Page 6

Oil Conservation Division

Incident ID	NAPP2205561125
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

 A scaled site and sampling diagram as described in 19.15.29.11 NMAC

 Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

 Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

 Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Natalie Gladden Title: Director of Environmental and Regulatory	
Signature: Atalie Gladde Date: 11-4-22	
email: <u>natalie@energystaffingllc.com</u> Telephone: <u>575-390-6397</u>	

OCD Only

Received by: Jocelyn Harimon

Date: 11/07/2022

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approve	ed by: <u>Robert Hamlet</u>	Date: _	1/24/2023
Printed Name:	Robert Hamlet	Title:	Environmental Specialist - Advanced

MONEY GRAHAM CTB CLOSURE REQUEST

API NO. 30-015-46220 LEGALS: UNIT/L H, SECTION 32, TOWNSHIP 26S, RANGE 29E EDDY COUNTY, NM

DATE OF RELEASE: 02/24/2022 INCIDENT NO. NAPP2205561125

October 26, 2022

PREPARED BY:

2724 NW COUNTY ROAD HOBBS, NM 88240 575-393-9048

Released to Imaging: 1/24/2023 1:55:41 PM

October 26, 2022

New Mexico Energy, Minerals & Natural Resources NMOCD District I C/O Mike Bratcher, Robert Hamlet, and Jennifer Nobui 811 S. First Street Artesia, New Mexico 88210

Tap Rock Operating, LLC C/O Christian Combs 523 Park Point Drive Golden, CO 80401

Subject: Closure Request for Tap Rock Operating – Money Graham CTB

API No. 30-015-46220 Incident No. NAPP2205561125 Unit Letter H, Section 32, Township 26S, Range 29E Eddy County, New Mexico

To Whom it May Concern:

Tap Rock Operating has retained Energy Staffing Services (ESS), to conduct a spill and fire assessment, delineation, and remediation for the Money Graham CTB (hereafter referred to as the "Money Graham") for the crude oil release that occurred on February 24, 2022. ESS provided the immediate notification of the release to the New Mexico Oil Conservation Division (NMOCD), District II Office, via email on February 24th at 5:32 p.m. (notification attached). On behalf of Tap Rock Operating, ESS also submitted the initial C141 Release Notification, along with the spill calculator form used to determine the volume of the release (attached) on February 24th. The NMOCD accepted the initial C141 as record on March 1st of 2022 and assigned the NMOCD Incident ID Number of NAPP2205561125 to this release (attached).

This report provides a detailed description of the spill assessment, delineation and remedial activities at the Money Graham and demonstrates that the closure criteria has been established in the 19.15.29.12 *New Mexico Administrative Code (NMAC: New Mexico Oil Conservation Division, 2018)* have been met and all applicable regulations have been followed. This document is intended to serve as the final report to obtain approval from the NMOCD for the closure of the above-mentioned release.

Incident Description

On February 24th around 5:32 p.m. the fluid in the flare scrubber did not dump due to the freezing weather, causing a small incipient fire on the surface of the ground. The fluid sprayed the pad area and no fluid was recovered as it was just a spray only. The fire was immediately put out by crews on location. The sprayed fluid remained on the production pad only.

ESS was notified immediately to conduct a full site assessment of the release. Upon arrival, the spill area was mapped out and initial site photos were obtained. No fluids were available to be recovered as this was only a spray. With using the square footage of the release and volumes recovered, Tap Rocks lost production was entered into the Spill Calculator Worksheet. An approximate 4.36bbls of crude oil/condensate was released with no recovery. The impacted area was measured as 990 sq. ft. of surface. Please see the initial site photos and the impact map attached herein.

Site Characterization

The release at the Money Graham occurred on private owned land and is located at latitude 32.002090 and longitude -104.001657, 22.9 miles southwest of Loving, New Mexico. The legal description for the site is Unit Letter H, Section 32, Township 26S, Range 29 East, in Eddy County, New Mexico. The well was permitted as the Money Graham Federal Com CTB. Please see the site map attached.

The Money Graham consist of oil and gas production equipment, of which the facility has two lined containments both for production tanks and the other being for production vessels, by a nearby oil and exploration wells and on a production well-pad. The elevation is 2,872 ft. This area historically, has been dominated by very shallow side-oats grama, black grama, Metcalfe's muhly, green sprangle-top along with other shrubs, perennial forbs, and grasses. (Please see the attached Rangeland and Vegetation Classification information attached).

The United States Department of Agriculture Natural Resources Conservation Services indicates that the soil type found in the area of the Money Graham consists of 100% RU-Russier-Ector Association, with 0 to 9 percent slopes. (Documentation attached). In the area of the Money Graham the FEMA National Flood Hazard Layer, indicates that there is 0.2% annual chance of a flood hazard in this area. (See map attached).

There is a "medium potential" for Karst Geology to be present near the Money Graham according to the *United States Department of the Interior, Bureau of Land Management*. Please find the Karst Map attached herein.

There is surface water located 4,309 ft. southeast, 5,486 ft. northeast and 6,634 ft east of the Money Graham site. This site is near a continuously flowing watercourse, lakebed and the lakebed are found farther than a ½ mile from the release. No other critical or community features at the Money Graham was found. The ½ mile requirement is found in *Paragraph (4) of Subsection C of 19.15.29.12 NMAC.* (Please find attached Watercourse Map).

The nearest and most recent water well to the site according to the *New Mexico Office of the State Engineer is* C03605 POD1, which is located 2831' from the site and was drilled in 2013. The well was drilled to 45'bgs and no water was located or measured. The next verifiable water well is C04561 POD1, located 6006' from the site and drilled in 2021. This well was drilled to an unknown depth. C04022 POD2m, located 6501' from the site and was drilled in 2017. The well was drilled 250'bgs and water was encountered 145'bgs. Please find the groundwater data and map from the NMOSE wells attached herein. An extended groundwater search was conducted using the *OSE POD Location Mapping System* and it has been determined that, no wells exist withing a $\frac{1}{2}$ a mile radius from the Money Graham. Please find the Ground Water Data attached herein.

Closure Criteria Determination

The Closure Criteria for Soils Impacted by a Release is shown below. No groundwater data was found within a ½ a mile radius from the release point, being on Fee Land, and in a "medium karst potential," the site fell under the <50' to ground water requirement. Please see chart below:

DGW	Constituent	Method	Limit
≤ 50'	Chloride	EPA 300.0 OR SM4500 CLB	600 mg/kg
	TPH (GRO + DRO + MRO)	EPA SW-846 METHOD 8015M	100 mg/kg
	GRO + DRO	EPA SW-846 METHOD 8015M	50 mg/kg
	BTEX	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg
	Benzene	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg

Soil Remediation Action Levels

ESS has provided sufficient data that this release has impacted the soil at the Money Graham and that the protocol is consistent with the remediation/abatement goals and objectives set forth in the *NMOCD Closure Criteria for Soils Impacted by a Release, dated August 14, 2018.*

The guidance document provides direction for Tap Rock's initial response actions, site assessment, sample procedures conducted by ESS Staff. We would like to present to you the following information concerning the delineation process for the release detailed herein.

Soil Sampling Procedures

Soil sampling for laboratory analysis was conducted according to the NMOCD – approved industry standards. Accepted NMOCD soil sampling procedures and laboratory analytical methods are as follows:

- Collect clean samples in airtight glass jars supplied by the laboratory to conduct the analysis
- Each sample jar was labelled with site and sample information
- Samples were kept in and stored in a cool place and packed on ice
- Promptly ship sample to the lab for analysis following the chain of custody procedures

The following lab analysis method was used for each bottom hole and side wall sample submitted to Envirotech Analytical Laboratory:

Volatile Organics by EPA 8021B

• Benzene, Toluene, Ethylbenzene, p.m. Xylene, o-Xylene and Total Xylenes Nonhalogenated Organics by EPA 8015D – GRO • Gasoline Range Organics (C6-C10)

Nonhalogenated Organics by EPA 8015D - DRO/ORO

- Diesel Range Organics (C10-C28)
- Oil Range Organics (C28-C40)
- Anions by EPA 300.0/9056A
 - Chloride

Release Investigation Data Evaluation

On February 24th, ESS staff was dispatched out to the Money Graham, to complete a site assessment of the release and fire incident. Initial photos were obtained and the following information was found:

- The release from the flare had sprayed underneath the portable flare unit and had sprayed north and south of the line running to the flare unit.
- No standing fluid was present.
- No fluid entered the pasture area, road or surface playa, lakes, or other watercourses.
- The impacted area on the surface of the pad measured 990 sq. ft. (impact map attached)
- Crews were onsite to check the flare and to shut in production for repairs.

Please find the initial site photos of the release attached to this report.

On March 9th, ESS crews pressure washed the flare and adjacent lines in the release area. Crews mapped out the sample point placements for the delineation process and obtained surface samples. A total of three vertical sample points and five horizontal sample points were placed and GPS'd. Samples were field assessed and submitted to Envirotech Laboratories for confirmation. Please find the delineation sample data, along with the confirmation lab analysis below and attached to this report.

SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
SP1	SURF	180	н	0.209	ND	1550	1250	2800	153
	1'	180	Н						
	2'	160	н						
	3'	100	ND						
	4'	40	ND	ND	ND	ND	ND	ND	ND
									100
SP2	SURF	40	Н	0.618	ND	10100	3330	13430	ND
	1'	680	Н						

1'	680	Н						
2'	640	Н						
3'	480	ND						
4'	20	ND						

SP3	SURF	>4000	н	ND	ND	7280	2360	9640	14400
	1'	1640	Н						
	2'	1200	Н						
	3'	480	ND						

	4'	80	ND	ND	ND	ND	ND	ND	ND
SW1	SURF	>4000	Н	ND	ND	1060	395	1455	9240
	1'	>4000	H						
	2'	>4000	Н						
	3'	>4000	Н						
	4'	2200	L						
_	5'	560	ND						
	6'	160	ND	ND	ND	ND	ND	ND	176
								_	
SW2	SURF	>4000	Н	ND	ND	992	253	1245	5130
	1'	800	Н						
	2'	1200	Н						
	3'	640	L						
	4'	480	ND						
	5'	240	ND	ND	ND	ND	ND	ND	177
							- U		
SW3	SURF	160	Н	0.456	ND	394	268	662	90.9
	1'	160	Н						
	2'	160	L	0.502	ND	365	225	590	106
	3'	40	ND						
	4'	20	ND	ND	ND	ND	ND	ND	ND
SW4	SURF	>4000	Н	ND	ND	1630	856	2486	11400
	1'	800	L						
	2'	160	ND						
	3'	80	ND	ND	ND	ND	ND	ND	72.2
SW5	SURF	80	L	ND	ND	29.7	ND	29.7	ND
	1'	80	ND						
	2'	20	ND	ND	ND	25.8	ND	25.8	ND

On May 23rd, an Extension email was sent out to the NMOCD to extend the closure date. The extension was approved by the OCD on May 24th. Due to facility work and reconstruction in the area of the flare work was delayed. The temporary flare was moved out and the stabilized flare was installed and lines were laid to the flare.

On June 23rd, an email was sent to the NMOCD for the documented notification that the composite samples would be underway within 48 hours of the email date. ESS began to obtain five-point composites, field evaluated, jarred, and submitted to Envirotech Laboratories for confirmation. Below you will find the final composite lab analysis data from the vertical and horizontal composites. (Please see full sample log, lab analysis and composite map attached.

SP ID	Depth	Titr	PID	L- BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
C1	3'	40	ND	ND	ND	ND	ND	ND	43.1
C2	3'	ND	ND	ND	ND	ND	ND	ND	ND
C3	3'	ND	ND	ND	ND	ND	ND	ND	ND
C4	3'	40	ND	ND	ND	ND	ND	ND	41.5
C5	3'	20	ND	ND	ND	ND	ND	ND	35.7
SWC1		ND	ND	ND	ND	ND	ND	ND	ND
SWC2		ND	ND	ND	ND	25.7	ND	25.7	ND
SWC3		ND	ND	ND	ND	ND	ND	ND	ND
SWC4		120	ND	ND	ND	ND	ND	ND	116

A total of 120.09 cubic yards of contaminated material was hauled to Lealand and 150.5 cubic yards of clean caliche was backhauled from Lealand as well. Please see photos of the remediation and final backfill attached to this report.

Closure Request

On behalf of Tap Rock, ESS requests that this incident (NAPP2205561125), be closed for the release that occurred on the pad area on the Money Graham CTB. Tap Rock and ESS certifies that all the information provided and that is detailed in this report, is true and correct and we have followed all applicable closure requirements for the release that occurred on the Money Graham CTB.

After review of this report if you have any questions or concerns, please do not hesitate to contact the undersigned at (575)-390-6397 or (575) 393-9048. You may also email any issues to <u>natalie@energystaffingllc.com</u>.

Sincerely,

Jatalie Geladden

Director of Environmental and Regulatory Services

Energy Staffing Services, LLC.

2724 NW County Road Hobbs, NM 88240 Office: 575-393-9048 Cell: 575-390-6397 Email: natalie@energystaffingllc.com

Attachments:

Spill Notification Email Initial C141 **Spill Calculator Form** NMOCD C141 Approval Email Site Map **Rangeland and Vegetation Classification FEMA Map** Soil Map Karst Map Watercourse Map Groundwater Data and Groundwater Map **OSE Groundwater Map** Impact Map **Initial Site Photos Delineation Map and GPS Points Delineation Sample Data Extension Request Email OCD Email – Composite Notification** Composite Sample Data and Sample GPS Composite Map Lab Analysis **Remediation and Final Photos** Final C141

Natalie Gladden

From: Sent: To: Cc: Subject:	Natalie Gladden Thursday, February 24, 2022 4:32 PM Hamlet, Robert, EMNRD; Hensley, Chad, EMNRD; ocdonline, emnrd, EN Christian Combs; 'Bill Ramsey'; dakoatah@energystaffingllc.com Tap Rock Resources - Money Graham CTB - Release/Fire Notification	MNRD; Bratcher, Mike, EMNRD
Importance:	High	
Tracking:	Recipient Hamlet, Robert, EMNRD Hensley, Chad, EMNRD ocdonline, emnrd, EMNRD Bratcher, Mike, EMNRD Christian Combs 'Bill Ramsey' dakoatah@energystaffingllc.com Dakoatah Montanez	Read Read: 2/24/2022 4:48 PM

All,

Please find this email as the initial notification that occurred on the Money Graham CTB, the site information is below:

Site: Money Graham CTB API No. 30-015-46220 U/L H, S32, T26S, R29E Eddy County, New Mexico Date of Fire/Release: 2/24/2022

Cause of the release is due to the fluid in the flare scrubber did not dump properly due to the cold weather, causing a small incipient fire on the surface of the ground. The fluid released was a spray only. An estimated 4.36bbls of crude oil was released with no recovery. They fire was put out and only minor damage to the flare occurred. The C141 and spill calculator will be uploaded immediately.

If you have any questions or concerns, please do not hesitate to contact me.

Sincerely,

Natalíe Gladden

Director of Environmental and Regulatory Services Energy Staffing Services, LLC. 2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: natalie@energystaffingllc.com

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party TAP ROCK OPERATING LLC	OGRID 372043	
Contact Name Christian Combs	Contact Telephone (720) 360-4028	
Contact email ccombs@taprk.com	Incident # (assigned by OCD)	
Contact mailing address 523 Park Point Dr. #200	Golden CO, 80401	

Location of Release Source

Latitude 32.002090

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Money Graham CTB	Site Type Production Facility
Date Release Discovered 2/24/2022	API# (if applicable) 30-015-46220

Unit Letter	Section	Township	Range	County
Н	32	268	29E	Eddy

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 4.36	Volume Recovered (bbls) 0
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The fluid in the flare scrubber did not dump due to the cold weather, causing a small incipient fire on surface of ground. The fluid sprayed the pad area and no fluid was recovered as it was a just a spray only.

eceived by OCD: 11/7/202. orm C-141	State of New Mexico	Incident ID	Page 13 of
age 2 Oil Conservation Division		District RP	
502			
		Facility ID	
		Application ID	
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible part Due to fire.	ty consider this a major release?	
Yes 🗌 No			
	otice given to the OCD? By whom? To whom? Whe Mike Bratcher, Chad Hensley, Robert Hamlet	en and by what means (phone, email,	etc)?
	Initial Response	e	
The responsible	party must undertake the following actions immediately unless they	y could create a safety hazard that would resul	t in injury
\square The source of the rele	ease has been stopped.		
The impacted area ha	s been secured to protect human health and the enviro	onment.	
Released materials ha	ave been contained via the use of berms or dikes, abso	orbent pads, or other containment dev	ices.
	ecoverable materials have been removed and managed	•	
		d appropriately.	
If all the actions describe	d above have <u>not</u> been undertaken, explain why:		
D 10 15 00 0 D (4) NM		· · · · · · · · · · · · · · · · · · ·	If use a disting
	AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have		
within a lined containmer	nt area (see 19.15.29.11(A)(5)(a) NMAC), please attac	ch all information needed for closure	evaluation.
regulations all operators are public health or the environm failed to adequately investig	rmation given above is true and complete to the best of my required to report and/or file certain release notifications an nent. The acceptance of a C-141 report by the OCD does n ate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil	nd perform corrective actions for releases not relieve the operator of liability should idwater, surface water, human health or th	which may endanger their operations have e environment. In
Printed Name: <u>Natalie</u>			
Signature:	lie Gradden Date:	2/24/22	
email: <u>natalie@energyst</u>	affingllc.com Telephone: <u>575-390-6</u>	5397	
OCD Only			
Received by:	Date:		

.

Soil Type	Porosity	Length	Width	Depth (083 per inch)	Cubic Feet	Estimated Barrels	Soil Type
Clay	0.15	10	10	0.083	8.3	0.22	Clay
Peat	0.40	10	10	0.083	8.3	0.59	Peat
Glacial Sediments	0.13	10	10	0.083	8.3	0.19	Glacial Sediments
Sandy Clay	0.12	10	10	0.083	8.3	0.18	Sandy Clay
Silt	0.16	10	10	0.083	8.3	0,24	Silt
Loess	0.25	10	10	0.083	8.3	0.37	Loess
Fine Sand	0.16	10	10	0.083	8.3	0.24	Fine Sand
Medium Sand	0.25	10	10	0.083	8.3	0.37	Medium Sand
Coarse Sand	0.26	10	10	0.083	8.3	0.38	Coarse Sand
Gravely Sand	0.26	10	10	0.083	8.3	0.38	Gravely Sand
Fine Gravel	0.26	10	10	0.083	8.3	0.38	Fine Gravel
Medium Gravel	0.20	98.15	15	0.083	122.19675	4.36	Medium Gravel
Coarse Gravel	0.18	10	10	0.083	8.3	0.27	Coarse Gravel
Sandstone	0.25	10	10	0.083	8.3	0.37	Sandstone
Siltstone	0.18	10	10	0.083	8.3	0.27	Siltstone
Shale	0.05	10	10	0.083	8.3	0.07	Shale
Limestone	0.13	10	10	0.083	8.3	0.19	Limestone
Basalt	0.19	10	10	0.083	8.3	0.28	Basalt
Volcanic Tuff	0.20	10	10	0.083	8.3	0.30	Volcanic Tuff
Standing Liquids	Х	10	10	0.083	8.3	1.48	Standing Liquids

1	2	3	4	5	6
0.083	0.166	0.250	0.332	0.415	0.500
					-
7	8	9	10	11	12
0.581	0.664	0.750	0.830	0.913	1.000

NOTE: This is an **estimate** tool designed for quick field estimates of whether a C-141 should be requred (*I.e. a release is estimated to be greater than or less than 5 barrel volumes*)

Choose the one prevailing ground type for estimating spill volumes at a single location.

