Form C-141 Page 5

Released to Imaging: 1/24/2023 3:09:12 PM

State of New Mexico Oil Conservation Division

Incident ID	NAB1431650115
District RP	2RP-2595
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.

Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.

Extents of contamination must be fully delineated.

Contamination does not cause an imminent risk to human health, the environment, or groundwater.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Jim Raley	Title: Environmental Professional		
Signature: A Ry	Date:12/29/2022		
email: jim.raley@dvn.com	Telephone:575-686-7597		
OCD Only			
Received by: Jocelyn Harimon	Date: 12/29/2022		
Approved Approved with Attached Conditions of	Approval Denied Deferral Approved		
Signature: ASMA	Date: 1 24 2023		

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 2 of 65

Incident ID:	nAPP2208846424
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: WPX Energy Permian, LLC	OGRID: 246289	
Contact Name: Jim Raley	Contact Telephone: 575-689-7597	
Contact email: jim.raley@dvn.com	Incident # (assigned by OCD): nAPP2208846424	
Contact mailing address: 5315 Buena Vista Dr, Carlsbad, NM, 88220		

Location of Release Source

Longitude

-103.9659729

La	titud	e

Site Name: Pecos Federal #001YSite Type: Oil Production SiteDate Release Discovered: 3/21/2022API# (if applicable): 30-015-24875

(NAD 83 in decimal degrees to 5 decimal places)

Unit Letter	Section	Township	Range	County
Р	27	26S	29E	Eddy

Surface Owner: State Federal Tribal Private (Name:

32.0072937

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)				
Crude Oil	Volume Released (bbls): 8	Volume Recovered (bbls): 3		
Produced Water	Volume Released (bbls):	Volume Recovered (bbls):		
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No		
Condensate	Volume Released (bbls)	Volume Recovered (bbls)		
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)		
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)		
Cause of Delegan	·	•		

Cause of Release:

Tank overflow allowed the release of approx. 8 bbls of oil. Approx 6 bbls was released to secondary containment of which 3 bbls was recovered. Winds allowed approx. 2 bbls to impact soils offsite.

 $bbl \ estimate = \frac{saturated \ soil \ volume(ft^3)}{4.21(\frac{ft^3}{bbl \ equivalent})} * \ estimated \ soil \ porosity \ (\%) + recoverd \ fluids \ (bbls)$

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🕅 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \boxtimes The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Jim Raley	Title: Environmental Professional
Signature:	Date: <u>12/29/2022</u>
email: _jim.raley@dvn.com	Telephone:575-689-7597
OCD Only	
Received by:	Date:

Received by OCD: 12/29/2022 10:46:12 AM State of New Mexico

Oil Conservation Division

	Page 4 of 6 :
Incident ID:	nAPP2208846424
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗙 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- \boxtimes Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/29/2022 1 Form C-141	0:46:12 AM			Page 5 of 65
			Incident ID:	nAPP2208846424
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators are require public health or the environment. failed to adequately investigate and	n given above is true and complete to the ed to report and/or file certain release not The acceptance of a C-141 report by the I remediate contamination that pose a thr 41 report does not relieve the operator o	ifications and perform co OCD does not relieve the eat to groundwater, surfa	rrective actions for rele operator of liability sho ce water, human health iance with any other feo al Professional	ases which may endanger ould their operations have or the environment. In
OCD Only				
Received by:		Date:		

Received by OCD: 12/29/2022 10:46:12 AM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID:	nAPP2208846424
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Jim Raley Title: Environmental Professional Signature: fin Ray Date: 12/29/2022 _____ Telephone: 575-689-7597 email: jim.raley@dvn.com _____ **OCD Only** Received by: Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

Page 5

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 7 of 65

Incident ID	NAB1431650115
District RP	2RP-2595
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party WPX Energy, Inc.	OGRID 246289	
Contact Name Jim Raley	Contact Telephone (575)689-7597	
Contact email jim.raley@dvn.com	Incident # (assigned by OCD) NAB1431650115	
Contact mailing address 5315 Buena Vista Dr., Carlsbad, NM 88220		

Location of Release Source

Latitude 32.0072945706848

Longitude _____-103.965986188431

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Pecos Federal 001Y	Site Type Oil and Gas Well
Date Release Discovered 11/10/2014	API# (<i>if applicable</i>) 30-015-24875

Unit Letter	Section	Township	Township Range County	
Р	27	26S	29 E	Eddy

Surface Owner: State X Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
X Produced Water	Volume Released (bbls) 25	Volume Recovered (bbls) 25
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	X Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Transfer pump suction line from tank battery developed a leak and released 25 bbls of produced water to lined secondary containment. A vacuum truck was used to recover free liquids. The suction line, formerly rubber hose construction, was replaced with steel line. All fluids remained in lined secondary containment and was able to be recovered with vacuum truck.

Page 2

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
🔀 Yes 🗌 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

X The source of the release has been stopped.

X The impacted area has been secured to protect human health and the environment.

X Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

X All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Jim Raley	Title: Environmental Professional		
Signature:	Date:		
email: jim.raley@dvn.com To	elephone: 575-686-7597		
OCD Only			
Received by:	Date:		

Received by OCD: 12/29/2022 10:46:12 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 9 of 65
Incident ID	NAB1431650115
District RP	2RP-2595
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🔀 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔀 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔀 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🕅 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔀 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	X Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- X Field data
- X Data table of soil contaminant concentration data
- \underline{X} Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- X Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- X Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/29/2022	n C-141 OCD: 12/29/2022 10:46:12 AM State of New Mexico			Page 10 of 6.	
				Incident ID	NAB1431650115
Page 4	Oil Conservation Division			District RP	2RP-2595
				Facility ID	
				Application ID	
regulations all operators are req public health or the environmer failed to adequately investigate		ifications OCD does eat to grou Fresponsil _ Title: _ Date: _	and perform cc s not relieve the indwater, surfa pility for compl Environm 12/29/2022	prrective actions for rele operator of liability shi ce water, human health iance with any other feo nental Profession	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by: Jocelyn	Harimon		Date: 12/	29/2022	

Received by OCD: 12/29/2022 10:46:12 AM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	NAB1431650115
District RP	2RP-2595
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

X

Page 5

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be co	nfirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around p deconstruction.	production equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human healt	th, the environment, or groundwater.
rules and regulations all operators are required to report and/or file	acceptance of a C-141 report does not relieve the operator of
Printed Name: Jim Raley	Title:_Environmental Professional
Signature:	Date:
email: jim.raley@dvn.com	Telephone:575-686-7597
OCD Only	
Received by: Jocelyn Harimon	Date: 12/29/2022
Approved Approved with Attached Conditions of	f Approval Denied Deferral Approved
Signature:	Date:

REMEDIATION WORK PLAN ADDENDUM

Site Location:

Pecos Federal #001Y **Eddy County, New Mexico Incident Numbers:** nAPP2208846424 and nAB1431650115

December 21, 2022 Ensolum Project No. 03A1987014

Prepared for:

WPX Energy Permian, LLC 5315 Buena Vista Dr. Carlsbad, NM 88220 **Attention: Jim Raley**

Prepared by:

Erich

Erick Herrera Staff Geologist

Ashley L. Ager Ashley Ager, MS, PG

Principal

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 10333 Harwin Drive, Suite 470 | Houston, TX 77036 | ensolum.com Texas PG Firm No. 50588 | Texas PE Firm No. F-21843

TABLE OF CONTENTS

1.0	INTRODUCTION
1.1	Site Description & Release Background1
1.2	Site Characterization1
2.0	SOIL SAMPLING AND REMEDIAL ACTIONS1
2.1	Delineation Activities1-2
3.0	SOIL SAMPLING RESULTS
4.0	REMEDIATION WORK PLAN

LIST OF APPENDICES

Appendix A:	Figure 1: Site Map
	Figure 2: Delineation Soil Sample Locations
	Figure 3: Proposed Remediation Areas
Appendix B:	Lithologic Soil Sampling Logs
Appendix C:	Photographic Log
Appendix D:	Tables
Appendix E:	Laboratory Analytical Reports & Chain-of-Custody Documentation

Appendix F: Email Correspondence

1.0 INTRODUCTION

Ensolum, LLC (Ensolum) has prepared this Remediation Work Plan Addendum (RWPA) to summarize supplemental delineation soil sampling activities completed by WPX Permian Energy, LLC (WPX) at the Pecos Federal #001Y (hereinafter referred to as the "Site") in Unit P, Section 27, Township 26 South, Range 30 East, in Eddy County, New Mexico (**Figure 1 in Appendix A**). The Remediation Work Plan (RWP) which was approved by the New Mexico Oil Conservation Division (NMOCD) on September 20, 2022 and issued the following condition:

"Remediation Plan Approved with Conditions. Please address chloride concentrations in PH-13 at 2' (1,460 mg/kg)."

WPX respectfully submits this RWPA, which includes a summary of additional soil sampling activities and proposes excavation of the area of concern (AOC) associated with north of the tank battery near PH13 and west side of the tank battery containment, followed by the installation of a 20-mil impermeable liner to act as a physical barrier to mitigate further chloride impacts into the subsurface. All previous remediation activities and soil sample analytical results can be referenced in the original RWP.

1.1 Site Description & Release Background

The Site is located within Eddy County, New Mexico (32.0072937°N, 103.9659729°W) and is associated with oil and gas exploration and production operations on Bureau of Land Management (BLM) Federal Land (**Figure 1 in Appendix A**). As previously documented in the RWP, the release of produced water from Incident Number nAPP2208846424 overlapped the historical release of crude oil associated with Incident Number nAB1431650115 and the corrective actions are being implemented concurrently.

Based on the results of the Site Characterization documented in the RWP, the following NMOCD Table 1 Closure Criteria (Closure Criteria) were applied:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total Petroleum Hydrocarbon (TPH): 100 mg/kg
- Chloride: 600 mg/kg

2.0 SOIL SAMPLING AND REMEDIAL ACTIONS

WPX previously performed initial response efforts to remove immediate impacts from the secondary containment for off-Site disposal and conducted delineation soil sampling activities. During delineation soil sampling events, WPX encountered additional areas requiring soil investigation. All delineation soil sample locations from previous events are included in **Figure 2** in **Appendix A** and results were described in the RWP.

2.1 Continued Delineation Activities

On November 10, 2022, Ensolum continued delineation activities as specified in the approved RWP to confirm the vertical extent of impacted soil within the AOC west of the containment as compared to the Closure Criteria. Two potholes (PH11 and PH16) were advanced in existing delineation sample locations to obtain deeper samples. One pothole (PH18) was advance within the AOC to improve lateral control. Potholes were advanced with heavy equipment and soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips.

