Received by OCD: 11/15/2022 1:53:50 PM Form C-141 State of State

State of New Mexico

Page 6

Oil Conservation Division

Incident ID	NAPP2207346885
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Natalie Gladden Title: Director of Environmental and Regulatory
Signature: Atalie Gladden Date: 11-11-22
mail: <u>natalie@energystaffingllc.com</u> Telephone: <u>575-390-6397</u>
DCD Only
Received by: Jocelyn Harimon Date: <u>11/15/2022</u>

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by: <u>Robert Hamlet</u>	Date:2/13/2023
Printed Name: <u>Robert Hamlet</u>	Title: Environmental Specialist - Advanced

BURCH KEELY UNIT #629 CLOSURE REQUEST

API NO. 30-015-40705 UNIT LETTER I, SECTION 24, TOWNSHIP 17S, RANGE 29E EDDY COUNTY, NEW MEXICO

DATE OF RELEASE: 03/13/2022 INCIDENT NO. NAPP2207346885

November 10, 2022

Prepared By:

Released to Imaging: 2/13/2023 8:07:21 AM

November 10, 2022

New Mexico Energy, Minerals & Natural Resources NMOCD District II C/O Mike Bratcher, Robert Hamlet, Jennifer Nobui & Jocelyn Harimon 811 S. First Street Artesia, NM 88210

Bureau of Land Management C/O Jim Amos 620 E. Green Street Carlsbad, NM 88220

Spur Energy Partners, LLC C/O Braidy Moulder and Katherine Purvis 919 Milam Street Suite 2475 Houston, TX 77002

Subject: Closure Request for Spur Energy Partners – Burch Keely Unit #629

API No. 30-015-40705 Incident No. NAPP2207346885 Legal: U/L I, Section 24, Township 17S, Range 29E Eddy County, New Mexico

To Whom it May Concern:

Spur Energy Partners retained Energy Staffing Services, LLC (ESS) to conduct a spill assessment for the Burch Keely Unit #629 (hereafter referred to as the "Burch Keely") for the produced water release that occurred on March 13, 2022. On March 13th at 2:34 PM, the initial notification of the release was sent to the New Mexico Oil Conservation Division (NMOCD), District II Office and to the Bureau of Land Management via by Braidy Moulder of Spur Energy. On behalf of Spur Energy, ESS also submitted the Initial C141 Release Notification, along with the spill calculator to determine the volume of the release (attached) on same said date as above. The NMOCD accepted the C141 as record on March 14th at 12:55 PM. The incident number assigned to the release is NAPP2207346885. (Notification correspondence is attached).

This report provides a detailed description of the spill assessment, delineation, and remedial activities, which demonstrates that the closure criteria has been established in the 19.15.29.12 *New Mexico Administrative Code (NMAC: New Mexico Oil Conservation Division, 2018)* have been met and all applicable regulations have been followed. This document is intended to

serve as the final report to obtain approval from the NMOCD for the closure of the abovementioned release.

Incident Description

On March 13th, 2022, the manifold on the waterline failed, causing fluid to be released into the pasture area. The manifold was repaired, spill notification was submitted and vacuum trucks were dispatched to the site.

ESS was dispatched to the site and conducted an environmental site assessment of the release. It was determined after measuring the impacted area and depth of saturation, that approximately 91bbls of produced water was released and approximately 5bbls of produced water was recovered. Initial site photos and measuring of the impacted surface was conducted. The impact area measured 12,053 sq. ft. Please see the initial site photos and impact map attached.

Site Characterization

The release at the Burch Keely occurred on Federal Land and is located at 32.819055 latitude and -103.022047 longitude, 2.07 miles west of Loco Hills, New Mexico. The legal description of the site is Unit Letter I, Section 24, Township 17S and Range 29E. This site is in Eddy County, New Mexico. Please see site schematic attached.

The Burch Keely consists of production lines and is near production facilities and well pads. The area of the release is in the pasture area which runs parallel to the lease road. The elevation of the release is 3,625 ft. This area is historically or has been primarily dominated by perennial grasses, black grama and other perennial forbs. Please see the attached Rangeland and Vegetation Classification information attached.

The United States Department of Agriculture Natural Resources Conservation Services, indicates that the soil type in the area of the Burch Keely, consists of 35.4% Berino Complex and 64.6% of Tonucco Loamy Fine Sand, both with 1 to 3% slopes. (Soil Map Attached). In the area of the Burch Keely, the *FEMA National Flood Hazard Layer* indicates that there is 0.2% annual chance of a flood hazard with a 0.1% chance of a flood with an average of depth of one foot or with drainage areas of less than one square mile. (See map attached).

There is "low potential" for Karst Geology to be present near the Burch Keely site, according to the *United States Department of the Interior, Bureau of Land Management*. Please find the Karst Map attached herein.

There is no surface water located near or around the Burch Keely. The site is not near a continuously flowing watercourse and or lakebed within ½ a mile from the release. No other critical or community features were found at the Burch Keely site. (Attached Watercourse Map)

The nearest and most recent water well to the site according to the *New Mexico Office of the State Engineer is* RA 11914 POD1, 3,275 yards from the site, drilled in March of 2013, depth of well is 80'bgs. The second water well closest to the site is RA 11807 POD1, 4,184 yards from the site, drilled in November of 2012, depth of water is 76'bgs. An extended groundwater search was conducted using the *OSE POD Location Mapping System* and it has been determined that, no other wells are found within a ½ mile radius of the Burch Keely release. Please find the NMOSE, OSE POD and groundwater map attached to this report.

Closure Criteria Determination

The Closure Criteria for Soils impacted by a Release is shown in the below chart. No groundwater data was found within ½ a mile radius from the release point, being on Federal Land and with having a "low karst potential," this site fell under <50' depth to ground water. This is only due to not having any water in the ½ mile radius and being on Federal Land.

DGW	Constituent	Method	Limit
≤ 50'	Chloride	EPA 300.0 OR SM4500 CLB	600 mg/kg
	TPH (GRO + DRO + MRO)	EPA SW-846 METHOD 8015M	100 mg/kg
	GRO + DRO	EPA SW-846 METHOD 8015M	50 mg/kg
1	BTEX	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg
	Benzene	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg

Soil Remediation Action Levels

ESS has provided sufficient data that this release has impacted the soil at the Burch Keely and that the protocol is consistent with the remediation/abatement goals and objectives set forth in the *NMOCD Closure Criteria for Soils Impacted by a Release, dated August 14, 2018.* The guidance document provides direction for Spur Energy's initial response actions, site assessment and sample procedures conducted by ESS Staff. We would like to present to you the following information concerning the delineation process for the release detailed herein.

Soil Sampling Procedures

Soil sampling for laboratory analysis was conducted according to the NMOCD – approved industry standards. Accepted NMOCD soil sampling procedures and laboratory analytical methods are as follows:

- Collect clean samples in airtight glass jars supplied by the laboratory to conduct the analysis
- Each sample jar was labelled with site and sample information
- Samples were kept in and stored in a cool place and packed on ice
- Promptly ship sample to the lab for analysis following the chain of custody procedures

The following lab analysis method was used for each bottom hole (vertical) and sidewall sample (horizontal) was submitted to Envirotech Analytical Laboratory:

Volatile Organics by EPA 8021B

- Benzene, Toluene, Ethylbenzene, p.m. Xylene, o-Xylene and Total Xylenes Nonhalogenated Organics by EPA 8015D – GRO
 - Gasoline Range Organics (C6-C10)

Nonhalogenated Organics by EPA 8015D – DRO/ORO

- Diesel Range Organics (C10-C28)
- Oil Range Organics (C28-C40)

Anions by EPA 300.0/9056A

Chloride

Release Investigation Data Evaluation

On March 22nd of 2022, ESS arrived on site, set the delineation sample points, GPS'd each sample point and began to obtain surface samples. Each surface sample was field analyzed, logged, then submitted to Envirotech Laboratory for confirmation. A total of 12 vertical sample points were placed along with 20 horizontal sample points. Each sample point was then sampled by use of backhoe in 1' intervals. Bottom hole samples were then submitted to the lab for confirmation. All of the vertical surface samples showed high elevations of chlorides and low indications of BTEX. No TPH was detected. Three of the sample points showed slightly elevated TPH levels at 2'bgs, these were SP10-SP12. Please see the delineation sample data below, with lab data indicated in yellow. Attached to this report you will find the sample data, delineation sample map and lab analysis.

•

SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
SP1	SURFACE	>4000		ND	ND	ND	ND	ND	726
	1	400							U
	2	400		ND	ND	ND	ND	ND	211
-	l d'ar an leas					14.20			
SP2	SURFACE	>4000		ND	ND	ND	ND	ND	13100
	1	240							
	2	240		ND	ND	ND	ND	ND	132
100		1000					A. Carton	They be	
SP3	SURFACE	>4000		ND	ND	ND	ND	ND	24300
	1	400							
	2	400		ND	ND	ND	ND	ND	96.7
1.76	12 10 12		1	155	11 A 44 A		APPENDENT.		19 P. 19
SP4	SURFACE	>4000		ND	ND	33.5	72	105.5	61700
	1	3440							
	2	480							
	3	400		ND	ND	25.2	75.8	101	293
1.1									
SP5	SURFACE	>4000		ND	ND	166	161	327	45500
	1	2720							
	2	480							
	3	320		ND	ND	27.9	88	115.9	353
1 2.									
SP6	SURFACE	>4000		ND	ND	ND	ND	ND	17400
	1	320							
	2	320		ND	ND	ND	ND	ND	164
	1.		S No.		19 mil 19 mil	N. NI			
SP7	SURFACE	>4000		0.148	ND	ND	ND	ND	60500
	1	400							
	2	400		ND	ND	ND	ND	ND	198
		1 - 8 - 1			1000		No Log		1263
SP8	SURFACE	>4000		ND	ND	ND	ND	ND	60900
	1	320							
	2	320		ND	ND	ND	ND	ND	121
1.12									1152
SP9	SURFACE	>4000		ND	ND	ND	ND	ND	50600
	1	480							
	2	320		ND	ND	ND	ND	ND	190
SP10	SURFACE	>4000		0.165	ND	ND	ND	ND	41100
	1	500							
	2	400		ND	ND	ND	52.9	52.9	500

SP11	SURFACE	>4000	0.0899	ND	ND	ND	ND	27800
	1	540						
	2	400	ND	ND	ND	58.4	58.4	506
				/	118	Sec. 1		
SP12	SURFACE	>4000	0.0579	ND	ND	ND	ND	37400
	1	500						
	2	480	ND	ND	ND	58.3	58.3	533
SW1	SURFACE	20	ND	ND	ND	ND	ND	ND
0111	1	20						
	2	20	ND	ND	ND	ND	ND	20.6
1.1				Sec. Sec.				
SW2	SURFACE	ND	ND	ND	ND	ND	ND	ND
	1	ND						
	2	ND	ND	ND	ND	ND	ND	ND
							ř.	
SW3	SURFACE	ND	ND	ND	ND	ND	ND	ND
	1							
	2	ND	ND	ND	ND	ND	ND	ND
SW4	SURFACE	ND	ND	ND	ND	ND	ND	ND
	1	ND						
	2	ND	ND	ND	ND	ND	ND	ND
SW5	SURFACE	>4000	ND	ND	ND	ND	ND	15700
	1	>4000						
	2	>4000						
	3	580	ND	ND	ND	ND	ND	NID
	4	ND	ND	ND	ND	ND	ND	ND
SW6	SURFACE	>4000	ND	ND	ND	ND	ND	30300
	1	>4000						
	2	2000						
	3	500						
	4	20	ND	ND	ND	ND	ND	22.5
					1911-111		1.6.5%	
SW7	SURFACE	20	ND	ND	ND	ND	ND	20.4
	1	20						
-	2	20	ND	ND	ND	ND	ND	20.4
01115	0110 - 1 05	ND	ND	ND	ND	ND	ND	ND
SW8	SURFACE	ND	ND	ND	ND	ND	ND	ND

	1	NÐ						
	2	ND	ND	ND	ND	ND	ND	ND
		the state of		1.11		12 2	and the second	
SW9	SURFACE	40	ND	ND	ND	ND	ND	44.5
	1	40						
	2	40	ND	ND	ND	ND	ND	44.8
01/10	CUREACE	60	ND	NID	ND	ND	NID	40.0
SW10	SURFACE	60	ND	ND	ND	ND	ND	49.2
	1	60						
	2	45.1	ND	ND	ND	ND	ND	45.1
SW11	SURFACE	60	ND	ND	ND	ND	ND	47.1
20011	1	100	ND	ND	ND			47.1
	2	80	ND	ND	ND	ND	ND	78.5
71-1-1	2	00		ND	ND	ND	ND	78.5
SW12	SURFACE	80	ND	ND	ND	ND	ND	68.4
50012	1	100						00.1
	2	80	ND	ND	ND	ND	ND	83.9
201 B								0010
SW13	SURFACE	80	ND	ND	ND	ND	ND	69.5
	1	100						
	2	100	ND	ND	ND	ND	ND	87.9
1023	E Participal	215.46			Bin Lin		nin H	
SW14	SURFACE	100	ND	ND	ND	ND	ND	83.7
	1	80	-					
	2	80	ND	ND	ND	ND	ND	73.1
SW15	SURFACE	100	ND	ND	ND	ND	ND	89.2
	1	100						
	2	100	ND	ND	ND	ND	ND	91.3
1 1 2 W				und r'	Per 1877, "			
SW16	SURFACE	100	ND	ND	ND	ND	ND	90.5
	11	100						
	2	100	ND	ND	ND	ND	ND	96.3
				1. N. PA. 19				100
SW17	SURFACE	100	ND	ND	ND	ND	ND	100
	1	100						
	2	100	ND	ND	ND	ND	ND	102
CINIAC	CUDEAGE	100	ND	ND	NID		ND	100
SW18	SURFACE	100	ND	ND	ND	ND	ND	109
	1	100 100	ND	ND	ND	ND	ND	98.9

			Ki sor		1. A. A. 17		24 17 1		
SW19	SURFACE	100		ND	ND	ND	ND	ND	106
	1	120							
	2	120		ND	ND	ND	ND	ND	112
			1.1.1.1			and the second			
SW20	SURFACE	100		ND	ND	ND	ND	ND	102
	1	100							
	2	100		ND	ND	ND	ND	ND	102
1.4-1.63	instant interio			Personal S. 7	in the second second				

Excavation of the site began on April 26th of 2022. All of the buried lines in the area of impact were hand spotted and exposed 3'below and around the pipe. Depths of the excavation was 2'bgs except in the areas of SP4 and SP5, SP10 thru SP12. SP4 and SP5 areas were excavated to 4'bgs and SP10 thru SP12 were excavated to 3'bgs. All of the contaminated soil was stockpiled on plastic then hauled to Lea-land Disposal.

On April 27th, an email was sent to the OCD and BLM requesting a Composite Variance from 200 sq. ft. to 500 sq. ft. On April 28th, the OCD approved the variance and on May 4th, the variance from the BLM was also approved. Please see email attached. On April 29th, ESS crews began obtaining the five-point – 500 sq. ft. composite samples. Each composite was field analyzed and submitted to the Envirotech Laboratories for confirmation. Please find the composite sample map, GPS Information, composite sample data and lab analysis attached to this report. Composites 1 thru 5 and 8 thru 19 were excavated to 2'bgs, composites 6 thru 8 were excavated to 4'bgs and composites 20-25 were excavated to 3'bgs. Composite 20 thru 25 are the areas where further delineation and excavation was required due to TPH levels in the sample data of SP10 thru SP12.

				L-	12-5.		2.1.5		
SP ID	Depth	Titr	PID	BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
COMP1	2'	40	ND	ND	ND	ND	ND	ND	ND
COMP2	2'	40	ND	ND	ND	ND	ND	ND	ND
COMP3	2'	20	ND	ND	ND	ND	ND	ND	ND
COMP4	2'	60	ND	ND	ND	ND	ND	ND	ND
COMP5	2'	20	ND	ND	ND	ND	ND	ND	ND
COMP6	4'	40	ND	ND	ND	ND	ND	ND	ND
COMP7	4'	60	ND	ND	ND	ND	ND	ND	ND
COMP8	4'	20	ND	ND	ND	ND	ND	ND	ND
COMP9	2'	40	ND	ND	ND	ND	ND	ND	ND
COMP10	2'	40	ND	ND	ND	ND	ND	ND	ND
COMP11	2'	40	ND	ND	ND	ND	NĎ	ND	ND
COMP12	2'	20	ND	ND	ND	ND	ND	ND	ND

| COMP13 | 2' | 60 | ND |
|--------|--------|----|----|----|----|----|----|----|----|
| COMP14 | 2' | 20 | ND |
| COMP15 | 2' | ND |
| COMP16 | 2' | 60 | ND |
| COMP17 | 2' | 40 | ND |
| COMP18 | 2' | ND |
| COMP19 | 2' | ND |
| COMP20 | 3' | ND |
| COMP21 | 3' | ND |
| COMP22 | 3' | 40 | ND |
| COMP23 | 3' | 60 | ND |
| COMP24 | 3' | 60 | ND |
| COMP25 | 3' | 40 | ND |
| SW1 | | 20 | ND |
| SW2 | 82
 | ND |
| SW3 | | 20 | ND |
| SW4 | | ND |
| SW5 | | ND |
| SW6 | | 40 | ND |
| SW7 | | 40 | ND |
| SW8 | | 20 | ND |
| SW9 | | 20 | ND |
| SW10 | | 60 | ND |
| SW11 | | 40 | ND |
| SW12 | | 40 | ND |
| SW13 | | ND |

A total of 496.77 cubic yards of contaminated soil was excavated and hauled to Lea-land Disposal. Clean caliche in the amount of 80 cubic yards was purchased from Lea-land and 432 cubic yards of topsoil was purchased from Key Livestock Pit to backfill the excavation.

Closure Request

On behalf of Spur Energy Partners, ESS requests that the incident (NAPP2207346885), be closed for the release that occurred in the pasture area for the Burch Keely Unit #629. Spur Energy Partners and ESS certifies that all of the information provided and that is detailed in this report, is true and correct. We have also complied with all of the applicable closure requirements for the release that occurred on the Burch Keely Unit #629. Please find the final C141 attached to this report.

After review of this report if you have any questions or concerns, please do not hesitate to contact the undersigned at (575)390-6397 or (575)393-9048. You may also email any issues or concerns to <u>natalie@energystaffingllc.com</u>

Sincerely,

praie Glade

Director of Environmental and Regulatory Services Energy Staffing Services, LLC. 2724 NW County Road Hobbs, NM 88240 Office: 575-393-9048 Cell: 575-390-6397

Attachments:

Initial Spill Notification Email Initial C141 and Spill Calculator NMOCD C141 Approval Email **Initial Site Photos** Impact Map Site Map Rangeland and Vegetation Classification Soil Map **FEMA Flood Map** Karst Map Watercourse Map Groundwater Data and Map **OSE POD Groundwater Map Delineation Sample Data Delineation Sample Map Delineation Sample GPS Log Composite Variance and Notification Email Composite Sample Data Composite Sample Map** Composite Sample GPS Log

Lab Analysis Final Photos Final C141

Natalie Gladden

From: Sent:	Braidy Moulder <bmoulder@spurenergy.com> Monday, March 14, 2022 7:44 AM</bmoulder@spurenergy.com>
То:	Natalie Gladden
Subject:	FW: (NOR) Manifold on waterline - closest well Burch Keely #629

From: Braidy Moulder
Sent: Sunday, March 13, 2022 2:34 PM
To: Jim Griswold (Jim.Griswold@state.nm.us) <jim.griswold@state.nm.us>; mike.bratcher@state.nm.us;
Chad.Hensley@state.nm.us; Robert.Hamlet@state.nm.us
Cc: Todd@spurepllc.com; John Nabors <John@spurenergy.com>; Seth Ireland <Seth@spurenergy.com>; Brad Coffey
<Brad@spurenergy.com>; Sarah Chapman <schapman@spurenergy.com>; Jerry Mathews
<jmathews@spurenergy.com>; Kenny Kidd <kkidd@spurenergy.com>
Subject: (NOR) Manifold on waterline - closest well Burch Keely #629

To whom it may concern:

Spur Energy Partners LLC [328947] is reporting a release "in the pasture" at the Burch Keely #629. Surface Location: Unit I Sec. 24-T17S-R29E; API# 30-015-40705 GPS Coordinates: 32.819055, -104022047 Date of Release: 03/13/2022 Amount of Release: approx. 91 bbls Amount Recovered: 5 bbls

This released occurred "in the pasture". Vacuum trucks were dispatched, and all standing fluid was recovered. The source of the release was stopped, and the impacted area was secured to protect human health and the environment.

Spur will have the site evaluated to determine any impacts, will submit a C-141 for the release and remediate to OCD Standards. If you have any questions, please feel free to contact us.

Braidy Moulder EHS Manager Spur Energy Partners, LLC. 713-264-2517

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

This email has been scanned for viruses and malware, and may have been automatically archived by **Mimecast Ltd**, an innovator in Software as a Service (SaaS) for business. Providing a **safer** and **more useful** place for your human generated data. Specializing in; Security, archiving and compliance. To find out more <u>Click Here</u>.

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 Dístrict III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 16cof 274

Incident ID	NAPP2207346885		
District RP			
Facility ID			
Application ID			

Release Notification

Responsible Party

Responsible Party SPUR ENERGY PARTNERS	OGRID 328947	
Contact Name BRAIDY MOULDER	Contact Telephone 713-264-2517	
Contact email bmoulder@spurenergy.com	Incident # (assigned by OCD)	
Contact mailing address 919 MILAM STREET SUITE 2475	HOUSTON, TEXAS 77002	

Location of Release Source

Latitude 32.819055

Longitude -104.022047 (NAD 83 in decimal degrees to 5 decimal places)

Site Name BURCH KEELY UNIT #629	Site Type PRODUCTION	
Date Release Discovered 03/13/2022	API# (if applicable) 30-015-40705	

Unit Letter	Section	Township	Range	County
I	24	175	29E	EDDY

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 91BBLS	Volume Recovered (bbls) 5BBLS
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes 🗌 No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
C CD I		1

Cause of Release

Manifold on waterline failed, causing fluid to be released in the pasture area. Vacuum trucks were dispatched to recover the standing fluid. The source of the release was stopped and repaired.

	State of New Mexico	Incident ID	NAPP2207346885
ge 2	Oil Conservation Division	District RP	INAF F2201 340005
B* -		Facility ID	
		· · · · · · · · · · · · · · · · · · ·	
		Application ID	
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible pa VOLUME OF RELEASE	rty consider this a major release?	,
🛛 Yes 🗌 No			
	otice given to the OCD? By whom? To whom? W. LED THE STATE AT 2:34 PM. EMAIL WAS S		
	D AND HAMLET.		
<i></i>	Initial Respons		1) (
The responsible	party must undertake the following actions immediately unless th	ey could create a safety hazard that woul	ld result in injury
-	as been secured to protect human health and the envi	ronment.	
All free liquids and re	ave been contained via the use of berms or dikes, abs ecoverable materials have been removed and manag d above have <u>not</u> been undertaken, explain why:		nt devices.
All free liquids and realized in the actions described If all the actions described Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containment I hereby certify that the infor regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of	ecoverable materials have been removed and manag	ed appropriately. on immediately after discovery of ave been successfully completed ach all information needed for cl y knowledge and understand that pur and perform corrective actions for re not relieve the operator of liability s ndwater, surface water, human healt	of a release. If remediation l or if the release occurred osure evaluation. rsuant to OCD rules and leases which may endanger hould their operations have h or the environment. In
All free liquids and realized in the actions described If all the actions described Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containmen I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations.	ecoverable materials have been removed and managed d above have <u>not</u> been undertaken, explain why: 1AC the responsible party may commence remediating a narrative of actions to date. If remedial efforts h nt area (see 19.15.29.11(A)(5)(a) NMAC), please att rmation given above is true and complete to the best of my required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does gate and remediate contamination that pose a threat to grou	ed appropriately. on immediately after discovery of ave been successfully completed ach all information needed for cl y knowledge and understand that put and perform corrective actions for re not relieve the operator of liability s ndwater, surface water, human healt ility for compliance with any other f	of a release. If remediation l or if the release occurred osure evaluation. rsuant to OCD rules and leases which may endanger hould their operations have h or the environment. In
All free liquids and realized of the actions described of the actions and of the action of th	ecoverable materials have been removed and manage d above have <u>not</u> been undertaken, explain why: MAC the responsible party may commence remediating a narrative of actions to date. If remedial efforts h nt area (see 19.15.29.11(A)(5)(a) NMAC), please att rmation given above is true and complete to the best of my required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does the and remediate contamination that pose a threat to grou of a C-141 report does not relieve the operator of responsib ladden Title: Director of Environmental and Re	ed appropriately. on immediately after discovery of ave been successfully completed ach all information needed for cl y knowledge and understand that pur and perform corrective actions for re not relieve the operator of liability s ndwater, surface water, human healt ility for compliance with any other f	of a release. If remediation l or if the release occurred osure evaluation. rsuant to OCD rules and leases which may endanger hould their operations have h or the environment. In
All free liquids and realized in the actions described If all the actions described Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containment I hereby certify that the informed regulations all operators are public health or the environment failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: Natalie G	ecoverable materials have been removed and manage d above have <u>not</u> been undertaken, explain why: MAC the responsible party may commence remediatian a narrative of actions to date. If remedial efforts h int area (see 19.15.29.11(A)(5)(a) NMAC), please att remation given above is true and complete to the best of my required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does pate and remediate contamination that pose a threat to grou of a C-141 report does not relieve the operator of responsib ladden Title: Director of Environmental and Re ucculoadded Date:	on immediately after discovery of ave been successfully completed ach all information needed for cl y knowledge and understand that pur and perform corrective actions for re not relieve the operator of liability s ndwater, surface water, human healt ility for compliance with any other f	of a release. If remediation l or if the release occurred osure evaluation. rsuant to OCD rules and leases which may endanger hould their operations have h or the environment. In
All free liquids and realized in the actions described If all the actions described Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containment I hereby certify that the infor- regulations all operators are public health or the environne failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: Natalie G Signature: email: Natalie@energys	ecoverable materials have been removed and manage d above have <u>not</u> been undertaken, explain why: MAC the responsible party may commence remediatian a narrative of actions to date. If remedial efforts h int area (see 19.15.29.11(A)(5)(a) NMAC), please att remation given above is true and complete to the best of my required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does pate and remediate contamination that pose a threat to grou of a C-141 report does not relieve the operator of responsib ladden Title: Director of Environmental and Re ucculoadded Date:	on immediately after discovery of ave been successfully completed ach all information needed for cl y knowledge and understand that pur and perform corrective actions for re not relieve the operator of liability s ndwater, surface water, human healt ility for compliance with any other f	of a release. If remediation l or if the release occurred osure evaluation. rsuant to OCD rules and leases which may endanger hould their operations have h or the environment. In

.

	• Il Verizon LTE 11:37 AM @ 65% Copy of Spur Spill Calculator 6.24.2021 copy							
<		Copy of	Spur Spill		A A A	Q	B	•••
f_X	F	-luid prese	ent wher	n squeeze	ed			~
	А	В	С		D		F	
1 2 3 4		Length(Ft)		(Bbls) Calcula e, Outputs in re De				
5 6 7		<u>100.000</u> Cubic Feet Barr	20.000 Impacted	<u>2</u> <u>40</u>	4.000 00.000 12.38			
8 9		Soil T Bbls Assum Satur	ing 100%		Sand <u>42.48</u>			
10 11		Saturation Estimated Bar		present when 71	squeeze .30000	d(
12 13		Instructions 1.Input spill measurements below. Length and width need to						
14 15 16		be input in feet 2. Select a soil 1 3. Select a satu	type from the ration level fr	drop down me om the drop do	own men			
17 18		(For data		tructions see a	ppendix	tab)]	
19 20 21		Length (ft)	Meas	urements 100				
22 23		Width (ft) Depth (in)		20 24				
24 25 26 27 28 29 30 31 32								
		Calculato	or Ap	opendix	+			

•

••• Ve	eriz	on LTE	1	1:34 AM			④ 67%	۲ ۵ ۵
		Copy of	Spur Spill	Calculator 6	6.24.20	21 сору		
<				9	A	Q	B	•••
f_X	(5						~
	A	В	С		D		E F	
1					_		1	
2		2		(Bbls) Calcula				
3				e, Outputs in <mark>re</mark>				
4		Length(Ft)	Width(Ft)		epth(In)			
5 6	l	750.000	<u>6.000</u>		<u>50.000</u> 50.000			
7		Cubic Feet Barr			00.71			
8		Soil T			Clay			
9		Bbls Assum Satura	ning 100%		40.07			
10		Saturation	Fluid	present when	squeeze	d		
11		Estimated Bar			.10000			
12	l							
13			Inst	ructions			1	
		1.Input spill me be input in feet	easurements b	elow. Length a	and width	n need to		
14 15		2. Select a soil	-		nu			
16		3. Select a satu		-		u.		
17				tructions see a				
18			Bachering ine			caby	•	
19			Meas	urements				
20								
21		Length (ft)		750				
22		Width (ft)		6				
23		Depth (in)		6			5	
24								
25 26								
27								
28								
29								
30								
31								
37		Calculato	or Ap	opendix	+			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: (OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	90051
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jharimon	None	3/15/2022

Page 20eof 274

Action 90051

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Operator:		OGRID:
Spur Energ	gy Partners LLC	328947
9655 Katy	5	Action Number:
Houston, T	TX 77024	90045
		Action Type:
		[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Location of Release Source		
Please answer all of the questions in this group.		
Site Name	BURCH KEELY UNIT #629	
Date Release Discovered 03/13/2022		
Surface Owner	State	

Incident Details

Please answer all of the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο	
Has this release endangered or does it have a reasonable probability of endangering public health	Νο	
Has this release substantially damaged or will it substantially damage property or the environment	Νο	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Not answered.	
Produced Water Released (bbls) Details	Cause: Equipment Failure Other (Specify) Produced Water Released: 91 BBL Recovered: 5 BBL Lost: 86 BBL]	
Is the concentration of dissolved chloride in the produced water >10,000 mg/l	Yes	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

QUESTIONS

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	90045
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
Was this a major release as defined by 19.15.29.7(A) NMAC	Yes, major release.	
Reasons why this would be considered a submission for a notification of a major release	Unauthorized release of a volume, excluding gases, of 25 barrels or more	
If YES, was immediate notice given to the OCD, by whom	BRAIDY MOULDER	
If YES, was immediate notice given to the OCD, to whom	OCD ONLINE, BRATCHER, HAMLET, HENSLEY, GRISWOLD	
If YES, was immediate notice given to the OCD, when	03/13/2022	
If YES, was immediate notice given to the OCD, by what means (phone, email, etc.)	EMAIL	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	e. gas only) are to be submitted on the C-129 form.	