Note that the depth should be measured in feet and tenths of feet (1 inch = .083)

Cubic Feet = L x W x D Estimated Barrels = ((Cubic Feet x Porosity) / 5.61)

Natalie Gladden

Released to Imaging: 1/24/2023 1:55:41 PM

From:	OCDOnline@state.nm.us
Sent:	Tuesday, March 1, 2022 8:42 AM
То:	Natalie Gladden
Subject:	The Oil Conservation Division (OCD) has approved the application, Application ID: 84147

To whom it may concern (c/o Natalie Gladden for TAP ROCK OPERATING, LLC),

The OCD has approved the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nAPP2205561125,

with the following conditions:

• None

The signed C-141 can be found in the OCD Online: Imaging under the incident ID (n#).

If you have any questions regarding this application, please contact me.

Thank you, Ramona Marcus Program Coordinator I 505-470-3044 Ramona.Marcus@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

Natalie Gladden

From: Sent: To: Cc: Subject:	Bratcher, Mike, EMNRD < mike.bratcher@state.nm.us> Friday, February 25, 2022 10:58 AM Natalie Gladden; Hamlet, Robert, EMNRD; Hensley, Chad, EMNRD; ocdonline, emnrd, EMNRD Christian Combs; 'Bill Ramsey'; Dakoatah Montanez
Subject:	RE: [EXTERNAL] Tap Rock Resources - Money Graham CTB - Release/Fire Notification

Natalie,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to insure the notifications are documented in the project file.

Thank you,

Mike Bratcher

Incident Supervisor
Environmental Bureau
EMNRD - Oil Conservation Division
811S. First St. | Artesia, NM 88210
(575) 626-0857 | mike.bratcher@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Natalie Gladden <natalie@energystaffingllc.com> Sent: Thursday, February 24, 2022 4:32 PM To: Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>; Hensley, Chad, EMNRD <Chad.Hensley@state.nm.us>; ocdonline, emnrd, EMNRD <EMNRD.OCDOnline@state.nm.us>; Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us> Cc: Christian Combs <ccombs@taprk.com>; 'Bill Ramsey' <Bramsey@taprk.com>; Dakoatah Montanez <dakoatah@energystaffingllc.com> Subject: [EXTERNAL] Tap Rock Resources - Money Graham CTB - Release/Fire Notification Importance: High

All,

Д

Released to Imaging: 1/24/2023 1:55:41 PM

Please find this email as the initial notification that occurred on the Money Graham CTB, the site information is below:

Site: Money Graham CTB API No. 30-015-46220 U/L H, S32, T26S, R29E Eddy County, New Mexico Date of Fire/Release: 2/24/2022

Cause of the release is due to the fluid in the flare scrubber did not dump properly due to the cold weather, causing a small incipient fire on the surface of the ground. The fluid released was a spray only. An estimated 4.36bbls of crude oil was released with no recovery. They fire was put out and only minor damage to the flare occurred. The C141 and spill calculator will be uploaded immediately.

If you have any questions or concerns, please do not hesitate to contact me.

Sincerely,

Natalie Gladden Director of Environmental and Regulatory Services Energy Staffing Services, LLC. 2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: natalie@energystaffingllc.com

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 18cof 136

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2205561125
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party TAP ROCK OPERATING LLC	OGRID 372043	
Contact Name Christian Combs	Contact Telephone (720) 360-4028	
Contact email ccombs@taprk.com	Incident # (assigned by OCD)	
Contact mailing address 523 Park Point Dr. #200	Golden CO, 80401	

Location of Release Source

Latitude 32.002090

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Money Graham CTB	Site Type Production Facility
Date Release Discovered 2/24/2022	API# (if applicable) 30-015-46220

Unit Letter	Section	Township	Range	County
Н	32	268	29E	Eddy

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 4.36	Volume Recovered (bbls) 0
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The fluid in the flare scrubber did not dump due to the cold weather, causing a small incipient fire on surface of ground. The fluid sprayed the pad area and no fluid was recovered as it was a just a spray only.

	State of New Mexico	Incident ID	NAPP2205561125
ge 2	Oil Conservation Division	District RP	<u>INAFF2203301123</u>
		Facility ID	
		Application ID	
		Application ID	
Was this a major	If YES, for what reason(s) does the responsible part	ty consider this a major release	?
release as defined by	Due to fire.		
19.15.29.7(A) NMAC?			
🛛 Yes 🗌 No			
	otice given to the OCD? By whom? To whom? Who	en and by what means (phone,	email, etc)?
Email to UCD Unline, M	Mike Bratcher, Chad Hensley, Robert Hamlet		
	Initial Response	е	
	-		11 1
The responsible	party must undertake the following actions immediately unless they	y could create a safety hazard that wou	ld result in injury
\square The source of the rele	ease has been stopped.		
The impacted area ha	as been secured to protect human health and the enviro	onment.	
-	ave been contained via the use of berms or dikes, abso		nt devices
	ave been contained via the use of bernis of dikes, abso	nuent paus, or other containine	in devices.
\square All free liquids and re	ecoverable materials have been removed and managed	d appropriately.	
-	ecoverable materials have been removed and managed d above have <u>not</u> been undertaken, explain why:	d appropriately.	
-		d appropriately.	
If all the actions describe	d above have <u>not</u> been undertaken, explain why:		
If all the actions describe Per 19.15.29.8 B. (4) NM	d above have <u>not</u> been undertaken, explain why: IAC the responsible party may commence remediation	n immediately after discovery of	
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach	d above have <u>not</u> been undertaken, explain why: IAC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have	n immediately after discovery over been successfully completed	d or if the release occurred
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach	d above have <u>not</u> been undertaken, explain why: IAC the responsible party may commence remediation	n immediately after discovery over been successfully completed	d or if the release occurred
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info	d above have <u>not</u> been undertaken, explain why: IAC the responsible party may commence remediation a narrative of actions to date. If remedial efforts hav nt area (see 19.15.29.11(A)(5)(a) NMAC), please attac rmation given above is true and complete to the best of my	n immediately after discovery ve been successfully complete ch all information needed for c knowledge and understand that pu	d or if the release occurred osure evaluation.
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts hav nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications an	n immediately after discovery ve been successfully complete ch all information needed for c knowledge and understand that pu id perform corrective actions for re	d or if the release occurred losure evaluation. rsuant to OCD rules and cleases which may endanger
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environment	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts hav nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications an ment. The acceptance of a C-141 report by the OCD does n	n immediately after discovery ve been successfully complete ch all information needed for c knowledge and understand that pu d perform corrective actions for re ot relieve the operator of liability	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts hav nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications an	n immediately after discovery ve been successfully complete ch all information needed for c knowledge and understand that pu d perform corrective actions for re ot relieve the operator of liability dwater, surface water, human heal	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts hav nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications an ment. The acceptance of a C-141 report by the OCD does n gate and remediate contamination that pose a threat to ground	n immediately after discovery ve been successfully complete ch all information needed for c knowledge and understand that pu d perform corrective actions for re ot relieve the operator of liability dwater, surface water, human heal	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations.	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications an ment. The acceptance of a C-141 report by the OCD does n jate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil	n immediately after discovery over been successfully complete ch all information needed for c knowledge and understand that pund perform corrective actions for re- ot relieve the operator of liability dwater, surface water, human heal ity for compliance with any other	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations.	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts hav nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications an ment. The acceptance of a C-141 report by the OCD does n gate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil <u>Gladden</u> Title: <u>Director of Environmental an</u>	n immediately after discovery over been successfully completed for c ch all information needed for c knowledge and understand that pund perform corrective actions for restor relieve the operator of liability dwater, surface water, human heal ity for compliance with any other d Regulatory	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations.	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications an ment. The acceptance of a C-141 report by the OCD does n jate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil	n immediately after discovery over been successfully completed for c ch all information needed for c knowledge and understand that pund perform corrective actions for restor relieve the operator of liability dwater, surface water, human heal ity for compliance with any other d Regulatory	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: <u>Natalie</u> Signature:	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications and ment. The acceptance of a C-141 report by the OCD does no gate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil <u>Gladden</u> Title: <u>Director of Environmental and</u> <u>Date:</u> Date:	n immediately after discovery of ve been successfully completed ch all information needed for c knowledge and understand that pund perform corrective actions for re- ot relieve the operator of liability dwater, surface water, human heal ity for compliance with any other d Regulatory	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: <u>Natalie</u>	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications and ment. The acceptance of a C-141 report by the OCD does no gate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil <u>Gladden</u> Title: <u>Director of Environmental and</u> <u>Date:</u> Date:	n immediately after discovery of ve been successfully completed ch all information needed for c knowledge and understand that pund perform corrective actions for re- ot relieve the operator of liability dwater, surface water, human heal ity for compliance with any other d Regulatory	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: <u>Natalie</u> Signature:	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications and ment. The acceptance of a C-141 report by the OCD does no gate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil <u>Gladden</u> Title: <u>Director of Environmental and</u> <u>Date:</u> Date:	n immediately after discovery of ve been successfully completed ch all information needed for c knowledge and understand that pund perform corrective actions for re- ot relieve the operator of liability dwater, surface water, human heal ity for compliance with any other d Regulatory	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: <u>Natalie</u> Signature:	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications and ment. The acceptance of a C-141 report by the OCD does no gate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil <u>Gladden</u> Title: <u>Director of Environmental and</u> <u>Date:</u> Date:	n immediately after discovery of ve been successfully completed ch all information needed for c knowledge and understand that pund perform corrective actions for re- ot relieve the operator of liability dwater, surface water, human heal ity for compliance with any other d Regulatory	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: <u>Natalie</u> Signature: <u>Natalie</u> email: <u>natalie@energyst</u>	d above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have nt area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications and ment. The acceptance of a C-141 report by the OCD does no gate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil <u>Gladden</u> Title: <u>Director of Environmental and</u> <u>Date:</u> Date:	n immediately after discovery of ve been successfully completed ch all information needed for c knowledge and understand that pund perform corrective actions for re- ot relieve the operator of liability dwater, surface water, human heal ity for compliance with any other d Regulatory	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In
If all the actions describe Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environn failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: <u>Natalie</u> Signature:	A above have <u>not</u> been undertaken, explain why: AC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have and area (see 19.15.29.11(A)(5)(a) NMAC), please attack rmation given above is true and complete to the best of my required to report and/or file certain release notifications and ment. The acceptance of a C-141 report by the OCD does not pate and remediate contamination that pose a threat to ground f a C-141 report does not relieve the operator of responsibil Gladden Title: Director of Environmental and the acceptance of a C-141 report of Environmental and the acceptance of a C-141 report by the OCD does not relieve the operator of responsibil Gladden Title: Director of Environmental and the acceptance of a C-141 report of Environmental and the acceptance o	n immediately after discovery of ve been successfully completed ch all information needed for c knowledge and understand that pund perform corrective actions for re- ot relieve the operator of liability dwater, surface water, human heal ity for compliance with any other d Regulatory	d or if the release occurred osure evaluation. rsuant to OCD rules and cleases which may endanger should their operations have th or the environment. In

.

Page 20cof	136

Soil Type	Porosity	Length	Width	Depth (083 per inch)	Cubic Feet	Estimated Barrels	Soil Type
Clay	0.15	10	10	0.083	8.3	0.22	Clay
Peat	0.40	10	10	0.083	8.3	0.59	Peat
Glacial Sediments	0.13	10	10	0.083	8.3	0.19	Glacial Sediments
Sandy Clay	0.12	10	10	0.083	8.3	0.18	Sandy Clay
Silt	0.16	10	10	0.083	8.3	0.24	Silt
Loess	0.25	10	10	0.083	8.3	0.37	Loess
Fine Sand	0.16	10	10	0.083	8.3	0.24	Fine Sand
Medium Sand	0.25	10	10	0.083	8.3	0.37	Medium Sand
Coarse Sand	0.26	10	10	0.083	8.3	0.38	Coarse Sand
Gravely Sand	0.26	10	10	0.083	8.3	0.38	Gravely Sand
Fine Gravel	0.26	10	10	0.083	8.3	0.38	Fine Gravel
Medium Gravel	0.20	98.15	15	0.083	122.19675	4.36	Medium Gravel
Coarse Gravel	0.18	10	10	0.083	8.3	0.27	Coarse Gravel
Sandstone	0.25	10	10	0.083	8.3	0.37	Sandstone
Siltstone	0.18	10	10	0.083	8.3	0.27	Siltstone
Shale	0.05	10	10	0.083	8.3	0.07	Shale
Limestone	0.13	10	10	0.083	8.3	0.19	Limestone
Basalt	0.19	10	10	0.083	8.3	0.28	Basalt
Volcanic Tuff	0.20	10	10	0.083	8.3	0.30	Volcanic Tuff
Standing Liquids	Х	10	10	0.083	8.3	1.48	Standing Liquids

1	2	3	4	5	6
0.083	0.166	0.250	0.332	0.415	0.500
				Arest	
7	8	9	10	11	12
0.581	0.664	0.750	0.830	0.913	1.000

NOTE: This is an **estimate** tool designed for quick field estimates of whether a C-141 should be requred (*I.e. a release is estimated to be greater than or less* than 5 barrel volumes)

Choose the one prevailing ground type for estimating spill volumes at a single location.

Note that the depth should be measured in feet and tenths of feet (1 inch = .083)

Cubic Feet = L x W x D Estimated Barrels = ((Cubic Feet x Porosity) / 5.61)

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
TAP ROCK OPERATING, LLC	372043
523 Park Point Drive	Action Number:
Golden, CO 80401	84147
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
rmarcus	None	3/1/2022

Action 84147

Page 21eof 136

Received by OCD: 11/7/2022 1:45:20 PM TAP ROCK OPERATING, LLC

MONEY GRAHAM FEDERAL COM CTB SITE MAP

Legend

Page 22 of 136

MONEY GRAHAM FED COM CTB

1 mi

MONEY GRAHAM FED COM CTB

Google Earth Released to Imaging: 1/24/2023 1:55:41 PM © 2021 Google

1

285

Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition

In areas that have similar climate and topography, differences in the kind and amount of rangeland or forest understory vegetation are closely related to the kind of soil. Effective management is based on the relationship between the soils and vegetation and water.

This table shows, for each soil that supports vegetation, the ecological site, plant association, or habitat type; the total annual production of vegetation in favorable, normal, and unfavorable years; the characteristic vegetation; and the average percentage of each species. An explanation of the column headings in the table follows.

An ecological site, plant association, or habitat type is the product of all the environmental factors responsible for its development. It has characteristic soils that have developed over time throughout the soil development process; a characteristic hydrology, particularly infiltration and runoff that has developed over time; and a characteristic plant community (kind and amount of vegetation). The hydrology of the site is influenced by development of the soil and plant community. The vegetation, soils, and hydrology are all interrelated. Each is influenced by the others and influences the development of the others. The plant community on an ecological site, plant association, or habitat type is typified by an association of species that differs from that of other ecological sites, plant associations, or habitat types in the kind and/or proportion of species or in total production. Descriptions of ecological sites are provided in the Field Office Technical Guide, which is available in local offices of the Natural Resources Conservation Service (NRCS). Descriptions of plant associations or habitat types are available from local U.S. Forest Service offices.

Total dry-weight production is the amount of vegetation that can be expected to grow annually in a well managed area that is supporting the potential natural plant community. It includes all vegetation, whether or not it is palatable to grazing animals. It includes the current year's growth of leaves, twigs, and fruits of woody plants. It does not include the increase in stem diameter of trees and shrubs. It is expressed in pounds per acre of air-dry vegetation for favorable, normal, and unfavorable years. In a favorable year, the amount and distribution of precipitation and the temperatures make growing conditions substantially better than average. In a normal year, growing conditions are about average. In an unfavorable year, growing conditions are well below average, generally because of low available soil moisture. Yields are adjusted to a common percent of air-dry moisture content.

Characteristic vegetation (the grasses, forbs, shrubs, and understory trees that make up most of the potential natural plant community on each soil) is listed by common name. Under *rangeland composition and forest understory*, the expected percentage of the total annual production is given for each species making up the characteristic vegetation. The percentages are by dry weight for rangeland. Percentages for forest understory are by either dry weight or canopy cover. The amount that can be used as forage depends on the kinds of grazing animals and on the grazing season.

Page 24 of 136

Range management requires knowledge of the kinds of soil and of the potential natural plant community. It also requires an evaluation of the present range similarity index and rangeland trend. Range similarity index is determined by comparing the present plant community with the potential natural plant community on a particular rangeland ecological site. The more closely the existing community resembles the potential community, the higher the range similarity index. Rangeland trend is defined as the direction of change in an existing plant community relative to the potential natural plant community. Further information about the range similarity index and rangeland trend is available in the "National Range and Pasture Handbook," which is available in local offices of NRCS or on the Internet.

The objective in range management is to control grazing so that the plants growing on a site are about the same in kind and amount as the potential natural plant community for that site. Such management generally results in the optimum production of vegetation, control of undesirable brush species, conservation of water, and control of erosion. Sometimes, however, an area with a range similarity index somewhat below the potential meets grazing needs, provides wildlife habitat, and protects soil and water resources.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service, National range and pasture handbook.

