E N S O L U M

December 28, 2022

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Addendum Broadcaster 29 Federal 003H Incident Numbers NAPP2132773092 & NAPP2201938653 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of COG Operating, LLC (COG), has prepared this *Closure Request Addendum* to provide an update to the lateral delineation soil sampling activities performed at the Broadcaster 29 Federal 003H (Site). The purpose of the lateral delineation soil sampling activities was to address the denial by the New Mexico Oil Conservation Division (NMOCD) of an original *Closure Request*, dated October 27, 2022. In the denial, NMOCD expressed concern that the release was not laterally delineated. Based on additional sampling activities, COG is requesting closure for Incident Numbers NAPP2132773092 and NAPP2201938653.

All of the release details regarding the incidents, site characterization, and remediation conducted can be referenced in the original *Closure Request*. NMOCD denied the *Closure Request* on November 28, 2022, for the following reason:

Closure Report Denied. Release not laterally delineated (SS01, SS02, & SS03). Delineation samples should be delineated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release, regardless of DTW measurement. Please resubmit a revised closure report to the OCD portal by December 28, 2022.

It should be noted the soil represented by SS02 was removed during the excavation. Soil remaining in place at that location is represented by subsequent excavation confirmation sample FS01. All delineation samples (including SS01 and SS03) and excavation confirmation sample FS01 meet Table I Closure Criteria, indicating the soil impacted by the release was remediated correctly. It appears NMOCD's concern is that the release was not delineated laterally to the reclamation requirement. All delineation samples near and in the direction of the edge of the well pad, where the reclamation requirement might apply, are below 100 mg/kg TPH and 600 mg/kg chloride. Soil samples SS01, SS03, and FS01 exceed 100 mg/kg TPH and are north and northwest of the flare stack on the well pad.

ADDITIONAL DATA

Based on NMOCD's request, on December 9, 2022, three soil samples (SS08-SS10) were collected adjacent SS01, SS03, and FS01 in the direction of the well pad from a depth of 0.5 feet bgs to assess the lateral extent of the releases. The delineation soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride utilizing Hach[®]

COG Operating, LLC Closure Request Addendum Broadcaster 29 Federal 003H

chloride QuanTab[®] test strips, respectively. The soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 1.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following chemicals of conern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for all three delineation soil samples indicated concentrations of all COCs were compliant with the reclamation requirement (less than 100 mg/kg TPH). Laboratory analytical results are summarized in Table 1 and laboratory analytical reports are included in Appendix A.

CLOSURE REQUEST

Laboratory analytical results for the additional lateral delineation soil samples indicated concentrations of all COCs were compliant with the reclamation requirement. As such, COG respectfully requests closure for Incident Numbers NAPP2132773092 and NAPP2201938653. The Final C-141 is included in Appendix B.

If you have any questions or comments, please contact Ms. Kalei Jennings at (817) 683-2503 or kjennings@ensolum.com.

Sincerely, Ensolum, LLC

adrie Streen

Hadlie Green Staff Geologist

Kalui Jenningz

Kalei Jennings Senior Scientist

cc: Charles Beauvais, COG Operating, LLC

Appendices:

Figure 1Soil Sample LocationsTable 1Soil Sample Analytical ResultsAppendix ALaboratory Analytical Reports & Chain-of-Custody DocumentationAppendix BFinal C-141

FIGURES

TABLES

.

.

E N S O L U M

				Broad C	TABLE 1PLE ANALYTICAIcaster 29 FederaOG Operating, LLCounty, New Me	I 003H _C				
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
				Preliminar	y Assessment So	il Samples				
SS08	12/09/2022	0.5	<0.00198	<0.00397	<50.0	<50.0	<50.0	<50.0	<50.0	38.1
SS09	12/09/2022	0.5	<0.00200	<0.00401	<49.9	53.9	<49.9	53.9	53.9	143
SS10	12/09/2022	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	<5.03

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

Concentrations in **bold** exceed the NMOCD Table 1 Closure Criteria or reclamation standard where applicable.

Grey text represents samples that have been excavated

APPENDIX A

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 12/28/2022 2:59:34 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 12/27/2022 8:58:21 AM

JOB DESCRIPTION

Broadcaster 29 Federal 003H SDG NUMBER 03D2024002

JOB NUMBER

890-3622-1

Broad SDG

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Received by OCD: 12/28/2022 2:59:34 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 12/27/2022 8:58:21 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3622-1

SDG: 03D2024002

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

EDL

LOD

LOQ MCL

MDA MDC

MDL

MQL NC

ND

NEG

POS

PQL PRES

QC

RER

RL RPD

TEF

TEQ

TNTC

ML MPN

	Definitions/Glossary		
Client: Ensolun Project/Site: Br	-	Job ID: 890-3622-1 SDG: 03D2024002	i
Qualifiers			1
GC VOA			1
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		4
GC Semi VOA			
Qualifier	Qualifier Description		4
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		ł
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		

Eurofins Carlsbad

Estimated Detection Limit (Dioxin)

EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)

Method Detection Limit Minimum Level (Dioxin)

Most Probable Number Method Quantitation Limit

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 890-3622-1 SDG: 03D2024002

Job ID: 890-3622-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3622-1

Receipt

The sample was received on 12/12/2022 12:41 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.0°C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SS09 (890-3622-1).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-41840 and analytical batch 880-42076 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-41755 and analytical batch 880-42176 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3622-1 SDG: 03D2024002

Client Sample ID: SS09

Date Collected: 12/09/22 11:40 Date Received: 12/12/22 12:41

Sample Depth: 0.5

Client: Ensolum

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		12/22/22 09:05	12/23/22 17:19	1
Toluene	<0.00200	U	0.00200	mg/Kg		12/22/22 09:05	12/23/22 17:19	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		12/22/22 09:05	12/23/22 17:19	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		12/22/22 09:05	12/23/22 17:19	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		12/22/22 09:05	12/23/22 17:19	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		12/22/22 09:05	12/23/22 17:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130			12/22/22 09:05	12/23/22 17:19	1
1,4-Difluorobenzene (Surr)	100		70 - 130			12/22/22 09:05	12/23/22 17:19	1
Method: TAL SOP Total BTEX - 1	Fotal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			12/26/22 16:44	1
-								
Mothod: SW946 9045 NM Diace	Danga Organ	ice (DBO) (
Method: SW846 8015 NM - Diese Analyte		ics (DRO) (Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
				Unit mg/Kg	<u> </u>	Prepared	Analyzed	Dil Fac
Analyte Total TPH	Result 53.9	Qualifier	RL 49.9		<u>D</u>	Prepared		
Analyte	Result 53.9 sel Range Orga	Qualifier	RL 49.9		D	Prepared Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result 53.9 sel Range Orga	Qualifier Qualifier Qualifier	RL 49.9	mg/Kg			12/19/22 15:08	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result 53.9 sel Range Orga Result	Qualifier Qualifier Qualifier	(GC) RL	mg/Kg Unit		Prepared	12/19/22 15:08	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result < <u>Result</u> <49.9 53.9	Qualifier	RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:33 12/14/22 14:33	Analyzed 12/17/22 22:10 12/17/22 22:10	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <a a="" href="https://www.example.com" www.example.com"="" www.example.com<="">	Qualifier	RL 49.9 (GC) RL 49.9	mg/Kg Unit mg/Kg		Prepared 12/14/22 14:33	12/19/22 15:08 Analyzed 12/17/22 22:10	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result < <u>Result</u> <49.9 53.9	Qualifier mics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:33 12/14/22 14:33	Analyzed 12/17/22 22:10 12/17/22 22:10	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 53.9 sel Range Orga Result <49.9	Qualifier mics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:33 12/14/22 14:33 12/14/22 14:33	Analyzed 12/17/22 22:10 12/17/22 22:10 12/17/22 22:10 12/17/22 22:10	1 Dil Fac 1 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 53.9 sel Range Orga Result <49.9	Qualifier mics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:33 12/14/22 14:33 12/14/22 14:33 Prepared	Analyzed 12/17/22 22:10 12/17/22 22:10 12/17/22 22:10 12/17/22 22:10 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result 53.9 sel Range Orga Result <49.9	Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:33 12/14/22 14:33 12/14/22 14:33 Prepared 12/14/22 14:33	Analyzed 12/17/22 15:08 Analyzed 12/17/22 22:10 12/17/22 22:10 12/17/22 22:10 Analyzed 12/17/22 22:10	1 Dil Fac 1 1 1 1 <i>Dil Fac</i> 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 53.9 sel Range Orga Result <49.9	Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:33 12/14/22 14:33 12/14/22 14:33 Prepared 12/14/22 14:33	Analyzed 12/17/22 15:08 Analyzed 12/17/22 22:10 12/17/22 22:10 12/17/22 22:10 Analyzed 12/17/22 22:10	1 Dil Fac 1 1 1 1 <i>Dil Fac</i> 1

Eurofins Carlsbad

Lab Sample ID: 890-3622-1 Matrix: Solid

5

Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3622-1
SDG: 03D2024002

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

atrix: Solid				Prep Type: Total/NA	
				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
390-3622-1	SS09	101	100		
Surrogate Legend					6
BFB = 4-Bromofluorobe	nzene (Surr)				
DFBZ = 1,4-Difluorober	nzene (Surr)				

Matrix: Solid

Client: Ensolum

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
b Sample ID	Client Sample ID	(70-130)	(70-130)	
)-3622-1	SS09	103	103	
00-3624-A-1-C MS	Matrix Spike	119	92	
90-3624-A-1-D MSD	Matrix Spike Duplicate	106	92	
CS 880-41840/2-A	Lab Control Sample	109	103	
CSD 880-41840/3-A	Lab Control Sample Dup	106	114	
//B 880-41840/1-A	Method Blank	141 S1+	140 S1+	
Surrogate Legend				
1CO = 1-Chlorooctane				