Initial	Res	ponse
---------	-----	-------

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after disc	overy of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the	

follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	90045
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

ACKNOWLEDGMENTS

$\overline{\mathbf{v}}$	I acknowledge that I am authorized to submit notification of a releases on behalf of my operator.
	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.
	l acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.
	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.
V	I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.
V	I acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	90045
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

CONDITIONS

Created By	Condition	Condition Date
ngladden1	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141.	3/14/2022

Page 24eof 274

Natalie Gladden

Released to Imaging: 2/13/2023 8:07:21 AM

From:	OCDOnline@state.nm.us
Sent:	Tuesday, March 15, 2022 11:34 AM
То:	Natalie Gladden
Subject:	The Oil Conservation Division (OCD) has approved the application, Application ID: 90051

To whom it may concern (c/o Natalie Gladden for Spur Energy Partners LLC),

The OCD has approved the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nAPP2207346885,

with the following conditions:

• None

The signed C-141 can be found in the OCD Online: Imaging under the incident ID (n#).

If you have any questions regarding this application, please contact me.

Thank you, Jocelyn Harimon Environmental Specialist 575-748-1283 Jocelyn.Harimon@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

SPUR ENERGY BURCH KEELY UNIT 629 INITIAL SITE PHOTOS

Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition

In areas that have similar climate and topography, differences in the kind and amount of rangeland or forest understory vegetation are closely related to the kind of soil. Effective management is based on the relationship between the soils and vegetation and water.

This table shows, for each soil that supports vegetation, the ecological site, plant association, or habitat type; the total annual production of vegetation in favorable, normal, and unfavorable years; the characteristic vegetation; and the average percentage of each species. An explanation of the column headings in the table follows.

An ecological site, plant association, or habitat type is the product of all the environmental factors responsible for its development. It has characteristic soils that have developed over time throughout the soil development process; a characteristic hydrology, particularly infiltration and runoff that has developed over time; and a characteristic plant community (kind and amount of vegetation). The hydrology of the site is influenced by development of the soil and plant community. The vegetation, soils, and hydrology are all interrelated. Each is influenced by the others and influences the development of the others. The plant community on an ecological site, plant association, or habitat type is typified by an association of species that differs from that of other ecological sites, plant associations, or habitat types in the kind and/or proportion of species or in total production. Descriptions of ecological sites are provided in the Field Office Technical Guide, which is available in local offices of the Natural Resources Conservation Service (NRCS). Descriptions of plant associations or habitat types are available from local U.S. Forest Service offices.

Total dry-weight production is the amount of vegetation that can be expected to grow annually in a well managed area that is supporting the potential natural plant community. It includes all vegetation, whether or not it is palatable to grazing animals. It includes the current year's growth of leaves, twigs, and fruits of woody plants. It does not include the increase in stem diameter of trees and shrubs. It is expressed in pounds per acre of air-dry vegetation for favorable, normal, and unfavorable years. In a favorable year, the amount and distribution of precipitation and the temperatures make growing conditions substantially better than average. In a normal year, growing conditions are about average. In an unfavorable year, growing conditions are well below average, generally because of low available soil moisture. Yields are adjusted to a common percent of air-dry moisture content.

Characteristic vegetation (the grasses, forbs, shrubs, and understory trees that make up most of the potential natural plant community on each soil) is listed by common name. Under *rangeland composition and forest understory*, the expected percentage of the total annual production is given for each species making up the characteristic vegetation. The percentages are by dry weight for rangeland. Percentages for forest understory are by either dry weight or canopy cover. The amount that can be used as forage depends on the kinds of grazing animals and on the grazing season.

BURCH KEELY UNIT #629

Range management requires knowledge of the kinds of soil and of the potential natural plant community. It also requires an evaluation of the present range similarity index and rangeland trend. Range similarity index is determined by comparing the present plant community with the potential natural plant community on a particular rangeland ecological site. The more closely the existing community resembles the potential community, the higher the range similarity index. Rangeland trend is defined as the direction of change in an existing plant community relative to the potential natural plant community. Further information about the range similarity index and rangeland trend is available in the "National Range and Pasture Handbook," which is available in local offices of NRCS or on the Internet.

The objective in range management is to control grazing so that the plants growing on a site are about the same in kind and amount as the potential natural plant community for that site. Such management generally results in the optimum production of vegetation, control of undesirable brush species, conservation of water, and control of erosion. Sometimes, however, an area with a range similarity index somewhat below the potential meets grazing needs, provides wildlife habitat, and protects soil and water resources.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service, National range and pasture handbook.

Page 37 of 274

Report—Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition

Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition---Eddy Area, New Mexico

Page 38 of 274

Map unit symbol and soil	Ecological Site, Plant	Total d	Iry-weight proc	luction	Characteristic rangeland	Compositio		
name	Association, or Habitat Type	Favorable year	Normal year	Unfavorable year	or forest understory vegetation	n	Rangeland	Forest understory
		Lb/ac	Lb/ac	Lb/ac		Pct dry wt	Pct dry wt	
BB—Berino complex, 0 to 3 percent slopes, eroded								
Berino	Loamy Sand	1,800	_	650	other perennial grasses	25		
	(R070BD003NM)				black grama	15		
					other perennial forbs	15		
					dropseed	10		
					little bluestem	10		
					other shrubs	10		
					bush muhly	5		
					cane bluestem	5		
					Havard's oak	5		
Pajarito	Loamy Sand	1,800	_	650	black grama	15		
	(R070BD003NM)				other perennial forbs	15		
					dropseed	10		
					little bluestem	10		
					other perennial grasses	10		
					rabo de ardilla	10		
					bush muhly	5		
					cane bluestem	5		
					fall witchgrass	5		
					Havard's oak	5		
					other shrubs	5		
					sand sagebrush	5		

USDA

Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition---Eddy Area, New Mexico

	Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition–Eddy Area, New Mexico											
Map unit symbol and soil name	Ecological Site, Plant Association, or Habitat	Total d	ry-weight proc	luction	Characteristic rangeland or forest understory	Compositio						
name	Туре	Favorable year	Normal year	Unfavorable year	vegetation	n	Rangeland	Forest understory				
		Lb/ac	Lb/ac	Lb/ac		Pct dry wt	Pct dry wt					
TF—Tonuco loamy fine sand, 0 to 3 percent slopes												
Tonuco	Sandy (R070BD004NM)	_	_	_	—							

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 18, Sep 8, 2022

USDA Natural Resources Conservation Service Released to Imaging: 2/13/2023 8:07:21 AM

Web Soil Survey National Cooperative Soil Survey 11/10/2022 Page 1 of 3

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
ВВ	Berino complex, 0 to 3 percent slopes, eroded	4.4	35.4%
TF	Tonuco loamy fine sand, 0 to 3 percent slopes	8.0	64.6%
Totals for Area of Interest		12.3	100.0%

National Flood Hazard Layer FIRMette

Legend

regulatory purposes.

Page 43 of 274

Releasea to Imaging: 2/13/2023 8.907:21 AM 1,500 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Received by OCD: 11/15/2022 1:53:50 PM SPUR ENERGY

BURCH KEELY #629 SITE MAP

214

SPUR - BURCH KEELY 629

3

216

Loco Hills

The

213

N

Greleased to Imaging: 2/13/2023 8:07:21 AM

New Mexico Office of the State Engineer Wells with Well Log Information

		No wells found.	
<u>UTMNAD83 Radius Search (in meters):</u>			
Easting (X): 591544.16	Northing (Y): 3631651.11	Radius: 1000	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

3/14/22 12:19 PM

WELLS WITH WELL LOG INFORMATION

New Mexico Office of the State Engineer Wells with Well Log Information

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right	(R=POI been rep O=orph C=the fr closed)	olaced, aned,	(quart	ers are 1=] (quarters				/	083 UTM in mete	ers)				(in fe	ret)	
		POD			qqq								Log File	Depth	Depth	License
POD Number	Code	Subbasin	County	Source	64164	Sec	Tws 1	Rng X	Y	Dis	tance Start Date	Finish Date	Date		Water Driller	Number
<u>RA 11914 POD1</u>		RA	ED	Shallow	2 4 2	20	17S 3	30E 594801	3632002		3275 03/19/2013	03/19/2013	04/09/2013	85	80 JOHN NORRIS	1682
<u>RA 11807 POD1</u>		RA	ED	Shallow	1 2 3	22	17S 2	29E 587360	3631585	2	4184 11/23/2012	11/26/2012	03/26/2013	131	76 TAYLOR, CLINTON E.	1348
Record Count: 2																
<u>UTMNAD83 Rad</u>	ius Searc	<u>ch (in meter</u>	<u>:s):</u>													
Easting (X):	591544.1	6		Northing	(Y):	36316	51.11		Radius:	5000						

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/14/22 12:21 PM

WELLS WITH WELL LOG INFORMATION

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)									
Well Tag	POD Number	Q64 Q16 Q4 Sec Tws	, , ,								
-	RA 11914 POD1	2 4 2 20 17S	30E 594801 3632002 🌍								
Driller Licens	e: 1682	Driller Company: HUNGR	Y HORSE, LLC.								
Driller Name:	JOHN NORRIS										
Drill Start Dat	e: 03/19/2013	Drill Finish Date: 03/19	9/2013 Plug Date:								
Log File Date	: 04/09/2013	PCW Rcv Date:	Source: St	nallow							
Pump Type:		Pipe Discharge Size:	Estimated Yield:								
Casing Size:		Depth Well: 85 fe	et Depth Water: 80) feet							

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Point of Diversion Summary

			(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)						
Well Tag	POD Number			Sec Tv	• •	(N/1200 0 IN X	Y		
-	RA 11807 POD1	1	2 3	22 17	S 29E	587360	3631585	9	
Driller Licer	ise: 1348	Driller Co	mpany	: TAYL	OR WAT	FER WELL SE	ERVICE		
Driller Name	e: TAYLOR, CLIN	TON E.							
Drill Start D	ate: 11/23/2012	Drill Finis	sh Date	: 1	1/26/201	2 Plug D	Date:		
Log File Dat	te: 03/26/2013	PCW Rcv	Date:			Sourc	e:	Shallow	
Pump Type:	:	Pipe Disc	Pipe Discharge Size: Estimated Yield: 4 GPN						
Casing Size	: 4.50	Depth We	ell:	1	31 feet	Depth	Water:	76 feet	
I	Water Bearing Strati	fications:	Тор	Bottom	Descri	iption			
			104	128	Other/	Unknown			
	Casing Per	forations:	Тор	Bottom					
			91	131					

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Received by OCD: 11/15/2022 1:53:50 PM SPUR ENERGY

BURCH KEELY #629 GROUND WATER MAP

Legend

RA 11914 POD1 - 3275 FROM SITE - 80 BGS

Loco Hills

SPUR - BURCH KEELY 629

RA 11807 POD 1 - 4184' FROM SITE 75' DGW

- RA 11914 POD1 3275' FROM SITE 80'BGS
- 🗧 SPUR BURCH KEELY 629

Page 50 of 274

and the second

RA 11807 POD 1 - 4184 FROM SITE 75 DGW

82

CP4 CP8 CP4

OSE POD Locations Map

3/14/2022, 12:39:06 PM

OSE District Boundary **GIS WATERS PODs**

0 Active

Both Estates

New Mexico State Trust Lands _____ SiteBoundaries

0 Pending Subsurface Estate

Esri, HERE, GeoTechnologies, Inc., Esri, HERE, Garmin, GeoTechnologies, Inc., U.S. Department of Energy Office of Legacy Management, Maxar

Received by OCD: 11/15/2022 1:53:50 PM

Company	Name:	SPUR			Location	Name:	BURCH KEELY UNIT #629 R		Release Date:	3/13/2022	
DELINEAT	TION SAMPL	E DATA								-	
SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL	Soil	Notes
SP1	SURFACE	>4000		ND	ND	ND	ND	ND	726		
	1	400									
	2	400		ND	ND	ND	ND	ND	211		
SP2	SURFACE	>4000		ND	ND	ND	ND	ND	13100		
	1	240									
	2	240		ND	ND	ND	ND	ND	132		
		-							-		
SP3	SURFACE	>4000		ND	ND	ND	ND	ND	24300		
	1	400									
	2	400		ND	ND	ND	ND	ND	96.7		
	T									T T	
SP4	SURFACE	>4000		ND	ND	33.5	72	105.5	61700		
	1	3440									
	2	480									
	3	400		ND	ND	25.2	75.8	101	293		Will be delineated during excv
	T								I	1 1	
SP5	SURFACE	>4000		ND	ND	166	161	327	45500		
	1	2720									
	2	480									
	3	320		ND	ND	27.9	88	115.9	353		Will be delineated during excv
	T						1				
SP6	SURFACE	>4000		ND	ND	ND	ND	ND	17400		
	1	320									
	2	320		ND	ND	ND	ND	ND	164		
	1									<u>г</u> г	
SP7	SURFACE	>4000		0.148	ND	ND	ND	ND	60500		
	1	400									
	2	400		ND	ND	ND	ND	ND	198		
0				•	•			•		<u>г</u> т	
SP8	SURFACE	>4000		ND	ND	ND	ND	ND	60900		

	1	320									
	2	320		ND	ND	ND	ND	ND	121		
	•								•	-	
SP9	SURFACE	>4000		ND	ND	ND	ND	ND	50600		
	1	480									
	2	320		ND	ND	ND	ND	ND	190		
SP10	SURFACE	>4000		0.165	ND	ND	ND	ND	41100		
	1	500									
	2	400		ND	ND	ND	52.9	52.9	500		Will be delineated during excv
	T	-				-			T		
SP11	SURFACE	>4000		0.0899	ND	ND	ND	ND	27800		
	1	540									
	2	400		ND	ND	ND	58.4	58.4	506		Will be delineated during excv
	T		1	· · · · · · · · · · · · · · · · · · ·		I	1	l	1	T	
SP12	SURFACE	>4000		0.0579	ND	ND	ND	ND	37400		
	1	500									
	2	480		ND	ND	ND	58.3	58.3	533		Will be delineated during excv
	T		-				-	-	T		
SW1	SURFACE	20		ND	ND	ND	ND	ND	ND		
	1	20									
	2	20		ND	ND	ND	ND	ND	20.6		
C 14/2		ND	[
SW2	SURFACE	ND		ND	ND	ND	ND	ND	ND		
	1	ND			ND		ND				
	2	ND		ND	ND	ND	ND	ND	ND		
SW3	SURFACE	ND		ND	ND	ND	ND	ND	ND		
5005		ND		ND	ND		ND	ND	ND		
	1	ND		ND	ND	ND	ND	ND	ND		
	2	ND		ND	ND						
SW4	SURFACE	ND		ND	ND	ND	ND	ND	ND		
5774	1	ND			ΝD						
	2	ND		ND	ND	ND	ND	ND	ND		
	2	ND		ND	ND		ND				

	-		 			-	-	_		
SW5	SURFACE	>4000	ND	ND	ND	ND	ND	15700		
	1	>4000								
	2	>4000								
	3	580								
	4	ND	ND	ND	ND	ND	ND	ND		
SW6	SURFACE	>4000	ND	ND	ND	ND	ND	30300		
	1	>4000								
	2	2000								
	3	500								
	4	20	ND	ND	ND	ND	ND	22.5		
SW7	SURFACE	20	ND	ND	ND	ND	ND	20.4		
	1	20								
	2	20	ND	ND	ND	ND	ND	20.4		
SW8	SURFACE	ND	ND	ND	ND	ND	ND	ND		
	1	ND								
	2	ND	ND	ND	ND	ND	ND	ND		
SW9	SURFACE	40	ND	ND	ND	ND	ND	44.5		
	1	40								
	2	40	ND	ND	ND	ND	ND	44.8		
SW10	SURFACE	60	ND	ND	ND	ND	ND	49.2		
	1	60								
	2	45.1	ND	ND	ND	ND	ND	45.1		
SW11	SURFACE	60	ND	ND	ND	ND	ND	47.1		
	1	100								
	2	80	ND	ND	ND	ND	ND	78.5		
SW12	SURFACE	80	ND	ND	ND	ND	ND	68.4		

	1	100							
	2	80	ND	ND	ND	ND	ND	83.9	
SW13	SURFACE	80	ND	ND	ND	ND	ND	69.5	
	1	100							
	2	100	ND	ND	ND	ND	ND	87.9	
SW14	SURFACE	100	ND	ND	ND	ND	ND	83.7	
	1	80							
	2	80	ND	ND	ND	ND	ND	73.1	
SW15	SURFACE	100	ND	ND	ND	ND	ND	89.2	
	1	100							
	2	100	ND	ND	ND	ND	ND	91.3	
SW16	SURFACE	100	ND	ND	ND	ND	ND	90.5	
	1	100							
	2	100	ND	ND	ND	ND	ND	96.3	
SW17	SURFACE	100	ND	ND	ND	ND	ND	100	
	1	100							
	2	100	ND	ND	ND	ND	ND	102	
SW18	SURFACE	100	ND	ND	ND	ND	ND	109	
	1	100							
	2	100	ND	ND	ND	ND	ND	98.9	
SW19	SURFACE	100	ND	ND	ND	ND	ND	106	
	1	120							
	2	120	ND	ND	ND	ND	ND	112	
SW20	SURFACE	100	ND	ND	ND	ND	ND	102	
	1	100							
	2	100	ND	ND	ND	ND	ND	102	

See 44 3 125

CLIENTS SPUR ENERGY

LOCATION BURCH KEELY UNIT #629

DELINEATION GPS

SAMPLE ID	LAT	LONG
SP1	32.819182	-104.022127
SP2	32.819103	-104.022049
SP3	32.81904	-104.02203
SP4	32.818981	-104.021907
SP5	32.818924	-104.022014
SP6	32.818961	-104.022109
SP7	32.818955	-104.022402
SP8	32.818942	-104.02285
SP9	32.818925	-104.023058
SP10	32.818932	-104.023349
SP11	32.818956	-104.023985
SP12	32.819008	-104.024517
SW1	32.819249	-104.022123
SW2	32.819153	-104.021975
SW3	32.819017	-104.021853
SW4	32.818922	-104.021967
SW5	32.818911	-104.022231
SW6	32.818931	-104.022593
SW7	32.818892	-104.022926
SW8	32.818906	-104.023305
SW9	32.81892	-104.023552
SW10	32.818923	-104.023858
SW11	32.818943	-104.024215
SW12	32.818981	-104.024327
SW13	32.819017	-104.024572
SW14	32.81903	-104.024405
SW15	32.819026	-104.024116
SW16	32.818977	-104.02375
SW17	32.819004	-104.023339
SW18	32.818988	-104.0227454
SW19	32.818962	-104.022194
SW20	32.819097	-104.022219

Page 58 of 274

Natalie Gladden

From:	Morgan, Crisha A <camorgan@blm.gov></camorgan@blm.gov>
Sent:	Wednesday, May 4, 2022 9:20 AM
To:	Natalie Gladden; Hamlet, Robert, EMNRD; Chad Hensley
Cc:	Braidy Moulder; Dakoatah Montanez; Bratcher, Mike, EMNRD; Nobui, Jennifer, EMNRD; Amos, James A; CFO_Spill, BLM_NM
Subject:	Re: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request

All,

Released to Imaging: 2/13/2023 8:07:21 AM

Please consider this BLM's approval for the variance request of the pasture area composite sampling from 200 sq. ft. to 500 sq. ft. for the Burch Keely Unit 629 release that occurred 03/13/2022. Incident Number NAPP2207346885.

Please let me know if you have any questions, or need anything further.

Crisha A. Morgan |Certified - Environmental Protection Specialist | Program Officer |COR| Spills Coordinator | Orphaned Well POC Lead Bureau of Land Management | Carlsbad Field Office 620 E. Greene Street Carlsbad, NM 88220 Cell 575-200-8648 | Office 575-234-5987 |<u>camorgan@blm.gov</u>

WARNING: This document is FOR OFFICIAL USE ONLY (FOUO). It contains information that may be exempt from public release under the Freedom of Information Act (5.U.S.C. 552). It is to be controlled, stored, handled, transmitted, distributed, and disposed of in accordance with Department of Interior (DOI) policy relating to FOUO information and is not to be released to the public or other personnel who do not have need-to-know without prior approval of an authorized DOI official. FOR OFFICIAL USE ONLY

From: Natalie Gladden <natalie@energystaffingllc.com>

Sent: Thursday, April 28, 2022 7:37 AM

To: Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>; Chad Hensley <chensley@spurenergy.com>

Cc: Braidy Moulder <bmoulder@spurenergy.com>; Dakoatah Montanez <dakoatah@energystaffingllc.com>; Bratcher, Mike, EMNRD

<mike.bratcher@state.nm.us>; Nobui, Jennifer, EMNRD <Jennifer.Nobui@state.nm.us>; Amos, James A <jamos@blm.gov>; Morgan, Crisha A <camorgan@blm.gov>

Subject: RE: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request

Will do, thank you!

Released to Imaging: 2/13/2023 8:07:21 AM

Natalíe Gladden

Director of Environmental and Regulatory Services Energy Staffing Services, LLC. 2724 NW County Road

Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: <u>natalie@energystaffingllc.com</u>

From: Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>
Sent: Thursday, April 28, 2022 7:36 AM
To: Natalie Gladden <natalie@energystaffingllc.com>; Chad Hensley <chensley@spurenergy.com>
Cc: Braidy Moulder <bmoulder@spurenergy.com>; Dakoatah Montanez <dakoatah@energystaffingllc.com>; Bratcher, Mike, EMNRD
<mike.bratcher@state.nm.us>; Nobui, Jennifer, EMNRD <Jennifer.Nobui@state.nm.us>; Amos, James A <jamos@blm.gov>
Subject: RE: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request

Natalie,

The variance request for closure samples not to exceed 500 ft2 is approved. The variance request will be placed in the incident file for future reference. Also, please make sure to include in closure report.

Regards,

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau EMNRD - Oil Conservation Division 811 S. First Street | Artesia, NM 88210 575.909.0302 | robert.hamlet@state.nm.us http://www.emnrd.state.nm.us/OCD/

From: Natalie Gladden <<u>natalie@energystaffingllc.com</u>>
Sent: Wednesday, April 27, 2022 3:19 PM
To: Chad Hensley <<u>chensley@spurenergy.com</u>>; Hamlet, Robert, EMNRD <<u>Robert.Hamlet@state.nm.us</u>>
Cc: Braidy Moulder <<u>bmoulder@spurenergy.com</u>>; Dakoatah Montanez <<u>dakoatah@energystaffingllc.com</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>; Nobui, Jennifer, EMNRD <<u>Jennifer.Nobui@state.nm.us</u>>; Amos, James A <<u>jamos@blm.gov</u>>
Subject: RE: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request

Robert,

Released to Imaging: 2/13/2023 8:07:21 AM

This site is in low karst, on BLM minerals, ground water is 76-80'bgs with no data with-in ½ a mile radius. This site was delineated following the most stringent sampling protocol and will be excavated the same. The composite map is included in this email. This is a narrow and long release impact area. There is no flood issues as well.

Let me know if you have any questions or would like more information.

Natalíe Gladden Director of Environmental and Regulatory Services Energy Staffing Services, LLC.

2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: natalie@energystaffingllc.com

From: Chad Hensley <<u>chensley@spurenergy.com</u>> Sent: Wednesday, April 27, 2022 10:48 AM To: Hamlet, Robert, EMNRD <<u>Robert.Hamlet@state.nm.us</u>> **Cc:** Braidy Moulder <<u>bmoulder@spurenergy.com</u>>; Natalie Gladden <<u>natalie@energystaffingllc.com</u>>; Dakoatah Montanez <<u>dakoatah@energystaffingllc.com</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>; Nobui, Jennifer, EMNRD <<u>Jennifer.Nobui@state.nm.us</u>> **Subject:** RE: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request

Done Rob. We will get that over to you promptly.

Thanks!

Released to Imaging: 2/13/2023 8:07:21 AM

From: Hamlet, Robert, EMNRD <<u>Robert.Hamlet@state.nm.us</u>>
Sent: Wednesday, April 27, 2022 10:45 AM
To: Chad Hensley <<u>chensley@spurenergy.com</u>>
Cc: Braidy Moulder <<u>bmoulder@spurenergy.com</u>>; natalie@energystaffingllc.com; dakoatah@energystaffingllc.com; Bratcher, Mike, EMNRD
<<u>mike.bratcher@state.nm.us</u>>; Nobui, Jennifer, EMNRD <<u>Jennifer.Nobui@state.nm.us</u>>
Subject: RE: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request

[EXTERNAL]

Chad,

We would need a proposed sampling grid map and sampling statistics showing equal or better protection of fresh water, public health and the environment. The demonstration should show that depth to groundwater and karst are not an issue. Also, that it's not within a 100-year floodplain.

Regards,

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau EMNRD - Oil Conservation Division 811 S. First Street | Artesia, NM 88210 575.909.0302 | robert.hamlet@state.nm.us http://www.emnrd.state.nm.us/OCD/

Received by OCD: 11/15/2022 1:53:50 PM

From: Chad Hensley <<u>chensley@spurenergy.com</u>>
 Sent: Wednesday, April 27, 2022 10:17 AM
 To: Hamlet, Robert, EMNRD <<u>Robert.Hamlet@state.nm.us</u>>
 Cc: Braidy Moulder <<u>bmoulder@spurenergy.com</u>>; natalie@energystaffingllc.com; dakoatah@energystaffingllc.com; Bratcher, Mike, EMNRD
 mike.bratcher@state.nm.us>; Nobui, Jennifer, EMNRD <<u>Jennifer.Nobui@state.nm.us</u>>
 Subject: RE: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request

Rob,

We, Spur, will include all communications in the workplan/closure report so that requirement should always be satisfied. As for the e-mail request for a variance on sample size, hydrology and a scaled map will be sent for variances request. Will that satisfy an e-mail request, or would you want other information?

Chad Hensley EHS Coordinator Spur Energy Partners, LLC. 346-339-1494

Begin forwarded message:

From: "Hamlet, Robert, EMNRD" <<u>Robert.hamlet@state.nm.us</u>>
Date: April 27, 2022 at 9:18:05 AM MDT
To: Natalie Gladden <<u>natalie@energystaffingllc.com</u>>
Cc: Braidy Moulder <<u>bmoulder@spurenergy.com</u>>, Dakoatah Montanez <<u>dakoatah@energystaffingllc.com</u>>, "Bratcher, Mike, EMNRD"
<<u>mike.bratcher@state.nm.us</u>>, "Nobui, Jennifer, EMNRD" <<u>jennifer.nobui@state.nm.us</u>>
Subject: RE: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request

[EXTERNAL] Natalie, For future reference, a variance from the Spill Rule for closure sampling should be included in the remediation plan. We can approve a variance through email, but we need a detailed written demonstration that the variance will provide equal or better protection of fresh water, public health and the environment.

Regards,

Released to Imaging: 2/13/2023 8:07:21 AM

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau EMNRD - Oil Conservation Division 811 S. First Street | Artesia, NM 88210 575.909.0302 | robert.hamlet@state.nm.us http://www.emnrd.state.nm.us/OCD/

From: Natalie Gladden <<u>natalie@energystaffingllc.com</u>>
Sent: Wednesday, April 27, 2022 8:47 AM
To: ocdonline, emnrd, EMNRD <<u>EMNRD.OCDOnline@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>; Hamlet, Robert,
EMNRD <<u>Robert.Hamlet@state.nm.us</u>>; Nobui, Jennifer, EMNRD <<u>Jennifer.Nobui@state.nm.us</u>>; CFO_Spill, BLM_NM
<<u>blm_nm_cfo_spill@blm.gov</u>>; Amos, James A <<u>jamos@blm.gov</u>>
Cc: Braidy Moulder <<u>bmoulder@spurenergy.com</u>; chensley@spurenergy.com; Dakoatah Montanez <<u>dakoatah@energystaffingllc.com</u>>
Subject: [EXTERNAL] Spur Energy - Burch Keely #629 - Composite Variance Request
Importance: High

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

On behalf of Spur Energy, ESS would like to request a variance for the composite samples. The impact area is 12,053 sq. ft. of pasture area. Instead of the 200 sq. ft. composites, we would like to request the 500 sq. ft. composites. With the 200 sq. ft. the bottom composites would consist of 60.26 composite samples verses 24.10 composites. The release information is below:

Location: Burch Keely Unit #629 API No. 30-015-40705 DOR: 3/13/22 Incident No. NAPP2207346885

Thank you in advance, if you have any questions, please let me know.

Sincerely,

Natalíe Gladden

Director of Environmental and Regulatory Services Energy Staffing Services, LLC. 2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: natalie@energystaffingllc.com

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

This email has been scanned for viruses and malware, and may have been automatically archived by **Mimecast Ltd**, an innovator in Software as a Service (SaaS) for business. Providing a **safer** and **more useful** place for your human generated data. Specializing in; Security, archiving and compliance. To find out more <u>Click Here</u>.