Report—Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition

	Rangeland and Forest Veg	etation Classi	fication, Produ	ctivity, and Pla	ant Composition–Eddy Area,	New Mexico		
Map unit symbol and soil	Ecological Site, Plant	Total c	Iry-weight pro	duction	Characteristic rangeland	Compositio		
name	Association, or Habitat Type	Favorable year	Normal year	Unfavorable year	or forest understory vegetation	n	Rangeland	Forest understory
		Lb/ac	Lb/ac	Lb/ac		Pct dry wt	Pct dry wt	
RU—Russler-Ector association, 0 to 9 percent slopes								
Russler	Loamy (R070DY153NM)	1,800	_	600	Adonis blazingstar	20		
					black grama	20		
					blue grama	15		
					other shrubs	15		
					obtuse panicgrass	5		
					other perennial forbs	5		
					other perennial grasses	5		
					plains lovegrass	5		
Ector	Very Shallow	850	550	350	sideoats grama	25		
	(R070DY158NM)				other shrubs	23		
					black grama	15		
					blue grama	10		
					Metcalfe's muhly	10		
					other perennial forbs	7		
					green sprangletop	5		
					other perennial grasses	5		

<u>USDA</u>

Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition---Eddy Area, New Mexico

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 17, Sep 12, 2021

Natural Resources Conservation Service

Received by OCD: 11/7/2022 1:45:29,PM National Flood Hazard Layer FIRMette

Legend

Page 27 of 136

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Received by OCD: 11/7/2022 1:45:29 PM

Released to Imaging: 1/24/2023 1:55:41 PM

Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI	
RU	Russler-Ector association, 0 to 9 percent slopes	24.4	100.0%	
Totals for Area of Interest		24.4	100.0%	

Received by OCD: 11/7/2022 1:45:20 PM TAP ROCK OPERATING, LLC

MONEY GRAHAM FEDERAL COM CTB SITE MAP

Legend

Page 31 of 136

MONEY GRAHAM FED COM CTB

MONEY GRAHAM FED COM CTB

Google Earth Released to Imaging: 1/24/2023 1:55:41 PM © 2021 Google

1

285

022.1:45:29 PM COM STLE - 65'DGW

285

Received by OCD: 11/7/2022 1:45:29 PM TAP ROCK OPERATING, LLC

62

MONEY GRAHAM FEDERAL COM CTB KARST MAP

302

Ear

20 mi

MONEY GRAHAM FED COM CTB

Google Earth

Received by OCD: 11/7/2022 1:45:29 PM TAP ROCK OPERATING, LLC

MONEY GRAHAM FEDERAL COM CTB FLOWING WATERCOURSE MAP

Legend

Page 33 of 136

- 5 6,343.19' FROM REDBLUFF CREEK
- MONEY GRAHAM FED COM CTB

State Line Rd

MONEY GRAHAM FED COM CTB

Catfish Rd 726

Google Earth Released to Imaging: 1/24/2023 1:55:41 PM 8 2021 Google

?

New Mexico Office of the State Engineer Wells with Well Log Information

		No wells found.	
UTMNAD83 Radius Search (in meters):			
Easting (X): 594298.8	Northing (Y): 3541102.76	Radius: 1000	
		Radius: 1000	ity o

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/5/21 7:58 AM

WELLS WITH WELL LOG INFORMATION

?

New Mexico Office of the State Engineer Wells with Well Log Information

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right	(R=POI been rep O=orph C=the f closed)	placed, aned,	(quar	ters are 1=1 (quarters a			,	(NAD8	3 UTM in meters)					(in fe	eet)	
POD Number	Code	POD Subbasin	County	Source	qqq 64164		Tws Rng	х	Y	Distance	Start Date	Finish Date	Log File Date		Depth Water Driller	License Number
<u>C 03605 POD1</u>		CUB	ED		4 2 3	27	26S 29E	596990	3541983	2831	01/23/2013	01/23/2013	02/26/2013	45	0 ATKINS, JACKIE D. (LD)	1249
<u>C 02038</u>		С	ED	Shallow	324	26	26S 29E	599204	3541992*	4985	09/01/1982	09/05/1982	09/16/1982	200	CORKY GLENN	421
Record Count: 2 UTMNAD83 Rad	ius Sear	ch (in meter	<u>rs):</u>													
Easting (X):	594298.8			Northing	(Y):	354110	2.76		Radius: 500	00						
*UTM location was deriv	ved from	PLSS - see H	Ielp													

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/5/21 7:59 AM

WELLS WITH WELL LOG INFORMATION

?

New Mexico Office of the State Engineer **Wells with Well Log Information**

(A CLW###### in the POD suffix indicates the POD has been replaced	(R=POD has been replaced, O=orphaned,														
& no longer serves a water right	C=the file is (closed)		(quart	quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest)				(NAD8	3 UTM in meters)	(in feet)					
POD Number	Code	POD Subbasin	Country		qqq		Tws Rng	x	Y	Distance Start Date	Finish Date	Log File	Depth Well	Depth Water Driller	License Number
<u>C 03605 POD1</u>	Code	CUB	ED	Source			26S 29E	596990	3541983	2831 01/23/2013		02/26/2013	45	0 ATKINS, JACKIE D. (LD)	1249
<u>C 02038</u>		С	ED	Shallow	3 2 4	26	268 29E	599204	3541992*	4985 09/01/1982	09/05/1982	09/16/1982	200	CORKY GLENN	421
<u>C 04561 POD1</u>		CUB	ED		4 3 3	24	26S 29E	599924	3543208	6006 07/28/2021	07/28/2021	08/17/2021		ATKINS, JACKIE D.UELENER	1249
<u>C 04022 POD2</u>		CUB	ED	Shallow	2 2 2	27	26S 28E	588106	3543082	6501 05/08/2017	05/12/2017	06/05/2017	250	145 KEITH, RONNY	1184
<u>C 01668</u>		CUB	ED	Shallow	3 3	12	26S 28E	589957	3546554*	6969 03/22/1976	04/02/1976	04/08/1976	250	100	224
<u>02894</u>		С	ED		2 2 3	12	26S 28E	590458	3547061*	7088 03/20/2002	03/24/2002	04/04/2002	240		1348
<u>C 03507 POD1</u>		С	ED	Shallow	1 3 3	05	26S 29E	593064	3548313	7315 08/26/2011	08/26/2011	09/12/2011	140	78 KEY, CLINTON	1058
<u>C 03508 POD1</u>		С	ED	Shallow	1 3 3	05	26S 29E	593063	3548361	7362 08/24/2011	08/24/2011	09/12/2011	140	75 KEY, CLINTON	1058
<u>C 04022 POD1</u>		CUB	ED	Shallow	4 4 2	15	26S 28E	588082	3545647	7700 05/01/2017	05/05/2017	06/05/2017	220	175 KEITH, RONNY	1184
<u>C 02924</u>		С	ED		1 3 2	11	26S 28E	589032	3547451*	8248 08/31/2002	10/04/2002	11/04/2002			1227
<u>C 04473 POD1</u>		CUB	ED		3 4 3	33	25S 29E	595018	3549768	8695 10/12/2020	10/12/2020	10/29/2020	110	JACKIE D ATKINS	1249
C 02160 S-9		CUB	ED	Shallow	3 3 2	02	26S 28E	589020	3548868*	9389		12/19/2002		BEHUNIN,KEITH	1227
Record Count: 12															
UTMNAD83 Rad	ius Searc	<u>:h (in mete</u>	<u>rs):</u>												
Easting (X): 594298.8 N				Northing (Y): 3541102.76					Radius: 10000						
*UTM location was deriv	ed from	PLSS - see H	Ielp												
The data is furnished by the	ne NMOS	E/ISC and is	accepted I	by the reci	pient wit	h the e	expressed und	erstanding th	at the OSE/ISC m	ake no warranties, expre	ssed or implied	, concerning th	ne accuracy	, completeness, reliability, usability, or	suitability for

12/5/21 8:00 AM

WELLS WITH WELL LOG INFORMATION
(quarters are 1=NW 2=NE 3=SW 4=SE)											
			(quar	ters are s	malles	t to larg	(NAD83 UTM in meters)				
Well Tag PC		OD Number	Q64 Q16 Q4 S		Sec	c Tws Rng		Х		Υ	
C		03605 POD1	4	2 3	27	26S	29E	596990	3541983	9	
Driller License: 1249		1249	Driller Co	ompany	: A1	KINS	ENGIN		ASSOC. IN	C.	
Driller Name:		ATKINS, JACKI	E D. (LD)								
Drill Start Date:		01/23/2013	Drill Finish Date: 01/23/20			23/2013	Plug Date: 01/28/201		01/28/2013		
Log File Date:		02/26/2013	PCW Rcv Date:				Source:				
Pump Type:			Pipe Discharge Size:			Estimated Yield:		d:			
Casing Size:	Casing Size:		Depth Well: 45 feet			eet	Depth Water: 0 feet		0 feet		

		(quarters are 1=						
		(quarters are s	mallest to largest)	(NAD83 UTM in meters)				
Nell Tag	POD Number	Q64 Q16 Q4	Sec Tws Rng	X Y				
	C 02038	3 2 4	26 26S 29E	599204 3541992*	9			
Driller Licen	se: 421	Driller Company	: GLENN'S WATE	R WELL SERVICE				
Driller Name	: CORKY GL	ENN						
Drill Start Date:09/01/1982Drill Finish Date:09/05/1982Plug Date:								
Log File Date	e: 09/16/1982	PCW Rcv Date:		Source: Shallow				
Pump Type:		Pipe Discharge	Size:	Estimated Yiel	d:			
Casing Size:	6.63	Depth Well:	200 feet	Depth Water:				

*UTM location was derived from PLSS - see Help

			(quarters are 1=NW 2=NE 3=S) (quarters are smallest to larges	est) (NAD83 UTM in meters)
Well Tag POD N		OD Number	Q64 Q16 Q4 Sec Tws F	Rng X Y
NA C 0456		04561 POD1	4 3 3 24 26S 2	29E 599924 3543208 🌍
Driller License:		1249	Driller Company: ATKINS E	ENGINEERING ASSOC. INC.
Driller Name: A		ATKINS, JACKIE	D.UELENER	
Drill Start Date:		07/28/2021	Drill Finish Date: 07/28	8/2021 Plug Date: 08/12/2021
Log File Date: 0		08/17/2021	PCW Rcv Date:	Source:
Pump Type:			Pipe Discharge Size:	Estimated Yield:
Casing Size:			Depth Well:	Depth Water:

		(quarters are 1=	=NW 2=NE 3	=SW 4=SE)				
		(quarters are s	mallest to la	rgest)	(NAD83 UTM in meters)			
Well Tag POD Number		Q64 Q16 Q4	Sec Tw	s Rng	X Y			
	C 04022 POD2	2 2 2	27 268	6 28E	588106 3543082	9		
Driller Licens	se: 1184	Driller Company	: WEST	TEXAS W	ATER WELL SERV	/ICE		
Driller Name: KEITH, RONNY		Y						
Drill Start Date: 05/08/2017		Drill Finish Date	: 05	Plug Date:	Plug Date:			
Log File Date	e: 06/05/2017	PCW Rcv Date:		Source:	Shallow			
Pump Type:		Pipe Discharge	Size:	Estimated Yield: 60 GPM				
Casing Size: 12.25		Depth Well:	25	0 feet	Depth Water:	145 feet		
W	ater Bearing Strat	fications: Top	Bottom	Descript	ion			
		150	160	Sandstone/Gravel/Conglomerate				
		160	180	30 Sandstone/Gravel/Conglomerate				
		180	190	Sandston	e/Gravel/Conglome	erate		
	Casing Pe	forations: Top	Bottom					
		130	250					

Received by OCD: 11/7/2022 1:45:29 PM TAP ROCK RESOURCES

MONEY GRAHAM CTB GROUND WATER MAP

Legend

- C02038 4985' FROM SITE NO GW DATA
- C03605 POD1 2831' FROM SITE NO GW DATA
- C04022 POD2 -6501" FROM SITE 145' DGW
- C04561 POD1 6006' FROM SITE NO GW DATA
- MONEY GRAHAM CTB

C04022 POD2 -6501" FROM SITE - 145" DGW

CO4561 PODI - 6006' FROM SITE - NO GW DATA

NEW MEXICO

CO3605 POD1 - 2831' FROM SITE - NO GW DATA CO2056 - 4966' FROM SITE - NO GW DATA MONEY GRAHAM CTB

R360 Red Bluff

453

726

OSE POD Location Map

12/5/2021, 8:18:59 AM

OSE District Boundary

New Mexico State Trust Lands

Both Estates

Surface Estate

Subsurface Estate

Esri, HERE, Garmin, Esri, HERE, U.S. Department of Energy Office of Legacy Management, Maxar

•

Received by OCD: 11/7/2022 1.45.29 PM TAP ROCK

MONEY GRAHAM CTB IMPACT MAP Legend

Page 43 of 136

TAPROCK MONEY GRAHAM - 990 sq. ft.

Released to Imaging: 1/24/2023 1:55:41 PM

 \mathbb{N}

INITIAL SITE PHOTOS

SW1

SW5

SW2

9SP2

SR3

SW4

SW3

SP1

DELINEATION SAMPLE MAP

Legend

Page 52 of 136

- HORIZONTAL SAMPLE PTS
- TAPROCK MONEY GRAHAM
 VERTICAL SAMPLE PTS

 \mathbb{N}

Company	Name:	ТАР	ROCK		Location	Name:	MONEY	GRAHAM	СТВ	Release Date:	2/24/2022
DELINEAT	ION SAMP	LE DATA									
SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL	Soil	Notes/GPS
SP1	SURF	180	Н	0.209	ND	1550	1250	2800	153		32.002857 -104.001655
	1'	180	Н								
	2'	160	Н								
	3'	100	ND								
	4'	40	ND	ND	ND	ND	ND	ND	ND		
SP2	SURF	40	Н	0.618	ND	10100	3330	13430	ND		32.002800 -104.001543
	1'	680	Н								
	2'	640	Н								
	3'	480	ND								
	4'	20	ND	ND	ND	ND	ND	ND	ND		
SP3	SURF	>4000	Н	ND	ND	7280	2360	9640	14400		32.002726 -104.001529
	1'	1640	Н								
	2'	1200	Н								
	3'	480	ND								
	4'	80	ND	ND	ND	ND	ND	ND	ND		
SW1	SURF	>4000	Н	ND	ND	1060	395	1455	9240		32.002885 -104.001674
	1'	>4000	Н								
	2'	>4000	Н								
	3'	>4000	Н								
	4'	2200	L								
	5'	560	ND								
	6'	160	ND	ND	ND	ND	ND	ND	176		
SW2	SURF	>4000	Н	ND	ND	992	253	1245	5130		32.002814 -104.001520
	1'	800	Н								
	2'	1200	Н								
	3'	640	L								
	4'	480	ND								

SW3 SURF 160 H 0.456 ND 394 268 662 90.9 32.002745 · 104.001498 1' 160 H 0.502 ND 365 225 590 106 2' 160 L 0.502 ND 365 225 590 106 3' 40 ND ND ND ND ND ND ND 4' 20 ND ND ND ND ND ND ND 5W4 SURF >4000 H ND ND ND ND ND ND 3' 800 L 2' 160 ND ND ND ND ND ND 32.002706 · 104.001533 1' 800 ND ND ND ND ND ND 32.002808 · 104.001618 2' 160 ND ND ND 29.7 ND 32.002808 · 104.001618 2' 20 ND		5'	240	ND	ND	ND	ND	ND	ND	177	
1' 160 H Image: constraint of the state of the			240							<u> </u>	
1' 160 H Image: constraint of the state of the	SW/3	SURE	160	н	0.456	ND	394	268	662	90.9	32 002745 -104 001498
2' 160 L 0.502 ND 365 225 590 106 Image: constraint of the stress of the s	5005				0.450	ND	354	200	002	50.5	52.002745 104.001450
3' 40 ND ND <th< td=""><td></td><td></td><td></td><td></td><td>0.502</td><td>ND</td><td>365</td><td>225</td><td>590</td><td>106</td><td></td></th<>					0.502	ND	365	225	590	106	
4' 20 ND ND<								_			
1' 800 L 2' 160 ND					ND	ND	ND	ND	ND	ND	
1' 800 L 2' 160 ND		•		<u>.</u>			•	•	•	•	
2' 160 ND Image: ND Image: ND ND ND ND ND ND ND ND ND T <t< td=""><td>SW4</td><td>SURF</td><td>>4000</td><td>Н</td><td>ND</td><td>ND</td><td>1630</td><td>856</td><td>2486</td><td>11400</td><td>32.002706 -104.001533</td></t<>	SW4	SURF	>4000	Н	ND	ND	1630	856	2486	11400	32.002706 -104.001533
3' 80 ND ND ND ND ND 72.2 SW5 SURF 80 L ND ND 29.7 ND 72.2 32.002808 -104.001618 1' 80 ND I Image: ND Image: ND Image: ND 1mm 32.002808 -104.001618		1'	800	L							
SW5 SURF 80 L ND 29.7 ND 29.7 ND 32.002808 -104.001618 1' 80 ND 32.002808 -104.001618				ND							
1' 80 ND		3'	80	ND	ND	ND	ND	ND	ND	72.2	
1' 80 ND				1			I	I	I		
	SW5				ND	ND	29.7	ND	29.7	ND	32.002808 -104.001618
2' 20 ND ND 25.8 ND 25.8 ND											
		2'	20	ND	ND	ND	25.8	ND	25.8	ND	
		1	1	[1		1	1	1	1	
		1	1		1				1	1	

Page 54 of 13

Natalie Gladden

From:	Hamlet, Robert, EMNRD <robert.hamlet@state.nm.us></robert.hamlet@state.nm.us>
Sent:	Tuesday, May 24, 2022 11:42 AM
To:	Natalie Gladden
Cc:	'Bill Ramsey'; Christian Combs; Dakoatah Montanez; Bratcher, Mike, EMNRD; Nobui, Jennifer, EMNRD; Harimon, Jocelyn, EMNRD
Subject:	(Extension Approval) TAP ROCK - MONEY GRAHAM CTB - NAPP2205561125

RE: Incident #NAPP2205561125

Natalie,

Released to Imaging: 1/24/2023 1:55:41 PM

A 30 day extension to June 25th, 2022 is approved. Please include this e-mail correspondence in the remediation and/or closure report.

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau EMNRD - Oil Conservation Division 811 S. First Street | Artesia, NM 88210 575.909.0302 | robert.hamlet@state.nm.us http://www.emnrd.state.nm.us/OCD/

From: Natalie Gladden <natalie@energystaffingllc.com>
Sent: Monday, May 23, 2022 10:03 AM
To: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>; Nobui, Jennifer, EMNRD <Jennifer.Nobui@state.nm.us>; ocdonline, emnrd, EMNRD <EMNRD.OCDOnline@state.nm.us>
Cc: 'Bill Ramsey' <bramsey@taprk.com>; Christian Combs <ccombs@taprk.com>; Dakoatah Montanez <dakoatah@energystaffingllc.com>
Subject: [EXTERNAL] TAP ROCK - MONEY GRAHAM CTB - REMEDIATION EXTENSION
Importance: High

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Please use this email as a request to extend the deadline for the initial release notification. Crews have delineated the site; remediation will begin in the next upcoming week.

Spill Information:

Money Graham CTB API # 30-015-46220 Legals: U/L H, S32, T26S, R29E Incident No. NAPP2205561125 Release Date: 02/24/22

Thank you for your time and consideration in this matter.

