District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NCS1913741281
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Hilcorp Energy Company			OGRID 37	2171			
Contact Name Jennifer Deal			Contact Telephone 505-801-6517				
Contact email jdeal@hilcorp.com			Incident #	NCS191374128	31		
Contact mail	ing address	382 Road 3100,	Aztec NM 87410)			
			Location	n of R	elease So	ource	
Latitude 36.	7778969		(NAD 83 in d	lecimal de	Longitude - grees to 5 decim	107.8062668 nal places)	
Site Name M	Mansfield 11				Site Type	Gas Well	
		5/2/2019 @ 4:00)pm		API# 30-045		
Unit Letter	Section	Township	Range		Coun	ty	
N	29	30N	09W	San	Juan		
Crude Oi	Materia	Federal T	Nature an	d Vo	lume of I	Release	volumes provided below)
			` /			Volume Recovered (bbls)	
Produced	water	Volume Release				Volume Recovered (bbls)	
		Is the concentrate produced water	ation of dissolved >10,000 mg/l?	chloride	e in the	Yes N	0
Condensa	nte	Volume Release				Volume Recovered (bbls) 0	
☐ Natural C	as	Volume Release	ed (Mcf)			Volume Recovered (Mcf)	
,	Other (describe) toric Contamination Volume/Weight Released (provide units) Unknown)	Volume/Weight Recovered (provide units)			
	g to install a	new BGT at the tion to determine		toric con	itamination v	vas encountered	at approximately 4 feet deep. Hilcorp

	Page 2 of 2.	38
Incident ID	NCS1913741281	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 70 days after the release discovery date.				
What is the shallowest depth to groundwater beneath the area affected by the release?	<u>25-28</u> (ft bgs)			
Did this release impact groundwater or surface water?	☐ Yes ⊠ No			
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No			
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No			
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No			
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No			
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No			
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No			
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No			
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No			
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No			
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No			
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No			
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.				
Characterization Report Checklist: Each of the following items must be included in the report.				

Characterization Report Checklist: Each of the following items must be included in the report.
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
☐ Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
☐ Topographic/Aerial maps
☐ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/13/2023 11:38:18 AM State of New Mexico
Page 4 Oil Conservation Division

Page 3 of 238

Incident ID	NCS1913741281
District RP	
Facility ID	
Application ID	

regulations all operators are required to report and/or file certain release a public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a second contamination.	the best of my knowledge and understand that pursuant to OCD rules and notifications and perform corrective actions for releases which may endanger to OCD does not relieve the operator of liability should their operations have threat to groundwater, surface water, human health or the environment. In of responsibility for compliance with any other federal, state, or local laws
Printed Name:Jennifer Deal	Title:Environmental Specialist
Printed Name:Jennifer Deal Signature:	Date:2/19/2020
email:jdeal@hilcorp.com	Telephone:(505) 324-5128
OCD Only	
Received by:	Date:

OCD: 1/13/2023 11:38:18 AM State of New Mexico

Incident ID	NCS1913741281
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.			
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 			
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.			
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.			
Extents of contamination must be fully delineated.			
Contamination does not cause an imminent risk to human health, the environment, or groundwater.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			
Printed Name:Jennifer Deal Title:Environmental Specialist			
Signature: Date: Date:			
email:jdeal@hilcorp.com			
OCD Only			
Received by: OCD Date: 2/16/2020			
☐ Approved ☐ Approved with Attached Conditions of Approval ☐ Denied ☐ Deferral Approved			
Signature: Date: 6/12/2020			

COA attached/Emailed to Operator

Page 5 of 238

Incident ID		
District RP		
Facility ID		
Application ID		

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachn	nent Checklist: Each of the following it	tems must be incli	uded in the closure report.
A scaled site and sam	pling diagram as described in 19.15.29.1	1 NMAC	
□ Photographs of the remust be notified 2 days properties.		of the liner integri	ity if applicable (Note: appropriate OCD District office
□ Laboratory analyses of the control of th	of final sampling (Note: appropriate ODC	C District office m	ust be notified 2 days prior to final sampling)
Description of remed	iation activities		
and regulations all operator may endanger public health should their operations hav human health or the enviro compliance with any other restore, reclaim, and re-veg	rs are required to report and/or file certain n or the environment. The acceptance of re failed to adequately investigate and ren nment. In addition, OCD acceptance of a federal, state, or local laws and/or regula	n release notificati a C-141 report by mediate contamina a C-141 report doe tions. The respon nditions that existe	y knowledge and understand that pursuant to OCD rules ons and perform corrective actions for releases which the OCD does not relieve the operator of liability tion that pose a threat to groundwater, surface water, es not relieve the operator of responsibility for sible party acknowledges they must substantially ed prior to the release or their final land use in tion and re-vegetation are complete.
Printed Name: <u>Mitch K</u>	illough	Title:	Environmental Specialist
Signature:	the Soft		Date:1/13/2023
email:mkillough@	hilcorp.com	Telephone:	713-757-5247
OCD Only			
Received by:		Date:	
remediate contamination th		water, human healt	their operations have failed to adequately investigate and th, or the environment nor does not relieve the responsible
Closure Approved by:	Nelson Velez	Date: _	03/20/2023
Printed Name:	Nelson Velez Nelson Velez	_ Title: _	Environmental Specialist – Adv

CLOSURE REPORT

Property:

Mansfield 11
Hilcorp Energy Company
San Juan County, New Mexico

New Mexico EMNRD OCD Incident No. NCS1913741281

January 13, 2023

Prepared for:

New Mexico Oil Conservation Division
New Mexico Energy, Minerals, and Natural Resources Department
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

Prepared by:

Stuart Hyde, LG Senior Geologist Ashley Ager, MS, PG Principal

TABLE OF CONTENTS

1.0	INTRODUCTION	
1.1	Site Background	1
2.0	2019 SITE INVESTIGATION ACTIVITIES	. 2
2.1	GROUNDWATER MONITORING WELL INSTALLATION AND SAMPLING	. 2
3.0	SMALL LANDFARM REGISTRATION	. 3
4.0	2022 REMEDIATION ACTIVITIES	
4.1	REQUEST FOR AN ALTERNATIVE REMEDIAL APPROACH	
4.2	EXCAVATION CONFIRMATION SOIL SAMPLING AND RESULTS	2
5.0	GROUNDWATER SAMPLING RESULTS	
5.1	QUARTERLY GROUNDWATER SAMPLING AND RESULTS	
5.2	EXCAVATION GRAB-GROUNDWATER SAMPLING AND RESULTS	6
6.0	CONCLUSIONS	. 8
7.0	CLOSURE REQUEST	

ATTACHMENTS

Figures

Figure 1	Site Location Map
Figure 2	Site Features
Figure 3	2022 Confirmation Soil Samples
Figure 4	Q1 2022 Groundwater Elevation Contours
Figure 5	Q2 2022 Groundwater Elevation Contours
Figure 6	Q3 2022 Groundwater Elevations
Figure 7	Q4 2022 Groundwater Elevations
Figure 8	Groundwater Analytical Results
Tables	

Table 1	Confirmation Soil Sample Analytical Results
Table 2	Groundwater Elevation Summary
Table 3	Groundwater Analytical Results

Appendices

Appendix A	NMOCD Correspondence
Appendix B	Form C-137 EZ - Small Landfarm Registration
Appendix C	Micro-Blaze Brochure and Safety Data Sheet
Appendix D	Laboratory Analytical Reports
Appendix E	Photographic Log

Page 1

1.0 INTRODUCTION

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Closure Report* for a historical release at the Mansfield 11 natural gas production well (Site). The Site is located on land managed by the Bureau of Land Management (BLM) in Unit N, Section 29, Township 30 South, Range 9 West in rural San Juan County, New Mexico (Figure 1).

1.1 Site Background

On May 2, 2019, Hilcorp discovered soil impacted by a historical release of unknown volume during installation of a new below grade tank (BGT). Upon discovery, Hilcorp submitted an initial Form C-141 *Release Notification* to the New Mexico Oil Conservation Division (NMOCD) and the release was assigned incident number NCS1913741281. In May of 2019, initial excavation activities were performed by Hilcorp and approximately 2,000 cubic yards of impacted soil and clean overburden were excavated at the Site. In total, 1,425 cubic yards of impacted soil were transported for off-Site disposal to a landfarm operated by Envirotech, Inc. in San Juan County, New Mexico. Based on the continued presence of petroleum hydrocarbons in the floor and sidewalls of the excavation, Hilcorp retained LT Environmental, Inc. (LTE) to conduct delineation activities and assess the vertical and lateral extent of impacts. Further information regarding delineation and remediation activities were presented in LTE's *Remediation Work Plan* dated September 13, 2019 and summarized below.

1.2 Site Characterization and Closure Criteria

As presented in LTE's 2019 Remediation Work Plan, the Site was characterized to determine applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Based on the assessment, the following NMOCD Table I Closure Criteria (Closure Criteria) apply to the Site:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH) as gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO): 100 mg/kg
- Chloride: 600 mg/kg

Page 2

2.0 2019 SITE INVESTIGATION ACTIVITIES

Between August 19, 2019, and August 22, 2019, five borings (shown on Figure 2) were advanced at the Site using a 75 Central Mining Equipment (CME) hollow-stem auger drilling rig to depths ranging from 28 feet to 32 feet below ground surface (bgs). Soil borings were advanced in each cardinal direction outside of the known impacted area and open excavation. During drilling, soil was inspected for the presence or absence of petroleum hydrocarbon odor and/or staining. Soil samples were also field screened using a photoionization detector (PID) to monitor for the presence of volatile organic compounds (VOCs). Two soil samples from each soil boring were submitted for laboratory analysis; one from the most impacted interval based on field screening results and one at the terminus of the boring. Soil samples were submitted for laboratory analysis of BTEX by United States Environmental Protection Agency (EPA) Method 8021, TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-motor oil range organics (MRO) by EPA Method 8015, and chloride by EPA Method 300.0.