Received by OCD: 11/15/2022 1:53:50 PM

Company		SPUR			Location	Name:	BURCH K		Г #629	Release Date:	3/13/2022
SP ID	TE SAMPLE Depth	DATA Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL	Soil	Notes
COMP1	2'	40	ND	ND	ND	ND	ND	ND	ND	5011	Notes
COMP2	2'	40	ND	ND	ND	ND	ND	ND	ND		
COMP3	2'	20	ND	ND	ND	ND	ND	ND	ND		
COMP4	2'	60	ND	ND	ND	ND	ND	ND	ND		
COMP5	2'	20	ND	ND	ND	ND	ND	ND	ND		
COMP6	4'	40	ND	ND	ND	ND	ND	ND	ND		
COMP7	4'	60	ND	ND	ND	ND	ND	ND	ND		
COMP8	4'	20	ND	ND	ND	ND	ND	ND	ND		
COMP9	2'	40	ND	ND	ND	ND	ND	ND	ND		
COMP10	2'	40	ND	ND	ND	ND	ND	ND	ND		
COMP11	2'	40	ND	ND	ND	ND	ND	ND	ND		
COMP12	2'	20	ND	ND	ND	ND	ND	ND	ND		
COMP13	2'	60	ND	ND	ND	ND	ND	ND	ND		
COMP14	2'	20	ND	ND	ND	ND	ND	ND	ND		
COMP15	2'	ND	ND	ND	ND	ND	ND	ND	ND		
COMP16	2'	60	ND	ND	ND	ND	ND	ND	ND		
COMP17	2'	40	ND	ND	ND	ND	ND	ND	ND		
COMP18	2'	ND	ND	ND	ND	ND	ND	ND	ND		
COMP19	2'	ND	ND	ND	ND	ND	ND	ND	ND		
COMP20	3'	ND	ND	ND	ND	ND	ND	ND	ND		
COMP21	3'	ND	ND	ND	ND	ND	ND	ND	ND		
COMP22	3'	40	ND	ND	ND	ND	ND	ND	ND		
COMP23	3'	60	ND	ND	ND	ND	ND	ND	ND		
COMP24	3'	60	ND	ND	ND	ND	ND	ND	ND		
COMP25	3'	40	ND	ND	ND	ND	ND	ND	ND		
SW1		20	ND	ND	ND	ND	ND	ND	ND		
SW2		ND	ND	ND	ND	ND	ND	ND	ND		
SW3		20	ND	ND	ND	ND	ND	ND	ND		
SW4		ND	ND	ND	ND	ND	ND	ND	ND		
SW5		ND	ND	ND	ND	ND	ND	ND	ND		
SW6		40	ND	ND	ND	ND	ND	ND	ND		

		1							I
SW7	40	ND							
SW8	20	ND							
SW9	20	ND							
SW10	60	ND							
SW11	40	ND							
SW12	40	ND							
SW13	ND								
		1		I	I	I		I	

CLIENTS SPUR ENERGY

BURCH KEELY UNIT #629 LOCATION

LUCATION	COMPOSITE GPS	
SAMPLE ID		LONG
CP1	32.819224	-104.022124
CP2	32.819184	-104.022126
CP3	32.819151	-104.022112
CP4	32.819133	-104.022025
CP5	32.819094	-104.022077
CP6	32.819056	-104.022014
CP7	32.819037	-104.021925
CP8	32.81899	-104.021906
CP9	32.818964	-104.022045
CP10	32.818938	-104.022076
CP11	32.818948	-104.022195
CP12	32.818959	-104.022337
CP13	32.818978	-104.022413
CP14	32.818967	-104.022504
CP15	32.818968	-104.022638
CP16	32.81897	-104.022801
CP17	32.818962	-104.022883
CP18	32.818938	-104.023034
CP19	32.818981	-104.023106
CP20	32.81896	-104.023351
CP21	32.818958	-104.023481
CP22	32.818962	-104.023831
CP23	32.818989	-104.024035
CP24	32.819016	-104.024282
CP25	32.819028	-104.024524
SW1	32.819242	104.022117
SW2	32.818956	-104.021915
SW3	32.818942	-104.022446
SW4	32.818923	-104.022942
SW5	32.818967	-104.023197
SW6	32.81895	-104.023757
SW7	32.818993	-104.024119
SW8	32.819026	-104.024563
SW9	32.818972	-104.023899
SW10	32.818986	-104.023355
SW10 SW11	32.818983	-104.02286
SW11 SW12	32.819026	-104.022405
SW12 SW13	32.819020	-104.022403
	52.013137	-104.022137
l		

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Spur Energy Partners

Project Name:

Burch Keely Unit #629

Work Order: E203148

Job Number: 20046-0001

Received: 3/24/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 3/28/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 3/28/22

Natalie Gladden PO Box 1058 Houston, TX 77279

Project Name: Burch Keely Unit #629 Workorder: E203148 Date Received: 3/24/2022 10:30:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 3/24/2022 10:30:00AM, under the Project Name: Burch Keely Unit #629.

The analytical test results summarized in this report with the Project Name: Burch Keely Unit #629 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Page 70 of 274

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
SP1 - Surface	6
SP1 - 2'	7
SP2 - Surface	8
SP2 - 2'	9
SP3 - Surface	10
SP3 - 2'	11
SP4 - Surface	12
SP4 - 3'	13
SP5 - Surface	14
SP5 - 3'	15
SP6 - Surface	16
SP6 - 2'	17
SP7 - Surface	18
SP7 - 2'	19
SP8 - Surface	20
SP8 - 2'	21
SP9 - Surface	22
SP10 - Surface	23
SP11 - Surface	24
SP12 - Surface	25

•

Table of Contents (continued)

QC Summary Data					
QC - Volatile Organics by EPA 8021B	26				
QC - Nonhalogenated Organics by EPA 8015D - GRO	27				
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	28				
QC - Anions by EPA 300.0/9056A	29				
Definitions and Notes					
Chain of Custody etc.					
Sample Summary

		Sample Sum	mai y			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name:Burch Keely Unit #629Project Number:20046-0001Project Manager:Natalie Gladden		629	Reported: 03/28/22 16:14		
lient Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container	
P1 - Surface	E203148-01A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P1 - 2'	E203148-02A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P2 - Surface	E203148-03A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P2 - 2'	E203148-04A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P3 - Surface	E203148-05A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P3 - 2'	E203148-06A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P4 - Surface	E203148-07A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P4 - 3'	E203148-08A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P5 - Surface	E203148-09A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P5 - 3'	E203148-10A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P6 - Surface	E203148-11A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P6 - 2'	E203148-12A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P7 - Surface	E203148-13A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P7 - 2'	E203148-14A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P8 - Surface	E203148-15A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P8 - 2'	E203148-16A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P9 - Surface	E203148-17A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P10 - Surface	E203148-18A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P11 - Surface	E203148-19A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	
P12 - Surface	E203148-20A	Soil	03/22/22	03/24/22	Glass Jar, 4 oz.	

		ampic D				
PO Box 1058	Project Name Project Numb	er: 2004	ch Keely Unit #6 46-0001	529		Reported:
Houston TX, 77279	Project Manag	ger: Nata	ilie Gladden			3/28/2022 4:14:23PM
	S	SP1 - Surface				
		E203148-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
oluene	ND	0.0250	1	03/24/22	03/25/22	
-Xylene	ND	0.0250	1	03/24/22	03/25/22	
,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
urrogate: 4-Bromochlorobenzene-PID		99.2 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		92.1 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
urrogate: n-Nonane		64.0 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: KL		Batch: 2213051
Chloride	726	20.0	1	03/24/22	03/25/22	

Sample Data

Sample Data

	2	bample D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Num Project Mana	ber: 2004	ch Keely Unit #62 46-0001 1lie Gladden	29		Reported: 3/28/2022 4:14:23PM
		SP1 - 2'				
		E203148-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
urrogate: 4-Bromochlorobenzene-PID		93.1 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		93.6 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
urrogate: n-Nonane		68.1 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2213051
Chloride	211	20.0	1	03/24/22	03/25/22	

Sample Data

		impic D	uu			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	ch Keely Unit #62 46-0001 Ilie Gladden	9		Reported: 3/28/2022 4:14:23PM
	S	P2 - Surface	!			
		E203148-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		95.0 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.9 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		78.4 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: KL		Batch: 2213051
Chloride	13100	400	20	03/24/22	03/25/22	

Sample Data

	C C	bample D	ลเล			
Spur Energy Partners	Project Name		ch Keely Unit #62	29		
PO Box 1058	Project Num		46-0001			Reported:
Houston TX, 77279	Project Mana	ager: Nata	alie Gladden			3/28/2022 4:14:23PM
		SP2 - 2'				
		E203148-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		93.1 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.2 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		75.8 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2213051
Chloride	132	20.0	1	03/24/22	03/25/22	

Sample Data

	D.	impic D	aia			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 3/28/2022 4:14:23PM
	S	P3 - Surface	;			
	-	E203148-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
p,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		82.6 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.2 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Oil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		75.3 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: KL		Batch: 2213051
Chloride	24300	2000	100	03/24/22	03/25/22	

Sample Data

	0	ample D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numl Project Mana	ber: 2004	ch Keely Unit # 46-0001 ılie Gladden	629		Reported: 3/28/2022 4:14:23PM
		SP3 - 2'				
		E203148-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
o-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Fotal Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		90.8 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.9 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		68.7 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: KL		Batch: 2213051
Chloride	96.7	20.0	1	03/24/22	03/25/22	

Sample Data

	D.	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numb Project Manag	er: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 3/28/2022 4:14:23PM
	S	SP4 - Surface	•			
		E203148-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Fotal Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		93.2 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.1 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	33.5	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	72.0	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		81.0 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: KL		Batch: 2213051
Chloride	61700	2000	100	03/24/22	03/25/22	

Sample Data

	2	ample D	ลเล			
Spur Energy Partners	Project Name	e: Bure	ch Keely Unit #62	29		
PO Box 1058	Project Num	ber: 2004	46-0001	Reported:		
Houston TX, 77279	Project Mana	iger: Nata	ilie Gladden			3/28/2022 4:14:23PM
		SP4 - 3'				
		E203148-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Fotal Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		92.7 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.1 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	25.2	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	75.8	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		77.2 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2213051
Chloride	293	20.0	1	03/24/22	03/25/22	

Sample Data

	St	mpic D	ata			
Spur Energy Partners PO Box 1058	Project Name: Project Numbe	er: 2004	ch Keely Unit #629 46-0001	9		Reported:
Houston TX, 77279	Project Manag	er: Nata	ilie Gladden			3/28/2022 4:14:23PM
	S	P5 - Surface	!			
	-	E203148-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
p,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		92.9 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.8 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	166	25.0	1	03/24/22	03/25/22	
Oil Range Organics (C28-C36)	161	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		85.3 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: KL		Batch: 2213051
Chloride	45500	2000	100	03/24/22	03/25/22	

Sample Data

	D.	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numb Project Manag	er: 2004	ch Keely Unit #0 46-0001 alie Gladden	529		Reported: 3/28/2022 4:14:23PM
		SP5 - 3'				
		E203148-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		93.0 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.0 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	27.9	25.0	1	03/24/22	03/25/22	
Oil Range Organics (C28-C36)	88.0	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		76.2 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: KL		Batch: 2213051
Chloride	353	20.0	1	03/24/22	03/25/22	

Sample Data

	56		ata			
Spur Energy Partners	Project Name:	Bur	ch Keely Unit #629)		
PO Box 1058	Project Numbe	er: 2004	20046-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			3/28/2022 4:14:23PM
	S	P6 - Surface				
		E203148-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.1 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Oil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		74.6 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: KL		Batch: 2213051
Chloride	17400	1000	50	03/24/22	03/25/22	

Sample Data

	2	ample D	ลเล			
Spur Energy Partners	Project Name		ch Keely Unit #62	9		
PO Box 1058	Project Num		46-0001		Reported:	
Houston TX, 77279	Project Mana	iger: Nata	ilie Gladden			3/28/2022 4:14:23PM
		SP6 - 2'				
		E203148-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Fotal Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		98.7 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.2 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		75.8 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: KL		Batch: 2213051
Chloride	164	20.0	1	03/24/22	03/25/22	

Sample Data

	50	impic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manage	er: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 3/28/2022 4:14:23PM
Houston 1A, 7/279	Project Manage	er: Nau	ine Gladden			5/26/2022 4.14.25F W
	SI	P7 - Surface	!			
]	E203148-13				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	Batch: 2213052		
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	0.0330	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	0.0290	0.0250	1	03/24/22	03/25/22	
p,m-Xylene	0.119	0.0500	1	03/24/22	03/25/22	
Fotal Xylenes	0.148	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		98.3 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.6 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g/kg Analyst: JL			Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Oil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		66.7 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: KL		Batch: 2213051
Chloride	60500	2000	100	03/24/22	03/25/22	

Sample Data

	2	bample D	ลเล			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Num Project Mana	ber: 2004	ch Keely Unit #6 46-0001 alie Gladden	29		Reported: 3/28/2022 4:14:23PM
		SP7 - 2'				
		E203148-14				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	Analyst: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
thylbenzene	ND	0.0250	1	03/24/22	03/25/22	
oluene	ND	0.0250	1	03/24/22	03/25/22	
-Xylene	ND	0.0250	1	03/24/22	03/25/22	
,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
urrogate: 4-Bromochlorobenzene-PID		98.2 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		91.4 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
urrogate: n-Nonane		77.4 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: KL		Batch: 2213051
Chloride	198	20.0	1	03/24/22	03/25/22	

Sample Data

2004	ch Keely Unit #629 46-0001 Ilie Gladden			Reported: 3/28/2022 4:14:23PM
3148-15				
Reporting				
Limit	Dilution	Prepared	Analyzed	Notes
mg/kg	Analyst:	IY		Batch: 2213052
0.0250	1	03/24/22	03/25/22	
0.0250	1	03/24/22	03/25/22	
0.0250	1	03/24/22	03/25/22	
0.0250	1	03/24/22	03/25/22	
0.0500	1	03/24/22	03/25/22	
0.0250	1	03/24/22	03/25/22	
4 %	70-130	03/24/22	03/25/22	
mg/kg	Analyst:	IY		Batch: 2213052
20.0	1	03/24/22	03/25/22	
3 %	70-130	03/24/22	03/25/22	
mg/kg	Analyst:	JL		Batch: 2213040
25.0	1	03/24/22	03/25/22	
50.0	1	03/24/22	03/25/22	
7 %	50-200	03/24/22	03/25/22	
mg/kg	Analyst:	KL		Batch: 2213051
2000	100	03/24/22	03/25/22	
	Reporting Limit mg/kg 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 % mg/kg 20.0 8 % mg/kg 25.0 50.0 7 % mg/kg	Reporting Limit Dilution mg/kg Analyst: 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 0.0250 1 8% 70-130 mg/kg Analyst: 25.0 1 50.0 1 7% 50-200 mg/kg Analyst:	Reporting Limit Dilution Prepared mg/kg Analyst: IY 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 0.0250 1 03/24/22 mg/kg Analyst: IY 20.0 20.0 1 03/24/22 mg/kg Analyst: JL 25.0 25.0 1 03/24/22 50.0 1 03/24/22 7% 50-200 03/24/22 mg/kg Analyst: KL	Reporting Limit Dilution Prepared Analyzed mg/kg Analyst: IY 0.0250 1 03/24/22 03/25/22 0.0250 1 03/24/22 03/25/22 03/25/22 0.0250 1 03/24/22 03/25/22 0.0250 1 03/24/22 03/25/22 0.0250 1 03/24/22 03/25/22 0.0250 1 03/24/22 03/25/22 0.0250 1 03/24/22 03/25/22 0.0250 1 03/24/22 03/25/22 0.0250 1 03/24/22 03/25/22 0.0250 1 03/24/22 03/25/22 mg/kg Analyst: IY 20.0 1 03/24/22 03/25/22 mg/kg Analyst: JL 25.0 1 03/24/22 03/25/22 mg/kg Analyst: JL 25.0 1 03/24/22 03/25/22 50.0 1 03/24/22 03/25/22 03/25/22 mg/kg Analyst: KL

Sample Data

	5	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	ch Keely Unit #62 46-0001 Ilie Gladden	9		Reported: 3/28/2022 4:14:23PM
		SP8 - 2'				
		E203148-16				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Batch: 2213052		
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		97.9 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.1 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		79.2 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: KL		Batch: 2213051
Chloride	121	20.0	1	03/24/22	03/25/22	

Sample Data

		ampic D	uu			
Spur Energy Partners	Project Name:		ch Keely Unit #62	9		
PO Box 1058	Project Numbe		46-0001			Reported:
Houston TX, 77279	Project Manag	er: Nata	ilie Gladden		3/28/2022 4:14:23PM	
	S	P9 - Surface				
		E203148-17				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
o-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		99.3 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.5 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g/kg Analyst: JL			Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		77.7 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: KL		Batch: 2213051
Chloride	50600	2000	100	03/24/22	03/25/22	

Sample Data

54	mpic D	ata			
Project Name:	Bure	ch Keely Unit #629)		
Project Numbe	r: 2004	46-0001			Reported:
Project Manage	er: Nata	ilie Gladden		3/28/2022 4:14:23PM	
SP	10 - Surfac	e			
]	E203148-18				
	Reporting				
Result	Limit	Dilution	Prepared	Analyzed	Notes
mg/kg	mg/kg	Analyst		Batch: 2213052	
ND	0.0250	1	03/24/22	03/25/22	
0.0355	0.0250	1	03/24/22	03/25/22	
ND	0.0250	1	03/24/22	03/25/22	
0.0343	0.0250	1	03/24/22	03/25/22	
0.131	0.0500	1	03/24/22	03/25/22	
0.165	0.0250	1	03/24/22	03/25/22	
2	99.9 %	70-130	03/24/22	03/25/22	
mg/kg	mg/kg	Analyst: IY			Batch: 2213052
ND	20.0	1	03/24/22	03/25/22	
	91.4 %	70-130	03/24/22	03/25/22	
mg/kg	mg/kg	Analyst	: JL		Batch: 2213040
ND	25.0	1	03/24/22	03/25/22	
ND	50.0	1	03/24/22	03/25/22	
	74.8 %	50-200	03/24/22	03/25/22	
mg/kg	mg/kg	/kg Analyst: KL		Batch: 2213051	
	Project Name: Project Numbe Project Manage SP I Result mg/kg ND 0.0355 ND 0.0343 0.131 0.165 mg/kg ND mg/kg ND	Project Name: Bure Project Number: 2004 Project Manager: Nata SP10 - Surface E203148-18 E203148-18 Reporting Result Limit mg/kg mg/kg ND 0.0250 0.0355 0.0250 ND 0.0250 0.0343 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.0250 0.165 0.016 0.00	Project Number: $20046-0001$ Project Manager: Natalie Gladden SP10 - Surface E203148-18 Result Limit Dilution mg/kg mg/kg Analyst ND 0.0250 1 0.0355 0.0250 1 ND 0.0250 1 0.0343 0.0250 1 0.131 0.0500 1 0.165 0.0250 1 0.165 0.0250 1 0.165 0.0250 1 0.165 0.0250 1 0.165 0.0250 1 0.165 0.0250 1 0.165 0.0250 1 0.165 0.0250 1 0.165 0.0250 1 MD 20.0 1 MD 20.0 1 MD 25.0 1 ND 25.0 1 ND 50.0 1 ND 50.0 1	Image: Burch Keely Unit #629 Project Number: 20046-0001 Project Manager: Natalie Gladden SP10 - Surface Result Dilution Prepared Mg/kg mg/kg Analyst: IY ND 0.0250 1 03/24/22 0.0355 0.0250 1 03/24/22 ND 0.0250 1 03/24/22 0.0343 0.0250 1 03/24/22 0.131 0.0500 1 03/24/22 0.165 0.0250 1 03/24/22 mg/kg mg/kg Analyst: JL ND 20.0 1 03/24/22 mg/kg mg/kg Analyst: JL ND 25.0 1 03/24/22 ND 25.0 1 03/24/22 ND 25	Variable is a constrained by the series of

Sample Data

			ata			
Spur Energy Partners	Project Name:	Bur	ch Keely Unit #62	9		
PO Box 1058	Project Numbe	er: 2004	46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden	3/28/2022 4:14:23PM		
	SI	P11 - Surfac	e			
		E203148-19				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	:: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	0.0899	0.0500	1	03/24/22	03/25/22	
Total Xylenes	0.0899	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		99.9 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	:: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.4 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Oil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		76.8 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: KL		Batch: 2213051
Chloride	27800	2000	100	03/24/22	03/25/22	
linonae	27000	2000				

Sample Data

	5		ara			
Spur Energy Partners	Project Name:	Bure	ch Keely Unit #62	9		
PO Box 1058	Project Numbe	er: 2004	46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden	3/28/2022 4:14:23PM		
	SI	P12 - Surfac	e			
		E203148-20				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Benzene	ND	0.0250	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	03/24/22	03/25/22	
o,m-Xylene	0.0579	0.0500	1	03/24/22	03/25/22	
Fotal Xylenes	0.0579	0.0250	1	03/24/22	03/25/22	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2213052
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.0 %	70-130	03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: JL		Batch: 2213040
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/25/22	
Oil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/25/22	
Surrogate: n-Nonane		72.8 %	50-200	03/24/22	03/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: KL		Batch: 2213051
Chloride	37400	2000	100	03/24/22	03/25/22	

OC Summary Data

Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	2	Burch Keely Un 20046-0001 Vatalie Gladden	it #629				Reported: 3/28/2022 4:14:23PM	
		Volatile Organics by EPA 8021B								
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2213052-BLK1)]	Prepared: 0	3/24/22 A	nalyzed: 03/25/22	
Benzene	ND	0.0250								
Ethylbenzene	ND	0.0250								
Toluene	ND	0.0250								
o-Xylene	ND	0.0250								
o,m-Xylene	ND	0.0500								
Total Xylenes	ND	0.0250								
Surrogate: 4-Bromochlorobenzene-PID	7.82		8.00		97.7	70-130				
LCS (2213052-BS1)						1	Prepared: 0	3/24/22 A	analyzed: 03/25/22	
Benzene	4.80	0.0250	5.00		95.9	70-130				
Ethylbenzene	4.47	0.0250	5.00		89.5	70-130				
Toluene	4.70	0.0250	5.00		94.0	70-130				
p-Xylene	4.67	0.0250	5.00		93.4	70-130				
o,m-Xylene	9.23	0.0500	10.0		92.3	70-130				
Fotal Xylenes	13.9	0.0250	15.0		92.7	70-130				
Surrogate: 4-Bromochlorobenzene-PID	7.97		8.00		99.7	70-130				
LCS Dup (2213052-BSD1)]	Prepared: 0	3/24/22 A	analyzed: 03/25/22	
Benzene	4.70	0.0250	5.00		94.0	70-130	2.02	20		
Ethylbenzene	4.41	0.0250	5.00		88.2	70-130	1.41	20		
Toluene	4.62	0.0250	5.00		92.4	70-130	1.78	20		
p-Xylene	4.59	0.0250	5.00		91.7	70-130	1.81	20		
o,m-Xylene	9.11	0.0500	10.0		91.1	70-130	1.29	20		
Total Xylenes	13.7	0.0250	15.0		91.3	70-130	1.47	20		

OC Summary Data

		QU L	Juiiiii	I y Date	u				
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number Project Manage	: 2	urch Keely Ur 0046-0001 latalie Gladder					Reported: 3/28/2022 4:14:23PM
	No	nhalogenated	Organics	by EPA 80	15D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2213052-BLK1)							Prepared: 0	3/24/22 A	nalyzed: 03/25/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.34		8.00		91.7	70-130			
LCS (2213052-BS2)							Prepared: 0	3/24/22 A	nalyzed: 03/25/22
Gasoline Range Organics (C6-C10)	53.4	20.0	50.0		107	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.49		8.00		93.7	70-130			
LCS Dup (2213052-BSD2)							Prepared: 0	3/24/22 A	nalyzed: 03/25/22
Gasoline Range Organics (C6-C10)	54.4	20.0	50.0		109	70-130	1.77	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.50		8.00		93.8	70-130			

QC Summary Data

Result mg/kg Limit mg/kg Level mg/kg Result mg/kg Result mg/kg <th></th> <th></th> <th>QC S</th> <th>uIIIIII</th> <th>aly Data</th> <th>l</th> <th></th> <th></th> <th></th> <th></th>			QC S	uIIIIII	aly Data	l				
Analyte Result mg/kg Reporting Limit mg/kg Source mg/kg Rec mg/kg Rec mg/kg Rec mg/kg Rec mg/kg Rec mg/kg Rec mg/kg RPD kimit RPD kimit RPD kimit Blank (213040-BLK1) Prepared: 03/24/22 Analyzed: 03/25/22 Analyzed: 03/25/22 Analyzed: 03/25/22 Diesel Range Organies (C10-C28) 0il Range Organies (C28-C36) ND 50.0 64.7 50-200 LCS (2213040-BS1) Prepared: 03/24/22 Analyzed: 03/25/22 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organies (C10-C28) 443 25.0 500 88.6 38-132 Surrogate: n-Nonane 34.8 50.0 69.6 50-200 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organies (C10-C28) 443 25.0 500 88.6 38-132 Surrogate: n-Nonane 34.8 50.0 69.6 50-200 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organies (C10-C28) 481 25.0 500 ND 96.2 38-132 Surrogate: n-Nonane 35.4 50.0<	PO Box 1058		Project Number:		20046-0001	it #629				
Analyte Limit mg/kg Limit mg/kg Level mg/kg Result mg/kg		Nonh	alogenated Org	anics by	y EPA 8015D	- DRO	/ORO			Analyst: JL
Diesel Range Organics (C10-C28) ND 25.0 0il Range Organics (C28-C36) ND 50.0 Surrogate: n-Nonane 32.4 50.0 64.7 50-200 LCS (2213040-BS1) Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 443 25.0 500 88.6 38-132 Surrogate: n-Nonane 34.8 50.0 69.6 50-200 Matrix Spike (2213040-MS1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Diesel Range Organics (C10-C28) 481 25.0 50.0 70.8 50-200 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20 <th>Analyte</th> <th></th> <th>Ĺimit</th> <th>Level</th> <th>Result</th> <th></th> <th>Limits</th> <th></th> <th>Limit</th> <th>Notes</th>	Analyte		Ĺimit	Level	Result		Limits		Limit	Notes
ND 50.0 Oil Range Organics (C28-C36) ND 50.0 Surrogate: n-Nonane 32.4 50.0 64.7 50-200 LCS (2213040-BS1) Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 443 25.0 500 88.6 38-132 Matrix Spike (2213040-MS1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Surrogate: n-Nonane 35.4 50.0 ND 96.2 38-132 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Prepared: 03/24/22 Analyzed: 03/25/22 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Blank (2213040-BLK1)							Prepared: 0	3/24/22 A	Analyzed: 03/25/22
Surrogate: n-Nonane 32.4 50.0 64.7 50-200 LCS (2213040-BS1) Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 443 25.0 500 88.6 38-132 Surrogate: n-Nonane 34.8 50.0 69.6 50-200 Matrix Spike (2213040-MS1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Surrogate: n-Nonane 35.4 50.0 ND 96.2 38-132 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Diesel Range Organics (C10-C28)	ND	25.0					_		
LCS (2213040-BS1) Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 443 25.0 500 88.6 38-132 Surrogate: n-Nonane 34.8 50.0 69.6 50-200 Matrix Spike (2213040-MS1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Surrogate: n-Nonane 35.4 50.0 70.8 50-200 V Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Oil Range Organics (C28-C36)	ND	50.0							
Diesel Range Organics (C10-C28) 443 25.0 500 88.6 38-132 Diesel Range Organics (C10-C28) 34.8 50.0 69.6 50-200 Matrix Spike (2213040-MS1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Surrogate: n-Nonane 35.4 50.0 ND 96.2 38-132 Prepared: 03/24/22 Analyzed: 03/25/22 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Surrogate: n-Nonane	32.4		50.0		64.7	50-200			
Surrogate: n-Nonane 34.8 50.0 69.6 50-200 Matrix Spike (2213040-MS1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	LCS (2213040-BS1)							Prepared: 0	3/24/22 A	Analyzed: 03/25/22
Matrix Spike (2213040-MS1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Surrogate: n-Nonane 35.4 50.0 70.8 50-200 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Diesel Range Organics (C10-C28)	443	25.0	500		88.6	38-132			
Diesel Range Organics (C10-C28) 481 25.0 500 ND 96.2 38-132 Surrogate: n-Nonane 35.4 50.0 70.8 50-200 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Surrogate: n-Nonane	34.8		50.0		69.6	50-200			
Surrogate: n-Nonane 35.4 50.0 70.8 50-200 Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Matrix Spike (2213040-MS1)				Source: I	E 203148 -	19	Prepared: 0	3/24/22 A	Analyzed: 03/25/22
Matrix Spike Dup (2213040-MSD1) Source: E203148-19 Prepared: 03/24/22 Analyzed: 03/25/22 Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Diesel Range Organics (C10-C28)	481	25.0	500	ND	96.2	38-132			
Diesel Range Organics (C10-C28) 426 25.0 500 ND 85.2 38-132 12.2 20	Surrogate: n-Nonane	35.4		50.0		70.8	50-200			
	Matrix Spike Dup (2213040-MSD1)				Source: I	E 203148 -	19	Prepared: 0	3/24/22 A	Analyzed: 03/25/22
Surrogate: n-Nonane 36.4 50.0 72.7 50-200	Diesel Range Organics (C10-C28)	426	25.0	500	ND	85.2	38-132	12.2	20	
	Surrogate: n-Nonane	36.4		50.0		72.7	50-200			

QC Summary Data

		$\mathbf{x} \mathbf{v} \mathbf{v}$	••••••		~					
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager	2	Burch Keely Ui 20046-0001 Natalie Gladdei						ported: 2 4:14:23PM
11005001 1A, 77279		, ,		300.0/9056						
		Amons	DY EPA	300.0/90504	1				Analy	st: KL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%		Notes
Blank (2213051-BLK1)							Prepared: 0	3/24/22	Analyzed:	03/25/22
Chloride	ND	20.0								
LCS (2213051-BS1)							Prepared: 0	3/24/22	Analyzed:	03/25/22
Chloride	259	20.0	250		104	90-110				
Matrix Spike (2213051-MS1)				Source:	E203148-0)1	Prepared: 0	3/24/22	Analyzed:	03/25/22
Chloride	1210	20.0	250	726	195	80-120				M2
Matrix Spike Dup (2213051-MSD1)				Source:	E203148-0)1	Prepared: 0	3/24/22	Analyzed:	03/25/22
Chloride	925	20.0	250	726	79.6	80-120	27.0	20		M2

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Spur Energy Partners	Project Name:	Burch Keely Unit #629	
PO Box 1058	Project Number:	20046-0001	Reported:
Houston TX, 77279	Project Manager:	Natalie Gladden	03/28/22 16:14

M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Released

to

of 2 Page

TAT

EPA Program

Received by OCD: 11/15/2022 1:53:50 PM

Page 99 of 274

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CWA SDWA State RCRA UT AZ Remarks
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	State
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	State
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UT AZ TX
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UT AZ TX
Trail: Time Date Sampled Matrix No. of Containers Sample ID tab Number $x = x = x = x = x = x = x = x = x = x =$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Remarks
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Remarks
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 4p3-5mfece 5 4p3-2' 4 4p3-2' 4 5 1 4p3-2' 7 4p3-2' 8 4p3-2' 8 4p3-2' 9 4p3-2' 1 4p3-2' 1 4p3-2' 1 4p3-2' 1 <tr< td=""><td></td></tr<>	
493-2' 10 494-3' 10 494-3' 10 495-surface 10	
504-3' 505-surface 505-surface	
504-3' 595-surface 9	
501-3' 515-surface 9	
SP5-surface 9	
Additional Instructions:	
I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally misizelling the sample location,	ay they are sampled or receiv
I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally inside line at an avg temp above 0 but less than 6 °C on subsequent date or time of collection is considered fraud and may be grounds for legal action. Sampled by:	days.
Relinquished by: (Signature) Date 3/22/22 13:15 Received by: (Signature) Date 3/22/22 N	
Relinquished by: (Signature) Date Time Control Received by: (Signature) Date Time Time Time Time Time Time Time Tim	
Relinquished by: (Signature) Date Time Received by: (Signature) Date Time AVG Temp °C	A CARLER OF
Container Type: g - glass, p - poly/plastic, ag - amber glass, v - VOA	
Sample Matrix 3 - Solid, Sur -	1
Note: Samples are discarded 50 days after results are reported unless other unlength and the laboratory is limited to the amount paid for on the report. samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for on the report. Page 31 of 33	analysis of the above