In general, a minimum of two soil samples were collected from existing or new delineation soil sample locations to fully characterize residual impacts: the sample with the highest observed field screening (ranging from 0.5 foot bgs to 4 feet bgs) and the greatest depth (8 feet bgs). The locations of the delineation soil samples are shown in **Figure 2** in **Appendix A**. Field screening results and visual observations for each delineation soil sample were recorded on lithologic/soil sampling logs (**Appendix B**). The soil samples were placed directly into a pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 6 degrees Celsius (°C), under strict chain-of-custody procedures, to Eurofins LLC (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH following EPA Method 8015M/D; and chloride following EPA Method 300.0. Photographic documentation during delineation activities is included in **Appendix C**.

3.0 SOIL SAMPLING RESULTS

Laboratory analytical results for the new delineation soil samples collected from PH18 indicate that vertical impacts exceeding the most stringent Closure Criteria do not exceed 8 feet bgs within the AOC and are shallower near PH11 and PH16, ending near 4 feet bgs. These results correspond to results previously obtained in PH15. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**. **Appendix F** provides correspondence email notification receipts associated with the subject release.

4.0 REMEDIATION WORK PLAN

The primary objectives of Ensolum's scope of services were to document continued delineation activities performed at the Site were completed in accordance with the applicable NMOCD regulatory guidelines and to document those concentrations of COCs present in soil remaining on-Site, then propose remediation to address any residual elevated concentrations.

Based on the results documented in this and previous reports, the following findings and conclusions regarding the AOC are presented:

- Laboratory analytical results for the new delineation soil samples indicate that vertical impacts in the AOC exceeding the most stringent Closure Criteria range from 4 to 8 feet bgs;
- Based on existing soil analytical results for PH11, PH13, PH15, PH16, and PH18 and mapped extent of the AOC associated with those locations, an estimated **530 cubic yards** of impacted soil is anticipated to be removed from the Site for disposal in accordance with state and federal regulations;
- Based on existing soil analytical results for PH11 and PH18 and mapped extent of the AOC associated with those locations, an estimated **365 cubic yards** of impacted soil is anticipated to be left in place beneath the proposed 20-mil impermeable liner at 4 feet bgs in accordance with state and federal regulations; and

Based on the conclusions presented above, Ensolum proposes excavation of the AOC to 2 to 4 feet, followed by the installation of a 20-mil impermeable liner at approximately 4 feet bgs inside the proposed excavation associated with PH11 and PH18 to act as a physical barrier and mitigate further chloride impacts into the subsurface as described below:

• WPX will collect 5-point composite samples from the sidewalls of the excavations to confirm removal of residual impacts based on analysis described above;

Pecos Federal #001Y Remediation Work Plan Addendum Incident Number nAPP2208846424 and nAB1431650115 Page 16 of 65

- WPX will collect 5-point composite samples from the floors of the excavations associated with PH13, PH15 and PH16 to confirm removal of residual impacts based on analysis described above;
- Residual chloride impacts within the proposed liner area are defined by delineation soil sample PH11 and PH18, therefore no confirmation floor soil samples will be collected in that area;
- Excavated soil will then be transferred to a New Mexico approved landfill facility for disposal; and
- Once complete, WPX will backfill the area with non-waste containing soil.

The proposed excavation (AOC) and liner extent is shown on **Figure 3** in **Appendix A**. Once excavation is completed, WPX will submit a final report, documenting remediation of impacted soil west and north of the containment and proposing deferral of delineated impacts under active production equipment (inside the containment).

WPX believes the scope of work described above will meet requirements set forth in NMAC 19.15.29.13 and be protective of human health, the environment, and groundwater. As such, WPX respectfully requests approval of this RWPA from NMOCD.

APPENDIX A

Figures

Received by OCD: 12/29/2022 10:46:12 AM

Received by OCD: 12/29/2022 10:46:12 AM

APPENDIX B

Lithologic Soil Sampling Logs

•

					Sample Name: PH11	Date: 11/10/2022
	6 6			A		Date. 11/10/2022
	20					12/1
			06			Method: Backhoe
						Total Depth: 8'
		HACH Chlori	de Test Strir	os and PI		
						,
Vapor (ppm) Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)			
				SW-SN	(0-8') SAND, dry, brown, wo very fine-medium, tra subangular gravel, no	ce subround-
		2	2		@3', color change to reddi	ish-brown.
		3	3		@4', color change to tan-b	prown.
0.1 N	PH11	4	4			
		5	5			
		6	6			
		7	7			
0.2 N	PH11		8			
	LITHOLOGIC 1072937, -103. screening con factor of soil to Cabou O.1 N	LITHOLOGIC / SOIL SA 10072937, -103.9659729 screening conducted with factor of soil to distilled water of soil to dister of soil to distilled water of soil to distil	LITHOLOGIC / SOIL SAMPLING I 1072937, -103.9659729 screening conducted with HACH Chlorid factor of soil to distilled water. No correct The series of soil	LITHOLOGIC / SOIL SAMPLING LOG 10072937, -103.9659729 screening conducted with HACH Chloride Test Strip Gator of soil to distilled water. No correction factor Depth Depth Depth 0 1 1 Depth 0 1 1 0 1 1 1 0.1 N PH11 4 4 5 5 6 6 0.2 N PH11 8 8	D072937, -103.9659729 screening conducted with HACH Chloride Test Strips and PII Generative of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction factors include Image: Solution of soil to distilled water. No correction of soil to distilled water. No correction of soil	Incident Number: nAPP22088464 Incident Number: 03A1987014 LITHOLOGIC / SOIL SAMPLING LOG Logged By: KYE 0072937, -103.9659729 Hole Diameter: N/A Screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respective factor of soil to distilled water. No correction factors included. Image: Section of soil to distilled water. No correction factors included. Image: Section of Section factors included. Image: Section factor Section factors included. Image: Section of Section factors included. Image: Section factor Section factors included. Image: Section factor Section factors included. Image: Section factor Section factors included. Image: Section factor facto

•

								Sample Name: PH16	Date: 11/10/2022
				6 6) L			Site Name: Pecos Federal #001Y	54(0. 11/ 10/ 2022
				3 (Incident Number: nAPP220884642	4
	_							Job Number: 03A1987014	
	L	ITHOLO	GIC	/ SOIL S	AMPLING	LOG		Logged By: KYE	Method: Backhoe
Coordi				-				Hole Diameter: N/A	Total Depth: 8'
		-			HACH Chlori ater. No corr			for chloride and vapor, respectivel d.	y. Chloride test performed
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	
D	733	0.1	N	PH16			SP	(0-8') SAND, dry, brown, poo fine-medium, trace sub gravel, no odor, no stai	pround-subangular
	, 33	0.1		11110	5	_ ·			
D	436	0.0	Ν	PH16	6	6			
					7	7			
D	257	0.1	Ν	PH16	8	8			
\sim						Total Dep	th: 8 fee	et bgs.	

•

								Sample Name: PH18	Date: 11/10/2022
				6 6				Site Name: Pecos Federal #001Y	Date. 11/10/2022
				2 () L			Incident Number: nAPP220884642	4
								Job Number: 03A1987014	
			GIC		AMPLING	06		Logged By: KYE	Method: Backhoe
Coordi	nates: 32.00							Hole Diameter: N/A	Total Depth: 8'
					HACH Chlori	de Test Strir	s and PID	for chloride and vapor, respectively	
					ater. No corr				, i
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	
D	3,404	0.2	Ν	PH18			SP	(0-8') SAND, dry, brown, poc fine-medium, trace sub gravel, no odor, no stai	round-subangular
					3	3			
D	666	0.1	Ν	PH18	4	_ 4			
					5 _	_ 5			
D	604	0.0	Ν	PH18	6	6			
					7	- 7			
	296	0.0	Ν	PH18	8	<u>8</u> Total Dep	th. 0 for		
						Total Dep		et bgs.	

APPENDIX C

Photographic Log

APPENDIX D

Tables

ENSOLUM

			wi	PX Energy Permian, Eddy Coun	ALYTICAL RESULT LLC - Pecos Federal ty, New Mexico ct No. 03A1987014				
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	100	600
	_	_	_	Delineation Soil Sa	mple Analytical Resu	ilts	_	_	
PH11	05/18/2022	0.5	<0.00200	<0.00200	<50.0	70.6	<50.0	70.6	537
PH11	11/10/2022	4	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	490
PH11	05/18/2022	7	<0.00199	<0.00199	<49.9	<49.9	<49.9	<49.9	4,740
PH11	11/10/2022	8	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	204
PH15	05/18/2022	0.5	<0.00200	<0.00399	<50.0	<50.0	67.9	67.9	8,780
PH15	05/18/2022	1	<0.00198	<0.00396	147	<49.9	<49.9	147	1,570
PH16	05/18/2022	0.5	<0.00198	<0.00397	144	<50.0	<50.0	144	7,560
PH16	05/18/2022	1	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	673
PH16	11/10/2022	4	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	211
PH16	11/10/2022	6	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	424
PH16	11/10/2022	8	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	221

TABLE 1

ENSOLUM

TABLE 1
SOIL SAMPLE ANALYTICAL RESULTS
WPX Energy Permian, LLC - Pecos Federal #001Y
Eddy County, New Mexico

Ensolum Project No. 03A1987014

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 0	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	100	600
PH18	11/10/2022	0.5	<0.00200	<0.00401	<50.0	66.9	90.9	158	4,080
PH18	11/10/2022	4	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	629
PH18	11/10/2022	6	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	600
PH18	11/10/2022	8	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	365

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

Concentrations in **bold** exceed the NMOCD Table 1 Closure Criteria and/or Reclamation Standard for Soils Impacted by a Release

.