Soil analytical results indicated that benzene, BTEX, TPH, and chloride concentrations were all in compliance with the applicable Site Closure Criteria. Based on this data, the aerial extent of impacted soil was limited to areas within the bounds of borings MW01 to MW04 shown on Figure 2. Soil analytical results collected from borings MW01 through MW05 are summarized in attached Table 1.

2.1 Groundwater Monitoring Well Installation and Sampling

Groundwater was encountered during drilling and all borings were converted to permanent groundwater monitoring wells MW01 through MW05. As requested by the NMOCD in their July 22, 2019 email (Appendix A), groundwater samples were submitted for laboratory analysis of VOCs by EPA Method 8260B, general water chemistry parameters including total dissolved solids (TDS) by EPA Standard Method 2540C, alkalinity by EPA Standard Method 2320B, anions (bromide, chloride, sulfate, fluoride, nitrite-nitrate, and phosphorus) by EPA Method 300.0, and cations (calcium, iron, magnesium, potassium, and sodium) by EPA Method 200.7.

As recommended in LTE's *Remediation Work Plan* and approved by the NMOCD on December 3, 2019 (Appendix A), Hilcorp and/or a third-party environmental consultant has continued to perform quarterly groundwater gauging and sampling since the installation of the monitoring wells (between August 2019 and December 2022). Groundwater sampling results are further summarized in Section 5.0.

Closure Report
Mansfield 11 Page 3

3.0 SMALL LANDFARM REGISTRATION

LTE's Remediation Work Plan recommended excavating the remaining TPH impacted soil at the Site and disposing at an off-Site permitted facility. However, a Revised Remediation Work Plan (prepared by LTE and dated February 18, 2020) was submitted to the NMOCD requesting that the impacted soil be excavated and remediated using biopiles at the nearby Mansfield #11N well pad. The NMOCD approved the Revised Remediation Work Plan (email dated June 12, 2020, Appendix A) but presented a Condition of Approval that Hilcorp must remediate soils through the construction of a "small landfarm" pursuant to 19.15.36.16 NMAC (regulations governing surface waste management facilities) instead of through the use of biopiles.

As such, Hilcorp submitted Form C-137 EZ Registration/Final Closure Report for Small Landfarm on September 13, 2021 to the NMOCD Permitting Group for review and approval of a small landfarm at the Mansfield #11N well pad. The small landfarm registration was approved by the NMOCD on October 15, 2021 (Appendix B) and the landfarm was constructed in June 2022 prior to beginning additional remediation activities.

Page 4

4.0 2022 REMEDIATION ACTIVITIES

Based on the soil and groundwater sample results collected in 2019 from the initial excavation and the soil and groundwater subsurface investigation, additional excavation activities were performed in June 2022. Prior to beginning work, the NMOCD and BLM were notified on June 13, 2022 via email of excavation and sampling activities (Appendix A). To direct excavation activities during these events, Ensolum personnel were on Site on June 15, 16, and 17, 2022 to field screen soil for VOCs using a calibrated PID. Approximately 210 cubic yards of impacted soil were removed from the Site and transported to the small landfarm located at the nearby Mansfield #11N well pad.

Based on field screening results, a majority of the impacted soil had been removed from the excavation by June 17, 2022. However, a thin interval of impacted soil (approximately 8 to 12 inches thick) remained at the base of the east sidewall of the excavation, at the interface between unconsolidated soil and consolidated sandstone. Because of the depth of the excavation (20 feet) and the slope of the east sidewall extending toward well MW04 (approximately 14 feet east of the toe and 2 feet from the top of the excavation), additional soil could not be removed without compromising or destroying the well. At that point, all accessible impacted soil had been removed. Based on the location of the toe of the excavation in relation to monitoring well MW04, the remaining impacted soil measured approximately 25 feet (north-south) by 15 feet (to the east) by 10 inches thick. Based on these measurements, the remaining volume of impacted soil was conservatively estimated to be 10 cubic yards.

4.1 Request for an Alternative Remedial Approach

Based on the minimal volume of impacted soil remaining at the Site, the close proximity of well MW04, and historical groundwater results collected over three years (further described below), Hilcorp requested that the remaining impacted soil be treated *in-situ*. Specifically, *in-situ* treatment included three applications of Micro-Blaze® Emergency Liquid Spill Control liquid (brochure attached as Appendix C) directly to the impacted area. During each application, Micro-Blaze® was diluted per the manufacturer's specifications, applied until the impacted layer was fully saturated, then allowed to infiltrate into the soil for one week. Once three applications were applied, Hilcorp recommended that a composite soil sample from the east sidewall be collected to include soil from the impacted layer. This alternative remedial approach was provided to and approved by the NMOCD on June 17, 2022 (Appendix A).

4.2 Excavation Confirmation Soil Sampling and Results

As proposed in the *Remediation Work Plan* and approved by the NMOCD in their December 3, 2019 email (Appendix A), five-point composite soil samples were collected from the sidewalls and floor of the excavation at a frequency of one sample per 500 square feet. The 5-point composite samples were collected on June 21, 2022 by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 6 degrees Celsius (°C) under strict chain-of-custody procedures to Hall Environmental Analysis Laboratory (Hall) in Albuquerque, New Mexico. All samples were submitted for analyses of BTEX by EPA Method 8021B and TPH following EPA Method 8015M/D.

The excavation was completed to depths up to 20 feet bgs. In total, four floor and 12 sidewall composite soil samples were collected from the excavation on June 21, 2022. The lateral extent of the excavation and confirmation sampling areas are shown on Figure 3. Of note, sidewall

Hilcorp Energy Company Closure Report Mansfield 11

Page 5

sample LWC-04 was collected during the initial sampling event from the east sidewall and directly above the residual impacted layer (being treated by Micro-Blaze®). This sample did not include the impacted soil but was collected to assess contaminant concentrations and ensure that the soil from this area did not require removal and/or treatment.

Micro-Blaze® applications were subsequently applied on June 30, July 7, and July 13, 2022 to the impacted layer (at the base of area LWC-04) in order to enhance the bioremediation of residual petroleum hydrocarbons. As approved by the NMOCD, a supplemental sidewall sample was collected on November 17, 2022 (LWC-04B) which included the thin impacted layer. Based on the analytical results, all confirmation samples were in compliance with NMOCD Table I Closure Criteria for BTEX and TPH. Analytical results are summarized in Table 1, with complete laboratory reports attached as Appendix D. Photographs taken by Hilcorp and Ensolum during the excavation work are included in Appendix E.

Page 6

5.0 GROUNDWATER SAMPLING RESULTS

Quarterly groundwater monitoring and sampling has been conducted at the Site beginning in August 2019. During each sampling event, static groundwater levels were measured in all five monitoring wells using an oil/water interface probe. The interface probe was decontaminated with Alconox[™] soap and rinsed with deionized water prior to each measurement. Groundwater elevations at the Site are summarized on Table 2. In general, depth to groundwater ranges between 14 and 24 feet below the top of well casing, with groundwater flow direction to the southeast following the general topography of the Site. Groundwater elevation contours for each 2022 quarterly sampling event are presented in Figures 4 through 7.

5.1 Quarterly Groundwater Sampling and Results

Groundwater monitoring wells were sampled by purging a minimum of three casing volumes or purging until the well bails dry. Water quality parameters were collected during the purging process from each well. Once purging was complete, groundwater samples were collected directly into laboratory provided containers. All samples were immediately placed on ice to maintain a temperature of approximately 6 degrees Celsius (°C) and sealed in a cooler for delivery to Hall for analysis. Samples were labeled with the date and time of collection, sample name, sampler's name, and parameters to be analyzed. Strict chain-of-custody procedures were documented and include the date and time sampled, sample number, type of sample, sampler's name and signature, preservative used, and analysis required. As requested by the NMOCD, VOCs by EPA Method 8260B, TDS by EPA Standard Method 2540C, alkalinity by EPA Standard Method 2320B, anions (bromide, chloride, sulfate, fluoride, nitrite-nitrate, and phosphorus) by EPA Method 300.0, and cations (calcium, iron, magnesium, potassium, and sodium) by EPA Method 200.7.

Based on current and historical analytical results, there have been no detections of VOCs above the laboratory reporting limits from wells MW01 through MW05. Of the general water chemistry parameters, concentrations of sulfate and TDS are the only constituents with exceedances of the New Mexico Water Quality Control Commission (NMWQCC) standards at the Site. No other constituents have been detected at concentrations exceeding NMWQCC standards during any quarterly sampling events. Groundwater analytical results are summarized in Table 3 and presented on Figure 8, with complete laboratory analytical reports attached in Appendix D.

5.2 Excavation Grab-Groundwater Sampling and Results

During periods of historically high groundwater elevations (fall and winter), groundwater has been encountered seeping into the open excavation at a depth of approximately 20 feet bgs. In order to assess groundwater conditions below the historically impacted area, and based on discussions with the NMOCD in December 2022, a grab-groundwater sample was collected from the open excavation on December 15, 2022 (sample EX WS on Table 3). Prior to sampling, groundwater that had accumulated at the bottom of the excavation had been removed by vacuum truck in November and December 2022 in an attempt to remove stagnant water. Once sufficient volumes of groundwater had re-accumulated into the excavation, the grab-groundwater sample was collected and submitted to Hall for the same analyses conducted for the quarterly groundwater sampling events.