OTPH = o-Terphenyl

QC Sample Results

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

	0/1-A										Client Sa	mple ID:	Method	d Blank
Matrix: Solid														otal/NA
Analysis Batch: 42076														: 41840
		ΜВ	МВ											
Analyte	Re	esult	Qualifier		RL		Unit		D	P	repared	Analyz	ed	Dil Fac
Gasoline Range Organics	<	50.0	U		50.0		mg/Ko	3	_	12/1	4/22 14:33	12/17/22	08:52	1
(GRO)-C6-C10														
Diesel Range Organics (Over	<	50.0	U		50.0		mg/Kg	9		12/1	4/22 14:33	12/17/22	08:52	1
C10-C28)												10/17/00	~~ ~~	
Oll Range Organics (Over C28-C36)	<	50.0	U		50.0		mg/Kę	9		12/1	4/22 14:33	12/17/22	08:52	1
		ΜВ	МВ											
Surrogate	%Reco	very	Qualifier	Limit	s					P	repared	Analyz	zed	Dil Fac
1-Chlorooctane		141	S1+	70 _ 1	30					12/1	4/22 14:33	12/17/22	08:52	1
o-Terphenyl		140	S1+	70 - 1	30					12/1	4/22 14:33	12/17/22	08:52	1
_														
Lab Sample ID: LCS 880-4184	40/2-A								С	lient	Sample	ID: Lab C		
Matrix: Solid														otal/NA
Analysis Batch: 42076												Prep	Batch	: 41840
				Spike	LC	S LC	S					%Rec		
Analyte				Added	Resu	t Qu	alifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	890.	3		mg/Kg			89	70 - 130		
(GRO)-C6-C10				1000	070						07	70 100		
Diesel Range Organics (Over C10-C28)				1000	873.	5		mg/Kg			87	70 - 130		
010-028)														
	LCS	LCS												
Surrogate	%Recovery	Our	lifior											
	,	Qua		Limits										
1-Chlorooctane	109	Qua		70 - 130										
		Qua												
1-Chlorooctane o-Terphenyl	109 103	Qua	imer	70 - 130										
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41	109 103	Qua		70 - 130				Cli	ent	Sam	iple ID: La	ab Contro		
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid	109 103	QUA		70 - 130				Cli	ent	Sam	iple ID: La	Prep 1	Type: T	otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41	109 103	Qual		70 - 130 70 - 130				Cli	ent	Sam	iple ID: L	Prep 1 Prep	Type: T	otal/NA : 41840
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076	109 103	Qual	<u></u>	70 - 130 70 - 130 Spike) LC			ent		-	Prep 1 Prep %Rec	Type: To Batch	otal/NA : 41840 RPD
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte	109 103			70 - 130 70 - 130 Spike Added	Resu	t Qu	SD Jalifier	Unit	ent	Sam	%Rec	Prep Prep %Rec Limits	Batch	otal/NA : 41840 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics	109 103			70 - 130 70 - 130 Spike		t Qu			ent		-	Prep 1 Prep %Rec	Type: To Batch	otal/NA : 41840 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10	109 103			70 - 130 70 - 130 Spike Added	Resu	t Qu		<mark>Unit</mark> mg/Kg	ent		%Rec	Prep Prep %Rec Limits	Batch	otal/NA : 41840 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics	109 103			70 - 130 70 - 130 Spike Added	Resu 927.	t Qu		Unit	ent		<u>%Rec</u>	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 4	otal/NA : 41840 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	109 103 840/3-A			70 - 130 70 - 130 Spike Added	Resu 927.	t Qu		<mark>Unit</mark> mg/Kg	ent		<u>%Rec</u>	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 4	otal/NA : 41840 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	109 103 840/3-A	LCS		70 - 130 70 - 130 Spike Added 1000	Resu 927.	t Qu		<mark>Unit</mark> mg/Kg	ent		<u>%Rec</u>	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 4	otal/NA : 41840 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	109 103 840/3-A	LCS		70 - 130 70 - 130 Spike Added 1000 1000	Resu 927.	t Qu		<mark>Unit</mark> mg/Kg	ent		<u>%Rec</u>	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 4	otal/NA : 41840 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	109 103 840/3-A <i>LCSD</i> %Recovery 106	LCS		70 - 130 70 - 130 Spike Added 1000 1000 <u>Limits</u> 70 - 130	Resu 927.	t Qu		<mark>Unit</mark> mg/Kg	ent		<u>%Rec</u>	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 4	otal/NA : 41840 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	109 103 840/3-A	LCS		70 - 130 70 - 130 Spike Added 1000 1000	Resu 927.	t Qu		<mark>Unit</mark> mg/Kg	ent		<u>%Rec</u> 93	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 4	otal/NA : 41840 RPD Limit 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	109 103 840/3-A <i>LCSD</i> %Recovery 106 114	LCS		70 - 130 70 - 130 Spike Added 1000 1000 <u>Limits</u> 70 - 130	Resu 927.	t Qu		<mark>Unit</mark> mg/Kg	ent		93 98	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: Tr Batch <u>RPD</u> 4	otal/NA : 41840 RPD Limit 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-3624-A-1	109 103 840/3-A <i>LCSD</i> %Recovery 106 114	LCS		70 - 130 70 - 130 Spike Added 1000 1000 <u>Limits</u> 70 - 130	Resu 927.	t Qu		<mark>Unit</mark> mg/Kg	ent		93 98	Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch RPD 4 11	timit 20 20 x Spike
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-3624-A-1 Matrix: Solid	109 103 840/3-A <i>LCSD</i> %Recovery 106 114	LCS		70 - 130 70 - 130 Spike Added 1000 1000 <u>Limits</u> 70 - 130	Resu 927.	t Qu		<mark>Unit</mark> mg/Kg	ent		93 98	Prep %Rec Limits 70 - 130 70 - 130 Sample ID Prep	Type: To Batch RPD 4 11	total/NA : 41840 RPD Limit 20 20 20 x Spike otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-3624-A-1	109 103 840/3-A <i>LCSD</i> %Recovery 106 114 -C MS	LCS Qua	D lifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130	Resu 927. 976.	t Qu	alifier	<mark>Unit</mark> mg/Kg	ent		93 98	Prep %Rec Limits 70 - 130 70 - 130 Sample ID Prep	Type: To Batch RPD 4 11	timit 20 20 x Spike
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-3624-A-1 Matrix: Solid Analysis Batch: 42076	109 103 840/3-A <i>LCSD</i> %Recovery 106 114 -C MS Sample	LCS Qua Sam	D lifier	70 - 130 70 - 130 70 - 130 Spike Added 1000 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Resu 927. 976.	t Qu 3 3 8 MS	alifier	Unit mg/Kg mg/Kg	ent	<u>D</u>	%Rec 93 98 98	Prep 7 Prep % Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec	Type: To Batch RPD 4 11	total/NA : 41840 RPD Limit 20 20 20 x Spike otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-3624-A-1 Matrix: Solid Analysis Batch: 42076 Analyte	109 103 840/3-A <i>LCSD</i> %Recovery 106 114 -C MS Sample Result	LCS Qua Sam Qua	D lifier	70 - 130 70 - 130 Spike Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130	Resu 927. 976.	t Qu 3 3 MS	alifier	Unit mg/Kg mg/Kg	ent		93 98	Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep	Type: To Batch RPD 4 11	total/NA : 41840 RPD Limit 20 20 20 x Spike otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-3624-A-1 Matrix: Solid Analysis Batch: 42076	109 103 840/3-A <i>LCSD</i> %Recovery 106 114 -C MS Sample	LCS Qua Sam Qua	D lifier	70 - 130 70 - 130 70 - 130 Spike 1000 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 70 - 130	Resu 927. 976. 876. 876. 876. 876. 876. 876. 876. 8	t Qu 3 3 MS	alifier	Unit mg/Kg mg/Kg	ent	<u>D</u>	%Rec 93 98 Client S	Prep 7 Prep % Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec Limits	Type: To Batch RPD 4 11	total/NA : 41840 RPD Limit 20 20 20 x Spike otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-41 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-3624-A-1 Matrix: Solid Analysis Batch: 42076 Analyte Gasoline Range Organics	109 103 840/3-A <i>LCSD</i> %Recovery 106 114 -C MS Sample Result	LCS Qua Qua	D lifier	70 - 130 70 - 130 70 - 130 Spike 1000 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 70 - 130	Resu 927. 976. 876. 876. 876. 876. 876. 876. 876. 8	t Qu 3 3 t Qu	alifier	Unit mg/Kg mg/Kg	ent	<u>D</u>	%Rec 93 98 Client S	Prep 7 Prep % Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 7 Prep 7 %Rec Limits	Type: To Batch RPD 4 11	total/NA : 41840 RPD Limit 20 20 20 x Spike otal/NA

Job ID: 890-3622-1

SDG: 03D2024002

Released to Imaging: 1/24/2023 11:46:02 AM

QC Sample Results

Lab Sample ID: 890-3624-A-1-C MS

Matrix: Solid

Analyte Chloride

Matrix: Solid

Analysis Batch: 42076

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 41840

	MS	мs												
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	119			70 - 130	-									
o-Terphenyl	92			70 - 130										
Lab Sample ID: 890-3624-A-1-	D MSD								Clien	it Sa	ample IC): Matrix S	oike Dup	olicate
Matrix: Solid												Prep	Гуре: То	tal/NA
Analysis Batch: 42076													Batch:	
-	Sample	Sam	ple	Spike		MSD	MSD					%Rec		RPD
Analyte	Result	Qua	lifier	Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<50.0	U		997		1074		mg/Kg		_	108	70 - 130	3	20
(GRO)-C6-C10														
Diesel Range Organics (Over	<50.0	U		997		1029		mg/Kg			103	70 - 130	0	20
C10-C28)														
	MSD	MSD)											
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	106			70 - 130	-									
o-Terphenyl	92			70 - 130										
lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-41755		ogr	aphy								Client S	Sample ID:	Method	Blanl
		ogr	aphy								Client S		Method Type: S	
Lab Sample ID: MB 880-41755		ogr	aphy								Client S			
Lab Sample ID: MB 880-41755 Matrix: Solid		ogr									Client S			
Lab Sample ID: MB 880-41755 Matrix: Solid	5/1-A	МВ			RL		Unit		D		Client S		Type: S	oluble
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176	5/1-A	МВ	MB Qualifier		RL 5.00		Unit mg/Kg	g	<u>D</u>			Prep	Type: S	oluble Dil Fac
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Analyte Chloride	5/1-A 	MB esult	MB Qualifier					9		Pi	repared	Prep	Type: S 2ed 11:06	Oluble Dil Fac
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCS 880-4175	5/1-A 	MB esult	MB Qualifier					g		Pi	repared	Prep 	Type: S red 11:06 –	Dil Fac
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid	5/1-A 	MB esult	MB Qualifier					9		Pi	repared	Prep 	Type: S 2ed 11:06	Dil Fac
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCS 880-4175	5/1-A 	MB esult	MB Qualifier				mg/K	9		Pi	repared	Prep Analyz 12/20/22 D: Lab C Prep	Type: S red 11:06 –	Dil Fac
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid Analysis Batch: 42176	5/1-A 	MB esult	MB Qualifier	Spike			LCS	-		Pi	repared Sample	Prep Analyz 12/20/22 e ID: Lab C Prep %Rec	Type: S red 11:06 –	Dil Fac
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid Analysis Batch: 42176	5/1-A 	MB esult	MB Qualifier	Added		Result	mg/K	Unit		Pi	sample	Prep Analyz 12/20/22 PID: Lab Co Prep %Rec Limits	Type: S red 11:06 –	Dil Fac
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid Analysis Batch: 42176	5/1-A 	MB esult	MB Qualifier				LCS	-		Pi	repared Sample	Prep Analyz 12/20/22 e ID: Lab C Prep %Rec	Type: S red 11:06 –	Dil Fac
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid Analysis Batch: 42176 Analyte Chloride	5/1-A 55/2-A	MB esult	MB Qualifier	Added		Result	LCS	Unit mg/Kg	Cli	Pr ient	Sample %Rec 92	Analyz 12/20/22 ID: Lab C Prep %Rec Limits 90 - 110	Type: S 2ed 11:06 – ontrol S Type: S	oluble
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-417	5/1-A 55/2-A	MB esult	MB Qualifier	Added		Result	LCS	Unit mg/Kg	Cli	Pr ient	Sample %Rec 92	Prep Analyz 12/20/22 DI: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S 2ed 11:06 ontrol S Type: S Ol Sampl	oluble Dil Fac ample oluble
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid	5/1-A 55/2-A	MB esult	MB Qualifier	Added		Result	LCS	Unit mg/Kg	Cli	Pr ient	Sample %Rec 92	Prep Analyz 12/20/22 DI: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S 2ed 11:06 – ontrol S Type: S	oluble Dil Fac ample oluble
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-417	5/1-A 55/2-A	MB esult	MB Qualifier	Added 250		Result 229.8	LCS Qualifier	Unit mg/Kg	Cli	Pr ient	Sample %Rec 92	Prep Analyz 12/20/22 DI: Lab Co Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: S 2ed 11:06 ontrol S Type: S Ol Sampl	oluble Dil Fac ample oluble
Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCS 880-4175 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid	5/1-A 55/2-A	MB esult	MB Qualifier	Added		Result 229.8	LCS Qualifier	Unit mg/Kg	Cli	Pr ient	Sample %Rec 92	Prep Analyz 12/20/22 DI: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S 2ed 11:06 ontrol S Type: S Ol Sampl	Dil Fac 1 ample oluble

Client Sample ID: Matrix Spike Prep Type: Soluble

90 - 110

92

	Analysis Batch: 42176											
		Sample	Sample	Spike	MS	MS				%Rec		
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
l	Chloride	71.0	F1	250	292.0	F1	mg/Kg		88	90 _ 110		_

230.6

mg/Kg

250

0

20

Lab Sample ID: 890-3621-A-1-B MS

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-3621-A-1- Matrix: Solid Analysis Batch: 42176	C MSD					C	lient Sa	ample II): Matrix Sp Prep	oike Dup Type: S	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	71.0	F1	250	292.4	F1	mg/Kg		89	90 - 110	0	20

Job ID: 890-3622-1 SDG: 03D2024002

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H Job ID: 890-3622-1 SDG: 03D2024002

GC VOA

Analysis Batch: 42465

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3622-1	SS09	Total/NA	Solid	8021B	42482
rep Batch: 42482					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3622-1	SS09	Total/NA	Solid	5035	
Analysis Batch: 42620					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3622-1	SS09	Total/NA	Solid	Total BTEX	
GC Semi VOA					
Prep Batch: 41840					
Prep Batch: 41840 - Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID SS09	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
- ·	• • •				Prep Batch
Lab Sample ID 890-3622-1	SS09	Total/NA	Solid	8015NM Prep	Prep Batch
Lab Sample ID 890-3622-1 MB 880-41840/1-A	SS09 Method Blank	Total/NA Total/NA	Solid Solid	8015NM Prep 8015NM Prep	Prep Batch
Lab Sample ID 890-3622-1 MB 880-41840/1-A LCS 880-41840/2-A	SS09 Method Blank Lab Control Sample	Total/NA Total/NA Total/NA	Solid Solid Solid	8015NM Prep 8015NM Prep 8015NM Prep	Prep Batch