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

Received by OCD: 12/29/2022 10:46:12 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Devon Team Ensolum 705 W. Wadley Suite 210 Midland Texas 79701 Generated 11/22/2022 3:23:06 PM

JOB DESCRIPTION

Pecos Fed 1Y SDG NUMBER Eddy County NM

JOB NUMBER

890-3434-1

Page 31 of 65

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Laboratory Job ID: 890-3434-1 SDG: Eddy County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	18
Lab Chronicle	21
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	28
Appendix	30

2

Page 33 of 65

Client: Ensolum	Definitions/Glossary	Job ID: 890-3434-1	1
Project/Site: Pe	cos Fed 1Y	SDG: Eddy County NM	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		Ę
GC Semi VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		8
Glossary			c
Abbreviation	These commonly used abbreviations may or may not be present in this report.		2
	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS PQL	Positive / Present Practical Quantitation Limit		
PQL	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		

TEQToxicity Equivalent QuotientTNTCToo Numerous To Count

Eurofins Carlsbad

4

Job ID: 890-3434-1 SDG: Eddy County NM

Job ID: 890-3434-1

Project/Site: Pecos Fed 1Y

Client: Ensolum

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3434-1

Receipt

The samples were received on 11/11/2022 10:04 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: PH11 (890-3434-1), PH11 (890-3434-2), PH16 (890-3434-3), PH16 (890-3434-4), PH16 (890-3434-5), PH18 (890-3434-6), PH18 (890-3434-7), PH18 (890-3434-8) and PH18 (890-3434-9).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: PH11 (890-3434-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

5

Job ID: 890-3434-1 SDG: Eddy County NM

Client Sample ID: PH11

Project/Site: Pecos Fed 1Y

Date Collected: 11/10/22 09:10 Date Received: 11/11/22 10:04

Sample Depth: 4'

Client: Ensolum

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/14/22 15:47	11/22/22 03:32	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/14/22 15:47	11/22/22 03:32	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/14/22 15:47	11/22/22 03:32	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/14/22 15:47	11/22/22 03:32	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/14/22 15:47	11/22/22 03:32	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/14/22 15:47	11/22/22 03:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	135	S1+	70 - 130				11/14/22 15:47	11/22/22 03:32	1
1,4-Difluorobenzene (Surr)	136	S1+	70 - 130				11/14/22 15:47	11/22/22 03:32	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	< 0.00399		0.00399		mg/Kg			11/22/22 15:30	1
Total BTEX	<0.00399	0	0.00399		iiig/itg			1	•
Total BTEX : : Method: SW846 8015 NM - Diese					iiig/itg				
	I Range Organ	<mark>ics (DRO) (</mark> Qualifier	GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
: Method: SW846 8015 NM - Diese	I Range Organ	<mark>ics (DRO) (</mark> Qualifier	GC)	MDL		<u>D</u>	Prepared		Dil Fac
Method: SW846 8015 NM - Diese Analyte	H Range Organ Result <50.0	ics (DRO) (Qualifier U	GC) 	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	I Range Organ 	ics (DRO) (Qualifier U	GC) 		Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	I Range Organ 	ics (DRO) (Qualifier U nics (DRO) Qualifier	GC) - <u>RL</u> 50.0		Unit mg/Kg			Analyzed 11/15/22 16:29	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	I Range Organ Result <50.0 sel Range Orga Result <50.0	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) 		Unit mg/Kg Unit mg/Kg		Prepared 11/14/22 14:27	Analyzed 11/15/22 16:29 Analyzed 11/15/22 14:59	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	I Range Organ Result <50.0 sel Range Orga Result	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) 		Unit mg/Kg Unit		Prepared	Analyzed 11/15/22 16:29 Analyzed	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	I Range Organ Result <50.0 Sel Range Orga Result <50.0 <50.0	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) RL 50.0 (GC) RL 50.0 50.0		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/14/22 14:27 11/14/22 14:27	Analyzed 11/15/22 16:29 Analyzed 11/15/22 14:59 11/15/22 14:59	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	I Range Organ Result <50.0 sel Range Orga Result <50.0	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) 		Unit mg/Kg Unit mg/Kg		Prepared 11/14/22 14:27	Analyzed 11/15/22 16:29 Analyzed 11/15/22 14:59	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	I Range Organ Result <50.0 Sel Range Orga Result <50.0 <50.0	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) RL 50.0 (GC) RL 50.0 50.0		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/14/22 14:27 11/14/22 14:27	Analyzed 11/15/22 16:29 Analyzed 11/15/22 14:59 11/15/22 14:59	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	I Range Organ Result c50.0 sel Range Orga Result <50.0 <50.0 <50.0	ics (DRO) (Qualifier U nics (DRO) Qualifier U U U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/14/22 14:27 11/14/22 14:27 11/14/22 14:27	Analyzed 11/15/22 16:29 Analyzed 11/15/22 14:59 11/15/22 14:59 11/15/22 14:59	1 Dil Fac 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	I Range Organ Result Sel Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery	ics (DRO) (Qualifier U nics (DRO) Qualifier U U U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/14/22 14:27 11/14/22 14:27 11/14/22 14:27 Prepared	Analyzed 11/15/22 16:29 Analyzed 11/15/22 14:59 11/15/22 14:59 11/15/22 14:59 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Range Organ Result <50.0	ics (DRO) (Qualifier U nics (DRO) Qualifier U U U Qualifier	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/14/22 14:27 11/14/22 14:27 11/14/22 14:27 Prepared 11/14/22 14:27	Analyzed 11/15/22 16:29 Analyzed 11/15/22 14:59 11/15/22 14:59 11/15/22 14:59 Analyzed 11/15/22 14:59	1 Dil Fac 1 1 1 1 <i>Dil Fac</i> 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Range Organ Result <50.0	ics (DRO) (Qualifier U nics (DRO) Qualifier U U U Qualifier	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/14/22 14:27 11/14/22 14:27 11/14/22 14:27 Prepared 11/14/22 14:27	Analyzed 11/15/22 16:29 Analyzed 11/15/22 14:59 11/15/22 14:59 11/15/22 14:59 Analyzed 11/15/22 14:59	1 Dil Fac 1 1 1 1 <i>Dil Fac</i> 1

Client Sample ID: PH11 Date Collected: 11/10/22 09:20 Date Received: 11/11/22 10:04

Sample Depth: 8'

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 03:53	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 03:53	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 03:53	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/14/22 15:47	11/22/22 03:53	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 03:53	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/14/22 15:47	11/22/22 03:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				11/14/22 15:47	11/22/22 03:53	1

Eurofins Carlsbad

i uge JJ

Released to Imaging: 1/24/2023 3:09:12 PM

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier

129

Client Sample Results

Limits

70 - 130

Job ID: 890-3434-1
SDG: Eddy County NM

Client Sample ID: PH11

Date Collected: 11/10/22 09:20 Date Received: 11/11/22 10:04

Sample Depth: 8'

1,4-Difluorobenzene (Surr)

Project/Site: Pecos Fed 1Y

Client: Ensolum

Surrogate

Lab	Sample	ID:	890-3434-2

Analyzed

11/22/22 03:53

Prepared

11/14/22 15:47

Matrix: Solid

Dil Fac

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/22/22 15:30	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/16/22 09:14	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 16:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 16:05	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 16:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				11/14/22 14:27	11/15/22 16:05	1
o-Terphenyl	93		70 - 130				11/14/22 14:27	11/15/22 16:05	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	204		4.97		mg/Kg			11/16/22 02:46	1

Client Sample ID: PH16

Date Collected: 11/10/22 09:40 Date Received: 11/11/22 10:04 Sample Depth: 4'

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 mg/Kg 11/14/22 15:47 11/22/22 04:13 11/22/22 04:13 Toluene <0.00199 U 0.00199 11/14/22 15:47 mg/Kg 1 Ethylbenzene <0.00199 U 0.00199 mg/Kg 11/14/22 15:47 11/22/22 04:13 0.00398 11/14/22 15:47 11/22/22 04:13 m-Xylene & p-Xylene <0.00398 U mg/Kg 1 o-Xylene <0.00199 U 0.00199 mg/Kg 11/14/22 15:47 11/22/22 04:13 Xylenes, Total <0.00398 U 0.00398 mg/Kg 11/14/22 15:47 11/22/22 04:13 1 %Recovery Surrogate Qualifier Limits Dil Fac Prepared Analvzed 70 - 130 4-Bromofluorobenzene (Surr) 116 11/14/22 15:47 11/22/22 04.13 1 1,4-Difluorobenzene (Surr) 106 70 - 130 11/14/22 15:47 11/22/22 04:13 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00398 Ū 0.00398 11/22/22 15:30 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <50.0 U Total TPH 50.0 mg/Kg 11/16/22 09:14 1

Eurofins Carlsbad

Matrix: Solid
Page 37 of 65

Matrix: Solid

Job ID: 890-3434-1 SDG: Eddy County NM

Client Sample ID: PH16

Project/Site: Pecos Fed 1Y

Date Collected: 11/10/22 09:40 Date Received: 11/11/22 10:04

Sample Depth: 4'

Client: Ensolum

Lab Sample	ID: 890-3434-3
	Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/14/22 14:27	11/15/22 16:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/14/22 14:27	11/15/22 16:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/14/22 14:27	11/15/22 16:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				11/14/22 14:27	11/15/22 16:26	1
o-Terphenyl	88		70 - 130				11/14/22 14:27	11/15/22 16:26	1

Analyte	Result	Quaimer	KL.	NUDL	Unit	U	Frepareu	Analyzeu	DIFAC	
Chloride	211		5.01		mg/Kg			11/16/22 02:51	1	
Client Sample ID: PH16							Lab Sa	mple ID: 890-	3434-4	

Client Sample ID: PH16

Date Collected: 11/10/22 09:50

Date Received: 11/11/22 10:04 Sample Depth: 6'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		11/14/22 15:47	11/22/22 04:34	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/14/22 15:47	11/22/22 04:34	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/14/22 15:47	11/22/22 04:34	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/14/22 15:47	11/22/22 04:34	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/14/22 15:47	11/22/22 04:34	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/14/22 15:47	11/22/22 04:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/14/22 15:47	11/22/22 04:34	1
1,4-Difluorobenzene (Surr)	108		70 - 130				11/14/22 15:47	11/22/22 04:34	1

Method: TAL SOP Total BT	EX - Total BTEX Calculation
Amaluta	Desult Qualifier

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/22/22 15:30	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/16/22 09:14	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 16:47	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 16:47	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 16:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				11/14/22 14:27	11/15/22 16:47	1
o-Terphenyl	88		70 - 130				11/14/22 14:27	11/15/22 16:47	1