Of the analyzed VOCs, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, total naphthalenes, acetone, 4-isopropyltoluene, and total xylenes were detected above laboratory reporting limits, but below the applicable NMWQCC standards. No other VOCs were detected above the laboratory reporting limits in this sample. Concentrations of general water chemistry parameters

Hilcorp Energy Company Closure Report Mansfield 11

Page 7

were generally higher than those detected in samples collected from the surrounding monitoring wells. Concentrations of chloride, sulfate, and TDS are the only constituents with exceedances of the New Mexico Water Quality Control Commission (NMWQCC) standards at the Site. Groundwater analytical results for this sample are included in Table 3 and presented on Figure 8, with complete laboratory analytical reports attached in Appendix D.

Page 8

6.0 CONCLUSIONS

Site assessment activities, including soil and groundwater sampling, were conducted to investigate historical soil impacts originally discovered in 2019. Based on the initial assessment results, excavation activities were conducted in 2019 and 2022 to remove TPH impacted soil. Laboratory analytical results for the excavation soil samples, collected from the final excavation extent, indicate that concentrations were compliant with the Site Closure Criteria and no further soil remediation is required.

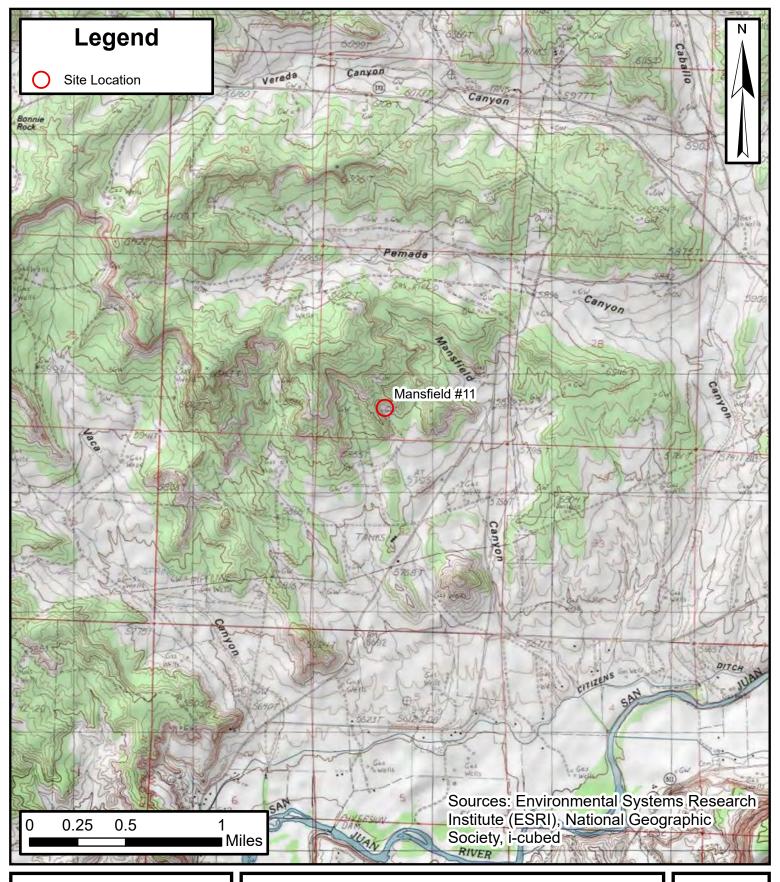
Additionally, due to the presence of shallow groundwater at the Site, five groundwater monitoring wells were installed to assess groundwater conditions. Quarterly sampling was conducted between 2019 and 2022 and, based on historical results, sulfate and TDS were the only constituents detected at concentrations exceeding NMWQCC standards. Based on groundwater flow direction to the southeast and the lack of detections of BTEX and other petroleum hydrocarbon constituents, wells MW01 and MW02 are upgradient of historical impacts and represent naturally occurring background conditions at the Site. As such, background concentrations in wells MW01 and MW02 range from 1,800 to 2,210 mg/kg for sulfate and 2,730 to 4,160 mg/kg for TDS. In comparison, the historical concentrations in all other wells located cross- and downgradient of the historical impacts range from 1,600 to 3,180 mg/kg sulfate and 2,640 to 4,000 mg/kg TDS, which are within range of naturally occurring groundwater conditions observed in the upgradient wells at the Site.

As noted in Section 4.2, the grab-groundwater sample collected from the open excavation contained chloride, sulfate, and TDS concentrations exceeding the applicable NMWQCC standards. Concentrations of these constituents were also elevated when compared to naturally occurring groundwater conditions encountered in the permanent monitoring wells at the Site. The elevated concentrations are restricted to groundwater pooling in the open excavation and can likely be attributed to the remedial solutions, specifically the application of Micro-Blaze® amendment to the excavation and the exposure of groundwater to ambient air conditions. Specifically, Micro-Blaze® is a liquid amendment that contains a proprietary substrate of microorganisms and a significant percentage of dissolved additives and organic material used to enhance the bioremediation processes in impacted soil. The liquid amendment concentrated on the targeted portion of the sidewall containing residual TPH concentrations; however, it also collected in the bottom of the excavation during each application. The amendment likely introduced a proprietary blend of minerals and chemical constituents to the soil, and ultimately any groundwater, in the excavation.

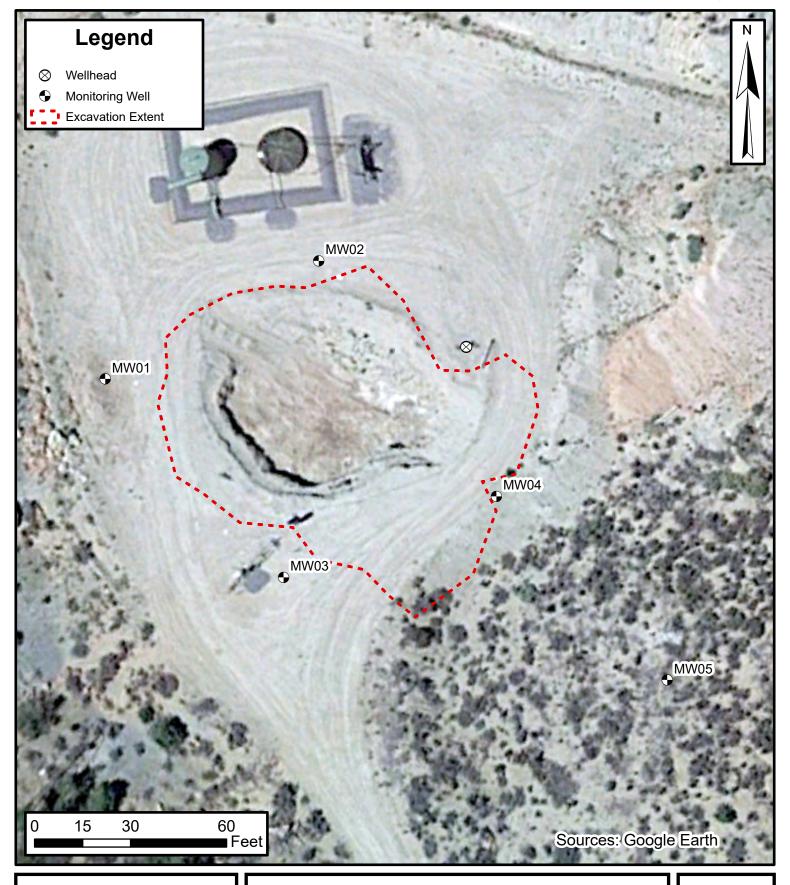
Additional contribution of sulfate and chloride to the groundwater in the excavation may have been caused by exposure of the soil and groundwater to the ambient air compared to surrounding groundwater conditions. Sulfate can be affected by increased oxygen availability and chloride concentrations are likely present due to exposure to ambient air causing evaporation of water, concentrating naturally occurring chloride in the groundwater and surrounding soil/sediment. Additionally, chloride was never present at elevated concentrations in preliminary excavation or boring soil samples collected in 2019; as such, chloride is not a constituent of concern related to the historical release. As indicated by the groundwater sampling results from the surrounding monitoring wells at the Site, these elevated constituent concentrations are localized and stable and are not indicative of Site-wide groundwater conditions. They will likely decrease with time and eventual backfilling.

Closure Report
Mansfield 11 Page 9

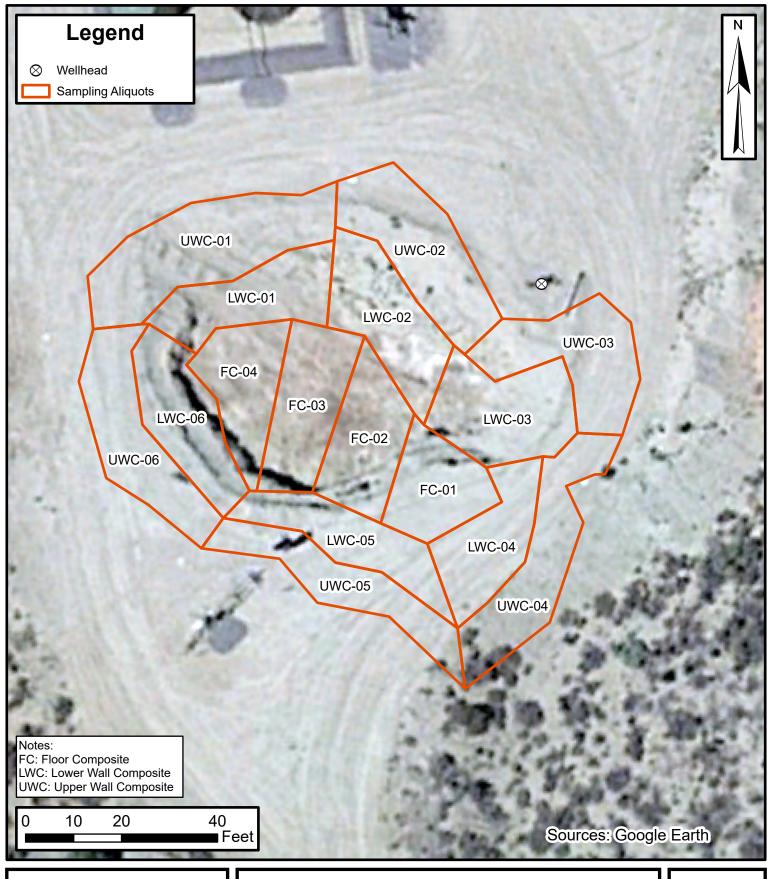
7.0 CLOSURE REQUEST


Based on the data collected between 2019 and 2022 and the information provided in this document, excavation of impacted soil has mitigated impacts at the Site. Furthermore, quarterly sampling conducted at the Site has shown that groundwater has not been negatively impacted by the historical release. As such, these remedial actions are protective of human health, the environment, and groundwater and Hilcorp respectfully requests closure for Incident Number NCS1913741281.

