kim Harris #003		
			N	3	OL	. U	IVI	Incident Number: nAPP222905748	8	
								Job Number: 09C2041003		
		LITHOL	OGI	C / SOIL S	AMPLING	LOG		Logged By: JF	Method: hand auger	
Coord		2.942522						Hole Diameter: N/A	Total Depth:	
					ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respecti	ively. Chloride test	
								factors included.		
Moisture Content	Content Content Content Chloride (ppm) Vapor (ppm) Staining Sample ID Debth (tt pds) Debth (tt pds) USCS/Rock Symbol				-	USCS/Rock Symbol	Lithologic Des	criptions		
m	246	0.3	n	BH04A	@0.5' <u> </u>	<u> </u>	cche	CALICHE, fg-cg sand, silty, cla		
						_	CVA/C	brown, moist, no staining or		
m	582	0.4	n	BH04B	@1' <u> </u>	_ 1	SWS	SANDSTONE, fg-cg, trace silt mo		
					4	1.5		weathered, moist, no staining o	or odor	
					<u>-</u>	2				
					+	2.5				
					-	_ 3		TD = 1 foot bgs		
						3.5		1D - 1100t bg3		
					4	4				
					-	4.5				
						_ 5				
					1	5.5				
					4					
					-	6				
						<u>-</u>				
					-	-				
					4	- -				
					-	_				
					- 4	- -				
					-	-				
					1	_ -				
					+	_				
						- -				
					+	_				
					1	-				
					+	-				
					4	- -				
						<u>-</u>				
					7	-				

								Sample Name: BH05	Date: 10/28/2022		
	\neg		N I		~ I		8.4	Site Name: SV Kim Harris #003	Dutc. 10/20/2022		
			N	3	OL	_ U	M	Incident Number: nAPP222905748	38		
								Job Number: 09C2041003	· -		
1		LITHOL	OGI	C / SOIL S	SAMPLING	LOG		Logged By: JF	Method: hand auger		
Coord		2.942522						Hole Diameter: N/A	Total Depth:		
					ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respect	· ·		
								factors included.	•		
Moisture Content	Chloride (ppm)	Vapor (ppm) Samble Debth (ft pgs) USCS/Rock Symbol				-	USCS/Rock Symbol	Lithologic Des	scriptions		
m							cche	CALICHE, fg-cg sand, silty, cl	• •		
m	207	0.1	n	BH05B	@1'	1	SWS	brown, moist, no staining or			
 '''	207	0.1	''	םכטו וט	_ يس		3003	SANDSTONE, fg-cg, trace silt m weathered, moist, no staining o			
		1.5						The station can moist, no staining (
					_	2					
	1 1 2.5										
					1 3						
					-			TD = 1 foot bgs			
					4	3.5					
					-	_ 4					
					-	4.5					
					_						
					-	_ 5					
					_	5.5					
					-	6					
					=	-					
					-	- -					
					-	_					
						- 					
					-	-					
						- -					
					-	<u> </u>					
					_	- -					
					_	<u>-</u>					
					7	-					
					-	 -					
					-	_					
						- 					
					-	-					
						- -					

								Sample Name: BH06	Date: 10/28/2022
				6	01		8.4	Site Name: SV Kim Harris #003	
			N	3	OL	. U		Incident Number: nAPP222905748	8
								Job Number: 09C2041003	
		LITHOL	OGI	C / SOIL S	AMPLING	LOG		Logged By: JF	Method: hand auger
Coord		2.942522						Hole Diameter: N/A	Total Depth:
Comm	ents: Fie	ld screen	ing co	nducted w	ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respecti	vely. Chloride test
perfor	med with	n 1:4 dilut	tion f	actor of soi	l to distilled	water. No co	orrection f	factors included.	
Moisture Content	Content Content Content Chloride (ppm) Vapor (ppm) Samble ID Sample ID (tt pgs) (tt bgs) USCS/Rock Symbol				-	USCS/Rock Symbol	Lithologic Des	criptions	
m	<168	0.1	2	DHUC V	# @0.5' <u> </u>	L 0.5	cche	CALICHE, fg-cg sand, silty, cla	ayey, brown-dk
m			n	BH06A		_		brown, moist, no staining or	no odor
m	<168	0.1	n	вно6в	@1'	1	SW	SAND, fg-cg, trace silt and cl	ay, dark brown, moist,
					<u>†</u>	1.5		staining, odor	
					-	2			
					1	_			
					+	2.5			
						3		TD 2 Continue	
					4	3.5		TD = 2 feet bgs	
					7	_			
					1	_ 4			
					4	4.5			
						5			
					+	5.5			
					1	_			
					_	6			
						- -			
					4	-			
					1	<u>-</u>			
					+	_			
					1	-			
					+	•			
					7	- •			
					+	<u>-</u>			
					4	- -			
						<u>.</u>			
					7	-			
					1	<u>-</u>			
					+	_			
						- -			
						-			

								Sample Name: BH07	Date: 11/17/2022
	7		N I		^ I		8.4	Site Name: SV Kim Harris #003	
			N	3	O I	_ U	V	Incident Number: nAPP2229057	488
								Job Number: 09C2041003	
		LITHOL	OGI	C / SOIL S	SAMPLING	LOG		Logged By: JF	Method: hand auger
Coord	inates: 32							Hole Diameter: N/A	Total Depth:
			_					PID for chloride and vapor, respe factors included.	ctively. Chloride test
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions
m m	<168 <168 <168	0.6 0.5 0.3	n n	внота внотв	@0.5' _ @1'	0.5 1 1.5 2 2.5 3.5 4 5.5 6 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	cche SW SWS	CALICHE, fg-cg sand, silty, brown, moist, no staining sand, fg-cg, trace silt and staining, odor SANDSTONE, fg-cg, trace silt weathered, moist, no staining TD = 2 feet bgs	or no odor clay, dark brown, moist, moderately cemented,

								Sample Name: BH08	Date: 11/17/2022
				6	\circ		8.4	Site Name: SV Kim Harris #003	
			V	3	OL	. U		Incident Number: nAPP222905	
								Job Number: 09C2041003	
		LITHOL	OGI	C / SOIL S	AMPLING	LOG		Logged By: JF	Method: hand auger
Coordi	nates: 32	2.942522,	, -103	.304927				Hole Diameter: N/A	Total Depth:
							orrection	PID for chloride and vapor, resp factors included.	pectively. Chloride test
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic	Descriptions
m	<168 <168	0.5 0.2	n n	BH08A BH08B	@0.5' _ @1'	. 0.5 - 1 1.5 - 2.5 - 3.5 - 4.5 - 5.5 - 6	cche	CALICHE, fg-cg sand, silty brown, moist, no staining SAND, fg-cg, trace silt an staining, odor SANDSTONE, fg-cg, trace sil weathered, moist, no staini TD = 3 feet bgs	g or no odor d clay, dark brown, moist, lt moderately cemented,

								Sample Name: BH09	Date: 11/17/2022
			N I	6	01		B.4	Site Name: SV Kim Harris #003	
			N	3	OL	_ U		Incident Number: nAPP222905	7488
								Job Number: 09C2041003	
		LITHOL	OGI	C / SOIL S	SAMPLING	LOG		Logged By: JF	Method: hand auger
Coord	Coordinates: 32.942522, -103.304927						Hole Diameter: N/A	Total Depth:	
								PID for chloride and vapor, resp factors included.	ectively. Chloride test
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic [Descriptions
m m	<168 <168 <168	0.2 0.3 0.2	n n	вноэа вноэв вноэс	@0.5' _ @1' _ @2' _ - - - - - -	. 0.5 - 1 - 1.5 - 2 - 2.5 - 3.5 - 3.5 - 4 - 4.5 - 5	cche SW SWS	CALICHE, fg-cg sand, silty brown, moist, no staining SAND, fg-cg, trace silt and staining, odor SANDSTONE, fg-cg, trace silt weathered, moist, no staining TD = 2 feet bgs	g or no odor d clay, dark brown, moist, t moderately cemented,
						- 6 - 6 			

								Sample Name: PH08	Date: 10/28/2022
	7			6	\circ		B.4	Site Name: SV Kim Harris #003	
			N	3	OL	. U		Incident Number: nAPP221894055	1
								Job Number: 09C2041003	
		LITHOL	OGI	C / SOIL S	AMPLING	LOG		Logged By: JF	Method: backhoe
Coord		2.942522						Hole Diameter: N/A	Total Depth: 3 ft bgs
Comm	ents: Fie	ld screen	ing co	nducted w	ith HACH Ch	loride Test S	trips and	PID for chloride and vapor, respecti	ively. Chloride test
perfor	med with	n 1:4 dilut	tion f	actor of soi	l to distilled	water. No co	orrection 1	factors included.	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	criptions
m	<168	0	n	PH08A		L · 0.5	cche	CALICHE, fg-cg sand, silty, cla	• •
						_	CVA	brown, moist, no staining ar	
m	<168	0	n	PH08B	@1'	_ 1	SW	SAND, fg-cg, trace silt and cl	ay, dark brown, moist,
					- 4	1.5		no staining, no odor	
m						_ 2			
					4	2.5			
					寸	_			
m	<168	0.0	n	PH08C	@3'	3	SW	SAA	
					1	3.5			
					-	4			
					7	_			
					-	4.5			
					4	5			
					4	5.5			
					7	_		TD = 3 feet bgs	
					+	_ 6			
					1	<u>.</u>			
					4	-			
					1	-			
					4	_			
						_			
					+	-			
					1	<u>-</u>			
					4	_			
						<u>.</u>			
					+	-			
					‡	<u> </u>			
					+	_			
					4	<u>.</u>			
					+	<u>-</u>			
					7	•			

APPENDIX D

Laboratory Analytical Reports & Chain-of-Custody Documentation

Environment Testing

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3335-1

Laboratory Sample Delivery Group: 090204003 Client Project/Site: SU KIM HARRIS #003

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Daniel Moir

MAMER

Authorized for release by: 11/7/2022 3:33:14 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 1/13/2023 10:08:17 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

C

0

a

10

12

Client: Ensolum
Project/Site: SU KIM HARRIS #003

Laboratory Job ID: 890-3335-1 SDG: 090204003

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	16
QC Sample Results	18
QC Association Summary	26
Lab Chronicle	31
Certification Summary	35
Method Summary	36
Sample Summary	37
Chain of Custody	38
Receipt Checklists	40

2

3

4

6

8

10

12

13

Definitions/Glossary

Job ID: 890-3335-1 Client: Ensolum Project/Site: SU KIM HARRIS #003

SDG: 090204003

Qualifiers

GC VOA

Qualifier **Qualifier Description**

MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: SU KIM HARRIS #003

Job ID: 890-3335-1

SDG: 090204003

Job ID: 890-3335-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3335-1

Receipt

The samples were received on 10/28/2022 4:15 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH01A (890-3335-1), BH01B (890-3335-2), BH02A (890-3335-3), BH02B (890-3335-4), BH03A (890-3335-5), BH03B (890-3335-6), BH04A (890-3335-7), BH04B (890-3335-8), BH05A (890-3335-9), BH05B (890-3335-10), BH06A (890-3335-11), BH06B (890-3335-12) and BH01C (890-3335-13).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-38429 and analytical batch 880-38578 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-38629 and analytical batch 880-38778 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The method blank for preparation batch 880-38629 and analytical batch 880-38778 contained Benzene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The matrix spike duplicate (MSD) recoveries for preparation batch 880-38417 and analytical batch 880-38323 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-3335-1

Job ID: 890-3335-1

Client: Ensolum Project/Site: SU KIM HARRIS #003 SDG: 090204003

Client Sample ID: BH01A

Date Collected: 10/28/22 11:30 Date Received: 10/28/22 16:15

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		11/01/22 16:03	11/03/22 14:23	1
Toluene	<0.00202	U	0.00202	mg/Kg		11/01/22 16:03	11/03/22 14:23	1
Ethylbenzene	<0.00202	U F1	0.00202	mg/Kg		11/01/22 16:03	11/03/22 14:23	1
m-Xylene & p-Xylene	<0.00403	U F1	0.00403	mg/Kg		11/01/22 16:03	11/03/22 14:23	1
o-Xylene	<0.00202	U F1	0.00202	mg/Kg		11/01/22 16:03	11/03/22 14:23	1
Xylenes, Total	<0.00403	U F1	0.00403	mg/Kg		11/01/22 16:03	11/03/22 14:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			11/01/22 16:03	11/03/22 14:23	1
1,4-Difluorobenzene (Surr)	103		70 - 130			11/01/22 16:03	11/03/22 14:23	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			11/03/22 17:00	1
Method: SW846 8015 NM - Diese	al Pange Organ	ice (DBO) (ec)					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	77.7		50.0	mg/Kg			11/02/22 10:14	1
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/01/22 22:14	1
Diesel Range Organics (Over C10-C28)	77.7	F1	50.0	mg/Kg		11/01/22 15:08	11/01/22 22:14	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/01/22 22:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130			11/01/22 15:08	11/01/22 22:14	1
o-Terphenyl	97		70 - 130			11/01/22 15:08	11/01/22 22:14	1
- Method: MCAWW 300.0 - Anions	lon Chromato	ography - So	oluble					
Method. MOAVVV 300.0 - Amons	, ion omiomate	grupily of	JIUDIC					

Client Sample ID: BH01B

Date Collected: 10/28/22 11:35

Date Received: 10/28/22 16:15

Sample Depth: 12

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/04/22 07:55	11/04/22 15:26	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/04/22 07:55	11/04/22 15:26	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/04/22 07:55	11/04/22 15:26	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/04/22 07:55	11/04/22 15:26	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/04/22 07:55	11/04/22 15:26	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/04/22 07:55	11/04/22 15:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			11/04/22 07:55	11/04/22 15:26	

49.7

mg/Kg

4680

Eurofins Carlsbad

11/01/22 21:50

Lab Sample ID: 890-3335-2

Matrix: Solid

Client: Ensolum Job ID: 890-3335-1

Project/Site: SU KIM HARRIS #003 SDG: 090204003 Lab Sample ID: 890-3335-2

Client Sample ID: BH01B Date Collected: 10/28/22 11:35 Date Received: 10/28/22 16:15

Sample Depth: 12

Method: SW846 8021B - V	/olatile Organic Compounds ((GC) (Continued)
-------------------------	------------------------------	------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	71	70 - 130	11/04/22 07:55	11/04/22 15:26	1

Mothod: TAL SOP	Total BTEX - Total BTEX Calculation
Method. IAL JOI	Total BIEX - Total BIEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	mg/Kg		_	11/04/22 15:52	1

Mathada OMO40 0045 NM Disasi Damas Omasica (DDO) (OO	Α.
Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC	. 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	50.1		49.8	mg/Kg			11/02/22 10:14	1

Method: SW846 8015B NM - Diesel Range Organics	(DRO)	(GC)	١
motified. Offerto College Ithin Biodol Rungo Organico	(5.10)	, , , , ,	,

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		11/01/22 15:08	11/01/22 23:19	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		11/01/22 15:08	11/01/22 23:19	1
Oll Range Organics (Over C28-C36)	50.1		49.8	mg/Kg		11/01/22 15:08	11/01/22 23:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	82		70 - 130	11/01/22 15:08	11/01/22 23:19	1
o-Terphenyl	86		70 - 130	11/01/22 15:08	11/01/22 23:19	1

Analyte	Result Q	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3970		49.6	mg/Kg	_		11/01/22 21:55	10

Client Sample ID: BH02A

Date Collected: 10/28/22 11:40

Date Received: 10/28/22 16:15

Sample Depth: 6

Wethou. 344046 6021B - Volatile Organic Compounds (GC)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		11/04/22 07:55	11/04/22 15:47	1
Toluene	<0.00202	U	0.00202	mg/Kg		11/04/22 07:55	11/04/22 15:47	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		11/04/22 07:55	11/04/22 15:47	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		11/04/22 07:55	11/04/22 15:47	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		11/04/22 07:55	11/04/22 15:47	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		11/04/22 07:55	11/04/22 15:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			11/04/22 07:55	11/04/22 15:47	1
1.4-Difluorobenzene (Surr)	92		70 - 130			11/04/22 07:55	11/04/22 15:47	1

Mothod: TAI	SOP Total BTFX -	Total DTEV	Coloulation
IVIETTION: IAI	OUP IOMIDIES -	IOM DIEA	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			11/07/22 15:35	1

Lab Sample ID: 890-3335-3

Matrix: Solid

11/01/22 15:08 11/01/22 23:40

Client: Ensolum Job ID: 890-3335-1

Project/Site: SU KIM HARRIS #003 SDG: 090204003 Lab Sample ID: 890-3335-3

Client Sample ID: BH02A Date Collected: 10/28/22 11:40 Date Received: 10/28/22 16:15

Sample Depth: 6

Method: SW846 8015 NM - Diesel R	Range Organi	ics (DRO) (G	C)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	629		49.9	mg/Kg			11/02/22 10:14	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		11/01/22 15:08	11/01/22 23:40	1
(GRO)-C6-C10								
Diesel Range Organics (Over	489		49.9	mg/Kg		11/01/22 15:08	11/01/22 23:40	1
C10-C28)								
Oll Range Organics (Over	140		49.9	mg/Kg		11/01/22 15:08	11/01/22 23:40	1
C28-C36)								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130			11/01/22 15:08	11/01/22 23:40	1

Method: MCAWW 300.0 - Anions, Id	on Chromato	graphy - Sc	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	107		4.99	mg/Kg			11/01/22 22:00	1

70 - 130

Client Sample ID: BH02B Lab Sample ID: 890-3335-4 **Matrix: Solid**

Date Collected: 10/28/22 11:45 Date Received: 10/28/22 16:15

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U F1	0.00200	mg/Kg		11/03/22 12:48	11/05/22 22:00	1
Toluene	<0.00200	U F1	0.00200	mg/Kg		11/03/22 12:48	11/05/22 22:00	1
Ethylbenzene	<0.00200	U F1	0.00200	mg/Kg		11/03/22 12:48	11/05/22 22:00	1
m-Xylene & p-Xylene	<0.00401	U F1	0.00401	mg/Kg		11/03/22 12:48	11/05/22 22:00	1
o-Xylene	<0.00200	U F1	0.00200	mg/Kg		11/03/22 12:48	11/05/22 22:00	1
Xylenes, Total	<0.00401	U F1	0.00401	mg/Kg		11/03/22 12:48	11/05/22 22:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			11/03/22 12:48	11/05/22 22:00	1
1,4-Difluorobenzene (Surr)	97		70 - 130			11/03/22 12:48	11/05/22 22:00	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			11/07/22 15:48	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	130		50.0	mg/Kg			11/02/22 10:14	1
_								

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/02/22 00:02	1	
Diesel Range Organics (Over C10-C28)	130		50.0	mg/Kg		11/01/22 15:08	11/02/22 00:02	1	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/02/22 00:02	1	

Job ID: 890-3335-1

Client: Ensolum Project/Site: SU KIM HARRIS #003 SDG: 090204003

Client Sample ID: BH02B Lab Sample ID: 890-3335-4

Date Collected: 10/28/22 11:45 Matrix: Solid Date Received: 10/28/22 16:15

Sample Depth: 12

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1-Chlorooctane	83		70 - 130	11/01/22 15:08	11/02/22 00:02	1	
o-Terphenyl	87		70 - 130	11/01/22 15:08	11/02/22 00:02	1	
_							

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 83.6 5.00 mg/Kg 11/01/22 22:05

Client Sample ID: BH03A Lab Sample ID: 890-3335-5 Date Collected: 10/28/22 11:50 **Matrix: Solid**

Date Received: 10/28/22 16:15

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 15:44	
Toluene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 15:44	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 15:44	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 15:44	
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 15:44	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 15:44	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	119		70 - 130			11/01/22 16:03	11/03/22 15:44	
1,4-Difluorobenzene (Surr)	101		70 - 130			11/01/22 16:03	11/03/22 15:44	
Method: TAL SOP Total BTEX	· Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/03/22 17:00	
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	1600	-	50.0	mg/Kg			11/02/22 10:14	
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/02/22 00:23	
Diesel Range Organics (Over C10-C28)	1240		50.0	mg/Kg		11/01/22 15:08	11/02/22 00:23	
Oll Range Organics (Over C28-C36)	359		50.0	mg/Kg		11/01/22 15:08	11/02/22 00:23	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	103		70 - 130			11/01/22 15:08	11/02/22 00:23	
o-Terphenyl	111		70 - 130			11/01/22 15:08	11/02/22 00:23	
Method: MCAWW 300.0 - Anion	ns, Ion Chromato	graphy - So	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	206		4.98	mg/Kg			11/02/22 13:25	

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003 SDG: 090204003

Client Sample ID: BH03B Lab Sample ID: 890-3335-6

Date Collected: 10/28/22 11:55 Matrix: Solid Date Received: 10/28/22 16:15

Sample Depth: 12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 16:05	
Toluene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 16:05	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 16:05	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 16:05	
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 16:05	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 16:05	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130			11/01/22 16:03	11/03/22 16:05	
1,4-Difluorobenzene (Surr)	104		70 - 130			11/01/22 16:03	11/03/22 16:05	
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/03/22 17:00	
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (GC)					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	720		50.0	mg/Kg			11/02/22 10:14	
Method: SW846 8015B NM - Did	esel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/02/22 00:45	
Diesel Range Organics (Over	561		50.0	mg/Kg		11/01/22 15:08	11/02/22 00:45	
Oll Range Organics (Over C28-C36)	159		50.0	mg/Kg		11/01/22 15:08	11/02/22 00:45	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	79		70 - 130			11/01/22 15:08	11/02/22 00:45	
o-Terphenyl	83		70 - 130			11/01/22 15:08	11/02/22 00:45	
Method: MCAWW 300.0 - Anior	s, Ion Chromato	ography - So	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
-analyto								

Client Sample ID: BH04A Lab Sample ID: 890-3335-7 Matrix: Solid

Date Collected: 10/28/22 13:00 Date Received: 10/28/22 16:15

Sample Depth: 6

Method: SW846 8021B - Volatile Organic Compounds (GC)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 16:25	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 16:25	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 16:25	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/01/22 16:03	11/03/22 16:25	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 16:25	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/01/22 16:03	11/03/22 16:25	1

Lab Sample ID: 890-3335-7

Job ID: 890-3335-1

Client: Ensolum SDG: 090204003 Project/Site: SU KIM HARRIS #003

Client Sample ID: BH04A

Date Collected: 10/28/22 13:00 Date Received: 10/28/22 16:15

Sample Depth: 6

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112	70 - 130	11/01/22 16:03	11/03/22 16:25	1
1,4-Difluorobenzene (Surr)	106	70 - 130	11/01/22 16:03	11/03/22 16:25	1

1,4-Difluorobenzene (Surr)	106	70 - 130	11/01/22 16:03	11/03/22 16:25	1
Method: TAL SOP Total BTEX - Total BTEX	Calculation				

Method: TAL SOP Total BTEX - Total BTEX Calculation									
	Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00399	U	0.00399	mg/Kg			11/03/22 17:00	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.8	U	49.8	mg/Kg			11/02/22 10:14	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		11/01/22 15:08	11/02/22 01:06	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		11/01/22 15:08	11/02/22 01:06	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		11/01/22 15:08	11/02/22 01:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1 Chloroctane			70 120			11/01/22 15:00	11/02/22 01:06	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130	11/01/22 15:08	11/02/22 01:06	1
o-Terphenyl	97		70 - 130	11/01/22 15:08	11/02/22 01:06	1
Г.,						

Method: MCAWW 300.0 - Anions, I	on Chromatog	graphy - Sol	uble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	948		4.99	mg/Kg			11/02/22 13:45	1

Client Sample ID: BH04B Lab Sample ID: 890-3335-8 Date Collected: 10/28/22 13:05 Matrix: Solid

Date Received: 10/28/22 16:15

Sample Depth: 12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 16:46	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 16:46	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 16:46	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		11/01/22 16:03	11/03/22 16:46	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 16:46	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		11/01/22 16:03	11/03/22 16:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			11/01/22 16:03	11/03/22 16:46	1
1,4-Difluorobenzene (Surr)	108		70 - 130			11/01/22 16:03	11/03/22 16:46	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			11/04/22 14:55	1

Eurofins Carlsbad

Analyzed

11/02/22 10:14

RL

49.8

Unit

mg/Kg

Prepared

Result Qualifier

<49.8 U

Analyte

Total TPH

Dil Fac

Client: Ensolum Job ID: 890-3335-1
Project/Site: SU KIM HARRIS #003 SDG: 090204003

Client Sample ID: BH04B Lab Sample ID: 890-3335-8

Date Collected: 10/28/22 13:05

Date Received: 10/28/22 16:15

Matrix: Solid

Sample Depth: 12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		11/01/22 15:08	11/02/22 01:27	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		11/01/22 15:08	11/02/22 01:27	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		11/01/22 15:08	11/02/22 01:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130			11/01/22 15:08	11/02/22 01:27	1
o-Terphenyl	100		70 - 130			11/01/22 15:08	11/02/22 01:27	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - S	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	3150		25.1	mg/Kg			11/02/22 18:49	5

Client Sample ID: BH05A

Date Collected: 10/28/22 13:10

Lab Sample ID: 890-3335-9

Matrix: Solid

Date Collected: 10/28/22 13:10 Date Received: 10/28/22 16:15

Occupie Dentile O

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		11/01/22 16:03	11/03/22 17:06	1
Toluene	<0.00202	U	0.00202	mg/Kg		11/01/22 16:03	11/03/22 17:06	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		11/01/22 16:03	11/03/22 17:06	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		11/01/22 16:03	11/03/22 17:06	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		11/01/22 16:03	11/03/22 17:06	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		11/01/22 16:03	11/03/22 17:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			11/01/22 16:03	11/03/22 17:06	1
1,4-Difluorobenzene (Surr)	104		70 - 130			11/01/22 16:03	11/03/22 17:06	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
· ······ , · · ·								
Total BTEX	<0.00404	U	0.00404	mg/Kg			11/04/22 14:55	1
Total BTEX				mg/Kg	<u> </u>		11/04/22 14:55	1
	sel Range Organ			mg/Kg		Prepared	11/04/22 14:55 Analyzed	1 Dil Fac
Total BTEX Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (GC)		<u>D</u>	Prepared		
Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH	sel Range Organ Result 256	ics (DRO) ((Qualifier	GC) RL 49.9	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Total BTEX Method: SW846 8015 NM - Dies Analyte	sel Range Organ Result 256 esel Range Orga	ics (DRO) ((Qualifier	GC) RL 49.9	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Die	sel Range Organ Result 256 esel Range Orga	ics (DRO) ((Qualifier unics (DRO) Qualifier	(GC)	Unit mg/Kg		<u> </u>	Analyzed 11/02/22 10:14	Dil Fac
Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Organ Result 256 esel Range Orga Result	ics (DRO) ((Qualifier unics (DRO) Qualifier	(GC) RL 49.9	Unit mg/Kg		Prepared	Analyzed 11/02/22 10:14 Analyzed	Dil Fac
Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10	sel Range Organ Result 256 esel Range Orga Result <a href="mailto</td><td>ics (DRO) ((Qualifier unics (DRO) Qualifier</td><td>(GC) RL 49.9 (GC) RL 49.9</td><td>Unit mg/Kg Unit mg/Kg</td><td></td><td>Prepared 11/01/22 15:08</td><td>Analyzed 11/02/22 10:14 Analyzed 11/02/22 01:49</td><td>Dil Fac Dil Fac 1</td></tr><tr><td>Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)</td><td>sel Range Organ Result 256 esel Range Orga Result Result <49.9 159	ics (DRO) ((Qualifier unics (DRO) Qualifier	GC) RL 49.9 (GC) RL 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 15:08	Analyzed 11/02/22 10:14 Analyzed 11/02/22 01:49 11/02/22 01:49	Dil Fac Dil Fac 1
Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	sel Range Organ Result 256 esel Range Orga Result Result <49.9 159	ics (DRO) ((Qualifier unics (DRO) Qualifier U	GC) RL 49.9 (GC) RL 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 15:08	Analyzed 11/02/22 10:14 Analyzed 11/02/22 01:49 11/02/22 01:49	Dil Fac Dil Fac 1
Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Organ Result 256 esel Range Orga Result							