GC Semi VOA

```
Prep Batch: 41840
```

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3622-1	SS09	Total/NA	Solid	8015NM Prep	
MB 880-41840/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-41840/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-41840/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3624-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3624-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 42076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3622-1	SS09	Total/NA	Solid	8015B NM	41840
MB 880-41840/1-A	Method Blank	Total/NA	Solid	8015B NM	41840
LCS 880-41840/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	41840
LCSD 880-41840/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	41840
890-3624-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	41840
890-3624-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	41840
Analysis Batch: 42198					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3622-1	SS09	Total/NA	Solid	8015 NM	

HPLC/IC

Г

Leach Batch: 41755

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3622-1	SS09	Soluble	Solid	DI Leach	
MB 880-41755/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-41755/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-41755/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3621-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3621-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 42176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3622-1	SS09	Soluble	Solid	300.0	41755
MB 880-41755/1-A	Method Blank	Soluble	Solid	300.0	41755
LCS 880-41755/2-A	Lab Control Sample	Soluble	Solid	300.0	41755
LCSD 880-41755/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	41755
890-3621-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	41755

Job ID: 890-3622-1

SDG: 03D2024002

QC Association Summary

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

HPLC/IC (Continued)

Analysis Batch: 42176 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-3621-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	41755	

Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3622-1 SDG: 03D2024002

Lab Sample ID: 890-3622-1 Matrix: Solid

Client Sample ID: SS09 Date Collected: 12/09/22 11:40 Date Received: 12/12/22 12:41

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	42482	12/22/22 09:05	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42465	12/23/22 17:19	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			42620	12/26/22 16:44	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42198	12/19/22 15:08	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	41840	12/14/22 14:33	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42076	12/17/22 22:10	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	41755	12/13/22 13:06	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42176	12/20/22 12:10	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 1/24/2023 11:46:02 AM

Accreditation/Certification Summary

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date	
as	NELAP		T104704400-22-25	06-30-23	
the agency does not of	er certification.	-	ied by the governing authority. This list ma	ay include analytes fo	
• ,		t the laboratory is not certif <u>Matrix</u> Solid	ied by the governing authority. This list ma Analyte Total TPH	ay include analytes fo	

Page 21 of 81

10

Job ID: 890-3622-1

SDG: 03D2024002

Job ID: 890-3622-1 SDG: 03D2024002

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
SW846 =	= "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, Ma "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E = TestAmerica Laboratories, Standard Operating Procedure		
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Protocol References:

Laboratory References:

Sample Summary

Job ID: 890-3622-1 SDG: 03D2024002

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
390-3622-1	SS09	Solid	12/09/22 11:40	12/12/22 12:41	0.5	4
						5
						8
						9
						12
						13

Project Manager: Company Name: Address:	Kalei Jennings Ensolum. LLC	Bill to: (if different)	Kalei Jennings		Work Order	Commonto
	Ensolum, LLC				WORK Order Comments	Comments
		Company Name:	Ensolum, LLC	Pro	Program: UST/PST PRP Brownfields RRC	nfields 🗌 RRC 🗌 Superfund 🗌
	601 N Marienfeld St Suite 400	Address:	601 N Marienfeld St Suite 400		State of Project:	
e ZIP:	Midland, TX 79701	City, State ZIP:	Midland, TX 79701		Reporting: Level II Level III PST/UST TRRP	
	817.683.2503	Email: kjennings@ensolum.com;	lum.com; jadams@ensolum.com	nsolum.com	Deliverables: EDD	YT D Other:
Name:	Broadcaster 29 Federal 003H	Turn Around		ANALYSIS REQUEST	T	Preservative Codes
Project Number:	_	-	Pres.			None: NO DI Water: H ₂ O
Project Location:	Lea County, NM Due	Due Date:				Q
Sampler's Name:		TAT starts the day received by				
PO #:	the	the lab, if received by 4:30pm	ers			
SAMPLE RECEIPT	Tomp Blank: Yes No	t Ice: (Yes) No	00.0)			H3PU4: HP
Conter Cristody Seals	s: Ves No N/A Correction Factor	12300-				Na ₂ S ₂ O ₃ : NaSO ₃
Sample Custody Seals:	Yes NO N/A			890-3622 Chain of Custody	ustody	Zn Acetate+NaOH: Zn
Total Containers:	Corrected Temperature:	arature: 1.0	015)	Difference of Sector		NaUH+Ascoroic Acid: SAFC
Sample Identification	Matrix Date Sampled	Time Depth Grab/ # Sampled Depth Comp C	CHLOF TPH (8 BTEX			Sample Comments
60SS	S 12.9.22	1140 0.5' G	1 × × ×			
		P				Incident Number
	202	10				
	A DI					
A						
Total 200.7 / 6010	8RC	RA 13PPM Texas 11	1	Cd Ca Cr Co Cu Fe Pb Mg	No Ni K Se A	Ng SiO2 Na Sr TI Sn U V Zn
Circle Method(s) ai	UTCIE Metrood(S) and Metal(S) to be analyzed in the second constitutes and our hour of the form client company to Eurofins Xence. Its affiliates and subcontractors. It assigns standard terms and conditions	TOLE / SPLE OUTO, ONCON	lient company to Eurofins Xe	opport to Eurofins Xenco. Its affiliates and subcontractors. It assigns sto	igns standard terms and conditions	
of service. Eurofins Xenco of Eurofins Xenco. A min	produce. Support of this document and reinformation or support of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	all not assume any responsibility act and a charge of \$5 for each si	for any losses or expenses i ample submitted to Eurofins	incurred by the client if such losses are due Xenco, but not analyzed. These terms will bu	to circumstances beyond the control e enforced unless previously negotiated	
Relinquished by: (Signature)	: (Signature)	: (Signature)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	ure) Date/Time
croci			5			
3				4		
σ				6		

Received by OCD: 12/28/2022 2:59:34 PM

12/27/2022

5 13

Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

eurofins

Page 24 of 81

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3622 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3622-1 SDG Number: 03D2024002

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3622 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-3622-1 SDG Number: 03D2024002

List Source: Eurofins Midland List Creation: 12/13/22 11:24 AM

Received by OCD: 12/28/2022 2:59:34 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 12/27/2022 8:38:04 AM

JOB DESCRIPTION

BROADCASTER 29 FEDERAL 003H SDG NUMBER Lea County NM

JOB NUMBER

890-3623-1

CR ngs lum St. 400 701

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Received by OCD: 12/28/2022 2:59:34 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 12/27/2022 8:38:04 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

SDG: Lea County NM

Page 29 of 81

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Qualifiers

Qualifiers		 3
GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VO	A	
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		 10
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	

%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 890-3623-1

SDG: Lea County NM

Job ID: 890-3623-1

Page 31 of 81

Job ID: 890-3623-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3623-1

Receipt

The sample was received on 12/12/2022 12:41 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.0°C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SS10 (890-3623-1).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-41840 and analytical batch 880-42076 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-41755 and analytical batch 880-42176 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Client Sample ID: SS10

Date Collected: 12/09/22 11:45 Date Received: 12/12/22 12:41

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		12/22/22 09:22	12/23/22 14:46	1
Toluene	<0.00199	U	0.00199	mg/Kg		12/22/22 09:22	12/23/22 14:46	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		12/22/22 09:22	12/23/22 14:46	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		12/22/22 09:22	12/23/22 14:46	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		12/22/22 09:22	12/23/22 14:46	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		12/22/22 09:22	12/23/22 14:46	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130			12/22/22 09:22	12/23/22 14:46	1
1,4-Difluorobenzene (Surr)	86		70 - 130			12/22/22 09:22	12/23/22 14:46	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398	mg/Kg			12/24/22 08:27	1
Analyte Total TPH	Result <49.9	Qualifier U	RL 49.9	Unit mg/Kg	<u> </u>	Prepared	Analyzed 12/19/22 15:08	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			12/19/22 15:08	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		12/14/22 14:33	12/17/22 13:08	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		12/14/22 14:33	12/17/22 13:08	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		12/14/22 14:33	12/17/22 13:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130			12/14/22 14:33	12/17/22 13:08	1
o-Terphenyl	113		70 - 130			12/14/22 14:33	12/17/22 13:08	1
Method: MCAWW 300.0 - Anions	. Ion Chromato	ography - So	oluble					
Analyte	1	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Page 32 of 81

Job ID: 890-3623-1 SDG: Lea County NM

Lab Sample ID: 890-3623-1

Matrix: Solid

5

Eurofins Carlsbad

Released to Imaging: 1/24/2023 11:46:02 AM

Surrogate Summary

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-3623-1	SS10	132 S1+	86		
890-3625-A-1-C MS	Matrix Spike	95	93		
890-3625-A-1-D MSD	Matrix Spike Duplicate	98	95		- 5
LCS 880-42483/1-A	Lab Control Sample	99	95		
LCSD 880-42483/2-A	Lab Control Sample Dup	94	95		
MB 880-42420/5-A	Method Blank	97	90		
MB 880-42483/5-A	Method Blank	101	86		
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

90-3623-1 SS10 120 113 90-3624-A-1-C MS Matrix Spike 119 92 90-3624-A-1-D MSD Matrix Spike Duplicate 106 92 CS 880-41840/2-A Lab Control Sample 109 103					Percent Surrogate Recovery (Acceptance Limits)
90-3623-1 SS10 120 113 90-3624-A-1-C MS Matrix Spike 119 92 90-3624-A-1-D MSD Matrix Spike Duplicate 106 92 CS 880-41840/2-A Lab Control Sample 109 103			1CO1	OTPH1	
90-3624-A-1-C MS Matrix Spike 119 92 90-3624-A-1-D MSD Matrix Spike Duplicate 106 92 CS 880-41840/2-A Lab Control Sample 109 103	Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
90-3624-A-1-D MSD Matrix Spike Duplicate 106 92 CS 880-41840/2-A Lab Control Sample 109 103	890-3623-1	SS10	120	113	
CS 880-41840/2-A Lab Control Sample 109 103	890-3624-A-1-C MS	Matrix Spike	119	92	
	890-3624-A-1-D MSD	Matrix Spike Duplicate	106	92	
20D 000 44040/2 A Job Control Comple Dup 400 114	LCS 880-41840/2-A	Lab Control Sample	109	103	
USD 860-41640/3-A Lab Control Sample Dup 106 114	LCSD 880-41840/3-A	Lab Control Sample Dup	106	114	
IB 880-41840/1-A Method Blank 141 S1+ 140 S1+	MB 880-41840/1-A	Method Blank	141 S1+	140 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-3623-1 SDG: Lea County NM

Page 33 of 81

Prep Type: Total/NA

QC Sample Results

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-42420	/ 5-A								Client Sa	mple ID: Meth	od Blank
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 42466										Prep Bato	h: 42420
	MB	MB									
Analyte	Result	Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/K	g		12/2	1/22 12:40	12/22/22 22:51	1
Toluene	<0.00200	U	0.00200		mg/K	g		12/2	1/22 12:40	12/22/22 22:51	1
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		12/2	1/22 12:40	12/22/22 22:51	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/K	g		12/2	1/22 12:40	12/22/22 22:51	1
o-Xylene	<0.00200	U	0.00200		mg/K	g		12/2	1/22 12:40	12/22/22 22:51	1
Xylenes, Total	<0.00400	U	0.00400		mg/K	g		12/2	1/22 12:40	12/22/22 22:51	1
	MB	МВ									
Surrogate	%Recovery		Limits					Р	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	<u>97</u>		70 - 130						1/22 12:40	12/22/22 22:51	1
1,4-Difluorobenzene (Surr)	90		70 - 130						1/22 12:40	12/22/22 22:51	1
Lab Sample ID: MB 880-42483	/ 5-A								Client Sa	mple ID: Meth	
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 42466										Prep Bato	h: 42483
	MB	MB									
Analyte	Result	Qualifier	RL		Unit		D	P	repared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/K	g		12/2	2/22 09:22	12/23/22 09:36	1
Toluene	<0.00200	U	0.00200		mg/K	g		12/2	2/22 09:22	12/23/22 09:36	1
Ethylbenzene	<0.00200	U	0.00200		mg/K	g		12/2	2/22 09:22	12/23/22 09:36	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/K	g		12/2	2/22 09:22	12/23/22 09:36	1
o-Xylene	<0.00200	U	0.00200		mg/K	g		12/2	2/22 09:22	12/23/22 09:36	1
Xylenes, Total	<0.00400	U	0.00400		mg/K	g		12/2	2/22 09:22	12/23/22 09:36	1
	MB	МВ									
Surrogate	%Recovery		Limits					Р	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130						2/22 09:22	12/23/22 09:36	1
1,4-Difluorobenzene (Surr)	86		70 - 130					12/2	2/22 09:22	12/23/22 09:36	1
							_				
Lab Sample ID: LCS 880-4248	3/1-A						C	lient	Sample	ID: Lab Contro	
Matrix: Solid										Prep Type:	
Analysis Batch: 42466										Prep Bato	h: 42483
			Spike		LCS					%Rec	
Analyte			Added		Qualifier	Unit		<u>D</u>	%Rec	Limits	
Benzene			0.100	0.1020		mg/Kg			102	70 - 130	
Toluene			0.100	0.09648		mg/Kg			96	70 - 130	
Ethylbenzene			0.100	0.08974		mg/Kg			90	70 - 130	
m-Xylene & p-Xylene			0.200	0.1921		mg/Kg			96	70 - 130	
o-Xylene			0.100	0.09734		mg/Kg			97	70 - 130	
	LCS LCS	;									
Surrogate		lifier	Limits								
4-Bromofluorobenzene (Surr)	99		70 - 130								
1,4-Difluorobenzene (Surr)	95		70 - 130								
<u> </u>						_					
Lab Sample ID: LCSD 880-424	83/2-A					Cli	ent	Sam	nple ID: L	ab Control San	
Matrix: Solid										Prep Type:	
Analysis Batch: 42466										Prep Bato	
			Spike	LCSD	LCSD					%Rec	RPD
Analyte	. <u> </u>		Added	Result	Qualifier	Unit		D	%Rec	Limits RP	D Limit