Natalie Gladden Director of Environmental and Regulatory Services

Energy Staffing Services, LLC. 2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: <u>natalie@energystaffingllc.com</u>

Natalie Gladden

Released to Imaging: 1/24/2023 1:55:41 PM

From: Sent: To: Cc: Subject:		Montanez; Bratcher, Mike, EMNRD; Nobui, Jennifer, EMNRD; Harimon, Jocelyn, EMNRD NEY GRAHAM CTB - NAPP2205561125 - Composite Sample Notification
Importance:	High	
Tracking:	Recipient	Read
	Hamlet, Robert, EMNRD	
	'Bill Ramsey'	
	Christian Combs	
	Dakoatah Montanez	Read: 6/23/2022 5:24 PM
	Bratcher, Mike, EMNRD	
	Nobui, Jennifer, EMNRD	
	Harimon, Jocelyn, EMNRD	

All,

ESS is just a few days away from finishing this project. We had the below extension to June 25th. We will be taking composites Friday or Monday, please use this as our notification of composite sampling as well.

If you have any questions or concerns, please let me know.

Sincerely

Natalie Gladden

Director of Environmental and Regulatory Services Energy Staffing Services, LLC.

2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397

Office: 575-393-9048 Email: <u>natalie@energystaffingllc.com</u>

From: Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>
Sent: Tuesday, May 24, 2022 11:42 AM
To: Natalie Gladden <natalie@energystaffingllc.com>
Cc: 'Bill Ramsey' <bramsey@taprk.com>; Christian Combs <ccombs@taprk.com>; Dakoatah Montanez <dakoatah@energystaffingllc.com>; Bratcher, Mike,
EMNRD <mike.bratcher@state.nm.us>; Nobui, Jennifer, EMNRD <Jennifer.Nobui@state.nm.us>; Harimon, Jocelyn, EMNRD <Jocelyn.Harimon@state.nm.us>
Subject: (Extension Approval) TAP ROCK - MONEY GRAHAM CTB - NAPP2205561125

RE: Incident #NAPP2205561125

Natalie,

A 30 day extension to June 25th, 2022 is approved. Please include this e-mail correspondence in the remediation and/or closure report.

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau EMNRD - Oil Conservation Division 811 S. First Street | Artesia, NM 88210 575.909.0302 | robert.hamlet@state.nm.us http://www.emnrd.state.nm.us/OCD/

From: Natalie Gladden <<u>natalie@energystaffingllc.com</u>>
Sent: Monday, May 23, 2022 10:03 AM
To: Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>; Hamlet, Robert, EMNRD <<u>Robert.Hamlet@state.nm.us</u>>; Nobui, Jennifer, EMNRD
<<u>Jennifer.Nobui@state.nm.us</u>>; ocdonline, emnrd, EMNRD <<u>EMNRD.OCDOnline@state.nm.us</u>>;

Released to Imaging: 1/24/2023 1:55:41 PM Cc: 'Bill Ramsey'

space data and the set of the s Subject: [EXTERNAL] TAP ROCK - MONEY GRAHAM CTB - REMEDIATION EXTENSION Importance: High

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Please use this email as a request to extend the deadline for the initial release notification. Crews have delineated the site; remediation will begin in the next upcoming week.

Spill Information:

Money Graham CTB API # 30-015-46220 Legals: U/L H, S32, T26S, R29E Incident No. NAPP2205561125 Release Date: 02/24/22

Thank you for your time and consideration in this matter.

Natalie Gladden **Director of Environmental and Regulatory Services Energy Staffing Services, LLC.**

2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 **Office: 575-393-9048** Email: natalie@energystaffingllc.com

ompany		TAPROCK			Location	Name:	MONEY	GRAHAM	СТВ	Release Date:	2/24/2
									L-CHL	Coll	CDC
SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH		Soil	GPS
C1	3'	40	ND	ND	ND	ND	ND	ND	43.1		32.002853 -104.001640
C2	3'	ND	ND	ND	ND	ND	ND	ND	ND		32.002824 -104.001595
C3	3'	ND	ND	ND	ND	ND	ND	ND	ND		32.002803 -104.001548
C4	3'	40	ND	ND	ND	ND	ND	ND	41.5		32.002772 -104.001517
C5	3'	20	ND	ND	ND	ND	ND	ND	35.7		32.002730 -104.001525
SWC1		ND	ND	ND	ND	ND	ND	ND	ND		32.002877 -104.001684
SWC2		ND	ND	ND	ND	25.7	ND	25.7	ND		32.002813 -104.001533
SWC3		ND	ND	ND	ND	ND	ND	ND	ND		32.002706 -104.001534
SWC4		120	ND	ND	ND	ND	ND	ND	116		32.002791 -104.001561
										+	
			 								
										↓	
			ļ								

°C2 C31 SWC4

0

°C5

SWC3

C4

Eswc1-

°C1

COMPOSITE GPS: C1: 32.002853 -104.001640 C2: 32.002824 -104.001595 C3: 32.002803 -104.001548 C4: 32.002772 -104.001517 C5: 32.002730 -104.001525 SWC1: 32.002877 -104.001684 SWC2: 32.002813 -104.001533 SWC3: 32.002706 -104.001534 SWC4: 32.002791 -104.001561

 \mathbb{N}

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name:

Money Graham CTB

Work Order: E203071

Job Number: 20046-0001

Received: 3/11/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 3/14/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 3/14/22

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Money Graham CTB Workorder: E203071 Date Received: 3/11/2022 7:30:00AM

Natalie Gladden,

Page 63 of 136

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 3/11/2022 7:30:00AM, under the Project Name: Money Graham CTB.

The analytical test results summarized in this report with the Project Name: Money Graham CTB apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services

Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SW1 - 6'	5
SW2 - 5'	6
QC Summary Data	7
QC - Volatile Organics by EPA 8021B	7
QC - Nonhalogenated Organics by EPA 8015D - GRO	8
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	9
QC - Anions by EPA 300.0/9056A	10
Definitions and Notes	11
Chain of Custody etc.	12

SW1 - 6'

SW2 - 5'

		Sample Sum	mary		
Tap Rock		Project Name:	Money Graham CTB		Reported:
7 W. Compress Road		Project Number:	20046-0001		Reported:
Artesia NM, 88210		Project Manager:	Natalie Gladden		03/14/22 17:15
Client Sample ID	Lab Sample ID	Matrix	Sampled Re	ceived	Container

Soil

Soil

E203071-01A

E203071-02A

03/10/22

03/10/22

03/11/22

03/11/22

Glass Jar, 4 oz.

Glass Jar, 4 oz.

	5	ampic D	ata			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Mana	ber: 2004	ney Graham CT 46-0001 alie Gladden	ΈB		Reported: 3/14/2022 5:15:27PM
		SW1 - 6'				
		E203071-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	lyst: RKS		Batch: 2211078
Benzene	ND	0.0250	1	03/11/22	03/11/22	
Ethylbenzene	ND	0.0250	1	03/11/22	03/11/22	
Toluene	ND	0.0250	1	03/11/22	03/11/22	
-Xylene	ND	0.0250	1	03/11/22	03/11/22	
o,m-Xylene	ND	0.0500	1	03/11/22	03/11/22	
Total Xylenes	ND	0.0250	1	03/11/22	03/11/22	
urrogate: 4-Bromochlorobenzene-PID		93.5 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: RKS		Batch: 2211078
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/11/22	03/11/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.4 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: JL		Batch: 2211076
Diesel Range Organics (C10-C28)	ND	25.0	1	03/11/22	03/12/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/11/22	03/12/22	
Surrogate: n-Nonane		110 %	50-200	03/11/22	03/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: RAS		Batch: 2211072
Chloride	176	20.0	1	03/11/22	03/11/22	

Sample Data

Sample Data

	3	ample D	ลเล			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Manaş	er: 2004	ney Graham CT 46-0001 alie Gladden	ΓB		Reported: 3/14/2022 5:15:27PM
		SW2 - 5'				
		E203071-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	lyst: RKS		Batch: 2211078
Benzene	ND	0.0250	1	03/11/22	03/11/22	
Ethylbenzene	ND	0.0250	1	03/11/22	03/11/22	
Toluene	ND	0.0250	1	03/11/22	03/11/22	
p-Xylene	ND	0.0250	1	03/11/22	03/11/22	
o,m-Xylene	ND	0.0500	1	03/11/22	03/11/22	
Fotal Xylenes	ND	0.0250	1	03/11/22	03/11/22	
Surrogate: 4-Bromochlorobenzene-PID		93.7 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: RKS		Batch: 2211078
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/11/22	03/11/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.3 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: JL		Batch: 2211076
Diesel Range Organics (C10-C28)	ND	25.0	1	03/11/22	03/12/22	
Oil Range Organics (C28-C36)	ND	50.0	1	03/11/22	03/12/22	
Surrogate: n-Nonane		115 %	50-200	03/11/22	03/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: RAS		Batch: 2211072
Chloride	177	20.0	1	03/11/22	03/11/22	

OC Summary Data

Tap Rock		Project Name:		oney Graham	CTB				Reported:
7 W. Compress Road		Project Number:		20046-0001					
Artesia NM, 88210		Project Manager:	Project Manager: Natalie Gladden					3/14/2022 5:15:27PM	
		Analyst: RKS							
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2211078-BLK1)]	Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
p-Xylene	ND	0.0250							
o,m-Xylene	ND	0.0500							
Fotal Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.61		8.00		95.2	70-130			
LCS (2211078-BS1)						1	Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Benzene	4.27	0.0250	5.00		85.3	70-130			
Ethylbenzene	4.40	0.0250	5.00		87.9	70-130			
Foluene	4.51	0.0250	5.00		90.2	70-130			
p-Xylene	4.52	0.0250	5.00		90.3	70-130			
o,m-Xylene	8.91	0.0500	10.0		89.1	70-130			
Fotal Xylenes	13.4	0.0250	15.0		89.5	70-130			
Surrogate: 4-Bromochlorobenzene-PID	7.77		8.00		97.1	70-130			
LCS Dup (2211078-BSD1)]	Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Benzene	4.27	0.0250	5.00		85.4	70-130	0.0820	20	
Ethylbenzene	4.41	0.0250	5.00		88.3	70-130	0.367	20	
Foluene	4.53	0.0250	5.00		90.5	70-130	0.295	20	
p-Xylene	4.53	0.0250	5.00		90.6	70-130	0.315	20	
o,m-Xylene	8.94	0.0500	10.0		89.4	70-130	0.352	20	
Fotal Xylenes	13.5	0.0250	15.0		89.8	70-130	0.339	20	

QC Summary Data

		QU L	Juiiiii	ary Dat	u				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number Project Manage	: 2	Money Graham 20046-0001 Natalie Gladder					Reported: 3/14/2022 5:15:27PM
	No	nhalogenated	Organics	by EPA 80	15D - G	RO			Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2211078-BLK1)							Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.25		8.00		90.7	70-130			
LCS (2211078-BS2)							Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Gasoline Range Organics (C6-C10)	46.9	20.0	50.0		93.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.97		8.00		99.6	70-130			
LCS Dup (2211078-BSD2)							Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Gasoline Range Organics (C6-C10)	47.8	20.0	50.0		95.6	70-130	1.84	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.09		8.00		101	70-130			

QC Summary Data

		QC D	umm	ii y Data	a				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	20	oney Graham 0046-0001 atalie Gladder					Reported: 3/14/2022 5:15:27PM
	Nonh	alogenated Org	anics by	EPA 8015I) - DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2211076-BLK1)							Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	51.3		50.0		103	50-200			
LCS (2211076-BS1)							Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Diesel Range Organics (C10-C28)	486	25.0	500		97.2	38-132			
Surrogate: n-Nonane	49.0		50.0		98.0	50-200			
LCS Dup (2211076-BSD1)							Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Diesel Range Organics (C10-C28)	482	25.0	500		96.4	38-132	0.808	20	
Surrogate: n-Nonane	49.5		50.0		99.0	50-200			

QC Summary Data

Tap Rock 7 W. Compress Road		Project Name: Project Number:		1oney Graham 0046-0001	CTB				Reported:
Artesia NM, 88210		Project Manager	: N	latalie Gladder	1				3/14/2022 5:15:27PM
		Anions	by EPA	300.0/9056 <i>A</i>	4				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2211072-BLK1)							Prepared: 03	3/10/22	Analyzed: 03/11/22
Chloride	ND	20.0							
LCS (2211072-BS1)							Prepared: 03	3/10/22	Analyzed: 03/11/22
Chloride	252	20.0	250		101	90-110			
LCS Dup (2211072-BSD1)							Prepared: 03	3/10/22	Analyzed: 03/11/22
Chloride	251	20.0	250		100	90-110	0.335	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Tap Rock	Project Name:	Money Graham CTB	
	7 W. Compress Road	Project Number:	20046-0001	Reported:
	Artesia NM, 88210	Project Manager:	Natalie Gladden	03/14/22 17:15

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Releases Information

liont: 7	ap Rock	/			-			Bill To	0	100 C	\$ 323	1.34	12	ah Us	e On	lv	-			TA	T		EPA P	rogran
rojoct:	Money G.	ales C-	TR			Attent	ion: Ess	Din I			Lah	WO#			_	Numb	er	1D	2D	3D	Stand	lard	CWA	SDW
roject. /	anager:	Shan CI	D			Addres	ss: 2724	NCR	A TRACTO	100	F	207	200			40-0		10	X	50	otune		cun	501
ddress:	allaget.					City S	tate, Zip	Hobbs Nn	1 88240	1.00	LC	YU C	501		Analy	sis and	Metho	d	(1	15.0	No.		RCR
ity, State	Zin					Phone		1021111	00000	100	-	1						Ĩ	1		1		-	
- C.W March	e, Zip				in parts		Natalie		CTRACT T		- 5	5			1.0							and a second	State	
hone: mail:						Ellian.	Training			-	801	801			1.0	0					NN	ALCO	UT AZ	TX
eport di	e hv:										0 by	Vd C	802.	3260	010	300		MN	ТX		X		1.5	
Time	Date		No. of							Lab	/OR	/DR	<pre>k p</pre>	by 8	als 6	Chloride 300.0	1.1	В	Х		1			in the second
Sampled	Sampled	Matrix	Containers	Sample ID						Numbe	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chlo	-	BGDOC	BGDOC				Remarks	5
	3-10-22	5	١	Sw1-	6'								8					X						5
	1	}	2	Sw2 -	57					2								X						
-		2	3	2002)					a		-												
												-			-				-					
					1																			
												-						-						
												-	-					-						
		in the second										-	-											
									-										-					
											Ch.	1						194						
dditior	al Instruc						1		/		/	1						-	1					
			and authen	ticity of this sam	nle Lam	aware tha	t tampering y	with or intent	ionally mislabe	lline the sam	ple loca	tion.		_	Sampl	es requiri	ng thermal	preserva	ation m	ust be rea	ceived on ice	e the day t	ney are samp	led or rece
				may be grounds				ampled by:	11	1	1				packe	d in ice at	an avg ten	np above	0 but le	ess than 6	°C on subse	equent day	'S.	
	ed by: (Sign	A Contraction of the second	Date	e .	Time		eceived by:			Date		Time			1	a Merilan	100	L	ab U	se On	ly		18. 10	
	111	1	3	-10-22	1545		X	- 4	Sh	3.10	7.22	- 1	154	5	Rec	eived	on ice:	6	DIN	1				
elinquist	ed by: (Sign	ature)	Date	e	Time	F	Received by:	(Signature)		Date	1	Time	2											
CA	-1	Job	3	·10.22	190		Cart	te C	Inter	3/11	122	17:	30)	T1		312	<u>T2</u>			<u>T3</u>		all series	
telinquist	ed by: (Sigh	ature)	Date	e	Time	F	Received by:	(Signature))	Date		Time			AVO	Tem	p°C_	4						
ample Ma	trix: S - Soil. S	d - Solid. Sg	- Sludge, A -	Aqueous, O - Ot	her			2203		Contai	ner Typ)e:g-	glass	, p - p			ag - am		iss, v	- VOA		A. Ballana		
Note: San	ples are dis	carded 30	days after r	esults are repo	orted unle	ess other	arrangeme	nts are mad	e. Hazardou	s samples v	vill be r	eturne	d to c	lient o	r disp	osed of	at the cl				eport for	the ana	lysis of the	e above
samples is	applicable	only to tho	se samples	received by th	e laborat	ory with	this COC. Th	ne liability o	t the laborato	ry is limite	d to the	amou	nt pai	a tor c	on the						rc	Phaneter Street		

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Tap Rock	Date Received:	03/11/22 07	:30	Work Order ID: E203071
Phone:	(575) 390-6397 E	Date Logged In:	03/10/22 16	:30	Logged In By: Caitlin Christian
Email:		Due Date:	03/14/22 17	7:00 (1 day TAT)	
Chain o	f Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match	n the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: C	Carrier
4. Was th	ne COC complete, i.e., signatures, dates/times, requeste	d analyses?	No	_	
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.		Yes		Comments/Resolution
Sample	<u>Turn Around Time (TAT)</u>				
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		Sampled time not provided on coc.
Sample	<u>Cooler</u>				
7. Was a	sample cooler received?		Yes		
8. If yes	was cooler received in good condition?		Yes		
9. Was th	he sample(s) received intact, i.e., not broken?		Yes		
10. Were	e custody/security seals present?		No		
11. If ye	s, were custody/security seals intact?		NA		
-	he sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are r minutes of sampling		Yes		
13. If no	visible ice, record the temperature. Actual sample te	emperature: 4°	C		
	visione nee, record and temperature.				
Sampla	Containar	<u> </u>	<u>c</u>		
	<u>Container</u> aqueous VOC samples present?				
14. Are	aqueous VOC samples present?		No NA		
14. Are : 15. Are ⁻	aqueous VOC samples present? VOC samples collected in VOA Vials?	<u> </u>	No NA		
14. Are : 15. Are : 16. Is the	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)?		No NA NA		
14. Are a 15. Are ⁷ 16. Is the 17. Was	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses?		No NA NA NA		
 14. Are a 15. Are a 16. Is the 17. Was 18. Are a 	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers?		No NA NA NA Yes		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? a appropriate volume/weight or number of sample container		No NA NA NA		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field L a	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container bel	rs collected?	No NA NA NA Yes		
 14. Are a 15. Are a 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? a appropriate volume/weight or number of sample container	rs collected?	No NA NA NA Yes		
14. Are : 15. Are ² 16. Is the 17. Was 18. Are : 19. Is the Field La	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected?	rs collected?	No NA NA Yes Yes		
14. Are a 15. Are 16. Is the 17. Was 18. Are 19. Is the Field La 20. Were	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name?	rs collected?	No NA NA Yes Yes		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field Ls 20. Were Sample	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation	rs collected? nation:	No NA NA Yes Yes No No		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field Ls 20. Were Sample 21. Does	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container bel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were pres	rs collected? nation:	No NA NA Yes Yes No No		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field La 20. Were Sample 21. Does 22. Are :	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container bel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation 5 the COC or field labels indicate the samples were press sample(s) correctly preserved?	rs collected? nation: served?	No NA NA Yes Yes Yes No No No		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field Lz 20. Were 21. Does 22. Are : 24. Is lal	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation a the COC or field labels indicate the samples were press sample(s) correctly preserved? o filteration required and/or requested for dissolved met	rs collected? nation: served?	No NA NA Yes Yes No No		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field Lz 20. Were 20. Were 21. Does 22. Are : 24. Is lai <u>Multiph</u>	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation 6 the COC or field labels indicate the samples were pres sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix_	rs collected? nation: served? tals?	No NA NA Yes Yes No No No No		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field Lz 20. Were 20. Were 21. Does 22. Are : 24. Is lal Multiph 26. Does	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation 6 the COC or field labels indicate the samples were press sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix 6 the sample have more than one phase, i.e., multiphase	rs collected? nation: served? tals? ?	No NA NA Yes Yes No No No No		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field Lz 20. Were 20. Were 21. Does 22. Are : 24. Is lal Multiph 26. Does	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation 6 the COC or field labels indicate the samples were pres sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix_	rs collected? nation: served? tals? ?	No NA NA Yes Yes No No No No		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field Lz 20. Were 20. Were 21. Does 22. Are : 24. Is lat Multiph 26. Does 27. If ye	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation 6 the COC or field labels indicate the samples were press sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix 6 the sample have more than one phase, i.e., multiphase	rs collected? nation: served? tals? ?	No NA NA Yes Yes No No No No		
14. Are : 15. Are : 16. Is the 17. Was 18. Are : 19. Is the Field Lz 20. Were 20. Were 21. Does 22. Are : 24. Is lal <u>Multiph</u> 26. Does 27. If ye <u>Subcont</u> 28. Are :	aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container bel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation 6 the COC or field labels indicate the samples were prese sample(s) correctly preserved? o filteration required and/or requested for dissolved met ase Sample Matrix 5 the sample have more than one phase, i.e., multiphase s, does the COC specify which phase(s) is to be analyzed	rs collected? nation: served? tals? ? ed? ?	No NA NA Yes Yes No No No No		

Signature of client authorizing changes to the COC or sample disposition.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name:

Money Graham CTB

Work Order: E203076

Job Number: 20046-0001

Received: 3/11/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 3/14/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 3/14/22

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Money Graham CTB Workorder: E203076 Date Received: 3/11/2022 7:30:00AM

Natalie Gladden,

Page 76 of 136

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 3/11/2022 7:30:00AM, under the Project Name: Money Graham CTB.