Eurofins Carlsbad

-

3

_ _

0

10

4.0

13

Job ID: 890-3335-1

Client: Ensolum SDG: 090204003 Project/Site: SU KIM HARRIS #003

Client Sample ID: BH05A Lab Sample ID: 890-3335-9

Date Collected: 10/28/22 13:10 Matrix: Solid Date Received: 10/28/22 16:15

Sample Depth: 6

Method: MCAWW 300.0 - Anions, Id	on Chromatograp	hy - Soluble					
Analyte	Result Quali	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	482	5.04	mg/Kg			11/02/22 14:05	1

Client Sample ID: BH05B Lab Sample ID: 890-3335-10

Date Collected: 10/28/22 13:15 Date Received: 10/28/22 16:15

Method: TAL SOP Total BTEX - Total BTEX Calculation

Sample Depth: 12

Gasoline Range Organics

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 17:26	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 17:26	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 17:26	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 17:26	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 17:26	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 17:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130			11/01/22 16:03	11/03/22 17:26	1
1,4-Difluorobenzene (Surr)	101		70 - 130			11/01/22 16:03	11/03/22 17:26	1

	Analyte	Result	Qualifier	RL	Unit	U	Prepared	Analyzed	Dil Fac
L	Total BTEX	<0.00398	U	0.00398	mg/Kg			11/04/22 14:55	1
ſ	Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) (0	GC)					

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/02/22 10:14	1
Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

50.0

mg/Kg

11/01/22 15:08

11/02/22 02:10

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	11/01/22 15:08	11/02/22 02:10	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg	11/01/22 15:08	11/02/22 02:10	1
(GRO)-C6-C10							

<50.0 U

Surrogate	Mitecovery Qualifier	Lillits	Гісраі	eu Allalyzeu	Diriac
1-Chlorooctane	95	70 - 130	11/01/22	15:08 11/02/22 02:10) 1
o-Terphenyl	96	70 - 130	11/01/22	15:08 11/02/22 02:10) 1
Г					

1	Method: MCAWW 300.0 - Anions, I	on Chromato	graphy - So	oluble					
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	483		4.97	mg/Kg			11/02/22 14:10	1

Eurofins Carlsbad

Matrix: Solid

Client Sample Results

 Client: Ensolum
 Job ID: 890-3335-1

 Project/Site: SU KIM HARRIS #003
 SDG: 090204003

Client Sample ID: BH06A

Date Collected: 10/28/22 13:20

Lab Sample ID: 890-3335-11

Matrix: Solid

Date Collected: 10/28/22 13:20
Date Received: 10/28/22 16:15

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 19:17	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 19:17	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 19:17	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/01/22 16:03	11/03/22 19:17	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 19:17	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/01/22 16:03	11/03/22 19:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			11/01/22 16:03	11/03/22 19:17	1
1,4-Difluorobenzene (Surr)	96		70 - 130			11/01/22 16:03	11/03/22 19:17	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/04/22 14:55	1
Analyte	Result	Qualifier						
			RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0	mg/Kg	— –	Prepared	Analyzed 11/02/22 10:14	
Total TPH Method: SW846 8015B NM - Dies	<50.0	U	50.0		<u>_</u>	Prepared		
- -	<50.0	U	50.0		D	Prepared		1
_ Method: SW846 8015B NM - Dies	<50.0	nics (DRO) Qualifier	50.0 (GC)	mg/Kg		<u> </u>	11/02/22 10:14	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0 sel Range Orga Result	nics (DRO) Qualifier	50.0 (GC)	mg/Kg		Prepared	11/02/22 10:14 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	<50.0 sel Range Orga Result <50.0	nics (DRO) Qualifier U	50.0 (GC) RL 50.0	mg/Kg Unit mg/Kg		Prepared 11/01/22 15:08	11/02/22 10:14 Analyzed 11/02/22 02:54	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 sel Range Orga Result <50.0 <50.0	nics (DRO) Qualifier U	50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 15:08	11/02/22 10:14 Analyzed 11/02/22 02:54 11/02/22 02:54	1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 sel Range Orga Result <50.0 <50.0 <50.0	nics (DRO) Qualifier U	50.0 (GC) RL 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 15:08 11/01/22 15:08	Analyzed 11/02/22 02:54 11/02/22 02:54	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 sel Range Orga Result <50.0 <50.0 <50.0 %Recovery	nics (DRO) Qualifier U	50.0 (GC) RL 50.0 50.0 50.0 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 15:08 11/01/22 15:08 11/01/22 15:08 Prepared	Analyzed 11/02/22 02:54 11/02/22 02:54 11/02/22 02:54 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 sel Range Orga Result <50.0 <50.0 <50.0 %Recovery 83 87	Oualifier U Qualifier U Qualifier	50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 15:08 11/01/22 15:08 11/01/22 15:08 Prepared 11/01/22 15:08	Analyzed 11/02/22 02:54 11/02/22 02:54 11/02/22 02:54 Analyzed 11/02/22 02:54	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 sel Range Orga Result <50.0 <50.0 <50.0 %Recovery 83 87 s, Ion Chromato	Oualifier U Qualifier U Qualifier	50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 15:08 11/01/22 15:08 11/01/22 15:08 Prepared 11/01/22 15:08	Analyzed 11/02/22 02:54 11/02/22 02:54 11/02/22 02:54 Analyzed 11/02/22 02:54	Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac

Client Sample ID: BH06B Lab Sample ID: 890-3335-12

Date Collected: 10/28/22 13:25 Date Received: 10/28/22 16:15

Sample Depth: 12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 19:37	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 19:37	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 19:37	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 19:37	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 19:37	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 19:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			11/01/22 16:03	11/03/22 19:37	1

Eurofins Carlsbad

Released to Imaging: 1/13/2023 10:08:17 AM

3

5

10

12

13

14

Matrix: Solid

Client: Ensolum

Job ID: 890-3335-1 SDG: 090204003 Project/Site: SU KIM HARRIS #003

Client Sample ID: BH06B Lab Sample ID: 890-3335-12 Matrix: Solid

Date Collected: 10/28/22 13:25 Date Received: 10/28/22 16:15

Sample Depth: 12

Surrogate	%Recovery Quality	ifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	109	70 - 130	11/01/22 16:03	11/03/22 19:37	1

Method: TAL SOP To	tal RTEY - Total I	RTEY Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/04/22 14:55	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/02/22 10:14	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		11/01/22 15:08	11/02/22 03:16	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		11/01/22 15:08	11/02/22 03:16	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/01/22 15:08	11/02/22 03:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	80	70 - 130	11/01/22 15:08	11/02/22 03:16	1
o-Terphenyl	84	70 - 130	11/01/22 15:08	11/02/22 03:16	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	16.1		4.95	mg/Kg			11/02/22 14:20	1

Client Sample ID: BH01C Lab Sample ID: 890-3335-13 **Matrix: Solid**

Date Collected: 10/28/22 13:45 Date Received: 10/28/22 16:15

Sample Depth: 24

 Mathad.	CIMO 4C	0024B	Valatila Ossania	Compounds (GC)
viernoa:	SVVA4n	AUZID .	· voiatile Organic	: Compounds (GC)

method: 011040 00212 Volutilo Origanio Othipodhao (OO)											
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 19:57	1			
Toluene	< 0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 19:57	1			
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 19:57	1			
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 19:57	1			
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/01/22 16:03	11/03/22 19:57	1			
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 16:03	11/03/22 19:57	1			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	126		70 - 130			11/01/22 16:03	11/03/22 19:57	1			

4-Bromofluorobenzene (Surr)	126	70 - 130	11/01/22 16:03	11/03/22 19:57	1
1,4-Difluorobenzene (Surr)	95	70 - 130	11/01/22 16:03	11/03/22 19:57	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	ma/Ka			11/04/22 14:55	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/02/22 10:14	1

Client Sample Results

 Client: Ensolum
 Job ID: 890-3335-1

 Project/Site: SU KIM HARRIS #003
 SDG: 090204003

Client Sample ID: BH01C Lab Sample ID: 890-3335-13

Date Collected: 10/28/22 13:45

Date Received: 10/28/22 16:15

Matrix: Solid

Sample Depth: 24

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/02/22 03:37	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/02/22 03:37	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/02/22 03:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130			11/01/22 15:08	11/02/22 03:37	1
o-Terphenyl	102		70 - 130			11/01/22 15:08	11/02/22 03:37	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - S	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

5

8

10

40

13

Surrogate Summary

 Client: Ensolum
 Job ID: 890-3335-1

 Project/Site: SU KIM HARRIS #003
 SDG: 090204003

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-21089-A-31-D MS	Matrix Spike	111	99	
880-21089-A-31-E MSD	Matrix Spike Duplicate	104	95	
890-3335-1	BH01A	109	103	
890-3335-1 MS	BH01A	104	96	
890-3335-1 MSD	BH01A	109	99	
890-3335-2	BH01B	92	71	
890-3335-3	BH02A	98	92	
890-3335-4	BH02B	102	97	
890-3335-4 MS	BH02B	103	106	
890-3335-4 MSD	BH02B	103	100	
890-3335-5	BH03A	119	101	
890-3335-6	BH03B	116	104	
890-3335-7	BH04A	112	106	
890-3335-8	BH04B	112	108	
890-3335-9	BH05A	120	104	
890-3335-10	BH05B	125	101	
890-3335-11	BH06A	111	96	
890-3335-12	BH06B	116	109	
890-3335-13	BH01C	126	95	
LCS 880-38429/1-A	Lab Control Sample	97	102	
LCS 880-38629/1-A	Lab Control Sample	99	101	
LCS 880-38695/1-A	Lab Control Sample	102	105	
LCSD 880-38429/2-A	Lab Control Sample Dup	110	96	
LCSD 880-38629/2-A	Lab Control Sample Dup	97	100	
LCSD 880-38695/2-A	Lab Control Sample Dup	101	99	
MB 880-38429/5-A	Method Blank	90	97	
MB 880-38629/5-A	Method Blank	97	94	
MB 880-38695/5-A	Method Blank	87	89	
MB 880-38778/8	Method Blank	102	85	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
90-3335-1	BH01A	91	97	
90-3335-1 MS	BH01A	88	86	
390-3335-1 MSD	BH01A	79	76	
90-3335-2	BH01B	82	86	
90-3335-3	BH02A	84	87	
90-3335-4	BH02B	83	87	
90-3335-5	вноза	103	111	
90-3335-6	внозв	79	83	
90-3335-7	BH04A	93	97	
90-3335-8	BH04B	97	100	

Eurofins Carlsbad

_

3

7

4.0

Surrogate Summary

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003 SDG: 090204003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3335-9	BH05A	101	104	
890-3335-10	BH05B	95	96	
890-3335-11	BH06A	83	87	
890-3335-12	ВН06В	80	84	
890-3335-13	BH01C	100	102	
LCS 880-38417/2-A	Lab Control Sample	101	106	
LCSD 880-38417/3-A	Lab Control Sample Dup	90	95	
MB 880-38417/1-A	Method Blank	92	99	

OTPH = o-Terphenyl

Client: Ensolum Job ID: 890-3335-1 SDG: 090204003 Project/Site: SU KIM HARRIS #003

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-38429/5-A **Matrix: Solid**

Analysis Batch: 38578

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 38429

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 13:54	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 13:54	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 13:54	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/01/22 16:03	11/03/22 13:54	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/01/22 16:03	11/03/22 13:54	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/01/22 16:03	11/03/22 13:54	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130	11/01/22 16:	03 11/03/22 13:54	1
1,4-Difluorobenzene (Surr)	97		70 - 130	11/01/22 16:	03 11/03/22 13:54	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 880-38429/1-A

Matrix: Solid

Analysis Batch: 38578

Prep Type: Total/NA Prep Batch: 38429

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1055		mg/Kg		105	70 - 130	
Toluene	0.100	0.1062		mg/Kg		106	70 - 130	
Ethylbenzene	0.100	0.1011		mg/Kg		101	70 - 130	
m-Xylene & p-Xylene	0.200	0.1781		mg/Kg		89	70 - 130	
o-Xylene	0.100	0.08695		mg/Kg		87	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	97	70 - 130
1,4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: LCSD 880-38429/2-A

Matrix: Solid

Analysis Batch: 38578

Prep Type: Total/NA

Prep Batch: 38429

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.08951		mg/Kg		90	70 - 130	16	35	
Toluene	0.100	0.1118		mg/Kg		112	70 - 130	5	35	
Ethylbenzene	0.100	0.1144		mg/Kg		114	70 - 130	12	35	
m-Xylene & p-Xylene	0.200	0.2092		mg/Kg		105	70 - 130	16	35	
o-Xylene	0.100	0.1001		mg/Kg		100	70 - 130	14	35	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1.4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: 890-3335-1 MS

Matrix: Solid

Analysis Batch: 38578

Client Sample ID: BH01A Prep Type: Total/NA

Prep Batch: 38429

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.0998	0.07794		mg/Kg		78	70 - 130	
Toluene	<0.00202	U	0.0998	0.07389		mg/Kg		74	70 - 130	

QC Sample Results

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003 SDG: 090204003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3335-1 MS

Analysis Batch: 38578

Client Sample ID: BH01A **Matrix: Solid** Prep Type: Total/NA Prep Batch: 38429

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00202	U F1	0.0998	0.06461	F1	mg/Kg		65	70 - 130	
m-Xylene & p-Xylene	<0.00403	U F1	0.200	0.1150	F1	mg/Kg		58	70 - 130	
o-Xylene	<0.00202	U F1	0.0998	0.05875	F1	mg/Kg		58	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 70 - 130 4-Bromofluorobenzene (Surr) 104 1,4-Difluorobenzene (Surr) 70 - 130 96

Lab Sample ID: 890-3335-1 MSD

Matrix: Solid

Analysis Batch: 38578

Prep Batch: 38429 Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier %Rec RPD Limit Analyte Unit Limits 0.100 Benzene <0.00202 U 0.09324 mg/Kg 93 70 - 130 18 35 <0.00202 U 0.08697 87 Toluene 0.100 mg/Kg 70 - 130 16 35 Ethylbenzene <0.00202 UF1 0.100 0.07149 mg/Kg 71 70 - 130 10 35 0.200 0.1254 F1 70 - 130 35 m-Xylene & p-Xylene <0.00403 U F1 mg/Kg 63 9 0.06362 F1 <0.00202 UF1 0.100 63 70 - 130 8 o-Xylene mg/Kg

MSD MSD Surrogate %Recovery Qualifier Limits 70 - 130 4-Bromofluorobenzene (Surr) 109 1,4-Difluorobenzene (Surr) 70 - 130 99

Lab Sample ID: MB 880-38629/5-A

Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 38778** Prep Batch: 38629 MB MB

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/03/22 12:48	11/05/22 21:39	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/03/22 12:48	11/05/22 21:39	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/03/22 12:48	11/05/22 21:39	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/03/22 12:48	11/05/22 21:39	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/03/22 12:48	11/05/22 21:39	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/03/22 12:48	11/05/22 21:39	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	70 - 130	11/03/22 12:48	11/05/22 21:39	1
1,4-Difluorobenzene (Surr)	94	70 - 130	11/03/22 12:48	11/05/22 21:39	1

MR MR

Lab Sample ID: LCS 880-38629/1-A

Matrix: Solid

Analysis Batch: 38778

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 38629

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09073		mg/Kg		91	70 - 130	
Toluene	0.100	0.09314		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.09370		mg/Kg		94	70 - 130	
m-Xylene & p-Xylene	0.200	0.1851		mg/Kg		93	70 - 130	

Eurofins Carlsbad

Client Sample ID: BH01A

Prep Type: Total/NA

QC Sample Results

 Client: Ensolum
 Job ID: 890-3335-1

 Project/Site: SU KIM HARRIS #003
 SDG: 090204003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-38629/1-A

Client Sample ID: Lab Control Sample

Page Type Total (NA

Matrix: Solid
Analysis Batch: 38778
Prep Type: Total/NA
Prep Batch: 38629
Spike LCS LCS %Rec

Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits D 0.100 0.1072 107 70 - 130 o-Xylene mg/Kg

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 99
 70 - 130

 1,4-Difluorobenzene (Surr)
 101
 70 - 130

Lab Sample ID: LCSD 880-38629/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 38778 Prep Batch: 38629

Spike LCSD LCSD RPD RPD Analyte Added Result Qualifier Unit %Rec Limits Limit D Benzene 0.100 0.09399 mg/Kg 94 70 - 130 4 35 Toluene 0.100 0.09630 mg/Kg 96 70 - 130 35 3 Ethylbenzene 0.100 0.09687 mg/Kg 97 70 - 130 3 35 m-Xylene & p-Xylene 0.200 0.1905 mg/Kg 95 70 - 130 3 35 0.100 0.1095 70 - 130 35 o-Xylene mg/Kg 109

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 97
 70 - 130

 1,4-Diffluorobenzene (Surr)
 100
 70 - 130

Lab Sample ID: 890-3335-4 MS

Matrix: Solid

Client Sample ID: BH02B

Prep Type: Total/NA

Analysis Batch: 38778 Prep Batch: 38629

MS MS Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits Benzene <0.00200 UF1 0.0996 0.04880 F1 mg/Kg 48 70 - 130 Toluene <0.00200 U F1 0.0996 0.04928 F1 mg/Kg 49 70 - 130 Ethylbenzene <0.00200 UF1 0.0996 0.04542 F1 mg/Kg 46 70 - 130 m-Xylene & p-Xylene <0.00401 UF1 0.199 0.09400 F1 mg/Kg 47 70 - 130 o-Xylene <0.00200 UF1 0.0996 0.05489 F1 mg/Kg 55 70 - 130

MS MS
Surrogate %Recovery Qualifier Limits
4-Bromofluorobenzene (Surr) 103 70 - 130

106

Lab Sample ID: 890-3335-4 MSD Client Sample ID: BH02B

70 - 130

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 38778 Prep Batch: 38629

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.0990	0.06919	F1	mg/Kg		69	70 - 130	35	35
Toluene	<0.00200	U F1	0.0990	0.06233	F1	mg/Kg		63	70 - 130	23	35
Ethylbenzene	<0.00200	U F1	0.0990	0.05231	F1	mg/Kg		53	70 - 130	14	35
m-Xylene & p-Xylene	<0.00401	U F1	0.198	0.1055	F1	mg/Kg		53	70 - 130	12	35
o-Xylene	<0.00200	U F1	0.0990	0.06091	F1	mg/Kg		62	70 - 130	10	35

Eurofins Carlsbad

9

5

7

Q

10

12

14

ofins Carlsba

1,4-Difluorobenzene (Surr)

QC Sample Results

Client: Ensolum Job ID: 890-3335-1 SDG: 090204003 Project/Site: SU KIM HARRIS #003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3335-4 MSD

Matrix: Solid

Analysis Batch: 38778

Client Sample ID: BH02B

Prep Type: Total/NA

Prep Batch: 38629

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: MB 880-38695/5-A

Matrix: Solid

Analysis Batch: 38696

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 38695

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/04/22 07:55	11/04/22 10:38	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/04/22 07:55	11/04/22 10:38	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/04/22 07:55	11/04/22 10:38	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/04/22 07:55	11/04/22 10:38	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/04/22 07:55	11/04/22 10:38	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/04/22 07:55	11/04/22 10:38	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130	11/04/22 07:55	11/04/22 10:38	1
1,4-Difluorobenzene (Surr)	89		70 - 130	11/04/22 07:55	11/04/22 10:38	1

Lab Sample ID: LCS 880-38695/1-A

Matrix: Solid

Analysis Batch: 38696

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 38695

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1080		mg/Kg		108	70 - 130	
Toluene	0.100	0.09419		mg/Kg		94	70 - 130	
Ethylbenzene	0.100	0.09607		mg/Kg		96	70 - 130	
m-Xylene & p-Xylene	0.200	0.1908		mg/Kg		95	70 - 130	
o-Xylene	0.100	0.09436		mg/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	102	70 - 130
1,4-Difluorobenzene (Surr)	105	70 - 130

Lab Sample ID: LCSD 880-38695/2-A

Released to Imaging: 1/13/2023 10:08:17 AM

Matrix: Solid

Analysis Batch: 38696

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 38695

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1051		mg/Kg		105	70 - 130	3	35
Toluene	0.100	0.09171		mg/Kg		92	70 - 130	3	35
Ethylbenzene	0.100	0.09095		mg/Kg		91	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.1865		mg/Kg		93	70 - 130	2	35
o-Xylene	0.100	0.09124		mg/Kg		91	70 - 130	3	35

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 101 70 - 130

Client: Ensolum Job ID: 890-3335-1 SDG: 090204003 Project/Site: SU KIM HARRIS #003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-38695/2-A

Matrix: Solid

Analysis Batch: 38696

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 38695

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1,4-Difluorobenzene (Surr) 99 70 - 130

Lab Sample ID: 880-21089-A-31-D MS

Matrix: Solid

Analysis Batch: 38696

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 38695

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0998	0.1232	-	mg/Kg		123	70 - 130	
Toluene	<0.00201	U	0.0998	0.1080		mg/Kg		108	70 - 130	
Ethylbenzene	<0.00201	U	0.0998	0.1067		mg/Kg		107	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.200	0.2199		mg/Kg		110	70 - 130	
o-Xylene	<0.00201	U	0.0998	0.1076		mg/Kg		108	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	111	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: 880-21089-A-31-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 38696

Prep Type: Total/NA Prep Batch: 38695

/ indigoto Datom Cocco										u.u	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.101	0.1079		mg/Kg		107	70 - 130	13	35
Toluene	<0.00201	U	0.101	0.09291		mg/Kg		92	70 - 130	15	35
Ethylbenzene	<0.00201	U	0.101	0.09298		mg/Kg		92	70 - 130	14	35
m-Xylene & p-Xylene	<0.00402	U	0.202	0.1927		mg/Kg		96	70 - 130	13	35
o-Xylene	<0.00201	U	0.101	0.09451		mg/Kg		94	70 - 130	13	35

MSD MSD

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: MB 880-38778/8 Client Sample ID: Method Blank **Matrix: Solid**

Analysis Batch: 38778

Released to Imaging: 1/13/2023 10:08:17 AM

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg			11/05/22 17:11	1
Toluene	<0.00200	U	0.00200	mg/Kg			11/05/22 17:11	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg			11/05/22 17:11	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg			11/05/22 17:11	1
o-Xylene	<0.00200	U	0.00200	mg/Kg			11/05/22 17:11	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg			11/05/22 17:11	1

MB MB

Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130		11/05/22 17:11	1
1,4-Difluorobenzene (Surr)	85		70 - 130		11/05/22 17:11	1

Eurofins Carlsbad

Prep Type: Total/NA

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003

SDG: 090204003

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-38417/1-A

Lab Sample ID: LCS 880-38417/2-A

Lab Sample ID: LCSD 880-38417/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 38323

Analysis Batch: 38323

Matrix: Solid Analysis Batch: 38323 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 38417

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/01/22 21:10	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/01/22 21:10	1
C10-C28)								
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/01/22 21:10	1
	MB	MR						

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130	11/01/22 15:08	11/01/22 21:10	1
o-Terphenyl	99		70 - 130	11/01/22 15:08	11/01/22 21:10	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 38417

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits 1000 1076 Gasoline Range Organics mg/Kg 108 70 - 130 (GRO)-C6-C10 1000 1008 Diesel Range Organics (Over mg/Kg 101 70 - 130C10-C28)

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	101	70 - 130
o-Terphenyl	106	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 38417

Spike LCSD LCSD RPD %Rec Added Limit Analyte Result Qualifier %Rec Limits RPD Unit D Gasoline Range Organics 1000 1087 mg/Kg 109 70 - 130 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 910.4 mg/Kg 91 70 - 130 10 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery Q	ualifier	Limits
1-Chlorooctane	90	_	70 - 130
o-Terphenyl	95		70 - 130

Lab Sample ID: 890-3335-1 MS Client Sample ID: BH01A

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 38323** Prep Batch: 38417

MS MS Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits <50.0 U Gasoline Range Organics 997 812.4 mg/Kg 79 70 - 130 (GRO)-C6-C10 77.7 F1 997 799.4 72 70 - 130 Diesel Range Organics (Over mg/Kg C10-C28)

Job ID: 890-3335-1 Client: Ensolum Project/Site: SU KIM HARRIS #003 SDG: 090204003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS

Lab Sample ID: 890-3335-1 MS

Matrix: Solid

Analysis Batch: 38323

Client Sample ID: BH01A Prep Type: Total/NA

Prep Batch: 38417

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 88 70 - 130 o-Terphenyl 86 70 - 130

Lab Sample ID: 890-3335-1 MSD Client Sample ID: BH01A

Matrix: Solid

Analysis Batch: 38323

Prep Type: Total/NA Prep Batch: 38417

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	999	984.3		mg/Kg		96	70 - 130	19	20
Diesel Range Organics (Over C10-C28)	77.7	F1	999	702.0	F1	mg/Kg		62	70 - 130	13	20
	MSD	MSD									
	0/5	O 1:C									

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 79 70 - 130 76 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-38328/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 38427

MB MB

Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00 L	U	5.00	mg/Kg			11/01/22 19:36	1

Lab Sample ID: LCS 880-38328/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 38427

	Spike	LCS	LCS			%Rec
Analyte	Added	Result	Qualifier I	Unit I	D %Re	ec Limits
Chloride	250	260 1		ma/Ka	10	90 - 110

Lab Sample ID: LCSD 880-38328/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 38427

Spike LCSD LCSD %Rec RPD Result Qualifier Added Analyte Unit %Rec Limits RPD Limit Chloride 250 260.1 mg/Kg 104 90 - 110

Lab Sample ID: 880-20959-A-11-B MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 38427

Released to Imaging: 1/13/2023 10:08:17 AM

7										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	605		251	841.2		mg/Kg		94	90 - 110	

Eurofins Carlsbad

Prep Type: Soluble

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003

SDG: 090204003

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-20959-A-11-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 38427

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Qualifier Analyte Added Result Unit D %Rec Limits RPD Limit Chloride 605 251 840.5 mg/Kg 94 90 - 110 20