Eurofins Carlsbad

5

Page 38 of 65

		Clier	nt Sample R	lesults	5				
Client: Ensolum								Job ID: 890	
Project/Site: Pecos Fed 1Y								SDG: Eddy Co	unty NM
Client Sample ID: PH16							Lab Sar	nple ID: 890-	3434-4
Date Collected: 11/10/22 09:50									ix: Solid
Date Received: 11/11/22 10:04									
Sample Depth: 6'									
Method: MCAWW 300.0 - Anio Analyte		Qualifier	Oluble RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	Kesuit 424	Quaimer	4.98		mg/Kg			11/16/22 02:57	1
	424		4.50		mg/rtg			11/10/22 02:01	•
Client Sample ID: PH16							Lab San	nple ID: 890-	3434-5
Date Collected: 11/10/22 10:00								Matri	ix: Solid
Date Received: 11/11/22 10:04									
Sample Depth: 8'									
Method: SW846 8021B - Volati	le Organic Comp	ounde (GC	`						
Analyte		Qualifier	/ RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		. 11/14/22 15:47	11/22/22 04:54	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/14/22 15:47	11/22/22 04:54	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/14/22 15:47	11/22/22 04:54	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/14/22 15:47	11/22/22 04:54	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/14/22 15:47	11/22/22 04:54	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/14/22 15:47	11/22/22 04:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130				11/14/22 15:47	11/22/22 04:54	1
1,4-Difluorobenzene (Surr)	107		70 - 130				11/14/22 15:47	11/22/22 04:54	1
Method: TAL SOP Total BTEX Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402		0.00402	MDL	mg/Kg			11/22/22 15:30	1
	0.00102	0	0.00102						
Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/16/22 09:14	1
Method: SW846 8015B NM - Di Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0		50.0		mg/Kg		11/14/22 14:27	11/15/22 17:08	1
(GRO)-C6-C10		-							
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/14/22 14:27	11/15/22 17:08	1
C10-C28)			_						
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/14/22 14:27	11/15/22 17:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				11/14/22 14:27	11/15/22 17:08	1
o-Terphenyl	99		70 - 130				11/14/22 14:27	11/15/22 17:08	1
			- habita						
Method: MCAWW 300.0 - Anio	ns, ion Chromato	ograpny - S	eiubie						
Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Result Qualifier

Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00401 U

<0.00200 U

<0.00401 U

127

108

<0.00401 U

Result Qualifier

%Recovery

RL

0.00200

0.00200

0.00200

0.00401

0.00200

0.00401

Limits

70 - 130

70 - 130

RL

0.00401

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

Prepared

11/14/22 15:47

11/14/22 15:47

11/14/22 15:47

11/14/22 15:47

11/14/22 15:47

11/14/22 15:47

Prepared

11/14/22 15:47

11/14/22 15:47

Prepared

Page 39 of 65

Dil Fac

1

1

1

1

1

1

Dil Fac

Dil Fac

Job ID: 890-3434-1 SDG: Eddy County NM

Client Sample ID: PH18

Project/Site: Pecos Fed 1Y

Date Collected: 11/10/22 10:20 Date Received: 11/11/22 10:04

Sample Depth: 0.5'

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-3434-6 Matrix: Solid

Analyzed

11/22/22 05:15

11/22/22 05:15

11/22/22 05:15

11/22/22 05:15

11/22/22 05:15

11/22/22 05:15

Analyzed

11/22/22 05:15

11/22/22 05:15

Analyzed

11/22/22 15:30

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	158		50.0		mg/Kg			11/16/22 09:14	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/14/22 14:27	11/15/22 17:28	1
Diesel Range Organics (Over C10-C28)	66.9		50.0		mg/Kg		11/14/22 14:27	11/15/22 17:28	1
Oll Range Organics (Over C28-C36)	90.9		50.0		mg/Kg		11/14/22 14:27	11/15/22 17:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				11/14/22 14:27	11/15/22 17:28	1
o-Terphenyl	99		70 - 130				11/14/22 14:27	11/15/22 17:28	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4080		50.2		mg/Kg			11/16/22 03:19	10
lient Sample ID: PH18							Lab Sar	nple ID: 890-	3434-7
ate Collected: 11/10/22 10:30								Matri	x: Solid
ate Received: 11/11/22 10:04									
ample Dopth: 4'									

Sample Depth: 4'

Method: SW846	8021B -	Volatilo	Organic	Compounds	(GC)
Methou. 30040	00210 -	volatile	Organic	compounds	(\mathbf{GC})

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/14/22 15:47	11/22/22 05:36	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/14/22 15:47	11/22/22 05:36	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/14/22 15:47	11/22/22 05:36	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/14/22 15:47	11/22/22 05:36	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/14/22 15:47	11/22/22 05:36	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/14/22 15:47	11/22/22 05:36	1

Eurofins Carlsbad

Released to Imaging: 1/24/2023 3:09:12 PM

Page 40 of 65

Job ID: 890-3434-1 SDG: Eddy County NM

Lab Sample ID: 890-3434-7

Client Sample ID: PH18

Date Collected: 11/10/22 10:30 Date Received: 11/11/22 10:04

Project/Site: Pecos Fed 1Y

Sample Depth: 4'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				11/14/22 15:47	11/22/22 05:36	1
1,4-Difluorobenzene (Surr)	104		70 - 130				11/14/22 15:47	11/22/22 05:36	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/22/22 15:30	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/16/22 09:14	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 17:49	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 17:49	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 17:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				11/14/22 14:27	11/15/22 17:49	1
o-Terphenyl	85		70 - 130				11/14/22 14:27	11/15/22 17:49	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	629		5.04		mg/Kg			11/16/22 03:25	1
lient Sample ID: PH18							Lab Sar	nple ID: 890-	3434-8
ate Collected: 11/10/22 10:40								Matri	x: Solid
ate Received: 11/11/22 10:04									
ample Depth: 6'									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199		0.00199		mg/Kg		11/14/22 15:47	11/22/22 05:56	1
Toluono	<0.00100		0.00100		mg/Kg		11/14/00 15:47	11/22/22 05:56	

Analyte	Result	Quanner			onne		Ticparca	Analyzea	Diride
Benzene	< 0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 05:56	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 05:56	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 05:56	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/14/22 15:47	11/22/22 05:56	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 05:56	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/14/22 15:47	11/22/22 05:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				11/14/22 15:47	11/22/22 05:56	1
1,4-Difluorobenzene (Surr)	106		70 - 130				11/14/22 15:47	11/22/22 05:56	1
Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Total BTEX	<0.00398	U	0.00398		mg/Kg		•	11/22/22 15:30	1
Method: SW846 8015 NM - Diesel R	ange Organi	ics (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/16/22 09:14	1

Eurofins Carlsbad

Matrix: Solid

5

Released to Imaging: 1/24/2023 3:09:12 PM

Job ID: 890-3434-1 SDG: Eddy County NM

Client Sample ID: PH18

Project/Site: Pecos Fed 1Y

Date Collected: 11/10/22 10:40 Date Received: 11/11/22 10:04

Sample Depth: 6'

Client: Ensolum

Lab Sample ID: 890-3434-8 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 18:10	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 18:10	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/14/22 14:27	11/15/22 18:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	78		70 - 130				11/14/22 14:27	11/15/22 18:10	1
o-Terphenyl	76		70 - 130				11/14/22 14:27	11/15/22 18:10	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	600		4.97		mg/Kg			11/16/22 03:42	1

Client Sample ID: PH18

Date Collected: 11/10/22 10:50

Date Received: 11/11/22 10:04

Sample Depth: 8'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 06:17	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 06:17	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 06:17	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/14/22 15:47	11/22/22 06:17	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/14/22 15:47	11/22/22 06:17	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/14/22 15:47	11/22/22 06:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				11/14/22 15:47	11/22/22 06:17	1
1,4-Difluorobenzene (Surr)	111		70 - 130				11/14/22 15:47	11/22/22 06:17	1
- Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			11/16/22 09:14	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
	• •	n <mark>ics (DRO)</mark> Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	• •	Qualifier	· · ·	MDL	Unit mg/Kg	<u>D</u>	Prepared 11/14/22 14:27	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U		MDL		<u> </u>	<u> </u>		1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.8	Qualifier U U	RL 49.8	MDL	mg/Kg	<u> </u>	11/14/22 14:27	11/15/22 18:31	Dil Fac 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.8 <49.8	Qualifier U U U	RL 49.8	MDL	mg/Kg mg/Kg	<u> </u>	11/14/22 14:27 11/14/22 14:27	11/15/22 18:31 11/15/22 18:31	1

Eurofins Carlsbad

11/15/22 18:31

11/14/22 14:27

Matrix: Solid

5

o-Terphenyl

70 - 130

83

		Client	Sample R	esults	;					1
Client: Ensolum Project/Site: Pecos Fed 1Y								Job ID: 890 SDG: Eddy Co		2
Client Sample ID: PH18 Date Collected: 11/10/22 10:50							Lab Sa	mple ID: 890- Matri	3434-9 ix: Solid	
Date Received: 11/11/22 10:04 Sample Depth: 8'										
Method: MCAWW 300.0 - Anions,										5
Analyte Chloride	Result 365	Qualifier	25.3 RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/16/22 03:48	Dil Fac 5	
_										
										8
										9
										13

Eurofins Carlsbad

Job ID: 890-3434-1 SDG: Eddy County NM

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-3423-A-1-D MS	Matrix Spike	104	94		
890-3423-A-1-E MSD	Matrix Spike Duplicate	113	87		
390-3434-1	PH11	135 S1+	136 S1+		12
890-3434-2	PH11	122	129		
390-3434-3	PH16	116	106		
890-3434-4	PH16	118	108		
390-3434-5	PH16	117	107		
390-3434-6	PH18	127	108		
390-3434-7	PH18	121	104		
390-3434-8	PH18	121	106		
390-3434-9	PH18	124	111		
LCS 880-39546/1-A	Lab Control Sample	91	82		
LCSD 880-39546/2-A	Lab Control Sample Dup	99	93		
MB 880-39546/5-A	Method Blank	112	92		
MB 880-40068/5-A	Method Blank	101	92		
Surrogate Legend					
BFB = 4-Bromofluorobe	nzene (Surr)				
DFBZ = 1,4-Difluoroben	zene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 890-3432-A-1-E MS Matrix Spike 88 75 890-3432-A-1-F MSD Matrix Spike Duplicate 87 74 890-3434-1 PH11 92 93 890-3434-2 PH11 94 93 890-3434-3 PH16 88 88 890-3434-4 PH16 89 88 890-3434-5 PH16 100 99 890-3434-6 PH18 100 99 PH18 890-3434-7 86 85 890-3434-8 PH18 78 76 PH18 890-3434-9 85 83 LCS 880-39516/2-A Lab Control Sample 84 81 LCSD 880-39516/3-A Lab Control Sample Dup 84 81 MB 880-39516/1-A Method Blank 107 110 Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Prep Type: Total/NA