5

Eurofins Carlsbad

70 - 130

84

Job ID: 890-3623-1 SDG: Lea County NM

Released to Imaging: 1/24/2023 11:46:02 AM

Benzene

0.08380

mg/Kg

0.100

35

20

QC Sample Results

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H Job ID: 890-3623-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-42	2483/2-A					Clier	nt Sam	ple ID:	Lab Contro		
Matrix: Solid									Prep 1	ype: To	tal/N/
Analysis Batch: 42466									Prep	Batch:	4248:
			Spike	LCSD	LCSD				%Rec		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.07951		mg/Kg		80	70 - 130	19	3
Ethylbenzene			0.100	0.07270		mg/Kg		73	70 - 130	21	3
m-Xylene & p-Xylene			0.200	0.1547		mg/Kg		77	70 - 130	22	3
o-Xylene			0.100	0.07994		mg/Kg		80	70 - 130	20	3
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	95		70 - 130								
Lab Sample ID: 890-3625-A-	1-C MS							Client	Sample ID	: Matrix	Spik
Matrix: Solid										ype: To	
Analysis Batch: 42466										Batch:	
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00201	U	0.0996	0.08752		mg/Kg		88	70 - 130		
Toluene	<0.00201	U	0.0996	0.08182		mg/Kg		82	70 - 130		
Ethylbenzene	<0.00201	U	0.0996	0.07396		mg/Kg		74	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.199	0.1562		mg/Kg		78	70 - 130		
o-Xylene	<0.00201	U	0.0996	0.07911		mg/Kg		79	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		70 - 130								
1,4-Difluorobenzene (Surr)	93		70 - 130								
Lab Sample ID: 890-3625-A-	1-D MSD					CI	ient Sa	ample IC): Matrix Sp	oike Dup	olicat
Matrix: Solid									Prep 1	ype: To	tal/N
Analysis Batch: 42466									Prep	Batch:	4248
	Sample	Sample	Spike	MSD	MSD				%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	<0.00201	U	0.100	0.09585		mg/Kg		96	70 - 130	9	3
Toluene	<0.00201		0.100	0.08682		mg/Kg		87	70 - 130	6	3
Ethylbenzene	<0.00201	U	0.100	0.07977		mg/Kg		80	70 - 130	8	3
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1658		mg/Kg		83	70 - 130	6	3
	< 0.00201	U	0.100	0.08489		mg/Kg		85	70 - 130	7	3
o-Xylene	0.00201										
	MSD	MSD									
o-Xylene Surrogate 4-Bromofluorobenzene (Surr)		Qualifier	Limits								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-41840/1-A Matrix: Solid Analysis Batch: 42076						Client Sa	mple ID: Metho Prep Type: ⁻ Prep Bato	Total/NA
	МВ	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		12/14/22 14:33	12/17/22 08:52	1
(GRO)-C6-C10								

C10-C28)

QC Sample Results

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-41840/1-	A									Client Sa	ample ID: M	lethod	Blank
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 42076											Prep E	Batch:	41840
		MB	МВ										
Analyte	Re	sult	Qualifier		RL		Unit		D	Prepared	Analyze	d	Dil Fac
Diesel Range Organics (Over	<<	50.0	U		50.0		mg/K	g		12/14/22 14:33	12/17/22 08	3:52	1
C10-C28)													
Oll Range Organics (Over C28-C36)	<	50.0	U		50.0		mg/K	g		12/14/22 14:33	12/17/22 08	3:52	1
		ΜВ	MB										
Surrogate	% Poco		Qualifier	Lin	ite					Prepared	Analyze	d	Dil Fac
1-Chlorooctane		141			130					12/14/22 14:33	12/17/22 08		1 Dil Fac
p-Terphenyl		140			130					12/14/22 14:33	12/17/22 08		1
- Terphenyi		140	37+	701	150					12/14/22 14.55	12/11/22 00	5.52	,
.ab Sample ID: LCS 880-41840/2	2-Δ								CI	ient Sample	ID: Lab Cor	ntrol S	ample
Matrix: Solid											Prep Ty		
Analysis Batch: 42076												-	41840
analysis Daten. 42070				Spike		LCS	LCS				%Rec	Juton.	41040
nalyte				Added			Qualifier	Unit		D %Rec	Limits		
Gasoline Range Organics				1000		890.3		mg/Kg		<u>– – – – – – – – – – – – – – – – – – – </u>	70 - 130		
GRO)-C6-C10				1000		000.0		mg/ixy		03	.0-100		
Diesel Range Organics (Over				1000		873.8		mg/Kg		87	70 - 130		
C10-C28)								0 0					
	LCS	100											
			ifi e r	Limits									
Gurrogate	%Recovery 109	Qual	mer _	70 - 130	-								
p-Terphenyl	103			70 - 130 70 - 130									
- Telphenyi	100			70 - 750									
_ab Sample ID: LCSD 880-41840	/ 3-A							Cli	ent	Sample ID: L	ab Control	Samp	le Dup
Matrix: Solid											Prep Ty		
Analysis Batch: 42076												-	41840
				Spike		LCSD	LCSD				%Rec		RPD
Analyte				Added			Qualifier	Unit		D %Rec	Limits	RPD	Limit
Basoline Range Organics				1000		927.5		mg/Kg		<u> </u>	70 - 130	4	20
GRO)-C6-C10				1000		021.0		mg/rtg		00	10-100		20
Diesel Range Organics (Over				1000		976.8		mg/Kg		98	70 - 130	11	20
C10-C28)													
	LCSD	100	-										
Surrogate				Limita									
I-Chlorooctane	%Recovery 106	Qual	mer	Limits 70 - 130	-								
	106												
-Terphenyl	114			70 - 130									
.ab Sample ID: 890-3624-A-1-C I	MS									Client	Sample ID:	Matriv	Snike
Matrix: Solid										Sherit	Prep Ty		
Analysis Batch: 42076													41840
anaiysis Dalcii. 420/0	Sample	Sam.		Snike		ме	MS				%Rec	JaiCII	41040
Analyta	-	-		Spike				Unit		D % D			
Analyte	Result			Added			Qualifier	Unit		D %Rec	Limits		
Gasoline Range Organics	<50.0	U		999		1103		mg/Kg		110	70 - 130		
GRO)-C6-C10 Diesel Range Organics (Over	<50.0			999		1025		mg/Kg		103	70 - 130		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	119		70 - 130
o-Terphenyl	92		70 - 130

Eurofins Carlsbad

Page 36 of 81

Job ID: 890-3623-1

SDG: Lea County NM
Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H Job ID: 890-3623-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	1-D MSD								-): Matrix Sp Prep 1	Type: To	
Analysis Batch: 42076											Batch:	
Analysis Batch. 42076	Sample	Sampla	Spike	MSD	MSD					%Rec	Batch.	RPD
Amelyta	•	Qualifier	Added		Qualifier	Unit		_	9/ Dee	Limits	RPD	Limi
Analyte			997	1074	Quaimer			D	%Rec		3	2
Gasoline Range Organics (GRO)-C6-C10	<50.0	0	997	1074		mg/Kg			108	70 - 130	3	20
Diesel Range Organics (Over	<50.0	U	997	1029		mg/Kg			103	70 - 130	0	2
C10-C28)		-									-	_
a (MSD											
Surrogate 1-Chlorooctane	%Recovery	Qualifier	Limits 70 - 130	-								
	106 92		70 - 130 70 - 130									
o-Terphenyl	92		70 - 130									
lethod: 300.0 - Anions,	Ion Chromat	ography										
Lab Sample ID: MB 880-417	55/1-A							(Client S	Sample ID:	Method	Blan
Matrix: Solid										Prep	Type: S	olubl
Analysis Batch: 42176												
		MB MB										
Analyte	R	esult Qualifier		RL	Unit		D	Pr	epared	Analyz	ed	Dil Fa
Chloride	<	5.00 U		5.00	mg/K	g				12/20/22	11:06	
	755/2_7						Cli	ont	Sample	D: Lab Co	ontrol Sa	ampl
	JJ/2-A						Cil	ent				
Matrix: Solid	JJ/2-A						U II	ent			Type: S	
Matrix: Solid							CII	ent		Prep		
-			Spike		LCS		CII		-	Prep %Rec		
Matrix: Solid Analysis Batch: 42176 Analyte			Added	Result	LCS Qualifier	Unit		<u>D</u>	%Rec	Prep %Rec Limits		
Matrix: Solid						Unit mg/Kg			-	Prep %Rec		
Matrix: Solid Analysis Batch: 42176 Analyte Chloride			Added	Result		mg/Kg		<u>D</u>	%Rec 92	Prep %Rec Limits 90 - 110	Type: S	olubl
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4			Added	Result		mg/Kg		<u>D</u>	%Rec 92	Prep %Rec Limits 90 - 110	Type: So	olubl
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid			Added	Result		mg/Kg		<u>D</u>	%Rec 92	Prep %Rec Limits 90 - 110	Type: S	oluble
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid			Added 250	Result	Qualifier	mg/Kg		<u>D</u>	%Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So	e Duj oluble
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176			Added 250 Spike	Result 229.8 LCSD	Qualifier	mg/Kg		D am	%Rec 92 ple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So 	e Duj olubio RPI
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte			Added 250	Result 229.8 LCSD	Qualifier	mg/Kg Cli		<u>D</u>	%Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So	e Duj olubi olubi RPI Lim
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte			Added 250 Spike Added	Result 229.8 LCSD Result	Qualifier	mg/Kg		D am	%Rec 92 ple ID: 1	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: Si ol Sampl Type: Si 	e Duj olubi olubi RPI Lim
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte	 1755/3-A		Added 250 Spike Added	Result 229.8 LCSD Result	Qualifier	mg/Kg Cli		D am	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So ol Sampl Type: So <u>RPD</u> 0	e Duj olubi olubi RPI Lim 2
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A-	 1755/3-A		Added 250 Spike Added	Result 229.8 LCSD Result	Qualifier	mg/Kg Cli		D am	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So ol Sampl Type: So <u>RPD</u> 0	e Duj olubli RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid	 1755/3-A		Added 250 Spike Added	Result 229.8 LCSD Result	Qualifier	mg/Kg Cli		D am	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So ol Sampl Type: So <u></u> : Matrix	e Duj olubli RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid	1755/3-A 		Added 250 Spike Added	Result 229.8 LCSD Result 230.6	Qualifier	mg/Kg Cli		D am	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So ol Sampl Type: So <u></u> : Matrix	e Duj oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid Analysis Batch: 42176	1755/3-A 1-B MS Sample	Sample Qualifier	Added 250 Spike Added 250	Result 229.8 LCSD Result 230.6	Qualifier LCSD Qualifier	mg/Kg Cli		D am	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: So ol Sampl Type: So <u></u> : Matrix	e Duj olubli RPI Lim 2 Spike
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid Analysis Batch: 42176 Analyte	1755/3-A 1-B MS Sample	Qualifier	Added 250 Spike Added 250 Spike	Result 229.8 LCSD Result 230.6	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Cli <u>Unit</u> mg/Kg		D ≎am D	%Rec 92 ple ID: 1 %Rec 92 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: So ol Sampl Type: So <u></u> : Matrix	e Duj oluble RPI Limi 20 Spike
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid Analysis Batch: 42176 Analyte Chloride	1755/3-A 1-B MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg		D amı D D	%Rec 92 ple ID: 1 %Rec 92 Client %Rec 88	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So Sampl Type: So <u>RPD</u> 0 : Matrix Type: So	olubl e Duj olubl RPI Lim 2 Spik olubl
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A-	1755/3-A 1-B MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg		D amı D D	%Rec 92 ple ID: 1 %Rec 92 Client %Rec 88	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 0 : Matrix Type: So 	e Duj olubi RPI Lim 2 Spike olubi
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid	1755/3-A 1-B MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg		D amı D D	%Rec 92 ple ID: 1 %Rec 92 Client 88	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So Sampl Type: So <u>RPD</u> 0 : Matrix Type: So	e Duj olubi RPI Lim 2 Spike olubi
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid Analyte Chloride Lab Sample ID: 890-3621-A- Matrix: Solid	1755/3-A 1-B MS 	Qualifier F1	Added 250 Spike Added 250 Spike Added 250	Result 229.8 LCSD Result 230.6 MS Result 292.0	Qualifier LCSD Qualifier MS Qualifier F1	Unit Unit mg/Kg		D amı D D	%Rec 92 ple ID: 1 %Rec 92 Client 88	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 0: Matrix Sp Prep	Type: So ol Sampl Type: So <u>RPD</u> 0 : Matrix Type: So 	e Duy olubi RPI Lim 2 Spik olubi
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 42176 Analyte Chloride	1755/3-A 1-B MS 	Qualifier F1	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result 292.0	Qualifier LCSD Qualifier MS Qualifier	Unit Unit mg/Kg		D amı D D	%Rec 92 ple ID: 1 %Rec 92 Client 88	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 0 : Matrix Type: So 	e Dup oluble RPI Limi 20 Spike oluble