Client Sample ID: Method Blank

Prep Type: Soluble

Analysis Batch: 38532

Matrix: Solid

Lab Sample ID: MB 880-38432/1-A

MB MB

Result Qualifier Unit Dil Fac Analyte RL D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 11/02/22 08:36

Lab Sample ID: LCS 880-38432/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 38532

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 257.2 mg/Kg 103 90 - 110

Lab Sample ID: LCSD 880-38432/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 38532

Spike LCSD LCSD RPD %Rec Analyte Added Result Qualifier Unit %Rec RPD Limit D Limits Chloride 250 254.2 102 90 - 110 20 mg/Kg

Lab Sample ID: 890-3335-5 MS Client Sample ID: BH03A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 38532

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 249 97 206 446.5 mg/Kg 90 - 110

Lab Sample ID: 890-3335-5 MSD Client Sample ID: BH03A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 38532

Sample Sample Spike MSD MSD %Rec **RPD** Added Result Qualifier RPD Limit Analyte Result Qualifier Unit D %Rec Limits Chloride 206 249 445.9 mg/Kg 96 90 - 110 20

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003 SDG: 090204003

GC VOA

Prep Batch: 38429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-1	BH01A	Total/NA	Solid	5035	
890-3335-5	BH03A	Total/NA	Solid	5035	
890-3335-6	внозв	Total/NA	Solid	5035	
890-3335-7	BH04A	Total/NA	Solid	5035	
890-3335-8	ВН04В	Total/NA	Solid	5035	
890-3335-9	BH05A	Total/NA	Solid	5035	
890-3335-10	BH05B	Total/NA	Solid	5035	
890-3335-11	BH06A	Total/NA	Solid	5035	
890-3335-12	ВН06В	Total/NA	Solid	5035	
890-3335-13	BH01C	Total/NA	Solid	5035	
MB 880-38429/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-38429/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-38429/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3335-1 MS	BH01A	Total/NA	Solid	5035	
890-3335-1 MSD	BH01A	Total/NA	Solid	5035	

Analysis Batch: 38578

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-1	BH01A	Total/NA	Solid	8021B	38429
890-3335-5	BH03A	Total/NA	Solid	8021B	38429
890-3335-6	ВН03В	Total/NA	Solid	8021B	38429
890-3335-7	BH04A	Total/NA	Solid	8021B	38429
890-3335-8	ВН04В	Total/NA	Solid	8021B	38429
890-3335-9	BH05A	Total/NA	Solid	8021B	38429
890-3335-10	ВН05В	Total/NA	Solid	8021B	38429
890-3335-11	BH06A	Total/NA	Solid	8021B	38429
890-3335-12	ВН06В	Total/NA	Solid	8021B	38429
890-3335-13	BH01C	Total/NA	Solid	8021B	38429
MB 880-38429/5-A	Method Blank	Total/NA	Solid	8021B	38429
LCS 880-38429/1-A	Lab Control Sample	Total/NA	Solid	8021B	38429
LCSD 880-38429/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	38429
890-3335-1 MS	BH01A	Total/NA	Solid	8021B	38429
890-3335-1 MSD	BH01A	Total/NA	Solid	8021B	38429

Prep Batch: 38629

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-3335-4	BH02B	Total/NA	Solid	5035	
MB 880-38629/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-38629/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-38629/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3335-4 MS	BH02B	Total/NA	Solid	5035	
890-3335-4 MSD	BH02B	Total/NA	Solid	5035	

Analysis Batch: 38674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-1	BH01A	Total/NA	Solid	Total BTEX	
890-3335-2	BH01B	Total/NA	Solid	Total BTEX	
890-3335-3	BH02A	Total/NA	Solid	Total BTEX	
890-3335-4	BH02B	Total/NA	Solid	Total BTEX	
890-3335-5	BH03A	Total/NA	Solid	Total BTEX	
890-3335-6	BH03B	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

Page 26 of 41

 Client: Ensolum
 Job ID: 890-3335-1

 Project/Site: SU KIM HARRIS #003
 SDG: 090204003

GC VOA (Continued)

Analysis Batch: 38674 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
890-3335-7	BH04A	Total/NA	Solid	Total BTEX
890-3335-8	BH04B	Total/NA	Solid	Total BTEX
890-3335-9	BH05A	Total/NA	Solid	Total BTEX
890-3335-10	BH05B	Total/NA	Solid	Total BTEX
890-3335-11	BH06A	Total/NA	Solid	Total BTEX
890-3335-12	BH06B	Total/NA	Solid	Total BTEX
890-3335-13	BH01C	Total/NA	Solid	Total BTEX

Prep Batch: 38695

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-2	BH01B	Total/NA	Solid	5035	
890-3335-3	BH02A	Total/NA	Solid	5035	
MB 880-38695/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-38695/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-38695/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-21089-A-31-D MS	Matrix Spike	Total/NA	Solid	5035	
880-21089-A-31-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 38696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-2	BH01B	Total/NA	Solid	8021B	38695
890-3335-3	BH02A	Total/NA	Solid	8021B	38695
MB 880-38695/5-A	Method Blank	Total/NA	Solid	8021B	38695
LCS 880-38695/1-A	Lab Control Sample	Total/NA	Solid	8021B	38695
LCSD 880-38695/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	38695
880-21089-A-31-D MS	Matrix Spike	Total/NA	Solid	8021B	38695
880-21089-A-31-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	38695

Analysis Batch: 38778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-4	BH02B	Total/NA	Solid	8021B	38629
MB 880-38629/5-A	Method Blank	Total/NA	Solid	8021B	38629
MB 880-38778/8	Method Blank	Total/NA	Solid	8021B	
LCS 880-38629/1-A	Lab Control Sample	Total/NA	Solid	8021B	38629
LCSD 880-38629/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	38629
890-3335-4 MS	BH02B	Total/NA	Solid	8021B	38629
890-3335-4 MSD	BH02B	Total/NA	Solid	8021B	38629

GC Semi VOA

Analysis Batch: 38323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-1	BH01A	Total/NA	Solid	8015B NM	38417
890-3335-2	BH01B	Total/NA	Solid	8015B NM	38417
890-3335-3	BH02A	Total/NA	Solid	8015B NM	38417
890-3335-4	BH02B	Total/NA	Solid	8015B NM	38417
890-3335-5	BH03A	Total/NA	Solid	8015B NM	38417
890-3335-6	BH03B	Total/NA	Solid	8015B NM	38417
890-3335-7	BH04A	Total/NA	Solid	8015B NM	38417
890-3335-8	ВН04В	Total/NA	Solid	8015B NM	38417
890-3335-9	BH05A	Total/NA	Solid	8015B NM	38417

Eurofins Carlsbad

9

3

4

6

8

11

13

14

Client: Ensolum

Project/Site: SU KIM HARRIS #003

SDG: 090204003

GC Semi VOA (Continued)

Analysis Batch: 38323 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-10	BH05B	Total/NA	Solid	8015B NM	38417
890-3335-11	BH06A	Total/NA	Solid	8015B NM	38417
890-3335-12	BH06B	Total/NA	Solid	8015B NM	38417
890-3335-13	BH01C	Total/NA	Solid	8015B NM	38417
MB 880-38417/1-A	Method Blank	Total/NA	Solid	8015B NM	38417
LCS 880-38417/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	38417
LCSD 880-38417/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	38417
890-3335-1 MS	BH01A	Total/NA	Solid	8015B NM	38417
890-3335-1 MSD	BH01A	Total/NA	Solid	8015B NM	38417

Prep Batch: 38417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-1	BH01A	Total/NA	Solid	8015NM Prep	
890-3335-2	BH01B	Total/NA	Solid	8015NM Prep	
890-3335-3	BH02A	Total/NA	Solid	8015NM Prep	
890-3335-4	BH02B	Total/NA	Solid	8015NM Prep	
890-3335-5	ВН03А	Total/NA	Solid	8015NM Prep	
890-3335-6	внозв	Total/NA	Solid	8015NM Prep	
890-3335-7	BH04A	Total/NA	Solid	8015NM Prep	
890-3335-8	BH04B	Total/NA	Solid	8015NM Prep	
890-3335-9	BH05A	Total/NA	Solid	8015NM Prep	
890-3335-10	BH05B	Total/NA	Solid	8015NM Prep	
890-3335-11	BH06A	Total/NA	Solid	8015NM Prep	
890-3335-12	BH06B	Total/NA	Solid	8015NM Prep	
890-3335-13	BH01C	Total/NA	Solid	8015NM Prep	
MB 880-38417/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-38417/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-38417/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3335-1 MS	BH01A	Total/NA	Solid	8015NM Prep	
890-3335-1 MSD	BH01A	Total/NA	Solid	8015NM Prep	

Analysis Batch: 38470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-1	BH01A	Total/NA	Solid	8015 NM	
890-3335-2	BH01B	Total/NA	Solid	8015 NM	
890-3335-3	BH02A	Total/NA	Solid	8015 NM	
890-3335-4	BH02B	Total/NA	Solid	8015 NM	
890-3335-5	BH03A	Total/NA	Solid	8015 NM	
890-3335-6	внозв	Total/NA	Solid	8015 NM	
890-3335-7	BH04A	Total/NA	Solid	8015 NM	
890-3335-8	BH04B	Total/NA	Solid	8015 NM	
890-3335-9	BH05A	Total/NA	Solid	8015 NM	
890-3335-10	BH05B	Total/NA	Solid	8015 NM	
890-3335-11	BH06A	Total/NA	Solid	8015 NM	
890-3335-12	ВН06В	Total/NA	Solid	8015 NM	
890-3335-13	BH01C	Total/NA	Solid	8015 NM	

Eurofins Carlsbad

1

2

А

6

R

9

10

12

1 4

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003 SDG: 090204003

HPLC/IC

Leach Batch: 38328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-1	BH01A	Soluble	Solid	DI Leach	
890-3335-2	BH01B	Soluble	Solid	DI Leach	
890-3335-3	BH02A	Soluble	Solid	DI Leach	
890-3335-4	BH02B	Soluble	Solid	DI Leach	
MB 880-38328/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-38328/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-38328/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-20959-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-20959-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 38427

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-1	BH01A	Soluble	Solid	300.0	38328
890-3335-2	BH01B	Soluble	Solid	300.0	38328
890-3335-3	BH02A	Soluble	Solid	300.0	38328
890-3335-4	BH02B	Soluble	Solid	300.0	38328
MB 880-38328/1-A	Method Blank	Soluble	Solid	300.0	38328
LCS 880-38328/2-A	Lab Control Sample	Soluble	Solid	300.0	38328
LCSD 880-38328/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	38328
880-20959-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	38328
880-20959-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	38328

Leach Batch: 38432

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-5	BH03A	Soluble	Solid	DI Leach	
890-3335-6	внозв	Soluble	Solid	DI Leach	
890-3335-7	BH04A	Soluble	Solid	DI Leach	
890-3335-8	BH04B	Soluble	Solid	DI Leach	
890-3335-9	BH05A	Soluble	Solid	DI Leach	
890-3335-10	BH05B	Soluble	Solid	DI Leach	
890-3335-11	BH06A	Soluble	Solid	DI Leach	
890-3335-12	ВН06В	Soluble	Solid	DI Leach	
890-3335-13	BH01C	Soluble	Solid	DI Leach	
MB 880-38432/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-38432/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-38432/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3335-5 MS	BH03A	Soluble	Solid	DI Leach	
890-3335-5 MSD	BH03A	Soluble	Solid	DI Leach	

Analysis Batch: 38532

Released to Imaging: 1/13/2023 10:08:17 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3335-5	BH03A	Soluble	Solid	300.0	38432
890-3335-6	BH03B	Soluble	Solid	300.0	38432
890-3335-7	BH04A	Soluble	Solid	300.0	38432
890-3335-8	BH04B	Soluble	Solid	300.0	38432
890-3335-9	BH05A	Soluble	Solid	300.0	38432
890-3335-10	BH05B	Soluble	Solid	300.0	38432
890-3335-11	BH06A	Soluble	Solid	300.0	38432
890-3335-12	BH06B	Soluble	Solid	300.0	38432
890-3335-13	BH01C	Soluble	Solid	300.0	38432
MB 880-38432/1-A	Method Blank	Soluble	Solid	300.0	38432

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003

SDG: 090204003

HPLC/IC (Continued)

Analysis Batch: 38532 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-38432/2-A	Lab Control Sample	Soluble	Solid	300.0	38432
LCSD 880-38432/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	38432
890-3335-5 MS	BH03A	Soluble	Solid	300.0	38432
890-3335-5 MSD	BH03A	Soluble	Solid	300.0	38432

Job ID: 890-3335-1

Client: Ensolum SDG: 090204003 Project/Site: SU KIM HARRIS #003

Client Sample ID: BH01A Lab Sample ID: 890-3335-1

Date Collected: 10/28/22 11:30 **Matrix: Solid** Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 14:23	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/03/22 17:00	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/01/22 22:14	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	38328	11/01/22 09:01	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	38427	11/01/22 21:50	CH	EET MID

Client Sample ID: BH01B Lab Sample ID: 890-3335-2 Date Collected: 10/28/22 11:35 Matrix: Solid

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	38695	11/04/22 07:55	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38696	11/04/22 15:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/04/22 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/01/22 23:19	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	38328	11/01/22 09:01	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	38427	11/01/22 21:55	CH	EET MID

Client Sample ID: BH02A Lab Sample ID: 890-3335-3 Date Collected: 10/28/22 11:40

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	38695	11/04/22 07:55	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38696	11/04/22 15:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/07/22 15:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/01/22 23:40	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	38328	11/01/22 09:01	CH	EET MIC
Soluble	Analysis	300.0		1	50 mL	50 mL	38427	11/01/22 22:00	CH	EET MID

Client Sample ID: BH02B Lab Sample ID: 890-3335-4 Date Collected: 10/28/22 11:45

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	38629	11/03/22 12:48	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38778	11/05/22 22:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/07/22 15:48	SM	EET MID

Eurofins Carlsbad

Page 31 of 41

Matrix: Solid

Matrix: Solid

Client: Ensolum

Job ID: 890-3335-1

SDG: 090204003

Client Sample ID: BH02B

Project/Site: SU KIM HARRIS #003

Date Collected: 10/28/22 11:45 Date Received: 10/28/22 16:15 Lab Sample ID: 890-3335-4

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 00:02	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	38328	11/01/22 09:01	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38427	11/01/22 22:05	CH	EET MID

Client Sample ID: BH03A Lab Sample ID: 890-3335-5

Date Collected: 10/28/22 11:50

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 15:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/03/22 17:00	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 00:23	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	38432	11/01/22 16:11	СН	EET MID
Soluble	Analysis	300.0		1			38532	11/02/22 13:25	CH	EET MID

Client Sample ID: BH03B Lab Sample ID: 890-3335-6 Date Collected: 10/28/22 11:55 **Matrix: Solid**

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 16:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/03/22 17:00	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 00:45	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	38432	11/01/22 16:11	CH	EET MID
Soluble	Analysis	300.0		1			38532	11/02/22 13:40	CH	EET MID

Client Sample ID: BH04A Lab Sample ID: 890-3335-7

Date Collected: 10/28/22 13:00 Date Received: 10/28/22 16:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 16:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/03/22 17:00	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g 1 uL	10 mL 1 uL	38417 38323	11/01/22 15:08 11/02/22 01:06	DM SM	EET MID EET MID

Eurofins Carlsbad

Matrix: Solid

Client: Ensolum

Project/Site: SU KIM HARRIS #003

SDG: 090204003

Job ID: 890-3335-1

Lab Sample ID: 890-3335-7

Client Sample ID: BH04A

Date Collected: 10/28/22 13:00 Date Received: 10/28/22 16:15

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	38432	11/01/22 16:11	CH	EET MID
Soluble	Analysis	300.0		1			38532	11/02/22 13:45	CH	EET MID

Client Sample ID: BH04B Lab Sample ID: 890-3335-8

Date Collected: 10/28/22 13:05 Date Received: 10/28/22 16:15 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 16:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/04/22 14:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 01:27	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	38432	11/01/22 16:11	СН	EET MID
Soluble	Analysis	300.0		5			38532	11/02/22 18:49	CH	EET MID

Client Sample ID: BH05A Lab Sample ID: 890-3335-9

Date Collected: 10/28/22 13:10 Date Received: 10/28/22 16:15 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 17:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/04/22 14:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 01:49	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	38432	11/01/22 16:11	СН	EET MID
Soluble	Analysis	300.0		1			38532	11/02/22 14:05	CH	EET MID

Client Sample ID: BH05B Lab Sample ID: 890-3335-10 Date Collected: 10/28/22 13:15

Date Received: 10/28/22 16:15

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 17:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/04/22 14:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 02:10	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	38432	11/01/22 16:11	СН	EET MID
Soluble	Analysis	300.0		1			38532	11/02/22 14:10	CH	EET MID

Client: Ensolum Job ID: 890-3335-1 Project/Site: SU KIM HARRIS #003 SDG: 090204003

Client Sample ID: BH06A Lab Sample ID: 890-3335-11

Date Collected: 10/28/22 13:20 Matrix: Solid Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 19:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/04/22 14:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 02:54	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	38432	11/01/22 16:11	СН	EET MID
Soluble	Analysis	300.0		1			38532	11/02/22 14:15	CH	EET MID

Client Sample ID: BH06B Lab Sample ID: 890-3335-12 Date Collected: 10/28/22 13:25 Matrix: Solid

Date Received: 10/28/22 16:15

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 19:37	MNR	EET MIC
Total/NA	Analysis	Total BTEX		1			38674	11/04/22 14:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 03:16	SM	EET MIC
Soluble	Leach	DI Leach			5.05 g	50 mL	38432	11/01/22 16:11	СН	EET MIC
Soluble	Analysis	300.0		1			38532	11/02/22 14:20	CH	EET MI

Client Sample ID: BH01C Lab Sample ID: 890-3335-13 Date Collected: 10/28/22 13:45 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	38429	11/01/22 16:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38578	11/03/22 19:57	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38674	11/04/22 14:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			38470	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 03:37	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	38432	11/01/22 16:11	CH	EET MID
Soluble	Analysis	300.0		1			38532	11/02/22 14:25	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum

Project/Site: SU KIM HARRIS #003

SDG: 090204003

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report, bu	it the laboratory is not certific	ed by the governing authority. This list ma	av include analytes for
the agency does not of	fer certification.	•	, , ,	.,
the agency does not of Analysis Method	fer certification . Prep Method	Matrix	Analyte	-,
0 ,		Matrix Solid	Analyte Total TPH	

Method Summary

Job ID: 890-3335-1 Client: Ensolum Project/Site: SU KIM HARRIS #003

SDG: 090204003

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: SU KIM HARRIS #003

Job ID: 890-3335-1

SDG: 090204003

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3335-1	BH01A	Solid	10/28/22 11:30	10/28/22 16:15	6
890-3335-2	BH01B	Solid	10/28/22 11:35	10/28/22 16:15	12
890-3335-3	BH02A	Solid	10/28/22 11:40	10/28/22 16:15	6
890-3335-4	BH02B	Solid	10/28/22 11:45	10/28/22 16:15	12
890-3335-5	ВН03А	Solid	10/28/22 11:50	10/28/22 16:15	6
890-3335-6	внозв	Solid	10/28/22 11:55	10/28/22 16:15	12
890-3335-7	BH04A	Solid	10/28/22 13:00	10/28/22 16:15	6
890-3335-8	BH04B	Solid	10/28/22 13:05	10/28/22 16:15	12
890-3335-9	BH05A	Solid	10/28/22 13:10	10/28/22 16:15	6
890-3335-10	BH05B	Solid	10/28/22 13:15	10/28/22 16:15	12
890-3335-11	BH06A	Solid	10/28/22 13:20	10/28/22 16:15	6
890-3335-12	ВН06В	Solid	10/28/22 13:25	10/28/22 16:15	12
890-3335-13	BH01C	Solid	10/28/22 13:45	10/28/22 16:15	24

Chain of Custody

rolln's En	Environment Testing	Houston, TX Midland, TX (43	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	Work Order No:	
Xe	Xenco	EL Paso, TX (9	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296		_
				www.xenco.com Page_	of C
DanMoi		Bill to: (if different)	M.a.	Work Order Comments	
ansolun	ALIC	Company Name:		Program: UST/PST PRP Brownfields	RRC Superfund
2	at 1 Parts Hus	Address:			
haut show	NM 88220'	City, State ZIP:	Amos compositions	Reporting: Level II Level III PST/UST	TRRP Level IV
38-88	7-2046 Email:			Deliverables: EDD ADaPT C	Other:
1 WAYN	1 1003 / Tu	Turn Around	ANALYSIS REQUEST		Preservative Codes
1,000000)03 WRoutine	Rush Pres.		None: NO	DI Water: H ₂ O
32,94255	45, - 105, 5055 400ue Date:			Cool: Cool	MeOH: Me
: Thiame	Comede TAT starts t	TAT starts the day received by		HCL: HC	HNO 3: HN
EIDT	(Carlo	_		H, PO 4: HP	
act: (Yes)	Thermometer		le:	NaHSO 4: NABIS	VABIS
Ye	N/A Correction Factor:	0		Na 2S 2O 3: NaSO 3	VaSO 3
y Seals: Yes No	Corrected Temperature:	\$ 6 c		890-3335 Chain of Custody	NaOH+Ascorbic Acid: SAPC
Identification	Matrix Date Time	Depth Grab/ # of	\(\frac{1}{2}\)	Samp	Sample Comments
	7			tre	tracidors #:
	5 10-2872 1185	12" 6 1		.	
	E	6"0		nHP077905	79057488
	-	17.11			
	S 1028-22 1155	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
		6" 6			
		7,0			
	S181 8-22-01 S	12/1/05/1			
7/6010 200.8/6020: bd(s) and Metal(s) to be analyzed	8RCR/	13PPM Texas 11 Al Sb TCLP / SPLP 6010 : 8RCRA S	Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni KCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn ≥ Ag Tl U Hg: 1631 / 245.1 / 7470 / 7471	v Zn 471
this document and relinquishm (enco will be liable only for the common charge of \$85,00 will	ent of samples constitutes a valid purchase c cost of samples and shall not assume any res be applied to each project and a charge of :	rder from client company to Euro ponsibility for any losses or expen 55 for each sample submitted to E	this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard items and conditions Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control and it is a subject to the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control and control and the control and the control and the cost of the cost	and conditions and the control previously negotiated.	
ed by: (Signature)	A Received by: (Signature)	Fe)	Date/Time Relinquished by: (Signature)	e) Received by: (Signature)	Date/Time
	An mil		0,38 331615		
			6		

SAMPLE REC

Sampler's Name

Project Numbe

Project Name:

City, State ZIP:

13

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Chain of Custody

11/7/2022

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-3335-1 SDG Number: 090204003

Login Number: 3335 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum

Job Number: 890-3335-1 SDG Number: 090204003

Login Number: 3335
List Source: Eurofins Midland
List Number: 2
List Creation: 11/01/22 10:26 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

3

4

6

R

4 0

4.0

13

14

<6mm (1/4").

ANALYTICAL REPORT

PREPARED FOR

Attn: Daniel Moir

Ensolum

601 N. Marienfeld St.

Suite 400

Midland, Texas 79701

Generated 12/1/2022 1:48:04 PM

JOB DESCRIPTION

SV KIM HARRIS #003 SDG NUMBER 09C2041003

JOB NUMBER

890-3511-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/1/2022 1:48:04 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of

Released to Imaging: 1/13/2023 10:08:17 AM

Companies

Page 2 of 34

12/1/2022

Client: Ensolum
Project/Site: SV KIM HARRIS #003
Laboratory Job ID: 890-3511-1
SDG: 09C2041003

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	21
Lab Chronicle	25
Certification Summary	29
Method Summary	30
Sample Summary	31
Chain of Custody	32
Receipt Checklists	33

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Job ID: 890-3511-1 Client: Ensolum Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Qualifiers

GC VOA
Qualifier

Qualifier Description LCS and/or LCSD is outside acceptance limits, low biased.

*1 LCS/LCSD RPD exceeds control limits. F1

MS and/or MSD recovery exceeds control limits.

MS/MSD RPD exceeds control limits F2

S1-Surrogate recovery exceeds control limits, low biased. Indicates the analyte was analyzed for but not detected. U

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL. RA. RE. IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit **PQL**

PRES Presumptive

Quality Control QC RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: SV KIM HARRIS #003

Job ID: 890-3511-1 SDG: 09C2041003

Job ID: 890-3511-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3511-1

Receipt

The samples were received on 11/17/2022 4:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.4°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-40434 and analytical batch 880-40362 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The absolute response for Benzene, Toluene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene was greater than the method reporting limit (RL) in the following sample: (LCSD 880-40436/2-A). The instrument raw data has been manually reviewed and the result can be reported as ND.