QC Sample Results

Client: Ensolum

Project/Site: Pecos Fed 1Y

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-39546/5-A Matrix: Solid Analysis Batch: 40037										Client Sa	ample ID: Metho Prep Type: ⁻ Prep Batcl	Fotal/NA
	MB	MB										
Analyte	Result	Qualifier	R	L	MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.0020	0		mg/Kg	j	_	11/1	4/22 15:47	11/21/22 22:20	1
Toluene	<0.00200	U	0.0020	0		mg/Kg	J		11/1	4/22 15:47	11/21/22 22:20	1
Ethylbenzene	<0.00200	U	0.0020	0		mg/Kg	J		11/1	4/22 15:47	11/21/22 22:20	1
m-Xylene & p-Xylene	<0.00400	U	0.0040	0		mg/Kg	3		11/1	4/22 15:47	11/21/22 22:20	1
o-Xylene	<0.00200	U	0.0020	0		mg/Kg	1		11/1	4/22 15:47	11/21/22 22:20	1
Xylenes, Total	<0.00400	U	0.0040	0		mg/Kg	9		11/1	4/22 15:47	11/21/22 22:20	1
	МВ	МВ										
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130	_					11/1	4/22 15:47	11/21/22 22:20	1
1,4-Difluorobenzene (Surr)	92		70 - 130						11/1	4/22 15:47	11/21/22 22:20	1
Lab Sample ID: LCS 880-39546/1-A								С	lient	Sample	ID: Lab Control	Sample
Matrix: Solid											Prep Type: 7	Total/NA
Analysis Batch: 40037											Prep Batcl	n: 39546
-			Spike	LCS	LCS						%Rec	
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.06955			mg/Kg			70	70 - 130	
Toluene			0.100	0.08190			mg/Kg			82	70 - 130	

0.100

0.200

0.08788

0.1753

0.1027

mg/Kg

mg/Kg

mg/Kg

o-Xylene			0.100
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits

4-Bromofluorobenzene (Surr)	91	7	0 - 130
1,4-Difluorobenzene (Surr)	82	7	0 - 130

Lab Sample ID: LC	SD 880-39546/2-A
-------------------	------------------

Matrix: Solid . .

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 40037							Prep	Batch:	39546
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07665		mg/Kg		77	70 - 130	10	35
Toluene	0.100	0.08944		mg/Kg		89	70 - 130	9	35
Ethylbenzene	0.100	0.09524		mg/Kg		95	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.1909		mg/Kg		95	70 - 130	9	35
o-Xylene	0.100	0.1111		mg/Kg		111	70 - 130	8	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	93		70 - 130

Lab Sample ID: 890-3423-A-1-D MS

Matrix: Solid

Analysis Batch: 40037									Prep	b Batch: 39546
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0998	0.07603		mg/Kg		76	70 - 130	
Toluene	<0.00199	U	0.0998	0.08510		mg/Kg		85	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Job ID: 890-3434-1 SDG: Eddy County NM

70 - 130

70 - 130

70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

88

88

Lab Sample ID: 890-3423-A-1-D MS

Lab Sample ID: 890-3423-A-1-E MSD

QC Sample Results

MS MS

MSD MSD

0.07504

0.08927

0.09882

0.1954

0.1117

Result Qualifier

Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Result

0.08975

0.1800

0.1033

Spike

Added

0.0998

0.200

0.0998

Limits

70 - 130

70 - 130

Spike

Added

0.0996

0.0996

0.0996

0.199

0.0996

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: Pecos Fed 1Y

Analysis Batch: 40037

4-Bromofluorobenzene (Surr)

Analysis Batch: 40037

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Matrix: Solid

Ethylbenzene

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Analysis Batch: 40037

Lab Sample ID: MB 880-40068/5-A

1,4-Difluorobenzene (Surr)

Ethylbenzene

m-Xylene & p-Xylene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

U

U

MS MS

Qualifier

Qualifier

Result

< 0.00199

<0.00398

%Recovery

<0.00199 U

104

94

Sample Sample

<0.00199

< 0.00199

<0.00199

< 0.00398

%Recovery

<0.00199 U

113

87

Result Qualifier

U

U

U

U

MSD MSD

Qualifier

%Rec

Limits

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

%Rec

90

90

103

90

99

98

112

D

SDG: Eddy County NM **Client Sample ID: Matrix Spike** Prep Type: Total/NA Prep Batch: 39546

Clier	nt Sa	ample ID): Matrix Sp	oike Dup	licate	
			Prep T	ype: To	tal/NA	
				Batch:		
			%Rec		RPD	
	D	%Rec	Limits	RPD	Limit	
		75	70 - 130	1	35	

5

10

8

8

35

35

35

35

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 40068

MB MB Result Qualifier MDL Unit Prepared Dil Fac Analyte RL D Analyzed Benzene <0.00200 U 0.00200 mg/Kg 11/21/22 09:48 11/21/22 11:40 1 Toluene <0.00200 U 0.00200 11/21/22 09:48 11/21/22 11:40 mg/Kg 1 Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/21/22 09:48 11/21/22 11:40 1 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 11/21/22 09:48 11/21/22 11:40 1 11/21/22 11:40 o-Xylene <0.00200 U 0.00200 mg/Kg 11/21/22 09:48 1 Xylenes, Total <0.00400 U 0.00400 mg/Kg 11/21/22 09:48 11/21/22 11:40 1 MB MB Qualifier Dil Fac Limits Surrogate %Recovery Prepared Analyzed 4-Bromofluorobenzene (Surr) 101 70 - 130 11/21/22 09:48 11/21/22 11:40 1,4-Difluorobenzene (Surr) 92 70 - 130 11/21/22 09:48 11/21/22 11:40 1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-39516/1-A Matrix: Solid Analysis Batch: 39567							Client Sa	mple ID: Metho Prep Type: ⊺ Prep Batcł	Total/NA
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/14/22 14:27	11/15/22 08:37	1
(GRO)-C6-C10									

Eurofins Carlsbad

Released to Imaging: 1/24/2023 3:09:12 PM

QC Sample Results

Client: Ensolum Project/Site: Pecos Fed 1Y

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Page 46 of 65

Lab Sample ID: MB 880-39516 Matrix: Solid Analysis Batch: 39567	/1-A									Client Sa		ype: To	Blank otal/NA 39516
	N	IB MB											
Analyte	Resu	ult Qualifier	RL		MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
Diesel Range Organics (Over C10-C28)	<50	0.0 U	50.0			mg/Kg]	_	11/1	4/22 14:27	11/15/22 (8:37	1
Oll Range Organics (Over C28-C36)	<50	0.0 U	50.0			mg/Ko	9		11/1	4/22 14:27	11/15/22 (8:37	1
	N	IB MB											
Surrogate		ry Qualifier	Limits						P	repared	Analyz	ed	Dil Fac
1-Chlorooctane		07	70 - 130							4/22 14:27	11/15/22 (1
o-Terphenyl	1	10	70 - 130						11/1	4/22 14:27	11/15/22 (08:37	1
Lab Sample ID: LCS 880-39516	6/2-A							С	lient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid													otal/NA
Analysis Batch: 39567													39516
-			Spike	LCS	LCS						%Rec		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10			1000	801.1			mg/Kg			80	70 - 130		
Diesel Range Organics (Over C10-C28)			1000	802.2			mg/Kg			80	70 - 130		
	LCS L	cs											
Surrogate	%Recovery Q	ualifier	Limits										
1-Chlorooctane	84		70 - 130										
o-Terphenyl	81		70 - 130										
— Г									_				
Lab Sample ID: LCSD 880-395	16/3-A						Cli	ient	Sam	ple ID: L	ab Contro	-	
Matrix: Solid													otal/NA
Analysis Batch: 39567			o "			_						Batch:	39516
Analyta			Spike Added	LCSD Result			Unit		D	%Rec	%Rec Limits	RPD	RPD Limit
Analyte Gasoline Range Organics			1000	805.9	Qua		mg/Kg		- <u>–</u>	81	70 - 130	1	20
(GRO)-C6-C10			1000	000.9			mg/itg			01	70 - 150		20
Diesel Range Organics (Over C10-C28)			1000	801.6			mg/Kg			80	70 - 130	0	20
	LCSD L	CSD											
Surrogate	%Recovery Q		Limits										
1-Chlorooctane	84		70 - 130										
o-Terphenyl	81		70 _ 130										
Lab Sample ID: 890-3432-A-1-I	EMS									Client S	Sample ID:		
Matrix: Solid													otal/NA
Analysis Batch: 39567		1-	0									Batch:	39516
A	Sample S	-	Spike		MS	1141 a	11		~	0/ D = -	%Rec		
Analyte	Result Q		Added	Result	Qua	intier	Unit			%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.0 U		997	1121			mg/Kg			110	70 - 130		
Diesel Range Organics (Over	<50.0 U		997	818.0			mg/Kg			80	70 - 130		
C10-C28)													
	MS M	19											

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	88		70 - 130
o-Terphenyl	75		70 - 130