Released

					Bi	II То		1		La	h Use	e Onl	v		1	-	TA	T		EPA P	rogram
ent:5p	Anager:	/	11/00		Attention: ESS			lah \	NO#				lumbe	r	1D	2D,	3D	and the second s	ndard	CWA	SDWA
ject:	Surch the	ly Unit .	#619		Address: 2724 N CA			Lab	02	14	8	20	046.	1000	-	2D, X					
dress:					City, State, Zip Holds,	VM 88240		-Term -			F		sis and			.,		1			RCRA
	e, Zip				Phone:								1								
one:	<i>c, 2p</i>				Email: Nortalie		1.2	015	015						1			L		State	
nail:								by 8	by 8	021	60	10	0.00		MN	X		<u> </u>	VM CO	UT AZ	
port d	ue by:				1937			ORO	DRO	by 8(oy 82	Is 60	ide 3					F	/	I	
Time Impled	Date Sampled	Matrix	No. of Containers	Sample ID		1	Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC	BGDOC				Page _ 2 EPA Pi CWA State UT AZ Remarks	
	3-22	5	1 -	496 - Surfe	ne		11							_	X	-					
	1	1	1	596 - Surfe 596 - 2'			12								7	2					
				587- Surfa 587-2.	a		13								4						
				587-2.			14				*								-		
		<u>a</u> a		588-50 G	61		15								/						
¥.)				588-2'			10	2010							\mathbb{A}	_					
				589 - Surf	2(0		17								+)	-	-				
			\downarrow	SPID - Surfi	(<i>L</i>		18								\downarrow		-				
				5811 - Su-fo 5812 - Su-	ill		19								A		-				
				6012 - 64	Los		20									N					
	onal Instru		/	*			4					Icampi		og therma	Inresen	/	ust he re	ceived o	n ice the day	they are samp	led or receiv
(field sa ate or ti	mpler), attest	to the validi	ty and auther red fraud and	enticity of this sample. d may be grounds for l	l am aware that tampering with or gal action. <u>Sampled</u>	htentionally mislebelling	ethe samp	e locat	1						np abov	e 0 but l	ess than	6 °C on s	ubsequent d		
	shed by: (Sie		Da		Received by: (Signa	Blady	Date 3/27	3/2	2 / -	3:1	5	Rec	eived	on ice:		Lab U		1 ly			
tio	shed by: (Sig	Stall	43	H3H7 /4	245 Received by: (Signa	Chte	Date /	4/22	-	:30	2	<u>T1</u>		N SPIRE	<u>T2</u>	CN S	10-10		<u>T3</u>	1796.6	
elinqu	shed by: (Sig	gnature) (DZ DZ	te ⁷ Time	Received by: (Signa		Date		Time			- A \$510.54, 24079	G Tem		4						
c	Antrix: S - Soil	Sd - Solid, S	g - Sludge, A	- Aqueous, O - Other _	unless other arrangements are		Contain	er Typ	e:g-	glass	, p - p	oly/p	lastic,	ag - am	ber gl	lass, v	- VOA	0		and the second	

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

lient:	Spur Energy Partners Da	te Received:	03/24/22 1	0:30	Work Order ID: E203148
Phone:	(575) 390-6397 Da	te Logged In:	03/23/22 1	5:55	Logged In By: Caitlin Christian
Email:		ie Date:	03/25/22 1	7:00 (1 day TAT)	
Chain o	of Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match	the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: U	JPS
4. Was t	the COC complete, i.e., signatures, dates/times, requested	analyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				~
6. Did th	he COC indicate standard TAT, or Expedited TAT?		Yes		Sampled times and project manager not
Sample	Cooler				provided on COC.
7. Was a	a sample cooler received?		Yes		
8. If yes	s, was cooler received in good condition?		Yes		
9. Was t	the sample(s) received intact, i.e., not broken?		Yes		
10. Were	e custody/security seals present?		No		
11. If ye	es, were custody/security seals intact?		NA		
12. Was 1	the sample received on ice? If yes, the recorded temp is 4°C, i.e. Note: Thermal preservation is not required, if samples are re- minutes of sampling		Yes		
13. If no	o visible ice, record the temperature. Actual sample tem	nperature: 4°	С		
	Container		-		
-	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	he head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?		Yes		
	e appropriate volume/weight or number of sample containers	collected?	Yes		
Field La	abel				
20. Were	e field sample labels filled out with the minimum inform	ation:			
	Sample ID?		Yes		
	Date/Time Collected?		No	1	
]	Collectors name?		No		
]	D				
] Sample	Preservation	muod9	N		
<u>Sample</u> 21. Does	s the COC or field labels indicate the samples were prese	rved?	No Na		
5 <u>Sample</u> 21. Does 22. Are	s the COC or field labels indicate the samples were prese sample(s) correctly preserved?		NA		
Sample 21. Does 22. Are 24. Is lat	s the COC or field labels indicate the samples were prese sample(s) correctly preserved? b filteration required and/or requested for dissolved meta				
Sample 21. Does 22. Are 24. Is lai Multiph	is the COC or field labels indicate the samples were prese sample(s) correctly preserved? Ib filteration required and/or requested for dissolved meta hase Sample Matrix		NA No		
Sample 21. Does 22. Are 24. Is lat Multiph 26. Does	s the COC or field labels indicate the samples were prese sample(s) correctly preserved? b filteration required and/or requested for dissolved meta hase Sample Matrix is the sample have more than one phase, i.e., multiphase?	1s?	NA No No		
Sample 21. Does 22. Are 24. Is lai Multiph 26. Does 27. If ye	is the COC or field labels indicate the samples were prese sample(s) correctly preserved? Ib filteration required and/or requested for dissolved meta hase Sample Matrix is the sample have more than one phase, i.e., multiphase? es, does the COC specify which phase(s) is to be analyzed	1s?	NA No		
Sample 21. Doe: 22. Are 24. Is lai Multiph 26. Doe: 27. If ye Subcont	is the COC or field labels indicate the samples were prese sample(s) correctly preserved? ib filteration required and/or requested for dissolved meta hase Sample Matrix is the sample have more than one phase, i.e., multiphase? es, does the COC specify which phase(s) is to be analyzed tract Laboratory	1s?	NA No NA		
Sample 21. Does 22. Are 24. Is lai Multiph 26. Does 27. If ye Subcont 28. Are	is the COC or field labels indicate the samples were prese sample(s) correctly preserved? Ib filteration required and/or requested for dissolved meta hase Sample Matrix is the sample have more than one phase, i.e., multiphase? es, does the COC specify which phase(s) is to be analyzed	ls? 1?	NA No No	Subcontract Lab	

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Spur Energy Partners

Project Name:

Burch Keely Unit #629

Work Order: E203150

Job Number: 20046-0001

Received: 3/24/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 3/25/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 3/25/22

Natalie Gladden PO Box 1058 Houston, TX 77279

Project Name: Burch Keely Unit #629 Workorder: E203150 Date Received: 3/24/2022 10:30:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 3/24/2022 10:30:00AM, under the Project Name: Burch Keely Unit #629.

The analytical test results summarized in this report with the Project Name: Burch Keely Unit #629 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Cell: 505-320-4759

ljarboe@envirotech-inc.com

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services Office: 505-421-LABS(5227)

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Released to Imaging: 2/13/2023 8:07:21 AM

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SP9 - 2'	5
SP10 - 2'	6
SP11 - 2'	7
SP12 - 2'	8
QC Summary Data	9
QC - Volatile Organic Compounds by EPA 8260B	9
QC - Nonhalogenated Organics by EPA 8015D - GRO	10
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	11
QC - Anions by EPA 300.0/9056A	12
Definitions and Notes	13
Chain of Custody etc.	14

Sample Summary

		Sample Sum	mai y			
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:		ŧ629	Reported: 03/25/22 17:07	
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container	
SP9 - 2'	E203150-01A	Soil	03/23/22	03/24/22	Glass Jar, 4 oz.	
SP10 - 2'	E203150-02A	Soil	03/23/22	03/24/22	Glass Jar, 4 oz.	
SP11 - 2'	E203150-03A	Soil	03/23/22	03/24/22	Glass Jar, 4 oz.	
SP12 - 2'	E203150-04A	Soil	03/23/22	03/24/22	Glass Jar, 4 oz.	

	~	ampic D				
Spur Energy Partners PO Box 1058	Project Nam		ch Keely Unit 46-0001	#629		D ()
Houston TX, 77279	Project Num Project Mana		lie Gladden			Reported: 3/25/2022 5:07:10PM
	1 Tojeet Wiana	-				5,25,2622 5.67.101 11
		SP9 - 2'				
		E203150-01				
		Reporting				
Analyte	Result	Limit	Dilutio	n Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	latile Organic Compounds by EPA 8260B mg/kg		Ar	alyst: IY		Batch: 2213044
Benzene	ND	0.0250	1	03/24/22	03/24/22	
Ethylbenzene	ND	0.0250	1	03/24/22	03/24/22	
Toluene	ND	0.0250	1	03/24/22	03/24/22	
p-Xylene	ND	0.0250	1	03/24/22	03/24/22	
o,m-Xylene	ND	0.0500	1	03/24/22	03/24/22	
Total Xylenes	ND	0.0250	1	03/24/22	03/24/22	
Surrogate: Bromofluorobenzene		92.7 %	70-130	03/24/22	03/24/22	
Surrogate: 1,2-Dichloroethane-d4		99.5 %	70-130	03/24/22	03/24/22	
Surrogate: Toluene-d8		97.6 %	70-130	03/24/22	03/24/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ar	alyst: IY		Batch: 2213044
Gasoline Range Organics (C6-C10)	ND	20.0	1	03/24/22	03/24/22	
Surrogate: Bromofluorobenzene		92.7 %	70-130	03/24/22	03/24/22	
Surrogate: 1,2-Dichloroethane-d4		99.5 %	70-130	03/24/22	03/24/22	
Surrogate: Toluene-d8		97.6 %	70-130	03/24/22	03/24/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ar	alyst: JL		Batch: 2213039
Diesel Range Organics (C10-C28)	ND	25.0	1	03/24/22	03/24/22	
Dil Range Organics (C28-C36)	ND	50.0	1	03/24/22	03/24/22	
Surrogate: n-Nonane		73.3 %	50-200	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ar	alyst: KL		Batch: 2213050
Chloride	190	20.0	1	03/24/22	03/24/22	

Sample Data

Sample Data

	D	ample D					
Spur Energy Partners	Project Name		ch Keely U	nit #629			
PO Box 1058	Project Numb		46-0001				Reported:
Houston TX, 77279	Project Mana	ger: Nata	ilie Gladde	3/25/2022 5:07:10PM			
		SP10 - 2'					
		E203150-02					
		Reporting					
Analyte	Result	Limit	Dilı	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2213044
Benzene	ND	0.0250		1	03/24/22	03/24/22	
Ethylbenzene	ND	0.0250		1	03/24/22	03/24/22	
Toluene	ND	0.0250		1	03/24/22	03/24/22	
p-Xylene	ND	0.0250		1	03/24/22	03/24/22	
p,m-Xylene	ND	0.0500		1	03/24/22	03/24/22	
Total Xylenes	ND	0.0250		1	03/24/22	03/24/22	
Surrogate: Bromofluorobenzene		92.6 %	70-130		03/24/22	03/24/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		03/24/22	03/24/22	
Surrogate: Toluene-d8		96.6 %	70-130		03/24/22	03/24/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2213044
Gasoline Range Organics (C6-C10)	ND	20.0		1	03/24/22	03/24/22	
Surrogate: Bromofluorobenzene		92.6 %	70-130		03/24/22	03/24/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		03/24/22	03/24/22	
Surrogate: Toluene-d8		96.6 %	70-130		03/24/22	03/24/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2213039
Diesel Range Organics (C10-C28)	ND	25.0		1	03/24/22	03/24/22	
Dil Range Organics (C28-C36)	52.9	50.0		1	03/24/22	03/24/22	
Surrogate: n-Nonane		83.3 %	50-200		03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	KL		Batch: 2213050
Chloride	500	20.0		1	03/24/22	03/24/22	

Sample Data

	~	ampic D					
Spur Energy Partners PO Box 1058	Project Name Project Numb		h Keely U 6-0001	nit #629			Demoste de
Houston TX, 77279	Project Numb Project Mana		lie Gladde	n			Reported: 3/25/2022 5:07:10PM
	110,000111414	-	Watane Gladden				
		SP11 - 2'					
		E203150-03					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ic Compounds by EPA 8260B mg/kg mg/kg Analyst:		IY		Batch: 2213044		
Benzene	ND	0.0250		1	03/24/22	03/24/22	
Ethylbenzene	ND	0.0250		1	03/24/22	03/24/22	
Toluene	ND	0.0250		1	03/24/22	03/24/22	
o-Xylene	ND	0.0250		1	03/24/22	03/24/22	
o,m-Xylene	ND	0.0500		1	03/24/22	03/24/22	
Total Xylenes	ND	0.0250		1	03/24/22	03/24/22	
Surrogate: Bromofluorobenzene		93.4 %	70-130		03/24/22	03/24/22	
Surrogate: 1,2-Dichloroethane-d4		98.5 %	70-130		03/24/22	03/24/22	
Surrogate: Toluene-d8		96.5 %	70-130		03/24/22	03/24/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2213044
Gasoline Range Organics (C6-C10)	ND	20.0		1	03/24/22	03/24/22	
Surrogate: Bromofluorobenzene		93.4 %	70-130		03/24/22	03/24/22	
Surrogate: 1,2-Dichloroethane-d4		98.5 %	70-130		03/24/22	03/24/22	
Surrogate: Toluene-d8		96.5 %	70-130		03/24/22	03/24/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	Л		Batch: 2213039
Diesel Range Organics (C10-C28)	ND	25.0		1	03/24/22	03/24/22	
Dil Range Organics (C28-C36)	58.4	50.0		1	03/24/22	03/24/22	
Surrogate: n-Nonane		80.5 %	50-200		03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	KL		Batch: 2213050
Chloride	506	20.0		1	03/24/22	03/24/22	

Sample Data

		ampic D					
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numb Project Manag	er: 2004	ch Keely Ui 46-0001 Ilie Gladdei				Reported: 3/25/2022 5:07:10PM
		SP12 - 2'					
		E203150-04					
		Reporting					
Analyte	Result	Limit	Dilu	ition	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2213044
Benzene	ND	0.0250	1	1	03/24/22	03/25/22	
Ethylbenzene	ND	0.0250	1	1	03/24/22	03/25/22	
Toluene	ND	0.0250	1	1	03/24/22	03/25/22	
p-Xylene	ND	0.0250	1	1	03/24/22	03/25/22	
p,m-Xylene	ND	0.0500	1	1	03/24/22	03/25/22	
Total Xylenes	ND	0.0250	1	1	03/24/22	03/25/22	
Surrogate: Bromofluorobenzene		94.5 %	70-130		03/24/22	03/25/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		03/24/22	03/25/22	
Surrogate: Toluene-d8		97.5 %	70-130		03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2213044
Gasoline Range Organics (C6-C10)	ND	20.0	1	1	03/24/22	03/25/22	
Surrogate: Bromofluorobenzene		94.5 %	70-130		03/24/22	03/25/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		03/24/22	03/25/22	
Surrogate: Toluene-d8		97.5 %	70-130		03/24/22	03/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2213039
Diesel Range Organics (C10-C28)	ND	25.0	1	1	03/24/22	03/24/22	
Dil Range Organics (C28-C36)	58.3	50.0	1	1	03/24/22	03/24/22	
Surrogate: n-Nonane		85.3 %	50-200		03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	KL		Batch: 2213050
Chloride	533	20.0	1	1	03/24/22	03/24/22	

QC Summary Data

	Project Name:	Bu	ırch Keely Uni	t #629				
			and Receip of	1 #02)				Reported:
	Project Number:	20	046-0001					-
	Project Manager:	Na	atalie Gladden				3/	/25/2022 5:07:10PM
	Volatile Organic	Analyst: IY						
	Reporting	Spike	Source		Rec		RPD	
Result	Limit	Level	Result	Rec	Limits	RPD	Limit	
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
						Prepared: 0	3/24/22 Ana	alyzed: 03/25/22
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0500							
ND	0.0250							
0.467		0.500		93.3	70-130			
		0.500		101	70-130			
0.493		0.500		98.6	70-130			
						Prepared: 0	3/24/22 Ana	lyzed: 03/25/22
2 42	0.0250	2 50		96.8	70-130	1		5
	0.0250							
0.502		0.500		100	70-130			
0.506		0.500		101	70-130			
			Source: H	E 203151- (01	Prepared: 0	3/24/22 Ana	alyzed: 03/25/22
2.53	0.0250	2.50	ND	101	48-131			
	0.0250							
	0.0250							
2.52	0.0250	2.50	ND	101	43-135			
	0.0500							
7.53	0.0250		ND					
0.494		0.500		98.7	70-130			
0.501		0.500		100	70-130			
0.501		0.500		100	70-130			
			Source: H	E 203151- (01	Prepared: 0	3/24/22 Ana	alyzed: 03/25/22
2.53	0.0250	2.50	ND	101	48-131	0.119	23	
2.52	0.0250	2.50	ND	101	45-135	1.56	27	
2.49	0.0250	2.50	ND	99.4	48-130	1.75	24	
2.49	0.0250	2.50	ND	99.8	43-135	1.08	27	
4.94	0.0500	5.00	ND	98.8	43-135	1.39	27	
		7.50	ND	99.1	43-135	1.28	27	
7.44	0.0250	7.50						
7.44	0.0250	0.500		98.1	70-130			
	0.0250							
-	Result mg/kg ND ND ND ND ND ND ND 0.467 0.507 0.493 2.42 2.45 2.44 2.39 4.78 7.17 0.482 0.502 0.506 2.53 2.52 2.53 2.52 2.501 7.53 0.494 0.501 0.501 0.501	Result mg/kg Reporting Limit mg/kg ND 0.0250 0.467 0.507 0.467 0.507 0.493 0.0250 2.45 0.0250 2.45 0.0250 2.44 0.0250 2.39 0.0250 0.482 0.502 0.506 0.0250 2.53 0.0250 2.53 0.0250 2.51 0.0250 2.52 0.0250 5.01 0.0500 7.53 0.0250 5.01 0.0500 7.53 0.0250 5.01 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.	Result mg/kg Reporting Limit mg/kg Spike Level mg/kg ND 0.0250 0.467 0.500 0.467 0.500 0.467 0.500 0.493 0.500 2.42 0.0250 2.50 2.43 0.0250 2.50 2.44 0.0250 2.50 2.39 0.0250 2.50 0.482 0.500 5.00 0.502 0.500 0.500 0.506 0.500 2.50 2.53 0.0250 2.50 2.54 0.0250 2.50 2.53 0.0250 2.50 2.51 0.0250 7.50	Result mg/kg Reporting Limit mg/kg Spike Level mg/kg Source Result mg/kg ND 0.0250 mg/kg mg/kg 0.467 0.500 mg/kg mg/kg 0.467 0.500 mg/kg mg/kg 2.42 0.0250 2.50 mg/kg 2.43 0.0250 2.50 mg/kg 2.44 0.0250 2.50 mg/kg 2.43 0.0500 5.00 mg/kg 0.500 0.500 5.00 mg/kg 0.502 0.500 5.00 mg/kg 0.502 0.500 5.00 mg/kg 0.502 2.50 ND ND 0.502 2.50 ND ND 0.502 2.50 ND ND 2.53	Result Reporting Limit Spike Level Source Result Rec mg/kg Rec mg/kg ND 0.0250 mg/kg mg/kg % ND 0.0250 mg/kg mg/kg % ND 0.0250 mg/kg % ND 0.0250 mg/kg % 0.467 0.500 93.3 0.507 0.500 101 0.467 0.500 96.8 2.42 0.0250 2.50 96.8 2.44 0.0250 2.50 95.7 4.78 0.0250 2.50 95.6 7.17 0.0250 7.50 95.6 0.482 0.500 5.00 101 0.502 0.500 100 101 0.502 2.50 ND 101 2.53 0.0250 2.50 ND 101 2.53 0.0250 2.50 ND 101 2.51<	Result Limit mg/kg Limit mg/kg Result mg/kg Rec Limits mg/kg Rec Limits mg/kg ND 0.0250 mg/kg % % % ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 0.0050 101 70-130 0.467 0.500 98.6 70-130 0.493 0.500 98.6 70-130 2.42 0.0250 2.50 97.6 70-130 2.44 0.0250 2.50 97.6 70-130 2.44 0.0250 2.50 97.6 70-130 2.44 0.0250 2.50 97.6 70-130 2.43 0.0250 2.50 97.6 70-130 0.482 0.0500 5.00 95.6 70-130 0.502 0.500 100 70-130 0.502 2.50 ND 101 48-131 2.53 0.0250 2.50 ND 101	Result mg/kg Limit Limit mg/kg Spike mg/kg Source Result mg/kg Rec % Limit % RPD % ND 0.0250 mg/kg % % % % ND 0.0250 ND 0.0250 Prepared: 0 ND 0.0250 ND 0.0250 Prepared: 0 0.467 0.500 93.3 70-130 0.467 0.500 98.6 70-130 0.493 0.500 96.8 70-130 2.42 0.0250 2.50 97.7 70-130 2.44 0.0250 2.50 97.6 70-130 2.44 0.0250 2.50 97.6 70-130 2.44 0.0250 2.50 97.6 70-130 2.44 0.0250 2.50 97.6 70-130 2.44 0.0250 2.50 97.6 70-130 2.44 0.0250 2.50 97.6 70-130 0.482 0.500 95.6 70-130	Resolt mg/kg Spite Limit Limit mg/kg Spite Result mg/kg Rec mg/kg Rec mg/kg <th< td=""></th<>

QC Summary Data

Spur Energy Partners PO Box 1058 Project Number: Burch Keely Unit #629 20046-0001 Reported: Houston TX, 77279 Project Number: 20046-0001 3/25/0022 5/07.1074 Analyte Do Box 1058 Project Manager: Natalie Gladen 3/25/0022 5/07.1074 Analyte Result Result Source Result Res Res Res Res Rep PIP Cassine Reage Organise (C6-C10) ND 20.0 9/3 70-19 PIP Piniet Pice Pice Res Rep Piniet Pice Pice <td< th=""><th></th><th></th><th>Y S S</th><th></th><th>ary Data</th><th>•</th><th></th><th></th><th></th><th></th></td<>			Y S S		ary Data	•				
Analyte Reporting ng/kg Spike Limit ng/kg Source Result ng/kg Rec Result ng/kg Rec Result ng/kg Rec Kec Rec Limits RPD RPD Limit Limit RPD Limit Blank (213044-BLK1) Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) ND 20.0 93.3 70-130 Surrogate: I.2-Dichlorochane-d4 0.507 0.500 98.7 70-130 Casoline Range Organics (C6-C10) 49.3 20.0 50.0 98.7 70-130 Surrogate: I.2-Dichlorochane-d4 0.507 0.500 98.7 70-130 Gasoline Range Organics (C6-C10) 49.3 20.0 50.0 98.7 70-130 Surrogate: I.2-Dichlorochane-d4 0.515 0.500 10.1 70-130 Surrogate: I.2-Dichlorochane-d4 0.515 0.500 10.1 70-130 Surrogate: I.2-Dichlorochane-d4 0.515 0.500 10.1 70-130 Surrogate: I.2-Dichlorochane-d4 0.516 0.500 10.1 <td< th=""><th>PO Box 1058</th><th></th><th>Project Number:</th><th>2</th><th>0046-0001</th><th>it #629</th><th></th><th></th><th></th><th>Reported: 3/25/2022 5:07:10PM</th></td<>	PO Box 1058		Project Number:	2	0046-0001	it #629				Reported: 3/25/2022 5:07:10PM
Analyte Result mg/kg Limit mg/kg Level mg/kg Result mg/kg Result mg/kg <thresult mg/kg Result mg/kg</thresult 		N	onhalogenated O	rganics	by EPA 801	5D - GR	0			Analyst: IY
Blank (2213044-BLK1) Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) ND 20.0 Surrogate: Bromofluorobenene 0.467 0.500 93.3 70-130 Surrogate: I.2-Dichlorothane-d4 0.507 0.500 98.6 70-130 Surrogate: I.2-Dichlorothane-d4 0.493 0.500 98.7 70-130 CS (2213044-BS2) Prepared: 03/24/22 Analyzed: 03/25/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 49.3 20.0 50.0 98.7 70-130 Surrogate: I.2-Dichlorothane-d4 0.515 0.500 93.0 70-130 Surrogate: I.2-Dichlorothane-d4 0.515 0.500 101 70-130 Surrogate: I.2-Dichlorothane-d4 0.515 0.500 101 70-130 Matrix Spike (2213044-MS2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Surrogate: I.2-Dichlorothane-d4 0.508 0.500 97.6 70-130 Surroga	Analyte		Limit	Level	Result		Limits		Limit	
Gasoline Range Organics (C6-C10) ND 20.0 Surrogate: Bromofluorobenzene 0.467 0.500 93.3 70-130 Surrogate: 1,2-Dichloroethane-44 0.507 0.500 101 70-130 Surrogate: 1,2-Dichloroethane-44 0.507 0.500 98.6 70-130 LCS (2213044-BS2) Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 49.3 20.0 50.0 98.7 70-130 Surrogate: 1,2-Dichloroethane-44 0.515 0.500 93.0 70-130 Surrogate: 1,2-Dichloroethane-44 0.515 0.500 92.0 70-130 Surrogate: 1,2-Dichloroethane-44 0.515 0.500 101 70-130 Surrogate: 1,2-Dichloroethane-44 0.515 0.500 101 70-130 Surrogate: 1,2-Dichloroethane-44 0.504 0.500 101 70-130 Surrogate: 1,2-Dichloroethane-44 0.504 0.500 ND 96.5 70-130 Surrogate: 1,2-Dichloroethane-44 0.508 0.500 ND 96.5 70-13		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Marine Generation Data Surrogate: Bromofluorobenzene 0.467 0.500 93.3 70-130 Surrogate: I.2-Dichloroethane-d4 0.507 0.500 98.6 70-130 Surrogate: Toluene-d8 0.493 0.500 98.7 70-130 LCS (2213044-BS2) Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 49.3 20.0 50.0 98.7 70-130 Surrogate: I.2-Dichloroethane-d4 0.515 0.500 93.0 70-130 Surrogate: I.2-Dichloroethane-d4 0.515 0.500 101 70-130 Surrogate: I.2-Dichloroethane-d4 0.515 0.500 101 70-130 Surrogate: I.2-Dichloroethane-d4 0.504 0.500 101 70-130 Surrogate: Toluene-d8 0.504 0.500 ND 96.5 70-130 Surrogate: I.2-Dichloroethane-d4 0.508 0.500 ND 96.5 70-130 Surrogate: I.2-Dichloroethane-d4 0.508 0.500 90.0 70-130 Surrogate: I.2-Dic	Blank (2213044-BLK1)							Prepared: 0	3/24/22	Analyzed: 03/25/22
Marine Lange Organics (C6-C10) 9.0 0.507 0.500 98.6 70-130 Surrogate : J.2-Dichloroethane-d4 0.507 0.500 98.6 70-130 LCS (2213044-BS2) Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Ange Organics (C6-C10) 49.3 20.0 50.0 98.7 70-130 Surrogate : J.2-Dichloroethane-d4 0.515 0.500 93.0 70-130 Surrogate : Toluene-d8 0.504 0.500 101 70-130 Surrogate : Toluene-d8 0.504 0.500 ND 96.5 70-130 Surrogate : Toluene-d8 0.508 0.500 97.6 70-130 101 70-130 Surrogate : Toluene-d8 0.500 ND 96.5 70-130 101 101 101 101 101 101	Gasoline Range Organics (C6-C10)	ND	20.0							
Name and series for the constraint of the constraint	Surrogate: Bromofluorobenzene	0.467		0.500		93.3	70-130			
LCS (2213044-BS2) Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 49.3 20.0 50.0 98.7 70-130 Surrogate: 1.2-Dichloroethane-d4 0.515 0.500 103 70-130 Matrix Spike (2213044-MS2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Matrix Spike (2213044-MS2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Surrogate: I.2-Dichloroethane-d4 0.508 0.500 97.6 70-130 50.7 50.7 Surrogate: I.2-Dichloroethane-d4 0.508 0.500 97.6 70-130 50.7 50.7 Surrogate: I.2-Dichloroethane-d4 0.508 0.500 99.0 70-130 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50	Surrogate: 1,2-Dichloroethane-d4	0.507		0.500		101	70-130			
Construction 49.3 20.0 50.0 98.7 70-130 Surrogate: Bromofluorobenzene 0.463 0.500 93.0 70-130 Surrogate: 1,2-Dichloroethane-d4 0.515 0.500 103 70-130 Matrix Spike (2213044-MS2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Surrogate: I,2-Dichloroethane-d4 0.508 0.500 ND 96.5 70-130 Matrix Spike (2213044-MS2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Surrogate: I,2-Dichloroethane-d4 0.508 0.500 97.6 70-130 102 70-130 Surrogate: Toluene-d8 0.495 0.500 99.0 70-130 102 70-130 Surrogate: Toluene-d8 0.495 0.500 99.0 70-130 102 103 103 103 103 103 103 103 103 103 103	Surrogate: Toluene-d8	0.493		0.500		98.6	70-130			
Construction Construction <thconstructin< th=""> Constructin Co</thconstructin<>	LCS (2213044-BS2)							Prepared: 0	3/24/22	Analyzed: 03/25/22
Surrogate: 1,2-Dichloroethane-d4 0.515 0.500 103 70-130 Surrogate: 7.0/uene-d8 0.504 0.500 101 70-130 Matrix Spike (2213044-MS2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Surrogate: 1,2-Dichloroethane-d4 0.508 0.500 97.6 70-130	Gasoline Range Organics (C6-C10)	49.3	20.0	50.0		98.7	70-130			
Surrogate: Toluene-d8 0.504 0.500 101 70-130 Matrix Spike (2213044-MS2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Surrogate: Bromofluorobenzene 0.488 0.500 97.6 70-130 V V Surrogate: I,2-Dichloroethane-d4 0.508 0.500 90.0 70-130 V V Prepared: 03/24/22 Analyzed: 03/25/22 Matrix Spike Dup (2213044-MSD2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 51.0 20.0 50.0 97.6 70-130 Surrogate: Bromofluorobenzene 0.487 0.00 97.6 70-130 24/22 Analyzed: 03/25/22 Matrix Spike Dup (2213044-MSD2) Fource: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 51.0 20.0 50.0 ND 102 70-130 20 20 Surrogate: I,2-Dichloroethane-d4 0.493 0.500 98.6	Surrogate: Bromofluorobenzene	0.465		0.500		93.0	70-130			
Matrix Spike (2213044-MS2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Surrogate: Bromofluorobenzene 0.488 0.500 97.6 70-130 Surrogate: 1,2-Dichloroethane-d4 0.508 0.500 102 70-130 Surrogate: Toluene-d8 0.495 0.500 99.0 70-130 Matrix Spike Dup (2213044-MSD2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 51.0 20.0 50.0 ND 102 70-130 Surrogate: Bromofluorobenzene 0.487 0.500 97.4 70-130 20 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 97.4 70-130 20 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 97.4 70-130 20	Surrogate: 1,2-Dichloroethane-d4	0.515		0.500		103	70-130			
Gasoline Range Organics (C6-C10) 48.2 20.0 50.0 ND 96.5 70-130 Surrogate: Bromofluorobenzene 0.488 0.500 97.6 70-130 Surrogate: 1,2-Dichloroethane-d4 0.508 0.500 102 70-130 Surrogate: Toluene-d8 0.495 0.500 99.0 70-130 Matrix Spike Dup (2213044-MSD2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 51.0 20.0 50.0 ND 102 70-130 Surrogate: Bromofluorobenzene 0.487 0.500 97.4 70-130 20 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 98.6 70-130	Surrogate: Toluene-d8	0.504		0.500		101	70-130			
Surrogate: Bromofluorobenzene 0.488 0.500 97.6 70-130 Surrogate: I,2-Dichloroethane-d4 0.508 0.500 102 70-130 Surrogate: Toluene-d8 0.495 0.500 99.0 70-130 Matrix Spike Dup (2213044-MSD2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 51.0 20.0 50.0 ND 102 70-130 Surrogate: Bromofluorobenzene 0.487 0.500 97.4 70-130 20 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 98.6 70-130	Matrix Spike (2213044-MS2)				Source: H	E203151-01	1	Prepared: 0	3/24/22	Analyzed: 03/25/22
Surrogate: 1,2-Dichloroethane-d4 0.508 0.500 102 70-130 Surrogate: 7.2-Dichloroethane-d4 0.495 0.500 99.0 70-130 Matrix Spike Dup (2213044-MSD2) Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 51.0 20.0 50.0 ND 102 70-130 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 97.4 70-130 20 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 98.6 70-130 20	Gasoline Range Organics (C6-C10)	48.2	20.0	50.0	ND	96.5	70-130			
Surrogate: Toluene-d8 0.495 0.500 99.0 70-130 Matrix Spike Dup (2213044-MSD2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organies (C6-C10) 51.0 20.0 50.0 ND 102 70-130 Surrogate: Bromofluorobenzene 0.487 0.500 97.4 70-130 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 98.6 70-130	Surrogate: Bromofluorobenzene	0.488		0.500		97.6	70-130			
Matrix Spike Dup (2213044-MSD2) Source: E203151-01 Prepared: 03/24/22 Analyzed: 03/25/22 Gasoline Range Organics (C6-C10) 51.0 20.0 50.0 ND 102 70-130 5.61 20 Surrogate: Bromofluorobenzene 0.487 0.500 97.4 70-130 5.61 20 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 98.6 70-130 5.61 20	Surrogate: 1,2-Dichloroethane-d4	0.508		0.500		102	70-130			
Gasoline Range Organics (C6-C10) 51.0 20.0 50.0 ND 102 70-130 5.61 20 Surrogate: Bromofluorobenzene 0.487 0.500 97.4 70-130 5.61 20 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 98.6 70-130 5.61 20	Surrogate: Toluene-d8	0.495		0.500		99.0	70-130			
Surrogate: Bromofluorobenzene 0.487 0.500 97.4 70-130 Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 98.6 70-130	Matrix Spike Dup (2213044-MSD2)				Source: I	E 203151-0 1	1	Prepared: 0	3/24/22	Analyzed: 03/25/22
Surrogate: 1,2-Dichloroethane-d4 0.493 0.500 98.6 70-130			20.0	50.0	ND			5.61	20	
	Surrogate: Bromofluorobenzene	0.487		0.500		97.4	70-130			
Surrogate: Toluene-d8 0.503 0.500 101 70-130	Surrogate: 1,2-Dichloroethane-d4	0.493		0.500		98.6	70-130			
	Surrogate: Toluene-d8	0.503		0.500		101	70-130			