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Job ID: 890-3623-1 SDG: Lea County NM

GC VOA

Prep Batch: 42420

ab Sample ID.	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
IB 880-42420/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 42466					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3623-1	SS10	Total/NA	Solid	8021B	42483
MB 880-42420/5-A	Method Blank	Total/NA	Solid	8021B	42420
MB 880-42483/5-A	Method Blank	Total/NA	Solid	8021B	42483
LCS 880-42483/1-A	Lab Control Sample	Total/NA	Solid	8021B	42483
LCSD 880-42483/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	42483
890-3625-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	42483
890-3625-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	42483
rep Batch: 42483					
· •	Client Sample ID	Pron Type	Matrix	Method	Pron Batch
Lab Sample ID	Client Sample ID	Prep Type	Matrix Solid	Method 5035	Prep Batch
Lab Sample ID 890-3623-1	•				Prep Batch
Lab Sample ID 890-3623-1 MB 880-42483/5-A	SS10	Total/NA	Solid	5035	Prep Batch
Lab Sample ID 890-3623-1 MB 880-42483/5-A LCS 880-42483/1-A	SS10 Method Blank	Total/NA Total/NA	Solid	5035 5035	Prep Batch
Lab Sample ID 890-3623-1 MB 880-42483/5-A LCS 880-42483/1-A LCSD 880-42483/2-A	SS10 Method Blank Lab Control Sample	Total/NA Total/NA Total/NA	Solid Solid Solid	5035 5035 5035	Prep Batch
Lab Sample ID 890-3623-1 MB 880-42483/5-A LCS 880-42483/1-A LCSD 880-42483/2-A 890-3625-A-1-C MS	SS10 Method Blank Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	5035 5035 5035 5035 5035	Prep Batch
Lab Sample ID 890-3623-1 MB 880-42483/5-A LCS 880-42483/1-A LCSD 880-42483/2-A 890-3625-A-1-C MS 890-3625-A-1-D MSD	SS10 Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike Matrix Spike Duplicate	Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid	5035 5035 5035 5035 5035 5035	Prep Batch
rep Batch: 42483 Lab Sample ID 890-3623-1 MB 880-42483/5-A LCS 880-42483/1-A LCSD 880-42483/2-A 890-3625-A-1-C MS 890-3625-A-1-D MSD nalysis Batch: 42579 Lab Sample ID	SS10 Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike Matrix Spike Duplicate	Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid	5035 5035 5035 5035 5035 5035	Prep Batch

GC Semi VOA

Prep Batch: 41840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3623-1	SS10	Total/NA	Solid	8015NM Prep	
MB 880-41840/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-41840/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-41840/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3624-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3624-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 42076

890-3623-1

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3623-1	SS10	Total/NA	Solid	8015B NM	41840
MB 880-41840/1-A	Method Blank	Total/NA	Solid	8015B NM	41840
LCS 880-41840/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	41840
LCSD 880-41840/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	41840
890-3624-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	41840
890-3624-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	41840
Analysis Batch: 42194					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch

Total/NA

Solid

8015 NM

Page 38 of 81

Released to Imaging: 1/24/2023 11:46:02 AM

SS10

QC Association Summary

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

HPLC/IC

Leach Batch: 41755

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-3623-1	SS10	Soluble	Solid	DI Leach	
MB 880-41755/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-41755/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CSD 880-41755/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-3621-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3621-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
nalysis Batch: 42176					
.ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
390-3623-1	SS10	Soluble	Solid	300.0	41755
MB 880-41755/1-A	Method Blank	Soluble	Solid	300.0	41755
_CS 880-41755/2-A	Lab Control Sample	Soluble	Solid	300.0	41755
CSD 880-41755/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	41755
390-3621-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	41755
890-3621-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	41755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3623-1	SS10	Soluble	Solid	300.0	41755
MB 880-41755/1-A	Method Blank	Soluble	Solid	300.0	41755
LCS 880-41755/2-A	Lab Control Sample	Soluble	Solid	300.0	41755
LCSD 880-41755/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	41755
890-3621-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	41755
890-3621-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	41755

Page 39 of 81

Eurofins Carlsbad

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Client Sample ID: SS10 Date Collected: 12/09/22 11:45

Date Received: 12/12/22 12:41

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	42483	12/22/22 09:22	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42466	12/23/22 14:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			42579	12/24/22 08:27	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42194	12/19/22 15:08	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	41840	12/14/22 14:33	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42076	12/17/22 13:08	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	41755	12/13/22 13:06	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42176	12/20/22 12:15	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-3623-1

Page 40 of 81

SDG: Lea County NM

Lab Sample ID: 890-3623-1 Matrix: Solid

Eurofins Carlsbad

Accreditation/Certification Summary

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Job ID: 890-3623-1 SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority		Program	Identification Number	Expiration Date
exas	N	IELAP	T104704400-22-25	06-30-23
The following analytes	are included in this report, b	out the laboratory is not certil	ied by the governing authority. This list ma	ay include analytes for v
the agency does not o		Matrix	Analyte	
the agency does not o Analysis Method 8015 NM	ffer certification. Prep Method	Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Released to Imaging: 1/24/2023 11:46:02 AM

Page 41 of 81

10

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H

Job ID: 890-3623-1 SDG: Lea County NM

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
00.0	Anions, Ion Chromatography	MCAWW	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
)I Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: Ensolum Project/Site: BROADCASTER 29 FEDERAL 003H Job ID: 890-3623-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-3623-1	SS10	Solid	12/09/22 11:45	12/12/22 12:41		4
						5
						8
						9
						12
						13

Project Manager: Kalei Je Company Name: Ensolur Address: 601 N N	n, LL	Environment Testing Xenco Js C		Houst Midland, EL Pas Hobbs Bill to: (if different)	C and, TX (4 Paso, TX (5 bbs, NM (ent) me:	U C C X	TX (281) 240-4200, Dallas, TX (214) 90 ((432) 704-5440, San Antonio, TX (210) TX (915) 585-3443, Lubbock, TX (806) 7 TX (915) 392-7550, Carlsbad, NM (575) 5 Kalei Jennings Ensolum, LLC 601 N Marienfeld St Suite 400	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 different) Kalei Jennings v Name: Ensolum, LLC 601 N Marienfeld St Suite 400
	N Marienfeld St	Suite 400		Company Na Address:	me:	Ensolum, 601 N Mai	rier L	Infeld St 1
3	Midland, TX 79701			City, State ZIP:	. <u></u>	Midland, TX 79701	17	(79701
Phone: 8	817.683.2503		Email:	Email: kjennings@ensolum.com; jadams@ensolum.com	ensolum	com; jac	IL.	dams@ens
Project Name:	Broadcaster 29 Federal 003H	deral 003H	C Routine	Turn Around	Pres.	_		
Project Location:	Lea County, NM	NM	Due Date:					
Sampler's Name:	Conner Shore	lore	TAT starts th	TAT starts the day received by	y y			
PO#			the lab, if rec	the lab, if received by 4:30pm	1-			-
SAMPLE RECEIPT	T Terma Blank:	(Yes) No	Wet Ice:	Kes No	nete).0)		
Samples Received Intact:		Thermometer ID:	er ID: / (UN100	arar	: 300		
Cooler Custody Seals:	Yes No (N/A	Correction Factor:	actor:	-0.0	P	EPA		
Sample Custody Seals:	Yes	Temperature Reading:	e Reading:	5	1			
Total Containers:	-	Corrected 1	Corrected Temperature:	1.6	1	-		1
Sample Identification	fication Matrix		Time Sampled	Depth Grab/ Comp	b/ # of np Cont	CHLOR	D15)	
SS10	S	12.9.22	1145	0.5' G	-	×		
							🖌 TPH (8015)	× TPH (8015) × BTEX (8021
			100	1			TPH (8015)	
	1	6	1				× TPH (8015)	
							TPH (8015)	
					-		× TPH (8015)	
Total 200.7 / 6010	0 200.8 / 6020:		8RCRA 13F	13PPM Texas 11			× TPH (8015)	
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples constitutes a valid purchase order from client company to Eurofins Xenco. Its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples constitutes a valid purchase or expenses incurred by the client if such losses are due to circumstances beyond the contro of service. Eurofins Xenco hut not analyzed. These terms will be enforced unless previously negotiated of services in the control of the contr	cument and relinquishm		TCLP / S	PLP 6010:	11 AI	S S A	- Ψ (8015)	A 6 X TPH (8015) B B X BTEX (8021 C C C C
Relinquished by: (Signature)	num charge of \$85.00 will	lyzed nt of samples co cost of samples a be applied to eac	TCLP / S not shall not ass	PLP 6010: 1 purchase order f ume any response ume of \$5 for e	11 AI S BRCRA BRCRA ibility for a ach sample	Sb As Sb As		a) If received by a solution of the component of the compone
(morin)	Relinguished by: (Signature) Received by: (Sig	Int of samples co cost of samples co be applied to eac Receive	TCLP / SPLP amples constitutes a valid purcha samples and shall not assume ar lied to each project and a charge lied to each project and a cha	PLP 6010: 1 purchase order f ume any respons harge of \$5 for e harge of \$5 for e	11 AI S BRCRA or client c sibility for a ach sample	Sb As Ba Sb As Ba Sb As Ba Sb As Ba submitted to Eur	当11世9 2000 - WILL I I I I I I I I I I I I I I I I I	mo Ba Ba X TPH (8015) Ba Be X Ba Be Ba Be X BTEX (8021 X X Finite Fi

Received by OCD: 12/28/2022 2:59:34 PM

12/27/2022

Page 44 of 81

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3623 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3623-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Job Number: 890-3623-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 12/13/22 11:24 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3623 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Received by OCD: 12/28/2022 2:59:34 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 12/27/2022 8:38:27 AM

JOB DESCRIPTION

Broadcaster 29 Federal 003H SDG NUMBER Lea County NM

JOB NUMBER

890-3626-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Received by OCD: 12/28/2022 2:59:34 PM

1

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 12/27/2022 8:38:27 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 49 of 81

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

MCL

MDA

MDC

MDL

ML

MPN

MQL

NC ND

NEG

POS

PQL

PRES QC

RER

RL RPD

TEF

TEQ

TNTC

	Definitions/Glossary		
Client: Ensolur		Job ID: 890-3626-1	
Project/Site: B	roadcaster 29 Federal 003H	SDG: Lea County NM	
Qualifiers			
GC VOA Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		

Eurofins Carlsbad

Released to Imaging: 1/24/2023 11:46:02 AM

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H Job ID: 890-3626-1 SDG: Lea County NM