Method 8021B: The matrix spike (MS) and/or matrix spike duplicate (MSD) recovery for preparation batch 880-40436 and analytical batch 880-40689 was outside control limits for the following analyte(s): Benzene and Toluene. Results may be biased high because this analyte is a common laboratory solvent and contaminant.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-40436 and analytical batch 880-40689 was outside the control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-40271 and analytical batch 880-40260 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-40260/5) and (LCS 880-40271/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH01C (890-3511-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH08C (890-3511-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-40006 and analytical batch 880-40248 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. The associated sample is: BH07A (890-3511-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

1

-

6

11

13

14

Client: Ensolum Job ID: 890-3511-1 Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Client Sample ID: BH07A Lab Sample ID: 890-3511-1

Date Collected: 11/17/22 09:20 Matrix: Solid Date Received: 11/17/22 16:30

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		11/28/22 11:03	11/29/22 03:57	1
Toluene	<0.00201	U	0.00201	mg/Kg		11/28/22 11:03	11/29/22 03:57	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		11/28/22 11:03	11/29/22 03:57	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		11/28/22 11:03	11/29/22 03:57	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		11/28/22 11:03	11/29/22 03:57	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		11/28/22 11:03	11/29/22 03:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130			11/28/22 11:03	11/29/22 03:57	1
1,4-Difluorobenzene (Surr)	80		70 - 130			11/28/22 11:03	11/29/22 03:57	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			11/29/22 09:20	1
Method: SW846 8015 NM - Diese	l Pango Organ	ice (DPO) ((3C)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/28/22 12:39	1
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/23/22 08:58	11/23/22 11:38	1
<u>`</u> .	-E0 0	11				44/00/00 00 50		
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/23/22 08:58	11/23/22 11:38	1
g	<50.0		50.0 50.0	mg/Kg mg/Kg		11/23/22 08:58	11/23/22 11:38	
C10-C28)		U						1
C10-C28) OII Range Organics (Over C28-C36)	<50.0	U	50.0			11/23/22 08:58	11/23/22 11:38	1 Dil Fac
C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0	U	50.0			11/23/22 08:58 Prepared	11/23/22 11:38 Analyzed	1 Dil Fac
C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 **Recovery 114 124	U Qualifier	50.0 Limits 70 - 130 70 - 130			11/23/22 08:58 Prepared 11/23/22 08:58	11/23/22 11:38 Analyzed 11/23/22 11:38	1 1 Dil Fac 1
C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 **Recovery 114 124 5, lon Chromato	U Qualifier	50.0 Limits 70 - 130 70 - 130		D	11/23/22 08:58 Prepared 11/23/22 08:58	11/23/22 11:38 Analyzed 11/23/22 11:38	1 Dil Fac

Client Sample ID: BH07B Lab Sample ID: 890-3511-2 Date Collected: 11/17/22 09:30

Date Received: 11/17/22 16:30

Sample Depth: 12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 04:18	
Toluene	<0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 04:18	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 04:18	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/28/22 11:03	11/29/22 04:18	
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 04:18	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/28/22 11:03	11/29/22 04:18	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		70 - 130			11/28/22 11:03	11/29/22 04:18	

Eurofins Carlsbad

Matrix: Solid

Client: Ensolum Job ID: 890-3511-1

SDG: 09C2041003 Project/Site: SV KIM HARRIS #003

Client Sample ID: BH07B Lab Sample ID: 890-3511-2 Date Collected: 11/17/22 09:30 Matrix: Solid

Date Received: 11/17/22 16:30 Sample Depth: 12

Method: SW846 8021B - Volatile	Organic Compounds	(GC) (Continued)
--------------------------------	--------------------------	------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	106	70 - 130	11/28/22 11:03	11/29/22 04:18	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier		Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398 U	0.00398	mg/Kg			11/29/22 09:20	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte		ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	ma/Ka			11/28/22 12:39	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 12:44	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 12:44	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 12:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	113	70 - 130	11/23/22 08:5	11/23/22 12:44	1
o-Terphenyl	123	70 - 130	11/23/22 08:5	8 11/23/22 12:44	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	28.9		4.97	mg/Kg			11/23/22 07:20	1

Client Sample ID: BH07C Lab Sample ID: 890-3511-3 **Matrix: Solid**

Date Collected: 11/17/22 09:45 Date Received: 11/17/22 16:30

Sample Depth: 24

Method: SW846 8021B - Volatile Organic Compounds (GC)

			,					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 04:38	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 04:38	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 04:38	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/28/22 11:03	11/29/22 04:38	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 04:38	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/28/22 11:03	11/29/22 04:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130			11/28/22 11:03	11/29/22 04:38	1
1 1 Diffusionabanzana (Curr	90		70 120			11/20/22 11:02	11/20/22 04:28	4

4-Bromofluorobenzene (Surr)	90	70 - 130	11/28/22 11:03	11/29/22 04:38	1
1,4-Difluorobenzene (Surr)	80	70 - 130	11/28/22 11:03	11/29/22 04:38	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg		_	11/29/22 09:20	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/28/22 12:39	1

Job ID: 890-3511-1

Client: Ensolum Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Lab Sample ID: 890-3511-3 **Client Sample ID: BH07C** Date Collected: 11/17/22 09:45 Matrix: Solid Date Received: 11/17/22 16:30

Sample Depth: 24

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 13:06	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 13:06	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 13:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130			11/23/22 08:58	11/23/22 13:06	1
o-Terphenyl	118		70 - 130			11/23/22 08:58	11/23/22 13:06	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH09A Lab Sample ID: 890-3511-4 Date Collected: 11/17/22 11:30 Matrix: Solid

5.00

28.7

mg/Kg

Date Received: 11/17/22 16:30

Sample Depth: 6

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 04:59	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 04:59	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 04:59	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		11/28/22 11:03	11/29/22 04:59	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 04:59	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		11/28/22 11:03	11/29/22 04:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130			11/28/22 11:03	11/29/22 04:59	1
1,4-Difluorobenzene (Surr)	96		70 - 130			11/28/22 11:03	11/29/22 04:59	1
Method: TAL SOP Total BTEX - T	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00401	U	0.00401	mg/Kg			11/29/22 09:20	1
• -				mg/Kg			11/29/22 09:20	1
Total BTEX Method: SW846 8015 NM - Diese Analyte	el Range Organ			mg/Kg Unit	D	Prepared	11/29/22 09:20 Analyzed	1 Dil Fac
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)		<u>D</u>	Prepared		·
Method: SW846 8015 NM - Diese Analyte Total TPH	Range Organ Result <50.0	ics (DRO) ((Qualifier	GC) RL 50.0	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result <50.0 sel Range Organ	ics (DRO) ((Qualifier	GC) RL 50.0	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result <50.0 sel Range Organ	ics (DRO) (Qualifier U nics (DRO) Qualifier	GC) RL 50.0	Unit mg/Kg		<u> </u>	Analyzed 11/28/22 12:39	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result <50.0 sel Range Orga Result	ics (DRO) (Qualifier U nics (DRO) Qualifier	GC) RL 50.0 (GC) RL	Unit mg/Kg		Prepared	Analyzed 11/28/22 12:39 Analyzed	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <50.0 sel Range Orga Result	ics (DRO) ((Qualifier U nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL	Unit mg/Kg		Prepared	Analyzed 11/28/22 12:39 Analyzed	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0	ics (DRO) ((Qualifier U nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/23/22 08:58 11/23/22 08:58	Analyzed 11/28/22 12:39 Analyzed 11/23/22 13:28 11/23/22 13:28	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Organ Result <50.0 sel Range Orga Result <50.0	ics (DRO) ((Qualifier U nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0	Unit mg/Kg Unit mg/Kg		Prepared 11/23/22 08:58	Analyzed 11/28/22 12:39 Analyzed 11/23/22 13:28	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0 <50.0 %Recovery	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 Limits	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/23/22 08:58 11/23/22 08:58 11/23/22 08:58 Prepared	Analyzed 11/28/22 12:39 Analyzed 11/23/22 13:28 11/23/22 13:28 Analyzed	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	el Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0 <50.0	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/23/22 08:58 11/23/22 08:58 11/23/22 08:58	Analyzed 11/28/22 12:39 Analyzed 11/23/22 13:28 11/23/22 13:28 11/23/22 13:28	Dil Fac Dil Fac 1 1 1

Eurofins Carlsbad

11/23/22 07:37

Matrix: Solid

Job ID: 890-3511-1

Client: Ensolum SDG: 09C2041003 Project/Site: SV KIM HARRIS #003

Client Sample ID: BH09A Lab Sample ID: 890-3511-4

Date Collected: 11/17/22 11:30 Matrix: Solid Date Received: 11/17/22 16:30

Sample Depth: 6

1	Method: MCAWW 300.0 - Anions, le	on Chromato	graphy - So	luble					
1	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	63.0		4.99	mg/Kg			11/23/22 07:42	1

Client Sample ID: BH09B Lab Sample ID: 890-3511-5

Date Collected: 11/17/22 11:40 Date Received: 11/17/22 16:30

Sample Depth: 12

o-Terphenyl

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		11/28/22 11:03	11/29/22 05:19	
Toluene	<0.00202	U	0.00202	mg/Kg		11/28/22 11:03	11/29/22 05:19	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		11/28/22 11:03	11/29/22 05:19	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		11/28/22 11:03	11/29/22 05:19	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		11/28/22 11:03	11/29/22 05:19	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		11/28/22 11:03	11/29/22 05:19	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			11/28/22 11:03	11/29/22 05:19	1
1,4-Difluorobenzene (Surr)	100		70 - 130			11/28/22 11:03	11/29/22 05:19	1
Method: SW846 8015 NM - Diese	•	. , ,	*					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/28/22 12:39	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/23/22 08:58	11/23/22 13:49	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		11/23/22 08:58	11/23/22 13:49	1
,	∠E0.0	11	50.0	malka		11/22/22 00:50	11/22/22 12:40	,
,	<50.0	U	50.0	mg/Kg		11/23/22 08:58	11/23/22 13:49	1
C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 %Recovery		50.0 Limits	mg/Kg		11/23/22 08:58 Prepared	11/23/22 13:49 Analyzed	1 Dil Fac

70 - 130

RL

5.01

Unit

mg/Kg

120

23.6

Result Qualifier

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Eurofins Carlsbad

11/23/22 08:58

Prepared

D

11/23/22 13:49

Analyzed

11/23/22 07:59

12/1/2022

Dil Fac

Job ID: 890-3511-1

Client: Ensolum Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Client Sample ID: BH09C Lab Sample ID: 890-3511-6 Date Collected: 11/17/22 11:50 Matrix: Solid

Date Received: 11/17/22 16:30

Sample Depth: 24

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 05:40	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 05:40	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 05:40	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/28/22 11:03	11/29/22 05:40	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 05:40	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/28/22 11:03	11/29/22 05:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			11/28/22 11:03	11/29/22 05:40	1
1,4-Difluorobenzene (Surr)	103		70 - 130			11/28/22 11:03	11/29/22 05:40	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/29/22 09:20	1
- Method: SW846 8015 NM - Diese	l Pango Organ	ice (DPO) (CC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0	mg/Kg	— <u>-</u>		11/28/22 12:39	1
- -				3- 3				
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL					
Gasoline Range Organics			KL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	Unit mg/Kg	D	Prepared 11/23/22 08:58	Analyzed 11/23/22 14:11	Dil Fac
(GRO)-C6-C10	<50.0	U	50.0	mg/Kg	<u>D</u>		11/23/22 14:11	
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0 <50.0				<u>D</u>			
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg	<u>D</u>	11/23/22 08:58 11/23/22 08:58	11/23/22 14:11	1
(GRO)-C6-C10 Diesel Range Organics (Over		U	50.0	mg/Kg	<u>D</u>	11/23/22 08:58	11/23/22 14:11	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0	U U	50.0	mg/Kg	<u>D</u>	11/23/22 08:58 11/23/22 08:58	11/23/22 14:11	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 <50.0	U U	50.0 50.0 50.0	mg/Kg	<u>D</u>	11/23/22 08:58 11/23/22 08:58 11/23/22 08:58	11/23/22 14:11 11/23/22 14:11 11/23/22 14:11	1 1 1 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0 <i>%Recovery</i>	U U	50.0 50.0 50.0 <i>Limits</i>	mg/Kg	<u>D</u>	11/23/22 08:58 11/23/22 08:58 11/23/22 08:58 Prepared	11/23/22 14:11 11/23/22 14:11 11/23/22 14:11 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 	U U Qualifier	50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg	<u>D</u>	11/23/22 08:58 11/23/22 08:58 11/23/22 08:58 Prepared 11/23/22 08:58	11/23/22 14:11 11/23/22 14:11 11/23/22 14:11 Analyzed 11/23/22 14:11	1 1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 <50.0 **Recovery 115 126 5, lon Chromato	U U Qualifier	50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg	D_	11/23/22 08:58 11/23/22 08:58 11/23/22 08:58 Prepared 11/23/22 08:58	11/23/22 14:11 11/23/22 14:11 11/23/22 14:11 Analyzed 11/23/22 14:11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: BH01C Lab Sample ID: 890-3511-7 Date Collected: 11/17/22 13:10 Matrix: Solid

Date Received: 11/17/22 16:30

Sample Depth: 36

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 06:00	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 06:00	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 06:00	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		11/28/22 11:03	11/29/22 06:00	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/29/22 06:00	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		11/28/22 11:03	11/29/22 06:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			11/28/22 11:03	11/29/22 06:00	1

Client: Ensolum

Sample Depth: 36

Job ID: 890-3511-1

Project/Site: SV KIM HARRIS #003 SDG: 09C2041003 Lab Sample ID: 890-3511-7

Client Sample ID: BH01C Date Collected: 11/17/22 13:10 Date Received: 11/17/22 16:30

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier Limits Prepared Surrogate Analyzed Dil Fac 70 - 130 11/28/22 11:03 1,4-Difluorobenzene (Surr) 99 11/29/22 06:00

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared Total BTEX <0.00401 0.00401 11/29/22 09:20 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

RL Unit D Prepared Analyzed Dil Fac Total TPH <49.9 49.9 mg/Kg 11/28/22 12:39

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac <49.9 U 49.9 11/23/22 14:33 Gasoline Range Organics mg/Kg 11/23/22 08:58 (GRO)-C6-C10 <49.9 U 49.9 mg/Kg 11/23/22 08:58 11/23/22 14:33 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) <49.9 U 49.9 mg/Kg 11/23/22 08:58 11/23/22 14:33

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 128 70 - 130 11/23/22 08:58 11/23/22 14:33 133 S1+ 70 - 130 11/23/22 08:58 11/23/22 14:33 o-Terphenyl

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 4.99 11/23/22 08:11 Chloride 625 mg/Kg

Lab Sample ID: 890-3511-8 Client Sample ID: BH08A

Date Collected: 11/17/22 13:30 Date Received: 11/17/22 16:30

Sample Depth: 6

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene <0.00201 U 0.00201 mg/Kg 11/28/22 11:03 11/29/22 06:20 Toluene <0.00201 U 0.00201 11/28/22 11:03 11/29/22 06:20 mg/Kg Ethylbenzene <0.00201 U 0.00201 11/28/22 11:03 11/29/22 06:20 mg/Kg 11/29/22 06:20 m-Xylene & p-Xylene <0.00402 U 0.00402 11/28/22 11:03 mg/Kg o-Xylene <0.00201 U 0.00201 mg/Kg 11/28/22 11:03 11/29/22 06:20 Xylenes, Total <0.00402 U 0.00402 mg/Kg 11/28/22 11:03 11/29/22 06:20 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed

70 - 130 11/28/22 11:03 4-Bromofluorobenzene (Surr) 97 11/29/22 06:20 1,4-Difluorobenzene (Surr) 99 70 - 130 11/28/22 11:03 11/29/22 06:20

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL D Dil Fac Unit Prepared Analyzed Total BTEX <0.00402 0.00402 11/29/22 09:20 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac <50.0 U Total TPH 50.0 mg/Kg 11/28/22 12:39

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-3511-1

Project/Site: SV KIM HARRIS #003 SDG: 09C2041003 Lab Sample ID: 890-3511-8

Client Sample ID: BH08A Date Collected: 11/17/22 13:30 Matrix: Solid Date Received: 11/17/22 16:30

Sample Depth: 6

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/23/22 08:58	11/23/22 14:55	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/23/22 08:58	11/23/22 14:55	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/23/22 08:58	11/23/22 14:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130			11/23/22 08:58	11/23/22 14:55	1
o-Terphenyl	123		70 - 130			11/23/22 08:58	11/23/22 14:55	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH08B Lab Sample ID: 890-3511-9 Matrix: Solid

4.96

67.2

mg/Kg

Date Collected: 11/17/22 13:40 Date Received: 11/17/22 16:30

Sample Depth: 12

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 06:41	1
Toluene	< 0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 06:41	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 06:41	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/28/22 11:03	11/29/22 06:41	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/28/22 11:03	11/29/22 06:41	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/28/22 11:03	11/29/22 06:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			11/28/22 11:03	11/29/22 06:41	1
1,4-Difluorobenzene (Surr)	112		70 - 130			11/28/22 11:03	11/29/22 06:41	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
-								
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/29/22 09:20	1
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/29/22 09:20	1
Total BTEX : : Method: SW846 8015 NM - Diese				mg/Kg			11/29/22 09:20	1
• •	el Range Organ			mg/Kg Unit	D	Prepared	11/29/22 09:20 Analyzed	Dil Fac
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)		<u>D</u>	Prepared		
Method: SW846 8015 NM - Diese Analyte	Range Organ Result <49.9	ics (DRO) ((Qualifier	GC) RL 49.9	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <49.9 sel Range Organ	ics (DRO) ((Qualifier	GC) RL 49.9	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result <49.9 sel Range Organ	Qualifier Unics (DRO) Qualifier Qualifier	GC) RL 49.9	Unit mg/Kg		<u> </u>	Analyzed 11/28/22 12:39	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	el Range Organ Result <49.9 sel Range Orga Result	Qualifier Unics (DRO) Qualifier Qualifier	GC) RL 49.9 (GC) RL	Unit mg/Kg		Prepared	Analyzed 11/28/22 12:39 Analyzed	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <49.9 sel Range Orga Result	ics (DRO) ((Qualifier U nnics (DRO) Qualifier U	GC) RL 49.9 (GC) RL	Unit mg/Kg		Prepared	Analyzed 11/28/22 12:39 Analyzed	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <49.9 sel Range Orga Result <49.9	ics (DRO) ((Qualifier U nnics (DRO) Qualifier U	GC) RL 49.9 (GC) RL 49.9 49.9	Unit mg/Kg Unit mg/Kg		Prepared 11/23/22 08:58	Analyzed 11/28/22 12:39 Analyzed 11/23/22 15:17	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <49.9 sel Range Orga Result <49.9	ics (DRO) ((Qualifier U nnics (DRO) Qualifier U	GC) RL 49.9 (GC) RL 49.9	Unit mg/Kg Unit mg/Kg		Prepared 11/23/22 08:58	Analyzed 11/28/22 12:39 Analyzed 11/23/22 15:17	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9	ics (DRO) ((Qualifier U nnics (DRO) Qualifier U U	GC) RL 49.9 (GC) RL 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/23/22 08:58 11/23/22 08:58	Analyzed 11/28/22 12:39 Analyzed 11/23/22 15:17 11/23/22 15:17	Dil Fac Dil Fac 1 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	el Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9	ics (DRO) ((Qualifier U nnics (DRO) Qualifier U U	GC) RL 49.9 (GC) RL 49.9 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/23/22 08:58 11/23/22 08:58 11/23/22 08:58	Analyzed 11/28/22 12:39 Analyzed 11/23/22 15:17 11/23/22 15:17	Dil Fac Dil Fac 1

Eurofins Carlsbad

11/23/22 08:16

12/1/2022

Job ID: 890-3511-1

Client: Ensolum Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Client Sample ID: BH08B Lab Sample ID: 890-3511-9

Date Collected: 11/17/22 13:40 Matrix: Solid Date Received: 11/17/22 16:30

Sample Depth: 12

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	43.2		5.05	mg/Kg			11/23/22 08:22	1

Client Sample ID: BH08C Lab Sample ID: 890-3511-10 Matrix: Solid

Date Collected: 11/17/22 13:50 Date Received: 11/17/22 16:30

Sample Depth: 36

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U F1 *- *1	0.00201	mg/Kg		11/28/22 11:21	11/30/22 17:33	1
Toluene	<0.00201	U F1 *- *1	0.00201	mg/Kg		11/28/22 11:21	11/30/22 17:33	1
Ethylbenzene	<0.00201	U *- *1	0.00201	mg/Kg		11/28/22 11:21	11/30/22 17:33	1
m-Xylene & p-Xylene	<0.00402	U *- *1	0.00402	mg/Kg		11/28/22 11:21	11/30/22 17:33	1
o-Xylene	<0.00201	U *- *1	0.00201	mg/Kg		11/28/22 11:21	11/30/22 17:33	1
Xylenes, Total	<0.00402	U *- *1	0.00402	mg/Kg		11/28/22 11:21	11/30/22 17:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			11/28/22 11:21	11/30/22 17:33	1
1,4-Difluorobenzene (Surr)	97		70 - 130			11/28/22 11:21	11/30/22 17:33	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			12/01/22 13:21	1
Method: SW846 8015 NM - Diesel F	Range Organ	ics (DRO) ((3C)					

method: SW846 8015 NM - Diesei Range Organics (DRO) (GC)									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.9	U	49.9	mg/Kg			11/28/22 12:39	1

Method: SW846 8015B NM - Dies	ethod: SW846 8015B NM - Diesel Range Organics (DRO) (GC)											
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac				
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 15:39	1				
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 15:39	1				
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/23/22 08:58	11/23/22 15:39	1				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac				
1-Chlorooctane	132	S1+	70 - 130			11/23/22 08:58	11/23/22 15:39	1				
o-Terphenyl	135	S1+	70 - 130			11/23/22 08:58	11/23/22 15:39	1				

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	38.2		4.98	mg/Kg			11/23/22 08:27	1		

Eurofins Carlsbad

Released to Imaging: 1/13/2023 10:08:17 AM

Surrogate Summary

Client: Ensolum Job ID: 890-3511-1
Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3509-A-1-C MS	Matrix Spike	103	104	
890-3509-A-1-D MSD	Matrix Spike Duplicate	74	100	
890-3511-1	BH07A	81	80	
890-3511-2	ВН07В	97	106	
890-3511-3	BH07C	90	80	
890-3511-4	ВН09А	94	96	
890-3511-5	BH09B	99	100	
890-3511-6	BH09C	98	103	
890-3511-7	BH01C	106	99	
890-3511-8	BH08A	97	99	
890-3511-9	BH08B	96	112	
890-3511-10	BH08C	97	97	
890-3511-10 MS	BH08C	92	104	
890-3511-10 MSD	BH08C	101	95	
LCS 880-40434/1-A	Lab Control Sample	97	105	
LCS 880-40436/1-A	Lab Control Sample	99	89	
LCSD 880-40434/2-A	Lab Control Sample Dup	93	109	
LCSD 880-40436/2-A	Lab Control Sample Dup	0 S1-	0 S1-	
MB 880-40407/5-A	Method Blank	80	103	
MB 880-40434/5-A	Method Blank	83	105	
MB 880-40436/5-A	Method Blank	66 S1-	95	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3511-1	BH07A	114	124	
890-3511-1 MS	ВН07А	130	122	
890-3511-1 MSD	ВН07А	118	122	
890-3511-2	ВН07В	113	123	
890-3511-3	BH07C	110	118	
890-3511-4	BH09A	113	119	
890-3511-5	вноэв	113	120	
890-3511-6	BH09C	115	126	
890-3511-7	BH01C	128	133 S1+	
890-3511-8	BH08A	113	123	
890-3511-9	BH08B	110	119	
890-3511-10	BH08C	132 S1+	135 S1+	
LCS 880-40271/2-A	Lab Control Sample	120	133 S1+	
LCSD 880-40271/3-A	Lab Control Sample Dup	114	127	
2002 000 1021 110 11	Method Blank	129	138 S1+	

Eurofins Carlsbad

5

2

5

8

10

12

13

OTPH = o-Terphenyl

Client: Ensolum Job ID: 890-3511-1 SDG: 09C2041003 Project/Site: SV KIM HARRIS #003

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-40407/5-A

Matrix: Solid Analysis Batch: 40362 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 40407

	МВ	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 09:59	11/28/22 12:11	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 09:59	11/28/22 12:11	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 09:59	11/28/22 12:11	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/28/22 09:59	11/28/22 12:11	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 09:59	11/28/22 12:11	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/28/22 09:59	11/28/22 12:11	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80	70 - 130	 11/28/22 09:59	11/28/22 12:11	1
1,4-Difluorobenzene (Surr)	103	70 - 130	11/28/22 09:59	11/28/22 12:11	1

Lab Sample ID: MB 880-40434/5-A

Client Sample ID: Method Blank

Lab cample ib. IIIb 000-40404/0-A	Cheft Cample ID. Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 40362	Prep Batch: 40434
MB MB	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/28/22 22:49	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/28/22 22:49	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/28/22 22:49	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/28/22 11:03	11/28/22 22:49	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:03	11/28/22 22:49	1
Xylenes, Total	< 0.00400	U	0.00400	mg/Kg		11/28/22 11:03	11/28/22 22:49	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130	11/28/22 11:03	11/28/22 22:49	1
1,4-Difluorobenzene (Surr)	105		70 - 130	11/28/22 11:03	11/28/22 22:49	1

Lab Sample ID: LCS 880-40434/1-A

Matrix: Solid

Analysis Batch: 40362

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 40434

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1007		mg/Kg		101	70 - 130	
Toluene	0.100	0.09296		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.09103		mg/Kg		91	70 - 130	
m-Xylene & p-Xylene	0.200	0.1893		mg/Kg		95	70 - 130	
o-Xylene	0.100	0.09471		mg/Kg		95	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	97	70 - 130
1.4-Difluorobenzene (Surr)	105	70 - 130

Lab Sample ID: LCSD 880-40434/2-A

Matrix: Solid

Analysis Batch: 40362

Client Sample	ID: Lab	Control	Sample	Dup
		Duam To	Tata	I/NI A

Prep Type: Total/NA

Prep Batch: 40434

	Spike	LCSD LCSD				70 KeC		KPD	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.1120	mg/Kg		112	70 - 130	11	35	

LCCD LCCD

Cnika

QC Sample Results

Job ID: 890-3511-1 Client: Ensolum SDG: 09C2041003 Project/Site: SV KIM HARRIS #003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-40434/2-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 40362 Prep Batch: 40434

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.1008		mg/Kg		101	70 - 130	8	35
Ethylbenzene	0.100	0.09560		mg/Kg		96	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.1933		mg/Kg		97	70 - 130	2	35
o-Xylene	0.100	0.09615		mg/Kg		96	70 - 130	2	35
	Toluene Ethylbenzene m-Xylene & p-Xylene	Analyte Added Toluene 0.100 Ethylbenzene 0.100 m-Xylene & p-Xylene 0.200	Analyte Added Result Toluene 0.100 0.1008 Ethylbenzene 0.100 0.09560 m-Xylene & p-Xylene 0.200 0.1933	Analyte Added Result Qualifier Toluene 0.100 0.1008 Ethylbenzene 0.100 0.09560 m-Xylene & p-Xylene 0.200 0.1933	Analyte Added Result on the part of the part	Analyte Added Result Qualifier Unit Mg/Kg D Toluene 0.100 0.1008 mg/Kg mg/Kg Ethylbenzene 0.100 0.09560 mg/Kg mg/Kg m-Xylene & p-Xylene 0.200 0.1933 mg/Kg	Analyte Added Result Qualifier Unit D %Rec Toluene 0.100 0.1008 mg/Kg 101 Ethylbenzene 0.100 0.09560 mg/Kg 96 m-Xylene & p-Xylene 0.200 0.1933 mg/Kg 97	Analyte Added Result Qualifier Unit D %Rec Limits Toluene 0.100 0.1008 mg/Kg 101 70 - 130 Ethylbenzene 0.100 0.09560 mg/Kg 96 70 - 130 m-Xylene & p-Xylene 0.200 0.1933 mg/Kg 97 70 - 130	Analyte Added Result Qualifier Unit D %Rec Limits RPD Toluene 0.100 0.1008 mg/Kg 101 70 - 130 8 Ethylbenzene 0.100 0.09560 mg/Kg 96 70 - 130 5 m-Xylene & p-Xylene 0.200 0.1933 mg/Kg 97 70 - 130 2

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: 890-3509-A-1-C MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 40362 Prep Batch: 40434

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1 F2	0.0996	0.05553	F1	mg/Kg		56	70 - 130	
Toluene	<0.00200	U F1 F2	0.0996	0.05359	F1	mg/Kg		54	70 - 130	
Ethylbenzene	<0.00200	U F1 F2	0.0996	0.05575	F1	mg/Kg		56	70 - 130	
m-Xylene & p-Xylene	<0.00401	U F1 F2	0.199	0.1058	F1	mg/Kg		53	70 - 130	
o-Xylene	<0.00200	U F1 F2	0.0996	0.05416	F1	mg/Kg		54	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 890-3509-A-1-D MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid Analysis Batch: 40362