QC Summary Data

		$\mathbf{v} \mathbf{v} \mathbf{v}$		ary Data	•				
Spur Energy Partners PO Box 1058		Project Name: Project Number:	2	Burch Keely Un 20046-0001					Reported:
Houston TX, 77279		Project Manager:	ſ	Natalie Gladden					3/25/2022 5:07:10PM
	Nonha	alogenated Org	anics by	y EPA 8015E	- DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2213039-BLK1)							Prepared: 0	3/24/22 A	Analyzed: 03/24/22
Diesel Range Organics (C10-C28)	ND	25.0							
Dil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	35.4		50.0		70.8	50-200			
LCS (2213039-BS1)							Prepared: 0	3/24/22 A	Analyzed: 03/24/22
Diesel Range Organics (C10-C28)	428	25.0	500		85.6	38-132			
Surrogate: n-Nonane	36.2		50.0		72.3	50-200			
Matrix Spike (2213039-MS1)				Source:	E203149-	05	Prepared: 0	3/24/22 A	Analyzed: 03/24/22
Diesel Range Organics (C10-C28)	505	25.0	500	ND	101	38-132			
Surrogate: n-Nonane	42.0		50.0		84.0	50-200			
Matrix Spike Dup (2213039-MSD1)				Source:	E203149-	05	Prepared: 0	3/24/22 A	Analyzed: 03/24/22
Diesel Range Organics (C10-C28)	451	25.0	500	ND	90.1	38-132	11.4	20	
Surrogate: n-Nonane	38.3		50.0		76.7	50-200			

QC Summary Data

				···· J – ····					
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	2	Burch Keely U1 20046-0001 Natalie Gladder					Reported: 3/25/2022 5:07:10PM
		Anions	by EPA	300.0/9056	4				Analyst: KL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2213050-BLK1)							Prepared: 0	3/24/22 A	nalyzed: 03/24/22
Chloride	ND	20.0							
LCS (2213050-BS1)							Prepared: 0	3/24/22 A	nalyzed: 03/25/22
Chloride	276	20.0	250		110	90-110			
Matrix Spike (2213050-MS1)				Source:	E203149-	01	Prepared: 0	3/24/22 A	nalyzed: 03/24/22
Chloride	513	20.0	250	244	107	80-120			
Matrix Spike Dup (2213050-MSD1)				Source:	E203149-	01	Prepared: 0	3/24/22 A	nalyzed: 03/24/22
Chloride	506	20.0	250	244	105	80-120	1.22	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Spur Energy Partners	Project Name:	Burch Keely Unit #629	
	PO Box 1058	Project Number:	20046-0001	Reported:
	Houston TX, 77279	Project Manager:	Natalie Gladden	03/25/22 17:07

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Release

Chain of Custody

ent: 5	our Ene	54				Bill To	1.00	S.231	12-37	La	b Us			ξ.		TAT			EPA Pi	ogram
oject:	pur Ene Burch H	icly Un	1+ 462	9	Attention: Ess			Lab	WO#				Number	1D	20	3D	Standar	ď	CWA	SDWA
	lanager:				Address: 2771	NW CR	2	Ec	20	315	0	200	46-0001 sis and Meth	<u></u>	1		C-Distributer	105		DCDA
ddress: ity, Stat	e 7in				Phone:	1065, Non 8824.				T		Analy								RCRA
none:	c, 21p				Email: Natalia	1		15	15								Contraction of the		State	
mail:							- Ann	oy 80	y 80	21	0	0	0.0	MN			NM	cοι	IT AZ	TX
eport d	ue by:						1	DRO t	DRO t	oy 80	y 826	s 601	de 30		TX		$\left[\Lambda \right]$			
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID			Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0	- BGDOC	BGDOC			R	emarks	
	3-27	5	l l	589-2' 5810-2' 5811-2'			1							X						
	3-23	5	1	510-2'			2							X						
	3-27	5	١	4P11 · 2'			3							X						
	3-23	5	١	5812.2			4							N						
				- [*] ,																
										e 1										
							E State													
Addition	nal Instruc	tions:				/		/	<u></u>					2		II.				
	1			nticity of this sample. I may be grounds for leg		with or intentionally mistabe	lling the samp	lelocati	on,			Concession 2	es requiring therma I in ice at an avg ter					Second Second	are sample	ed or receive
	ed by: (Sign		Date		15 Received by:		Date 2/20	427	Time	1	5	Rece	eived on ice:	2413 0000	ab U	se Onl [.] I	y			
Relinguist	ned by Sign	ature)	Dati	10	45 Received by:	(Signature)	Date 3/24	122	Time	:30		T1		T2			тз			
elinquist	ned by: (Sign	nature)	Dat	e Time	Received by:	(Signature)	Date		Time			AVG	i Temp °C	4						
ample Ma	trix: S - Soil. S	d - Solid. Se	- Sludge, A -	Aqueous, O - Other	I		Containe	er Typ	e:g-g	glass,			lastic, ag - am	ber gla	ss, v -	VOA				V AN ADDA

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

lient:	Spur Energy Partners I	Date Received:	03/24/22 10	:30	Work Order ID: E203150
Phone:	(575) 390-6397 I	Date Logged In:	03/23/22 16	:35	Logged In By: Caitlin Christian
Email:		Due Date:	03/25/22 17	7:00 (1 day TAT)	
Chain o	f Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does t	the number of samples per sampling site location matcl	n the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: U	IPS
4. Was th	he COC complete, i.e., signatures, dates/times, requeste	d analyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in t i.e, 15 minute hold time, are not included in this disucssion		Yes		Comments/Resolution
Sample '	<u>Turn Around Time (TAT)</u>			ſ	
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		Sample times and project manager not
Sample	<u>Cooler</u>				provided on COC.
7. Was a	sample cooler received?		Yes		
8. If yes,	, was cooler received in good condition?		Yes		
9. Was th	he sample(s) received intact, i.e., not broken?		Yes		
10. Were	e custody/security seals present?		No		
11. If yes	s, were custody/security seals intact?		NA		
12. Was t	he sample received on ice? If yes, the recorded temp is 4°C, i.e. Note: Thermal preservation is not required, if samples are r		Yes		
13 Ifno	minutes of sampling visible ice, record the temperature. Actual sample to	mnerature: 4º	C		
	Container	inperature: <u>-</u>	<u> </u>		
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	e head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?		Yes		
	appropriate volume/weight or number of sample containe	rs collected?	Yes		
Field La					
	e field sample labels filled out with the minimum inform	nation:			
5	Sample ID?		Yes		
	Date/Time Collected?		No	L	
	Collectors name?		No		
	Preservation s the COC or field labels indicate the samples were pres	oparad9	No		
	sample(s) correctly preserved?	serveu?	No NA		
	sample(s) correctly preserved? b filteration required and/or requested for dissolved me	tals?	NA No		
	· ·		INU		
	ase Sample Matrix	ი			
	s the sample have more than one phase, i.e., multiphase		No		
	s, does the COC specify which phase(s) is to be analyz	σuí	NA		
	ract Laboratory	0	NT		
18 1+00	samples required to get sent to a subcontract laboratory	?	No		
	a subcontract laboratory specified by the client and if s	1 9	NA S	Subcontract Lab	

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Spur Energy Partners

Project Name:

Burch Keely Unit #629

Work Order: E204045

Job Number: 20046-0001

Received: 4/8/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 4/13/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 4/13/22

Natalie Gladden PO Box 1058 Houston, TX 77279

Project Name: Burch Keely Unit #629 Workorder: E204045 Date Received: 4/8/2022 3:00:00PM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 4/8/2022 3:00:00PM, under the Project Name: Burch Keely Unit #629.

The analytical test results summarized in this report with the Project Name: Burch Keely Unit #629 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Cell: 505-320-4759

ljarboe@envirotech-inc.com

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services Office: 505-421-LABS(5227)

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Page 118 of 274

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
SW 1 - Surface	6
SW 1 -2'	7
SW 2 - Surface	8
SW 2 - 2'	9
SW 3 - Surface	10
SW 3 - 2'	11
SW 4 - Surface	12
SW 4 - 2'	13
SW 5 - Surface	14
SW 5 - 4'	15
SW 6 - Surface	16
SW 6 - 4'	17
SW 7 - Surface	18
SW 7 - 2'	19
SW 8 - Surface	20
SW 8 - 2'	21
SW 9 - Surface	22
SW 9 - 2'	23
SW 10 - Surface	24
SW 10 - 2'	25

•

Table of Contents (continued)

QC Summary Data	26
QC - Volatile Organics by EPA 8021B	26
QC - Nonhalogenated Organics by EPA 8015D - GRO	27
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	28
QC - Anions by EPA 300.0/9056A	29
Definitions and Notes	30
Chain of Custody etc.	31

Sample Summary

		Sample Sum	mary		
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	Burch Keely Unit # 20046-0001 Natalie Gladden	:629	Reported: 04/13/22 16:31
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SW 1 - Surface	E204045-01A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 1 -2'	E204045-02A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 2 - Surface	E204045-03A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 2 - 2'	E204045-04A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 3 - Surface	E204045-05A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 3 - 2'	E204045-06A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 4 - Surface	E204045-07A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 4 - 2'	E204045-08A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 5 - Surface	E204045-09A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 5 - 4'	E204045-10A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 6 - Surface	E204045-11A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 6 - 4'	E204045-12A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 7 - Surface	E204045-13A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 7 - 2'	E204045-14A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 8 - Surface	E204045-15A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 8 - 2'	E204045-16A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 9 - Surface	E204045-17A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 9 - 2'	E204045-18A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 10 - Surface	E204045-19A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 10 - 2'	E204045-20A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.

D	ampie D				
Project Numb	ber: 2004	46-0001	9		Reported: 4/13/2022 4:31:43PM
Project Mana	ger: Nata	llie Gladden			4/13/2022 4:31:43PM
S	W 1 - Surfac	e			
	E204045-01				
	Reporting				
Result	Limit	Dilution	Prepared	Analyzed	Notes
mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
ND	0.0250	1	04/11/22	04/12/22	
ND	0.0250	1	04/11/22	04/12/22	
ND	0.0250	1	04/11/22	04/12/22	
ND	0.0250	1	04/11/22	04/12/22	
ND	0.0500	1	04/11/22	04/12/22	
ND	0.0250	1	04/11/22	04/12/22	
	99.6 %	70-130	04/11/22	04/12/22	
mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
ND	20.0	1	04/11/22	04/12/22	
	89.3 %	70-130	04/11/22	04/12/22	
mg/kg	mg/kg	Analys	t: KL		Batch: 2216004
ND	25.0	1	04/11/22	04/12/22	
ND	50.0	1	04/11/22	04/12/22	
	82.6 %	50-200	04/11/22	04/12/22	
mg/kg	mg/kg	Analys	t: RAS		Batch: 2216022
ND	20.0		04/11/22	04/12/22	
	Project Name Project Numb Project Mana S Result Mg/kg ND ND ND ND ND ND ND ND ND ND ND ND ND	Project Name: Burg Project Number: 2004 Project Manager: Nata SW1-Surface E204045-01 Result Limit mg/kg mg/kg ND 0.0250 ND 20.0 SW1/S gr/kg Mg/kg mg/kg Mg/kg SU ND 25.0 ND 50.0 ND 50.0 ND 50.0 ND 50.0 </td <td>Project Number: 20046-0001 Project Manager: Natalie Gladden SWI-Surface Surface E204045-01 Dilution Result Limit Dilution Result Limit Malys Mg/kg mg/kg Analys MD 0.0250 1 ND 20.0 1 Mg/kg mg/kg Analys ND 20.0 1 Mg/kg Mg/kg 1 ND 25.0 1 ND 50.0 1 ND 50.200 1 ND 50.200 1</td> <td>Vertain term in the serve of the serve</td> <td>Project Name: Burch Keely Unit #629 Project Number: 20046-0001 Project Manager: Natalie Gladden SW1-Surface E204045-01 Freject Manager: Natalie Gladden Result Dilution Prepared Analyzed Result Dilution Prepared Analyzed MD 0.0250 1 04/11/22 04/12/22 ND 20.0 0 04/11/22 04/12/22 ND 20.0 1 04/11/22 04/12/22 ND 20.0 1 04/11/22 04/12/22 ND 25.0 1 04/11/22 04/12/22 ND 25.0 1 0</td>	Project Number: 20046-0001 Project Manager: Natalie Gladden SWI-Surface Surface E204045-01 Dilution Result Limit Dilution Result Limit Malys Mg/kg mg/kg Analys MD 0.0250 1 ND 20.0 1 Mg/kg mg/kg Analys ND 20.0 1 Mg/kg Mg/kg 1 ND 25.0 1 ND 50.0 1 ND 50.200 1 ND 50.200 1	Vertain term in the serve of the serve	Project Name: Burch Keely Unit #629 Project Number: 20046-0001 Project Manager: Natalie Gladden SW1-Surface E204045-01 Freject Manager: Natalie Gladden Result Dilution Prepared Analyzed Result Dilution Prepared Analyzed MD 0.0250 1 04/11/22 04/12/22 ND 20.0 0 04/11/22 04/12/22 ND 20.0 1 04/11/22 04/12/22 ND 20.0 1 04/11/22 04/12/22 ND 25.0 1 04/11/22 04/12/22 ND 25.0 1 0

Sample Data

Sample Data

	D.	ampic D	ata			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numb Project Manag	er: 2004	ch Keely Unit #6 46-0001 alie Gladden	29		Reported: 4/13/2022 4:31:43PM
Houston 1X, 7/279	Project Manag	ger: Nata	lile Gladdell			4/13/2022 4.31.43FM
		SW 1 -2'				
		E204045-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/12/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/12/22	
Toluene	ND	0.0250	1	04/11/22	04/12/22	
p-Xylene	ND	0.0250	1	04/11/22	04/12/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/12/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/12/22	
Surrogate: 4-Bromochlorobenzene-PID		98.0 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/12/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.2 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	rst: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/12/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/12/22	
Surrogate: n-Nonane		90.4 %	50-200	04/11/22	04/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	rst: RAS		Batch: 2216022
Chloride	20.6	20.0	1	04/11/22	04/12/22	

Sample Data

			ata				
Spur Energy Partners	Project Name:	Bur	ch Keely Unit #62				
PO Box 1058	Project Numbe	Project Number: 20046-0001					
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			4/13/2022 4:31:43PM	
	SV	W 2 - Surfac	e				
		E204045-03					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	t: RKS		Batch: 2216017	
Benzene	ND	0.0250	1	04/11/22	04/12/22		
Ethylbenzene	ND	0.0250	1	04/11/22	04/12/22		
Toluene	ND	0.0250	1	04/11/22	04/12/22		
p-Xylene	ND	0.0250	1	04/11/22	04/12/22		
p,m-Xylene	ND	0.0500	1	04/11/22	04/12/22		
Fotal Xylenes	ND	0.0250	1	04/11/22	04/12/22		
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	04/11/22	04/12/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	:: RKS		Batch: 2216017	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/12/22		
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.3 %	70-130	04/11/22	04/12/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: KL		Batch: 2216004	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/12/22		
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/12/22		
Surrogate: n-Nonane		73.5 %	50-200	04/11/22	04/12/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: RAS		Batch: 2216022	
Chloride	ND	20.0	1	04/11/22	04/12/22		

Sample Data

			ata			
Spur Energy Partners PO Box 1058	Project Name: Project Numbe	er: 2004	ch Keely Unit #62 46-0001	9		Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			4/13/2022 4:31:43PM
		SW 2 - 2'				
		E204045-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/12/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/12/22	
Toluene	ND	0.0250	1	04/11/22	04/12/22	
p-Xylene	ND	0.0250	1	04/11/22	04/12/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/12/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/12/22	
Surrogate: 4-Bromochlorobenzene-PID		99.6 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS			Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/12/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.9 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/12/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/12/22	
Surrogate: n-Nonane		79.3 %	50-200	04/11/22	04/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	: RAS		Batch: 2216022
Chloride	ND	20.0	1	04/11/22	04/12/22	

Sample Data

		ampie D				
Spur Energy Partners PO Box 1058	Project Name: Project Numb		ch Keely Unit #62 46-0001	.9		Reported:
Houston TX, 77279	Project Manag	4/13/2022 4:31:43PN				
, ,	, ,					
	~	W 3 - Surfac	e			
		E204045-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/12/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/12/22	
Toluene	ND	0.0250	1	04/11/22	04/12/22	
p-Xylene	ND	0.0250	1	04/11/22	04/12/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/12/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/12/22	
Surrogate: 4-Bromochlorobenzene-PID		104 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/12/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.3 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	mg/kg Analyst: KL			Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/12/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/12/22	
Surrogate: n-Nonane		78.3 %	50-200	04/11/22	04/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216022
Chloride	ND	20.0	1	04/11/22	04/12/22	

Sample Data

	3	ample D	ลเล			
Spur Energy Partners	Project Name		ch Keely Unit #6	29		
PO Box 1058 Houston TX, 77279	Project Numb Project Mana		46-0001 alie Gladden		Reported: 4/13/2022 4:31:43PM	
	Floject Malla	gei. Ivata				-,13/202251.+51 W
		SW 3 - 2'				
		E204045-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/12/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/12/22	
Toluene	ND	0.0250	1	04/11/22	04/12/22	
p-Xylene	ND	0.0250	1	04/11/22	04/12/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/12/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/12/22	
Surrogate: 4-Bromochlorobenzene-PID		99.4 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/12/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.9 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/12/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/12/22	
Surrogate: n-Nonane		85.3 %	50-200	04/11/22	04/12/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2216022
Chloride	ND	20.0	1	04/11/22	04/12/22	

Sample Data

	~	ampic D				
Spur Energy Partners PO Box 1058	Project Name Project Numb		ch Keely Unit #62 46-0001	.9		Reported:
Houston TX, 77279	Project Manag	4/13/2022 4:31:43PM				
	S	W 4 - Surfac	e			
		E204045-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
oluene	ND	0.0250	1	04/11/22	04/13/22	
o-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		97.4 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		88.9 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g Analyst: KL		Batch: 2216004	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
urrogate: n-Nonane		86.2 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216022
Chloride	ND	20.0	1	04/11/22	04/12/22	

Sample Data

	3	ample D	ลเล			
Spur Energy Partners PO Box 1058	Project Name Project Numb		ch Keely Unit #6 46-0001	29		Reported:
Houston TX, 77279	Project Manag		ilie Gladden			4/13/2022 4:31:43PM
		SW 4 - 2'				
		E204045-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ithylbenzene	ND	0.0250	1	04/11/22	04/13/22	
oluene	ND	0.0250	1	04/11/22	04/13/22	
-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		97.6 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	/kg Analyst: RKS			Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		90.1 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
urrogate: n-Nonane		83.7 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2216022
Chloride	ND	20.0	1	04/11/22	04/13/22	

Sample Data

		ampie 2				
Spur Energy Partners	Project Name	: Bur	ch Keely Unit #62			
PO Box 1058	Project Numb	er: 2004	46-0001		Reported:	
Houston TX, 77279	Project Manag	4/13/2022 4:31:43PM				
	S	W 5 - Surfac	e			
		E204045-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Foluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		99.4 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g Analyst: RKS			Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.2 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g Analyst: KL			Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		76.4 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2216022
Chloride	15700	400	20	04/11/22	04/13/22	

Sample Data

	5	ample D	ata			
Spur Energy Partners PO Box 1058	Project Name Project Numb		ch Keely Unit #6 46-0001	529		Reported:
Houston TX, 77279	Project Manag		alie Gladden		4/13/2022 4:31:43PM	
		SW 5 - 4'				
		E204045-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	yst: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		98.4 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g/kg Analyst: RKS		Batch: 2216017	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.9 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	ng/kg Analyst: KL		Batch: 2216004	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		76.5 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	yst: RAS		Batch: 2216022
Chloride	ND	20.0	1	04/11/22	04/13/22	

Sample Data

	56		ara			
Spur Energy Partners	Project Name:	Bure	ch Keely Unit #62	9		
PO Box 1058	Project Numbe	er: 2004	46-0001	Reported:		
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			4/13/2022 4:31:43PM
	SV	W 6 - Surfac	e			
		E204045-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		99.0 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.4 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		83.4 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2216022
Chloride	30300	2000	100	04/11/22	04/13/22	

Sample Data

	D	ample D	ลเล			
Spur Energy Partners	Project Name		ch Keely Unit #6	29		
PO Box 1058	Project Numb		46-0001			Reported:
Houston TX, 77279	Project Mana	ger: Nata	alie Gladden			4/13/2022 4:31:43PM
		SW 6 - 4'				
		E204045-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		104 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g Analyst: RKS		Batch: 2216017	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.6 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		82.8 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2216022
Chloride	22.5	20.0	1	04/11/22	04/13/22	

Sample Data

		ampie D				
Spur Energy Partners	Project Name:	Burg	h Keely Unit #62	.9		
PO Box 1058	Project Numb	er: 2004	46-0001	Reported:		
Houston TX, 77279	Project Manag	4/13/2022 4:31:43PM				
	SV	W 7 - Surfac	e			
		E204045-13				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
o-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		103 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys		Batch: 2216004	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		80.5 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216022
Chloride	20.4	20.0	1	04/11/22	04/13/22	

Sample Data

	D.	impic D	ata			
Spur Energy Partners PO Box 1058	Project Name: Project Numbe	er: 2004	ch Keely Unit #62 46-0001	Reported:		
Houston TX, 77279	Project Manag	er: Nata	ilie Gladden			4/13/2022 4:31:43PM
		SW 7 - 2'				
		E204045-14				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		110 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.6 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		86.1 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	: RAS		Batch: 2216022
Chloride	20.4	20.0	1	04/11/22	04/13/22	

Sample Data

	56		aia			
Spur Energy Partners	Project Name:	Bure	ch Keely Unit #62			
PO Box 1058	Project Numbe	er: 2004	46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			4/13/2022 4:31:43PM
	SV	W 8 - Surfac	e			
		E204045-15				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	0 1 04/11/22		04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		98.8 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS		Batch: 2216017	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.5 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		84.8 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2216022
Chloride	ND	20.0	1	04/11/22	04/13/22	

Sample Data

	5	ample D	ลเล			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	ch Keely Unit #62 46-0001 ılie Gladden	9		Reported: 4/13/2022 4:31:43PM
		SW 8 - 2'				
		E204045-16				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		103 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.6 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		81.1 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216022
Chloride	ND	20.0	1	04/11/22	04/13/22	

Sample Data

		ampic D	ucu			
Spur Energy Partners	Project Name:	Burg	ch Keely Unit #62			
PO Box 1058	Project Numbe	er: 2004		Reported:		
Houston TX, 77279	Project Manag	ger: Nata	ilie Gladden			4/13/2022 4:31:43PM
	SV	W 9 - Surfac	e			
		E204045-17				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
` oluene	ND	0.0250	1	04/11/22	04/13/22	
-Xylene	ND	0.0250	1	04/11/22	04/13/22	
,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		97.4 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS		Batch: 2216017	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		89.0 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
urrogate: n-Nonane		92.2 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2216022
Chloride	44.5	20.0	2 Analyst: RAS 1 04/11/22 04/13/			

Sample Data

			ata			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 4/13/2022 4:31:43PM
		SW 9 - 2'				
		E204045-18				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
oluene	ND	0.0250	1	04/11/22	04/13/22	
o-Xylene	ND	0.0250	1	04/11/22	04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		96.6 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		88.7 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Gurrogate: n-Nonane		75.6 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216022
Chloride	44.8	20.0	1	04/11/22	04/13/22	

Sample Data

	D.	impic D	ata			
Spur Energy Partners	Project Name:	Bure	ch Keely Unit #62			
PO Box 1058	Project Numbe	er: 2004		Reported:		
Houston TX, 77279	Project Manag	er: Nata	alie Gladden			4/13/2022 4:31:43PM
	SW	/ 10 - Surfac	e			
		E204045-19				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		95.7 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	cg Analyst: RKS		Batch: 2216017	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.3 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		91.3 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216022
Chloride	49.2	20.0	1	04/11/22	04/13/22	

Sample Data

	5	ampic D	ata			
Spur Energy Partners PO Box 1058 Houston TX, 77279	5	Project Name:Burch Keely Unit #629Project Number:20046-0001Project Manager:Natalie Gladden				Reported: 4/13/2022 4:31:43PM
		SW 10 - 2'				
		E204045-20				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	lyst: RKS		Batch: 2216017
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	lyst: RKS		Batch: 2216017
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.6 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	lyst: KL		Batch: 2216004
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		92.6 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	lyst: RAS		Batch: 2216022
Chloride	45.1	20.0	1	04/11/22	04/13/22	