The analytical test results summarized in this report with the Project Name: Money Graham CTB apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Cell: 505-320-4759

ljarboe@envirotech-inc.com

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services Office: 505-421-LABS(5227)

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com

Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SP1 - Surface	5
SP2 - Surface	6
SP3 - Surface	7
SW1 - Surface	8
SW2 - Surface	9
SW3 - Surface	10
SW4 - Surface	11
SW5 - Surface	12
SW3 - 2'	13
SW4 - 3'	14
SW5 - 2'	15
QC Summary Data	16
QC - Volatile Organic Compounds by EPA 8260B	16
QC - Nonhalogenated Organics by EPA 8015D - GRO	17
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	18
QC - Anions by EPA 300.0/9056A	19
Definitions and Notes	20
Chain of Custody etc.	21

Sample Summarv

		Sample Sum	mar y		
Tap Rock		Project Name:	Money Graham CT	̈́Β	Reported:
7 W. Compress Road		Project Number:	20046-0001		Keporteu.
Artesia NM, 88210		Project Manager:	Natalie Gladden		03/14/22 17:14
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SP1 - Surface	E203076-01A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
P2 - Surface	E203076-02A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
P3 - Surface	E203076-03A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
W1 - Surface	E203076-04A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
W2 - Surface	E203076-05A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
W3 - Surface	E203076-06A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
W4 - Surface	E203076-07A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
W5 - Surface	E203076-08A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
SW3 - 2'	E203076-09A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
W4 - 3'	E203076-10A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.
W5 - 2'	E203076-11A	Soil	03/09/22	03/11/22	Glass Jar, 4 oz.

		impic D				
Tap Rock	Project Name:		ey Graham	СТВ		
7 W. Compress Road	Project Number		46-0001			Reported:
Artesia NM, 88210	Project Manag	ger: Nata	Natalie Gladden			3/14/2022 5:14:02PM
	S	P1 - Surface				
		E203076-01				
		Reporting				
Analyte	Result	Limit	Dilut	ion Prepar	ed Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	Analyst: IY		Batch: 2211079
Benzene	ND	0.0250	1	03/11/	22 03/11/22	
Ethylbenzene	0.0310	0.0250	1	03/11/	22 03/11/22	
Toluene	ND	0.0250	1	03/11/	22 03/11/22	
o-Xylene	0.0595	0.0250	1	03/11/	22 03/11/22	
p,m-Xylene	0.149	0.0500	1	03/11/	22 03/11/22	
Total Xylenes	0.209	0.0250	1	03/11/	22 03/11/22	
Surrogate: Bromofluorobenzene		98.3 %	70-130	03/11/	22 03/11/22	
Surrogate: 1,2-Dichloroethane-d4		104 %	70-130	03/11/	22 03/11/22	
Surrogate: Toluene-d8		101 %	70-130	03/11/	22 03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	I	Analyst: IY		Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/11/	22 03/11/22	
Surrogate: Bromofluorobenzene		98.3 %	70-130	03/11/	22 03/11/22	
Surrogate: 1,2-Dichloroethane-d4		104 %	70-130	03/11/	22 03/11/22	
Surrogate: Toluene-d8		101 %	70-130	03/11/	22 03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	I	Analyst: JL		Batch: 2211076
Diesel Range Organics (C10-C28)	1550	25.0	1	03/11/	22 03/11/22	
Oil Range Organics (C28-C36)	1250	50.0	1	03/11/	22 03/11/22	
Surrogate: n-Nonane		114 %	50-200	03/11/	22 03/11/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	Analyst: RAS		Batch: 2211073
Chloride	153	20.0	1	03/11/	22 03/11/22	

Sample Data

Sample Data

		imple D					
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	ey Graham 16-0001 Ilie Gladder				Reported: 3/14/2022 5:14:02PM
	S	P2 - Surface					
	-	E203076-02					
	D L	Reporting	53		D		
Analyte	Result	Limit	Dilt	ition	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: Γ	Ý		Batch: 2211079
Benzene	ND	0.0250		1	03/11/22	03/11/22	
Ethylbenzene	0.0345	0.0250		1	03/11/22	03/11/22	
Toluene	0.102	0.0250		1	03/11/22	03/11/22	
o-Xylene	0.129	0.0250		1	03/11/22	03/11/22	
o,m-Xylene	0.489	0.0500		1	03/11/22	03/11/22	
Total Xylenes	0.618	0.0250		1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		99.6 %	70-130		03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		99.4 %	70-130		03/11/22	03/11/22	
Surrogate: Toluene-d8		101 %	70-130		03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: Γ	Y		Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0		1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		99.6 %	70-130		03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		99.4 %	70-130		03/11/22	03/11/22	
Surrogate: Toluene-d8		101 %	70-130		03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: J	L		Batch: 2211076
Diesel Range Organics (C10-C28)	10100	250	1	0	03/11/22	03/14/22	
Dil Range Organics (C28-C36)	3330	500	1	0	03/11/22	03/14/22	
Surrogate: n-Nonane		113 %	50-200		03/11/22	03/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: R	AS		Batch: 2211073
Chloride	ND	20.0		1	03/11/22	03/11/22	

Sample Data

		ample D	uua				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	ey Graham 16-0001 Ilie Gladder				Reported: 3/14/2022 5:14:02PM
	S	P3 - Surface					
		E203076-03					
		Reporting					
Analyte	Result	Limit	Dilu	tion Pi	repared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: IY			Batch: 2211079
Benzene	ND	0.0250	1	03	3/11/22	03/11/22	
Ethylbenzene	ND	0.0250	1	03	3/11/22	03/11/22	
Toluene	ND	0.0250	1	03	3/11/22	03/11/22	
p-Xylene	ND	0.0250	1	03	3/11/22	03/11/22	
o,m-Xylene	ND	0.0500	1	03	3/11/22	03/11/22	
Fotal Xylenes	ND	0.0250	1	03	3/11/22	03/11/22	
Surrogate: Bromofluorobenzene		98.2 %	70-130	0.	3/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	0.	3/11/22	03/11/22	
Surrogate: Toluene-d8		103 %	70-130	0.	3/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY			Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0	1	03	3/11/22	03/11/22	
Surrogate: Bromofluorobenzene		98.2 %	70-130	0.	3/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	0.	3/11/22	03/11/22	
Surrogate: Toluene-d8		103 %	70-130	0.	3/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: JL			Batch: 2211076
Diesel Range Organics (C10-C28)	7280	125	5	0	3/11/22	03/14/22	
Dil Range Organics (C28-C36)	2360	250	5	03	3/11/22	03/14/22	
Surrogate: n-Nonane		111 %	50-200	0.	3/11/22	03/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: RAS			Batch: 2211073
Chloride	14400	400	20	0 03	3/11/22	03/11/22	

Sample Data

		ampic D				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	ey Graham (46-0001 Ilie Gladden	СТВ		Reported: 3/14/2022 5:14:02PM
	SV	W1 - Surface	9			
		E203076-04				
Analyte	Result	Reporting Limit	Dilut	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	А	nalyst: IY		Batch: 2211079
Benzene	ND	0.0250	1	03/11/22	03/11/22	
Ethylbenzene	ND	0.0250	1	03/11/22	03/11/22	
Toluene	ND	0.0250	1	03/11/22	03/11/22	
p-Xylene	ND	0.0250	1	03/11/22	03/11/22	
p,m-Xylene	ND	0.0500	1	03/11/22	03/11/22	
Total Xylenes	ND	0.0250	1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		97.9 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		95.0 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		102 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	А	nalyst: IY		Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		97.9 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		95.0 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		102 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	A	nalyst: JL		Batch: 2211076
Diesel Range Organics (C10-C28)	1060	25.0	1	03/11/22	03/14/22	
Oil Range Organics (C28-C36)	395	50.0	1	03/11/22	03/14/22	
Surrogate: n-Nonane		101 %	50-200	03/11/22	03/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	А	analyst: RAS		Batch: 2211073
Chloride	9240	400	20	03/11/22	03/11/22	

Sample Data

		mpic D					
Tap Rock 7 W. Compress Road A serie NM 88210	Project Name: Project Numbe	er: 2004	ey Graham 16-0001				Reported: 3/14/2022 5:14:02PM
Artesia NM, 88210	Project Manag	er: Nata	lie Gladden				3/14/2022 5:14:02PM
	SV	W2 - Surface	9				
	-	E203076-05					
		Reporting					
Analyte	Result	Limit	Dilut	ion Prepa	ared A	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	I	Analyst: IY			Batch: 2211079
Benzene	ND	0.0250	1	03/11	/22 (03/11/22	
Ethylbenzene	ND	0.0250	1	03/11	/22 (03/11/22	
Toluene	ND	0.0250	1	03/11	/22 (03/11/22	
o-Xylene	ND	0.0250	1	03/11	/22 ()3/11/22	
p,m-Xylene	ND	0.0500	1	03/11	/22 ()3/11/22	
Total Xylenes	ND	0.0250	1	03/11	/22 ()3/11/22	
Surrogate: Bromofluorobenzene		97.4 %	70-130	03/11	1/22 ()3/11/22	
Surrogate: 1,2-Dichloroethane-d4		95.4 %	70-130	03/11	1/22 (03/11/22	
Surrogate: Toluene-d8		101 %	70-130	03/11	1/22 ()3/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	I	Analyst: IY			Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/11	/22 ()3/11/22	
Surrogate: Bromofluorobenzene		97.4 %	70-130	03/11	1/22 ()3/11/22	
Surrogate: 1,2-Dichloroethane-d4		95.4 %	70-130	03/11	1/22 ()3/11/22	
Surrogate: Toluene-d8		101 %	70-130	03/11	1/22 ()3/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	I	Analyst: JL			Batch: 2211076
Diesel Range Organics (C10-C28)	992	25.0	1	03/11	/22 ()3/14/22	
Oil Range Organics (C28-C36)	253	50.0	1	03/11	/22 (03/14/22	
Surrogate: n-Nonane		107 %	50-200	03/11	1/22 ()3/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	I	Analyst: RAS			Batch: 2211073
Chloride	5130	40.0	2	03/11	/22 ()3/11/22	

Sample Data

		imple D				
Tap Rock 7 W. Compress Road	Project Name: Project Numbe		ey Graham 46-0001	СТВ		Reported:
Artesia NM, 88210	Project Manag		ilie Gladden			3/14/2022 5:14:02PM
	SV	V3 - Surface	9			
]	E203076-06				
		Reporting				
Analyte	Result	Limit	Dilu	tion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	1	Analyst: IY		Batch: 2211079
Benzene	ND	0.0250	1	03/11/22	03/11/22	
Ethylbenzene	0.0670	0.0250	1	03/11/22	03/11/22	
Toluene	ND	0.0250	1	03/11/22	03/11/22	
p-Xylene	0.121	0.0250	1	03/11/22	03/11/22	
o,m-Xylene	0.335	0.0500	1	03/11/22	03/11/22	
Total Xylenes	0.456	0.0250	1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		98.7 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		93.9 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		105 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	1	Analyst: IY		Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		98.7 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		93.9 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		105 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: JL		Batch: 2211076
Diesel Range Organics (C10-C28)	394	25.0	1	03/11/22	03/11/22	
Dil Range Organics (C28-C36)	268	50.0	1	03/11/22	03/11/22	
Surrogate: n-Nonane		108 %	50-200	03/11/22	03/11/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: RAS		Batch: 2211073
Chloride	90.9	20.0	1	03/11/22	03/11/22	

Sample Data

		mpic D				
Tap Rock 7 W. Compress Road	Project Name: Project Numbe	r: 2004	ey Graham (16-0001	СТВ		Reported: 3/14/2022 5:14:02PM
Artesia NM, 88210	Project Manag	er: Nata	lie Gladden			3/14/2022 5:14:02PM
	SV	V4 - Surface	9			
	-	E203076-07				
		Reporting				
Analyte	Result	Limit	Diluti	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	А	nalyst: IY		Batch: 2211079
Benzene	ND	0.0250	1	03/11/22	03/11/22	
Ethylbenzene	ND	0.0250	1	03/11/22	03/11/22	
Toluene	ND	0.0250	1	03/11/22	03/11/22	
o-Xylene	ND	0.0250	1	03/11/22	03/11/22	
p,m-Xylene	ND	0.0500	1	03/11/22	03/11/22	
Total Xylenes	ND	0.0250	1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		96.6 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		92.8 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		100 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	А	nalyst: IY		Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		96.6 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		92.8 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		100 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	А	nalyst: JL		Batch: 2211076
Diesel Range Organics (C10-C28)	1630	25.0	1	03/11/22	03/11/22	
Oil Range Organics (C28-C36)	856	50.0	1	03/11/22	03/11/22	
Surrogate: n-Nonane		109 %	50-200	03/11/22	03/11/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	А	nalyst: RAS		Batch: 2211073
Chloride	11400	400	20	03/11/22	03/11/22	

Sample Data

	~	ampic D				
Tap Rock	Project Name:		ey Graham 46-0001	СТВ		Demontrale
7 W. Compress Road Artesia NM, 88210	Project Numb Project Manag		ilie Gladden			Reported: 3/14/2022 5:14:02PM
	S	W5 - Surface	e			
		E203076-08				
		Reporting				
Analyte	Result	Limit	Dilut	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	I	Analyst: IY		Batch: 2211079
Benzene	ND	0.0500	2	03/11/22	03/11/22	
Ethylbenzene	ND	0.0500	2	03/11/22	03/11/22	
Toluene	ND	0.0500	2	03/11/22	03/11/22	
o-Xylene	ND	0.0500	2	03/11/22	03/11/22	
p,m-Xylene	ND	0.100	2	03/11/22	03/11/22	
Total Xylenes	ND	0.0500	2	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		103 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		98.0 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		102 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	I	Analyst: IY		Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	40.0	2	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		103 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		98.0 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		102 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	A	Analyst: JL		Batch: 2211076
Diesel Range Organics (C10-C28)	29.7	25.0	1	03/11/22	03/12/22	
Oil Range Organics (C28-C36)	ND	50.0	1	03/11/22	03/12/22	
Surrogate: n-Nonane		111 %	50-200	03/11/22	03/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	I	Analyst: RAS		Batch: 2211073
Chloride	ND	20.0	1	03/11/22	03/11/22	

Sample Data

	Da	mple D	ata				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Number Project Manage	: 2004	ley Graham 46-0001 Ilie Gladden				Reported: 3/14/2022 5:14:02PM
		SW3 - 2'					
	ŀ	203076-09					
		Reporting					
Analyte	Result	Limit	Dilu	tion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	1	Analyst: IY			Batch: 2211079
Benzene	ND	0.0250	1		03/11/22	03/11/22	
Ethylbenzene	0.0710	0.0250	1		03/11/22	03/11/22	
Toluene	ND	0.0250	1		03/11/22	03/11/22	
o-Xylene	0.145	0.0250	1		03/11/22	03/11/22	
o,m-Xylene	0.358	0.0500	1		03/11/22	03/11/22	
Fotal Xylenes	0.502	0.0250	1		03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		101 %	70-130		03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		03/11/22	03/11/22	
Surrogate: Toluene-d8		105 %	70-130		03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	1	Analyst: IY			Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0	1		03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		101 %	70-130		03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		03/11/22	03/11/22	
Surrogate: Toluene-d8		105 %	70-130		03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: JL			Batch: 2211076
Diesel Range Organics (C10-C28)	365	25.0	1		03/11/22	03/12/22	
Dil Range Organics (C28-C36)	225	50.0	1		03/11/22	03/12/22	
Surrogate: n-Nonane		111 %	50-200		03/11/22	03/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: RA	S		Batch: 2211073
Chloride	106	20.0	1		03/11/22	03/11/22	

Sample Data

	5	ample D	ala				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numb Project Manag	er: 2004	ney Graham 46-0001 Ilie Gladder				Reported: 3/14/2022 5:14:02PM
		SW4 - 3'					
		E203076-10					
		Reporting					
Analyte	Result	Limit	Dilı	ition	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2211079
Benzene	ND	0.0250		1	03/11/22	03/11/22	
Ethylbenzene	ND	0.0250		1	03/11/22	03/11/22	
Toluene	ND	0.0250		1	03/11/22	03/11/22	
o-Xylene	ND	0.0250		1	03/11/22	03/11/22	
,m-Xylene	ND	0.0500		1	03/11/22	03/11/22	
Fotal Xylenes	ND	0.0250		1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		98.1 %	70-130		03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130		03/11/22	03/11/22	
Surrogate: Toluene-d8		102 %	70-130		03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	20.0		1	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		98.1 %	70-130		03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130		03/11/22	03/11/22	
Surrogate: Toluene-d8		102 %	70-130		03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2211076
Diesel Range Organics (C10-C28)	ND	25.0		1	03/11/22	03/12/22	
Dil Range Organics (C28-C36)	ND	50.0		1	03/11/22	03/12/22	
Surrogate: n-Nonane		113 %	50-200		03/11/22	03/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2211073
Chloride	72.2	20.0		1	03/11/22	03/11/22	