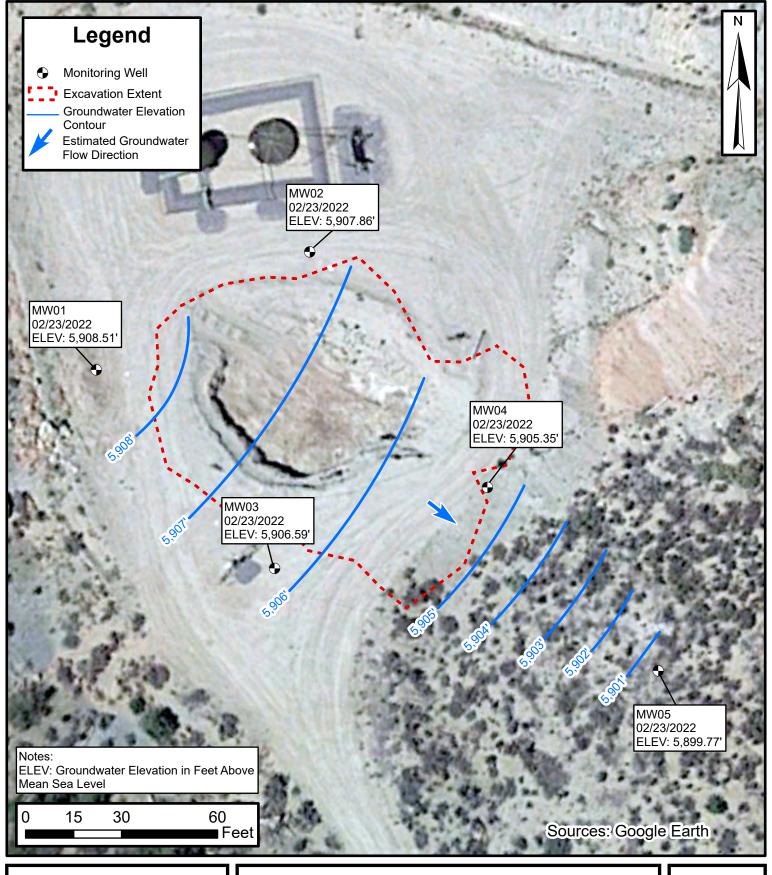
With NMOCD approval of this closure request, soil remediated to below Site Closure Criteria concentrations at the small landfarm will be used to backfill the Site excavation. Additional clean material will be used to backfill and recontour the Site to match pre-existing conditions. Wells MW01 through MW05 will also be plugged and abandoned in accordance with New Mexico Office of the State Engineer regulations and requirements.


FIGURES

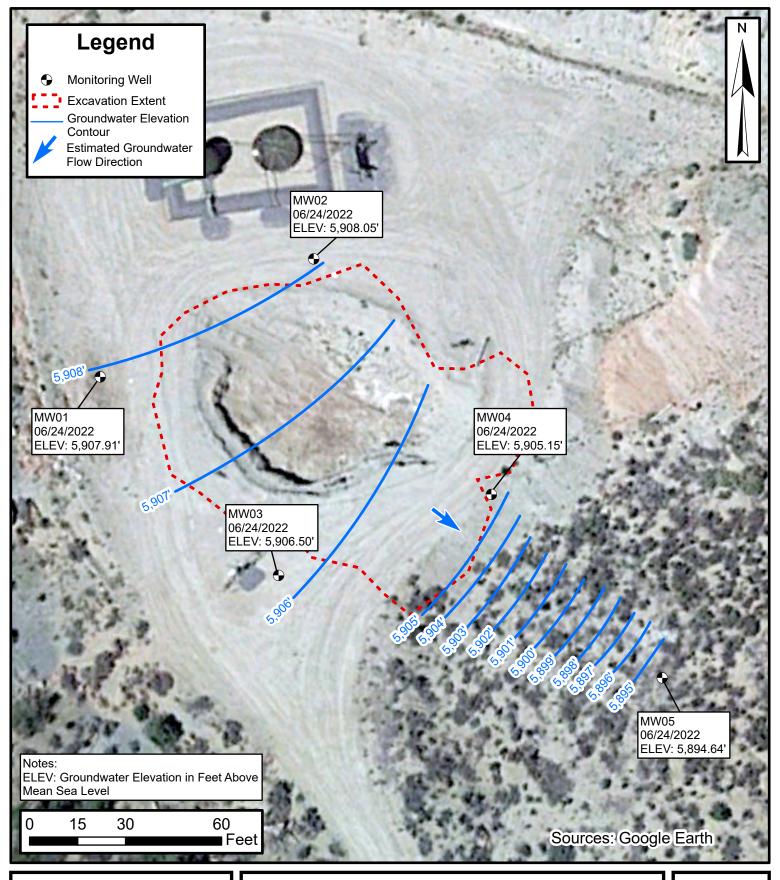
Site Location Map


Mansfield 11 Hilcorp Energy Company SESW Sec 29, T30N, R9W San Juan County, New Mexico **FIGURE**

Site Features

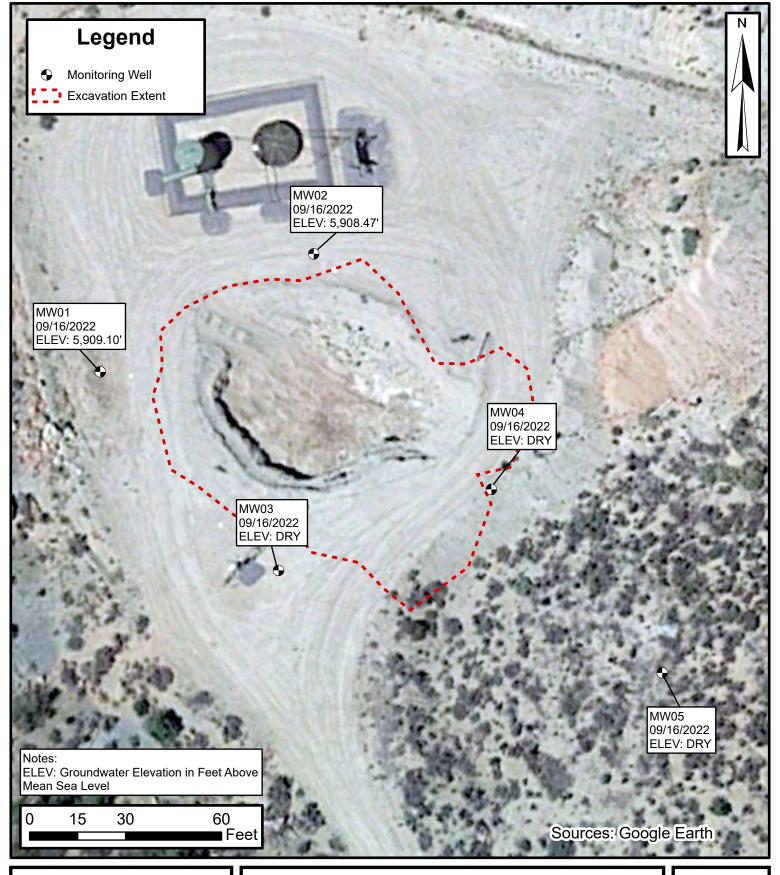

Mansfield 11 Hilcorp Energy Company SESW Sec 29, T30N, R9W San Juan County, New Mexico FIGURE

2022 Confirmation Soil Samples


Mansfield 11 Hilcorp Energy Company SESW Sec 29, T30N, R9W San Juan County, New Mexico FIGURE

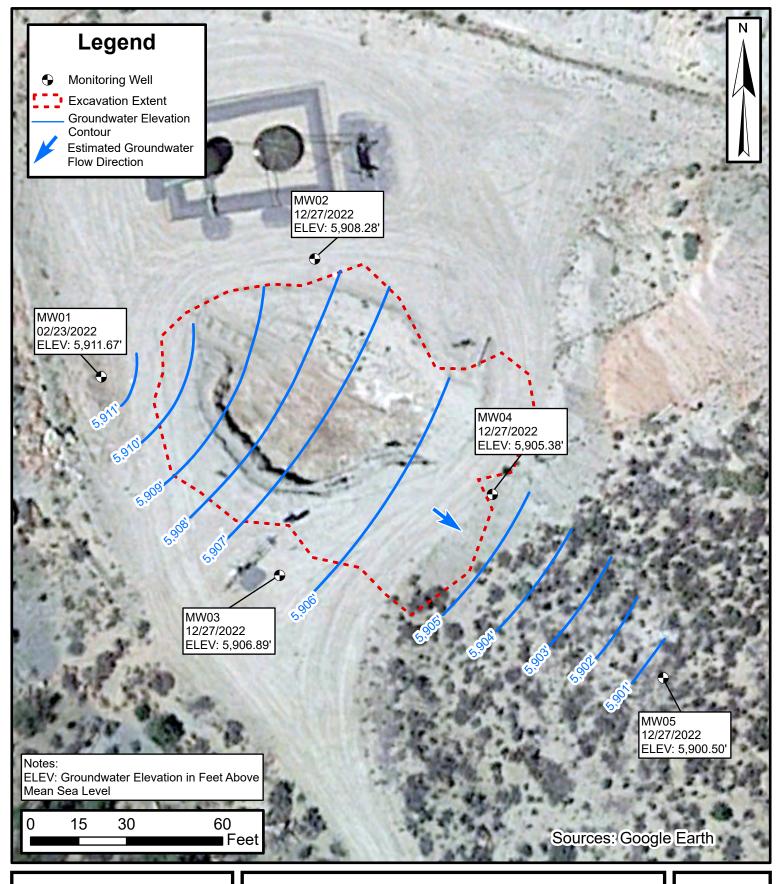
Q1 2022 Groundwater Elevation Contours

Mansfield #11 Hilcorp Energy Company SESW Sec 29, T30N, R9W San Juan County, New Mexico FIGURE **4**