Job ID: 890-3626-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3626-1

Receipt

The sample was received on 12/12/2022 12:41 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.0°C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SS08 (890-3626-1).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The method blank for preparation batch 880-41841 and analytical batch 880-42076 contained Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3626-1 SDG: Lea County NM

Matrix: Solid

5

Lab Sample ID: 890-3626-1

Client Sample ID: SS08

Date Collected: 12/09/22 11:35 Date Received: 12/12/22 12:41

Sample Depth: 0.5'

Client: Ensolum

_		
- N/L -	sthad	SW846 8021B - Volatile Organic Compounds (GC)
IVIE		SWOAD OUZ ID - VOIAINE UTOAINC COMOODINOS (GC)
	June al	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		12/22/22 09:22	12/23/22 15:06	1
Toluene	<0.00198	U	0.00198	mg/Kg		12/22/22 09:22	12/23/22 15:06	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		12/22/22 09:22	12/23/22 15:06	1
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		12/22/22 09:22	12/23/22 15:06	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		12/22/22 09:22	12/23/22 15:06	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		12/22/22 09:22	12/23/22 15:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130			12/22/22 09:22	12/23/22 15:06	1
1,4-Difluorobenzene (Surr)	91		70 - 130			12/22/22 09:22	12/23/22 15:06	1
- Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00397	U	0.00397	mg/Kg		·	12/24/22 08:27	1
Method: SW846 8015 NM - Diese Analyte	I Range Organ Result	<mark>ics (DRO) (</mark> Qualifier	GC) RL	<u>Unit</u>	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte	I Range Organ Result	<mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared		
Method: SW846 8015 NM - Diese Analyte Total TPH	l Range Organ	<mark>ics (DRO) (</mark> Qualifier	GC)		<u>D</u>	Prepared	Analyzed 12/19/22 15:08	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	I Range Organ 	<mark>ics (DRO) (</mark> ∩ Qualifier ∪	GC) 	Unit	<u>D</u>	Prepared		
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	I Range Organ 	ics (DRO) (Qualifier U nics (DRO) Qualifier	GC)	Unit	D	Prepared		
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	I Range Organ - Result <50.0 sel Range Orga	ics (DRO) (Qualifier U nics (DRO) Qualifier	GC) <u>RL</u> 50.0 (GC)	Unit mg/Kg			12/19/22 15:08	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	I Range Organ Result <pre></pre> <pre></pre> <pre></pre> <pre>Result</pre> <pre></pre> <	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0	Unit mg/Kg Unit mg/Kg		Prepared 12/14/22 14:38	12/19/22 15:08 Analyzed 12/17/22 23:59	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	I Range Organ 	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC)	Unit mg/Kg Unit		Prepared	12/19/22 15:08 Analyzed	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	I Range Organ Result <pre></pre> <pre></pre> <pre></pre> <pre>Result</pre> <pre></pre> <	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 50.0 (GC) RL 50.0	Unit mg/Kg Unit mg/Kg		Prepared 12/14/22 14:38	12/19/22 15:08 Analyzed 12/17/22 23:59	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	I Range Organ Result control contro	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U	GC) <u>RL</u> 50.0 (GC) <u>RL</u> 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:38 12/14/22 14:38	Analyzed 12/17/22 23:59 12/17/22 23:59	1 Dil Fac 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	I Range Organ Result c50.0 cel Range Orga cel Range Orga cel Range Orga cel Range Orga c50.0 c50.0	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:38 12/14/22 14:38 12/14/22 14:38	Analyzed 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59	1 Dil Fac 1 1
Method: SW846 8015 NM - Diese Analyte	I Range Organ 	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 Limits	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:38 12/14/22 14:38 12/14/22 14:38 Prepared	12/19/22 15:08 Analyzed 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59	1 Dil Fac 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	I Range Organ Result <pre></pre> <pre></pre> <pre>Result</pre> <pre></pre> <pre></pre> <pre>Result</pre> <pre></pre> <pre><!--</td--><td>ics (DRO) ((Qualifier U nics (DRO) Qualifier U U Qualifier</td><td>GC) RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130</td><td>Unit mg/Kg Unit mg/Kg mg/Kg</td><td></td><td>Prepared 12/14/22 14:38 12/14/22 14:38 12/14/22 14:38 Prepared 12/14/22 14:38</td><td>Analyzed 12/17/22 15:08 Analyzed 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59 Analyzed 12/17/22 23:59</td><td>1 Dil Fac 1 1</td></pre>	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U Qualifier	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:38 12/14/22 14:38 12/14/22 14:38 Prepared 12/14/22 14:38	Analyzed 12/17/22 15:08 Analyzed 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59 Analyzed 12/17/22 23:59	1 Dil Fac 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	I Range Organ Result <pre></pre>	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U Qualifier	GC) RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/14/22 14:38 12/14/22 14:38 12/14/22 14:38 Prepared 12/14/22 14:38	Analyzed 12/17/22 15:08 Analyzed 12/17/22 23:59 12/17/22 23:59 12/17/22 23:59 Analyzed 12/17/22 23:59	1 Dil Fac 1 1

Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3626-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

Client: Ensolum

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
890-3625-A-1-C MS	Matrix Spike	95	93		
890-3625-A-1-D MSD	Matrix Spike Duplicate	98	95		6
890-3626-1	SS08	133 S1+	91		
LCS 880-42483/1-A	Lab Control Sample	99	95		
LCSD 880-42483/2-A	Lab Control Sample Dup	94	95		
MB 880-42420/5-A	Method Blank	97	90		8
MB 880-42483/5-A	Method Blank	101	86		
Surrogate Legend					9
BFB = 4-Bromofluorobe	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
)-3626-1	SS08	106	104	
-3626-1 MS	SS08	104	88	
3626-1 MSD	SS08	108	89	
0-41841/2-A	Lab Control Sample	112	124	
D 880-41841/3-A	Lab Control Sample Dup	120	116	
380-41841/1-A	Method Blank	115	121	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

DG: Lea County NM

Prep Type: Total/NA

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Method: 8021B - Volatile Organic Compounds (GC)

 Lab Sample ID: MB 880-42420/5-A										Client Sa	mple ID: Me		
Matrix: Solid											Prep Ty	be: To	otal/NA
Analysis Batch: 42466											Prep B	atch	42420
		ΜВ	MB										
Analyte		sult		RI		Uni	t	D	P	repared	Analyzed		Dil Fac
Benzene	<0.00	200	U	0.00200)	mg/	Кg		12/2	21/22 12:40	12/22/22 22:	51	1
Toluene	<0.00	200	U	0.00200)	mg/	ΊKg		12/2	21/22 12:40	12/22/22 22:	51	1
Ethylbenzene	<0.00	200	U	0.00200)	mg/	Κg		12/2	21/22 12:40	12/22/22 22:	51	1
m-Xylene & p-Xylene	<0.00	400	U	0.00400)	mg/	Кg		12/2	21/22 12:40	12/22/22 22:	51	1
o-Xylene	<0.00	200	U	0.00200)	mg/	ΊKg		12/2	21/22 12:40	12/22/22 22:	51	1
Xylenes, Total	<0.00	400	U	0.00400)	mg/	Кg		12/2	21/22 12:40	12/22/22 22:	51	1
-		MВ							_				
Surrogate	%Recov		Qualifier	Limits	-					repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)		97		70 - 130						21/22 12:40	12/22/22 22		1
1,4-Difluorobenzene (Surr)		90		70 - 130					12/2	21/22 12:40	12/22/22 22	51	1
Lab Sample ID: MB 880-42483/5-A										Client Sa	imple ID: Me		
Matrix: Solid											Ргер Тур		
Analysis Batch: 42466											Prep B	atch	42483
		ΜВ	MB										
Analyte		sult	-	RI		Uni	t	D		repared	Analyzed		Dil Fac
Benzene	<0.00	200	U	0.00200)	mg/	Кg		12/2	2/22 09:22	12/23/22 09:	36	1
Toluene	<0.00	200	U	0.00200)	mg/	Кg		12/2	2/22 09:22	12/23/22 09:	36	1
Ethylbenzene	<0.00	200	U	0.00200)	mg/	Κg		12/2	2/22 09:22	12/23/22 09:	36	1
m-Xylene & p-Xylene	<0.00	400	U	0.00400)	mg/	Кg		12/2	2/22 09:22	12/23/22 09:	36	1
o-Xylene	<0.00	200	U	0.00200)	mg/	ΊKg		12/2	2/22 09:22	12/23/22 09:	36	1
Xylenes, Total	<0.00	400	U	0.00400)	mg/	'Kg		12/2	2/22 09:22	12/23/22 09:	36	1
		MВ											
Surrogate	%Recov	-	Qualifier	Limits	-					repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)		101		70 - 130						2/22 09:22	12/23/22 09.		1
1,4-Difluorobenzene (Surr)		86		70 - 130					12/2	2/22 09:22	12/23/22 09.	36	1
Lab Sample ID: LCS 880-42483/1-A								, C	lient	Sample	ID: Lab Con		
Matrix: Solid											Prep Typ		
Analysis Batch: 42466												atch	42483
				Spike	LCS						%Rec		
Analyte				Added		Qualifier	Unit		_ D	%Rec	Limits		
Benzene				0.100	0.1020		mg/Kg			102	70 - 130		
Toluene				0.100	0.09648		mg/Kg			96	70 - 130		
Ethylbenzene				0.100	0.08974		mg/Kg			90	70 - 130		
m-Xylene & p-Xylene				0.200	0.1921		mg/Kg			96	70 - 130		
o-Xylene				0.100	0.09734		mg/Kg			97	70 - 130		
	1.00												
0	LCS			1									
		Qua	lifier	Limits									
4-Bromofluorobenzene (Surr)	99			70 - 130									
1,4-Difluorobenzene (Surr)	95			70 - 130									
- I ab Sample ID: I CSD 880 42482/2	•						0				ah Cantral (la Dum
Lab Sample ID: LCSD 880-42483/2-	~						U	ient	Jan	ipie iD: L	ab Control S		
Matrix: Solid											Prep Typ		
Analysis Batch: 42466												atch	42483
				Spike		LCSD					%Rec		RPD
Analyte				Added		Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Benzene				0 100	0 08380		ma/Ka			8/	70 130	20	35

5

Job ID: 890-3626-1 SDG: Lea County NM

> 30 20 35 Eurofins Carlsbad

Benzene

0.08380

mg/Kg

84

70 - 130

0.100

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H Job ID: 890-3626-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-4	12483/2-A					Clie	nt Sam	ple ID:	Lab Contro	I Sample	e Dup
Matrix: Solid									Prep 1	Type: Tot	tal/NA
Analysis Batch: 42466									Prep	Batch:	42483
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.07951		mg/Kg		80	70 - 130	19	3
Ethylbenzene			0.100	0.07270		mg/Kg		73	70 - 130	21	3
m-Xylene & p-Xylene			0.200	0.1547		mg/Kg		77	70 - 130	22	3
o-Xylene			0.100	0.07994		mg/Kg		80	70 - 130	20	3
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	<u></u>	Quanner	70 - 130								
1,4-Difluorobenzene (Surr)	95		70 - 130								
.,			10-100								
Lab Sample ID: 890-3625-A	-1-C MS							Client	Sample ID	: Matrix	Spik
Matrix: Solid										Type: Tot	
Analysis Batch: 42466									Prep	Batch:	4248
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00201	U	0.0996	0.08752		mg/Kg		88	70 - 130		
Toluene	<0.00201	U	0.0996	0.08182		mg/Kg		82	70 - 130		
Ethylbenzene	<0.00201	U	0.0996	0.07396		mg/Kg		74	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.199	0.1562		mg/Kg		78	70 - 130		
o-Xylene	<0.00201	U	0.0996	0.07911		mg/Kg		79	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)		quamer	70 - 130								
1,4-Difluorobenzene (Surr)	93		70 - 130								
.,			10 100								
Lab Sample ID: 890-3625-A	-1-D MSD					CI	ient Sa	ample IC	D: Matrix Sp	oike Dup	licat
Matrix: Solid										Type: Tot	
Analysis Batch: 42466										Batch:	
-	Sample	Sample	Spike	MSD	MSD				%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	<0.00201	U	0.100	0.09585		mg/Kg		96	70 - 130	9	3
Toluene	<0.00201	U	0.100	0.08682		mg/Kg		87	70 - 130	6	3
Ethylbenzene	<0.00201	U	0.100	0.07977		mg/Kg		80	70 - 130	8	3
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1658		mg/Kg		83	70 - 130	6	3
o-Xylene	<0.00201	U	0.100	0.08489		mg/Kg		85	70 - 130	7	3
	MSD	MSD									
Surrogate	MSD %Recovery	Qualifier	Limits								
Surrogate 4-Bromofluorobenzene (Surr)	<u>%Recovery</u> 98	Quanner	70 - 130								
	90		10 - 150								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