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Benzene <0.00200 U F1 F2 0.0994 0.02856 F1 F2 mg/Kg 29 70 - 130 64 35 Toluene <0.00200 UF1F2 0.0994 0.02643 F1 F2 mg/Kg 27 70 - 130 68 35 Ethylbenzene <0.00200 U F1 F2 0.0994 0.02401 F1 F2 mg/Kg 24 70 - 130 80 35 0.199 m-Xylene & p-Xylene <0.00401 U F1 F2 0.04452 F1 F2 22 70 - 130 82 35 mg/Kg <0.00200 U F1 F2 0.0994 0.02377 F1 F2 70 - 130 o-Xylene mg/Kg 23 78 35

I		MSD	MSD	
	Surrogate	%Recovery	Qualifier	Limits
	4-Bromofluorobenzene (Surr)	74		70 - 130
I	1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: MB 880-40436/5-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA Analysis Batch: 40689 Prep Batch: 40436 мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:21	11/30/22 17:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:21	11/30/22 17:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:21	11/30/22 17:06	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/28/22 11:21	11/30/22 17:06	1

Eurofins Carlsbad

Prep Batch: 40434

Client: Ensolum Project/Site: SV KIM HARRIS #003

Job ID: 890-3511-1 SDG: 09C2041003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-40436/5-A **Matrix: Solid**

Analysis Batch: 40689

Analysis Batch: 40689

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 40436

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 11:21	11/30/22 17:06	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/28/22 11:21	11/30/22 17:06	1
	MR	MB						

мв мв

	10.0	W.D				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130	11/28/22 11:21	11/30/22 17:06	1
1,4-Difluorobenzene (Surr)	95		70 - 130	11/28/22 11:21	11/30/22 17:06	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-40436/1-A **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 40436

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1127 mg/Kg 113 70 - 130 Toluene 0.100 0.1182 mg/Kg 118 70 - 130 0.100 0.1070 107 70 - 130 Ethylbenzene mg/Kg m-Xylene & p-Xylene 0.200 0.2149 mg/Kg 107 70 - 130 o-Xylene 0.100 0.1084 mg/Kg 108 70 - 130

LCS LCS

Surrogate	%Recovery Qualified	r Limits
4-Bromofluorobenzene (Surr)	99	70 - 130
1,4-Difluorobenzene (Surr)	89	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 40436

Analysis Batch: 40689

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	<0.00200	U *- *1	mg/Kg		0	70 - 130	200	35
Toluene	0.100	<0.00200	U *- *1	mg/Kg		0	70 - 130	200	35
Ethylbenzene	0.100	<0.00200	U *- *1	mg/Kg		0	70 - 130	200	35
m-Xylene & p-Xylene	0.200	<0.00400	U *- *1	mg/Kg		0	70 - 130	200	35
o-Xylene	0.100	<0.00200	U *- *1	mg/Kg		0	70 - 130	200	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	0 S1-	70 - 130
1.4-Difluorobenzene (Surr)	0 S1-	70 - 130

Lab Sample ID: 890-3511-10 MS

Lab Sample ID: LCSD 880-40436/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 40689

Client Sample ID: BH08C

Prep Type: Total/NA

Prep Batch: 40436

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F1 *- *1	0.0996	0.1174		mg/Kg		118	70 - 130	
Toluene	<0.00201	U F1 *- *1	0.0996	0.1158		mg/Kg		116	70 - 130	
Ethylbenzene	<0.00201	U *- *1	0.0996	0.09952		mg/Kg		100	70 - 130	
m-Xylene & p-Xylene	<0.00402	U *- *1	0.199	0.2008		mg/Kg		101	70 - 130	
o-Xylene	< 0.00201	U *- *1	0.0996	0.1059		mg/Kg		106	70 - 130	

Client: Ensolum

MS MS

Job ID: 890-3511-1

SDG: 09C2041003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3511-10 MS

Project/Site: SV KIM HARRIS #003

Matrix: Solid

Analysis Batch: 40689

Client Sample ID: BH08C

Prep Type: Total/NA

Prep Batch: 40436

Surrogate %Recovery Qualifier

4-Bromofluorobenzene (Surr) 92 70 - 130 1,4-Difluorobenzene (Surr) 104 70 - 130

Lab Sample ID: 890-3511-10 MSD Client Sample ID: BH08C

Limits

Matrix: Solid

Analysis Batch: 40689

Prep Type: Total/NA

Prep Batch: 40436

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U F1 *- *1	0.100	0.1370	F1	mg/Kg		136	70 - 130	15	35
Toluene	<0.00201	U F1 *- *1	0.100	0.1331	F1	mg/Kg		133	70 - 130	14	35
Ethylbenzene	<0.00201	U *- *1	0.100	0.1144		mg/Kg		114	70 - 130	14	35
m-Xylene & p-Xylene	<0.00402	U *- *1	0.201	0.2338		mg/Kg		116	70 - 130	15	35
o-Xylene	<0.00201	U *- *1	0.100	0.1220		mg/Kg		122	70 - 130	14	35

MSD MSD

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 101 70 - 130 1,4-Difluorobenzene (Surr) 95 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-40271/1-A

Matrix: Solid

Analysis Batch: 40260

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 40271

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		11/23/22 08:28	11/23/22 08:39	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		11/23/22 08:28	11/23/22 08:39	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/23/22 08:28	11/23/22 08:39	1

MB MB

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 11/23/22 08:28 1-Chlorooctane 129 70 - 130 11/23/22 08:39 o-Terphenyl 138 S1+ 70 - 130 11/23/22 08:28 11/23/22 08:39

Lab Sample ID: LCS 880-40271/2-A

Released to Imaging: 1/13/2023 10:08:17 AM

Matrix: Solid

Analysis Batch: 40260

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 40271

	Spike	LCS LCS			%Rec	
Analyte	Added	Result Qualifier	Unit D	%Rec	Limits	
Gasoline Range Organics	1000	1031	mg/Kg	103	70 - 130	
(GRO)-C6-C10						
Diesel Range Organics (Over	1000	1036	mg/Kg	104	70 - 130	
C10 C20)						

C10-C28)

	LCS		
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	120		70 - 130
o-Terphenyl	133	S1+	70 - 130

Job ID: 890-3511-1 Client: Ensolum Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-40271/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 40260 Prep Batch: 40271

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	1146		mg/Kg		115	70 - 130	11	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	1037		mg/Kg		104	70 - 130	0	20	
C10 C20\										

C10-C28) LCSD LCSD

	LUJD	LUJD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	114		70 - 130
o-Terphenyl	127		70 - 130

Lab Sample ID: 890-3511-1 MS Client Sample ID: BH07A

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 40260 Prep Batch: 40271

	Sample	Sample	Spike	IVIS	IVIS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	999	837.6		mg/Kg		84	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.0	U	999	1013		mg/Kg		101	70 - 130	

MS MS

Surrogate	%Recovery Qu	ıalifier	Limits
1-Chlorooctane	130		70 - 130
o-Terphenyl	122		70 - 130

Lab Sample ID: 890-3511-1 MSD Client Sample ID: BH07A

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 40260** Prep Batch: 40271

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Limit Analyte Result Qualifier Unit %Rec Limits RPD Gasoline Range Organics <50.0 U 997 849.7 85 20 70 - 130 mg/Kg (GRO)-C6-C10 <50.0 U 997 1017 102 70 - 130 20 Diesel Range Organics (Over mg/Kg

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	118		70 - 130
o-Terphenyl	122		70 - 130

Method: 300.0 - Anions, Ion Chromatography

C10-C28)

Lab Sample ID: MB 880-40006/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 40248

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	ma/Ka			11/23/22 05:43	1

QC Sample Results

Client: Ensolum Job ID: 890-3511-1
Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-40006/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Soluble

Analysis Batch: 40248

Spike LCS LCS

 Analyte
 Added Chloride
 Result 250
 Qualifier LCS LCS
 WRec Limits

 Chloride
 250
 264.7
 mg/Kg
 106
 90 - 110

Lab Sample ID: LCSD 880-40006/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble** Analysis Batch: 40248 Spike LCSD LCSD %Rec RPD Added Result Qualifier Unit Limit Analyte D %Rec Limits RPD

Chloride 250 262.7 mg/Kg 105 90 - 110 1 20

Lab Sample ID: 890-3511-2 MS

Matrix: Solid 250 262.7 mg/Kg 105 90 - 110 1 20

Client Sample ID: BH07B

Matrix: Solid
Analysis Batch: 40248

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 28.9 249 277.8 100 90 - 110 mg/Kg

Lab Sample ID: 890-3511-2 MSD

Matrix: Solid

Client Sample ID: BH07B

Prep Type: Soluble

Analysis Batch: 40248

Sample Sample MSD MSD RPD Spike %Rec Analyte Result Qualifier Added Qualifier Unit %Rec RPD Limit Result Limits 278.5 Chloride 28.9 249 100 90 - 110 0 20 mg/Kg

 Client: Ensolum
 Job ID: 890-3511-1

 Project/Site: SV KIM HARRIS #003
 SDG: 09C2041003

GC VOA

Analysis Batch: 40362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3511-1	BH07A	Total/NA	Solid	8021B	40434
890-3511-2	ВН07В	Total/NA	Solid	8021B	40434
890-3511-3	BH07C	Total/NA	Solid	8021B	40434
890-3511-4	BH09A	Total/NA	Solid	8021B	40434
890-3511-5	ВН09В	Total/NA	Solid	8021B	40434
890-3511-6	BH09C	Total/NA	Solid	8021B	40434
890-3511-7	BH01C	Total/NA	Solid	8021B	40434
890-3511-8	BH08A	Total/NA	Solid	8021B	40434
890-3511-9	BH08B	Total/NA	Solid	8021B	40434
MB 880-40407/5-A	Method Blank	Total/NA	Solid	8021B	40407
MB 880-40434/5-A	Method Blank	Total/NA	Solid	8021B	40434
LCS 880-40434/1-A	Lab Control Sample	Total/NA	Solid	8021B	40434
LCSD 880-40434/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	40434
890-3509-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	40434
890-3509-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	40434

Prep Batch: 40407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-40407/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 40434

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3511-1	BH07A	Total/NA	Solid	5035	
890-3511-2	ВН07В	Total/NA	Solid	5035	
890-3511-3	BH07C	Total/NA	Solid	5035	
890-3511-4	BH09A	Total/NA	Solid	5035	
890-3511-5	вноэв	Total/NA	Solid	5035	
890-3511-6	BH09C	Total/NA	Solid	5035	
890-3511-7	BH01C	Total/NA	Solid	5035	
890-3511-8	BH08A	Total/NA	Solid	5035	
890-3511-9	BH08B	Total/NA	Solid	5035	
MB 880-40434/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-40434/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-40434/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3509-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
890-3509-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 40436

Lab Sample ID 890-3511-10	Client Sample ID BH08C	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
MB 880-40436/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-40436/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-40436/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3511-10 MS	BH08C	Total/NA	Solid	5035	
890-3511-10 MSD	BH08C	Total/NA	Solid	5035	

Analysis Batch: 40561

Lab Sample ID	Client Sample ID	Prep Type	Matrix		p Batch
890-3511-1	BH07A	Total/NA	Solid	Total BTEX	
890-3511-2	BH07B	Total/NA	Solid	Total BTEX	
890-3511-3	BH07C	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

Page 21 of 34

 Client: Ensolum
 Job ID: 890-3511-1

 Project/Site: SV KIM HARRIS #003
 SDG: 09C2041003

GC VOA (Continued)

Analysis Batch: 40561 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
890-3511-4	BH09A	Total/NA	Solid	Total BTEX
890-3511-5	BH09B	Total/NA	Solid	Total BTEX
890-3511-6	BH09C	Total/NA	Solid	Total BTEX
890-3511-7	BH01C	Total/NA	Solid	Total BTEX
890-3511-8	BH08A	Total/NA	Solid	Total BTEX
890-3511-9	BH08B	Total/NA	Solid	Total BTEX
890-3511-10	BH08C	Total/NA	Solid	Total BTEX

Analysis Batch: 40689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3511-10	BH08C	Total/NA	Solid	8021B	40436
MB 880-40436/5-A	Method Blank	Total/NA	Solid	8021B	40436
LCS 880-40436/1-A	Lab Control Sample	Total/NA	Solid	8021B	40436
LCSD 880-40436/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	40436
890-3511-10 MS	BH08C	Total/NA	Solid	8021B	40436
890-3511-10 MSD	BH08C	Total/NA	Solid	8021B	40436

GC Semi VOA

Analysis Batch: 40260

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3511-1	BH07A	Total/NA	Solid	8015B NM	40271
890-3511-2	ВН07В	Total/NA	Solid	8015B NM	40271
890-3511-3	BH07C	Total/NA	Solid	8015B NM	40271
890-3511-4	ВН09А	Total/NA	Solid	8015B NM	40271
890-3511-5	ВН09В	Total/NA	Solid	8015B NM	40271
890-3511-6	вноэс	Total/NA	Solid	8015B NM	40271
890-3511-7	BH01C	Total/NA	Solid	8015B NM	40271
890-3511-8	BH08A	Total/NA	Solid	8015B NM	40271
890-3511-9	BH08B	Total/NA	Solid	8015B NM	40271
890-3511-10	BH08C	Total/NA	Solid	8015B NM	40271
MB 880-40271/1-A	Method Blank	Total/NA	Solid	8015B NM	40271
LCS 880-40271/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	40271
LCSD 880-40271/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	40271
890-3511-1 MS	BH07A	Total/NA	Solid	8015B NM	40271
890-3511-1 MSD	BH07A	Total/NA	Solid	8015B NM	40271

Prep Batch: 40271

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3511-1	BH07A	Total/NA	Solid	8015NM Prep	
890-3511-2	внотв	Total/NA	Solid	8015NM Prep	
890-3511-3	BH07C	Total/NA	Solid	8015NM Prep	
890-3511-4	BH09A	Total/NA	Solid	8015NM Prep	
890-3511-5	ВН09В	Total/NA	Solid	8015NM Prep	
890-3511-6	BH09C	Total/NA	Solid	8015NM Prep	
890-3511-7	BH01C	Total/NA	Solid	8015NM Prep	
890-3511-8	BH08A	Total/NA	Solid	8015NM Prep	
890-3511-9	BH08B	Total/NA	Solid	8015NM Prep	
890-3511-10	BH08C	Total/NA	Solid	8015NM Prep	
MB 880-40271/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-40271/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

3

4

6

ŏ

10

12

 Client: Ensolum
 Job ID: 890-3511-1

 Project/Site: SV KIM HARRIS #003
 SDG: 09C2041003

GC Semi VOA (Continued)

Prep Batch: 40271 (Continued)

Lab Sar	nple ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 8	80-40271/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-351	1-1 MS	ВН07А	Total/NA	Solid	8015NM Prep	
890-351	1-1 MSD	ВН07А	Total/NA	Solid	8015NM Prep	

Analysis Batch: 40457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3511-1	BH07A	Total/NA	Solid	8015 NM	_
890-3511-2	ВН07В	Total/NA	Solid	8015 NM	
890-3511-3	BH07C	Total/NA	Solid	8015 NM	
890-3511-4	ВН09А	Total/NA	Solid	8015 NM	
890-3511-5	BH09B	Total/NA	Solid	8015 NM	
890-3511-6	BH09C	Total/NA	Solid	8015 NM	
890-3511-7	BH01C	Total/NA	Solid	8015 NM	
890-3511-8	BH08A	Total/NA	Solid	8015 NM	
890-3511-9	BH08B	Total/NA	Solid	8015 NM	
890-3511-10	BH08C	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 40006

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3511-1	ВН07А	Soluble	Solid	DI Leach	
890-3511-2	ВН07В	Soluble	Solid	DI Leach	
890-3511-3	BH07C	Soluble	Solid	DI Leach	
890-3511-4	BH09A	Soluble	Solid	DI Leach	
890-3511-5	BH09B	Soluble	Solid	DI Leach	
890-3511-6	BH09C	Soluble	Solid	DI Leach	
890-3511-7	BH01C	Soluble	Solid	DI Leach	
890-3511-8	BH08A	Soluble	Solid	DI Leach	
890-3511-9	BH08B	Soluble	Solid	DI Leach	
890-3511-10	BH08C	Soluble	Solid	DI Leach	
MB 880-40006/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-40006/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-40006/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3511-2 MS	BH07B	Soluble	Solid	DI Leach	
890-3511-2 MSD	ВН07В	Soluble	Solid	DI Leach	

Analysis Batch: 40248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3511-1	BH07A	Soluble	Solid	300.0	40006
890-3511-2	ВН07В	Soluble	Solid	300.0	40006
890-3511-3	BH07C	Soluble	Solid	300.0	40006
890-3511-4	ВН09А	Soluble	Solid	300.0	40006
890-3511-5	ВН09В	Soluble	Solid	300.0	40006
890-3511-6	BH09C	Soluble	Solid	300.0	40006
890-3511-7	BH01C	Soluble	Solid	300.0	40006
890-3511-8	BH08A	Soluble	Solid	300.0	40006
890-3511-9	BH08B	Soluble	Solid	300.0	40006
890-3511-10	BH08C	Soluble	Solid	300.0	40006
MB 880-40006/1-A	Method Blank	Soluble	Solid	300.0	40006
LCS 880-40006/2-A	Lab Control Sample	Soluble	Solid	300.0	40006

Eurofins Carlsbad

2000

4

8

9

11

Client: Ensolum Job ID: 890-3511-1 Project/Site: SV KIM HARRIS #003

SDG: 09C2041003

HPLC/IC (Continued)

Analysis Batch: 40248 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-40006/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	40006
890-3511-2 MS	ВН07В	Soluble	Solid	300.0	40006
890-3511-2 MSD	ВН07В	Soluble	Solid	300.0	40006

Job ID: 890-3511-1 Client: Ensolum Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Lab Sample ID: 890-3511-1 Client Sample ID: BH07A

Date Collected: 11/17/22 09:20 **Matrix: Solid** Date Received: 11/17/22 16:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 40434 Total/NA Prep 4.98 g 5 mL 11/28/22 11:03 MNR **EET MID** 8021B Total/NA Analysis 1 5 mL 5 mL 40362 11/29/22 03:57 MNR **EET MID** Total/NA Analysis Total BTEX 40561 11/29/22 09:20 SM **EET MID** Total/NA 8015 NM **EET MID** Analysis 1 40457 11/28/22 12:39 SM Total/NA 8015NM Prep 40271 11/23/22 08:58 EET MID Prep 10.01 g 10 mL AM Total/NA Analysis 8015B NM 1 uL 1 uL 40260 11/23/22 11:38 SM **EET MID** Soluble 5.05 g 50 mL 40006 11/20/22 12:14 СН EET MID Leach DI Leach Soluble Analysis 300.0 50 mL 50 mL 40248 11/23/22 07:14 SMC **EET MID**

Client Sample ID: BH07B Lab Sample ID: 890-3511-2

Date Collected: 11/17/22 09:30 Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	40434	11/28/22 11:03	MNR	EET MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	40362	11/29/22 04:18	MNR	EET MIC
Total/NA	Analysis	Total BTEX		1			40561	11/29/22 09:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	40271	11/23/22 08:58	AM	EET MIC
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40260	11/23/22 12:44	SM	EET MIC
Soluble	Leach	DI Leach			5.03 g	50 mL	40006	11/20/22 12:14	СН	EET MIC
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 07:20	SMC	EET MII

Client Sample ID: BH07C Lab Sample ID: 890-3511-3 Date Collected: 11/17/22 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	40434	11/28/22 11:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40362	11/29/22 04:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40561	11/29/22 09:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	40271	11/23/22 08:58	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40260	11/23/22 13:06	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	40006	11/20/22 12:14	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 07:37	SMC	EET MID

Lab Sample ID: 890-3511-4 Client Sample ID: BH09A Date Collected: 11/17/22 11:30 **Matrix: Solid**

Date Received: 11/17/22 16:30

Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	40434	11/28/22 11:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40362	11/29/22 04:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40561	11/29/22 09:20	SM	EET MID

Eurofins Carlsbad

Page 25 of 34

Matrix: Solid

Matrix: Solid

Client: Ensolum Job ID: 890-3511-1 SDG: 09C2041003 Project/Site: SV KIM HARRIS #003

Client Sample ID: BH09A Lab Sample ID: 890-3511-4

Date Collected: 11/17/22 11:30 Matrix: Solid Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	40271	11/23/22 08:58	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40260	11/23/22 13:28	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	40006	11/20/22 12:14	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 07:42	SMC	EET MID

Client Sample ID: BH09B Lab Sample ID: 890-3511-5

Date Collected: 11/17/22 11:40 **Matrix: Solid**

Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	40434	11/28/22 11:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40362	11/29/22 05:19	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40561	11/29/22 09:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	40271	11/23/22 08:58	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40260	11/23/22 13:49	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	40006	11/20/22 12:14	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 07:59	SMC	EET MID

Client Sample ID: BH09C Lab Sample ID: 890-3511-6 Date Collected: 11/17/22 11:50 **Matrix: Solid**

Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	40434	11/28/22 11:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40362	11/29/22 05:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40561	11/29/22 09:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	40271	11/23/22 08:58	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40260	11/23/22 14:11	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	40006	11/20/22 12:14	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 08:05	SMC	EET MID

Lab Sample ID: 890-3511-7 **Client Sample ID: BH01C**

Date Collected: 11/17/22 13:10 Date Received: 11/17/22 16:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	40434	11/28/22 11:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40362	11/29/22 06:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40561	11/29/22 09:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.03 g 1 uL	10 mL 1 uL	40271 40260	11/23/22 08:58 11/23/22 14:33	AM SM	EET MID EET MID

Eurofins Carlsbad

Page 26 of 34

Matrix: Solid

Job ID: 890-3511-1

Client: Ensolum SDG: 09C2041003 Project/Site: SV KIM HARRIS #003

Client Sample ID: BH01C Lab Sample ID: 890-3511-7

Date Collected: 11/17/22 13:10 Matrix: Solid Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	40006	11/20/22 12:14	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 08:11	SMC	EET MID

Client Sample ID: BH08A Lab Sample ID: 890-3511-8

Date Collected: 11/17/22 13:30 **Matrix: Solid**

Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	40434	11/28/22 11:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40362	11/29/22 06:20	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40561	11/29/22 09:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	40271	11/23/22 08:58	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40260	11/23/22 14:55	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	40006	11/20/22 12:14	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 08:16	SMC	EET MID

Client Sample ID: BH08B Lab Sample ID: 890-3511-9

Date Collected: 11/17/22 13:40 **Matrix: Solid** Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	40434	11/28/22 11:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40362	11/29/22 06:41	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40561	11/29/22 09:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	40271	11/23/22 08:58	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40260	11/23/22 15:17	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	40006	11/20/22 12:14	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 08:22	SMC	EET MID

Client Sample ID: BH08C Lab Sample ID: 890-3511-10 Date Collected: 11/17/22 13:50 **Matrix: Solid**

Date Received: 11/17/22 16:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	40436	11/28/22 11:21	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40689	11/30/22 17:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40561	12/01/22 13:21	SM	EET MID
Total/NA	Analysis	8015 NM		1			40457	11/28/22 12:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	40271	11/23/22 08:58	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40260	11/23/22 15:39	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	40006	11/20/22 12:14	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40248	11/23/22 08:27	SMC	EET MID

Lab Chronicle

Client: Ensolum

Project/Site: SV KIM HARRIS #003

Job ID: 890-3511-1 SDG: 09C2041003

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum
Project/Site: SV KIM HARRIS #003
Job ID: 890-3511-1
SDG: 09C2041003

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		ogram	Identification Number	Expiration Date 06-30-23	
		ELAP	T104704400-22-24		
The following analytes	ara inaludad in this ranget hu	t tha labaratam, is not sortifi	and the state of the control of the state of		
the agency does not of	• '	it the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes to	
,	• '	Matrix	ed by the governing authority. This list ma	ay include analytes to	
the agency does not of	fer certification.	•	, , ,	ay include analytes to	

3

4

9

4 4

Method Summary

Client: Ensolum Job ID: 890-3511-1 Project/Site: SV KIM HARRIS #003

SDG: 09C2041003

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: SV KIM HARRIS #003

Job ID: 890-3511-1

SDG: 09C2041003

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3511-1	BH07A	Solid	11/17/22 09:20	11/17/22 16:30	6
890-3511-2	ВН07В	Solid	11/17/22 09:30	11/17/22 16:30	12
890-3511-3	BH07C	Solid	11/17/22 09:45	11/17/22 16:30	24
890-3511-4	ВН09А	Solid	11/17/22 11:30	11/17/22 16:30	6
890-3511-5	ВН09В	Solid	11/17/22 11:40	11/17/22 16:30	12
890-3511-6	BH09C	Solid	11/17/22 11:50	11/17/22 16:30	24
890-3511-7	BH01C	Solid	11/17/22 13:10	11/17/22 16:30	36
890-3511-8	BH08A	Solid	11/17/22 13:30	11/17/22 16:30	6
890-3511-9	BH08B	Solid	11/17/22 13:40	11/17/22 16:30	12
890-3511-10	BH08C	Solid	11/17/22 13:50	11/17/22 16:30	36

Houston Houston Midland, Senco EL Paso, Hobbs,			i M	7
Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Environment Testing Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 885-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	www.xenco.			
Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Environment Testing Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Xenco EL Paso, TX (915) 885-3443, Lubbock, TX (806) 794-1296	M (575) 988-3199	Hobbs, NM (575) 392-7550, Carlsbad, N		
Chain of custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Environment Testing Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	< (806) 794-1296	EL Paso, TX (915) 585-3443, Lubbock, T	Xenco	
		Houston, TX (281) 240-4200, Dallas, T. Midland, TX (432) 704-5440, San Antonio	Environment Testing	eurotins
	ody	Chain of Custody		

Cooler Custody Seals: SAMPLE RECEIPT Sampler's Name: Project Number Circle Method(s) and Metal(s) to be analyzed Samples Received Intact: City, State ZIP: Company Name: Sample Custody Seals: roject Location: f service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control tice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions Re/inquished by: (Signature) Total 200.7 / 6010 ofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously nego Sample Identification Yes No THIN 200.8 / 6020: Temp Blank: NO NIA Matrix Correction Factor: Received by: (Signature) 11-12 Sampled Corrected Temperature: Thermometer ID: 1-17-27 Yes No 1772 47-22 Date 8RCRA 13PPM Texas 11 Medebate: Wet Ice: TAT starts the day received by Routine the lab, if received by 4:30pm Sampled Time TCLP/SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Turn Around MOOH Company Name: City, State ZIP: Depth Rush 7,4 Yes No Comp Grab/ Al Sb As Ba Cont Pres. # of **Parameters** CIKYLIM CYN Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se 600 Relinquished by: (Signature) ANALYSIS REQUEST 890-3511 Chain of Custody Reporting: Level III 🗌 Level III 📗 PST/UST 📗 TRRP 📗 State of Project: Deliverables: Program: UST/PST [Received by: (Signature) EDD [Ag SiO₂ Hg: 1631 / 245.1 / 7470 / 7471 PRP Na Sr Tl Sn U V Zn ADaPT 🗌 Brownfields 🗌 HCL: HC Na₂S₂O₃: NaSO ₃ H3PO4: HP H250 4: H Cool: Cool None: NO Zn Acetate+NaOH: Zn NaHSO 4: NABIS NaOH+Ascorbic Acid: SAPC ments Preservative Codes Sample Comments Other: RRC 🗌 Date/Time HNO 3: HN DI Water: H2O NaOH: Na MeOH: Me 9 Superfund | Level IV