Eurofins Carlsbad

QC Sample Results

Project/Site: Pecos Fed 1Y

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3432-A-							Client	Jaint): Matrix Sp		nicate
Matrix: Solid											Type: To	
Analysis Batch: 39567											Batch:	
	Sample	Sample	Spike	MSI	MSD					%Rec		RP
Analyte	Result	Qualifier	Added	Resu	t Qualifie	r Unit) %	Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10	<50.0		999	111	9	mg/Kg			110	70 - 130	0	2
Diesel Range Organics (Over C10-C28)	<50.0	U	999	826.	5	mg/Kg			81	70 - 130	1	2
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	87		70 - 130	•								
o-Terphenyl	74		70 - 130									
lethod: 300.0 - Anions,	Ion Chromat	ography										
Lab Sample ID: MB 880-394	49/1- A							Cli	ent S	ample ID:		
Matrix: Solid										Prep	Type: S	olubl
Analysis Batch: 39642												
		MB MB										
Analyte		esult Qualifier		RL	MDL U		D	Prepa	ared	Analyz		Dil Fa
Chloride	~	<5.00 U		5.00	m	g/Kg				11/16/22 (01:26	
Lab Sample ID: LCS 880-394	149/2-0						Clie	nt Sa	mnle	ID: Lab Co	ontrol S	amnl
Lub Gumpie ib. Log ood oo												
Matrix: Solid												
											Type: S	
			Spike	LC	S LCS							
Analysis Batch: 39642			Spike Added		S LCS t Qualifie	r Unit	[Rec	Prep		
Analysis Batch: 39642					t Qualifie	r <u>Unit</u> mg/Kg) %		Prep %Rec		
Analysis Batch: 39642 Analyte Chloride			Added	Resu	t Qualifie	mg/Kg	<u>[</u>	<u>) %</u>	Rec 110	Prep %Rec Limits 90 - 110	Type: S	olubl
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3	9449/3-A		Added	Resu	t Qualifie	mg/Kg	<u>[</u>	<u>) %</u>	Rec 110	Prep %Rec Limits 90 - 110	Type: So ol Sampl	olubl
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid	9449/3-A		Added	Resu	t Qualifie	mg/Kg	<u>[</u>	<u>) %</u>	Rec 110	Prep %Rec Limits 90 - 110	Type: S	olubl
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid	9449/3-A		Added 250	Resu 274.	t Qualifie	mg/Kg	<u>[</u>	<u>) %</u>	Rec 110	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So ol Sampl	e Du olubi
Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642	9449/3-A		Added 250 Spike	Resu 274. LCSI	t Qualifie	mg/Kg	ient Sa	o <u>%</u> mple	Rec 110	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: Si I Sampl Type: Si	e Duj olubi RPI
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte	9449/3-A		Added 250 Spike Added	Resu 274. LCSI Resu	t Qualifie	mg/Kg Cl	<u>[</u>	0 % mple	Rec 110 ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: Si ol Sampl Type: Si 	e Duj olubi olubi RPI Lim
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte	 9449/3-A 		Added 250 Spike	Resu 274. LCSI	t Qualifie	mg/Kg	ient Sa	0 % mple	Rec 110	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: Si I Sampl Type: Si	e Du olubi olubi RP Lim
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride			Added 250 Spike Added	Resu 274. LCSI Resu	t Qualifie	mg/Kg Cl	ient Sa	0 % mple	Rec 110 ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 0	e Du olubi olubi RP Lim 2
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I			Added 250 Spike Added	Resu 274. LCSI Resu	t Qualifie	mg/Kg Cl	ient Sa	0 % mple	Rec 110 ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar	Type: So ol Sampl Type: So <u>0</u> mple ID:	e Duj olubi olubi RPI Lim 2 PH1
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I Matrix: Solid			Added 250 Spike Added	Resu 274. LCSI Resu	t Qualifie	mg/Kg Cl	ient Sa	0 % mple	Rec 110 ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar	Type: So ol Sampl Type: So <u>RPD</u> 0	e Duj olubl olubl RPI Lim 2 PH10
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I Matrix: Solid	 MS		Added 250 Spike Added	Resu 274. LCSI Resu 274.	t Qualifie	mg/Kg Cl	ient Sa	0 % mple	Rec 110 ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar	Type: So ol Sampl Type: So <u>0</u> mple ID:	e Duj olubi olubi RPI Lim 2 PH1
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I	 MS Sample	Sample Qualifier	Added 250 Spike Added 250	Resu 274. LCSI Resu 274.	t Qualifie	r Unit mg/Kg	ient Sa) % mple	Rec 110 ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar Prep	Type: So ol Sampl Type: So <u>0</u> mple ID:	e Du olubi olubi RP Lim 2 PH1
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I Matrix: Solid Analysis Batch: 39642 Analyte	 MS Sample		Added 250 Spike Added 250 Spike	Resu 274. LCSI Resu 274.	t Qualifie D LCSD t Qualifie S MS t Qualifie	r Unit mg/Kg	ient Sa) % mple	Rec 110 ▶ ID: I Rec 110	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar Prep %Rec	Type: So ol Sampl Type: So <u>0</u> mple ID:	e Du olub RP Lim 2 PH1
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I Matrix: Solid Analysis Batch: 39642 Analyte Chloride	MS Sample Result 221		Added 250 Spike Added 250 Spike Added	Resu 274. LCSI Resu 274. M: Resu	t Qualifie D LCSD t Qualifie S MS t Qualifie	r Unit mg/Kg	ient Sa) % mple	Rec 110 110 10:1 Rec 110	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 0 mple ID: Type: So	e Duj olubi RPI Lim 2 PH1 olubi
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I	MS Sample Result 221		Added 250 Spike Added 250 Spike Added	Resu 274. LCSI Resu 274. M: Resu	t Qualifie D LCSD t Qualifie S MS t Qualifie	r Unit mg/Kg	ient Sa) % mple	Rec 110 110 10:1 Rec 110	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar 90 - 110 Client Sar	Type: Si I Sampl Type: Si RPD 0 mple ID: Type: Si mple ID: Type: Si	e Du olubi RP Lim 2 PH1 olubi
Analysis Batch: 39642 Analyte Chloride Lab Sample ID: LCSD 880-3 Matrix: Solid Analysis Batch: 39642 Analyte Chloride Lab Sample ID: 890-3434-5 I Matrix: Solid Analysis Batch: 39642 Analyte Chloride	MS Sample Result 221		Added 250 Spike Added 250 Spike Added	Resu 274. LCSI Resu 274. M: Resu	t Qualifie D LCSD t Qualifie S MS t Qualifie	r Unit mg/Kg	ient Sa) % mple	Rec 110 110 10:1 Rec 110	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar 90 - 110 Client Sar	Type: So ol Sampl Type: So <u>RPD</u> 0 mple ID: Type: So	e Du olubi RP Lim 2 PH1 olubi

Allalysis Dalch. 55042											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	221		252	472.1		mg/Kg		100	90 - 110	1	20

Page 47 of 65

SDG: Eddy County NM

Received by OCD: 12/29/2022 10:46:12 AM

QC Association Summary

Client: Ensolum Project/Site: Pecos Fed 1Y Job ID: 890-3434-1

SDG: Eddy County NM

GC VOA

Prep Batch: 39546

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3434-1	PH11	Total/NA	Solid	5035	
890-3434-2	PH11	Total/NA	Solid	5035	
890-3434-3	PH16	Total/NA	Solid	5035	
890-3434-4	PH16	Total/NA	Solid	5035	
890-3434-5	PH16	Total/NA	Solid	5035	
890-3434-6	PH18	Total/NA	Solid	5035	
890-3434-7	PH18	Total/NA	Solid	5035	
890-3434-8	PH18	Total/NA	Solid	5035	
890-3434-9	PH18	Total/NA	Solid	5035	
MB 880-39546/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-39546/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-39546/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3423-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-3423-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 40037

390-3434-7	PH18	Total/NA	Solid	5035		
390-3434-8	PH18	Total/NA	Solid	5035		8
390-3434-9	PH18	Total/NA	Solid	5035		
MB 880-39546/5-A	Method Blank	Total/NA	Solid	5035		9
CS 880-39546/1-A	Lab Control Sample	Total/NA	Solid	5035		
CSD 880-39546/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
90-3423-A-1-D MS	Matrix Spike	Total/NA	Solid	5035		
90-3423-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		
nalysis Batch: 40037						
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
90-3434-1	PH11	Total/NA	Solid	8021B	39546	
0-3434-2	PH11	Total/NA	Solid	8021B	39546	
90-3434-3	PH16	Total/NA	Solid	8021B	39546	
90-3434-4	PH16	Total/NA	Solid	8021B	39546	
90-3434-5	PH16	Total/NA	Solid	8021B	39546	
0-3434-6	PH18	Total/NA	Solid	8021B	39546	
90-3434-7	PH18	Total/NA	Solid	8021B	39546	
0-3434-8	PH18	Total/NA	Solid	8021B	39546	
90-3434-9	PH18	Total/NA	Solid	8021B	39546	
B 880-39546/5-A	Method Blank	Total/NA	Solid	8021B	39546	
B 880-40068/5-A	Method Blank	Total/NA	Solid	8021B	40068	
CS 880-39546/1-A	Lab Control Sample	Total/NA	Solid	8021B	39546	
CSD 880-39546/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	39546	
90-3423-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	39546	

Prep Batch: 40068

Г

Г

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-40068/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 40234

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3434-1	PH11	Total/NA	Solid	Total BTEX	
890-3434-2	PH11	Total/NA	Solid	Total BTEX	
890-3434-3	PH16	Total/NA	Solid	Total BTEX	
890-3434-4	PH16	Total/NA	Solid	Total BTEX	
890-3434-5	PH16	Total/NA	Solid	Total BTEX	
890-3434-6	PH18	Total/NA	Solid	Total BTEX	
890-3434-7	PH18	Total/NA	Solid	Total BTEX	
890-3434-8	PH18	Total/NA	Solid	Total BTEX	
890-3434-9	PH18	Total/NA	Solid	Total BTEX	

QC Association Summary

Client: Ensolum Project/Site: Pecos Fed 1Y

5 6

Job ID: 890-3434-1 SDG: Eddy County NM

GC Semi VOA

Prep Batch: 39516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3434-1	PH11	Total/NA	Solid	8015NM Prep	
890-3434-2	PH11	Total/NA	Solid	8015NM Prep	
890-3434-3	PH16	Total/NA	Solid	8015NM Prep	
890-3434-4	PH16	Total/NA	Solid	8015NM Prep	
890-3434-5	PH16	Total/NA	Solid	8015NM Prep	
890-3434-6	PH18	Total/NA	Solid	8015NM Prep	
890-3434-7	PH18	Total/NA	Solid	8015NM Prep	
890-3434-8	PH18	Total/NA	Solid	8015NM Prep	
890-3434-9	PH18	Total/NA	Solid	8015NM Prep	
MB 880-39516/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-39516/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-39516/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3432-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3432-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 39567

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3434-1	PH11	Total/NA	Solid	8015B NM	39516
890-3434-2	PH11	Total/NA	Solid	8015B NM	39516
890-3434-3	PH16	Total/NA	Solid	8015B NM	39516
890-3434-4	PH16	Total/NA	Solid	8015B NM	39516
890-3434-5	PH16	Total/NA	Solid	8015B NM	39516
890-3434-6	PH18	Total/NA	Solid	8015B NM	39516
890-3434-7	PH18	Total/NA	Solid	8015B NM	39516
890-3434-8	PH18	Total/NA	Solid	8015B NM	39516
890-3434-9	PH18	Total/NA	Solid	8015B NM	39516
MB 880-39516/1-A	Method Blank	Total/NA	Solid	8015B NM	39516
LCS 880-39516/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	39516
LCSD 880-39516/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	39516
890-3432-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	39516
890-3432-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	39516