QC Summary Data

		QU DI	4111111	ing Duc					
Spur Energy Partners PO Box 1058		Project Name: Project Number:		urch Keely U1 0046-0001	nit #629				Reported:
Houston TX, 77279		Project Manager:	Ν	atalie Gladder	ı				4/13/2022 4:31:43PM
		Volatile O	rganics l	by EPA 802	21 B				Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2216017-BLK1)							Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Benzene	ND	0.0250					1		
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
p-Xylene	ND	0.0250							
o,m-Xylene	ND	0.0500							
Fotal Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.83	0.0250	8.00		97.9	70-130			
LCS (2216017-BS1)							Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Benzene	5.25	0.0250	5.00		105	70-130			
Ethylbenzene	4.93	0.0250	5.00		98.6	70-130			
Toluene	5.16	0.0250	5.00		103	70-130			
p-Xylene	5.13	0.0250	5.00		103	70-130			
o,m-Xylene	10.2	0.0500	10.0		102	70-130			
Total Xylenes	15.3	0.0250	15.0		102	70-130			
Surrogate: 4-Bromochlorobenzene-PID	8.03		8.00		100	70-130			
Matrix Spike (2216017-MS1)				Source:	E204045-(01	Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Benzene	5.62	0.0250	5.00	ND	112	54-133			
Ethylbenzene	5.30	0.0250	5.00	ND	106	61-133			
Toluene	5.54	0.0250	5.00	ND	111	61-130			
p-Xylene	5.51	0.0250	5.00	ND	110	63-131			
o,m-Xylene	10.9	0.0500	10.0	ND	109	63-131			
Total Xylenes	16.4	0.0250	15.0	ND	110	63-131			
Surrogate: 4-Bromochlorobenzene-PID	8.64		8.00		108	70-130			
Matrix Spike Dup (2216017-MSD1)				Source:	E204045-(01	Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Benzene	5.56	0.0250	5.00	ND	111	54-133	1.14	20	
Ethylbenzene	5.20	0.0250	5.00	ND	104	61-133	1.80	20	
Euryioenzene					100	61-130	1.40	20	
Toluene	5.46	0.0250	5.00	ND	109	01-150	1.40	20	
-		0.0250 0.0250	5.00 5.00	ND ND	109	63-131	1.40	20	
Toluene	5.46								
Foluene o-Xylene	5.46 5.42	0.0250	5.00	ND	108	63-131	1.69	20	

QC Summary Data

		QU D	u	ary Date	e				
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	2	Burch Keely Un 20046-0001 Jatalie Gladden					Reported: 4/13/2022 4:31:43PM
· · · · · · · · · · · · · · · · · · ·	Noi	nhalogenated C		by EPA 801	5D - G	RO			Analyst: RKS
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2216017-BLK1)							Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.33		8.00		91.6	70-130			
LCS (2216017-BS2)							Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Gasoline Range Organics (C6-C10)	56.6	20.0	50.0		113	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.17		8.00		89.7	70-130			
Matrix Spike (2216017-MS2)				Source:	E204045-	01	Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Gasoline Range Organics (C6-C10)	56.3	20.0	50.0	ND	113	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.11		8.00		88.9	70-130			
Matrix Spike Dup (2216017-MSD2)				Source: 1	E204045-	01	Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Gasoline Range Organics (C6-C10)	56.8	20.0	50.0	ND	114	70-130	0.787	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.20		8.00		90.0	70-130			

QC Summary Data

		QU D	u 111111	ary Data					
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	1	Burch Keely Uni 20046-0001 Natalie Gladden	it #629				Reported: 4/13/2022 4:31:43PM
	Nonh	alogenated Org	anics by	y EPA 8015D	- DRO	/ORO			Analyst: KL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2216004-BLK1)							Prepared: 04	4/11/22 A	nalyzed: 04/12/22
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	42.0		50.0		84.1	50-200			
LCS (2216004-BS1)							Prepared: 04	4/11/22 A	analyzed: 04/12/22
Diesel Range Organics (C10-C28)	394	25.0	500		78.9	38-132			
Surrogate: n-Nonane	41.0		50.0		81.9	50-200			
Matrix Spike (2216004-MS1)				Source: I	E 204045 -	07	Prepared: 04	4/11/22 A	analyzed: 04/12/22
Diesel Range Organics (C10-C28)	427	25.0	500	ND	85.4	38-132			
Surrogate: n-Nonane	39.7		50.0		79.4	50-200			
Matrix Spike Dup (2216004-MSD1)				Source: I	E 204045 -	07	Prepared: 04	4/11/22 A	analyzed: 04/12/22
Diesel Range Organics (C10-C28)	441	25.0	500	ND	88.3	38-132	3.31	20	
Surrogate: n-Nonane	42.0		50.0		84.0	50-200			

QC Summary Data

		$\mathbf{x} \circ \sim$	••••••						
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	2	Burch Keely Ui 20046-0001 Natalie Gladdei					Reported: 4/13/2022 4:31:43P
		Anions	by EPA	300.0/90564	4				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2216022-BLK1)							Prepared: 0	4/11/22	Analyzed: 04/12/22
Chloride	ND	20.0							
LCS (2216022-BS1)							Prepared: 0	4/11/22	Analyzed: 04/12/22
Chloride	266	20.0	250		107	90-110			
Matrix Spike (2216022-MS1)				Source:	E204045-0)1	Prepared: 0	4/11/22	Analyzed: 04/12/22
Chloride	288	20.0	250	ND	115	80-120			
Matrix Spike Dup (2216022-MSD1)				Source:	E204045-0)1	Prepared: 0	4/11/22	Analyzed: 04/12/22
Chloride	286	20.0	250	ND	114	80-120	0.643	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Spur Energy Partners	Project Name:	Burch Keely Unit #629	
	PO Box 1058	Project Number:	20046-0001	Reported:
	Houston TX, 77279	Project Manager:	Natalie Gladden	04/13/22 16:31

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

ject Information	Chain of (Custody												Page <u>1</u>	of
lient: Spar roject: Buch Keely Unit. #629 roject Manager: ddress:	Bill To Attention: ۲۶۶ Address: ۲۶۶ ۸۰۰ ۲۶ City, State, Zip ۲۵۵۶, ۸۰۰ ۲۶۲۷	_	Lab V E 2	vo# D4C		52		umber <u>10-D</u> is and N	D		2D	TA1 3D	Standard	EPA I CWA	Program SDWA RCRA
ty, State, Zip none: nail: eport due by:	Phone: Email: Matalie		DRO/ORO by 8015	GRO/DRO by 8015	y 8021	8260	6010	Chloride 300.0		WN	ХT			State	: TX
Time Date Matrix No. of Containers Sample ID	1	Lab Number	DRO/O	GRO/D	BTEX by 8021	VOC by 8260	Metals 6010	Chlorid		BGDOC	BGDOC			Remark	s
<u>u-a</u> <u>S</u> <u>I</u> <u>Sw</u> <u>I</u>	Surface			_					•.	N					
	- 2	23		_	-				+	$\left\ \right\ $		$\left \right $			
	- Surface	4			-+		-+		+						
5W 3	- Inface	5													
	- 2'	6					_								
- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	- Surface	8								\mathbb{A}		┝╌┟			
- (Sw 9 5w 5	"burkes	9	-							++					
) / Sw 5		10								1					
(field sampler), attest to the validity and authenticity of this samp	e. Lam aware that tampering with or interationally mislebelling	The samp	ke locati										eived on ice the da		pled or receive
ate or time of collection is considered fraud and may be grounds for etingurished by: (Signature) Date Ti 7-9-72		Date Unite	- 21	Time	100	5		in ice at ar				se Onl	°C on subsequent Y	days.	
elinguished by (Signature) Date	Te 7; 30 Received by: (Stepatitic)	4/8/	7 <u>7</u>	Time	b.C	α	<u>T1</u>			T2	· ر	• •	<u>T3</u>		
elinquished by: (Signature) Date Th		Date		Time				Temp		4		VCA			
ample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Othe Note: Samples are discarded 30 days after results are report amples is applicable only to those samples received by the	ed unless other arrangements are made. Hazardous sa	Containe amples wi	ll be re	turned	to cli	ent or	dispos	sed of a	t the cl	ient ex	pense	- VOA . The re	eport for the a	nalysis of th	e above

roject In	formation	1				C	hain of Custody	1												Page <u>2</u>	of
lient: \$ roject: roject M ddress:	web Keel	y Unit	#6 29			Bill To Attention: E35 Address: 2724 Mr CR City, State, Zip Hilly, Nun & 424	۲D	Lab Ea	wo# 2 04		5 2	lob N 2004	lumb flo-l	er 2001 Metho		2D	TA 3D		ndard	EPA P CWA	rogram SDWA RCRA
ity, State hone: mail: <u>eport du</u> Time Sampled		Matrix	No. of Containers	Sample ID		Phone: Email: Mallia	Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC NM	BGDOC TX			NM CO	State UT AZ Remarks	
Sampled	Y-9	5	1	5w 6	- Su	hu	Number		<u> </u>	8	>	2	<u> </u>		Ý						
	1	_/	1	Sw 6	- 4		12			_					1				-		
		(sw 7	- J~	face	13							_	++						
			$\left \cdot \right $	5w 7	· ?	·	14 E								+)	-					
	- (5~ 8 5~ 8	<u></u> 	, ,										┨╴					
					- Gur	fere	IF								17						
				5~ 9	- 2	•	18														
				5~ 10		tee	19								(
dditior	al Instruc	tions:	,	5~ 10	2)		I					/						
		_	•	ticity of this sam may be grounds		aware that tampering with or intentionally a section. Sampled by	mslabelling the samp	le-losat	ion,				•	-					n ice the day ubsequent da	• •	led or received
lelinquish	ed by: Angn	aturo)	Date		Time 70	Received by (Signature) Received by (Signature) Received by: (Signature) 2 Received by: (Signature)	J Date J 4-6-7 Date Date	22	Time Time	5 <u>°</u> 6 5.(3	Rece	eived	on ice	_	ab U Y) r	se On N		Т3	· · · · ·	
Relinquish	ed by: (Sign	iature)	J Date	The second	/ / () Time	Received by: (Signature)	Date		Time			AVG	Tem	ა℃	4						
Note: Sam	ples are dis	carded 30 d	days after r	Aqueous, O - Ot esults are repo received by th	orted unle	ess other arrangements are made. Haz cory with this COC. The liability of the lal	Contain ardous samples wi boratory is limited	ll be re	turned	d to cl	, p - po ient or	oly/pl dispo	astic, sed of	ag - am at the c	lient ex	pense	. The r				
			,				Page 32 of 33	3					3	e	n	V	'İ	r	01	e	C

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

	Spur Energy Partners D	ate Received:	04/08/22 15:0	10	Work Order ID: E204045
Phone:	(575) 390-6397 D	ate Logged In:	04/08/22 11:3	6	Logged In By: Caitlin Christian
Email:		ue Date:	04/13/22 17:0	00 (3 day TAT)	
Chain o	f Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match	the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: C	Carrier
4. Was th	he COC complete, i.e., signatures, dates/times, requested	l analyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
Sample	<u>Turn Around Time (TAT)</u>				
6. Did th	ne COC indicate standard TAT, or Expedited TAT?		Yes		Project has been seperated into 2 reports
Sample	Cooler				due to amount of samples. Workorders are
7. Was a	sample cooler received?		Yes		as follows:
8. If yes	, was cooler received in good condition?		Yes		E204045 COC page 1&2 of 4, E204046
9. Was ti	he sample(s) received intact, i.e., not broken?		Yes		COC page 3&4 of 4. Sample times not
10. Were	e custody/security seals present?		No		
11. If ye	s, were custody/security seals intact?		NA		provided on COC.
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re- minutes of sampling	·	Yes		
13. If no	visible ice, record the temperature. Actual sample ter	nperature: 4°	С		
	Container	I			
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?				
15. Are			NA		
	-		NA NA		
16. Is th	e head space less than 6-8 mm (pea sized or less)?				
16. Is the 17. Was	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses?		NA		
16. Is the 17. Was 18. Are 1	e head space less than 6-8 mm (pea sized or less)?	s collected?	NA NA		
16. Is the 17. Was 18. Are 19. Is the	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample containers	s collected?	NA NA Yes		
16. Is the 17. Was 18. Are 1 19. Is the Field L a	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample containers		NA NA Yes		
 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample containers subel_		NA NA Yes		
 16. Is the 17. Was 18. Are a 19. Is the Field La 20. Were 3 	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected?		NA NA Yes Yes No		
16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name?		NA NA Yes Yes		
16. Is the 17. Was 18. Are 1 19. Is the Field La 20. Were Sample	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u>	nation:	NA NA Yes Yes No No		
16. Is the 17. Was 18. Are 19. Is the Field La 20. Were Sample 21. Does	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were prese	nation:	NA NA Yes Yes No No		
16. Is the 17. Was 18. Are 19. Is the Field La 20. Were 20. Were 21. Does 22. Are	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were prese sample(s) correctly preserved?	nation: erved?	NA NA Yes Yes No No No		
16. Is the 17. Was 18. Are 19. Is the Field Ls 20. Were 20. Were 21. Does 22. Are 24. Is lat	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were prese sample(s) correctly preserved? b filteration required and/or requested for dissolved meta	nation: erved?	NA NA Yes Yes No No		
16. Is the 17. Was 18. Are 19. Is the Field Ls 20. Were 20. Were 21. Does 22. Are 24. Is lai Multiph	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were prese sample(s) correctly preserved? b filteration required and/or requested for dissolved meta mase Sample Matrix	nation: erved? als?	NA NA Yes Yes No No NA No		
16. Is the 17. Was 18. Are = 19. Is the Field La 20. Were 20. Were 21. Does 22. Are = 24. Is lat Multiph 26. Does	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were prese sample(s) correctly preserved? b filteration required and/or requested for dissolved meta mase Sample Matrix s the sample have more than one phase, i.e., multiphase?	nation: erved? als?	NA NA Yes Yes No No NA No		
16. Is the 17. Was 18. Are : 19. Is the Field Ls 20. Were 21. Does 22. Are : 24. Is lal Multiph 26. Does 27. If ye	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were prese sample(s) correctly preserved? b filteration required and/or requested for dissolved meta ase Sample Matrix s the sample have more than one phase, i.e., multiphase? s, does the COC specify which phase(s) is to be analyze	nation: erved? als?	NA NA Yes Yes No No NA No		
16. Is the 17. Was 18. Are : 19. Is the Field Ls 20. Were 20. Were 21. Does 22. Are : 24. Is lai <u>Multiph</u> 26. Does 27. If ye	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers? abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were prese sample(s) correctly preserved? b filteration required and/or requested for dissolved meta ase Sample Matrix s the sample have more than one phase, i.e., multiphase? s, does the COC specify which phase(s) is to be analyze tract Laboratory .	nation: erved? als? d?	NA NA Yes Yes No No NA No NA		
16. Is the 17. Was 18. Are : 19. Is the Field Ls 20. Were 20. Were 21. Does 22. Are : 24. Is lai Multiph 26. Does 27. If ye Subcont 28. Are :	e head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? Preservation s the COC or field labels indicate the samples were prese sample(s) correctly preserved? b filteration required and/or requested for dissolved meta ase Sample Matrix s the sample have more than one phase, i.e., multiphase? s, does the COC specify which phase(s) is to be analyze	nation: erved? als? d?	NA NA Yes Yes No No NA No NA No	bcontract Lab	

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Spur Energy Partners

Project Name:

Burch Keely Unit #629

Work Order: E204046

Job Number: 20046-0001

Received: 4/8/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 4/14/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 4/14/22

Natalie Gladden PO Box 1058 Houston, TX 77279

Project Name: Burch Keely Unit #629 Workorder: E204046 Date Received: 4/8/2022 3:00:00PM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 4/8/2022 3:00:00PM, under the Project Name: Burch Keely Unit #629.

The analytical test results summarized in this report with the Project Name: Burch Keely Unit #629 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
SW 11 - Surface	6
SW 11 - 2'	7
SW 12 - Surface	8
SW 12 - 2'	9
SW 13 - Surface	10
SW 13 - 2'	11
SW 14 - Surface	12
SW 14 - 2'	13
SW 15 - Surface	14
SW 15 - 2'	15
SW 16 - Surface	16
SW 16 - 2'	17
SW 17 - Surface	18
SW 17 - 2'	19
SW 18 - Surface	20
SW 18 - 2'	21
SW 19 - Surface	22
SW 19 - 2'	23
SW 20 - Surface	24
SW 20 - 2'	25

•

Table of Contents (continued)

QC Summary Data	26
QC - Volatile Organics by EPA 8021B	26
QC - Nonhalogenated Organics by EPA 8015D - GRO	27
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	28
QC - Anions by EPA 300.0/9056A	29
Definitions and Notes	30
Chain of Custody etc.	31

Sample Summary

		Sample Sum	mary		
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	Burch Keely Unit # 20046-0001 Natalie Gladden	:629	Reported: 04/14/22 14:05
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
W 11 - Surface	E204046-01A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 11 - 2'	E204046-02A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 12 - Surface	E204046-03A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 12 - 2'	E204046-04A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 13 - Surface	E204046-05A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 13 - 2'	E204046-06A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 14 - Surface	E204046-07A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 14 - 2'	E204046-08A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 15 - Surface	E204046-09A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 15 - 2'	E204046-10A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 16 - Surface	E204046-11A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 16 - 2'	E204046-12A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 17 - Surface	E204046-13A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 17 - 2'	E204046-14A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 18 - Surface	E204046-15A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 18 - 2'	E204046-16A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 19 - Surface	E204046-17A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 19 - 2'	E204046-18A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 20 - Surface	E204046-19A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.
W 20 - 2'	E204046-20A	Soil	04/05/22	04/08/22	Glass Jar, 4 oz.

	~	ampic D				
Spur Energy Partners PO Box 1058	Project Name: Project Numb		ch Keely Unit #6 46-0001	29		Reported:
Houston TX, 77279	Project Manag		ilie Gladden			4/14/2022 2:05:43PM
	SV	V 11 - Surfac	e			
		E204046-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	rst: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
o-Xylene	ND	0.0250	1	04/11/22	04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		96.4 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.1 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	rst: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		110 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	rst: RAS		Batch: 2216023
Chloride	47.1	20.0	1	04/11/22	04/12/22	

Sample Data

Sample Data

Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numb Project Mana	ber: 2004	ch Keely Unit #6 46-0001 Ilie Gladden	29		Reported: 4/14/2022 2:05:43PM
		SW 11 - 2'				
		E204046-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
oluene	ND	0.0250	1	04/11/22	04/13/22	
-Xylene	ND	0.0250	1	04/11/22	04/13/22	
,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		96.5 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		92.5 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
urrogate: n-Nonane		110 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2216023
Chloride	78.5	20.0	1	04/11/22	04/12/22	

Sample Data

	De De	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	ch Keely Unit #6 46-0001 ılie Gladden	29		Reported: 4/14/2022 2:05:43PM
	SW	V 12 - Surfac	e			
		E204046-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/12/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/12/22	
Toluene	ND	0.0250	1	04/11/22	04/12/22	
p-Xylene	ND	0.0250	1	04/11/22	04/12/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/12/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/12/22	
Surrogate: 4-Bromochlorobenzene-PID		98.0 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/12/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		93.3 %	70-130	04/11/22	04/12/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		105 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2216023
Chloride	68.4	20.0	1	04/11/22	04/12/22	

Sample Data

	5	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numb Project Manag	per: 2004	ch Keely Unit #62 46-0001 1lie Gladden	29		Reported: 4/14/2022 2:05:43PM
		SW 12 - 2'				
		E204046-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		97.7 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.3 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		118 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2216023
Chloride	83.9	20.0	1	04/11/22	04/12/22	

Sample Data

	56	impic D	aia			
Spur Energy Partners	Project Name:		ch Keely Unit #62	.9		
PO Box 1058	Project Numbe		46-0001			Reported:
Houston TX, 77279	Project Manag	er: Nata	alie Gladden			4/14/2022 2:05:43PM
	SW	V 13 - Surfac	e			
		E204046-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Foluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		97.2 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g/kg Analyst: RKS		Batch: 2216018	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.8 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/13/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/13/22	
Surrogate: n-Nonane		113 %	50-200	04/11/22	04/13/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216023
Chloride	69.5	20.0	1	04/11/22	04/12/22	

Sample Data

	D.	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numb Project Manag	er: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 4/14/2022 2:05:43PM
		SW 13 - 2'				
		E204046-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		96.0 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.1 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	Batch: 2216005		
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		114 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2216023
Chloride	87.9	20.0	1	04/11/22	04/12/22	

Sample Data

	5	ampic D	aia			
Spur Energy Partners	Project Name:	Bure	ch Keely Unit #62	9		
PO Box 1058	Project Numbe	er: 2004	46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			4/14/2022 2:05:43PM
	SV	V 14 - Surfac	e			
		E204046-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		95.9 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	kg Analyst: RKS		Batch: 2216018	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		93.0 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	Batch: 2216005		
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		114 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216023
Chloride	83.7	20.0	1	04/11/22	04/12/22	

Sample Data

	D	ampic D				
Spur Energy Partners	Project Name		ch Keely Unit #62	9		
PO Box 1058	Project Numb		46-0001			Reported:
Houston TX, 77279	Project Mana	ger: Nata	alie Gladden			4/14/2022 2:05:43PM
		SW 14 - 2'				
		E204046-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
o-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
urrogate: 4-Bromochlorobenzene-PID		96.5 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RKS			Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.5 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys		Batch: 2216005	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
urrogate: n-Nonane		120 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216023
Chloride	73.1	20.0	1	04/11/22	04/12/22	

Sample Data

	St	mpic D	aia			
Spur Energy Partners	Project Name:	Bur	ch Keely Unit #62	9		
PO Box 1058	Project Numbe	er: 2004	46-0001			Reported:
Houston TX, 77279	Project Manag	er: Nata	alie Gladden			4/14/2022 2:05:43PM
	SW	/ 15 - Surfac	e			
	-	E204046-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		105 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g/kg Analyst: RKS		Batch: 2216018	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.2 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys		Batch: 2216005	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		112 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2216023
Chloride	89.2	20.0	1	04/11/22	04/12/22	

Sample Data

	5	ampic D	ata			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numb Project Manag	ber: 2004	ch Keely Unit #629 46-0001 1lie Gladden)		Reported: 4/14/2022 2:05:43PM
		SW 15 - 2'				
		E204046-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		103 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.4 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		115 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	RAS		Batch: 2216023
Chloride	91.3	20.0	1	04/11/22	04/12/22	

Sample Data

	Reported: 4/14/2022 2:05:43PM
	4/14/2022 2:05:43PM
Analyzed	Notes
	Batch: 2216018
04/13/22	
04/13/22	
04/13/22	
04/13/22	
04/13/22	
04/13/22	
04/13/22	
	Batch: 2216018
04/13/22	
04/13/22	
	Batch: 2216005
04/14/22	
04/14/22	
04/14/22	
	Batch: 2216023
04/13/22	
-	04/13/22 04/13/22 04/13/22 04/13/22 04/13/22 04/13/22 04/13/22 04/13/22 04/13/22 04/13/22 04/14/22 04/14/22

Sample Data

	D.	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbo Project Manag	er: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 4/14/2022 2:05:43PM
		SW 16 - 2'				
		E204046-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		104 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.9 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys		Batch: 2216005	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		115 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2216023
Chloride	96.3	20.0	1	04/11/22	04/13/22	

Sample Data

	D	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numb Project Manag	er: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 4/14/2022 2:05:43PM
	SV	V 17 - Surfac	e			
		E204046-13				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		105 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	ng/kg Analyst: RKS			Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	Batch: 2216005		
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		115 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2216023
Chloride	100	20.0	1	04/11/22	04/13/22	

Sample Data

	5	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numl Project Mana	ber: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 4/14/2022 2:05:43PM
		SW 17 - 2'				
		E204046-14				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	:: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		94.7 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g Analyst: RKS		Batch: 2216018	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.9 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		117 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: RAS		Batch: 2216023
Chloride	102	20.0	1	04/11/22	04/13/22	

Sample Data

	5		aia			
Spur Energy Partners	Project Name	e: Bur	ch Keely Unit #62	9		
PO Box 1058	Project Numb	ber: 200	46-0001			Reported:
Houston TX, 77279	Project Mana	ger: Nata	alie Gladden			4/14/2022 2:05:43PM
	S	W 18 - Surfac	e			
		E204046-15				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Total Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		94.9 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	kg Analyst: RKS		Batch: 2216018	
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.4 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys		Batch: 2216005	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		114 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216023
Chloride	109	20.0	1	04/11/22	04/13/22	

Sample Data

	5	ampic D	aia			
Spur Energy Partners	Project Name:		ch Keely Unit #62	9		
PO Box 1058	Project Numbe		46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			4/14/2022 2:05:43PM
		SW 18 - 2'				
		E204046-16				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		94.3 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.9 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		105 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: RAS		Batch: 2216023
Chloride	98.9	20.0	1	04/11/22	04/13/22	

Sample Data

	56	impic D	ata			
Spur Energy Partners	Project Name:		ch Keely Unit #62	9		
PO Box 1058	Project Numbe		46-0001			Reported:
Houston TX, 77279	Project Manag	er: Nata	ilie Gladden			4/14/2022 2:05:43PM
	SW	V 19 - Surfac	e			
		E204046-17				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		107 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		117 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216023
Chloride	106	20.0	1	04/11/22	04/13/22	

Sample Data

	D	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numb Project Manag	er: 2004	ch Keely Unit #62 46-0001 Ilie Gladden	29		Reported: 4/14/2022 2:05:43PM
		SW 19 - 2'				
		E204046-18				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
p,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		105 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.3 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		118 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216023
Chloride	112	20.0	1	04/11/22	04/13/22	

Sample Data

	56	ampic D	ata			
Spur Energy Partners	Project Name:	Bur	ch Keely Unit #62	.9		
PO Box 1058	Project Numbe	er: 2004	46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			4/14/2022 2:05:43PM
	SW	V 20 - Surfac	e			
		E204046-19				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.8 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		124 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2216023
Chloride	102	20.0	1	04/11/22	04/13/22	

Sample Data

	5	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numb Project Mana	ber: 2004	ch Keely Unit #62 46-0001 alie Gladden	9		Reported: 4/14/2022 2:05:43PM
		SW 20 - 2'				
		E204046-20				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	:: RKS		Batch: 2216018
Benzene	ND	0.0250	1	04/11/22	04/13/22	
Ethylbenzene	ND	0.0250	1	04/11/22	04/13/22	
Toluene	ND	0.0250	1	04/11/22	04/13/22	
p-Xylene	ND	0.0250	1	04/11/22	04/13/22	
o,m-Xylene	ND	0.0500	1	04/11/22	04/13/22	
Fotal Xylenes	ND	0.0250	1	04/11/22	04/13/22	
Surrogate: 4-Bromochlorobenzene-PID		105 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	:: RKS		Batch: 2216018
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/11/22	04/13/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.9 %	70-130	04/11/22	04/13/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: JL		Batch: 2216005
Diesel Range Organics (C10-C28)	ND	25.0	1	04/11/22	04/14/22	
Dil Range Organics (C28-C36)	ND	50.0	1	04/11/22	04/14/22	
Surrogate: n-Nonane		120 %	50-200	04/11/22	04/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: RAS		Batch: 2216023
Chloride	102	20.0	1	04/11/22	04/13/22	

QC Summary Data

Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	20	urch Keely U1 046-0001 atalie Gladder					Reported: 4/14/2022 2:05:43PM				
Houston 1A, 77279		, ,	, ,						4/14/2022 2.05.45FM				
		Volatile Or	OY EPA 802	21B				Analyst: RKS					
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit					
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes				
Blank (2216018-BLK1)							Prepared: 0	4/11/22 A	nalyzed: 04/12/22				
Benzene	ND	0.0250											
Ethylbenzene	ND	0.0250											
Toluene	ND	0.0250											
p-Xylene	ND	0.0250											
o,m-Xylene	ND	0.0500											
Total Xylenes	ND	0.0250											
Surrogate: 4-Bromochlorobenzene-PID	7.58		8.00		94.7	70-130							
LCS (2216018-BS1)							Prepared: 04/11/22 Analyzed: 04/12/22						
Benzene	5.30	0.0250	5.00		106	70-130							
Ethylbenzene	5.47	0.0250	5.00		109	70-130							
Foluene	5.72	0.0250	5.00		114	70-130							
p-Xylene	5.40	0.0250	5.00		108	70-130							
o,m-Xylene	11.1	0.0500	10.0		111	70-130							
Total Xylenes	16.5	0.0250	15.0		110	70-130							
Surrogate: 4-Bromochlorobenzene-PID	7.71		8.00		96.3	70-130							
Matrix Spike (2216018-MS1)				Source:	E204046-0	03	Prepared: 0	4/11/22 A	nalyzed: 04/12/22				
Benzene	4.53	0.0250	5.00	ND	90.7	54-133							
Ethylbenzene	4.64	0.0250	5.00	ND	92.8	61-133							
Toluene	4.87	0.0250	5.00	ND	97.5	61-130							
p-Xylene	4.60	0.0250	5.00	ND	91.9	63-131							
p,m-Xylene	9.42	0.0500	10.0	ND	94.2	63-131							
Total Xylenes	14.0	0.0250	15.0	ND	93.4	63-131							
Surrogate: 4-Bromochlorobenzene-PID	7.92		8.00		99.0	70-130							
Matrix Spike Dup (2216018-MSD1)				Source:	E204046-	03	Prepared: 0	4/11/22 A	nalyzed: 04/12/22				
Benzene	5.28	0.0250	5.00	ND	106	54-133	15.2	20					
Ethylbenzene	5.47	0.0250	5.00	ND	109	61-133	16.5	20					
Toluene	5.71	0.0250	5.00	ND	114	61-130	15.8	20					
p-Xylene	5.40	0.0250	5.00	ND	108	63-131	16.1	20					
o,m-Xylene	11.1	0.0500	10.0	ND	111	63-131	16.3	20					
	16.5	0.0250	15.0	ND	110	63-131	16.2	20					

QC Summary Data

		$\mathbf{x} \in \mathbf{v}$		ary Dutt	•				
Spur Energy Partners PO Box 1058		Project Name: Project Number:		urch Keely Un 0046-0001	it #629				Reported:
Houston TX, 77279		Project Manager:	N	latalie Gladden					4/14/2022 2:05:43PM
	Noi	nhalogenated O	rganics	by EPA 801	5D - G	RO			Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2216018-BLK1)							Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.38		8.00		92.2	70-130			
LCS (2216018-BS2)							Prepared: 0	4/11/22 A	analyzed: 04/12/22
Gasoline Range Organics (C6-C10)	49.3	20.0	50.0		98.6	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.60		8.00		95.0	70-130			
Matrix Spike (2216018-MS2)				Source:	E204046-	03	Prepared: 0	4/11/22 A	analyzed: 04/12/22
Gasoline Range Organics (C6-C10)	47.9	20.0	50.0	ND	95.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.51		8.00		93.9	70-130			
Matrix Spike Dup (2216018-MSD2)				Source:	E204046-	03	Prepared: 0	4/11/22 A	analyzed: 04/12/22
Gasoline Range Organics (C6-C10)	48.1	20.0	50.0	ND	96.2	70-130	0.317	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.37		8.00		92.1	70-130			