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-3511-1 SDG Number: 09C2041003

Login Number: 3511 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-3511-1

SDG Number: 09C2041003

Login Number: 3511 **List Source: Eurofins Midland** List Number: 2

List Creation: 11/21/22 08:46 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Daniel Moir Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Generated 11/29/2022 9:00:53 AM

JOB DESCRIPTION

SV KIM HARRIS #003 SDG NUMBER 09C2041003

JOB NUMBER

890-3539-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 11/29/2022 9:00:53 AM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 1

12

13

Client: Ensolum
Project/Site: SV KIM HARRIS #003
Laboratory Job ID: 890-3539-1
SDG: 09C2041003

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Racaint Chacklists	21

2

3

4

6

8

10

12

13

Definitions/Glossary

Job ID: 890-3539-1 Client: Ensolum Project/Site: SV KIM HARRIS #003

SDG: 09C2041003

Qualifiers

GC VOA

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits. S1-Surrogate recovery exceeds control limits, low biased. Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

MCL

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU

Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: SV KIM HARRIS #003

Job ID: 890-3539-1

SDG: 09C2041003

Job ID: 890-3539-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3539-1

Receipt

The samples were received on 11/18/2022 4:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-40466 and analytical batch 880-40361 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-21941-A-1-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-21941-A-1-F). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-40210 and analytical batch 880-40168 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Ensolum Job ID: 890-3539-1 Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Client Sample ID: FS01

Lab Sample ID: 890-3539-1 Date Collected: 11/17/22 12:50 Matrix: Solid Date Received: 11/18/22 16:00

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 12:53	11/29/22 07:10	
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 12:53	11/29/22 07:10	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 12:53	11/29/22 07:10	
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/28/22 12:53	11/29/22 07:10	
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 12:53	11/29/22 07:10	
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/28/22 12:53	11/29/22 07:10	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	74		70 - 130			11/28/22 12:53	11/29/22 07:10	
1,4-Difluorobenzene (Surr)	96		70 - 130			11/28/22 12:53	11/29/22 07:10	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/29/22 09:34	-
Total TPH	318		50.0	mg/Kg			11/23/22 11:46	
Mathad. CWO4C 004ED NM Disc	nal Damas Over	rice (DDO)	(00)					
Method: SW846 8015B NM - Dies Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0		50.0	mg/Kg	_ <u>-</u>	11/22/22 11:24	11/23/22 03:52	
(GRO)-C6-C10				3. 3				
Diesel Range Organics (Over	318		50.0	mg/Kg		11/22/22 11:24	11/23/22 03:52	
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/22/22 11:24	11/23/22 03:52	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
1-Chlorooctane	98		70 - 130			11/22/22 11:24	11/23/22 03:52	
o-Terphenyl	98		70 - 130			11/22/22 11:24	11/23/22 03:52	
Method: MCAWW 300.0 - Anions			oluble					
Method: MCAWW 300.0 - Anions Analyte		ography - So Qualifier	RL 5.05	Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: FS02 Lab Sample ID: 890-3539-2

Date Collected: 11/17/22 13:00 Date Received: 11/18/22 16:00

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/28/22 12:53	11/29/22 07:30	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/28/22 12:53	11/29/22 07:30	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/28/22 12:53	11/29/22 07:30	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/28/22 12:53	11/29/22 07:30	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/28/22 12:53	11/29/22 07:30	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/28/22 12:53	11/29/22 07:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130			11/28/22 12:53	11/29/22 07:30	1

Eurofins Carlsbad

Matrix: Solid

Client Sample Results

Client: Ensolum Job ID: 890-3539-1
Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Client Sample ID: FS02 Lab Sample ID: 890-3539-2

Date Collected: 11/17/22 13:00 Matrix: Solid
Date Received: 11/18/22 16:00

Sample Depth: 6

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)			70 - 130			11/28/22 12:53	11/29/22 07:30	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/29/22 09:34	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	110		49.8	mg/Kg			11/23/22 11:46	
Analyte Gasoline Range Organics (GRO)-C6-C10	<49.8	Qualifier U	49.8	Mg/Kg	D	Prepared 11/22/22 11:24	Analyzed 11/23/22 04:14	Dil Fa
Gasoline Range Organics					— <u> </u>			
Diesel Range Organics (Over C10-C28)	110		49.8	mg/Kg		11/22/22 11:24	11/23/22 04:14	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		11/22/22 11:24	11/23/22 04:14	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	104		70 - 130			11/22/22 11:24	11/23/22 04:14	
o-Terphenyl	102		70 - 130			11/22/22 11:24	11/23/22 04:14	
	Jan Chramata	aranhy - Se	oluble					
Method: MCAWW 300.0 - Anions	s, ion Unromate	grapity - St	Jiubie					
Method: MCAWW 300.0 - Anions Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

2

ວ

9

10

12

4 4

Surrogate Summary

 Client: Ensolum
 Job ID: 890-3539-1

 Project/Site: SV KIM HARRIS #003
 SDG: 09C2041003

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-21941-A-1-D MS	Matrix Spike	76	105	
880-21941-A-1-E MSD	Matrix Spike Duplicate	69 S1-	102	
890-3539-1	FS01	74	96	
890-3539-2	FS02	74	111	
LCS 880-40466/1-A	Lab Control Sample	84	111	
LCSD 880-40466/2-A	Lab Control Sample Dup	82	94	
MB 880-40412/5-A	Method Blank	74	110	
MB 880-40466/5-A	Method Blank	73	97	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
820-6564-A-1-E MS	Matrix Spike	99	95
820-6564-A-1-F MSD	Matrix Spike Duplicate	117	97
890-3539-1	FS01	98	98
890-3539-2	FS02	104	102
LCS 880-40210/2-A	Lab Control Sample	104	103
LCSD 880-40210/3-A	Lab Control Sample Dup	115	102
MB 880-40210/1-A	Method Blank	135 S1+	135 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Released to Imaging: 1/13/2023 10:08:17 AM

2

5

8

9

11

13

Client: Ensolum Job ID: 890-3539-1 SDG: 09C2041003 Project/Site: SV KIM HARRIS #003

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-40412/5-A

Analysis Batch: 40361

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 40412

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 10:23	11/28/22 12:29	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 10:23	11/28/22 12:29	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 10:23	11/28/22 12:29	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/28/22 10:23	11/28/22 12:29	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 10:23	11/28/22 12:29	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/28/22 10:23	11/28/22 12:29	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepai	red	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130	11/28/22	10:23	11/28/22 12:29	1
1,4-Difluorobenzene (Surr)	110		70 - 130	11/28/22	10:23	11/28/22 12:29	1

Lab Sample ID: MB 880-40466/5-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 40361

Prep Type: Total/NA

Prep Batch: 40466

	IVID	INID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/28/22 12:53	11/29/22 00:05	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/28/22 12:53	11/29/22 00:05	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/28/22 12:53	11/29/22 00:05	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/28/22 12:53	11/29/22 00:05	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/28/22 12:53	11/29/22 00:05	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/28/22 12:53	11/29/22 00:05	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130	11/28/22 12:53	11/29/22 00:05	1
1,4-Difluorobenzene (Surr)	97		70 - 130	11/28/22 12:53	11/29/22 00:05	1

Lab Sample ID: LCS 880-40466/1-A

Matrix: Solid

Analysis Batch: 40361

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 40466

		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Benzene	0.100	0.1040		mg/Kg		104	70 - 130	
	Toluene	0.100	0.1006		mg/Kg		101	70 - 130	
	Ethylbenzene	0.100	0.09217		mg/Kg		92	70 - 130	
İ	m-Xylene & p-Xylene	0.200	0.1598		mg/Kg		80	70 - 130	
	o-Xylene	0.100	0.07997		mg/Kg		80	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	84	70 _ 130
1.4-Difluorobenzene (Surr)	111	70 - 130

Lab Sample ID: LCSD 880-40466/2-A

Matrix: Solid

Analysis Batch: 40361

Client Sample ID: Lab	Control Sample Dup
	Dren Trees Total/NA

Prep Type: Total/NA

Prep Batch: 40466

	Spike	LCSD LCSD				70 KeC		KFD	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.08207	mg/Kg		82	70 - 130	24	35	

LCCD LCCD

Cnika

QC Sample Results

Job ID: 890-3539-1 Client: Ensolum Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-40466/2-A

Matrix: Solid Analysis Batch: 40361 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 40466

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit D Toluene 0.100 0.1103 110 70 - 130 35 mg/Kg 9 Ethylbenzene 0.100 0.1123 mg/Kg 112 70 - 130 20 35 0.200 m-Xylene & p-Xylene 0.2024 mg/Kg 101 70 - 130 35 24 o-Xylene 0.100 0.09966 mg/Kg 100 70 - 130 22 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	82		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 880-21941-A-1-D MS

Matrix: Solid

Analysis Batch: 40361

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 40466

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Benzene U F1 0.0996 0.03139 F1 32 <0.00200 mg/Kg 70 - 130 Toluene <0.00200 U F1 0.0996 0.02826 F1 28 70 - 130 mg/Kg Ethylbenzene 0.0996 0.02733 F1 27 70 - 130 < 0.00200 UF1 mg/Kg m-Xylene & p-Xylene 0.199 0.04741 F1 24 70 - 130 <0.00401 UF1 mg/Kg o-Xylene <0.00200 UF1 0.0996 0.02598 F1 mg/Kg 26 70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	76	70 - 130
1,4-Difluorobenzene (Surr)	105	70 - 130

Lab Sample ID: 880-21941-A-1-E MSD

Matrix: Solid

Analysis Batch: 40361

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 40466

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.0996	0.03831	F1	mg/Kg		38	70 - 130	20	35
Toluene	<0.00200	U F1	0.0996	0.02919	F1	mg/Kg		29	70 - 130	3	35
Ethylbenzene	<0.00200	U F1	0.0996	0.02670	F1	mg/Kg		27	70 - 130	2	35
m-Xylene & p-Xylene	<0.00401	U F1	0.199	0.04101	F1	mg/Kg		21	70 - 130	14	35
o-Xylene	<0.00200	U F1	0.0996	0.02211	F1	mg/Kg		22	70 - 130	16	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-40210/1-A

Matrix: Solid

Analysis Batch: 40168

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 40210

MB MB Analyte Result Qualifier RL Unit Prepared <50.0 U 50.0 mg/Kg 11/22/22 11:24 11/22/22 19:48 Gasoline Range Organics (GRO)-C6-C10

Client: Ensolum Job ID: 890-3539-1 Project/Site: SV KIM HARRIS #003

SDG: 09C2041003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-40210/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 40168 Prep Batch: 40210

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/22/22 11:24	11/22/22 19:48	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/22/22 11:24	11/22/22 19:48	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	135	S1+	70 - 130			11/22/22 11:24	11/22/22 19:48	1
o-Terphenvl	135	S1+	70 - 130			11/22/22 11:24	11/22/22 19:48	1

Lab Sample ID: LCS 880-40	210/2-A						Client	Sample	ID: Lab Cont	rol Sample
Matrix: Solid									Prep Type	e: Total/NA
Analysis Batch: 40168									Prep Ba	tch: 40210
_			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics			1000	994.7		mg/Kg		99	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over			1000	955.7		mg/Kg		96	70 - 130	
C10-C28)										
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctane	104		70 - 130							
o-Terphenyl	103		70 - 130							

Lab Sample ID: LCSD 880-40210/3-A Matrix: Solid Analysis Batch: 40168				Clier	nt Sam	nple ID:		ol Sampl Type: To Batch:	tal/NA
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	869.2		mg/Kg		87	70 - 130	13	20
Diesel Range Organics (Over C10-C28)	1000	926.3		mg/Kg		93	70 - 130	3	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	115		70 - 130
o-Terphenyl	102		70 - 130

Lab Sample ID: 820-6564-A- Matrix: Solid Analysis Batch: 40168	1-E MS							Client	Prep	: Matrix Spike Type: Total/NA Batch: 40210
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	822.5		mg/Kg		80	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U	999	906.5		mg/Kg		88	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctane	99		70 - 130							
o-Terphenyl	95		70 - 130							

Lab Sample ID: 820-6564-A-1-F MSD

Client: Ensolum Job ID: 890-3539-1 Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 40210

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U	998	818.0		mg/Kg		80	70 - 130	1	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	998	934.6		mg/Kg		91	70 - 130	3	20
C10 C20)											

C10-C28)

Matrix: Solid

Analysis Batch: 40168

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	117		70 - 130
o-Terphenyl	97		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-40013/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Soluble

Analysis Batch: 40328

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			11/24/22 02:13	1

Lab Sample ID: LCS 880-40013/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble Matrix: Solid**

Analysis Batch: 40328

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	262.4	-	mg/Kg		105	90 - 110	

Lab Sample ID: LCSD 880-40013/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 40328

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	262.6		mg/Kg		105	90 - 110	0	20	

Lab Sample ID: 880-21769-A-7-B MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 40328

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.3		252	276.3		ma/Ka	_	102	90 110	

Lab Sample ID: 880-21769-A-7-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 40328

Alialysis Datcil. 40320											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	19.3		252	277.0		mg/Kg		102	90 - 110	0	20

Eurofins Carlsbad

Prep Type: Soluble

 Client: Ensolum
 Job ID: 890-3539-1

 Project/Site: SV KIM HARRIS #003
 SDG: 09C2041003

GC VOA

Analysis Batch: 40361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3539-1	FS01	Total/NA	Solid	8021B	40466
890-3539-2	FS02	Total/NA	Solid	8021B	40466
MB 880-40412/5-A	Method Blank	Total/NA	Solid	8021B	40412
MB 880-40466/5-A	Method Blank	Total/NA	Solid	8021B	40466
LCS 880-40466/1-A	Lab Control Sample	Total/NA	Solid	8021B	40466
LCSD 880-40466/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	40466
880-21941-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	40466
880-21941-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	40466

Prep Batch: 40412

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-40412/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 40466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3539-1	FS01	Total/NA	Solid	5035	
890-3539-2	FS02	Total/NA	Solid	5035	
MB 880-40466/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-40466/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-40466/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-21941-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-21941-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 40573

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3539-1	FS01	Total/NA	Solid	Total BTEX	
890-3539-2	FS02	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 40168

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3539-1	FS01	Total/NA	Solid	8015B NM	40210
890-3539-2	FS02	Total/NA	Solid	8015B NM	40210
MB 880-40210/1-A	Method Blank	Total/NA	Solid	8015B NM	40210
LCS 880-40210/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	40210
LCSD 880-40210/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	40210
820-6564-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	40210
820-6564-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	40210

Prep Batch: 40210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3539-1	FS01	Total/NA	Solid	8015NM Prep	
890-3539-2	FS02	Total/NA	Solid	8015NM Prep	
MB 880-40210/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-40210/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-40210/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
820-6564-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
820-6564-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

9

2

5

_

8

9

12

Client: Ensolum Project/Site: SV KIM HARRIS #003

Job ID: 890-3539-1

SDG: 09C2041003

GC Semi VOA

Analysis Batch: 40302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3539-1	FS01	Total/NA	Solid	8015 NM	
890-3539-2	FS02	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 40013

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3539-1	FS01	Soluble	Solid	DI Leach	
890-3539-2	FS02	Soluble	Solid	DI Leach	
MB 880-40013/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-40013/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-40013/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-21769-A-7-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-21769-A-7-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 40328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3539-1	FS01	Soluble	Solid	300.0	40013
890-3539-2	FS02	Soluble	Solid	300.0	40013
MB 880-40013/1-A	Method Blank	Soluble	Solid	300.0	40013
LCS 880-40013/2-A	Lab Control Sample	Soluble	Solid	300.0	40013
LCSD 880-40013/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	40013
880-21769-A-7-B MS	Matrix Spike	Soluble	Solid	300.0	40013
880-21769-A-7-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	40013

Client: Ensolum

Job ID: 890-3539-1 Project/Site: SV KIM HARRIS #003 SDG: 09C2041003

Client Sample ID: FS01 Lab Sample ID: 890-3539-1

Date Collected: 11/17/22 12:50 Matrix: Solid Date Received: 11/18/22 16:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	40466	11/28/22 12:53	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40361	11/29/22 07:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40573	11/29/22 09:34	SM	EET MID
Total/NA	Analysis	8015 NM		1			40302	11/23/22 11:46	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	40210	11/22/22 11:24	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40168	11/23/22 03:52	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	40013	11/20/22 12:25	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40328	11/24/22 05:00	CH	EET MID

Client Sample ID: FS02 Lab Sample ID: 890-3539-2

Date Collected: 11/17/22 13:00 Matrix: Solid Date Received: 11/18/22 16:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	40466	11/28/22 12:53	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40361	11/29/22 07:30	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40573	11/29/22 09:34	SM	EET MID
Total/NA	Analysis	8015 NM		1			40302	11/23/22 11:46	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	40210	11/22/22 11:24	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40168	11/23/22 04:14	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	40013	11/20/22 12:25	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40328	11/24/22 05:06	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-3539-1 Project/Site: SV KIM HARRIS #003

SDG: 09C2041003

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes the agency does not of	• •	ut the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

Method Summary

Job ID: 890-3539-1 Client: Ensolum Project/Site: SV KIM HARRIS #003

SDG: 09C2041003

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: SV KIM HARRIS #003

Job ID: 890-3539-1

SDG: 09C2041003

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3539-1	FS01	Solid	11/17/22 12:50	11/18/22 16:00	6
890-3539-2	FS02	Solid	11/17/22 13:00	11/18/22 16:00	6

Circle Method(s) and Metal(s) to be analyzed

Total 200.7 / 6010

200.8 / 6020:

voice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions

8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Tl Sn U V Zn

Hg: 1631 / 245.1 / 7470 / 7471

TCLP / SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U

eurofins Environment Testing Xenco

Phone:

City, State ZIP:

ddress:

Project Manager: Company Name:

124

Bill to: (If different)

Company Name:

Address: City, State ZIP:

SAMPLE RECEIPT

Temp Blank:

No

Wet Ice:

No

Parameters

SN

Thermometer ID:

Correction Factor:

0.0

890-3539 Chain of Custody

NaHSO 4: NABIS Na₂S₂O₃: NaSO 3

Zn Acetate+NaOH: Zn

NaOH+Ascorbic Acid: SAPC

Sample Comments

None: NO Cool: Cool HCL: HC H₂SO ₄: H₂

NaOH: Na

H₃PO₄: HP

Project Name:
Project Number:
Project Location:
Sampler's Name:

OTCOMONTO

Due Date:

VRoutine

Rush

Code

ANALYSIS REQUEST

Preservative Codes

MeOH: Me HNO 3: HN DI Water: H₂O

Turn Around

Email:

TAT starts the day received by the lab, if received by 4:30pm

Samples Received Intact: Cooler Custody Seals:

Yes No

Yes No

Temperature Reading:

Corrected Temperature:

Sample Custody Seals:

Sample Identification

Matrix

Sampled

Sampled

Depth

Grab/ Comp

of

250

Date

Time

Houstor Midland, T

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Micliand, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

Chain of Custody

o, TX (210) 509-3334	Work Order No:
X (806) 794-1296	
VM (575) 988-3199	
	www.xenco.com Page of
	Work Order Comments
	Program: UST/PST PRP Brownfields RRC Superfund
	State of Project:
	Reporting: Level II Level III PST/UST TRRP Level IV
CON	Deliverables: EDD ☐ ADaPT ☐ Other:

		6			
		4			
		00	ag1-c/0,2/11/1	Mu W	
Date/Time	Received by: (Signature)	Relinquished by: (Signature)	Date/Time	A Received by: (Signature)	Relinquished by: (Signature)

Page 19 of 22

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

eurofins :

Chain of Custody

Revised Date: 08/25/2020 Rev. 2020.

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

Date/Time

Received by: (Signature)

d by: (Signature)

quish

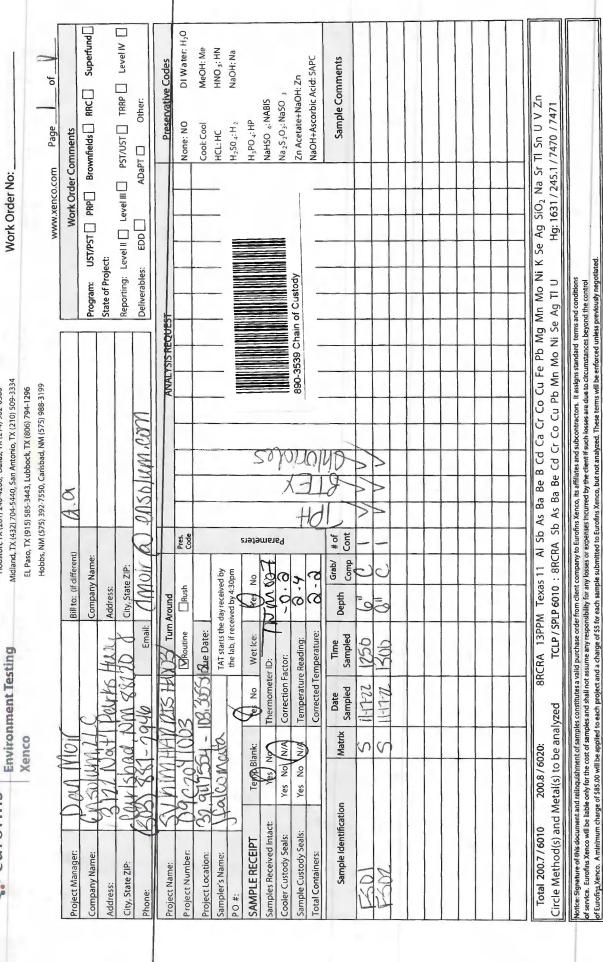
Relin

1

2

3

4


6

9

11 12

13 14

in.

Login Sample Receipt Checklist

 Client: Ensolum
 Job Number: 890-3539-1

 SDG Number: 09C2041003

Login Number: 3539 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

y 100

3

4

6

8

10

12

13

Login Sample Receipt Checklist

Job Number: 890-3539-1 SDG Number: 09C2041003

List Source: Eurofins Midland

List Creation: 11/22/22 11:47 AM

Login Number: 3539 List Number: 2

Client: Ensolum

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

3

4

5

7

9

11

Released to Imaging: 1/13/2023 10:08:17 AM

Environment Testing

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3334-1

Laboratory Sample Delivery Group: 09C2041003

Client Project/Site: SV Kim Harris #003

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Daniel Moir

MAMER

Authorized for release by: 11/3/2022 12:32:46 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 1/13/2023 10:08:17 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

<u>ی</u>

5

6

R

9

Client: Ensolum
Project/Site: SV Kim Harris #003
Laboratory Job ID: 890-3334-1
SDG: 09C2041003

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	13
QC Sample Results	15
QC Association Summary	23
Lab Chronicle	27
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	34

Definitions/Glossary

Client: Ensolum Job ID: 890-3334-1 Project/Site: SV Kim Harris #003

SDG: 09C2041003

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
HDI C/IC	

HPLC/IC

ualifier Description
l

U Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit** PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: SV Kim Harris #003

Job ID: 890-3334-1

SDG: 09C2041003

Job ID: 890-3334-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3334-1

Receipt

The samples were received on 10/28/2022 4:15 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: PH10A (890-3334-1), PH10B (890-3334-2), PH10C (890-3334-3), PH08A (890-3334-4), PH08B (890-3334-5), PH08C (890-3334-6), PH09A (890-3334-7), PH09B (890-3334-8) and PH09C (890-3334-9).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (890-3322-A-2-D MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 880-38325 and analytical batch 880-38323 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8015MOD_NM: The matrix spike duplicate (MSD) recoveries for preparation batch 880-38417 and analytical batch 880-38323 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-38436/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The method blank for preparation batch 880-38436 and analytical batch 880-38457 contained Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-38436 and analytical batch 880-38457 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

4

7

9

IU

12

Matrix: Solid

Client: Ensolum Job ID: 890-3334-1
Project/Site: SV Kim Harris #003 SDG: 09C2041003

Client Sample ID: PH10A Lab Sample ID: 890-3334-1

Date Collected: 10/28/22 08:50
Date Received: 10/28/22 16:15

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		11/01/22 13:17	11/02/22 04:06	1
Toluene	<0.00202	U	0.00202	mg/Kg		11/01/22 13:17	11/02/22 04:06	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		11/01/22 13:17	11/02/22 04:06	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		11/01/22 13:17	11/02/22 04:06	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		11/01/22 13:17	11/02/22 04:06	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		11/01/22 13:17	11/02/22 04:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			11/01/22 13:17	11/02/22 04:06	1
1,4-Difluorobenzene (Surr)	106		70 - 130			11/01/22 13:17	11/02/22 04:06	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			11/02/22 10:02	1
Method: SW846 8015 NM - Diese	ol Pango Organ	ice (DPO) ((SC)					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg		<u> </u>	11/03/22 10:18	1
-								
								•
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					·
		nics (DRO) Qualifier	(GC)	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	• •	<mark>Unit</mark> mg/Kg	<u>D</u>	Prepared 11/01/22 16:40	Analyzed 11/03/22 02:19	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	RL		<u> </u>	<u>.</u>		1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)		Qualifier U	RL 49.9	mg/Kg	<u>D</u>	11/01/22 16:40	11/03/22 02:19	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9	Qualifier U U U	RL 49.9 49.9	mg/Kg	<u>D</u>	11/01/22 16:40 11/01/22 16:40	11/03/22 02:19	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9 <49.9	Qualifier U U U	RL 49.9 49.9 49.9	mg/Kg	<u>D</u>	11/01/22 16:40 11/01/22 16:40 11/01/22 16:40	11/03/22 02:19 11/03/22 02:19 11/03/22 02:19	1 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	Result <49.9 <49.9 <49.9 <49.9 %Recovery	Qualifier U U U	RL 49.9 49.9 49.9 <i>Limits</i>	mg/Kg	<u>D</u>	11/01/22 16:40 11/01/22 16:40 11/01/22 16:40 Prepared	11/03/22 02:19 11/03/22 02:19 11/03/22 02:19 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9 <49.9 <49.9 <49.9	Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	mg/Kg	<u> </u>	11/01/22 16:40 11/01/22 16:40 11/01/22 16:40 Prepared 11/01/22 16:40	11/03/22 02:19 11/03/22 02:19 11/03/22 02:19 Analyzed 11/03/22 02:19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9 <49.9 <49.9 <49.9	Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	mg/Kg	<u>D</u>	11/01/22 16:40 11/01/22 16:40 11/01/22 16:40 Prepared 11/01/22 16:40	11/03/22 02:19 11/03/22 02:19 11/03/22 02:19 Analyzed 11/03/22 02:19	