Analysis Batch: 39646

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3434-1	PH11	Total/NA	Solid	8015 NM	
890-3434-2	PH11	Total/NA	Solid	8015 NM	
890-3434-3	PH16	Total/NA	Solid	8015 NM	
890-3434-4	PH16	Total/NA	Solid	8015 NM	
890-3434-5	PH16	Total/NA	Solid	8015 NM	
890-3434-6	PH18	Total/NA	Solid	8015 NM	
890-3434-7	PH18	Total/NA	Solid	8015 NM	
890-3434-8	PH18	Total/NA	Solid	8015 NM	
890-3434-9	PH18	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 39449

Lab Sample ID 890-3434-1	Client Sample ID PH11	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
890-3434-2	PH11	Soluble	Solid	DI Leach	
890-3434-3	PH16	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Page 49 of 65

Released to Imaging: 1/24/2023 3:09:12 PM

QC Association Summary

Client: Ensolum Project/Site: Pecos Fed 1Y

HPLC/IC (Continued)

Leach Batch: 39449 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3434-4	PH16	Soluble	Solid	DI Leach	
890-3434-5	PH16	Soluble	Solid	DI Leach	
890-3434-6	PH18	Soluble	Solid	DI Leach	
890-3434-7	PH18	Soluble	Solid	DI Leach	
890-3434-8	PH18	Soluble	Solid	DI Leach	
890-3434-9	PH18	Soluble	Solid	DI Leach	
MB 880-39449/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-39449/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-39449/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3434-5 MS	PH16	Soluble	Solid	DI Leach	
890-3434-5 MSD	PH16	Soluble	Solid	DI Leach	

Analysis Batch: 39642

ach Batch: 39449 (C	ontinued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-3434-4	PH16	Soluble	Solid	DI Leach	
390-3434-5	PH16	Soluble	Solid	DI Leach	
390-3434-6	PH18	Soluble	Solid	DI Leach	
390-3434-7	PH18	Soluble	Solid	DI Leach	
390-3434-8	PH18	Soluble	Solid	DI Leach	
390-3434-9	PH18	Soluble	Solid	DI Leach	
MB 880-39449/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-39449/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CSD 880-39449/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-3434-5 MS	PH16	Soluble	Solid	DI Leach	
390-3434-5 MSD	PH16	Soluble	Solid	DI Leach	
nalysis Batch: 39642					
Lab Sample ID	Client Sample ID	Prep Type	Matrix Solid	Method	Prep Batch
-ab Sample ID 390-3434-1	Client Sample ID PH11	Soluble	Solid	300.0	39449
Lab Sample ID 390-3434-1 390-3434-2	Client Sample ID PH11 PH11	Soluble	Solid Solid	300.0 300.0	39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3	Client Sample ID PH11 PH11 PH16	Soluble Soluble Soluble	Solid Solid Solid	300.0 300.0 300.0	39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4	Client Sample ID PH11 PH11 PH16 PH16 PH16	Soluble Soluble Soluble Soluble	Solid Solid Solid Solid	300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4 390-3434-5	Client Sample ID PH11 PH11 PH16 PH16 PH16 PH16	Soluble Soluble Soluble Soluble Soluble	Solid Solid Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4 390-3434-5 390-3434-6	Client Sample ID PH11 PH11 PH16 PH16 PH16	Soluble Soluble Soluble Soluble	Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4 390-3434-5 390-3434-6 390-3434-7	Client Sample ID PH11 PH11 PH16 PH16 PH16 PH16 PH18	Soluble Soluble Soluble Soluble Soluble Soluble	Solid Solid Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4 390-3434-5 390-3434-6 390-3434-7 390-3434-8	Client Sample ID PH11 PH11 PH16 PH16 PH16 PH18 PH18	Soluble Soluble Soluble Soluble Soluble Soluble Soluble	Solid Solid Solid Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4 390-3434-5 390-3434-6 390-3434-7 390-3434-8 390-3434-9	Client Sample ID PH11 PH11 PH16 PH16 PH16 PH18 PH18 PH18 PH18 PH18	Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble	Solid Solid Solid Solid Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449 39449 39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4 390-3434-5 390-3434-6 390-3434-7 390-3434-8 390-3434-9	Client Sample ID PH11 PH11 PH16 PH16 PH16 PH18 PH18 PH18 PH18 PH18 PH18 PH18 Method Blank	Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble	Solid Solid Solid Solid Solid Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4 390-3434-5 390-3434-6 390-3434-7 390-3434-7 390-3434-9 VIB 880-39449/1-A _CS 880-39449/2-A	Client Sample ID PH11 PH11 PH16 PH16 PH16 PH18 PH18 PH18 PH18 PH18 PH18 PH18 Method Blank Lab Control Sample	Soluble Soluble	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449 39449 39449 39449 39449 39449 39449
Lab Sample ID 390-3434-1 390-3434-2 390-3434-3 390-3434-4 390-3434-5 390-3434-6	Client Sample ID PH11 PH11 PH16 PH16 PH16 PH18 PH18 PH18 PH18 PH18 PH18 PH18 Method Blank	Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	39449 39449 39449 39449 39449 39449 39449 39449 39449 39449

Page 50 of 65

Job ID: 890-3434-1

SDG: Eddy County NM

Eurofins Carlsbad

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Project/Site: Pecos Fed 1Y

Client Sample ID: PH11

Date Collected: 11/10/22 09:10

Date Received: 11/11/22 10:04

Initial

Amount

5.01 g

5 mL

10.01 g

1 uL

5.02 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

39546

40037

40234

39646

39516

39567

39449

39642

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 890-3434-1 SDG: Eddy County NM

Lab Sample ID: 890-3434-1

Analyst

MNR

SM

SM

AJ

DM

AJ

ĸs

СН

Matrix: Solid

Lab

EET MID

8 9 10

Lab Sample ID: 890-3434-2 Matrix: Solid

Lab Sample ID: 890-3434-3

Lab Sample ID: 890-3434-4

Matrix: Solid

trix: Solid

Client Sample ID: PH11 Date Collected: 11/10/22 09:20

Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	39546	11/14/22 15:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40037	11/22/22 03:53	SM	EET MID
Total/NA	Analysis	Total BTEX		1			40234	11/22/22 15:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			39646	11/16/22 09:14	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	39516	11/14/22 14:27	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39567	11/15/22 16:05	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	39449	11/14/22 11:43	KS	EET MID
Soluble	Analysis	300.0		1			39642	11/16/22 02:46	СН	EET MID

Client Sample ID: PH16 Date Collected: 11/10/22 09:40

Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	39546	11/14/22 15:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40037	11/22/22 04:13	SM	EET MID
Total/NA	Analysis	Total BTEX		1			40234	11/22/22 15:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			39646	11/16/22 09:14	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39516	11/14/22 14:27	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39567	11/15/22 16:26	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	39449	11/14/22 11:43	KS	EET MID
Soluble	Analysis	300.0		1			39642	11/16/22 02:51	СН	EET MID

Client Sample ID: PH16 Date Collected: 11/10/22 09:50 Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	39546	11/14/22 15:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40037	11/22/22 04:34	SM	EET MID
Total/NA	Analysis	Total BTEX		1			40234	11/22/22 15:30	SM	EET MID

Eurofins Carlsbad

Prepared

or Analyzed

11/14/22 15:47

11/22/22 03:32

11/22/22 15:30

11/15/22 16:29

11/14/22 14:27

11/15/22 14:59

11/14/22 11:43

11/16/22 02:40

Released to Imaging: 1/24/2023 3:09:12 PM

Matrix: Solid

Job ID: 890-3434-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

SDG: Eddy County NM

Lab Sample ID: 890-3434-4

Lab Sample ID: 890-3434-5

Lab Sample ID: 890-3434-6

Lab Sample ID: 890-3434-7

Lab Chronicle

Client: Ensolum Project/Site: Pecos Fed 1Y

Client Sample ID: PH16

Date Collected: 11/10/22 09:50 Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			39646	11/16/22 09:14	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	39516	11/14/22 14:27	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39567	11/15/22 16:47	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	39449	11/14/22 11:43	KS	EET MID
Soluble	Analysis	300.0		1			39642	11/16/22 02:57	СН	EET MID

Client Sample ID: PH16

Date Collected: 11/10/22 10:00 Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	39546	11/14/22 15:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40037	11/22/22 04:54	SM	EET MID
Total/NA	Analysis	Total BTEX		1			40234	11/22/22 15:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			39646	11/16/22 09:14	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39516	11/14/22 14:27	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39567	11/15/22 17:08	AJ	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	39449	11/14/22 11:43	KS	EET MID
Soluble	Analysis	300.0		1			39642	11/16/22 03:02	СН	EET MID

Client Sample ID: PH18

Date Collected: 11/10/22 10:20 Date Received: 11/11/22 10:04

Batch Batch Dil Initial Final Batch Prepared Ргер Туре Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 4.99 g 5 mL 39546 11/14/22 15:47 MNR EET MID Total/NA 8021B 5 mL 5 mL 40037 11/22/22 05:15 SM EET MID Analysis 1 Total/NA Total BTEX Analysis 1 40234 11/22/22 15:30 SM EET MID Total/NA Analysis 8015 NM 39646 11/16/22 09:14 AJ EET MID 1 11/14/22 14:27 Total/NA Prep 8015NM Prep 10.01 g 10 mL 39516 DM EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 39567 11/15/22 17:28 AJ EET MID 1 Soluble Leach DI Leach 4.98 g 50 mL 39449 11/14/22 11:43 KS EET MID Soluble Analysis 300.0 10 39642 11/16/22 03:19 СН EET MID

Client Sample ID: PH18

Date Collected: 11/10/22 10:30 Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	39546	11/14/22 15:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40037	11/22/22 05:36	SM	EET MID
Total/NA	Analysis	Total BTEX		1			40234	11/22/22 15:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			39646	11/16/22 09:14	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	39516	11/14/22 14:27	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39567	11/15/22 17:49	AJ	EET MID

Eurofins Carlsbad

9

Released to Imaging: 1/24/2023 3:09:12 PM

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 890-3434-1 SDG: Eddy County NM

Lab Sample ID: 890-3434-7

Client Sample ID: PH18 Date Collected: 11/10/22 10:30

Project/Site: Pecos Fed 1Y

Client: Ensolum

Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	39449	11/14/22 11:43	KS	EET MID
Soluble	Analysis	300.0		1			39642	11/16/22 03:25	СН	EET MID