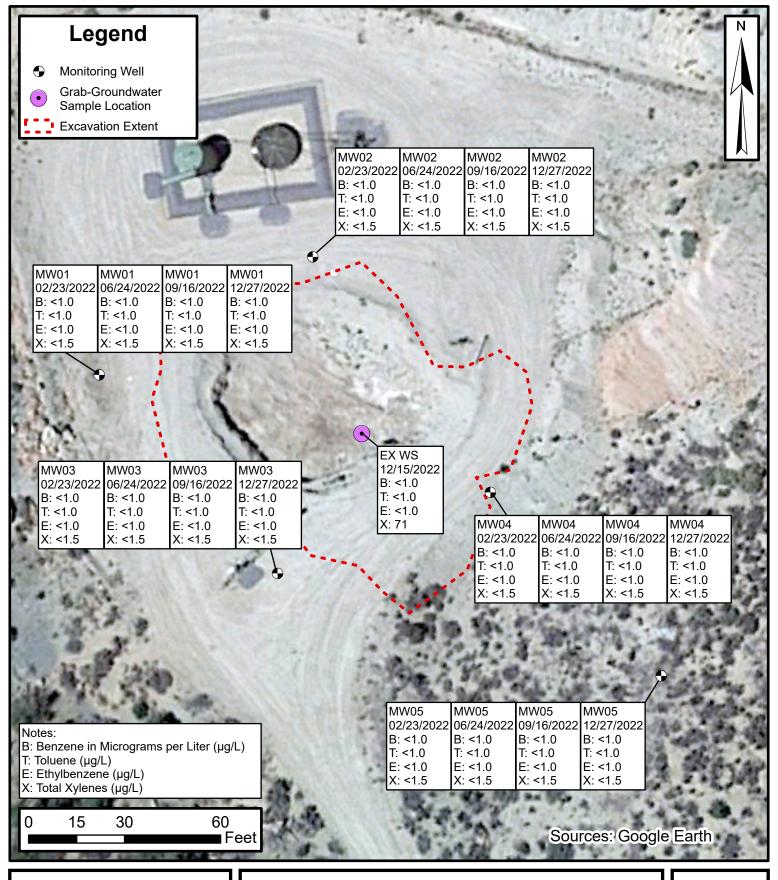


Q2 2022 Groundwater Elevation Contours

Mansfield 11
Hilcorp Energy Company
SESW Sec 29, T30N, R9W
San Juan County, New Mexico


FIGURE

Q3 2022 Groundwater Elevations


Mansfield 11 Hilcorp Energy Company SESW Sec 29, T30N, R9W San Juan County, New Mexico FIGURE

Q4 2022 Groundwater Elevation Contours

Mansfield 11 Hilcorp Energy Company SESW Sec 29, T30N, R9W San Juan County, New Mexico FIGURE

Groundwater Analytical Results

Mansfield #11 Hilcorp Energy Company SESW Sec 29, T30S, R9W

SESW Sec 29, T30S, R9W San Juan County, New Mexico FIGURE

TABLES

TABLE 1 CONFIRMATION SOIL SAMPLE ANALYTICAL RESULTS Mansfield #11 Hilcorp Energy Company San Juan County, New Mexico

					04.	ii Juan County, New								
Sample Identification	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total TPH (GRO+DRO+MRO) (mg/kg)	Chloride (mg/kg)		
	Criteria for Soi (Groundwater	ils Impacted by a <50 feet)	10	NE	NE	NE	50	NE	NE	NE	100	600		
	2019 Delineation Soil Samples													
MW01 @ 10'-11'	8/19/2019	10-11	< 0.024	< 0.049	< 0.049	< 0.098	<0.220	<4.9	11	<46	11	<60		
MW01 @ 23'-25'	8/19/2019	23-25	< 0.024	<0.048	<0.048	< 0.097	< 0.217	<4.8	<9.6	<48	<61.3	<60		
MW02 @ 10'-11'	8/19/2019	10-11	<0.024	< 0.049	< 0.049	< 0.097	<0.219	<4.9	<9.2	<46	<60.1	<60		
MW02 @ 23'-25'	8/19/2019	23-25	< 0.025	< 0.050	< 0.050	< 0.099	<0.224	<5.0	<9.7	<48	<62.7	<61		
MW03 @ 4'-6'	8/20/2019	4-6	< 0.024	<0.048	<0.048	< 0.097	<0.217	<4.8	<9.4	<47	<61.2	<60		
MW03 @ 25'-27'	8/20/2019	25-27	<0.023	< 0.046	<0.046	<0.092	<0.207	<4.6	<9.3	<46	<59.9	<60		
MW04 @ 19'-21'	8/21/2019	19-21	<0.024	< 0.049	<0.049	<0.098	<0.220	<4.9	<9.9	<50	<64.8	<60		
MW04 @ 25'-27'	8/21/2019	25-27	< 0.024	< 0.047	< 0.047	< 0.095	<0.213	6.3	14	<50	20.3	<60		
MW05 @ 17'-19'	8/22/2019	17-19	< 0.024	< 0.049	< 0.049	< 0.097	<0.219	<4.9	<9.9	<50	<64.8	<60		
MW05 @ 24'-26'	8/22/2019	24-26	< 0.023	<0.046	<0.046	<0.092	<0.207	<4.6	<9.5	<47	<61.1	<60		
					2022 Excavation Floo	r Confirmation Soil	Sample Analytical Res	sults						
FC-01	6/21/2022	15-20	<0.025	< 0.050	< 0.050	<0.10	<0.10	<5.0	36	<48	36	NS		
FC-02	6/21/2022	15-20	<0.024	< 0.049	< 0.049	< 0.097	< 0.097	<4.9	44	<49	44	NS		
FC-03	6/21/2022	15-20	<0.025	< 0.050	< 0.050	<0.10	<0.10	<5.0	<14	<48	<48	NS		
FC-04	6/21/2022	15-20	<0.024	< 0.049	< 0.049	< 0.097	< 0.097	<4.9	<13	<43	<43	NS		
				2	2022 Excavation Sidew	rall Confirmation So	il Sample Analytical R	esults						
LWC-01	6/21/2022	10-20	<0.023	<0.046	< 0.046	<0.092	<0.092	<4.6	<15	<49	<49	NS		
UWC-01	6/21/2022	0-10	<0.023	<0.046	< 0.046	<0.092	<0.092	<4.6	<14	<46	<46	NS		
LWC-02	6/21/2022	10-20	<0.023	<0.046	<0.046	<0.092	<0.092	<4.6	<15	<49	<49	NS		
UWC-02	6/21/2022	0-10	<0.025	< 0.050	< 0.050	<0.099	<0.099	<5.0	<13	<44	<44	NS		
LWC-03	6/21/2022	10-20	<0.024	<0.047	<0.047	<0.095	<0.095	<4.7	<13	<43	<43	NS		
UWC-03	6/21/2022	0-10	<0.023	<0.046	<0.046	<0.091	<0.091	<4.6	<13	<43	<43	NS		
LWC-04	6/21/2022	10-20	<0.025	< 0.050	< 0.050	<0.10	<0.10	<5.0	<14	<46	<46	NS		
LWC-04B (1)	6/21/2022	10-20	<0.020	<0.040	<0.040	<0.080	<0.080	<4.0	<13	<43	<43	<60		
UWC-04	6/21/2022	0-10	<0.025	< 0.050	< 0.050	<0.10	<0.10	<5.0	<14	<46	<46	NS		
LWC-05	6/21/2022	10-20	< 0.023	< 0.047	<0.047	< 0.094	< 0.094	<4.7	17	<43	17	NS		
UWC-05	6/21/2022	0-10	<0.024	< 0.047	< 0.047	< 0.095	<0.095	<4.7	<14	<47	<47	NS		
LWC-06	6/21/2022	10-20	< 0.023	< 0.047	< 0.047	< 0.093	< 0.093	<4.7	21	<44	21	NS		

Notes:

(1): sample collected after the application of Microblaze

bgs: below ground surface

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

mg/kg: milligrams per kilogram

NE: Not Established

NMOCD: New Mexico Oil Conservation Division

NS: not sampled

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

MRO: Motor Oil/Lube Oil Range Organics

TPH: Total Petroleum Hydrocarbon

 ${\it <49.9: indicates \ result \ less \ than \ the \ stated \ laboratory \ reporting \ limit \ (RL)}$

Concentrations in **bold** and shaded exceed the New Mexico Oil Conservation Division Table 1 Closure Criteria for Soils Impacted by a Release