Client Sample ID: PH10B Lab Sample ID: 890-3334-2

Date Collected: 10/28/22 08:55 Date Received: 10/28/22 16:15

Sample Depth: 12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		11/01/22 13:17	11/02/22 04:27	
Toluene	<0.00201	U	0.00201	mg/Kg		11/01/22 13:17	11/02/22 04:27	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		11/01/22 13:17	11/02/22 04:27	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		11/01/22 13:17	11/02/22 04:27	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		11/01/22 13:17	11/02/22 04:27	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		11/01/22 13:17	11/02/22 04:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			11/01/22 13:17	11/02/22 04:27	

Eurofins Carlsbad

5

3

4

7

9

11

12

1 /

Matrix: Solid

Project/Site: SV Kim Harris #003

Job ID: 890-3334-1 SDG: 09C2041003

Client Sample ID: PH10B Lab Sample ID: 890-3334-2

Date Collected: 10/28/22 08:55
Date Received: 10/28/22 16:15
Matrix: Solid

Sample Depth: 12

Client: Ensolum

method: SW846 8021B - volatile Organic Compounds (GC) (Continued)	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	109	70 - 130	11/01/22 13:17	11/02/22 04:27	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402 U	0.00402	ma/Ka			11/02/22 10:02	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	ma/Ka			11/03/22 10:18	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/03/22 02:40	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/03/22 02:40	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/03/22 02:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepare	d Analyzed	Dil Fac
1-Chlorooctane	107	70 - 130	11/01/22 16	5:40 11/03/22 02:40	1
o-Terphenyl	123	70 - 130	11/01/22 16	5:40 11/03/22 02:40	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29.3		5.00	mg/Kg			11/02/22 00:29	1

Client Sample ID: PH10C

Date Collected: 10/28/22 09:05

Lab Sample ID: 890-3334-3

Matrix: Solid

Date Collected: 10/28/22 09:05 Date Received: 10/28/22 16:15

Sample Depth: 36

Method: SW846	S 2021R - Volatile	Organic (Compounds	(CC)

thou. Office of the foliation of the fol									
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 04:48	1		
< 0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 04:48	1		
< 0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 04:48	1		
<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 04:48	1		
< 0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 04:48	1		
<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 04:48	1		
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac		
118		70 - 130			11/01/22 13:17	11/02/22 04:48	1		
	Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00398 <0.00398 <0.00398	Result Qualifier	Result Qualifier RL <0.00199	Result Qualifier RL Unit <0.00199	Result Qualifier RL Unit D <0.00199	Result Qualifier RL Unit D Prepared <0.00199	Result Qualifier RL Unit D Prepared Analyzed <0.00199		

4-Bromofluorobenzene (Surr)	118	70 - 130	11/01/22 13:17	11/02/22 04:48	1
1,4-Difluorobenzene (Surr)	106	70 - 130	11/01/22 13:17	11/02/22 04:48	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/02/22 10:02	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/03/22 10:18	1

Eurofins Carlsbad

3

4

5

7

10

Client: Ensolum Job ID: 890-3334-1

Project/Site: SV Kim Harris #003 SDG: 09C2041003

Client Sample ID: PH10C Lab Sample ID: 890-3334-3 Date Collected: 10/28/22 09:05 Matrix: Solid

Date Received: 10/28/22 16:15 Sample Depth: 36

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/03/22 03:01	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/03/22 03:01	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/03/22 03:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130			11/01/22 16:40	11/03/22 03:01	1
o-Terphenyl	106		70 - 130			11/01/22 16:40	11/03/22 03:01	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble					
Analyte	Result		RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: PH08A Lab Sample ID: 890-3334-4

5.00

mg/Kg

65.3

Date Collected: 10/28/22 09:30 Date Received: 10/28/22 16:15

Sample Depth: 6

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 05:09	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 05:09	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 05:09	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 05:09	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 05:09	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 05:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130			11/01/22 13:17	11/02/22 05:09	1
1,4-Difluorobenzene (Surr)	103		70 - 130			11/01/22 13:17	11/02/22 05:09	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	П	0.00398	mg/Kg			11/02/22 10:02	
IOIAI DI LA	-0.00000	O	0.00000	1119/119			, 02,22 .0.02	
- -				mg/rtg			11/02/22 10:02	
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					·
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result	ics (DRO) (GC)	Unit	D	Prepared	Analyzed	Dil Fac
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)		<u>D</u>	Prepared		Dil Fac
Method: SW846 8015 NM - Diese Analyte	Range Organ Result <49.9	ics (DRO) (Qualifier	GC)	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <49.9 sel Range Orga	ics (DRO) (Qualifier	GC)	Unit	<u>D</u>	Prepared Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result <49.9 sel Range Orga	Qualifier Unics (DRO) Qualifier	RL 49.9 (GC)	Unit mg/Kg		<u> </u>	Analyzed 11/03/22 10:18	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	Range Organ Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U u U	GC) RL 49.9 (GC) RL	Unit mg/Kg Unit mg/Kg		Prepared	Analyzed 11/03/22 10:18 Analyzed	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	Result Seel Range Organ Result < 49.9 Result < 49.9	Qualifier U nics (DRO) Qualifier U u U	GC) RL 49.9 (GC) RL 49.9	Unit mg/Kg		Prepared 11/01/22 16:40	Analyzed 11/03/22 10:18 Analyzed 11/03/22 03:44	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result Seel Range Organ Result < 49.9 Result < 49.9	cics (DRO) (On Qualifier Unics (DRO) Qualifier U	GC) RL 49.9 (GC) RL 49.9	Unit mg/Kg Unit mg/Kg		Prepared 11/01/22 16:40	Analyzed 11/03/22 10:18 Analyzed 11/03/22 03:44	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Organ Result 49.9 sel Range Orga Result 49.9 449.9	cics (DRO) (Control of the property of the pro	GC) RL 49.9 (GC) RL 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 16:40 11/01/22 16:40	Analyzed 11/03/22 10:18 Analyzed 11/03/22 03:44 11/03/22 03:44	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9	cics (DRO) (Control of the property of the pro	GC) RL 49.9 (GC) RL 49.9 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 16:40 11/01/22 16:40 11/01/22 16:40	Analyzed 11/03/22 10:18 Analyzed 11/03/22 03:44 11/03/22 03:44 11/03/22 03:44	1 Dil Fac 1 1

Eurofins Carlsbad

11/02/22 00:34

Matrix: Solid

Job ID: 890-3334-1

Client: Ensolum SDG: 09C2041003 Project/Site: SV Kim Harris #003

Client Sample ID: PH08A Lab Sample ID: 890-3334-4 Date Collected: 10/28/22 09:30 Matrix: Solid

Date Received: 10/28/22 16:15 Sample Depth: 6

Method: MCAWW 300.0 - Anions, Id	n Chromato	graphy - S	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29.6		4.99	mg/Kg			11/02/22 00:39	1

Client Sample ID: PH08B Lab Sample ID: 890-3334-5 **Matrix: Solid**

Date Collected: 10/28/22 09:35 Date Received: 10/28/22 16:15

Sample Depth: 12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/02/22 05:29	
Toluene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/02/22 05:29	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/02/22 05:29	
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/01/22 13:17	11/02/22 05:29	
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/02/22 05:29	
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/01/22 13:17	11/02/22 05:29	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	116		70 - 130			11/01/22 13:17	11/02/22 05:29	
1,4-Difluorobenzene (Surr)	105		70 - 130			11/01/22 13:17	11/02/22 05:29	
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/02/22 10:02	
Method: SW846 8015 NM - Diese	l Pango Organ	ice (DPO) ((SC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			11/02/22 10:14	
-				3. 3			11/02/22 10.14	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)	3 3			11/02/22 10.14	
: Method: SW846 8015B NM - Dies		nics (DRO) Qualifier	(GC)	Unit	D	Prepared	Analyzed	
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics		Qualifier	• •		<u>D</u>	Prepared 11/01/22 15:08		Dil Fa
• •	Result	Qualifier U	RL	Unit	<u>D</u>		Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10		Qualifier U	RL 49.9	<mark>Unit</mark> mg/Kg	<u>D</u>	11/01/22 15:08	Analyzed 11/02/22 03:58	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		Qualifier U	RL 49.9	<mark>Unit</mark> mg/Kg	<u>D</u>	11/01/22 15:08	Analyzed 11/02/22 03:58	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9	Qualifier U U U	RL 49.9	Unit mg/Kg mg/Kg	<u> </u>	11/01/22 15:08 11/01/22 15:08	Analyzed 11/02/22 03:58 11/02/22 03:58	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9 <49.9	Qualifier U U U	RL 49.9 49.9 49.9	Unit mg/Kg mg/Kg	<u> </u>	11/01/22 15:08 11/01/22 15:08 11/01/22 15:08	Analyzed 11/02/22 03:58 11/02/22 03:58 11/02/22 03:58	

Eurofins Carlsbad

Analyzed

11/02/22 00:44

RL

4.95

Unit

mg/Kg

D

Prepared

Result Qualifier

20.9

Dil Fac

Analyte

Chloride

Client Sample Results

 Client: Ensolum
 Job ID: 890-3334-1

 Project/Site: SV Kim Harris #003
 SDG: 09C2041003

Client Sample ID: PH08C Lab Sample ID: 890-3334-6

Date Collected: 10/28/22 09:45

Date Received: 10/28/22 16:15

Sample Depth: 48

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 05:50	
Toluene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 05:50	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 05:50	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 05:50	
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 05:50	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 05:50	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	115		70 - 130			11/01/22 13:17	11/02/22 05:50	
1,4-Difluorobenzene (Surr)	107		70 - 130			11/01/22 13:17	11/02/22 05:50	
Method: TAL SOP Total BTEX - 1	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/02/22 10:02	
Method: SW846 8015 NM - Diese			•					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			11/02/22 10:14	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		11/01/22 08:49	11/01/22 19:21	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		11/01/22 08:49	11/01/22 19:21	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/01/22 08:49	11/01/22 19:21	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4 Ohlaus - staus	82		70 - 130			11/01/22 08:49	11/01/22 19:21	
1-Cniorooctane						44/04/00 00 40		
1-Chlorooctane o-Terphenyl	86		70 - 130			11/01/22 08:49	11/01/22 19:21	
	86	ography - So				11/01/22 08:49	11/01/22 19:21	
o-Terphenyl	86 s, Ion Chromato	ography - So Qualifier		Unit mg/Kg	<u>D</u>	11/01/22 08:49 Prepared	11/01/22 19:21 Analyzed	Dil Fa

Client Sample ID: PH09A Lab Sample ID: 890-3334-7

Date Collected: 10/28/22 10:10 Date Received: 10/28/22 16:15

Date Received. 10/20/22

Sample Depth: 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 06:11	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 06:11	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 06:11	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 06:11	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 06:11	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 06:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			11/01/22 13:17	11/02/22 06:11	1

Eurofins Carlsbad

2

3

4

6

8

10

12

. .

Matrix: Solid

Job ID: 890-3334-1

Client: Ensolum SDG: 09C2041003 Project/Site: SV Kim Harris #003

Client Sample ID: PH09A Lab Sample ID: 890-3334-7

Date Collected: 10/28/22 10:10 **Matrix: Solid** Date Received: 10/28/22 16:15

Sample Depth: 6

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1 4-Difluorobenzene (Surr)	108	70 130	11/01/22 13:17	11/02/22 06:11	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398 U	0.00398	ma/Ka			11/02/22 10:02	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			11/02/22 10:14	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		11/01/22 08:49	11/01/22 19:43	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		11/01/22 08:49	11/01/22 19:43	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		11/01/22 08:49	11/01/22 19:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	80	70 - 130	11/01/22 08:49	11/01/22 19:43	1
o-Terphenyl	82	70 - 130	11/01/22 08:49	11/01/22 19:43	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qu	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18.9	5.00	mg/Kg			11/02/22 00:54	1

Lab Sample ID: 890-3334-8 Client Sample ID: PH09B **Matrix: Solid**

Date Collected: 10/28/22 10:15 Date Received: 10/28/22 16:15

Sample Depth: 12

Method: SW846 8021B -	M-1-4!1- O	0 (00)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/02/22 06:32	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/02/22 06:32	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/02/22 06:32	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/01/22 13:17	11/02/22 06:32	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/02/22 06:32	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/01/22 13:17	11/02/22 06:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130			11/01/22 13:17	11/02/22 06:32	1
1,4-Difluorobenzene (Surr)	106		70 - 130			11/01/22 13:17	11/02/22 06:32	1

Mothod: TAI	SOP Total RTFY	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	ma/Ka			11/02/22 10:02	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/02/22 10:14	1

Job ID: 890-3334-1

Client: Ensolum Project/Site: SV Kim Harris #003 SDG: 09C2041003

Client Sample ID: PH09B Lab Sample ID: 890-3334-8

Date Collected: 10/28/22 10:15 Matrix: Solid Date Received: 10/28/22 16:15

Sample Depth: 12

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		11/01/22 08:49	11/01/22 20:05	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		11/01/22 08:49	11/01/22 20:05	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 08:49	11/01/22 20:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130			11/01/22 08:49	11/01/22 20:05	1
o-Terphenyl	84		70 - 130			11/01/22 08:49	11/01/22 20:05	1
- Method: MCAWW 300.0 - Anions	s, Ion Chromato	graphy - S	oluble					
						D	A ll	D:: F
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: PH09C Lab Sample ID: 890-3334-9 Matrix: Solid

Date Collected: 10/28/22 10:25

Date Received: 10/28/22 16:15

Sample Depth: 48

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 06:52	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 06:52	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 06:52	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 06:52	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/01/22 13:17	11/02/22 06:52	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/01/22 13:17	11/02/22 06:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130			11/01/22 13:17	11/02/22 06:52	1
1,4-Difluorobenzene (Surr)	107		70 - 130			11/01/22 13:17	11/02/22 06:52	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/02/22 10:02	1
				mg/Kg			11/02/22 10:02	1
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result	ics (DRO) (GC)	Unit	D	Prepared	Analyzed	Dil Fac
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)		<u>D</u>	Prepared		
Method: SW846 8015 NM - Diese Analyte	Range Organ Result <50.0	ics (DRO) (Qualifier	RL 50.0	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <50.0 sel Range Organ	ics (DRO) (Qualifier	RL 50.0	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result <50.0 sel Range Organ	Qualifier Unics (DRO) Qualifier	RL 50.0	Unit mg/Kg			Analyzed 11/02/22 10:14	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Range Organ Result <50.0 sel Range Organ Result	Qualifier U nics (DRO) Qualifier U u U U U U U U U U U U U U U U U U U	GC) RL 50.0 (GC) RL	Unit mg/Kg		Prepared	Analyzed 11/02/22 10:14 Analyzed	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0	cics (DRO) (Control of the property of the pro	GC) RL 50.0 (GC) RL 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 08:49 11/01/22 08:49	Analyzed 11/02/22 10:14 Analyzed 11/01/22 20:26 11/01/22 20:26	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <50.0 sel Range Orga Result <50.0	cics (DRO) (Control of the property of the pro	GC) RL 50.0 (GC) RL 50.0	Unit mg/Kg Unit mg/Kg		Prepared 11/01/22 08:49	Analyzed 11/02/22 10:14 Analyzed 11/01/22 20:26	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0	cics (DRO) (Control of the property of the pro	GC) RL 50.0 (GC) RL 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 08:49 11/01/22 08:49	Analyzed 11/02/22 10:14 Analyzed 11/01/22 20:26 11/01/22 20:26	Dil Fac Dil Fac 1 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0 <50.0	cics (DRO) (Control of the property of the pro	GC) RL 50.0 (GC) RL 50.0 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/22 08:49 11/01/22 08:49 11/01/22 08:49	Analyzed 11/02/22 10:14 Analyzed 11/01/22 20:26 11/01/22 20:26 11/01/22 20:26	Dil Fac Dil Fac 1

Client Sample Results

Client: Ensolum

Job ID: 890-3334-1

Project/Site: SV Kim Harris #003

SDG: 09C2041003

Project/Site: SV Kim Harris #003

Client Sample ID: PH09C

Lab Sample ID: 890-3334-9

Date Collected: 10/28/22 10:25

Date Received: 10/28/22 16:15

Matrix: Solid

Sample Depth: 48

	Method: MCAWW 300.0 - Anions, lo	n Chromatog	graphy - Soli	uble					
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	55.6		4.95	mg/Kg			11/01/22 21:45	1

9

11

13

Surrogate Summary

Client: Ensolum Job ID: 890-3334-1 Project/Site: SV Kim Harris #003 SDG: 09C2041003

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-20949-A-1-C MS	Matrix Spike	93	96	
80-20949-A-1-D MSD	Matrix Spike Duplicate	95	95	
90-3334-1	PH10A	103	106	
0-3334-2	PH10B	115	109	
90-3334-3	PH10C	118	106	
0-3334-4	PH08A	125	103	
00-3334-5	PH08B	116	105	
0-3334-6	PH08C	115	107	
0-3334-7	PH09A	121	108	
0-3334-8	PH09B	126	106	
0-3334-9	PH09C	113	107	
CS 880-38396/1-A	Lab Control Sample	86	100	
CSD 880-38396/2-A	Lab Control Sample Dup	84	100	
B 880-38292/5-A	Method Blank	96	101	
1B 880-38396/5-A	Method Blank	98	94	
Surrogate Legend				
BFB = 4-Bromofluoroben	zene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acc
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	·
880-21015-A-1-D MS	Matrix Spike	90	85	
880-21015-A-1-E MSD	Matrix Spike Duplicate	94	90	
890-3322-A-2-D MS	Matrix Spike	73	69 S1-	
890-3322-A-2-E MSD	Matrix Spike Duplicate	90	85	
890-3334-1	PH10A	97	115	
890-3334-2	PH10B	107	123	
890-3334-3	PH10C	91	106	
890-3334-4	PH08A	97	114	
890-3334-5	PH08B	98	100	
890-3334-6	PH08C	82	86	
890-3334-7	PH09A	80	82	
890-3334-8	PH09B	81	84	
890-3334-9	PH09C	89	93	
890-3335-A-1-C MS	Matrix Spike	88	86	
890-3335-A-1-D MSD	Matrix Spike Duplicate	79	76	
LCS 880-38325/2-A	Lab Control Sample	112	120	
LCS 880-38417/2-A	Lab Control Sample	101	106	
LCS 880-38436/2-A	Lab Control Sample	107	133 S1+	
LCSD 880-38325/3-A	Lab Control Sample Dup	121	128	
LCSD 880-38417/3-A	Lab Control Sample Dup	90	95	
LCSD 880-38436/3-A	Lab Control Sample Dup	108	128	
MB 880-38325/1-A	Method Blank	77	83	
MB 880-38417/1-A	Method Blank	92	99	
MB 880-38436/1-A	Method Blank	87	109	

Surrogate Summary

Client: Ensolum

Project/Site: SV Kim Harris #003

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Job ID: 890-3334-1 SDG: 09C2041003

Client: Ensolum Job ID: 890-3334-1 SDG: 09C2041003 Project/Site: SV Kim Harris #003

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-38292/5-A

Matrix: Solid Analysis Batch: 38317 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 38292

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		10/31/22 13:44	11/01/22 11:42	1
Toluene	<0.00200	U	0.00200	mg/Kg		10/31/22 13:44	11/01/22 11:42	,
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		10/31/22 13:44	11/01/22 11:42	,
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		10/31/22 13:44	11/01/22 11:42	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		10/31/22 13:44	11/01/22 11:42	1
Xylenes, Total	< 0.00400	U	0.00400	mg/Kg		10/31/22 13:44	11/01/22 11:42	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	d Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130	10/31/22 13	3:44 11/01/22 11:42	1
1,4-Difluorobenzene (Surr)	101		70 - 130	10/31/22 13	3:44 11/01/22 11:42	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 38396

Analysis Batch: 38317 мв мв

Lab Sample ID: MB 880-38396/5-A

1								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/01/22 22:52	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/01/22 22:52	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/01/22 22:52	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/01/22 13:17	11/01/22 22:52	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/01/22 13:17	11/01/22 22:52	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/01/22 13:17	11/01/22 22:52	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepai	red	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130	11/01/22	13:17	11/01/22 22:52	1
1,4-Difluorobenzene (Surr)	94		70 - 130	11/01/22	13:17	11/01/22 22:52	1

Lab Sample ID: LCS 880-38396/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 38317

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 38396

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09196		mg/Kg		92	70 - 130	
Toluene	0.100	0.09375		mg/Kg		94	70 - 130	
Ethylbenzene	0.100	0.09317		mg/Kg		93	70 - 130	
m-Xylene & p-Xylene	0.200	0.1708		mg/Kg		85	70 - 130	
o-Xylene	0.100	0.09774		mg/Kg		98	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	86	70 _ 130
1.4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: LCSD 880-38396/2-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 38317

Spike LCSD LCSD RPD %Rec Result Qualifier RPD Analyte Added Unit %Rec Limits Limit Benzene 0.100 0.09381 mg/Kg 94 70 - 130

Eurofins Carlsbad

Prep Batch: 38396

QC Sample Results

Client: Ensolum Job ID: 890-3334-1 SDG: 09C2041003 Project/Site: SV Kim Harris #003

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-38396/2-A

Matrix: Solid Analysis Batch: 38317 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 38396

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09579		mg/Kg		96	70 - 130	2	35
Ethylbenzene	0.100	0.09325		mg/Kg		93	70 - 130	0	35
m-Xylene & p-Xylene	0.200	0.1693		mg/Kg		85	70 - 130	1	35
o-Xylene	0.100	0.09677		mg/Kg		97	70 - 130	1	35

LCSD LCSD

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	84		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-20949-A-1-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 38317

Prep Type: Total/NA

Prep Batch: 38396

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00200	U	0.0998	0.07863		mg/Kg		78	70 - 130
Toluene	<0.00200	U	0.0998	0.07892		mg/Kg		79	70 - 130
Ethylbenzene	<0.00200	U	0.0998	0.07719		mg/Kg		77	70 - 130
m-Xylene & p-Xylene	<0.00401	U	0.200	0.1450		mg/Kg		73	70 - 130
o-Xylene	< 0.00200	U	0.0998	0.08347		mg/Kg		84	70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	93	70 - 130
1,4-Difluorobenzene (Surr)	96	70 - 130

Lab Sample ID: 880-20949-A-1-D MSD

Matrix: Solid

Analysis Batch: 38317

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 38396

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0990	0.07810		mg/Kg		78	70 - 130	1	35
Toluene	<0.00200	U	0.0990	0.07953		mg/Kg		80	70 - 130	1	35
Ethylbenzene	<0.00200	U	0.0990	0.07936		mg/Kg		80	70 - 130	3	35
m-Xylene & p-Xylene	<0.00401	U	0.198	0.1511		mg/Kg		76	70 - 130	4	35
o-Xylene	<0.00200	U	0.0990	0.08674		mg/Kg		88	70 - 130	4	35

MSD MSD

Surrogate	%Recovery	Quaimer	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-38325/1-A

Matrix: Solid

Analysis Batch: 38323

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 38325

мв мв Result Qualifier Unit Prepared <50.0 U 50.0 mg/Kg 11/01/22 08:49 11/01/22 09:56 Gasoline Range Organics (GRO)-C6-C10

 Client: Ensolum
 Job ID: 890-3334-1

 Project/Site: SV Kim Harris #003
 SDG: 09C2041003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-38325/1-A

Matrix: Solid

Analysis Batch: 38323

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 38325

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/01/22 08:49	11/01/22 09:56	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 08:49	11/01/22 09:56	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	77		70 - 130			11/01/22 08:49	11/01/22 09:56	1
o-Terphenyl	83		70 - 130			11/01/22 08:49	11/01/22 09:56	1

Lab Sample ID: LCS 880-38325/2-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA **Analysis Batch: 38323** Prep Batch: 38325 LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 1179 118 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1120 112 mg/Kg 70 - 130 C10-C28) LCS LCS Qualifier Limits Surrogate %Recovery 1-Chlorooctane 70 - 130 112 o-Terphenyl 120 70 - 130

Lab Sample ID: LCSD 880-38325/3-A

Matrix: Solid

Analysis Batch: 38323

Spike

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Prep Batch: 38325

RPD

RPD

	Spike	LCSD	LCSD			%Rec		RPD	
Analyte	Added	Result	Qualifier Unit	: D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	1081	mg/	Kg	108	70 - 130	9	20	
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1234	mg/	Kg	123	70 - 130	10	20	
C10-C28)									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	121		70 - 130
o-Terphenyl	128		70 - 130

Lab Sample ID: 890-3322-A-2-D MS

Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Total/NA Analysis Batch: 38323 Prep Batch: 38325

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10	<50.0	U F1	997	1043		mg/Kg		102	70 - 130
Diesel Range Organics (Over C10-C28)	<50.0	U F1 F2	997	809.2		mg/Kg		77	70 - 130
	440	440							

	·			
١		MS	MS	
l	Surrogate	%Recovery	Qualifier	Limits
	1-Chlorooctane	73		70 _ 130
	o-Terphenyl	69	S1-	70 - 130

Lab Sample ID: 890-3322-A-2-E MSD

QC Sample Results

Client: Ensolum Job ID: 890-3334-1 SDG: 09C2041003 Project/Site: SV Kim Harris #003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MSD MSD

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 38325

Sample Sample Spike MSD MSD RPD Result Qualifier RPD Limit Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <50.0 U F1 999 899.6 mg/Kg 88 70 - 130 15 20 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U F1 F2 999 1022 F2 mg/Kg 98 70 - 130 23

C10-C28)

Matrix: Solid

Analysis Batch: 38323

%Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 90 o-Terphenyl 85 70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 38417

Lab Sample ID: MB 880-38417/1-A **Matrix: Solid**

Analysis Batch: 38323

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/01/22 21:10	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/01/22 21:10	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 15:08	11/01/22 21:10	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	92	70 - 130	11/01/22 15:08	11/01/22 21:10	1
o-Terphenyl	99	70 - 130	11/01/22 15:08	11/01/22 21:10	1

Lab Sample ID: LCS 880-38417/2-A

Lab Sample ID: LCSD 880-38417/3-A

Matrix: Solid

Analysis Batch: 38323

Client Sample ID: Lab	Control Sample
-----------------------	-----------------------

Prep Type: Total/NA

Prep Batch: 38417

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1076		mg/Kg		108	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1008		mg/Kg		101	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	101		70 - 130
o-Terphenyl	106		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 38323

Prep Batch: 38417

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	1087		mg/Kg		109	70 - 130	1	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	910.4		mg/Kg		91	70 - 130	10	20	
C10-C28)										

Job ID: 890-3334-1 Client: Ensolum Project/Site: SV Kim Harris #003 SDG: 09C2041003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-38417/3-A

Matrix: Solid

Analysis Batch: 38323

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 38417

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 90 70 - 130 o-Terphenyl 95 70 - 130

Lab Sample ID: 890-3335-A-1-C MS Client Sample ID: Matrix Spike

Analysis Batch: 38323

Prep Type: Total/NA **Matrix: Solid**

Prep Batch: 38417

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits <50.0 U 997 812.4 79 70 - 130Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 77.7 F1 997 799.4 mg/Kg 72 70 - 130C10-C28)

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	88		70 - 130
o-Terphenyl	86		70 - 130