Sample Data

	D	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numl Project Mana	ber: 2004	ey Graham 46-0001 Ilie Gladden	CTB		Reported: 3/14/2022 5:14:02PM
	-	SW5 - 2'				
		E203076-11				
		Reporting				
Analyte	Result	Limit	Dilut	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	nalyst: IY		Batch: 2211079
Benzene	ND	0.0500	2	03/11/22	03/11/22	
Ethylbenzene	ND	0.0500	2	03/11/22	03/11/22	
Toluene	ND	0.0500	2	03/11/22	03/11/22	
-Xylene	ND	0.0500	2	03/11/22	03/11/22	
,m-Xylene	ND	0.100	2	03/11/22	03/11/22	
Total Xylenes	ND	0.0500	2	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		99.4 %	70-130	03/11/22	03/11/22	
urrogate: 1,2-Dichloroethane-d4		99.9 %	70-130	03/11/22	03/11/22	
Jurrogate: Toluene-d8		101 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Α	nalyst: IY		Batch: 2211079
Gasoline Range Organics (C6-C10)	ND	40.0	2	03/11/22	03/11/22	
Surrogate: Bromofluorobenzene		99.4 %	70-130	03/11/22	03/11/22	
Surrogate: 1,2-Dichloroethane-d4		99.9 %	70-130	03/11/22	03/11/22	
Surrogate: Toluene-d8		101 %	70-130	03/11/22	03/11/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Α	nalyst: JL		Batch: 2211076
Diesel Range Organics (C10-C28)	25.8	25.0	1	03/11/22	03/12/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/11/22	03/12/22	
urrogate: n-Nonane		116 %	50-200	03/11/22	03/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	nalyst: RAS		Batch: 2211073
Chloride	ND	20.0	1	03/11/22	03/11/22	

QC Summary Data

Tap Rock		Project Name:	Μ	oney Graham	CTB				Reported:		
7 W. Compress Road		Project Number:		046-0001					Reporteu.		
Artesia NM, 88210		Project Manager:	Na	atalie Gladden					3/14/2022 5:14:02PM		
	V	olatile Organic	Compo	unds by EP	A 82601	B			Analyst: IY		
Analyte		Reporting	Spike	Source		Rec		RPD			
Analyte	Result	Limit	Level	Result	Rec	Limits	RPD	Limit			
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes		
Blank (2211079-BLK1)]	Prepared: 0	3/10/22 Ar	alyzed: 03/11/22		
Benzene	ND	0.0250									
Ethylbenzene	ND	0.0250									
Toluene	ND	0.0250									
o-Xylene	ND	0.0250									
p,m-Xylene	ND	0.0500									
Total Xylenes	ND	0.0250									
Surrogate: Bromofluorobenzene	0.492		0.500		98.4	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.477		0.500		95.4	70-130					
Surrogate: Toluene-d8	0.510		0.500		102	70-130					
LCS (2211079-BS1)						1	Prepared: 0	3/10/22 An	alyzed: 03/11/22		
Benzene	2.46	0.0250	2.50		98.3	70-130					
Ethylbenzene	2.73	0.0250	2.50		109	70-130					
Toluene	2.67	0.0250	2.50		107	70-130					
o-Xylene	2.65	0.0250	2.50		106	70-130					
o,m-Xylene	5.39	0.0500	5.00		108	70-130					
Total Xylenes	8.05	0.0250	7.50		107	70-130					
Surrogate: Bromofluorobenzene	0.503		0.500		101	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.498		0.500		99.6	70-130					
Surrogate: Toluene-d8	0.529		0.500		106	70-130					
LCS Dup (2211079-BSD1)]	Prepared: 0	3/10/22 Ar	alyzed: 03/11/22		
Benzene	2.43	0.0250	2.50		97.3	70-130	0.981	23			
Ethylbenzene	2.85	0.0250	2.50		114	70-130	4.35	27			
Toluene	2.79	0.0250	2.50		112	70-130	4.41	24			
o-Xylene	2.78	0.0250	2.50		111	70-130	4.55	27			
p,m-Xylene	5.60	0.0500	5.00		112	70-130	3.72	27			
Total Xylenes	8.37	0.0250	7.50		112	70-130	3.99	27			
Total Aylenes			0.500		101	70-130			-		
•	0.506		0.500		101						
Surrogate: Bromofluorobenzene Surrogate: 1,2-Dichloroethane-d4	0.506 0.455		0.500		91.0	70-130					

QC Summary Data

		QC D	umm	aly Data	a				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager	2	Money Graham 20046-0001 Natalie Gladden					Reported: 3/14/2022 5:14:02PM
	Nor	nhalogenated	Organics	by EPA 80	15D - G	RO			Analyst: IY
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2211079-BLK1)							Prepared: 0	3/10/22 A	analyzed: 03/11/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.492		0.500		98.4	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.477		0.500		95.4	70-130			
Surrogate: Toluene-d8	0.510		0.500		102	70-130			
LCS (2211079-BS2)							Prepared: 0	3/10/22 A	analyzed: 03/11/22
Gasoline Range Organics (C6-C10)	58.8	20.0	50.0		118	70-130			
Surrogate: Bromofluorobenzene	0.494		0.500		98.7	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.508		0.500		102	70-130			
Surrogate: Toluene-d8	0.514		0.500		103	70-130			
LCS Dup (2211079-BSD2)							Prepared: 0	3/10/22 A	analyzed: 03/11/22
Gasoline Range Organics (C6-C10)	54.4	20.0	50.0		109	70-130	7.81	20	
Surrogate: Bromofluorobenzene	0.472		0.500		94.3	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.471		0.500		94.1	70-130			
Surrogate: Toluene-d8	0.512		0.500		102	70-130			

QC Summary Data

		QC 5	umme	in y Data	a				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	20	oney Graham 0046-0001 atalie Gladder					Reported: 3/14/2022 5:14:02PM
	Nonh	alogenated Org	ganics by	EPA 8015I) - DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2211076-BLK1)							Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	51.3		50.0		103	50-200			
LCS (2211076-BS1)							Prepared: 0	3/10/22 A	nalyzed: 03/11/22
Diesel Range Organics (C10-C28)	486	25.0	500		97.2	38-132			
Surrogate: n-Nonane	49.0		50.0		98.0	50-200			
LCS Dup (2211076-BSD1)							Prepared: 0	3/10/22 At	nalyzed: 03/11/22
Diesel Range Organics (C10-C28)	482	25.0	500		96.4	38-132	0.808	20	
Surrogate: n-Nonane	49.5		50.0		99.0	50-200			

QC Summary Data

				v					
Tap Rock		Project Name:	Ν	Ioney Graham	CTB				Reported:
7 W. Compress Road		Project Number:	2	0046-0001					
Artesia NM, 88210		Project Manager	: N	latalie Gladder	1				3/14/2022 5:14:02PM
		Anions	by EPA	300.0/90564	4				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2211073-BLK1)							Prepared: 0	3/10/22	Analyzed: 03/11/22
Chloride	ND	20.0							
LCS (2211073-BS1)							Prepared: 0	3/10/22	Analyzed: 03/11/22
Chloride	247	20.0	250		98.6	90-110			
LCS Dup (2211073-BSD1)							Prepared: 0	3/10/22	Analyzed: 03/11/22
Chloride	248	20.0	250		99.2	90-110	0.587	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Tap Rock	Project Name:	Money Graham CTB	
	7 W. Compress Road	Project Number:	20046-0001	Reported:
	Artesia NM, 88210	Project Manager:	Natalie Gladden	03/14/22 17:14

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

	T	0	1/			D'II T			Telf select	No. Con	10	b Use	On				ТА	т	FPA P	rogram
ient: oject: oject M ddress:	lanager:	LUC 2. C	irah ombs	in CT	Addr City,	Bill To ntion: 255 ress: 2724 Nov State, Zip 1400	2 Count	TRO	Lab V Ea	wo#		10	Job N	Number 4(e-0) sis and M	XIX	2D	3D	Standard	CWA	SDWA RCRA
ty, State ione: nail: eport du				2	Ema	ne: 393-90 il: nataliè E alibing Lic	Penerg	\	DRO/ORO by 8015	GRO/DRO by 8015	y 8021	8260	6010	Chloride 300.0	×	TX		NM CC	State DUTAZ	TX
Time ampled	Date Sampled	Matrix	No. of Containers	Sample ID				Lab Number	DRO/O	GRO/D	BTEX by 8021	VOC by 8260	Metals 6010	Chlorid	BGDOC	BGDOC			Remarks	
	36/22	soil		SPI	- Sur	Loce		1							X					
		(/	SPZ	- Sur	face		2												
_				SP3	- Sur	face		3												
				500	1-54	gace		4												
	/			Su	2-54	Aque		5	-											
		-		Su	<u>3 - SL</u>	inface		47	-											
			\vdash	Su	4- 50	face		8	-											
	$\left \right\rangle$	+/-		SW	5-20	Megce		9							$ \uparrow\rangle$					
			$\left \right $	X	10-5 04-5			10												
ditior	l nal Instru	ctions:)														
					mple. I am aware t s for legal action.	hat tampering with or intent <u>Sampled by:</u>	ionally mislabelli	ng the sampl	e locati SR	ion,					vg temp above	e 0 but	less than	ceived on ice the d 6 °C on subsequent		pled or receiv
linguish	hed by: (Sign House hed by: (Sign	(Jod	1 Date	10/22	Time 1540 Time	Received by: Signature Received by: Signature	de	Date 3 · 10 Date	·r	Time (Time	540	0	Rec	eived on	and the second second	Y/	Jse Or N	ıly		
à	ned by: (Sign	Joh	— <u>3</u> Dat	•10.22 e	1900 ^{Time}	Received by: (Signature	Inter	B/II/2 Date	72	Time	30)	T1	G Temp °	<u> </u>			<u>T3</u>		
mole Ma	triv: S - Soil	sd - Solid Se	- Sludge A -	Aqueous, O - O	ther			Containe	er Typ	e:g-	glass,	p - p	oly/p	lastic, ag	- amber gl	- ass, v	- VOA			
oto: San	onles are di	scarded 30	days after r	esults are rep	orted unless oth	er arrangements are mad th this COC. The liability o	le. Hazardous	samples wil	l be re	turne	d to cl	ient o	r dispo	osed of at t	he client ex	pense	e. The	report for the a	analysis of th	e above

Reproject Information

Chain of Custody

Page _____ of _____

Client:	5					Bill To		1		La	ab Us	se On	nly	Sene in			TA	T		EPA P	rogram
roject:			- <u> </u>		Att	ention:		Lab	WO#	ŧ	-	Job	Num				3D	Star	ndard	CWA	SDWA
Project M	lanager:		0			dress:		Eć	203	307	6			1000-1	X						
Address:		10	me			, State, Zip					_	Analy	ysis a	nd Metho	d	-		-			RCRA
City, State	e, Zip 🧉	Ste	Ŷ		and the second second	one: Carre															
Phone:		\bigcirc			Em	ail:		015	015		1.							-	11 1 60	State	
E <u>mail:</u>								by 8	by 8	021	60	10	0.00		ΣZ	×				UT AZ	IX
Report du	ue by:						1	- SS	ORO	oy 8(y 82	s 60.	de 3			1 X			X		
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID			Lab Numbe	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC	BGDOC				Remarks	
	3/9/22	S	1	Sw	5-2	1	11								X						
									-		-				+	-					a A
															-						
																				E	
											-					-					
									-						-	-				1	
Addition	al Instruc	ctions:				1															
				ticity of this sample may be grounds fo		that tampering with or intentionally mis	slabelling the sam					\$13404037200		iring thermal at an avg tem						they are samp ys.	led or received
KE	ed by: (Sign	e(-20	Date Date	LOFIZ	1540	Received by: (Signature)	- <u>3.10</u> Date	22	Time	54	0	Rec	eiveo	d on ice:		ab U	se On N	ly			
	ed by: (Sign	John		.10.22	1900	Received by: (Signature) Carth Choth Received by: (Signature)		122		:30	>	<u>T1</u>			<u>T2</u>			_ 1	<u>r3</u>		
l		V ·									3			np °C							
Sample Ma	trix: S - Soil, S	d - Solid, Sg	- Sludge, A -	Aqueous, O - Other										, ag - amb					1.5		
Note: Sam	ples are dis	carded 30	days after re	esults are report	ed unless ot	her arrangements are made. Hazar vith this COC. The liability of the labo	dous samples v ratory is limited	vill be re I to the	eturne amou	d to cl nt paie	lient o d for c	or dispo on the	osed c repor	of at the cli t.	ent ex	pense	. The r	eport f	or the ana	alysis of the	above

of 136

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Tap Rock D	ate Received:	03/11/22	07:30	Work Order ID: E	203076
Phone:	(575) 390-6397 D	ate Logged In:	03/10/22	17:22	Logged In By: C	aitlin Christian
Email:		Due Date:	03/11/22	17:00 (0 day TAT)		
<u>Chain o</u>	of Custody (COC)					
1. Does	the sample ID match the COC?		Yes			
2. Does	the number of samples per sampling site location match	the COC	Yes			
3. Were	samples dropped off by client or carrier?		Yes	Carrier: C	arrier	
4. Was t	the COC complete, i.e., signatures, dates/times, requested	d analyses?	No			
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.		Yes		<u>Comments/R</u>	<u>desolution</u>
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				~	1 000
6. Did th	he COC indicate standard TAT, or Expedited TAT?		Yes		Sampled times not provide	ed on COC.
Sample	Cooler					
7. Was a	a sample cooler received?		Yes			
8. If yes	s, was cooler received in good condition?		Yes			
9. Was t	the sample(s) received intact, i.e., not broken?		Yes			
10. Were	e custody/security seals present?		No			
11. If ye	es, were custody/security seals intact?		NA			
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re- minutes of sampling		Yes			
13. If no	o visible ice, record the temperature. Actual sample te	mperature: 4°	С			
	Container	· · · · · -				
	aqueous VOC samples present?		No			
	VOC samples collected in VOA Vials?		NA			
	he head space less than 6-8 mm (pea sized or less)?		NA			
17. Was	a trip blank (TB) included for VOC analyses?		NA			
18. Are	non-VOC samples collected in the correct containers?		Yes			
19. Is the	e appropriate volume/weight or number of sample container	s collected?	Yes			
Field La	abel					
20. Were	e field sample labels filled out with the minimum inform	nation:				
	Sample ID?		Yes			
	Date/Time Collected? Collectors name?		No	•		
	Preservation		No			
	the COC or field labels indicate the samples were pres	erved?	No			
	sample(s) correctly preserved?		NA			
	b filteration required and/or requested for dissolved met	als?	No			
	hase Sample Matrix					
	the sample have more than one phase, i.e., multiphase	?	No			
	es, does the COC specify which phase(s) is to be analyze		NA			
•	tract Laboratory		11/1			
SUDCOU		,	No			
	samples required to get sent to a subcontract leboratory?					
28. Are	samples required to get sent to a subcontract laboratory? a subcontract laboratory specified by the client and if so		NA	Subcontract Lab	na	

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name:

Money Graham CTB

Work Order: E206191

Job Number: 20046-0001

Received: 6/28/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 6/29/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 6/29/22

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Money Graham CTB Workorder: E206191 Date Received: 6/28/2022 11:07:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 6/28/2022 11:07:00AM, under the Project Name: Money Graham CTB.

The analytical test results summarized in this report with the Project Name: Money Graham CTB apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Cell: 505-320-4759

ljarboe@envirotech-inc.com

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services Office: 505-421-LABS(5227)

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SP1 - 4'	5
SP2 - 4'	6
SP3 - 4'	7
SW3 - 4'	8
QC Summary Data	9
QC - Volatile Organics by EPA 8021B	9
QC - Nonhalogenated Organics by EPA 8015D - GRO	10
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	11
QC - Anions by EPA 300.0/9056A	12
Definitions and Notes	13
Chain of Custody etc.	14

Sample Summary

		Sample Sum	mar y		
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	Money Graham CT 20046-0001 Natalie Gladden	̈́Β	Reported: 06/29/22 17:25
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SP1 - 4'	E206191-01A	Soil	06/24/22	06/28/22	Glass Jar, 4 oz.
SP2 - 4'	E206191-02A	Soil	06/24/22	06/28/22	Glass Jar, 4 oz.
SP3 - 4'	E206191-03A	Soil	06/24/22	06/28/22	Glass Jar, 4 oz.
SW3 - 4'	E206191-04A	Soil	06/24/22	06/28/22	Glass Jar, 4 oz.