Client Sample ID: PH18

Date Collected: 11/10/22 10:40 Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	39546	11/14/22 15:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40037	11/22/22 05:56	SM	EET MID
Total/NA	Analysis	Total BTEX		1			40234	11/22/22 15:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			39646	11/16/22 09:14	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39516	11/14/22 14:27	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39567	11/15/22 18:10	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	39449	11/14/22 11:43	KS	EET MID
Soluble	Analysis	300.0		1			39642	11/16/22 03:42	СН	EET MID

Client Sample ID: PH18 Date Collected: 11/10/22 10:50 Date Received: 11/11/22 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	39546	11/14/22 15:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40037	11/22/22 06:17	SM	EET MID
Total/NA	Analysis	Total BTEX		1			40234	11/22/22 15:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			39646	11/16/22 09:14	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	39516	11/14/22 14:27	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39567	11/15/22 18:31	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	39449	11/14/22 11:43	KS	EET MID
Soluble	Analysis	300.0		5			39642	11/16/22 03:48	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 890-3434-8

Lab Sample ID: 890-3434-9 Matrix: Solid

Accreditation/Certification Summary

Client: Ensolum Project/Site: Pecos Fed 1Y

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority xas		rogram	Identification Number	Expiration Date
		ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report. b	ut the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for v
the agency does not o	fer certification.	·	, , , , ,	,
• •		Matrix	Analyte	
the agency does not o	fer certification.	·	, , , , ,	

10

Job ID: 890-3434-1

SDG: Eddy County NM

Eurofins Carlsbad

Method Summary

Client: Ensolum Project/Site: Pecos Fed 1Y Job ID: 890-3434-1 SDG: Eddy County NM

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum Project/Site: Pecos Fed 1Y Job ID: 890-3434-1 SDG: Eddy County NM

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	Depth	
90-3434-1	PH11	Solid	11/10/22 09:10	11/11/22 10:04	4'	
90-3434-2	PH11	Solid	11/10/22 09:20	11/11/22 10:04	8'	
90-3434-3	PH16	Solid	11/10/22 09:40	11/11/22 10:04	4'	
90-3434-4	PH16	Solid	11/10/22 09:50	11/11/22 10:04	6'	
90-3434-5	PH16	Solid	11/10/22 10:00	11/11/22 10:04	8'	
90-3434-6	PH18	Solid	11/10/22 10:20	11/11/22 10:04	0.5'	
90-3434-7	PH18	Solid	11/10/22 10:30	11/11/22 10:04	4'	
90-3434-8	PH18	Solid	11/10/22 10:40	11/11/22 10:04	6'	
90-3434-9	PH18	Solid	11/10/22 10:50	11/11/22 10:04	8'	

5

🔅 euro	fin	Er	nviro	nment To	esting	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199						Work Order No:										
Project Manager:	Ben B	elill				Bill to: (ii	f differen	nt)	Jim F	Ralev								W	ork Or		mments	
	Ensolu		-			Compar		-	WPX				-		Pre	ogram:	UST/					C Superfund
		National F	Parks H	IWY		Address			-	Buena	Vista	Dr.				ate of P		_				
	Carlsb	ad, NM 8	8220			City, Sta			Carls	bad, N	M 882	20			Re	porting	Leve	🗌 Le	evel III	PST/U		
	989-8	54-0852			Email	BBelill		lum.co	om, iir	n.rale	v@dv	n.com			De	liverabl	es: E		A	ADAPT C	D Othe	er:
		Deces	Fed 1	/	-	-		1		-				ANALYSIS RE		eT.					Proson	vative Codes
Project Name: Project Number:			98701		Routine	Rus		Pres.		-	-		1	ANAL 1313 RE	IGUE	31	T	1	1 1	No	one: NO	DI Water: H ₂ O
		Eddy Co			Due Date:	5 Day		Code							1	1	-	1				MeOH: Me
Project Location: Sampler's Name:	-	Yocoly Ed			TAT starts th																	HNO ₃ HN
CC #:		1061	084701		the lab, if re			yo													S04: H2	NaOH: Na
SAMPLE RECEIF	т	Temp Bl	ank:	Yes No	Wet Ice:	(Ces	No	meters	6						IIIII					H ₃ I	PO₄: HP	
Samples Received Int	act:	(P)	No	Thermomet	er ID:	TAM		Param	300.0											Na	HSO₄: NAE	BIS
Cooler Custody Seals	:	Yes No/	NIA	Correction F	Factor:		.7	å	PA:						1 1 1					Na	2S2O3: NaS	5O ₃
Sample Custody Seals	S:	Yes No		Temperatur		5.1	2	-	S (EI		_			890-3434 0	Chain	of Cust	tody				Acetate+N	
Total Containers:				Corrected T	emperature:	5.	4		RIDE	015)	(802									Na	OH+Ascort	bic Acid: SAPC
Sample Ident	ificatio	on	Matrix	Date Sampled	Time Sampled	Depth	Grab/ Comp		CHLORIDES (EPA: 300.0)	TPH (8015)	BTEX (8021				1						Sample	Comments
PH11			S	11.10.22	9:10	4'	G	1	X	X	Х											
PH11			S	11.10.22	9:20	8'	G	1	X	X	X		_				_					
PH16	6		S	11.10.22	9:40	4'	G	1	X	X	X	_	-	_	-	_	_				Incider	nt Numbers
PH16	6		S	11.10.22	9:50	6'	G	1	X	X	X		-	_	_	_	-	-	-		nAPP2	208846424
PH16	6		S	11.10.22	10:00	8'	G	1	X	X	X		-	_	-	_	-	-				
PH18				11.10.22	10:20	0.5'	G	1	X	X	X		-		-	-	-	-	+			
PH18				11.10.22	10:30	4'	G	1	X	X	X		-		-	_	-	-	-			
PH18				11.10.22	10:40	6'	G	1	×	*	-X				-		-	-	-			
PH18			S	11.10.22	10:50	8'	G	1	X	X	X		+		+		-	+				
Total 200.7 / 601 Circle Method(s) and Notice: Signature of this do of service. Eurofins Xenco of Eurofins Xenco. Aminin Relinquished by:	d Meta ocument will be I num cha	and relinqui iable only for irge of \$85.00	analy shment o	zed of samples cons t of samples an applied to each	TCLP / SP stitutes a valid p nd shall not ass	PLP 601 ourchase or ume any res charge of \$5	0: 8RC	CRA client c ity for ar sample	Sb A ompany ny losse submit Date/	s Ba to Euro s or exp tted to E	Be (ofins Xe penses urofins	Cd Cr C enco, its aff incurred by Xenco, bu Relin	iliates the d	lient if such losses	Ni S rs. It as s are du rms will	Se Ag ssigns sta e to circu be enfor	TI U andard umstand ced unl	terms and es beyon ess previo	Hg: 16 d condition ad the con- ously nego	631 / 245	Sr TI Sn 5.1 / 7470	
pipt		A	An	and	a >>	tit	-	ill	11/5	21	DD	8										
U U 1						/						4			-							
												6										

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3434 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3434-1 SDG Number: Eddy County NM

List Source: Eurofins Carlsbad

Job Number: 890-3434-1 SDG Number: Eddy County NM

List Source: Eurofins Midland

List Creation: 11/14/22 08:39 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3434 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 12/29/2022 10:46:12 AM

15

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 11/22/2022 3:23:06 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

APPENDIX F

Email Correspondence

Released to Imaging: 1/24/2023 3:09:12 PM

From:	Erick Herrera
То:	Joseph Hernandez
Subject:	FW: [EXTERNAL] WPX Site Sampling Activity Update (11/7 - 11/11)
Date:	Tuesday, December 20, 2022 4:46:57 PM
Attachments:	image001.png
	image002.png
	image003.png
	image004.png

Erick Herrera Staff Geologist 281-777-4152 Ensolum, LLC in f

From: Nobui, Jennifer, EMNRD <Jennifer.Nobui@emnrd.nm.gov>
Sent: Wednesday, November 2, 2022 3:58 PM
To: Erick Herrera <eherrera@ensolum.com>
Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>
Subject: FW: [EXTERNAL] WPX Site Sampling Activity Update (11/7 - 11/11)

[**EXTERNAL EMAIL**]

Erick

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thanks, Jennifer Nobui

From: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>
Sent: Wednesday, November 2, 2022 11:54 AM
To: Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>; Nobui, Jennifer, EMNRD
<<u>Jennifer.Nobui@emnrd.nm.gov</u>>
Subject: FW: [EXTERNAL] WPX Site Sampling Activity Update (11/7 - 11/11)

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@state.nm.us http:// www.emnrd.nm.gov

From: Erick Herrera <<u>eherrera@ensolum.com</u>>
Sent: Wednesday, November 2, 2022 11:52 AM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>; 'CFO_Spill, BLM_NM'
<<u>blm_nm_cfo_spill@blm.gov</u>>
Cc: Raley, Jim <<u>jim.raley@dvn.com</u>>; Devon-Team <<u>Devon-Team@ensolum.com</u>>
Subject: [EXTERNAL] WPX Site Sampling Activity Update (11/7 - 11/11)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good afternoon,

WPX anticipates conducting confirmation soil sampling activities at the following sites between November 7^{th} – November 11^{th} , 2022:

Site Name: LVP #001 API: 30-015-42234 Incident Number: nAPP2135033453

Site Name: RDX 21-44 API: 30-015-41193 Incident Number: nAPP2115533694

Site Name: UCBH WW ROW API: 30-015-24451, 30-015-24034 Incident Numbers: nAB1805133508, nAB1501655607, nAB1522341642, nAB1621453181, nAB1633639499

Site Name: Ross Draw Unit #034 API: 30-015-41578 Incident Numbers: nAPP2107554265, NAB1736055339, and NAB1528240224

Site Name: Yates Federal #001 API: 30-015-24602 Incident Number: NRM2011138650 and NAB1428734057

Site Name: Pecos Federal #001Y API: 30-015-24875 Incident Number: nAPP2208846424

Site Name: MWJ Federal 1 API: 30-015-24262 Incident Numbers: nAB1503440420, nAB1524652333, and nAB1719940724

Erick Hererra Staff Geologist 281-777-4152 Ensolum, LLC in f

PLEASE NOTE OUR NEW CORPORATE ADDRESS:

Ensolum, LLC 8330 LBJ Freeway, Ste. B830 Dallas, TX 75243

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	171046
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved with Conditions. Variance for Liner installation at 4' is approved.	1/24/2023

Action 171046