Lab Sample ID: 890-3335-A-1-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 38323

Prep Type: Total/NA

Prep Batch: 38417

Sample Sample Spike MSD MSD Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits RPD Limit Gasoline Range Organics <50.0 U 999 984.3 mg/Kg 96 70 - 130 19 20 (GRO)-C6-C10 Diesel Range Organics (Over 77.7 F1 999 702.0 F1 mg/Kg 62 70 - 130 13 20

C10-C28)

MSD MSD %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 79 70 - 130 o-Terphenyl 76

Lab Sample ID: MB 880-38436/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 38457

Prep Type: Total/NA

Prep Batch: 38436

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/02/22 22:03	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/02/22 22:03	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/01/22 16:40	11/02/22 22:03	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
1-Chlorooctane	87		70 - 130	11/01/22	2 16:40	11/02/22 22:03	1
o-Terphenyl	109		70 - 130	11/01/22	2 16:40	11/02/22 22:03	1

QC Sample Results

Client: Ensolum Job ID: 890-3334-1 SDG: 09C2041003 Project/Site: SV Kim Harris #003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-38436/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Analysis Batch: 38457 Prep Type: Total/NA Prep Batch: 38436

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	844.0		mg/Kg		84	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1140		mg/Kg		114	70 - 130	
C10-C28)								

	LCS LCS					
Surrogate	%Recovery	Qualifier	Limits			
1-Chlorooctane	107		70 - 130			
o-Terphenyl	133	S1+	70 - 130			

Lab Sample ID: LCSD 880-38436/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 38457** Prep Batch: 38436

	эріке	LCSD	LCSD				%Rec		KPD
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
asoline Range Organics	1000	881.3		mg/Kg	_	88	70 - 130	4	20
GRO)-C6-C10									
iesel Range Organics (Over	1000	1139		mg/Kg		114	70 - 130	0	20
	iasoline Range Organics GRO)-C6-C10	nalyte Added assoline Range Organics 1000 GRO)-C6-C10	nalyte Added Result rasoline Range Organics 1000 881.3 GRO)-C6-C10	nalyte Added Result Qualifier assoline Range Organics 1000 881.3 GRO)-C6-C10	nalyte Added Result Qualifier Unit mg/Kg GRO)-C6-C10	nalyte Added Result Qualifier Unit Date assoline Range Organics 1000 881.3 mg/Kg	nalyteAddedResultQualifierUnitD%Recassoline Range Organics1000881.3mg/Kg88GRO)-C6-C10	nalyteAddedResultQualifierUnitD%RecLimitsassoline Range Organics1000881.3mg/Kg8870 - 130GRO)-C6-C10	nalyteAddedResultQualifierUnitD%RecLimitsRPDpasoline Range Organics1000881.3mg/Kg8870 - 1304GRO)-C6-C10

C10-C28)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	108		70 _ 130
o-Terphenyl	128		70 - 130

Lab Sample ID: 880-21015-A-1-D MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 38457

Prep Type: Total/NA Prep Batch: 38436

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	532		997	1528		mg/Kg		100	70 - 130	
Diesel Range Organics (Over C10-C28)	2380	F1	997	2896	F1	mg/Kg		52	70 - 130	

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	90	70 - 130
o-Terphenyl	85	70 - 130

MS MS

Lab Sample ID: 880-21015-A-1-E MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 38457

Analysis Batch: 38457									Prep	Batch:	38436
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	532		999	1605		mg/Kg		107	70 - 130	5	20
Diesel Range Organics (Over	2380	F1	999	3061	F1	mg/Kg		69	70 - 130	6	20

C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	94		70 - 130

Job ID: 890-3334-1

Client: Ensolum Project/Site: SV Kim Harris #003 SDG: 09C2041003

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-21015-A-1-E MSD **Matrix: Solid**

Analysis Batch: 38457

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Batch: 38436

Prep Type: Soluble

MSD MSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 90 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-38328/1-A

Matrix: Solid

Analysis Batch: 38427

MB MB

Analyte Result Qualifier RL Unit D Dil Fac Prepared Analyzed Chloride <5.00 5.00 11/01/22 19:36 U mg/Kg

Lab Sample ID: LCS 880-38328/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

LCS LCS

Analysis Batch: 38427

Spike %Rec Added Result Qualifier Analyte Unit D %Rec Limits Chloride 250 260.1 mg/Kg 104 90 - 110

Lab Sample ID: LCSD 880-38328/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 38427

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 260.1 90 - 110 mg/Kg 104 20

Lab Sample ID: 880-20959-A-11-B MS

Matrix: Solid

Analysis Batch: 38427

Spike MS MS %Rec Sample Sample Analyte Qualifier Added Qualifier Unit %Rec Result Result Limits Chloride 605 251 841.2 90 - 110 mg/Kg

Lab Sample ID: 880-20959-A-11-C MSD

Matrix: Solid

Analysis Batch: 38427

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Qualifier RPD Limit Analyte Result Unit %Rec Limits Chloride 251 605 840.5 90 - 110 mg/Kg

Lab Sample ID: MB 880-38262/1-A

Matrix: Solid

Analysis Batch: 38428

MB MB

Result Qualifier Analyte RL Unit Analyzed Dil Fac D Prepared Chloride 5.00 <5.00 U 11/01/22 22:29 mg/Kg

QC Sample Results

Client: Ensolum Job ID: 890-3334-1 Project/Site: SV Kim Harris #003

SDG: 09C2041003

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-38262/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 38428

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 262.5 mg/Kg 105 90 - 110

Lab Sample ID: LCSD 880-38262/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 38428

Spike LCSD LCSD %Rec RPD Added Result Qualifier Limit Analyte Unit D %Rec Limits RPD Chloride 250 265.5 mg/Kg 106 90 - 110

Lab Sample ID: 890-3329-A-3-B MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Soluble

Analysis Batch: 38428

MS MS %Rec Spike Sample Sample Analyte Result Qualifier Added Result Qualifier Unit Limits Chloride 42.5 249 301.4 104 90 - 110 mg/Kg

Lab Sample ID: 890-3329-A-3-C MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 38428

Sample Sample MSD MSD RPD Spike %Rec Analyte Result Qualifier Added Qualifier Unit %Rec RPD Limit Result Limits Chloride 42.5 249 297.0 102 90 - 110 20 mg/Kg

Client: Ensolum Job ID: 890-3334-1 Project/Site: SV Kim Harris #003 SDG: 09C2041003

GC VOA

Prep Batch: 38292

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-38292/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 38317

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-1	PH10A	Total/NA	Solid	8021B	38396
890-3334-2	PH10B	Total/NA	Solid	8021B	38396
890-3334-3	PH10C	Total/NA	Solid	8021B	38396
890-3334-4	PH08A	Total/NA	Solid	8021B	38396
890-3334-5	PH08B	Total/NA	Solid	8021B	38396
890-3334-6	PH08C	Total/NA	Solid	8021B	38396
890-3334-7	PH09A	Total/NA	Solid	8021B	38396
890-3334-8	PH09B	Total/NA	Solid	8021B	38396
890-3334-9	PH09C	Total/NA	Solid	8021B	38396
MB 880-38292/5-A	Method Blank	Total/NA	Solid	8021B	38292
MB 880-38396/5-A	Method Blank	Total/NA	Solid	8021B	38396
LCS 880-38396/1-A	Lab Control Sample	Total/NA	Solid	8021B	38396
LCSD 880-38396/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	38396
880-20949-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	38396
880-20949-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	38396

Prep Batch: 38396

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-1	PH10A	Total/NA	Solid	5035	
890-3334-2	PH10B	Total/NA	Solid	5035	
890-3334-3	PH10C	Total/NA	Solid	5035	
890-3334-4	PH08A	Total/NA	Solid	5035	
890-3334-5	PH08B	Total/NA	Solid	5035	
890-3334-6	PH08C	Total/NA	Solid	5035	
890-3334-7	PH09A	Total/NA	Solid	5035	
890-3334-8	PH09B	Total/NA	Solid	5035	
890-3334-9	PH09C	Total/NA	Solid	5035	
MB 880-38396/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-38396/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-38396/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-20949-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
880-20949-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 38464

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-1	PH10A	Total/NA	Solid	Total BTEX	
890-3334-2	PH10B	Total/NA	Solid	Total BTEX	
890-3334-3	PH10C	Total/NA	Solid	Total BTEX	
890-3334-4	PH08A	Total/NA	Solid	Total BTEX	
890-3334-5	PH08B	Total/NA	Solid	Total BTEX	
890-3334-6	PH08C	Total/NA	Solid	Total BTEX	
890-3334-7	PH09A	Total/NA	Solid	Total BTEX	
890-3334-8	PH09B	Total/NA	Solid	Total BTEX	
890-3334-9	PH09C	Total/NA	Solid	Total BTEX	

 Client: Ensolum
 Job ID: 890-3334-1

 Project/Site: SV Kim Harris #003
 SDG: 09C2041003

GC Semi VOA

Analysis Batch: 38323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-5	PH08B	Total/NA	Solid	8015B NM	38417
890-3334-6	PH08C	Total/NA	Solid	8015B NM	38325
890-3334-7	PH09A	Total/NA	Solid	8015B NM	38325
890-3334-8	PH09B	Total/NA	Solid	8015B NM	38325
890-3334-9	PH09C	Total/NA	Solid	8015B NM	38325
MB 880-38325/1-A	Method Blank	Total/NA	Solid	8015B NM	38325
MB 880-38417/1-A	Method Blank	Total/NA	Solid	8015B NM	38417
LCS 880-38325/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	38325
LCS 880-38417/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	38417
LCSD 880-38325/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	38325
LCSD 880-38417/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	38417
890-3322-A-2-D MS	Matrix Spike	Total/NA	Solid	8015B NM	38325
890-3322-A-2-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	38325
890-3335-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	38417
890-3335-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	38417

Prep Batch: 38325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-6	PH08C	Total/NA	Solid	8015NM Prep	
890-3334-7	PH09A	Total/NA	Solid	8015NM Prep	
890-3334-8	PH09B	Total/NA	Solid	8015NM Prep	
890-3334-9	PH09C	Total/NA	Solid	8015NM Prep	
MB 880-38325/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-38325/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-38325/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3322-A-2-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3322-A-2-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 38417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-5	PH08B	Total/NA	Solid	8015NM Prep	
MB 880-38417/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-38417/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-38417/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3335-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3335-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 38436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-1	PH10A	Total/NA	Solid	8015NM Prep	
890-3334-2	PH10B	Total/NA	Solid	8015NM Prep	
890-3334-3	PH10C	Total/NA	Solid	8015NM Prep	
890-3334-4	PH08A	Total/NA	Solid	8015NM Prep	
MB 880-38436/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-38436/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-38436/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-21015-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-21015-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

2

J

F

6

8

9

11

12

14

Client: Ensolum Project/Site: SV Kim Harris #003 Job ID: 890-3334-1 SDG: 09C2041003

GC Semi VOA

Analysis Batch: 38457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-1	PH10A	Total/NA	Solid	8015B NM	38436
890-3334-2	PH10B	Total/NA	Solid	8015B NM	38436
890-3334-3	PH10C	Total/NA	Solid	8015B NM	38436
890-3334-4	PH08A	Total/NA	Solid	8015B NM	38436
MB 880-38436/1-A	Method Blank	Total/NA	Solid	8015B NM	38436
LCS 880-38436/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	38436
LCSD 880-38436/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	38436
880-21015-A-1-D MS	Matrix Spike	Total/NA	Solid	8015B NM	38436
880-21015-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	38436

Analysis Batch: 38469

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-1	PH10A	Total/NA	Solid	8015 NM	
890-3334-2	PH10B	Total/NA	Solid	8015 NM	
890-3334-3	PH10C	Total/NA	Solid	8015 NM	
890-3334-4	PH08A	Total/NA	Solid	8015 NM	
890-3334-5	PH08B	Total/NA	Solid	8015 NM	
890-3334-6	PH08C	Total/NA	Solid	8015 NM	
890-3334-7	PH09A	Total/NA	Solid	8015 NM	
890-3334-8	PH09B	Total/NA	Solid	8015 NM	
890-3334-9	PH09C	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 38262

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-3334-1	PH10A	Soluble	Solid	DI Leach	
890-3334-2	PH10B	Soluble	Solid	DI Leach	
890-3334-3	PH10C	Soluble	Solid	DI Leach	
890-3334-4	PH08A	Soluble	Solid	DI Leach	
890-3334-5	PH08B	Soluble	Solid	DI Leach	
390-3334-6	PH08C	Soluble	Solid	DI Leach	
890-3334-7	PH09A	Soluble	Solid	DI Leach	
890-3334-8	PH09B	Soluble	Solid	DI Leach	
MB 880-38262/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-38262/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-38262/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3329-A-3-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3329-A-3-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 38328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-3334-9	PH09C	Soluble	Solid	DI Leach	
MB 880-38328/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-38328/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-38328/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-20959-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-20959-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

 Client: Ensolum
 Job ID: 890-3334-1

 Project/Site: SV Kim Harris #003
 SDG: 09C2041003

HPLC/IC

Analysis Batch: 38427

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-9	PH09C	Soluble	Solid	300.0	38328
MB 880-38328/1-A	Method Blank	Soluble	Solid	300.0	38328
LCS 880-38328/2-A	Lab Control Sample	Soluble	Solid	300.0	38328
LCSD 880-38328/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	38328
880-20959-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	38328
880-20959-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	38328

Analysis Batch: 38428

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3334-1	PH10A	Soluble	Solid	300.0	38262
890-3334-2	PH10B	Soluble	Solid	300.0	38262
890-3334-3	PH10C	Soluble	Solid	300.0	38262
890-3334-4	PH08A	Soluble	Solid	300.0	38262
890-3334-5	PH08B	Soluble	Solid	300.0	38262
890-3334-6	PH08C	Soluble	Solid	300.0	38262
890-3334-7	PH09A	Soluble	Solid	300.0	38262
890-3334-8	PH09B	Soluble	Solid	300.0	38262
MB 880-38262/1-A	Method Blank	Soluble	Solid	300.0	38262
LCS 880-38262/2-A	Lab Control Sample	Soluble	Solid	300.0	38262
LCSD 880-38262/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	38262
890-3329-A-3-B MS	Matrix Spike	Soluble	Solid	300.0	38262
890-3329-A-3-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	38262

Eurofins Carlsbad

3

6

0

a

10

12

13

Project/Site: SV Kim Harris #003

Client: Ensolum

Job ID: 890-3334-1 SDG: 09C2041003

Client Sample ID: PH10A

Lab Sample ID: 890-3334-1

Date Collected: 10/28/22 08:50 Date Received: 10/28/22 16:15 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	38396	11/01/22 13:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38317	11/02/22 04:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38464	11/02/22 10:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			38469	11/03/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	38436	11/01/22 16:40	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38457	11/03/22 02:19	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	38262	10/31/22 10:26	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38428	11/02/22 00:14	CH	EET MID

Lab Sample ID: 890-3334-2

Matrix: Solid

Date Collected: 10/28/22 08:55 Date Received: 10/28/22 16:15

Client Sample ID: PH10B

Dil Initial Final Batch Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 4.98 g 5 mL 38396 11/01/22 13:17 MNR EET MID Total/NA 8021B 5 mL 11/02/22 04:27 **EET MID** Analysis 1 5 mL 38317 MNR Total/NA Total BTEX 38464 11/02/22 10:02 Analysis 1 A.I **EET MID** Total/NA Analysis 8015 NM 38469 11/03/22 10:18 SM **EET MID** Total/NA 38436 11/01/22 16:40 Prep 8015NM Prep 10.01 g 10 mL DM EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 38457 11/03/22 02:40 SM **EET MID** Soluble 10/31/22 10:26 Leach DI Leach 5 g 50 mL 38262 CH **EET MID** Soluble Analysis 300.0 50 mL 50 mL 38428 11/02/22 00:29 СН **EET MID**

Client Sample ID: PH10C

Date Collected: 10/28/22 09:05 Date Received: 10/28/22 16:15

Lab Sample ID: 890-3334-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	38396	11/01/22 13:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38317	11/02/22 04:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38464	11/02/22 10:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			38469	11/03/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	38436	11/01/22 16:40	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38457	11/03/22 03:01	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	38262	10/31/22 10:26	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38428	11/02/22 00:34	CH	EET MID

Client Sample ID: PH08A

Date Collected: 10/28/22 09:30 Date Received: 10/28/22 16:15

Lab Sample ID: 890-3334-4

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	38396	11/01/22 13:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38317	11/02/22 05:09	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38464	11/02/22 10:02	AJ	EET MID

 Client: Ensolum
 Job ID: 890-3334-1

 Project/Site: SV Kim Harris #003
 SDG: 09C2041003

Client Sample ID: PH08A Lab Sample ID: 890-3334-4

Date Collected: 10/28/22 09:30

Date Received: 10/28/22 16:15

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			38469	11/03/22 10:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	38436	11/01/22 16:40	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38457	11/03/22 03:44	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	38262	10/31/22 10:26	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38428	11/02/22 00:39	CH	EET MID

Client Sample ID: PH08B

Date Collected: 10/28/22 09:35

Lab Sample ID: 890-3334-5

Matrix: Solid

Date Collected: 10/28/22 09:35 Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	38396	11/01/22 13:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38317	11/02/22 05:29	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38464	11/02/22 10:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			38469	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	38417	11/01/22 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/02/22 03:58	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	38262	10/31/22 10:26	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38428	11/02/22 00:44	CH	EET MID

Client Sample ID: PH08C

Date Collected: 10/28/22 09:45

Lab Sample ID: 890-3334-6

Matrix: Solid

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	38396	11/01/22 13:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38317	11/02/22 05:50	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38464	11/02/22 10:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			38469	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	38325	11/01/22 08:49	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/01/22 19:21	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	38262	10/31/22 10:26	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38428	11/02/22 00:49	CH	EET MID

Client Sample ID: PH09A Lab Sample ID: 890-3334-7

Date Collected: 10/28/22 10:10 Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	38396	11/01/22 13:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38317	11/02/22 06:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38464	11/02/22 10:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			38469	11/02/22 10:14	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g 1 uL	10 mL 1 uL	38325 38323	11/01/22 08:49 11/01/22 19:43	DM SM	EET MID EET MID

Eurofins Carlsbad

Page 28 of 35

3

4

6

8

10

12

14

Jiiris Garisbaa

Matrix: Solid

Client: Ensolum Project/Site: SV Kim Harris #003 Job ID: 890-3334-1

SDG: 09C2041003

Client Sample ID: PH09A

Date Collected: 10/28/22 10:10 Date Received: 10/28/22 16:15 Lab Sample ID: 890-3334-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	38262	10/31/22 10:26	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38428	11/02/22 00:54	CH	EET MID

Client Sample ID: PH09B Lab Sample ID: 890-3334-8

Date Collected: 10/28/22 10:15 Matrix: Solid

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	38396	11/01/22 13:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38317	11/02/22 06:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38464	11/02/22 10:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			38469	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	38325	11/01/22 08:49	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/01/22 20:05	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	38262	10/31/22 10:26	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38428	11/02/22 00:59	CH	EET MID

Client Sample ID: PH09C Lab Sample ID: 890-3334-9

Date Collected: 10/28/22 10:25 Matrix: Solid

Date Received: 10/28/22 16:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	38396	11/01/22 13:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	38317	11/02/22 06:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			38464	11/02/22 10:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			38469	11/02/22 10:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	38325	11/01/22 08:49	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	38323	11/01/22 20:26	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	38328	11/01/22 09:01	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	38427	11/01/22 21:45	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

2

3

4

6

9

11

13

-

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-3334-1 Project/Site: SV Kim Harris #003 SDG: 09C2041003

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	Program	Identification Number	Expiration Date
Texas	N	IELAP	T104704400-22-24	06-30-23
The following analytes the agency does not of	' '	out the laboratory is not certifie	ed by the governing authority. This list ma	ay include analytes for
	ici oci illoatiori.			
Analysis Method	Prep Method	Matrix	Analyte	
Analysis Method 8015 NM		Matrix Solid	Analyte Total TPH	

Method Summary

Job ID: 890-3334-1 Client: Ensolum Project/Site: SV Kim Harris #003

SDG: 09C2041003

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: SV Kim Harris #003

Job ID: 890-3334-1 SDG: 09C2041003

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3334-1	PH10A	Solid	10/28/22 08:50	10/28/22 16:15	6
890-3334-2	PH10B	Solid	10/28/22 08:55	10/28/22 16:15	12
890-3334-3	PH10C	Solid	10/28/22 09:05	10/28/22 16:15	36
890-3334-4	PH08A	Solid	10/28/22 09:30	10/28/22 16:15	6
890-3334-5	PH08B	Solid	10/28/22 09:35	10/28/22 16:15	12
890-3334-6	PH08C	Solid	10/28/22 09:45	10/28/22 16:15	48
890-3334-7	PH09A	Solid	10/28/22 10:10	10/28/22 16:15	6
890-3334-8	PH09B	Solid	10/28/22 10:15	10/28/22 16:15	12
890-3334-9	PH09C	Solid	10/28/22 10:25	10/28/22 16:15	48

Δ

6

7

44

12

13

Circle Method(s) and

Chain of Custody

Bill to if definence Qr. Qr.			4			>
www.xenco.com Page ot						
www.xenco.com Page ot			6	()\\\()		1
Work Order Comments Work Order Comments Work Order Comments		ture) Received by: (Signat	Date/Time Relinquished by: (Signat	Received by: (Signature)	Religious hed by: (Signature)	quished b
WWW.XENCO.COM Work Order Comments UST/PST		rins and conditions eyond the control ss previously negotiated.	ns Xenco, its affiliates and subcontractors. It assigns standards to its incurred by the client if such losses are due to circumstances to inclinate the contract of the contr	constitutes a valid purchase order from client company to Eurofins s and shall not assume any responsibility for any bases or expenses each project and a charge of \$5 for each sample submitted to Euro	ocument and relinquishment of sample will be liable only for the cost of sample num charge of \$85.00 will be applied to	nature of this de Eurofins Xenco Xenco. A minir
Repair (1959) 593-943 (1959) 593-943 (1959) 593-943 (1959) 594-943 (1959) 593-9	Sr Tl Sn U V Zn 5.1 / 7470 / 7471	li K Se	As Ba Be B Cd Ca Cr Co Cu Fe Pb M	8RCRA 13PPM Texas 11 Al Sb / zed TCLP / SPLP 6010 : 8RCRA Sb	Total 200.7 / 6010 200.8 / 6020: rcle Method(s) and Metal(s) to be analyzed	Total 200.7 / 6010 rcle Method(s) ar
Refract 19 19 19 19 19 19 19 1			4	187	Un Un	1000
Repair Company Name: CA. Q.			11/1/1	1015 7"	S	HOGB
Reporting Level			11/1	1010 6"	S	q A
Rento Recommendation Recommendatio			11.01	0935 12"	N	388
Western Depth Grabs Applications Applicat			777	0930 6"	-	H80
Rendro Report (1915) 8853-843 (Lubbook, INM (575) 988-3199	1 CCOPP 177 AND			0855		70
	Ancidont#			0850 6"	-	H
Xenco EL Paso, TX (913) 982-7350, Carisbad, NM (575) 988-3199 WWW.Xenco.com Page Olivarian Oliva	Sample Comments		0	Time Depth Comp		Sample Identification
Xenco Continue Co	NaOH+Ascorbic Acid: SAPC	Mills (Doise	37	2		tal Containers:
Name:	Zn Acetate+NaOH: Zn	in of Cust	X H	Temperature Reading:	Yes No N/A	nple Custody Seals:
No Thermometer ID: Ces No West Ice: Ces No No Thermometer ID: Ces No West Ice: Ces No Thermometer ID: Ces No The moment The page	Na ₂ S ₂ O ₃ : NaSO ₃		890-3334	6.0	Yes No (N/A)	oler Custody Seals:
Control Cont	NaHSO 4: NABIS			TWOOD TO	Yes No	nples Received Intact:
Name				Wat Ico. Val No	Tomp Blank	EDECEIDT
None: No					Julianner Falla	npler's Name:
Name				3,30550 Que Date:	32 9425845-10	ject Location:
EL Paso, TX (915) 885-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 982-7550, Carlsbad, NM (575) 988-3199 www.xenco.com Page of Mork Order Comments				Unantine Rush	1)9COUTIONS	ject Number:
Reporting: Level III PST/UST TRRP	Preservative Codes	UEST	ANALYSIS REQU		SU himHaynis	ect Name:
Reporting: Level III PST/UST TRRP Reporting: Level III PST/UST TRRP Reporting: Level III Level III PST/UST TRPP Reporting: Level III PST/UST TRRP Reporting: L		EDD [1	Email: OMOIN	1-	
Mill to: (If different)	PST/UST TRRP Level IV	Reporting: Level II Level III		88728		, State ZIP:
(enco EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Wwww.xenco.com Page Ol V DLC Bill to: (if different) OL Q. Program: UST/PST □ PRP□ Brownfields □ RRC □		State of Project:		OUT HOLLY Address:	1 140(N 221S	iress:
#Midalnd, IA (432) 7/4-9440, Salt Millorillo, IA (210) 309-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 www.xenco.com Page Work Order Comments	RRC			Company Name:	I MSOIUM LL	npany Name:
Midland, IA (432) 704-3440, San Antonio, IA (710) 309-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 www.xenco.com Page	r Comments	Work Orde	a.a.	Bill to: (if different)	Danmoir	ject Manager:
mioland, ix (432) / 04-3440, salt Antionio, ix (x ix) зов-эзэн EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296	Page)	www.xenco.co	5) 392-7550, Carlsbad, NM (575) 988-3199	Hobbs, NM (575		
Midland, 1X (432) 704-3440, 3an Antonio, 1X (210) 309-3334			5) 585-3443, Lubbock, TX (806) 794-1296	EL Paso, TX (915)	Xenco	
	0:	Work Order No:	Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334		Environr	

SAMPLE RECEIPT

Cooler Custody Seals:

Samples Received Intact:

Sample Custody Seals:

Total Containers:

Sampler's Name:

Project Location:

Project Number:

Project Name:

Address:

City, State ZIP:

Project Manager:

Company Name:

Login Sample Receipt Checklist

 Client: Ensolum
 Job Number: 890-3334-1

 SDG Number: 09C2041003

.... _ _ _ . . .

Login Number: 3334 List Number: 1 Creator: Clifton, Cloe List Source: Eurofins Carlsbad

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Euronnis Cansbau

2

6

8

10

13

Login Sample Receipt Checklist

Client: Ensolum Job Nu

Job Number: 890-3334-1 SDG Number: 09C2041003

Login Number: 3334
List Source: Eurofins Midland
List Number: 2
List Creation: 11/01/22 10:26 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

4

2

A

0

9

11

14

14

<6mm (1/4").

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 167923

CONDITIONS

Operator:	OGRID:
ARMSTRONG ENERGY CORP	1092
P.O. Box 1973	Action Number:
Roswell, NM 88202	167923
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created	Condition	Condition
Ву		Date
jnobui	Closure Report Approved. Please implement 19.15.29.13 NMAC when completing P&A.	1/13/2023