TABLE 2 GROUNDWATER ELEVATION SUMMARY

Mansfield #11 Hilcorp Energy Company San Juan County, New <u>Mexico</u>

Well ID	Top of Casing Elevation (feet AMSL)	Sample Date	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)
		8/26/2019	14.74	5,908.72
		12/2/2019	14.81	5,908.65
		3/5/2020	15.28	5,908.18
		6/12/2020	15.12	5,908.34
		9/1/2020	14.91	5,908.55
		11/16/2020	15.25	5,908.21
MW01	E 000 46	2/12/2021	14.98	5,908.48
IVIVVOI	5,923.46	6/30/2021	15.12	5,908.34
		9/7/2021	18.97	5,904.49
		10/13/2021	14.76	5,908.70
		2/23/2022	5,908.51	
		6/24/2022 15.55		5,907.91
		9/16/2022	14.36	5,909.10
		12/27/2022	11.79	5,911.67
		8/26/2019	14.46	5,908.29
		12/2/2019	14.36	5,908.39
		3/5/2020	14.93	5,907.82
		6/12/2020	15.12	5,907.63
		9/1/2020	14.96	5,907.79
		11/16/2020	15.18	5,907.57
MW02	E 000 7E	2/15/2021	14.78	5,907.97
IVIVVOZ	5,922.75	6/30/2021	15.08	5,907.67
		9/7/2021	14.84	5,907.91
		10/14/2021	14.73	5,908.02
		2/23/2022	14.89	5,907.86
		6/24/2022	14.70	5,908.05
		9/16/2022	14.28	5,908.47
		12/27/2022	14.47	5,908.28

TABLE 2 GROUNDWATER ELEVATION SUMMARY

Mansfield #11 Hilcorp Energy Company San Juan County, New Mexico

Well ID	Top of Casing Elevation (feet AMSL)	Sample Date	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)		
		8/26/2019	21.00	5,904.81		
		12/2/2019	19.01	5,906.80		
		3/5/2020	19.41	5,906.40		
		6/12/2020	19.40	5,906.41		
		9/1/2020	19.04	5,906.77		
		11/18/2020	19.07	5,906.74		
MW03	5,925.81	2/15/2021	19.24	5,906.57		
WWWOS	5,925.61	6/30/2021	19.31	5,906.50		
		9/7/2021	14.68	5,911.13		
		10/14/2021	18.95	5,906.86		
		2/23/2022	19.22	5,906.59		
		6/24/2022	19.31	5,906.50		
		9/16/2022	Dry			
		12/27/2022	18.92	5,906.89		
		8/26/2019	17.78	5,904.80		
		12/2/2019	17.23	5,905.35		
		3/5/2020	17.41	5,905.17		
		6/12/2020	17.60	5,904.98		
		9/1/2020	17.62	5,904.96		
		11/16/2020	17.67	5,904.91		
MNA/O4	E 022 E9	2/15/2021	17.43	5,905.15		
MW04	5,922.58	6/30/2021	17.61	5,904.97		
		9/7/2021	17.45	5,905.13		
		10/14/2021	17.37	5,905.21		
		2/23/2022	17.23	5,905.35		
		6/24/2022	17.43	5,905.15		
		9/16/2022	Dry			
		12/27/2022	17.20	5,905.38		

TABLE 2 GROUNDWATER ELEVATION SUMMARY

Mansfield #11
Hilcorp Energy Company
San Juan County, New Mexico

Well ID	Top of Casing Elevation (feet AMSL)	Sample Date	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)	
		8/26/2019	Dry	Dry	
		12/2/2019	17.64	5,894.65	
		3/5/2020	13.10	5,899.19	
		6/12/2020	24.00	5,888.29	
	5,912.29	9/1/2020	20.77	5,891.52	
		11/18/2020	11.79	5,900.50	
MW05		2/12/2021	13.38	5,898.91	
MIVVOS	0,012.20	6/30/2021	16.26	5,896.03	
		9/7/2021	17.19	5,895.10	
		10/15/2021	24.51	5,887.78	
		2/22/2022	12.52	5,899.77	
		6/24/2022	17.65	5,894.64	
		9/16/2022	Dry		
		12/27/2022	11.79	5,900.50	

Notes:

AMSL: above mean sea level

BTOC: below top of casing

--: indicates no GWEL or PSH measured

TABLE 3 GROUNDWATER ANALYTICAL RESULTS Mansfield #11 Hilcorp Energy Company																
							an County, No									
Analyte	NMWQCC Standard	Unit	8/26/19	12/2/19	3/5/20	6/12/20	9/1/20	11/16/20	2/12/21	W01 6/30/21	9/7/21	10/13/21	2/23/22	6/24/22	9/16/22	12/27/22
h annan a	1 5	//	.4.0	4.0	.4.0	I	Method 8260E	T	.4.0	4.0	4.0	4.0	.4.0	4.0	4.0	.4.0
benzene toluene	5 1,000	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
ethylbenzene	700 100	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
methyl tert-butyl ether (MTBE) 1,2,4-trimethylbenzene	NE	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
1,3,5-trimethylbenzene 1,2-dichloroethane (EDC)	NE 5	μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
1,2-dibromoethane (EDB)	0.005	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
total naphthalenes	30	μg/L	<4.0	<4.0	<4.0	<4.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<2.0
acetone bromobenzene	NE NE	μg/L μg/L	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<50 <1.0	<50 <1.0	<50 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0
bromodichloromethane	NE NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
bromoform bromomethane	NE NE	μg/L μg/L	<1.0 <3.0	<1.0 <3.0	<1.0 <3.0	<1.0 <3.0	<1.0 <5.0	<1.0 <5.0	<1.0 <5.0	<1.0 <3.0	<1.0 <3.0	<1.0 <3.0	<1.0 <3.0	<1.0 <3.0	<1.0 <3.0	<1.0 <3.0
2-butanone	NE	μg/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
carbon disulfide carbon tetrachloride	NE 5	μg/L μg/L	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	NA <1.0	NA <1.0	NA <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0	<10 <1.0
chlorobenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
chloroethane chloroform	NE 100	μg/L μg/L	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0
chloromethane	NE	μg/L	<3.0	<3.0	<3.0	<3.0	<2.5	<2.5	<2.5	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
2-chlorotoluene 4-chlorotoluene	NE NE	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
cis-1,2-dichloroethene	70	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	NE NE	μg/L	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <5.0	<1.0 <5.0	<1.0 <5.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0
1,2-dibromo-3-chloropropane dibromochloromethane	NE NE	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<5.0 NA	<5.0 NA	<5.0 NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
dibromomethane	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene 1,3-dichlorobenzene	600 NE	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
1,4-dichlorobenzene	75	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
dichlorodifluoromethane 1,1-dichloroethane	NE 25	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<5.0 <1.0	<5.0 <1.0	<5.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
1,1-dichloroethene	5	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane 1,3-dichloropropane	5 NE	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
2,2-dichloropropane	NE	μg/L	<2.0	<2.0	<2.0	<2.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
1,1-dichloropropene hexachlorobutadiene	NE NE	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
2-hexanone	NE NE	μg/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
isopropylbenzene	NE NE	μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 NA	<1.0 NA	<1.0 NA	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
4-isopropytoluene 4-methyl-2-pentanone	NE NE	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<10	<10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
methylene chloride	5	μg/L	<3.0	<3.0	<3.0	<3.0	<5.0	<5.0	<5.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
n-butylbenzene n-propylbenzene	NE NE	μg/L μg/L	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0	<3.0 <1.0
sec-butylbenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
styrene tert-butylbenzene	100 NE	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
1,1,1,2-tetrachloroethane	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane tetrachloroethene (PCE)	10 20	μg/L μg/L	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0
trans-1,2-dichloroethene	100	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene 1,2,3-trichlorobenzene	NE NE	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
1,2,4-trichlorobenzene	70	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane 1,1,2-trichloroethane	200 5	μg/L μg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
trichloroethene (TCE)	5	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trichlorofluoromethane 1,2,3-trichloropropane	NE NE	μg/L μg/L	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<5.0 <2.5	<5.0 <2.5	<5.0 <2.5	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0
vinyl chloride	2	μg/L μg/L	<1.0	<1.0	<1.0	<1.0	<2.5	<1.0	<2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
xylenes, total	620	μg/L	<1.0	<1.0	<1.5	<1.5	<3.0 • Method 300.	<3.0 0: Anions	<3.0	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
bromide	NE	mg/L	0.13	<0.50	<0.50	0.12	<100	<100	<1.00	<0.50	<0.50	0.53	<0.50	<0.50	<0.50	<0.50
chloride	250 600	mg/L	28	24	21	23	24.9	26.1	24.1	22	19 1 800	23	23	23 2,100	21	21 2,000
sulfate fluoride	1.6	mg/L mg/L	2,100 1.3	1,800 <0.50	2,000 <0.50	1,900 1.3	2,040 0.331	2,080 0.386	2,050 0.477	2,000 <0.50	1,800 <0.50	2,100 <0.50	2,000 <0.50	<0.50	1,900 0.69	<0.50
nitrate + nitrite as N	NE NE	mg/L	<0.10	<1.0	<0.50	<1.0	<0.100	<0.100	<0.100	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<0.50
phosphorus, orthophosphate (As P)	NE	mg/L	<0.50	<2.5	<2.5	<10 USEPA	NA A Method 200.	.7: Metals	NA	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Calcium	NE	mg/L	580	570	540	610	NA	NA	NA	550	640	580	610	550	560	550
Magnesium Potassium	NE NE	mg/L mg/L	130 10	130 4.2	110 4.1	120 3.3	NA NA	NA NA	NA NA	130 6.6	35 5.0	140 9.4	150 9.8	120 6.2	130 5.4	120 3.4
Sodium	NE	mg/L	230	220	200	210	NA	NA	NA	210	190	220	230	200	220	210
Bicarbonate	NE	mg/L	NA	NA	NA	NA NA	M 2320B Alka	linity NA	NA	284.5	262.8	285.3	278.8	281.5	286.7	287.6
Carbonate	NE	mg/L	NA	NA	NA	NA	NA	NA	NA	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.000
Total Alkalinity	NE	mg/L	NA	NA	NA USEPA	NA Method SM25	NA 540C Modified	NA I: Total Dissolv	NA red Solids	284.5	262.8	285.3	278.8	281.5	286.7	287.6
Total Dissolved Solids	1,000	mg/L	3,400	3,330	3,040	3,020	3,160	3,380	3,290	2,730	2,900	3,220	3,240	3,010	3,260	3,160