QC Summary Data

		$\mathbf{x} \in \mathbf{v}$	•••••••	ary Duc					
Spur Energy Partners PO Box 1058		Project Name: Project Number:		Burch Keely Ur 0046-0001	nit #629				Reported:
Houston TX, 77279		Project Manager:	Ν	Vatalie Gladder	1				4/14/2022 2:05:43PM
	Nonh	alogenated Org	anics by	EPA 8015I) - DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2216005-BLK1)							Prepared: 0	4/11/22 A1	nalyzed: 04/13/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	57.2		50.0		114	50-200			
LCS (2216005-BS1)							Prepared: 0	4/11/22 Ai	nalyzed: 04/13/22
Diesel Range Organics (C10-C28)	472	25.0	500		94.4	38-132			
Surrogate: n-Nonane	57.8		50.0		116	50-200			
Matrix Spike (2216005-MS1)				Source:	E204046-	01	Prepared: 0	4/11/22 A1	nalyzed: 04/13/22
Diesel Range Organics (C10-C28)	481	25.0	500	ND	96.2	38-132			
Surrogate: n-Nonane	60.4		50.0		121	50-200			
Matrix Spike Dup (2216005-MSD1)				Source:	E204046-	01	Prepared: 0	4/11/22 Aı	nalyzed: 04/13/22
Diesel Range Organics (C10-C28)	511	25.0	500	ND	102	38-132	6.10	20	
Surrogate: n-Nonane	63.6		50.0		127	50-200			

QC Summary Data

				<i>.</i>					
Spur Energy Partners		Project Name:	H	Burch Keely Ui	nit #629				Reported:
PO Box 1058		Project Number:	: 2	20046-0001					
Houston TX, 77279		Project Manager	r: 1	Natalie Gladder	1				4/14/2022 2:05:43PM
		Anions	by EPA	300.0/90564	4				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2216023-BLK1)							Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Chloride	ND	20.0							
LCS (2216023-BS1)							Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Chloride	253	20.0	250		101	90-110			
Matrix Spike (2216023-MS1)				Source:	E204046-	01	Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Chloride	300	20.0	250	47.1	101	80-120			
Matrix Spike Dup (2216023-MSD1)				Source:	E204046-	01	Prepared: 0	4/11/22 A	nalyzed: 04/12/22
Chloride	301	20.0	250	47.1	102	80-120	0.242	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Spur Energy Partners	Project Name:	Burch Keely Unit #629	
	PO Box 1058	Project Number:	20046-0001	Reported:
	Houston TX, 77279	Project Manager:	Natalie Gladden	04/14/22 14:05

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

roject Ini	formation	1					Ch	nain of Custody	1			/									Page	30f
roject N	uch her	ly Unit	#679		Add	ention: Ess Iress: 2724	Bill To NW CR HSHI, NM 882		Lab E á	wo#		ib Us	ie On Job 200	Num 946	oer 		2D		AT St	andard	EPA P CWA	rogram SDWA RCRA
ddress: ity, State hone: mail: eport du				· · · · · · · · · · · · · · · · · · ·	Pho	ne: ail: Maha ka	H2941, IVM 08 /		DRO/ORO by 8015	GRO/DRO by 8015	y 8021			Chloride 300.0		W				NM CO	State UT AZ	
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID				Lab Number	DRO/O	GRO/D	BTEX by 8021	VOC by 8260	Metals 6010	Chlorid			BGDOC				Remarks	
	<u>4-9</u>	5		<u>5w</u> Sw	11 - 50 11 - 7	vfu		$\frac{1}{2}$								r r						
				5W	12 - 5w	face		3														
			$ \rangle$	<u>5~</u>	7, 1	2`		45										+			····	
				SW SW	<u>) - 6wl</u>] - 2	re '		0														
				SW	14 - Jul	Q		7				 					+				<u></u>	
	$\left \right $			5~	<u>4 - 2</u> 5 - L	(8					-				#-					
)			SW 1	5 2	(<u> </u>		10														
I, (field sam	·	to the validity					with or intentionally m	islabelling the samp	elocat	ien,					-	-				l on ice the day n subsequent da	•	led or received
Relinquist	e of collection red by: 181gr	natofre)	Date	9-2-	$\frac{1}{100}$		(Signature) (Signature) (Signature)	Date 4-6- Date	dĴ	Time J C Time	<u>],0</u>	Ø	<u> </u>	eive	l on ice		Lab U	Jse O N	nly	T	·····	
Relinquis	ned by: (Sign	nature)	Date		ime	Received by:	All the state	Date	\mathbb{Z}	Time	Ω	S			np °C_	<u> </u>				<u>T3</u>		
Note: San	nples are di	scarded 30	days after re	queous, O - Oth sults are repo eceived by th	rted unless ot	her arrangemen	nts are made. Haza he liability of the lab	Containe ardous samples wi coratory is limited	ll be re	turne	d to cl	lient o	or disp	osed o	f at the	client e	xpens	e. The	repor			
							F	Page 31 of 33	}				C	3	e	n	V	/ j	r	01	e	C

Received by OCD: 11/15/2022 1:53:50 PM
roject Inf	ct Information Chain of Cu						Chain of Custo	tody									Page	of			
lient: 4 roject: 4 roject M ddress:	when here	lg Unit :	₩629			Bill To Attention: E55 Address: 2724 aw CA City, State, Zip Holds, aven 84	<i>?W</i> 0	Lab Use Only Lab WO# Job Number E 204040 20040-0001 Analysis and Method				2D	T/ 3D		andard	EPA P CWA	Program SDWA RCRA				
ity, State hone: mail: eport du						Phone: Email: Mohd (~		DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		C NM	XT				State UT AZ	
Time Sampled	Date Sampled	Matrix	No. of Containers	s Sample ID			Lab Numbe	DRO/0	GRO/I	BTEX	VOC b	Metal	Chlori		BGDOC	BGDOC				Remarks	5
	4-9	5)	5w 1	0 _ 0	notece									X						
	_[/	(<u>5~ 1</u>	<u>b -</u>	2	12								╢		-				
	\rightarrow		\vdash	5~ 1	<u>7 - h</u>	-hes	- 13)							+					-	
		$ \rightarrow $	++	52 1	<u> -</u>	2									╢	┼─					
			+	br 18	Guy	face	1(()													
			\uparrow	5w 10	<u> </u>											1	1				
		\uparrow	\uparrow	5w 19	- ju	<u>.</u>	18														
				SW Z	0 - Ju	tu	19								$\left \right $						
				5N Zi		2	2)							\bot						
	al Instru					aware that tampering with or intentiona						Sample	es requi	ing therm	al preserv	ationm	ust be re	ceived o	on ice the day	they are same	led or received
late or time		n is consider	ed fraud ar	nd may be ground ate			Date		Time		/			-	mp abov	e O but l		6 °C on s	subsequent da		
K	egby:/Sję		l	1-9-22 11/22	15.0 Time	Received by: (Signature)	LA Pare F	22 2/2	Time	<u>50</u> -~~	$\frac{2}{2}$	Rec	eived	on ice			N	,			
Relinquist	ied by: (Sig	t()) nature)		11900 Take	J / o Time	30 (100 (Signature)	Date	si <i>ll</i>	Time	J	\mathcal{L}	T1	6 Ten	n °C	. <u>1</u> 2 Ч				<u>T3</u>	-	
Note: San	ples are di	scarded 30	days afte		orted unl	ess other arrangements are made.		vill be re	turned	d to cl	, p - po ient or	oly/p dispo	lastic, osed o	ag - an at the o				report	for the ana	lysis of the	above
samples is	applicable	e only to the	ise sampli	es received by t	ne labora	tory with this COC. The liability of the	Page 32 of 3		amour	nt paid			S	e	n	V	' i	r	ot	e	cł

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Spur Energy Partners D	ate Received:	04/08/22 15	:00	Work Order ID: E204046
Phone:	(575) 390-6397 D	ate Logged In:	04/08/22 11	:39	Logged In By: Caitlin Christian
Email:	natalie@energystaffingllc.com D	ue Date:	04/13/22 17	2:00 (3 day TAT)	
<u>Chain of</u>	f Custody (COC)				
1. Does t	he sample ID match the COC?		Yes		
2. Does t	he number of samples per sampling site location match	the COC	Yes		
3. Were s	samples dropped off by client or carrier?		Yes	Carrier: C	Carrier
4. Was th	ne COC complete, i.e., signatures, dates/times, requested	d analyses?	No		
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
Sample '	Turn Around Time (TAT)				
	e COC indicate standard TAT, or Expedited TAT?		Yes		Project has been seperated into 2 reports
Sample (<u>Cooler</u>				due to amount of samples. Workorders are
	sample cooler received?		Yes		as follows:
8. If yes,	was cooler received in good condition?		Yes		E204045 COC page 1&2 of 4, E204046
9. Was th	ne sample(s) received intact, i.e., not broken?		Yes		
10. Were	custody/security seals present?		No		COC page 3&4 of 4. Sample times not
11. If yes	s, were custody/security seals intact?		NA		provided on COC.
12. Was th	he sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re		Yes		
10.10	minutes of sampling		a		
	visible ice, record the temperature. Actual sample te	mperature: <u>4°</u>	<u>C</u>		
	<u>Container</u>				
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	e head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers? appropriate volume/weight or number of sample container	e collected?	Yes Yes		
Field La		s confecteu?	105		
	field sample labels filled out with the minimum inform	nation			
	Sample ID?		Yes		
	Date/Time Collected?		No		
	Collectors name?		No		
	Preservation	10			
	the COC or field labels indicate the samples were pres	erved?	No		
	sample(s) correctly preserved?	-1-9	NA		
	o filteration required and/or requested for dissolved met	ais?	No		
	ase Sample Matrix				
	the sample have more than one phase, i.e., multiphase		No		
27. If yes	s, does the COC specify which phase(s) is to be analyze	ed?	NA		
	ract Laboratory				
28. Are s	amples required to get sent to a subcontract laboratory	2	No		
	a subcontract laboratory specified by the client and if so		NA S		

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Spur Energy Partners

Project Name:

Birch Keely 629

Work Order: E205009

Job Number: 20046-0001

Received: 5/4/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 5/5/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 5/5/22

Natalie Gladden PO Box 1058 Houston, TX 77279

Project Name: Birch Keely 629 Workorder: E205009 Date Received: 5/4/2022 10:30:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 5/4/2022 10:30:00AM, under the Project Name: Birch Keely 629.

The analytical test results summarized in this report with the Project Name: Birch Keely 629 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
Comp 1	6
Comp 2	7
Comp 3	8
Comp 4	9
Comp 5	10
Comp 6	11
Comp 7	12
Comp 8	13
Comp 9	14
Comp 10	15
Comp 11	16
Comp 12	17
Comp 13	18
Comp 14	19
Comp 15	20
Comp 16	21
Comp 17	22
Comp 18	23
Comp 19	24
Comp 20	25

•

Table of Contents (continued)

QC Summary Data	26
QC - Volatile Organics by EPA 8021B	26
QC - Nonhalogenated Organics by EPA 8015D - GRO	27
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	28
QC - Anions by EPA 300.0/9056A	29
Definitions and Notes	30
Chain of Custody etc.	31

Sample Summary

		Sample Sum	mary		
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	Birch Keely 629 20046-0001 Natalie Gladden		Reported: 05/05/22 17:55
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Comp 1	E205009-01A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 2	E205009-02A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
comp 3	E205009-03A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
omp 4	E205009-04A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 5	E205009-05A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
comp 6	E205009-06A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 7	E205009-07A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 8	E205009-08A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
comp 9	E205009-09A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
comp 10	E205009-10A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 11	E205009-11A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 12	E205009-12A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 13	E205009-13A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 14	E205009-14A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
comp 15	E205009-15A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 16	E205009-16A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 17	E205009-17A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
omp 18	E205009-18A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
omp 19	E205009-19A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
omp 20	E205009-20A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.

	5	ampic D	ala			
Spur Energy Partners PO Box 1058	Project Name Project Numb		h Keely 629 46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	lie Gladden	5/5/2022 5:55:05PM		
		Comp 1				
		E205009-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		97.9 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2219026
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.4 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/04/22	
Oil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/04/22	
Surrogate: n-Nonane		104 %	50-200	05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

Sample Data

	3	ample D	ata				
Spur Energy Partners	Project Name:	Birc	h Keely 629				
PO Box 1058	Project Numb	er: 2004	46-0001		Reported:		
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			5/5/2022 5:55:05PM	
		Comp 2					
		E205009-02					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2219026	
Benzene	ND	0.0250	1	05/04/22	05/05/22		
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22		
Toluene	ND	0.0250	1	05/04/22	05/05/22		
p-Xylene	ND	0.0250	1	05/04/22	05/05/22		
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22		
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22		
Surrogate: 4-Bromochlorobenzene-PID		97.8 %	70-130	05/04/22	05/05/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.3 %	70-130	05/04/22	05/05/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2219032	
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/04/22		
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/04/22		
Surrogate: n-Nonane		104 %	50-200	05/04/22	05/04/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2219025	
Chloride	ND	20.0	1	05/04/22	05/05/22		

Sample Data

	Si	ample D	ala			
Spur Energy Partners	Project Name:		h Keely 629			
PO Box 1058	Project Number		46-0001	Reported:		
Houston TX, 77279	Project Manag	er: Nata	ilie Gladden			5/5/2022 5:55:05PM
		Comp 3				
		E205009-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		96.2 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2219026
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.7 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/04/22	
Oil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/04/22	
Surrogate: n-Nonane		103 %	50-200	05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	3	ample D	ลเล				
Spur Energy Partners	Project Name	: Birc	h Keely 629				
PO Box 1058	Project Numb	per: 2004	20046-0001			Reported:	
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			5/5/2022 5:55:05PM	
		Comp 4					
		E205009-04					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2219026	
Benzene	ND	0.0250	1	05/04/22	05/05/22		
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22		
Toluene	ND	0.0250	1	05/04/22	05/05/22		
o-Xylene	ND	0.0250	1	05/04/22	05/05/22		
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22		
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22		
Surrogate: 4-Bromochlorobenzene-PID		95.3 %	70-130	05/04/22	05/05/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.7 %	70-130	05/04/22	05/05/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2219032	
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/04/22		
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/04/22		
Surrogate: n-Nonane		105 %	50-200	05/04/22	05/04/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: RAS		Batch: 2219025	
Chloride	ND	20.0	1	05/04/22	05/05/22		

Sample Data

	52	ample D	ลเล			
Spur Energy Partners PO Box 1058	Project Name: Project Numbe		h Keely 629 46-0001			Reported:
Houston TX, 77279	Project Manag					5/5/2022 5:55:05PM
		Comp 5				
		E205009-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	Analyst: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		96.8 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2219026
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/04/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/04/22	
Surrogate: n-Nonane		105 %	50-200	05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	5	ample D	ลเล			
Spur Energy Partners	Project Name:	Birc	h Keely 629			
PO Box 1058	Project Number	er: 2004	20046-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			5/5/2022 5:55:05PM
		Comp 6				
		E205009-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		95.5 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2219026
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.0 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/04/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/04/22	
Surrogate: n-Nonane		103 %	50-200	05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	5	ample D	ลเล			
Spur Energy Partners	Project Name:	Birc	h Keely 629			
PO Box 1058	Project Numbe	er: 2004	20046-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			5/5/2022 5:55:05PM
		Comp 7				
		E205009-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	Analyst: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		94.4 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2219026
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.1 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/04/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/04/22	
Surrogate: n-Nonane		90.7 %	50-200	05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	3	ample D	ลเล			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numb Project Manag	er: 2004	h Keely 629 46-0001 Ilie Gladden			Reported: 5/5/2022 5:55:05PM
		Comp 8				
		E205009-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		94.1 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.5 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		107 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	3	ample D	ลเล			
Spur Energy Partners	Project Name	: Birc	h Keely 629			
PO Box 1058	Project Numb	per: 2004	46-0001			Reported:
Houston TX, 77279	Project Mana	ger: Nata	alie Gladden			5/5/2022 5:55:05PM
		Comp 9				
		E205009-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	yst: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		95.3 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.7 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		106 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	3	ample D	ลเล			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numb Project Manaş	per: 2004	h Keely 629 46-0001 Ilie Gladden			Reported: 5/5/2022 5:55:05PM
		Comp 10				
		E205009-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		95.4 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.0 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		99.9 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	5	ample D	ata			
Spur Energy Partners	Project Name:	: Birc	h Keely 629			
PO Box 1058	Project Numb	er: 2004	46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			5/5/2022 5:55:05PM
		Comp 11				
		E205009-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		104 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY			Batch: 2219026
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.7 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	ıt: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		93.9 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	3	ample D	ata			
Spur Energy Partners	Project Name:	: Birc	h Keely 629			
PO Box 1058	Project Numb	er: 2004	46-0001			Reported:
Houston TX, 77279	Project Manag	ger: Nata	alie Gladden			5/5/2022 5:55:05PM
		Comp 12				
		E205009-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		103 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY			Batch: 2219026
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.0 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Oil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		99.0 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

eported:
2 5:55:05PM
es
2219026
2219026
2219032
2219025
>

Sample Data

	3	ample D	ลเล			
Spur Energy Partners	Project Name	:: Birc	h Keely 629			
PO Box 1058	Project Numb	ber: 2004	46-0001			Reported:
Houston TX, 77279	Project Mana	ger: Nata	alie Gladden			5/5/2022 5:55:05PM
		Comp 14				
		E205009-14				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	rst: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
oluene	ND	0.0250	1	05/04/22	05/05/22	
o-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22	
urrogate: 4-Bromochlorobenzene-PID		102 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		91.4 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	rst: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		105 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	5	ample D	ลเล			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	h Keely 629 46-0001 1lie Gladden			Reported: 5/5/2022 5:55:05PM
		Comp 15				
		E205009-15				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		106 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.9 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		109 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

Reported: 5/5/2022 5:55:05PM
-
5/5/2022 5:55:05PM
Notes
Batch: 2219026
Batch: 2219026
Batch: 2219032
Batch: 2219025

Sample Data

Reported:
/5/2022 5:55:05PM
Notes
atch: 2219026
atch: 2219026
atch: 2219032
atch: 2219025

Sample Data

	5	ample D	ลเล			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	h Keely 629 46-0001 ılie Gladden			Reported: 5/5/2022 5:55:05PM
		Comp 18				
		E205009-18				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.9 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		105 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	50	ampic D	ala			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	h Keely 629 46-0001 Ilie Gladden			Reported: 5/5/2022 5:55:05PM
		Comp 19				
		E205009-19				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
Toluene	ND	0.0250	1	05/04/22	05/05/22	
p-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250	1	05/04/22	05/05/22	
Surrogate: 4-Bromochlorobenzene-PID		95.0 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2219026	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.7 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	it: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Surrogate: n-Nonane		109 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

Sample Data

	5	ample D	ata			
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numb Project Manag	er: 2004	h Keely 629 46-0001 ilie Gladden			Reported: 5/5/2022 5:55:05PM
		Comp 20				
		E205009-20				
		Reporting				
Analyte	Result	Limit	Diluti	on Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	A	nalyst: IY		Batch: 2219026
Benzene	ND	0.0250	1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22	
oluene	ND	0.0250	1	05/04/22	05/05/22	
-Xylene	ND	0.0250	1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500	1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22	
urrogate: 4-Bromochlorobenzene-PID		93.9 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	A	nalyst: IY		Batch: 2219026
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22	
urrogate: 1-Chloro-4-fluorobenzene-FID		91.3 %	70-130	05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	A	nalyst: JL		Batch: 2219032
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/05/22	
Gurrogate: n-Nonane		107 %	50-200	05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	nalyst: RAS		Batch: 2219025
Chloride	ND	20.0	1	05/04/22	05/05/22	

QC Summary Data

		2000		ing Duta	<u> </u>					
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	20	irch Keely 629 0046-0001 atalie Gladden					Reported: 5/5/2022 5:55:05PM	
		Volatile Or	rganics b	oy EPA 8021	B				Analyst: IY	
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes	
	iiig/kg	iiig/kg	iiig/kg	iiig/kg	/0	70	/0	/0	Notes	
Blank (2219026-BLK1)				1	Prepared: 0	5/04/22 A	nalyzed: 05/05/22			
Benzene	ND	0.0250								
Ethylbenzene	ND	0.0250								
Toluene	ND	0.0250								
o-Xylene	ND	0.0250								
p,m-Xylene	ND	0.0500								
Total Xylenes	ND	0.0250								
Surrogate: 4-Bromochlorobenzene-PID	8.43		8.00		105	70-130				
LCS (2219026-BS1)]	Prepared: 0	5/04/22 A	analyzed: 05/05/22	
Benzene	4.91	0.0250	5.00		98.3	70-130				
Ethylbenzene	4.47	0.0250	5.00		89.5	70-130				
Toluene	4.73	0.0250	5.00		94.6	70-130				
o-Xylene	4.66	0.0250	5.00		93.2	70-130				
p,m-Xylene	9.23	0.0500	10.0		92.3	70-130				
Total Xylenes	13.9	0.0250	15.0		92.6	70-130				
Surrogate: 4-Bromochlorobenzene-PID	8.27		8.00		103	70-130				
LCS Dup (2219026-BSD1)						1	Prepared: 0	5/04/22 A	nalyzed: 05/05/22	
Benzene	5.18	0.0250	5.00		104	70-130	5.35	20		
Ethylbenzene	4.70	0.0250	5.00		94.1	70-130	5.00	20		
Toluene	4.98	0.0250	5.00		99.6	70-130	5.16	20		
o-Xylene	4.90	0.0250	5.00		98.0	70-130	5.02	20		
-			10.0		96.8	70-130	4.82	20		
p,m-Xylene	9.68	0.0500	10.0		90.8	70 150	1102	20		
p,m-Xylene Total Xylenes	9.68 14.6	0.0500	15.0		90.8 97.2	70-130	4.88	20		

QC Summary Data

		X Z Z Z							
Spur Energy Partners		Project Name:	В	irch Keely 629)				Reported:
PO Box 1058		Project Number	: 2	0046-0001					
Houston TX, 77279		Project Manage	r: N	atalie Gladder	1				5/5/2022 5:55:05PM
	No	onhalogenated	Organics	by EPA 80	15D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2219026-BLK1)							Prepared: 0	5/04/22 A	analyzed: 05/05/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.18		8.00		89.7	70-130			
LCS (2219026-BS2)							Prepared: 0	5/04/22 A	analyzed: 05/05/22
Gasoline Range Organics (C6-C10)	47.3	20.0	50.0		94.7	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.38		8.00		92.3	70-130			
LCS Dup (2219026-BSD2)							Prepared: 0	5/04/22 A	analyzed: 05/05/22
Gasoline Range Organics (C6-C10)	49.7	20.0	50.0		99.4	70-130	4.87	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.41		8.00		92.6	70-130			

QC Summary Data

		Y V V		II y Data	•				
Spur Energy Partners PO Box 1058		Project Name: Project Number:		irch Keely 629 0046-0001					Reported:
Houston TX, 77279		Project Manager:	Ν	atalie Gladden					5/5/2022 5:55:05PM
	Nonh	alogenated Org	anics by	EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2219032-BLK1)							Prepared: 0	5/04/22 A	nalyzed: 05/04/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	54.8		50.0		110	50-200			
LCS (2219032-BS1)							Prepared: 0	5/04/22 A	nalyzed: 05/04/22
Diesel Range Organics (C10-C28)	509	25.0	500		102	38-132			
Surrogate: n-Nonane	50.7		50.0		101	50-200			
Matrix Spike (2219032-MS1)				Source: F	205009-	12	Prepared: 0	5/04/22 A	nalyzed: 05/04/22
Diesel Range Organics (C10-C28)	523	25.0	500	ND	105	38-132			
Surrogate: n-Nonane	52.2		50.0		104	50-200			
Matrix Spike Dup (2219032-MSD1)				Source: F	205009-	12	Prepared: 0	5/04/22 A	nalyzed: 05/04/22
Diesel Range Organics (C10-C28)	535	25.0	500	ND	107	38-132	2.11	20	
Surrogate: n-Nonane	56.1		50.0		112	50-200			

QC Summary Data

					-				
Spur Energy Partners		Project Name:		Birch Keely 629	1				Reported:
PO Box 1058		Project Number:		0046-0001					
Houston TX, 77279		Project Manager	: N	latalie Gladden					5/5/2022 5:55:05PM
		Anions	by EPA	300.0/9056A					Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2219025-BLK1)							Prepared: 0	5/04/22 A	nalyzed: 05/05/22
Chloride	ND	20.0							
LCS (2219025-BS1)							Prepared: 0	5/04/22 A	nalyzed: 05/05/22
Chloride	258	20.0	250		103	90-110			
Matrix Spike (2219025-MS1)				Source:	E205009-(01	Prepared: 0	5/04/22 A	nalyzed: 05/05/22
Chloride	258	20.0	250	ND	103	80-120			
Matrix Spike Dup (2219025-MSD1)				Source:	E205009-(01	Prepared: 0	5/04/22 A	nalyzed: 05/05/22
Chloride	256	20.0	250	ND	103	80-120	0.625	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Spur Energy Partners	Project Name:	Birch Keely 629	
PO Box 1058	Project Number:	20046-0001	Reported:
Houston TX, 77279	Project Manager:	Natalie Gladden	05/05/22 17:55

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

oject Information	Chain o	f Custody	/										Page	of	
ient: Sour	Bill To		1			Use O					TA		EPA Program		
ient: Sour oject: Birch Keely 629	Attention: ESS		Lab \		na	dol	Numb		1D	2D	3D	Standard	rd CWA SDWA		
oject Manager: J ddress:	Address: 2427 W County City, State, Zip HO605, NM	<u>ko</u>	tà		דע	 A nal		-0001 d Metho	d		L	1		RCRA	
ty, State, Zip	Phone:						Í					_			
<u>10ne:</u>	Email: Natulie	<u></u>	8015	8015								NMI CO	State		
port due by:			1 2 1	0 by 1	8021	010	300.0		Σ	¥					
Time Date Matrix No. of Containers Sample ID		Lab Number	DRO/ORO	GRO/DRO by	BTEX by 8021	VOC by 8260 Metals 6010	Chloride		BGDOC	BGDOC			Remarks		
4/29 S 1 Comp	l	1							X						
Comp		8							$\left \right $	<u> </u>					
	વ	3							\Box						
Comp	4	4							$\left[\right]$						
	۲ ۲	5)					
Comp	<u> </u>	Ψ					-		$\dagger 7$	1					
() (Comp		4		$\left \right $	-+		+	$\left \right $	+	-					
) / (Comp	1			┝─┼					К	<u> </u>					
((/ Comp	8	8					_		4/						
$\left \right\rangle \left \right\rangle \left \left(\left Comp \right \right) \right \right\rangle$	9	9													
))) Comp	Δ	10							1						
Additional Instructions:	0		I	11	[<u>I</u>		<u> </u>		_		I			
, (field sampler), attest to the validity and authenticity of this sample. date or time of collection is considered fraud and may be grounds for	I am aware that tampering with or intentionally mislabel	ling the sam	ple locat	ion,				-				ceived on ice the dates of the		pled cr received	
Relinquished by: (Signature) Date 4-29-22	Received by: (Signature)	Date - 5.3.		Time	300) Re	eceive	d on ice:		Lab U	lse On N	ly			
Relinquished by: (Signature) Date Time	435 Received by Signature	Date 5/4/	22	Time	3	2 <u>1</u>	L		<u>T2</u>			<u>T3</u>			
Reingfuished by: (Signature) Date Time	Received by: (Signature)	Date		Time		A	VG Ter	np °C	4	-					
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other								:, ag - am				concert for the -	anhuric -f+t	a abase	
Note: Samples are discarded 30 days after results are reporte samples is applicable only to those samples received by the la	d unless other arrangements are made. Hazardous	s samples w rv is limited	nii de re 1 to the	amoun	to cile to aid	for on t	sposed (he repoi	or at the C rt.	nent e)	upense	: ine	report for the al	naiysis of tr	e anove	

oject Information	. Chain o	f Custody											i age	<u>Z</u> of	
ent: Spur piect: Birch Keely 629 piect Manager: Idress:	Bill To Attention: ESS Address: 2427 W County Rd City, State, Zip Mobbs, NM		Attention: ESS Ish WO# Job Number								2D 3I		EPA Program CWA SDWA RCRA		
y, State, Zip oñe: nail: port due by: Time Date Matrix No. of Sample ID	Phone: Email: Natane	Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021			Chloride 300.0		BGDOC NM	BGDOC TX	NM X	Sta		
4/29 5 1 Comp	()	Number	ā	5	18	×.	Σ	<u>5</u>		Ň	<u>×</u>				
((Comp	19	12								Δ					
Comp		13	1							\rangle					
Comp		14								$\left(\right)$					
) () Comp	15	15								\angle					
Comp	16	10								\square					
((Comp	17	17	_							(
))) Comp		18								7				_ <u></u>	
S Comp Comp	19	19													
dditional Instructions:	20	20)					
(field sampler), attest to the validity and authenticity of this sampl ate or time of collection is considered fraud and may be grounds for	e. I am aware that tampering with or intentional mislabel	ing the samp	ile locati	ion,								e received on ice han 6 °C on subse		e sampled or re	
elingenshed by: (Steneture) Date Tin Muna Muny 4-29/22		Date 5.3.	n	Time	1.70	9	Rece	ived on	ice:	_	ab Use	Only			
elinquished by: (Signature) Date Tir	1635 Catter Clata	Date 5/4/	22):3	80				<u>T2</u>		<u></u> <u>T3</u>			
elinquisped by: (Signature) Date Tir	ne Received by: (Signature)	Date		Time				Temp °(/ ····					
mple Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Othe ote: Samples are discarded 30 days after results are report imples is applicable only to those samples received by the	ed unless other arrangements are made. Hazardous	samples w	ill be re	eturne	d to cl	lient o	or dispo	astic, ag - sed of at t eport.					the analysis	of the above	

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

lient:	Spur Energy Partners Da	te Received:	05/04/22 10):30	Work Order ID: E205009
Phone:	(575) 390-6397 Da	te Logged In:	05/03/22 16	5:52	Logged In By: Caitlin Christian
Email:		e Date:	05/05/22 17	7:00 (1 day TAT)	
Chain o	f Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match t	the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: <u>U</u>	IPS
4. Was t	he COC complete, i.e., signatures, dates/times, requested	analyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	field,	Yes		Comments/Resolution
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				
6. Did th	ne COC indicate standard TAT, or Expedited TAT?		Yes		Project has been seperated into 2 reports
Sample	Cooler				due to amount of samples. Workorders are
7. Was a	a sample cooler received?		Yes		as follows:
8. If yes	, was cooler received in good condition?		Yes		E205009 COC page 1&2 of 4, E205010
9. Was t	he sample(s) received intact, i.e., not broken?		Yes		COC page 3&4 of 4. Time sampled not
10. Were	e custody/security seals present?		No		
11. If ye	s, were custody/security seals intact?		NA		provided on COC.
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i.e., Note: Thermal preservation is not required, if samples are rec minutes of sampling		Yes		
13. If no	visible ice, record the temperature. Actual sample tem	perature: 4°	С		
	Container	<u></u>			
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	e head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?		Yes		
	e appropriate volume/weight or number of sample containers	collected?	Yes		
Field La	abel				
	e field sample labels filled out with the minimum information	ition:			
	Sample ID?		Yes		
	Date/Time Collected?		No	I	
	Collectors name?		No		
	<u>Preservation</u>	rvod9	No		
	s the COC or field labels indicate the samples were preses sample(s) correctly preserved?	iveu?	No NA		
	b filteration required and/or requested for dissolved meta	ls?	NA No		
			110		
	nase Sample Matrix		NT		
26 Dag	s the sample have more than one phase, i.e., multiphase?	19	No		
	es, does the COC specify which phase(s) is to be analyzed		NA		
27. If ye	tract Laboratory				
27. If ye <u>Subcon</u> t	tract Laboratory		No		
27. If ye <u>Subcont</u> 28. Are	tract Laboratory samples required to get sent to a subcontract laboratory? a subcontract laboratory specified by the client and if so	who?	No NA	Subcontract Lab	1 m

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Spur Energy Partners

Project Name:

Birch Keely 629

Work Order: E205010

Job Number: 20046-0001

Received: 5/4/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 5/6/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979)
Date Reported: 5/6/22

Natalie Gladden PO Box 1058 Houston, TX 77279

Project Name: Birch Keely 629 Workorder: E205010 Date Received: 5/4/2022 10:30:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 5/4/2022 10:30:00AM, under the Project Name: Birch Keely 629.