95

Lab Sample ID: MB 880-41841/1-A Matrix: Solid Analysis Batch: 42076						Client Sa	mple ID: Metho Prep Type: ∃ Prep Batcl	Fotal/NA
	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		12/14/22 14:38	12/17/22 22:54	1
(GRO)-C6-C10								

70 - 130

Eurofins Carlsbad

1,4-Difluorobenzene (Surr)

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

			,,,,,,								
Lab Sample ID: MB 880-41841/1	- A							Client	Sample ID:		
Matrix: Solid									Prep 1	Type: To	otal/NA
Analysis Batch: 42076									Prep	Batch:	41841
		B MB									
Analyte		It Qualifier	RL		Uni		<u>D</u>	Prepared	Analyz		Dil Fac
Diesel Range Organics (Over	<50	.0 U	50.0		mg	/Kg		12/14/22 14:3	8 12/17/22	22:54	1
C10-C28)	~50	.0 U	50.0			ll a		10/11/00 11/0	0 10/17/00	22.54	1
Oll Range Organics (Over C28-C36)	<50	.0 0	50.0		mg	/Ky		12/14/22 14:3	8 12/17/22	22.04	I
	M	IB MB									
Surrogate	%Recove	ry Qualifier	Limits					Prepared	Analyz	zed	Dil Fac
1-Chlorooctane	1:	15	70 - 130				-	12/14/22 14:3	88 12/17/22	22:54	1
o-Terphenyl	12	21	70 - 130					12/14/22 14:3	88 12/17/22	22:54	1
- Lab Sample ID: LCS 880-41841/	2-A						CI	ient Sampl	e ID: Lab Co	ontrol S	Sample
Matrix: Solid										Type: To	
Analysis Batch: 42076										Batch:	
-			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits		
Gasoline Range Organics			1000	1190		mg/Kg		119	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)			1000	1036		mg/Kg		104	70 - 130		
	LCS L	cs									
Surrogate	%Recovery Q	ualifier	Limits								
1-Chlorooctane	112		70 - 130								
o-Terphenyl	124		70 - 130								
Lab Sample ID: LCSD 880-4184	1/3-A					CI	ient	Sample ID:	Lab Contro	ol Samp	le Dup
Matrix: Solid										Type: To	
Analysis Batch: 42076										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10			1000	1158		mg/Kg		116	70 - 130	3	20
Diesel Range Organics (Over			1000	967.1		mg/Kg		97	70 - 130	7	20
C10-C28)						5.5					
	LCSD L	CSD									
Surrogate	%Recovery Q	ualifier	Limits								
1-Chlorooctane	120		70 - 130								
o-Terphenyl	116		70 - 130								
 Lab Sample ID: 890-3626-1 MS									Client Sa	mple ID	: SS08
Matrix: Solid										· Type: To	
Analysis Batch: 42076									Prep	Batch:	41841
	Sample Sa	ample	Spike	MS	MS				%Rec		
Analyte	Result Q	ualifier	Added	Result	Qualifier	Unit		D %Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.0 U		999	817.4		mg/Kg		80	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.0 U		999	960.5		mg/Kg		96	70 - 130		
,	MS M	s									
		-									

	IN S	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	104		70 - 130
o-Terphenyl	88		70 - 130

Eurofins Carlsbad

Page 56 of 81

Job ID: 890-3626-1

SDG: Lea County NM

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H Job ID: 890-3626-1 SDG: Lea County NM

Page 57 of 81

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3626-1 MS Matrix: Solid	U U								Client Sar Prep 1	mple ID: Type: Tot	
Analysis Batch: 42076										Batch:	
Analysis Daten. 42010	Sample	Sample	Spike	MSD	MSD				%Rec	Daten.	RPI
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<50.0		997	906.8	Quanner				70 - 130	10	2
(GRO)-C6-C10	<50.0	0	997	900.8		mg/Kg		09	70 - 150	10	2
Diesel Range Organics (Over	<50.0	U	997	986.4		mg/Kg		99	70 - 130	3	2
C10-C28)	00.0	0							10-100	Ū	-
,											
_	MSD										
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	108		70 - 130								
o-Terphenyl	89		70 - 130								
lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-41755 Matrix: Solid Analysis Batch: 42176		ograpny						Client S	Sample ID: I Prep	Method Type: So	
Analysis Baton. 42110		MB MB									
Analyte	R	esult Qualifier		RL	Unit		D P	repared	Analyz	hav	Dil Fa
Chloride		5.00 U		5.00	mg/Kg			cparca	12/20/22		
	5/2-A						Client	Sample	ID: Lab Co Prep		
Matrix: Solid	5/2- A		Snike	105	105		Client	Sample	Prep	ontrol Sa Type: So	
Matrix: Solid Analysis Batch: 42176	5/2-A		Spike		LCS	Unit		-	Prep %Rec		
Matrix: Solid Analysis Batch: 42176 ^{Analyte}	5/2-A		Added	Result	LCS Qualifier	Unit ma/Ka	Client	%Rec	Prep %Rec Limits		
Matrix: Solid Analysis Batch: 42176 ^{Analyte}	5/2-A 					Unit mg/Kg		-	Prep %Rec		
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-417			Added	Result		mg/Kg	D	% Rec 92	Prep %Rec Limits 90 - 110	Type: So	olub e Dı
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid			Added	Result		mg/Kg	D	% Rec 92	Prep %Rec Limits 90 - 110	Type: So	olub e Du
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid			Added 250	Result 229.8	Qualifier	mg/Kg	D	% Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So	e Du olub
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176			Added 250 Spike	Result 229.8 LCSD	Qualifier	mg/Kg Clie	D	%Rec 92 ple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So J Sample Type: So	e Du olub RF
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte			Added 250 Spike Added	Result 229.8 LCSD Result	Qualifier	mg/Kg Clie Unit	D	%Rec 92 ple ID: %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So ol Sample Type: So 	e Du olub RF Lin
Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte			Added 250 Spike	Result 229.8 LCSD	Qualifier	mg/Kg Clie	D	%Rec 92 ple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So J Sample Type: So	e Du olub RF Lin
Lab Sample ID: LCS 880-41759 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte Chloride	 55/3-A		Added 250 Spike Added	Result 229.8 LCSD Result	Qualifier	mg/Kg Clie Unit	D	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 0	e Du olub RF Lin
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-I	 55/3-A		Added 250 Spike Added	Result 229.8 LCSD Result	Qualifier	mg/Kg Clie Unit	D	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix	e Du olub RF Lin Spik
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid	 55/3-A		Added 250 Spike Added	Result 229.8 LCSD Result	Qualifier	mg/Kg Clie Unit	D	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So ol Sample Type: So <u>RPD</u> 0	e Du olub RF Lin Spik
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-I	55/3-A B MS		Added 250 Spike Added 250	Result 229.8 LCSD Result 230.6	Qualifier LCSD Qualifier	mg/Kg Clie Unit	D	%Rec 92 ple ID: %Rec 92	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix	e Du olub olub RP Lim 2 Spik
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid Analysis Batch: 42176	55/3-A 3 MS Sample	-	Added 250 Spike Added 250 Spike	Result 229.8 LCSD Result 230.6	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	%Rec 92 ple ID: %Rec 92 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix	e Du olub olub RP Lim 2 Spik
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid Analysis Batch: 42176 Analyte	55/3-A 3 MS Sample Result	Sample	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result	Qualifier LCSD Qualifier	mg/Kg Clie Unit mg/Kg Unit	D	%Rec 92 ple ID: %Rec 92 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix	e Du olub RF Lin Spik
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid Analysis Batch: 42176 Analyte	55/3-A 3 MS Sample	-	Added 250 Spike Added 250 Spike	Result 229.8 LCSD Result 230.6	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg	D	%Rec 92 ple ID: %Rec 92 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix	e Du olub RF Lin Spik
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid Analysis Batch: 42176 Analyte Chloride	55/3-A 3 MS Sample Result 143	-	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg Unit mg/Kg	D	%Rec 92 ple ID: 92 92 92 Client %Rec 90	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix Type: So	e Du olub RF Lin Spik olub
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid Analysis Batch: 42176 Analyte Chloride	55/3-A 3 MS Sample Result 143	-	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg Unit mg/Kg	D	%Rec 92 ple ID: 92 92 92 Client %Rec 90	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix Type: So oike Dup	e Du olub RF Lin Spik olub
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-6 Matrix: Solid	55/3-A 3 MS Sample Result 143	-	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg Unit mg/Kg	D	%Rec 92 ple ID: 92 92 92 Client %Rec 90	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix Type: So	e Du olub RF Lin Spik olub
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid Analysis Batch: 42176 Analyte Chloride	55/3-A B MS Sample Result 143 C MSD	Qualifier	Added 250 Spike Added 250 Spike Added 248	Result 229.8 LCSD Result 230.6 MS Result 365.1	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg Unit mg/Kg	D	%Rec 92 ple ID: 92 92 92 Client %Rec 90	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 0: Matrix Sp Prep	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix Type: So oike Dup	e Du olub RF Lin Spik olub
Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: LCSD 880-417 Matrix: Solid Analysis Batch: 42176 Chloride Lab Sample ID: 890-3625-A-6-I Matrix: Solid Analysis Batch: 42176 Analyte Chloride Lab Sample ID: 890-3625-A-6-6 Matrix: Solid	55/3-A 55/3-A B MS Sample Result 143 C MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 229.8 LCSD Result 230.6 MS Result 365.1	Qualifier LCSD Qualifier MS	mg/Kg Clie Unit mg/Kg Unit mg/Kg	D	%Rec 92 ple ID: 92 92 92 Client %Rec 90	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 0 : Matrix Type: So oike Dup	e Du olubi RP Lim 2 Spik olubi

Received by OCD: 12/28/2022 2:59:34 PM

QC Association Summary

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3626-1 SDG: Lea County NM

Page 58 of 81

GC VOA

Prep Batch: 42420

ep Batch: 42420					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-42420/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 42466					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3626-1	SS08	Total/NA	Solid	8021B	42483
MB 880-42420/5-A	Method Blank	Total/NA	Solid	8021B	42420
MB 880-42483/5-A	Method Blank	Total/NA	Solid	8021B	42483
LCS 880-42483/1-A	Lab Control Sample	Total/NA	Solid	8021B	42483
LCSD 880-42483/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	42483
890-3625-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	42483
890-3625-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	42483
rep Batch: 42483					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3626-1	SS08	Total/NA	Solid	5035	
MB 880-42483/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-42483/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-42483/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3625-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
890-3625-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
Analysis Batch: 42580					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

GC Semi VOA

Prep Batch: 41841

Lab Sample ID 890-3626-1	Client Sample ID SS08	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-41841/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-41841/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-41841/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3626-1 MS	SS08	Total/NA	Solid	8015NM Prep	
890-3626-1 MSD	SS08	Total/NA	Solid	8015NM Prep	

Analysis Batch: 42076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3626-1	SS08	Total/NA	Solid	8015B NM	41841
MB 880-41841/1-A	Method Blank	Total/NA	Solid	8015B NM	41841
LCS 880-41841/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	41841
LCSD 880-41841/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	41841
890-3626-1 MS	SS08	Total/NA	Solid	8015B NM	41841
890-3626-1 MSD	SS08	Total/NA	Solid	8015B NM	41841

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3626-1	SS08	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3626-1 SDG: Lea County NM

HPLC/IC

Leach Batch: 41755

ach Batch: 41755					
_ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
390-3626-1	SS08	Soluble	Solid	DI Leach	
MB 880-41755/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-41755/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CSD 880-41755/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-3625-A-6-B MS	Matrix Spike	Soluble	Solid	DI Leach	
390-3625-A-6-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
ab Sample ID		Pren Tyne	Matrix	Method	Pren Batch
ab Sample ID	Client Sample ID SS08	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 41755
-ab Sample ID 390-3626-1	Client Sample ID				
Lab Sample ID 190-3626-1 AB 880-41755/1-A	Client Sample ID SS08	Soluble	Solid	300.0	41755
nalysis Batch: 42176 Lab Sample ID 390-3626-1 MB 880-41755/1-A LCS 880-41755/2-A LCSD 880-41755/3-A	Client Sample ID SS08 Method Blank	Soluble	Solid Solid	300.0 300.0	41755 41755
Lab Sample ID 390-3626-1 MB 880-41755/1-A LCS 880-41755/2-A	Client Sample ID SS08 Method Blank Lab Control Sample	Soluble Soluble Soluble	Solid Solid Solid	300.0 300.0 300.0	41755 41755 41755 41755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3626-1	SS08	Soluble	Solid	300.0	41755
MB 880-41755/1-A	Method Blank	Soluble	Solid	300.0	41755
LCS 880-41755/2-A	Lab Control Sample	Soluble	Solid	300.0	41755
LCSD 880-41755/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	41755
890-3625-A-6-B MS	Matrix Spike	Soluble	Solid	300.0	41755
890-3625-A-6-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	41755

Page 59 of 81

Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3626-1 SDG: Lea County NM

Lab Sample ID: 890-3626-1 Matrix: Solid

Client Sample ID: SS08 Date Collected: 12/09/22 11:35 Date Received: 12/12/22 12:41

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	42483	12/22/22 09:22	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42466	12/23/22 15:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			42580	12/24/22 08:27	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42199	12/19/22 15:08	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	41841	12/14/22 14:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42076	12/17/22 23:59	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	41755	12/13/22 13:06	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42176	12/20/22 13:44	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 1/24/2023 11:46:02 AM

Accreditation/Certification Summary

Page 61 of 81

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: Broadcast	ter 29 Federal 003H			Job ID: 890-3626- SDG: Lea County NI	
Laboratory: Eurof	ins Midland				- 3
Unless otherwise noted, all a	analytes for this laboratory	were covered under each acc	reditation/certification below.		-
Authority		Program	Identification Number	Expiration Date	
Texas		NELAP	T104704400-22-25	06-30-23	5
The following analytes	are included in this report,	but the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for which	5
the agency does not of					
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					13

Eurofins Carlsbad

.