Notes:

μg/L: micrograms per liter

mg/L: milligrams per liter

NA: not analyzed

NMWQCC: New Mexico Water Quality Control Commission

<: indicates result less than the stated laboratory reporting limit (RL)

TABLE 3 **GROUNDWATER ANALYTICAL RESULTS** Mansfield #11 Hilcorp Energy Company San Juan County, New Mexico MW02 **NMWQCC** Unit Analyte Standard 12/2/19 2/12/21 9/7/21 10/13/21 6/24/22 12/27/22 8/26/19 3/5/20 6/12/20 9/1/20 11/16/20 6/30/21 2/23/22 9/16/22 **USEPA Method 8260B - Volatiles** <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L benzene 1,000 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 toluene 700 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ethylbenzene methyl tert-butyl ether (MTBE) 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,2,4-trimethylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3,5-trimethylbenzene ΝE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichloroethane (EDC) μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dibromoethane (EDB) 0.005 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 30 <4.0 <4.0 <4.0 total naphthalenes μg/L <4.0 <4.0 <4.0 < 5.0 < 5.0 < 5.0 <4.0 <4.0 <4.0 <4.0 <4.0 ΝE < 50 <10 <10 <10 <10 < 50 < 50 <10 <10 <10 <10 <10 <10 acetone μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 bromobenzene μg/L <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 bromodichloromethane μg/L NE <1.0 <1.0 <1.0 <1.0 bromoform <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L ΝE <3.0 < 3.0 <3.0 < 3.0 < 5.0 < 5.0 < 5.0 <3.0 < 3.0 < 3.0 < 3.0 < 3.0 < 3.0 <3.0 bromomethane μg/L NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 2-butanone μg/L NE <10 NA NA NA <10 <10 <10 carbon disulfide μg/L <10 <10 <10 <10 <10 <10 <10 carbon tetrachloride <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L ΝE <1.1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 chlorobenzene μg/L chloroethane NE μg/L <1.2 < 2.0 <2.0 <2.0 < 5.0 < 5.0 < 5.0 <2.0 < 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 chloroform 100 μg/L <1.3 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <3.0 <2.5 <3.0 <3.0 chloromethane μg/L <1.4 < 3.0 <3.0 <2.5 <2.5 <3.0 <3.0 <3.0 <3.0 < 3.0 NE 2-chlorotoluene μg/L <1.5 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.6 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4-chlorotoluene μg/L 70 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 cis-1,2-dichloroethene <1.7 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L cis-1,3-dichloropropene <1.0 NE μg/L <1.8 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dibromo-3-chloropropane NE <1.9 < 2.0 < 2.0 < 2.0 < 5.0 < 5.0 < 5.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 μg/L NE NA <1.0 dibromochloromethane μg/L <1.10 <1.0 <1.0 <1.0 NA NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ΝE <1.11 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 dibromomethane μg/L 600 <1.12 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichlorobenzene μg/L NE <1.0 <1.0 <1.0 <1.0 1,3-dichlorobenzene <1.13 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 75 1,4-dichlorobenzene μg/L <1.14 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.15 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 dichlorodifluoromethane μg/L 25 <1.0 <1.0 <1.0 <1.0 <1.0 1,1-dichloroethane μg/L <1.16 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 5 <1.0 1,1-dichloroethene μg/L <1.17 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichloropropane 5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.18 <1.0 <1.0 <1.0 NE <1.19 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3-dichloropropane μg/L NE <1.20 < 2.0 <2.0 <2.0 <1.0 <1.0 <1.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 2,2-dichloropropane μg/L NE <1.0 1,1-dichloropropene μg/L <1.21 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 hexachlorobutadiene ΝE <1.22 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE <1.23 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 2-hexanone μg/L NE <1.24 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 isopropylbenzene μg/L <1.0 4-isopropytoluene NE μg/L <1.25 <1.0 <1.0 <1.0 NA NA NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 4-methyl-2-pentanone <1.26 μg/L <3.0 <3.0 <3.0 <3.0 methylene chloride 5 <1.27 < 3.0 <3.0 < 5.0 < 5.0 < 5.0 <3.0 <3.0 <3.0 <3.0 μg/L NE <1.28 <3.0 <3.0 <3.0 <1.0 <1.0 <1.0 <3.0 <3.0 <3.0 <3.0 < 3.0 < 3.0 < 3.0 n-butylbenzene μg/L n-propylbenzene NE μg/L <1.29 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 sec-butylbenzene NE μg/L <1.30 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 100 styrene μg/L <1.31 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.32 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 tert-butylbenzene μg/L 1,1,1,2-tetrachloroethane NE <1.33 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,2,2-tetrachloroethane 10 μg/L <1.34 <2.0 <2.0 <2.0 <1.0 <1.0 <1.0 < 2.0 < 2.0 <2.0 <2.0 < 2.0 < 2.0 < 2.0 20 <1.0 <1.0 <1.0 <1.0 <1.0 <1.35 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 tetrachloroethene (PCE) µg/L 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,2-dichloroethene μg/L <1.36 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,3-dichloropropene NE <1.37 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE <1.0 <1.0 1,2,3-trichlorobenzene <1.38 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,2,4-trichlorobenzene 70 <1.39 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,1-trichloroethane 200 <1.40 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,2-trichloroethane 5 <1.41 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L trichloroethene (TCE) 5 μg/L <1.42 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trichlorofluoromethane NE μg/L <1.43 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2,3-trichloropropane NE μg/L <1.44 <2.0 <2.0 <2.0 <2.5 <2.5 <2.5 <2.0 < 2.0 < 2.0 <2.0 < 2.0 < 2.0 < 2.0 vinyl chloride 2 μg/L <1.45 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.5 <1.5 <1.5 <1.5 620 <1.46 <1.5 <1.5 < 3.0 < 3.0 <3.0 <1.5 <1.5 <1.5 <1.5 xylenes, total μg/L **USEPA Method 300.0: Anions** NE < 0.50 < 0.50 < 0.50 0.59 < 0.50 0.13 < 0.50 0.12 <1.00 < 0.50 < 0.50 < 0.50 bromide mg/L 250 22 chloride 22 21 22 23.2 22.8 22.3 20 23 21 21 20 20 mg/L 22 600 2,200 1,800 2,200 1,900 2,070 2,210 2,070 2,000 2,100 2,100 1,900 2,100 1,900 1,800 sulfate mg/L fluoride 1.6 1.3 < 0.50 < 0.50 0.381 0.421 0.51 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 0.87 1.3 mg/L 1.1 nitrate + nitrite as N NE < 0.10 < 0.10 < 0.50 <1.0 < 0.100 < 0.100 < 0.100 < 0.50 < 0.50 <1.0 <1.0 <1.0 <1.0 < 0.50 mg/L NE <2.5 < 2.5 phosphorus, orthophosphate (As P) mg/L < 0.50 <2.5 < 2.5 <10 NA NA NA <2.5 < 2.5 <2.5 <2.5 <2.5 **USEPA Method 200.7: Metals** NE 650 580 550 NA NA 560 570 590 580 540 530 550 Calcium mg/L 620 NA Magnesium NE mg/L 150 140 140 140 NA NA NA 130 110 150 150 140 150 140 3.6 Potassium NE mg/L 16 3.9 3.6 NA NA NA 6.4 5.5 9.1 8.0 5.7 5.4 3.6 NE 210 190 200 200 Sodium mg/L 210 210 200 NA NA NA 190 210 190 200 SM 2320B Alkalinity Bicarbonate NE mg/L NA NA NA NA NA NA NA 285.2 283.5 286.6 283.8 284.4 289 288.3 NE NA NA NA NA NA NA NA < 2.00 < 2.000 Carbonate < 2.00 < 2.00 < 2.00 < 2.00 < 2.00 mg/L Total Alkalinity NE mg/L NA NA NA NA NA NA NA 285.2 283.5 286.6 283.8 284.4 289 288.3 **USEPA Method SM2540C Modified: Total Dissolved Solids Total Dissolved Solids** 1,000 3,460 3,570 3,770 3,500 2,950 3,150 3,130 3,270 3,430 3,070 mg/L 4,160 3,170 3,010 3,300

Notes:

μg/L: micrograms per liter

mg/L: milligrams per liter

NA: not analyzed

NMWQCC: New Mexico Water Quality Control Commission <: indicates result less than the stated laboratory reporting limit (RL)</p>