The analytical test results summarized in this report with the Project Name: Birch Keely 629 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
Comp 21	6
Comp 22	7
Comp 23	8
Comp 24	9
Comp 25	10
SW Comp 1	11
SW Comp 2	12
SW Comp 3	13
SW Comp 4	14
SW Comp 5	15
SW Comp 6	16
SW Comp 7	17
SW Comp 8	18
SW Comp 9	19
SW Comp 10	20
SW Comp 11	21
SW Comp 12	22
SW Comp 13	23
QC Summary Data	24
QC - Volatile Organic Compounds by EPA 8260B	24

•

Table of Contents (continued)

	QC - Nonhalogenated Organics by EPA 8015D - GRO	25
	QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	26
	QC - Anions by EPA 300.0/9056A	27
D	efinitions and Notes	28
С	hain of Custody etc.	29

Sample Summary

		Sample Sum	mary		
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	Birch Keely 629 20046-0001 Natalie Gladden		Reported: 05/06/22 11:51
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Comp 21	E205010-01A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 22	E205010-02A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 23	E205010-03A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 24	E205010-04A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
Comp 25	E205010-05A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 1	E205010-06A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 2	E205010-07A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 3	E205010-08A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 4	E205010-09A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 5	E205010-10A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 6	E205010-11A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 7	E205010-12A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 8	E205010-13A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 9	E205010-14A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 10	E205010-15A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 11	E205010-16A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 12	E205010-17A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.
SW Comp 13	E205010-18A	Soil	04/29/22	05/04/22	Glass Jar, 4 oz.

	~•	impic D					
Spur Energy Partners	Project Name:						
PO Box 1058	Project Numbe					Reported:	
Houston TX, 77279	Project Manag	er: Nata	ilie Gladden			5/6/2022 11:51:54AM	
		Comp 21					
		E205010-01					
		Reporting					
Analyte	Result	Limit	Dilutio	n Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	An	alyst: IY		Batch: 2219027	
Benzene	ND	0.0250	1	05/04/22	05/05/22		
Ethylbenzene	ND	0.0250	1	05/04/22	05/05/22		
Toluene	ND	0.0250	1	05/04/22	05/05/22		
p-Xylene	ND	0.0250	1	05/04/22	05/05/22		
p,m-Xylene	ND	0.0500	1	05/04/22	05/05/22		
Total Xylenes	ND	0.0250	1	05/04/22	05/05/22		
Surrogate: Bromofluorobenzene		96.2 %	70-130	05/04/22	05/05/22		
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130	05/04/22	05/05/22		
Surrogate: Toluene-d8		103 %	70-130	05/04/22	05/05/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	An	alyst: IY		Batch: 2219027	
Gasoline Range Organics (C6-C10)	ND	20.0	1	05/04/22	05/05/22		
Surrogate: Bromofluorobenzene		96.2 %	70-130	05/04/22	05/05/22		
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130	05/04/22	05/05/22		
Surrogate: Toluene-d8		103 %	70-130	05/04/22	05/05/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORC) mg/kg	mg/kg	mg/kg Analyst: JL			Batch: 2219031	
Diesel Range Organics (C10-C28)	ND	25.0	1	05/04/22	05/04/22		
Oil Range Organics (C28-C36)	ND	50.0	1	05/04/22	05/04/22		
Surrogate: n-Nonane		104 %	50-200	05/04/22	05/04/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	An	alyst: RAS		Batch: 2219021	
Chloride	ND	20.0	1	05/04/22	05/05/22		

Sample Data

Sample Data

	D	ample D	uu				
Spur Energy Partners	5	Project Name: Birch Keely 629					
PO Box 1058	Project Numb		20046-0001				Reported:
Houston TX, 77279	Project Manag	ger: Nata	Natalie Gladden				5/6/2022 11:51:54AM
		Comp 22					
		E205010-02					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
o-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		97.6 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		97.6 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	Л		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/04/22	
Dil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/04/22	
Surrogate: n-Nonane		102 %	50-200		05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ampie D					
Spur Energy Partners PO Box 1058	Project Name:		h Keely 62 46-0001	29			Reported:
Houston TX, 77279	Project Number Project Manag		lie Gladde	'n			5/6/2022 11:51:54AM
	i iojeet munug	-	Side Gidea				
		Comp 23					
		E205010-03					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		97.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		98.4 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		97.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		98.4 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/04/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/04/22	
Surrogate: n-Nonane		100 %	50-200		05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

	D	ample D	uu				
Spur Energy Partners	5	Project Name: Birch Keely 629					
PO Box 1058	e e	Project Number: 20046-0001					Reported:
Houston TX, 77279	Project Mana	ger: Nata	lie Gladde	n			5/6/2022 11:51:54AM
		Comp 24					
		E205010-04					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		97.3 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		104 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		97.3 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		104 %	70-130		05/04/22	05/05/22	
urrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	Л		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/04/22	
Dil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/04/22	
Surrogate: n-Nonane		105 %	50-200		05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D					
Spur Energy Partners PO Box 1058	Project Name: Project Numbe	er: 2004	h Keely 62 46-0001				Reported: 5/6/2022 11:51:54AM
Houston TX, 77279	Project Manag	er: Nata	ilie Gladde		5/6/2022 11:51:54AM		
		Comp 25					
		E205010-05					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		95.3 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		94.2 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		95.3 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		94.2 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/04/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/04/22	
Surrogate: n-Nonane		108 %	50-200		05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		impic D					
Spur Energy Partners PO Box 1058 Houston TX, 77270	Project Name: Project Numbe	er: 2004	h Keely 62 16-0001 Ilie Gladde				Reported: 5/6/2022 11:51:54AM
Houston TX, 77279	Project Manag	er: Nata	life Gladde	'n			5/0/2022 11:51:54AM
	S	SW Comp 1					
		E205010-06					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.9 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		94.8 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		102 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.9 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		94.8 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		102 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/04/22	
Dil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/04/22	
Surrogate: n-Nonane		109 %	50-200		05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	CS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D	utu				
Spur Energy Partners	Project Name:		h Keely 62	29			
PO Box 1058	Project Numbe		20046-0001				Reported:
Houston TX, 77279	Project Manag	ger: Nata	ılie Gladde	en			5/6/2022 11:51:54AM
	5	SW Comp 2					
		E205010-07					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.5 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		105 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.5 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		105 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/04/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/04/22	
Surrogate: n-Nonane		110 %	50-200		05/04/22	05/04/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D	uuu				
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	h Keely 62 16-0001 lie Gladde				Reported: 5/6/2022 11:51:54AM
1100301111, 11217			ine Glada				2,0,2022 1110110 1111
	S	SW Comp 3					
		E205010-08					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		97.9 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		98.2 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		97.9 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		98.2 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		111 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

	~•	impic D	a eu				
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	h Keely 62 46-0001 Ilie Gladde				Reported: 5/6/2022 11:51:54AM
·		SW Comp 4					
		E205010-09					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		95.6 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		105 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		95.6 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		105 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		109 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		imple D					
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manage	r: 2004	h Keely 62 46-0001 Ilie Gladde				Reported: 5/6/2022 11:51:54AM
	S	W Comp 5					
]	E205010-10					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		95.1 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		102 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		95.1 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		102 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		112 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D	ata				
Spur Energy Partners	Project Name:		h Keely 62	29			
PO Box 1058	Project Numb		46-0001				Reported:
Houston TX, 77279	Project Manag	ger: Nata	lie Gladde	en			5/6/2022 11:51:54AM
	S	SW Comp 6					
		E205010-11					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.7 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		96.1 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.7 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		96.1 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	Л		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		104 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	CS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D					
Spur Energy Partners PO Box 1058	Project Name: Project Numbe		h Keely 6 46-0001	29			Reported:
Houston TX, 77279	Project Manag		lie Gladd	en			5/6/2022 11:51:54AM
	S	SW Comp 7					
		E205010-12					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		94.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	: IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		94.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	: JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		106 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	: CS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D	uu				
Spur Energy Partners	Project Name:		h Keely 62	29			
PO Box 1058	Project Number		46-0001				Reported:
Houston TX, 77279	Project Manag	ger: Nata	lie Gladde	n			5/6/2022 11:51:54AM
	S	SW Comp 8					
		E205010-13					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
o-Xylene	ND	0.0250		1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		94.6 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		94.6 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	Л		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		114 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D	uu				
Spur Energy Partners	Project Name:		h Keely 62	29			
PO Box 1058	Project Numbe		46-0001				Reported:
Houston TX, 77279	Project Manag	ger: Nata	lie Gladde	n			5/6/2022 11:51:54AM
	S	SW Comp 9					
		E205010-14					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
o-Xylene	ND	0.0250		1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.7 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.7 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		113 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

	5	ample D	ara				
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name Project Numb Project Mana	ber: 2004	h Keely 6 46-0001 1lie Gladdo				Reported: 5/6/2022 11:51:54AM
	5	SW Comp 10					
		E205010-15					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		95.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		105 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		95.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		105 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		111 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	: RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

	5	ample D	uu				
Spur Energy Partners PO Box 1058	Project Name: Project Number		h Keely 62 46-0001	29			Reported:
Houston TX, 77279	Project Manag		ilie Gladde		5/6/2022 11:51:54AM		
	s	W Comp 11					
		E205010-16					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		95.6%	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		95.6 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		112 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D	uu				
Spur Energy Partners PO Box 1058 Houston TX, 77279	Project Name: Project Numbe Project Manag	er: 2004	h Keely 62 46-0001 Ilie Gladdo				Reported: 5/6/2022 11:51:54AM
	S	W Comp 12					
		E205010-17					
Analyte	Result	Reporting Limit	Di	lution	Prepared	Analyzed	Notes
-				Analyst:	*	1 11111 / 200	Batch: 2219027
Volatile Organic Compounds by EPA 8260B	mg/kg ND	mg/kg 0.0250		1	05/04/22	05/05/22	Batch: 221902/
Benzene Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Foluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
o,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Fotal Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		96.4 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		97.6%	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		103 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	Л		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Dil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		109 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

Sample Data

		ample D	uta				
Spur Energy Partners	Project Name:		h Keely 62	29			
PO Box 1058	Project Number		6-0001				Reported:
Houston TX, 77279	Project Manag	ger: Nata	lie Gladde	n			5/6/2022 11:51:54AM
	S	W Comp 13					
		E205010-18					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Benzene	ND	0.0250		1	05/04/22	05/05/22	
Ethylbenzene	ND	0.0250		1	05/04/22	05/05/22	
Toluene	ND	0.0250		1	05/04/22	05/05/22	
p-Xylene	ND	0.0250		1	05/04/22	05/05/22	
p,m-Xylene	ND	0.0500		1	05/04/22	05/05/22	
Total Xylenes	ND	0.0250		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		93.9 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		94.1 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2219027
Gasoline Range Organics (C6-C10)	ND	20.0		1	05/04/22	05/05/22	
Surrogate: Bromofluorobenzene		93.9 %	70-130		05/04/22	05/05/22	
Surrogate: 1,2-Dichloroethane-d4		94.1 %	70-130		05/04/22	05/05/22	
Surrogate: Toluene-d8		104 %	70-130		05/04/22	05/05/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2219031
Diesel Range Organics (C10-C28)	ND	25.0		1	05/04/22	05/05/22	
Oil Range Organics (C28-C36)	ND	50.0		1	05/04/22	05/05/22	
Surrogate: n-Nonane		113 %	50-200		05/04/22	05/05/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2219021
Chloride	ND	20.0		1	05/04/22	05/05/22	

QC Summary Data

		$\chi \cup \mathcal{N}$		ing Dava					
Spur Energy Partners		Project Name:		irch Keely 629					Reported:
PO Box 1058		Project Number:	20	0046-0001					
Houston TX, 77279		Project Manager:	Na	atalie Gladden					5/6/2022 11:51:54AM
	V	olatile Organic	Compo	unds by EPA	A 82601	3			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2219027-BLK1)						Р	repared: 0	5/04/22 Aı	nalyzed: 05/05/22
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
p-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: Bromofluorobenzene	0.485		0.500		96.9	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.482		0.500		96.4	70-130			
Surrogate: Toluene-d8	0.514		0.500		103	70-130			
LCS (2219027-BS1)						Р	repared: 0	5/04/22 Aı	nalyzed: 05/05/22
Benzene	2.27	0.0250	2.50		90.9	70-130			
Ethylbenzene	2.37	0.0250	2.50		94.8	70-130			
Toluene	2.30	0.0250	2.50		92.0	70-130			
p-Xylene	2.30	0.0250	2.50		91.9	70-130			
o,m-Xylene	4.58	0.0500	5.00		91.7	70-130			
Total Xylenes	6.88	0.0250	7.50		91.7	70-130			
Surrogate: Bromofluorobenzene	0.501		0.500		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.488		0.500		97.6	70-130			
Surrogate: Toluene-d8	0.515		0.500		103	70-130			
LCS Dup (2219027-BSD1)						Р	repared: 0	5/04/22 Aı	nalyzed: 05/05/22
Benzene	2.29	0.0250	2.50		91.6	70-130	0.767	23	
Ethylbenzene	2.39	0.0250	2.50		95.7	70-130	0.987	27	
Toluene	2.32	0.0250	2.50		92.9	70-130	1.04	24	
o-Xylene	2.34	0.0250	2.50		93.4	70-130	1.66	27	
p,m-Xylene	4.67	0.0500	5.00		93.3	70-130	1.76	27	
		0.0250	7.50		93.3	70-130	1.73	27	
Total Xylenes	7.00	0.0230							
Fotal Xylenes	7.00 0.502	0.0230	0.500		100	70-130			
		0.0250			100 98.5	70-130 70-130			

QC Summary Data

		QU D	u	ary Data	•				
Spur Energy Partners PO Box 1058 Houston TX, 77279		Project Name: Project Number: Project Manager:	2	Birch Keely 629 20046-0001 Natalie Gladden					Reported: 5/6/2022 11:51:54AM
	Noi	nhalogenated C	Organics	by EPA 801	5D - G	RO			Analyst: IY
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2219027-BLK1)							Prepared: 0	5/04/22 A	nalyzed: 05/05/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.485		0.500		96.9	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.482		0.500		96.4	70-130			
Surrogate: Toluene-d8	0.514		0.500		103	70-130			
LCS (2219027-BS2)							Prepared: 0	5/04/22 A	nalyzed: 05/05/22
Gasoline Range Organics (C6-C10)	55.7	20.0	50.0		111	70-130			
Surrogate: Bromofluorobenzene	0.484		0.500		96.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.486		0.500		97.1	70-130			
Surrogate: Toluene-d8	0.523		0.500		105	70-130			
LCS Dup (2219027-BSD2)							Prepared: 0	5/04/22 A	nalyzed: 05/05/22
Gasoline Range Organics (C6-C10)	53.9	20.0	50.0		108	70-130	3.42	20	
Surrogate: Bromofluorobenzene	0.493		0.500		98.5	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.493		0.500		98.6	70-130			
Surrogate: Toluene-d8	0.524		0.500		105	70-130			

QC Summary Data

		QU DI		il y Data					
Spur Energy Partners PO Box 1058		Project Name: Project Number:		irch Keely 629 0046-0001					Reported:
Houston TX, 77279		Project Manager:	Ν	atalie Gladden					5/6/2022 11:51:54AM
	Nonh	alogenated Org	anics by	EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2219031-BLK1)							Prepared: 0	5/04/22 A	analyzed: 05/04/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	50.4		50.0		101	50-200			
LCS (2219031-BS1)							Prepared: 0	5/04/22 A	analyzed: 05/04/22
Diesel Range Organics (C10-C28)	468	25.0	500		93.7	38-132			
Surrogate: n-Nonane	50.5		50.0		101	50-200			
Matrix Spike (2219031-MS1)				Source: E	205010-	15	Prepared: 0	5/04/22 A	analyzed: 05/04/22
Diesel Range Organics (C10-C28)	477	25.0	500	ND	95.5	38-132			
Surrogate: n-Nonane	50.5		50.0		101	50-200			
Matrix Spike Dup (2219031-MSD1)				Source: E	205010-	15	Prepared: 0	5/04/22 A	analyzed: 05/04/22
Diesel Range Organics (C10-C28)	482	25.0	500	ND	96.5	38-132	1.03	20	
Surrogate: n-Nonane	52.3		50.0		105	50-200			

QC Summary Data

Spur Energy Partners		Project Name:	В	irch Keely 629					Reported:
PO Box 1058		Project Number:	2	0046-0001					
Houston TX, 77279		Project Manager	:: N	atalie Gladden					5/6/2022 11:51:54AM
		Anions	by EPA	300.0/9056A	L L				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2219021-BLK1)							Prepared: 0	5/04/22 A	analyzed: 05/05/22
Chloride	ND	20.0							
LCS (2219021-BS1)							Prepared: 0	5/04/22 A	analyzed: 05/05/22
Chloride	267	20.0	250		107	90-110			
Matrix Spike (2219021-MS1)				Source:	E205010-(01	Prepared: 0	5/04/22 A	analyzed: 05/05/22
Chloride	269	20.0	250	ND	107	80-120			
Matrix Spike Dup (2219021-MSD1)				Source:	E205010-(01	Prepared: 0	5/04/22 A	analyzed: 05/05/22
Chloride	270	20.0	250	ND	108	80-120	0.379	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Spur Energy Partners	Project Name:	Birch Keely 629	
PO Box 1058	Project Number:	20046-0001	Reported:
Houston TX, 77279	Project Manager:	Natalie Gladden	05/06/22 11:51

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

ect Information	Chain o	f Custody	ý											I	Page <u>3</u>	of
ent: Spyr ject: Birch Keely ject Manager: dress: y, State, Zip	Bill To <u>Attention: ESS</u> <u>Address: 2427 W County</u> <u>City, State, Zip Hobbs, NM</u> Phone:	ej	Lab V E2	NO#		L	e Only Iob Ni Analysi	umbe	er Col Metho			TA 3D	T Stanc	lard `	EPA P CWA	SDWA RCRA
prie: ail: port due by:	Email: Nata (ie		DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	6010	Chloride 300.0		C NM	XT		NN	vi co	State UT AZ	TX
Time Date Matrix No. of Containers Sample ID		Lab Number	DRO/C	GRO/D	BTEX b	VOC by	Metals 6010	Chloric		BGDOC	BGDOC				Remarks	
4/29 5 1 Comp					-					X						
Comp	22	23								₿						
Comp		34	. 					_		$\left \right $						
) (Comp		5	+							1						
/ / SW C	omp 1	Ψ				-				Δ				•		
(sw a	comp 2	7								14						
	Comp 3	8	-							$\left \right\rangle$					<u> </u>	<u></u>
	Comp 4 Comp 5	9								$\left \right\rangle$					<u> </u>	
ditional Instructions:	iomp 5															
field sampler), attest to the validity and authenticity of this sample. te or time of collection is considered fraud and may be grounds for	I am aware that tampering with or intentionally mfslabelli legal action. Sampled by:	ng the samp		ion,					-				ceived an ic 6 °C on sub:	-	•	oled or received
linquished by: (Signature) Date Time	Received by: (Signature)	Date 5.3.	22	+	30	2	Rece	eived	on ice:		ab U	lse Or N	nly			
	135 Calle lite	Date Date	læ.	Time	:3	0	<u></u>		· ·	<u>T2</u>			I3	3.		
	e Received by: (Signature)		or T		<u>alace</u>			Tem		4		VOA				
mple Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other ote: Samples are discarded 30 days after results are reporte mples is applicable only to those samples received by the la			ill be re	turned	d to cli	ient o	r dispo	sed of	at the c					r the an	alysis of th	e above

roject Information	Chain of	f Custody	,										Page	of
lient: Spur roject: Birch Keely 629 roject Manager: ddress: Ity, State, Zip	Bill To Attention: ESS Address: 2427 W Counter City, State, Zip HOBBS, NM	y Rð	Lab V E á	wo# 205		b Uşı	Job I	ly Number 96000000000000000000000000000000000000		2D	TAT 3D	Standard	EPA P CWA	SDWA
hone: mail: eport due by:	Phone: Email: Natalie		(O by 8015	GRO/DRO by 8015	8021	8260	010	300.0	WN	ž			State	TX
Time Date Matrix No. of Containers Sample ID		Lab Number	DRO/ORO by	GRO/DF	BTEX by 8021	VOC by 8260	Metals 6010	Chloride	BGDOC	BGDOC			Remarks	
4/29 5 1 SW C	iomp 6	M							X	1				
	omp 7	12							15					
	comp 8	13							1		<u> </u>			
	Comp 9	14												
	Comp 10	15							\mathcal{H}			_		
	20mp 11 20mp 17	10 17							$\left \right\rangle$	-				
	lomp 13	18							Ӈ	-			····	
										$\frac{1}{2}$	$\left\{ \begin{array}{c} \\ \end{array} \right\}$		<u> </u>	
									Ħ		╞╌┼╸			
Additional Instructions: (field sampler), attest to the validity and authenticity of this sample. ate or time of collection is considered fraud and may be grounds for M		g the Sample	locatio	on,			Sample	es requiring thermal	preserva	tion me	ist be receiv	red on ice the days	they are samp	ed or received
elingershed by: (Signature) Mun Muy 4/29/22 Time		Date 5.3.2		Time	30:			in ice at an avg terr	ļ		se Only	on subsequent da	ys. 	
	35 auter Clater	Date		Time	:30	2	<u>тесе</u>	Lived on ice.	т <u>р</u>		I	T3		
telined by: (Signature) Date Time	Received by: (Signature)	Date		Time			AVG	Temp °C4	4			• • • • • • • • • • • • • • • • • • • •		
ample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other _ lote: Samples are discarded 30 days after results are reported amples is applicable only to those samples received by the lab	unless other arrangements are made. Hazardous sa	mples will	be ret	urned	to cli	ent or	dispo	astic, ag - amb sed of at the cli	er gla	iss, v Dense.	VOA The rep	ort for the ana	lysis of the	above

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

lient:	Spur Energy Partners D	ate Received:	05/04/22 10):30	Work Order ID: E205010
Phone:	(575) 390-6397 D	ate Logged In:	05/03/22 16	5:57	Logged In By: Caitlin Christian
Email:		ue Date:	05/05/22 17	7:00 (1 day TAT)	
<u>Chain o</u>	of Custody (COC)				
	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match	the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: <u>U</u>	JPS
4. Was t	he COC complete, i.e., signatures, dates/times, requested	d analyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				
6. Did th	he COC indicate standard TAT, or Expedited TAT?		Yes		Project has been seperated into 2 reports
Sample	Cooler				due to amount of samples. Workorders are
7. Was a	a sample cooler received?		Yes		as follows:
8. If yes	, was cooler received in good condition?		Yes		E205009 COC page 1&2 of 4, E205010
9. Was t	he sample(s) received intact, i.e., not broken?		Yes		COC page 3&4 of 4. Time sampled not
10. Wer	e custody/security seals present?		No		
11. If ye	es, were custody/security seals intact?		NA		provided on COC.
12. Was 1	the sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re- minutes of sampling		Yes		
13. If nc	o visible ice, record the temperature. Actual sample te	mperature: 4°	с		
	Container		-		
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	e head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?				
17. Was			NA		
			NA Yes		
18. Are	non-VOC samples collected in the correct containers?	s collected?			
18. Are: 19. Is the	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container	s collected?	Yes		
18. Are : 19. Is the Field La	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container		Yes		
18. Are : 19. Is the Field La 20. Were	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID?		Yes		
18. Are 19. Is the Field La 20. Were	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected?		Yes Yes Yes No		
18. Are : 19. Is the Field La 20. Were	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name?		Yes Yes Yes		
18. Are : 19. Is the Field La 20. Were Sample	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u>	nation:	Yes Yes Yes No No		
18. Are 19. Is the 19. Is the 19. Is the 20. Were 19. Sample 21. Does	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres	nation:	Yes Yes No No No		
18. Are : 19. Is the Field La 20. Were Sample 21. Doe: 22. Are	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were press sample(s) correctly preserved?	nation: erved?	Yes Yes No No No NA		
 18. Are 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 24. Is lat 	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were press sample(s) correctly preserved? b filteration required and/or requested for dissolved met	nation: erved?	Yes Yes No No No		
 18. Are 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 24. Is lai Multiph 	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres sample(s) correctly preserved? b filteration required and/or requested for dissolved met <u>mase Sample Matrix</u>	nation: erved? als?	Yes Yes No No No NA No		
 18. Are 19. Is the Field La 20. Were 20. Were 21. Does 22. Are 24. Is lat Multiph 26. Does 	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres sample(s) correctly preserved? b filteration required and/or requested for dissolved met <u>nase Sample Matrix</u> s the sample have more than one phase, i.e., multiphase?	nation: erved? als?	Yes Yes No No No No No		
 18. Are 19. Is the Field La 20. Were 20. Were 21. Doe: 22. Are 24. Is lait Multiph 26. Doe: 27. If ye 	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were press sample(s) correctly preserved? b filteration required and/or requested for dissolved met mase Sample Matrix s the sample have more than one phase, i.e., multiphase? es, does the COC specify which phase(s) is to be analyze	nation: erved? als?	Yes Yes No No No NA No		
 18. Are 19. Is the Field La 20. Were 20. Were 21. Doe: 22. Are 24. Is lai Multiph 26. Doe: 27. If ye Subcont 	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres sample(s) correctly preserved? b filteration required and/or requested for dissolved met <u>hase Sample Matrix</u> s the sample have more than one phase, i.e., multiphase? es, does the COC specify which phase(s) is to be analyze <u>tract Laboratory</u>	nation: erved? als? d?	Yes Yes No No NA No No NA		
 Are Is the Field La 20. Werd 20. Werd 20. Werd 21. Does 22. Are 24. Is lai Multiph 26. Does 27. If yee Subcom 28. Are 	non-VOC samples collected in the correct containers? e appropriate volume/weight or number of sample container abel e field sample labels filled out with the minimum inform Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were press sample(s) correctly preserved? b filteration required and/or requested for dissolved met mase Sample Matrix s the sample have more than one phase, i.e., multiphase? es, does the COC specify which phase(s) is to be analyze	nation: erved? als? d?	Yes Yes No No No No No No No	Subcontract Lab	

Signature of client authorizing changes to the COC or sample disposition.

•

SPUR ENERGY BURCH KEELY UNIT 629 REMEDIATION AND FINAL SITE PHOTOS

Received by OCD: 11/15/2022 1:53:50 PM Form C-141 State of

State of New Mexico

Page 3

Incident ID	NAPP2207346885
District RP	
Facility ID	
Application ID	

Page 271 of 274

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	
Did this release impact groundwater or surface water?	
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No ☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔀 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No ☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	
Are the lateral extents of the release overlying a subsurface mine?	Yes No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🔲 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No
Die ne release impact actus not on an exploration, acterophient, production, or storage site.	🗌 Yes 🖾 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/15/2022 1:53:50 PM			Page 272 of 274
F	Form C-141State of New Mexico	Incident ID	NAPP2207346885
Р	age 4 Oil Conservation Division	District RP	
		Facility ID	
		Application ID	
	I hereby certify that the information given above is true and complete to the best of my knowledge a regulations all operators are required to report and/or file certain release notifications and perform cc public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the failed to adequately investigate and remediate contamination that pose a threat to groundwater, surfa addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compland/or regulations. Printed Name: NATALIE GLADDEN Title: DIRECTOR OF ENVIRONMENT Signature: Date: (1-1)-7 email: natalie@energystaffingllc.com Telephone: 575-390-639 OCD Only OCD Only Date: 10-11-7	prrective actions for relea operator of liability sho ce water, human health of iance with any other fed	ases which may endanger ould their operations have or the environment. In leral, state, or local laws
		/15/2022	

1

Received by OCD: 11/15/2022 1:53:50 PM Form C-141 State of

State of New Mexico

Page 6

Oil Conservation Division

Incident ID	NAPP2207346885
District RP	
Facility ID	
Application ID	

Page 273 of 274

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.	
A scaled site and sampling diagram as described in 19.15.29.11 NMAC	
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)	
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)	
Description of remediation activities	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Natalie Gladden Tit	le: Director of Environmental and Regulatory	
Signature: ptalie Glade	Leu Date: 11-11-22	
email: <u>natalie@energystaffingllc.com</u>	Telephone:575-390-6397	

<u>OCD</u>	Only

Received by: Jocelyn Harimon

Date: 11/15/2022

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:
Printed Name:	Title:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	159012
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By Condition

We have received your closure report and final C-141 for Incident #NAPP2207346885 BURCH KEELY UNIT #629, thank you. This closure is approved. 2/13/2023 rhamlet

CONDITIONS

Action 159012

Condition Date