Method Summary

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H

Job ID: 890-3626-1 SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe ASTM = A	rences: STM International		
MCAWW :	= "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, Mar	ch 1983 And Subsequent Revisions.	
SW846 = '	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	tion, November 1986 And Its Updates.	
TAL SOP :	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R			
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Protocol References:

Laboratory References:

Eurofins Carlsbad

Sample Summary

Client: Ensolum Project/Site: Broadcaster 29 Federal 003H Job ID: 890-3626-1 SDG: Lea County NM

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	Depth	
90-3626-1	SS08	Solid	12/09/22 11:35	12/12/22 12:41	0.5'	4
						5
						8
						9
						12
						1:

Circle Method(s) and Metal(s) to be analyzed of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions SAMPLE RECEIPT Phone: Project Manager: Cooler Custody Seals: Samples Received Intact: Sampler's Name: Project Location: Project Number: Project Name: Company Name: City, State ZIP: otal Containers: Address: ample Custody Seals: Relinquished by: (Signature) Total 200.7 / 6010 Sample Identification **SS08** 601 N Marienfeld St Suite 400 Ensolum, LLC 817.683.2503 Kalei Jennings Midland, TX 79701 Broadcaster 29 Federal 003H 200.8 / 6020: Yes Yes No /(Yes) No Temp Blank: / Lea County, NM Conner Shore 03D2024002 No Xenco S Matrix NIA NIA Correction Factor: (Yes Corrected Temperature: Thermometer ID 12.9.22 Sampled emperature Reading: Received by: (Signature) Date No 8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Due Date: Wet Ice: Sampled TAT starts the day received by the lab, if received by 4:30pm Routine TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U 1135 Time Email: **Turn Around** NW 601 kjennings@ensolum.com; jadams@ensolum.com 0.5 Bill to: (if different) Depth City, State ZIP: Address: Company Name: 0. Rush Yes 2 0 No Comp 2 Grab/ EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550. Carlsbad, NM (575) 988-3199 G Cont Code # 0 Parameters 2-12-22 Midland, TX 79701 601 N Marienfeld St Suite 400 Kalei Jennings Date/Time Ensolum, LLC CHLORIDES (EPA: 300.0) × × TPH (8015) **BTEX (8021** × Ľ P Relinquished by: (Signature) ANALYSIS REQUEST 890-3626 Chain of Custody Reporting: Level II 🗍 Level III 🗍 PST/UST 🌐 TRRP 🗍 Program: UST/PST PRP Brownfields RRC Superfund Deliverables: EDD State of Project: Received by: (Signature) www.xenco.com Work Order Comments Ag SiO₂ Na Sr Ti Sn U V Hg: 1631/245.1/7470 /7471 ADaPT NaHSO4: NABIS H₂SO₄: H₂ HCL: HC Cool: Cool None: NO NaOH+Ascorbic Acid: SAPC Na2S2O3: NaSO3 H₃PO₄: HP Zn Acetate+NaOH: Zn Page **Preservative Codes** Sample Comments Incident Number Revised Date: 08/25/2020 Rev. 2020 2 Other: Date/Time HNO3: HN MeOH: Me DI Water: H₂O NaOH: Na Ν 9

Page 64 of 81

eurofins

Environment Testing

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

Work Order No:

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Chain of Custody

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3626 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3626-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Eurofins Carlsbad Released to Imaging: 1/24/2023 11:46:02 AM

Job Number: 890-3626-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 12/13/22 11:24 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3626 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

APPENDIX B

Final C-141

Released to Imaging: 1/24/2023 11:46:02 AM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 68 bf 81

Incident ID	NAPP2132773092
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

D	2
Page	2

Oil Conservation Division

Incident ID	NAPP2132773092
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🗌 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

The source of the release has been stopped.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:Ramona Marcus	Date: <u>11/29/2021</u>

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	63506	
	Action Type:	
	[C-141] Release Corrective Action (C-141)	

CONDITIONS

Created By	Condition	Condition Date
rmarcus	None	11/29/2021

CONDITIONS

Page 70 of 81

Action 63506

Page 3

Oil Conservation Division

	Page 71 of 8
Incident ID	NAPP2132773092
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- \boxtimes Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/28	8/2022 2:59:34 PM State of New Mexico			Page 72 of 81
			Incident ID	NAPP2132773092
Page 4	Oil Conservation Division	1	District RP	
			Facility ID	
			Application ID	
regulations all operators public health or the envir failed to adequately inve- addition, OCD acceptance and/or regulations. Printed Name:Cha Signature: <i>Charles</i>	nformation given above is true and complete to the are required to report and/or file certain release no ronment. The acceptance of a C-141 report by the stigate and remediate contamination that pose a the e of a C-141 report does not relieve the operator of arles Beauvais	otifications and perform co e OCD does not relieve the areat to groundwater, surfa of responsibility for compl	prrective actions for rele e operator of liability sho ace water, human health liance with any other feo ironmental Engineer_ 2	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by: Jo	celyn Harimon	Date:12	2/28/2022	

Page 6

Oil Conservation Division

Incident ID	NAPP2132773092
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: ____Charles Beauvais_____ Title: Senior Environmental Engineer Signature: Charles R. Beauvais 99 Date: 12/28/2022 email: Charles.R.Beauvais@conocophillips.com Telephone: ____575-988-2043_____ **OCD Only** Received by: Jocelyn Harimon Date: 12/28/2022 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Date: _____ Printed Name: Title:

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NAPP2201938653
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137
Contact Name	Kelsy Waggaman	Contact Telephone	(432) 688-9057
Contact email	Kelsy.Waggaman@ConocoPhillips.com	Incident # (assigned by OCD)	NAPP2201938653
Contact mailing address	600 West Illinois Avenue, Midland, Texas 79701		

Location of Release Source

Latitude

32.28158

Longitude -103.49006

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Broadcaster 29 Federal 003H	Site Type	Tank Battery
Date Release Discovered	January 4, 2022	API# (if applicable)	

Unit Letter	Section	Township	Range	County
В	29	23S	34E	Lea

Surface Owner: State Federal Tribal Private (Name: Limestone Basin Prop Ranch, LLC)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 0.2	Volume Recovered (bbls) 0
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The release was caused by a oil to flare event.

No fluid was recovered due to the fire burning off and standing fluid. The release resulted in a flare fire on and off pad.

Received by	OCD: 1/19/2022	10:51:59 AM	of New Mexico

Page 2

Oil Conservation Division

N	V	20):9	1	:1	I	8	2	0	7	/ŧ	7	1	Ί	:Snigpm1 of	7	pəsvəja	284

Incident ID	NAPP2201938653
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? The release involved a fire.					
Yes No						
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? Immediate notice was given by Kelsy Waggaman via e-mail January 5, 2022 at 6:00 pm to BLM_NM_CFO_Spill@blm.gov and ocd.enviro@state.nm.us.						

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name. Brittany N. Esparza	Title: Environmental Technician
Signature:	Date: 1/19/2022
email: Brittany.Esparza@ConocoPhillips.com	Telephone: (432) 221-0398
OCD Only	
Received by: Ramona Marcus	Date: <u>1/19/2022</u>

02									PM
A				L48 Spill Volume	Estimate Form			-	
eceived by OCI	aceived by OCD: 1/19/2022 10:51= 29/14 Mane & Number BROADCASTER 29 FED 3H BATTERY / LEASE #NM092199 / API #30-025-41909							Page 3 of 4	
		Asset Area:					NAPP22019386	553	
	Re	elease Discovery Date & Time: *	1-4-2021 @ 10:28A	M.					
		Release Type: 0	Dil		and the second sec		and the second	and the second second	and a second
	Provide any	known details about the event.	podifications to the	hatton. Some of the modifications inc	http://www.supping.com/suppin	remer the dump caus	this upset condition w	perable. A lew months t	hack we made
				Spill Calculation - Subsu					
	Wast	the release on pad or off-pad?	1		See reference tab	le below			
Has	it rained at least a	half inch in the last 24 hours?			See reference tab	le below			
Convert Irregular shape nto a series of rectangles	Length (ft.)	Width (ft.)	Depth (in.)	Soil Spilled-Fluid Saturation	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)
Rectangle A	80.0	40.0	0.03	15.16%	1.486	0.225			
Rectangle B					0.000	0.000			
Rectangle C					0.000	0.000			
Rectangle D					0.000	0.000			
Rectangle E					0.000	0.000			
Rectangle F					0.000	0.000			
Rectangle G					0.000	0.000			
Rectangle H					0.000	0.000			
Rectangle I					0.000	0.000			
Released to Imag	eing: 1/19/202	2 8:16:48 PM			0.000	0.000			
					Total Volume Release:	0.225			

Received by OCD: 12/28/2022 2:59:34 I

District | 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

WV 20:94:11 E202/42/1 :Suignml of passala #4

CONDITIONS

Action 73462

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	73462
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By		Condition Date
rmarcus	None	1/19/2022

18 fo 41ed Stod maging: 1/19/2022 8:16:48 PM

Page 3

Oil Conservation Division

	Page 78 of 8
Incident ID	NAPP2201938653
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100 (ft bgs)</u>				
Did this release impact groundwater or surface water?					
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No				
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No				
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No				
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No				
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No				
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No				
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No				
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No				
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No				
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No				
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No				

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- \boxtimes Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/2	8/2022 2:59:34 PM State of New Mexico			Page 79 of
			Incident ID	NAPP2201938653
Page 4	Oil Conservation Division	l	District RP	
			Facility ID	
			Application ID	
 public health or the envir failed to adequately inver addition, OCD acceptance and/or regulations. Printed Name:Charles Z Signature: <u>Charles Z</u> 	are required to report and/or file certain release no ronment. The acceptance of a C-141 report by the stigate and remediate contamination that pose a th ce of a C-141 report does not relieve the operator of arles Beauvais	OCD does not relieve th reat to groundwater, surf of responsibility for comp Title: _Senior Env Date:12/28/202	e operator of liability shace water, human health liance with any other fea vironmental Engineer_	ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:J	ocelyn Harimon	Date:12	/28/2022	

Page 6

Incident ID	NAPP2201938653
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: ____Charles Beauvais_____ Title: Senior Environmental Engineer Signature: Charles R. Beauvais 99 Date: 12/28/2022 email: <u>Charles.R.Beauvais@conoc</u>ophillips.com Telephone: ____575-988-2043_____ **OCD Only** Jocelyn Harimon Date: 12/28/2022 Received by: ____ Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Title: Environmental Specialist A

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:		OGRID:
COG OPER	RATING LLC	229137
600 W Illinoi	ois Ave	Action Number:
Midland, TX	X 79701	170747
		Action Type:
		[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved. Please implement 19.15.29.13 NMAC when completing P&A.	1/24/2023

CONDITIONS

Action 170747