	D		ata			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name:Money Graham CTProject Number:20046-0001Project Manager:Natalie Gladden		46-0001	1		Reported: 6/29/2022 5:25:52PM
		SP1 - 4'				
		E206191-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
o-Xylene	ND	0.0250	1	06/28/22	06/28/22	
p,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Total Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		92.9 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY	Batch: 2227028	
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		85.7 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2227040
Chloride	ND	20.0	1	06/28/22	06/28/22	

Sample Data

Sample Data

	5		aia			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Mana	ber: 2004	ney Graham CTB 46-0001 alie Gladden	Reported: 6/29/2022 5:25:52PM		
		SP2 - 4'				
		E206191-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	cg Analyst: IY			Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Total Xylenes	ND	0.0250	1	06/28/22	06/28/22	
urrogate: 4-Bromochlorobenzene-PID		92.0 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Dil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		90.1 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2227040
Chloride	ND	20.0	1	06/28/22	06/28/22	

Sample Data

	D	ampic D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name:Money Graham CProject Number:20046-0001Project Manager:Natalie Gladden					Reported: 6/29/2022 5:25:52PM
		SP3 - 4'				
		E206191-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Total Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		92.8 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.0 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		94.0 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2227040
Chloride	ND	20.0	1	06/28/22	06/28/22	

Sample Data

	5	ampic D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Manaş	ect Number: 20046-0001				Reported: 6/29/2022 5:25:52PM
		SW3 - 4'				
		E206191-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Foluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Fotal Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		92.1 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.0 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		115 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2227040
Chloride	ND	20.0	1	06/28/22	06/28/22	

OC Summary Data

		QC D		v							
Tap Rock		Project Name:	ame: Money Graham CTB						Reported:		
7 W. Compress Road	7 W. Compress Road			Project Number: 20046-0001							
Artesia NM, 88210		Project Manager:	N	atalie Gladden					6/29/2022 5:25:52PM		
	Volatile Organics by EPA 8021B								Analyst: IY		
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit			
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes		
Blank (2227028-BLK1)	Prepared: 06/.							6/28/22 A	analyzed: 06/28/22		
Benzene	ND	0.0250									
Ethylbenzene	ND	0.0250									
Toluene	ND	0.0250									
p-Xylene	ND	0.0250									
o,m-Xylene	ND	0.0500									
Total Xylenes	ND	0.0250									
Surrogate: 4-Bromochlorobenzene-PID	7.58		8.00		94.7	70-130					
LCS (2227028-BS1)						I	Prepared: 0	6/28/22 A	analyzed: 06/28/22		
Benzene	4.74	0.0250	5.00		94.7	70-130					
Ethylbenzene	4.41	0.0250	5.00		88.2	70-130					
Toluene	4.64	0.0250	5.00		92.8	70-130					
p-Xylene	4.59	0.0250	5.00		91.7	70-130					
o,m-Xylene	9.09	0.0500	10.0		90.9	70-130					
Fotal Xylenes	13.7	0.0250	15.0		91.2	70-130					
Surrogate: 4-Bromochlorobenzene-PID	7.67		8.00		95.8	70-130					
LCS Dup (2227028-BSD1)						I	Prepared: 0	6/28/22 A	analyzed: 06/28/22		
Benzene	4.95	0.0250	5.00		98.9	70-130	4.30	20			
Ethylbenzene	4.60	0.0250	5.00		92.0	70-130	4.24	20			
Toluene	4.84	0.0250	5.00		96.8	70-130	4.27	20			
p-Xylene	4.78	0.0250	5.00		95.5	70-130	4.05	20			
o,m-Xylene	9.47 14.2	0.0500	10.0		94.7	70-130	4.12	20			
			15.0		95.0	70-130	4.10	20			

QC Summary Data

		Y Y Y	/ 4 111 111	ary Dat	~				
Tap Rock 7 W. Compress Road		Project Name: Project Number	: 2	Money Graham 20046-0001					Reported:
Artesia NM, 88210		Project Manage	r: ſ	Natalie Gladder	1				6/29/2022 5:25:52PM
	No	onhalogenated	Organics	s by EPA 80	15D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2227028-BLK1)							Prepared: 0	6/28/22 A	nalyzed: 06/28/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.07		8.00		88.4	70-130			
LCS (2227028-BS2)							Prepared: 0	6/28/22 A	nalyzed: 06/28/22
Gasoline Range Organics (C6-C10)	44.6	20.0	50.0		89.1	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.28		8.00		91.0	70-130			
LCS Dup (2227028-BSD2)							Prepared: 0	6/28/22 A	nalyzed: 06/28/22
Gasoline Range Organics (C6-C10)	44.1	20.0	50.0		88.3	70-130	0.979	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.29		8.00		91.1	70-130			

QC Summary Data

		QC D		ary Data	4				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	2	Money Graham 20046-0001 Natalie Gladden					Reported: 6/29/2022 5:25:52PM
	Nonh	alogenated Org	anics by	7 EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2227038-BLK1)							Prepared: 0	6/28/22 A	Analyzed: 06/28/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	44.4		50.0		88.7	50-200			
LCS (2227038-BS1)							Prepared: 0	6/28/22 A	Analyzed: 06/28/22
Diesel Range Organics (C10-C28)	453	25.0	500		90.5	38-132			
Surrogate: n-Nonane	46.5		50.0		92.9	50-200			
Matrix Spike (2227038-MS1)			Source:	E206192-	01	Prepared: 0	6/28/22 A	Analyzed: 06/28/22	
Diesel Range Organics (C10-C28)	441	25.0	500	ND	88.2	38-132			
Surrogate: n-Nonane	48.1		50.0		96.1	50-200			
Matrix Spike Dup (2227038-MSD1)				Source:	E206192-	01	Prepared: 0	6/28/22 A	Analyzed: 06/28/22
Diesel Range Organics (C10-C28)	201	25.0	500	ND	40.2	38-132	74.7	20	R3
Surrogate: n-Nonane	45.6		50.0		91.2	50-200			

QC Summary Data

		L L		•					
Tap Rock		Project Name:	I	Money Graham	CTB				Reported:
7 W. Compress Road		Project Number	: 2	20046-0001					
Artesia NM, 88210		Project Manager	r: 1	Natalie Gladder	1				6/29/2022 5:25:52PM
		Anions	by EPA	300.0/9056	4				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2227040-BLK1)							Prepared: 0	6/28/22 A	Analyzed: 06/28/22
Chloride	ND	20.0							
LCS (2227040-BS1)							Prepared: 0	6/28/22 A	Analyzed: 06/28/22
Chloride	248	20.0	250		99.1	90-110			
Matrix Spike (2227040-MS1)				Source:	E206191-	01	Prepared: 0	6/28/22 A	Analyzed: 06/28/22
Chloride	250	20.0	250	ND	100	80-120			
Matrix Spike Dup (2227040-MSD1)				Source:	E206191-	01	Prepared: 0	6/28/22 A	Analyzed: 06/28/22
Chloride	252	20.0	250	ND	101	80-120	0.721	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Tap Rock	Project Name:	Money Graham CTB	
	7 W. Compress Road	Project Number:	20046-0001	Reported:
	Artesia NM, 88210	Project Manager:	Natalie Gladden	06/29/22 17:25

R3 The RPD exceeded the acceptance limit. LCS spike recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

R	
proje	ct Information
Ise	
	and the second s

Page ____ of

roject Information	Chain of Custody	1										Page	of
Client: COLOCK	Bill To	-			1. 1.1.						A		
Project: Mane Cavalnum Attention: 55	24 LU Countype	Lab		La	ib Us		ly Number	10	120	TA			Program
Project Manager: CTB Address: 27	HUY Counter 100	F		QI	(2001	4(00001	1D	2D	3D	Standard	CWA	SDWA
Address: City, State, Zip	tone nin	LO	00	1-1		Analy	sis and Met	hod	1		18.5		DCDA
City, State, Zip Phone:					Π			1	1		-		RCRA
Phone: Email: Not	alie Gladde	5	S								1200	State	
mail:		/ 801	801	-			0				NM C		
Report due by:		to b	(q O	802	8260	010	300.0	MN	¥				
Time Date Matrix No. of Containers Sampled Date	Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride	8	ы				
Sampled Sampled Containers Sample ID	Number	DRG	GR(BTE	VOC	Met	Chic	BGDOC	BGDOC		<u> </u>	Remark	s
F Called I Cal all	1							1					
- 124 Sori 1 SPT - 41													
[[[507 - 41	2											2.0	
											and the	-	
5P3-4'	3					- 1							
		-							-				
11/543-4	4												
								-6					
			1								Sec.		
8	1.												
			_						-		16		
								1				V	
							12						
										11111			
Additional Instructions:								15					
I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering wi date or time of collection is considered fraud and may be grounds for legal action. Sam Relinquished by: (Signature) Date Time Refered by: (th or intentionally mislabelling the sample	locatio	n. /	175		Samples	requiring therma	al preservat	ion mu	st be rece	ived on ice the da	they are same	led or received
date or time of collection is considered fraud and may be grounds for legal action.	apleging bured compend	en			F	backed	in ice at an avg te	mp above 0) but les	ss than 6	C on subsequent of	lays.	
Relinquished by: (Signature) Date Date Time Referred by: (TETRIHE'S M Pate	1	Time,	Pa.1	7	Service .	Children and	La	b Us	e Onl	v		Received and
a product - 12:122 14 Nov		2	4.1	19/		Rece	ived on ice)/ N				
Reinquished by: (Signature) Date	bignature) Data		Time	~	-			0					1949
1 1 1 1 6-27-27 4.(Spall	1012812	2	11.	:0:	\mathbf{t}	T1	1	T2			T3		1-10-2
Relinquished by (Signature) Date Time Received by: (signature)	-	Time					11	6.33	1.80	1.19	1	
	- 16					AVG	Temp °C	4			1.2		71
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other	Container	Type:	g - gl	ass, p	o - po	ly/pla	istic, ag - am	ber glas	s, v -	VOA			New York Contraction of the
Note: Samples are discarded 30 days after results are reported unless other arrangement	s are made. Hazardous samples will b	ne retu	irned t	to clie	nt or o	disnos	ed of at the c	lient expe	ense.	The re			
samples is applicable only to those samples received by the laboratory with this COC. The	liability of the laboratory is limited to	the ar	nount	paid f	for on	the re							
					1	5	-			•			ch
	Page 14 of 15					2	e	n	V		\mathbf{O}	[e	cn
							-						

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Tap Rock D	ate Received:	06/28/22 1	1:07	Work Order ID: E206191
Phone:	(575) 390-6397 D	ate Logged In:	06/27/22 1	6:34	Logged In By: Caitlin Christian
Email:		ue Date:	06/28/22 1	7:00 (0 day TAT)	
Chain o	f Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match	the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: U	IPS
4. Was th	he COC complete, i.e., signatures, dates/times, requested	d analyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		Time sampled and project manager not
Sample	Cooler				provided on COC.
7. Was a	sample cooler received?		Yes		
8. If yes,	, was cooler received in good condition?		Yes		
9. Was tl	he sample(s) received intact, i.e., not broken?		Yes		
10. Were	e custody/security seals present?		No		
11. If ye	s, were custody/security seals intact?		NA		
12. Was t	he sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re-		Yes		
	minutes of sampling				
13. If no	minutes of sampling visible ice, record the temperature. Actual sample te	mperature: <u>4°</u>	<u>C</u>		
	visible ice, record the temperature. Actual sample te	mperature: <u>4°</u>	<u>C</u>		
<u>Sample</u>		mperature: <u>4°</u>	<u>C</u> No		
<u>Sample</u> 14. Are a	visible ice, record the temperature. Actual sample temperature.	mperature: <u>4°</u>			
<u>Sample</u> 14. Are a 15. Are ²	visible ice, record the temperature. Actual sample te <u>Container</u> aqueous VOC samples present?	mperature: <u>4°</u>	No		
Sample 14. Are a 15. Are ² 16. Is the	visible ice, record the temperature. Actual sample te <u>Container</u> aqueous VOC samples present? VOC samples collected in VOA Vials?	mperature: <u>4°</u>	No NA		
Sample 14. Are a 15. Are 7 16. Is the 17. Was	visible ice, record the temperature. Actual sample te <u>Container</u> aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)?	mperature: <u>4°</u>	No NA NA		
Sample 14. Are a 15. Are a 16. Is the 17. Was 18. Are a	visible ice, record the temperature. Actual sample samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses?	. –	No NA NA NA		
Sample 14. Are a 15. Are a 16. Is the 17. Was 18. Are a	visible ice, record the temperature. Actual sample te <u>Container</u> aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container	. –	No NA NA NA Yes		
Sample 14. Are a 15. Are 2 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were	visible ice, record the temperature. Actual sample te <u>Container</u> aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container <u>shel</u> e field sample labels filled out with the minimum inform	s collected?	No NA NA Yes Yes		
Sample 14. Are a 15. Are a 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were	visible ice, record the temperature. Actual sample te <u>Container</u> aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container <u>shel</u> e field sample labels filled out with the minimum inform Sample ID?	s collected?	No NA NA Yes Yes Yes		
Sample 14. Are a 15. Are 3 16. Is the 17. Was 18. Are 4 19. Is the Field La 20. Were 21.	visible ice, record the temperature. Actual sample te <u>Container</u> aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container <u>thel</u> e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected?	s collected?	No NA NA Yes Yes Yes No		
Sample 14. Are a 15. Are 3 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were 21. Contemport 20. Were	visible ice, record the temperature. Actual sample te Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name?	s collected?	No NA NA Yes Yes Yes		
Sample 14. Are a 15. Are 3 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were Sample	visible ice, record the temperature. Actual sample te Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation	s collected?	No NA NA Yes Yes Yes No		
Sample 14. Are a 15. Are ³ 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were Sample 21. Does	visible ice, record the temperature. Actual sample ter Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were pres	s collected?	No NA NA Yes Yes No No		
Sample 14. Are a 15. Are ³ 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were Sample 21. Does 22. Are a	visible ice, record the temperature. Actual sample te Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation	s collected? nation: erved?	No NA NA Yes Yes No No		
Sample 14. Are a 15. Are 3 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 2 24. Is lat	visible ice, record the temperature. Actual sample te Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were press sample(s) correctly preserved? o filteration required and/or requested for dissolved met	s collected? nation: erved?	No NA NA Yes Yes No No No		
Sample 14. Are a 15. Are 3 15. Are 3 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 2 24. Is lat Multiph	visible ice, record the temperature. Actual sample te Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were presses sample(s) correctly preserved? o filteration required and/or requested for dissolved met tase Sample Matrix.	s collected? nation: erved? als?	No NA NA Yes Yes No No No NA No		
Sample 14. Are a 15. Are a 15. Are a 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 20. Were 21. Does 22. Are a 24. Is lat Multiph 26. Does	visible ice, record the temperature. Actual sample te Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were press sample(s) correctly preserved? o filteration required and/or requested for dissolved met	s collected? nation: erved? als?	No NA NA Yes Yes No No No		
Sample 14. Are a 15. Are 3 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 2 24. Is lat Multiph 26. Does 27. If ye	visible ice, record the temperature. Actual sample ter Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation a the COC or field labels indicate the samples were press sample(s) correctly preserved? o filteration required and/or requested for dissolved met tase Sample Matrix s the sample have more than one phase, i.e., multiphase?	s collected? nation: erved? als?	No NA NA Yes Yes No No No No		
Sample 14. Are a 15. Are a 15. Are a 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 20. Were 21. Does 22. Are a 24. Is lat Multiph 26. Does 27. If ye	visible ice, record the temperature. Actual sample ter Container aqueous VOC samples present? VOC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container thel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were press sample(s) correctly preserved? the filteration required and/or requested for dissolved met tase Sample Matrix s the sample have more than one phase, i.e., multiphase? s, does the COC specify which phase(s) is to be analyzed	s collected? nation: erved? als? o	No NA NA Yes Yes No No No No		

B

Date

envirotech Inc.

Signature of client authorizing changes to the COC or sample disposition.

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name:

Money Graham CTB

Work Order: E206192

Job Number: 20046-0001

Received: 6/28/2022

Revision: 2

Report Reviewed By:

Walter Hinchman Laboratory Director 6/29/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 6/29/22

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Money Graham CTB Workorder: E206192 Date Received: 6/28/2022 11:07:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 6/28/2022 11:07:00AM, under the Project Name: Money Graham CTB.

The analytical test results summarized in this report with the Project Name: Money Graham CTB apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services

Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
C1	5
C2	6
C3	7
C4	8
C5	9
SWC1	10
SWC2	11
SWC3	12
SWC4	13
QC Summary Data	14
QC - Volatile Organics by EPA 8021B	14
QC - Nonhalogenated Organics by EPA 8015D - GRO	15
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	16
QC - Anions by EPA 300.0/9056A	17
Definitions and Notes	18
Chain of Custody etc.	19

Sample Summary

		Sample Sum	mary		
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	Money Graham CT 20046-0001 Natalie Gladden	ГВ	Reported: 06/29/22 17:49
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
C1	E206192-01A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.
C2	E206192-02A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.
C3	E206192-03A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.
C4	E206192-04A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.
C5	E206192-05A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.
SWC1	E206192-06A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.
SWC2	E206192-07A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.
SWC3	E206192-08A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.
SWC4	E206192-09A	Soil	06/27/22	06/28/22	Glass Jar, 4 oz.

		ampic D				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	ey Graham C7 46-0001 ilie Gladden	ΓB		Reported: 6/29/2022 5:49:20PM
		C1				
		E206192-01				
		Reporting				
Analyte	Result	Limit	Dilutior	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	llyst: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
o-Xylene	ND	0.0250	1	06/28/22	06/28/22	
p,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Total Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		81.3 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	ılyst: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		80.2 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	ılyst: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		94.3 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	ılyst: RAS		Batch: 2227040
Chloride	43.1	20.0	1	06/28/22	06/28/22	

Sample Data

Sample Data

	Di	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	ney Graham CTB 46-0001 alie Gladden			Reported: 6/29/2022 5:49:20PM
		C2				
		E206192-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Fotal Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		81.4 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		82.4 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		89.8 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2227040
Chloride	ND	20.0	1	06/28/22	06/28/22	

Sample Data

	D.	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	ney Graham CTB 46-0001 Ilie Gladden			Reported: 6/29/2022 5:49:20PM
		C3				
		E206192-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Fotal Xylenes	ND	0.0250	1	06/28/22	06/28/22	
urrogate: 4-Bromochlorobenzene-PID		82.2 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		83.8 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Dil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		79.3 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2227040
Chloride	ND	20.0	1	06/28/22	06/28/22	

Sample Data

	5	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Manaş	er: 2004	ney Graham CT 46-0001 alie Gladden	В		Reported: 6/29/2022 5:49:20PM
		C4				
		E206192-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Fotal Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		82.4 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		83.1 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Dil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		90.4 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: RAS		Batch: 2227040
	41.5	20.0	1	06/28/22	06/28/22	
Chloride	41.5	20.0	1	06/28/22	06/28/22	

Sample Data

		impic D				
Tap Rock	Project Name:		ney Graham CTB			
7 W. Compress Road	Project Numbe		46-0001			Reported:
Artesia NM, 88210	Project Manage	er: Nata	alie Gladden			6/29/2022 5:49:20PM
		C5				
]	E206192-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
o-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Fotal Xylenes	ND	0.0250	1	06/28/22	06/28/22	
urrogate: 4-Bromochlorobenzene-PID		82.5 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		85.8 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Dil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		85.9 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2227040
Chloride	35.7	20.0	1	06/28/22	06/28/22	

Sample Data

	~	ampie D				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numl Project Mana	ber: 2004	ney Graham CTB 46-0001 alie Gladden			Reported: 6/29/2022 5:49:20PM
		SWC1				
		E206192-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Foluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Total Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		82.8 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		84.7 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Dil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		98.6 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2227040
Chloride	ND	200	10	06/28/22	06/28/22	

Sample Data

		ampic D	aca			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	ney Graham CTB 46-0001 1lie Gladden			Reported: 6/29/2022 5:49:20PM
		SWC2				
		E206192-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Fotal Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		92.3 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.8 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	25.7	25.0	1	06/28/22	06/28/22	
Dil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		101 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2227040
Chloride	ND	200	10	06/28/22	06/28/22	

Sample Data

	5	ampic D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numb Project Manag	er: 2004	ney Graham CTB 46-0001 alie Gladden			Reported: 6/29/2022 5:49:20PM
		SWC3				
		E206192-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
Toluene	ND	0.0250	1	06/28/22	06/28/22	
p-Xylene	ND	0.0250	1	06/28/22	06/28/22	
p,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Fotal Xylenes	ND	0.0250	1	06/28/22	06/28/22	
Surrogate: 4-Bromochlorobenzene-PID		92.2 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.9 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
Surrogate: n-Nonane		91.4 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2227040
Chloride	ND	200	10	06/28/22	06/28/22	

Sample Data

	5	ampic D	ata			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Manaş	er: 2004	ney Graham CTB 46-0001 Ilie Gladden			Reported: 6/29/2022 5:49:20PM
		SWC4				
		E206192-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Benzene	ND	0.0250	1	06/28/22	06/28/22	
Ethylbenzene	ND	0.0250	1	06/28/22	06/28/22	
oluene	ND	0.0250	1	06/28/22	06/28/22	
-Xylene	ND	0.0250	1	06/28/22	06/28/22	
o,m-Xylene	ND	0.0500	1	06/28/22	06/28/22	
Total Xylenes	ND	0.0250	1	06/28/22	06/28/22	
urrogate: 4-Bromochlorobenzene-PID		94.1 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2227028
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/28/22	06/28/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		91.0 %	70-130	06/28/22	06/28/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2227038
Diesel Range Organics (C10-C28)	ND	25.0	1	06/28/22	06/28/22	
Dil Range Organics (C28-C36)	ND	50.0	1	06/28/22	06/28/22	
urrogate: n-Nonane		93.1 %	50-200	06/28/22	06/28/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2227040
Chloride	116	100	5	06/28/22	06/28/22	

OC Summary Data

			•					
	Project Name: Project Number:		2	CTB				Reported:
	Project Manager:	Na	atalie Gladder	1				6/29/2022 5:49:20PM
	Volatile Or	rganics b	oy EPA 802	21B				Analyst: IY
Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
						Prepared: 0	6/28/22 A	analyzed: 06/28/22
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0500							
ND	0.0250							
7.58		8.00		94.7	70-130			
						Prepared: 0	6/28/22 A	analyzed: 06/28/22
4.74	0.0250	5.00		94.7	70-130			
4.41	0.0250	5.00		88.2	70-130			
4.64	0.0250	5.00		92.8	70-130			
4.59	0.0250	5.00		91.7	70-130			
9.09	0.0500	10.0		90.9	70-130			
13.7	0.0250	15.0		91.2	70-130			
7.67		8.00		95.8	70-130			
						Prepared: 0	6/28/22 A	analyzed: 06/28/22
4.95	0.0250	5.00		98.9	70-130	4.30	20	
4.60	0.0250	5.00		92.0	70-130	4.24	20	
4.84	0.0250	5.00		96.8	70-130	4.27	20	
4.70	0.0250	5.00		95.5	70-130	4.05	20	
4.78	0.0250							
4.78 9.47 14.2	0.0500	10.0 15.0		94.7 95.0	70-130 70-130	4.12 4.10	20	
	mg/kg ND ND ND ND ND 7.58 4.74 4.41 4.64 4.59 9.09 13.7 7.67 4.95 4.60	ND 0.0250 7.58	Project Number: 20 Project Manager: N Volatile Organics I Result Reporting Limit Spike Level mg/kg mg/kg mg/kg ND 0.0250 ND A.74 0.0250 5.00 4.74 0.0250 5.00 4.41 0.0250 5.00 4.59 0.0250 5.00 9.09 0.500 10.0 13.7 0.0250 5.00 4.60 0.0250 5.00	Project Number: 20046-0001 Natalie Gladder Project Manager: Natalie Gladder Volatile Organics by EPA 802 Result Spike Limit Source Level mg/kg mg/kg mg/kg ND 0.0250 A:74 0.0250 5.00 4.74 0.0250 5.00 4.59 0.0250 5.00 4.59 0.0250 5.00 4.59 0.0250 5.00 4.95 0.0250 5.00 4.60 0.0250 5.00	Project Number: 20046-0001 Natalie Gladden Project Manager: Natalie Gladden Volatile Organics by EPA 8021B Recult Result Reporting Limit Spike Level Source Result Rec mg/kg mg/kg mg/kg % % ND 0.0250 ND mg/kg mg/kg % ND 0.0250 ND	Project Number: 20046-0001 Project Manager: Natalie Gladden Volatile Organics by EPA 8021B Rec Rec Result Reporting Spike Source Rec Limits mg/kg mg/kg mg/kg mg/kg % % % ND 0.0250 mg/kg MD 0.0250 Kec Limits ND 0.0250 ND 0.0250 Kec Kec	ND 0.0250 NB 8.00 94.7 70-130 ND 0.0250 ND 94.7 70-130 Prepared: 0 ND 0.0250 ND 90.9 90.9 70-130 ND 0.0250 ND 0.0250 Prepared: 0 ND 0.0250 ND 94.7 70-130 ND 0.0250 ND 92.8 70-130 ND 0.0250 ND 94.7 70-130 ND 0.0250 S.00 94.7 70-130 1.11 0.0250 S.00 94.7 70-130 1.12 70-130 1.17 70-130 1.17 1.13 0.0250 S.00 91.7 70-130	ND 0.0250 NM Result Rec Limits RPD Limit MD 0.0250 mg/kg mg/kg mg/kg %

QC Summary Data

Tap Rock		Project Name:	Ν	Ioney Graham	CTB				Reported:
7 W. Compress Road		Project Number	: 2	0046-0001					
Artesia NM, 88210		Project Manage	r: N	latalie Gladder	1				6/29/2022 5:49:20PM
	No	nhalogenated	Organics	by EPA 80	15D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2227028-BLK1)							Prepared: 0	6/28/22 A	nalyzed: 06/28/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.07		8.00		88.4	70-130			
LCS (2227028-BS2)							Prepared: 0	6/28/22 A	nalyzed: 06/28/22
Gasoline Range Organics (C6-C10)	44.6	20.0	50.0		89.1	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.28		8.00		91.0	70-130			
LCS Dup (2227028-BSD2)							Prepared: 0	6/28/22 A	nalyzed: 06/28/22
Gasoline Range Organics (C6-C10)	44.1	20.0	50.0		88.3	70-130	0.979	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.29		8.00		91.1	70-130			

QC Summary Data

		$\mathbf{v} \mathbf{v} \mathbf{v}$		ary Dat					
Tap Rock 7 W. Compress Road		Project Name: Project Number:	2	1oney Graham 0046-0001					Reported:
Artesia NM, 88210		Project Manager:	N	latalie Gladder	1				6/29/2022 5:49:20PM
	Nonha	logenated Org	anics by	EPA 8015I) - DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2227038-BLK1)							Prepared: 0	6/28/22 A	analyzed: 06/28/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	44.4		50.0		88.7	50-200			
LCS (2227038-BS1)							Prepared: 0	6/28/22 A	analyzed: 06/28/22
Diesel Range Organics (C10-C28)	453	25.0	500		90.5	38-132			
Surrogate: n-Nonane	46.5		50.0		92.9	50-200			
Matrix Spike (2227038-MS1)				Source:	E206192-(01	Prepared: 0	6/28/22 A	analyzed: 06/28/22
Diesel Range Organics (C10-C28)	441	25.0	500	ND	88.2	38-132			
Surrogate: n-Nonane	48.1		50.0		96.1	50-200			
Matrix Spike Dup (2227038-MSD1)				Source:	E206192-(01	Prepared: 0	6/28/22 A	analyzed: 06/28/22
Diesel Range Organics (C10-C28)	201	25.0	500	ND	40.2	38-132	74.7	20	R3
Surrogate: n-Nonane	45.6		50.0		91.2	50-200			

QC Summary Data

			•						
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	2	Money Graham 20046-0001 Natalie Gladder					Reported: 6/29/2022 5:49:20PN
		Anions	by EPA	300.0/9056	۸				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2227040-BLK1)							Prepared: 0	6/28/22	Analyzed: 06/28/22
Chloride	ND	20.0							
LCS (2227040-BS1)							Prepared: 0	6/28/22	Analyzed: 06/28/22
Chloride	248	20.0	250		99.1	90-110			
Matrix Spike (2227040-MS1)				Source:	E206191-(01	Prepared: 0	6/28/22	Analyzed: 06/28/22
Chloride	250	20.0	250	ND	100	80-120			
Matrix Spike Dup (2227040-MSD1)				Source:	E206191-(01	Prepared: 0	6/28/22	Analyzed: 06/28/22
Chloride	252	20.0	250	ND	101	80-120	0.721	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Tap Rock	Project Name:	Money Graham CTB	
I	7 W. Compress Road	Project Number:	20046-0001	Reported:
l	Artesia NM, 88210	Project Manager:	Natalie Gladden	06/29/22 17:49

R3 The RPD exceeded the acceptance limit. LCS spike recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

×		
roje	ct Informa	ation
sec		0

Page ____ of

Reference li	nformatio	n					Chain	of Custod	Y												Page	of/
<u>Client:</u> Proiect:	Tap	loc	Coh	un CTG	Attenti	ion: ESS ^{Bill}	То		<u> </u>		La	ab Us	se Or		11			TA	- 14			rogram
Project N	Manager:	eye	4 0 4 1		Addres	$\frac{1}{10000000000000000000000000000000000$	Le Co	central	Lab	wo#	100	12	JOD	Numbe	m	1D	2D	3D	Stand	lard	CWA	SDWA
Address:					City, St	ate, ZIp			Ten (10	- 00				/sis and			4	11	150			RCRA
City, Sta Phone:	te, zip				Phone:		10-10	1											12	0.24		
Email:					Email:	Alta le C	stadder	/	8015	8015										AL COL	State	
Report d	lue by:								O by	O by	8021	3260	010	300.0		MN	Ϋ́			1 CO	UT AZ	TX
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID		-		Lab Number	DRO/ORO by	GRO/DRO by	ВТЕХ by 8021	VOC by 8260	Metals 6010	Chloride		BGDOC	BGDOC			h	Remarks	
	6/27	Spil	1	CI				1		0			2	0			<u>a</u>					
1		0		07				2														
				12				2														
				C_{j}																		
				CY				Y	-					_								
	<u>a</u> .			CS		۵ 		5		-												
				Suci			18 ²	6														
				SUC2				7													19	
				SUC3				8								t						
	1			suct				9)						
di -				0001										-	-	•						
	al Instruc			1																		
l, (field sam) date or time	oler), attest to of collection	the validity is considere	and authenti d fraud and n	city of this sample. I hay be grounds for le	am aware that ta	an pering with or inten Sampled by:	tionally mislabelli	ng he sample	locatio	on,			Sample packed	s requiring in ice at ar	thermal pr avg temp	eservati above 0	ion mus) but les	st be rece is than 6	vived on ice t °C on subseq	the day the	ey are sample	d or received
Relinquish	ed by: (Sign	silad	Date (e)	Time	Rec	eived by: (Signature	10 Au	Pate (J-)	7-21	Time	2'4	1	/	lisko sa		La	b Us	e Onl				
Relinguish	ad by: (Sign	(Me)	Date	JZA Time		eived by (Signature	White the second	Pater	17	Time	· 1	1	Rece	ived or	i ice:	C	Y N					
Relinquish	ed py: (Sign:	ature)	Date	OID Time	Rec	ceived by: (Signature	in t	Date	R	Time	•0	1	<u>T1</u>			<u>T2</u>			<u> </u>		<u>.</u>	
	0				0								AVG	Temp		1						
Sample Mat	rix: S - Soil, So	l - Solid, Sg -	Sludge, A - A	queous, O - Other				Container	Туре	: g - g	lass, I	n - nc	ly/nl	actic an	- ambo	r glas	s, v -	VOA		1		<u> </u>
Note: Sam samples is	ples are diso applicable o	arded 30 d	ays after res	sults are reported i	unless other arr	rangements are mac is COC. The liability c	le. Hazardous s	amples will	he reti	urned	to clie	ent or	disno	ed of at	the clier	t expe	ense.	The re	port for the	he analy	sis of the a	bove
			P.23.	, one rade		soor menability c		•		nount	. haid				ar	7	V		ro	+	0	ch
							Page	e 19 of 20													5	

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Tap Rock D	ate Received:	06/28/22	11:07	Work Order ID: E206192
Phone:	(575) 390-6397 D	ate Logged In:	06/27/22	16:36	Logged In By: Caitlin Christian
Email:		ue Date:	06/29/22	17:00 (1 day TAT)	
Chain o	<u>Custody (COC)</u>				
1. Does 1	he sample ID match the COC?		Yes		
2. Does 1	he number of samples per sampling site location match	the COC	Yes		
3. Were	amples dropped off by client or carrier?		Yes	Carrier: U	IPS
4. Was tl	e COC complete, i.e., signatures, dates/times, requested	analyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th	e field,	Yes		Commente (Deschaffer
	i.e, 15 minute hold time, are not included in this disucssion.			r	<u>Comments/Resolution</u>
	Furn Around Time (TAT)				Time sampled and project manager not
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		
Sample					provided on COC.
	sample cooler received?		Yes		
•	was cooler received in good condition?		Yes		
	e sample(s) received intact, i.e., not broken?		Yes		
	custody/security seals present?		No		
11. If ye	s, were custody/security seals intact?		NA		
12. Was t	ne sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re- minutes of sampling		Yes		
	minutes of sumpring				
13. If no	visible ice, record the temperature. Actual sample ter	mperature: <u>4°</u>	<u>°C</u>		
		mperature: <u>4°</u>	<u>°C</u>		
Sample	visible ice, record the temperature. Actual sample ter	mperature: <u>4°</u>	' <u>C</u> No		
Sample 14. Are a	visible ice, record the temperature. Actual sample tem	nperature: <u>4°</u>			
Sample 14. Are a 15. Are `	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present?	mperature: <u>4°</u>	No		
<u>Sample</u> 14. Are a 15. Are ^v 16. Is the	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials?	mperature: <u>4</u> ∝	No NA		
Sample 14. Are a 15. Are ^v 16. Is the 17. Was 18. Are 1	visible ice, record the temperature. Actual sample ter <u>Container</u> Jqueous VOC samples present? /OC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers?		No NA NA		
Sample 14. Are a 15. Are ^v 16. Is the 17. Was 18. Are 1	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses?		No NA NA NA		
Sample 14. Are a 15. Are ⁵ 16. Is the 17. Was 18. Are a 19. Is the Field La	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u>	s collected?	No NA NA NA Yes		
Sample 14. Are a 15. Are V 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform	s collected?	No NA NA Yes Yes		
Sample 14. Are a 15. Are v 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform sample ID?	s collected?	No NA NA Yes Yes		
Sample 14. Are a 15. Are b 15. Are b 16. Is the 17. Was 18. Are b 19. Is the Field La 20. Were S I	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform	s collected?	No NA NA Yes Yes Yes No		
Sample 14. Are a 15. Are 3 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were S I 0. (visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform iample ID? Date/Time Collected?	s collected?	No NA NA Yes Yes		
Sample 14. Are a 15. Are a 15. Are a 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were Sample	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform iample ID? Date/Time Collected? Collectors name?	s collected?	No NA NA Yes Yes Yes No		
Sample 14. Are a 15. Are 3 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were 5 1 0 5 5 5 6 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> the COC or field labels indicate the samples were prese ample(s) correctly preserved?	s collected? nation: erved?	No NA NA Yes Yes No No		
Sample 14. Are a 15. Are 3 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were 5 1 0 5 5 5 6 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> the COC or field labels indicate the samples were preservation	s collected? nation: erved?	No NA NA Yes Yes No No		
Sample 14. Are a 15. Are v 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were S I C Sample 21. Does 22. Are s 24. Is lab	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> the COC or field labels indicate the samples were prese ample(s) correctly preserved?	s collected? nation: erved?	No NA NA Yes Yes No No No		
Sample 14. Are a 15. Are v 16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were S 10. Were 21. Does 22. Are s 24. Is lat Multiph	visible ice, record the temperature. Actual sample ter Container iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ton-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers bel field sample labels filled out with the minimum inform ample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were prese ample(s) correctly preserved? filteration required and/or requested for dissolved meta	s collected? nation: erved? als?	No NA NA Yes Yes No No No		
Sample 14. Are a 15. Are a 15. Are a 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 20. Were 21. Does 22. Are a 24. Is lat Multiph 26. Does	visible ice, record the temperature. Actual sample ter Container iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ton-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers bel field sample labels filled out with the minimum inform tample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were prese ample(s) correctly preserved? filteration required and/or requested for dissolved meta ase Sample Matrix.	s collected? nation: erved? als?	No NA NA Yes Yes No No No No No		
Sample 14. Are a 15. Are a 15. Are a 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 20. Were 21. Does 22. Are s 24. Is lat Multiph 26. Does 27. If yes	visible ice, record the temperature. Actual sample ter Container Joueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ton-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers bel field sample labels filled out with the minimum inform sample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were prese ample(s) correctly preserved? o filteration required and/or requested for dissolved meta ase Sample Matrix the sample have more than one phase, i.e., multiphase? s, does the COC specify which phase(s) is to be analyze	s collected? nation: erved? als?	No NA NA Yes Yes No No No NA No		
Sample 14. Are a 15. Are a 15. Are a 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 20. Were 21. Oces 22. Are a 24. Is lab Multiph 26. Does 27. If ye:	visible ice, record the temperature. Actual sample ter <u>Container</u> iqueous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers <u>bel</u> field sample labels filled out with the minimum inform fample ID? Date/Time Collected? Collectors name? <u>Preservation</u> the COC or field labels indicate the samples were prese ample(s) correctly preserved? o filteration required and/or requested for dissolved meta <u>ase Sample Matrix</u> the sample have more than one phase, i.e., multiphase?	s collected? nation: erved? als? d?	No NA NA Yes Yes No No No NA No		

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

Received by OCD: 11/7/2022 1:45:29 PM Form C-141 Sta

Page 3

State of New Mexico

Oil Conservation Division

Incident ID	NAPP2205561125
District RP	
Facility ID	
Application ID	

Page 133 of 136

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u><50'</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗋 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🛛 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data

Data table of soil contaminant concentration data

Depth to water determination

Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release

Boring or excavation logs

Photographs including date and GIS information

- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/7/2022 1:45:29 PM			Page 134 of 1	
Form C-141	State of New Mexico		dent ID	NAPP2205561125
Page 4 Oil C	Oil Conservation Divisio	on Dist	rict RP	
		Faci	lity ID	
		Арр	lication ID	
public health or the c failed to adequately i addition, OCD accep and/or regulations. Printed Name:	Halie Giladder	he OCD does not relieve the operat threat to groundwater, surface wate	or of liability sho er, human health vith any other fec ND REGULA	ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:	Jocelyn Harimon	Date:11/07/20	22	

Received by OCD: 11/7/2022 1:45:29 PM Form C-141 State of

Page 6

State of New Mexico Oil Conservation Division

Incident ID	NAPP2205561125
District RP	
Facility ID	
Application ID	

Page 135 of 136

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

	itle:Director of Environmental and Regulatory	
Signature: Atalie Glade	du Date: 11-4-22	
email: <u>_natalie@energystaffingllc.com</u>	Telephone:575-390-6397	

Received by:	Jocelyn Harimon	

OCD Only

Date: 11/07/2022

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:
Printed Name:	Title:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
TAP ROCK OPERATING, LLC	372043
523 Park Point Drive	Action Number:
Golden, CO 80401	156728
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By Condition

We have received your closure report and final C-141 for Incident #NAPP2205561125 MONEY GRAHAM CTB, thank you. This closure is approved. 1/24/2023 rhamlet

CONDITIONS

Action 156728

Condition Date