ENSOLUM

TABLE 3 **GROUNDWATER ANALYTICAL RESULTS** Mansfield #11 Hilcorp Energy Company San Juan County, New Mexico MW03 **NMWQCC** Unit Analyte Standard 12/2/19 2/12/21 9/7/21 10/13/21 6/24/22 12/27/22 8/26/19 3/5/20 6/12/20 9/1/20 11/16/20 6/30/21 2/23/22 9/16/22 **USEPA Method 8260B - Volatiles** <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L benzene 1,000 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 toluene 700 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ethylbenzene methyl tert-butyl ether (MTBE) 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,2,4-trimethylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3,5-trimethylbenzene ΝE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichloroethane (EDC) 5 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dibromoethane (EDB) 0.005 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 30 <4.0 <4.0 <4.0 total naphthalenes μg/L <4.0 <4.0 <4.0 < 5.0 < 5.0 < 5.0 <4.0 <4.0 <4.0 <4.0 <4.0 ΝE < 50 <10 <10 <10 <10 < 50 < 50 <10 <10 <10 <10 <10 <10 <10 acetone μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 bromobenzene μg/L <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 bromodichloromethane μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 bromoform <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L ΝE <3.0 < 3.0 <3.0 < 3.0 < 5.0 < 5.0 < 5.0 <3.0 < 3.0 < 3.0 < 3.0 < 3.0 < 3.0 <3.0 bromomethane μg/L NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 2-butanone μg/L NE <10 NA NA NA <10 <10 <10 carbon disulfide μg/L <10 <10 <10 <10 <10 <10 <10 carbon tetrachloride <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L ΝE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 chlorobenzene μg/L chloroethane NE μg/L < 2.0 < 2.0 <2.0 <2.0 < 5.0 < 5.0 < 5.0 <2.0 < 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 chloroform 100 μg/L <1.0 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <3.0 <2.5 <3.0 <3.0 chloromethane μg/L <3.0 < 3.0 <3.0 <2.5 <2.5 <3.0 <3.0 <3.0 <3.0 < 3.0 NE 2-chlorotoluene μg/L <1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4-chlorotoluene μg/L 70 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 cis-1,2-dichloroethene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 cis-1,3-dichloropropene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dibromo-3-chloropropane NE < 2.0 < 2.0 < 2.0 < 2.0 < 5.0 < 5.0 < 5.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 μg/L NE NA NA <1.0 dibromochloromethane μg/L <1.0 <1.0 <1.0 <1.0 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ΝE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 dibromomethane μg/L 600 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichlorobenzene μg/L NE <1.0 <1.0 <1.0 <1.0 1,3-dichlorobenzene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 75 1,4-dichlorobenzene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 dichlorodifluoromethane μg/L 25 <1.0 <1.0 <1.0 <1.0 <1.0 1,1-dichloroethane μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 5 <1.0 1,1-dichloroethene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichloropropane 5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3-dichloropropane μg/L NE 2,2-dichloropropane < 2.0 <2.0 <2.0 < 2.0 <1.0 <1.0 <1.0 < 2.0 < 2.0 <2.0 < 2.0 < 2.0 < 2.0 < 2.0 μg/L NE <1.0 1,1-dichloropropene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 hexachlorobutadiene ΝE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 2-hexanone μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 isopropylbenzene μg/L <1.0 <1.0 4-isopropytoluene NE μg/L <1.0 <1.0 <1.0 <1.0 NA NA NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 4-methyl-2-pentanone μg/L <3.0 <3.0 <3.0 <3.0 methylene chloride 5 <3.0 < 3.0 <3.0 < 5.0 < 5.0 < 5.0 <3.0 <3.0 <3.0 <3.0 μg/L NE < 3.0 <3.0 <3.0 <3.0 <1.0 <1.0 <1.0 <3.0 <3.0 <3.0 <3.0 < 3.0 < 3.0 < 3.0 n-butylbenzene μg/L n-propylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 sec-butylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 100 styrene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 tert-butylbenzene μg/L 1,1,1,2-tetrachloroethane NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,2,2-tetrachloroethane 10 μg/L < 2.0 < 2.0 <2.0 <2.0 <1.0 <1.0 <1.0 < 2.0 < 2.0 < 2.0 <2.0 < 2.0 < 2.0 < 2.0 20 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 tetrachloroethene (PCE) µg/L <1.0 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,2-dichloroethene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,3-dichloropropene NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE <1.0 <1.0 1,2,3-trichlorobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 1,2,4-trichlorobenzene 70 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,1-trichloroethane 200 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,2-trichloroethane 5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L trichloroethene (TCE) 5 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trichlorofluoromethane NE μg/L <1.0 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2,3-trichloropropane NE μg/L < 2.0 <2.0 <2.0 < 2.0 <2.5 <2.5 <2.5 <2.0 <2.0 < 2.0 <2.0 < 2.0 < 2.0 < 2.0 vinyl chloride 2 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.5 <1.5 <1.5 <1.5 620 <1.5 <1.5 <1.5 < 3.0 < 3.0 <3.0 <1.5 <1.5 <1.5 <1.5 xylenes, total μg/L **USEPA Method 300.0: Anions** NE < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 0.32 < 0.50 <1.00 < 0.50 < 0.50 < 0.50 bromide mg/L 250 chloride 19 18 18 19.6 18.8 19.4 18 21 20 19 20 20 20 mg/L 88 600 2,000 1,600 1,700 1,700 1,700 1,770 1,790 1,700 2,000 1,700 1,600 1,900 1,600 1,600 sulfate mg/L fluoride 1.6 1.4 < 0.50 < 0.50 < 0.50 0.236 0.246 0.288 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 mg/L nitrate + nitrite as N NE < 0.10 < 0.10 < 0.50 <1.0 < 0.100 < 0.100 < 0.100 < 0.50 < 0.50 <1.0 <1.0 <1.0 <1.0 < 0.50 mg/L NE <2.5 <2.5 < 2.5 phosphorus, orthophosphate (As P) mg/L < 0.50 <2.5 < 2.5 <2.5 NA NA NA <2.5 < 2.5 <2.5 <2.5 **USEPA Method 200.7: Metals** NE 620 600 560 NA NA 550 610 600 610 590 610 Calcium mg/L 630 NA 600 Magnesium NE mg/L 83 36 35 35 NA NA NA 33 140 35 33 34 36 35 2.6 Potassium NE mg/L 13 3.6 2.9 NA NA NA 190 8.9 3.1 3.3 4.6 3.4 2.6 NE 510 200 200 190 200 Sodium mg/L 190 NA NA NA 190 200 190 210 200 SM 2320B Alkalinity Bicarbonate NE mg/L NA NA NA NA NA NA NA 264.3 285.1 263.6 263.7 265.8 273.7 274.0 NE NA NA NA NA NA NA NA < 2.00 < 2.00 < 2.000 Carbonate < 2.00 < 2.00 < 2.00 < 2.00 mg/L Total Alkalinity NE mg/L NA NA NA NA NA NA NA <264.3 285.1 263.6 263.7 265.8 273.7 274.0 **USEPA Method SM2540C Modified: Total Dissolved Solids Total Dissolved Solids** 1,000 3,250 2,860 2,990 2,860 2,830 2,820 2,910 3,260 2,750 2,860 3,000 2,850 2,850 mg/L 2,640

Notes:

μg/L: micrograms per liter

mg/L: milligrams per liter

NA: not analyzed

NMWQCC: New Mexico Water Quality Control Commission

<: indicates result less than the stated laboratory reporting limit (RL)</p>

ENSOLUM

TABLE 3 **GROUNDWATER ANALYTICAL RESULTS** Mansfield #11 Hilcorp Energy Company San Juan County, New Mexico **MW04 NMWQCC** Unit Analyte Standard 12/2/19 2/12/21 9/7/21 10/13/21 6/24/22 12/27/22 8/26/19 3/5/20 6/12/20 9/1/20 11/16/20 6/30/21 2/23/22 9/16/22 **USEPA Method 8260B - Volatiles** <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L benzene 1,000 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 toluene 700 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ethylbenzene methyl tert-butyl ether (MTBE) 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,2,4-trimethylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3,5-trimethylbenzene ΝE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichloroethane (EDC) 5 μg/L 1.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dibromoethane (EDB) 0.005 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 30 <4.0 <4.0 <4.0 total naphthalenes μg/L <4.0 <4.0 <4.0 < 5.0 < 5.0 < 5.0 <4.0 <4.0 <4.0 <4.0 <4.0 ΝE < 50 <10 <10 <10 <10 <10 <10 < 50 < 50 <10 <10 <10 <10 <10 acetone μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 bromobenzene μg/L <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 bromodichloromethane μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 bromoform <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE < 3.0 <3.0 < 3.0 <3.0 < 3.0 < 5.0 < 5.0 < 5.0 <3.0 <3.0 < 3.0 < 3.0 < 3.0 < 3.0 bromomethane μg/L NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 2-butanone μg/L NE <10 NA NA NA <10 <10 <10 carbon disulfide μg/L <10 <10 <10 <10 <10 <10 <10 carbon tetrachloride <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 chlorobenzene μg/L chloroethane NE μg/L < 2.0 < 2.0 <2.0 <2.0 < 5.0 < 5.0 < 5.0 <2.0 < 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 chloroform 100 μg/L <1.0 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <3.0 <3.0 <2.5 <3.0 <3.0 chloromethane μg/L <3.0 <3.0 <2.5 <2.5 <3.0 <3.0 <3.0 <3.0 < 3.0 NE 2-chlorotoluene μg/L <1.0 <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4-chlorotoluene μg/L cis-1,2-dichloroethene 70 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L cis-1,3-dichloropropene <1.0 NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dibromo-3-chloropropane NE < 2.0 < 2.0 < 2.0 < 2.0 < 5.0 < 5.0 < 5.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 μg/L NE NA NA <1.0 dibromochloromethane μg/L <1.0 <1.0 <1.0 <1.0 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ΝE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 dibromomethane μg/L 600 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichlorobenzene μg/L NE <1.0 <1.0 <1.0 <1.0 1,3-dichlorobenzene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 75 1,4-dichlorobenzene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 dichlorodifluoromethane μg/L 25 <1.0 <1.0 <1.0 <1.0 <1.0 1,1-dichloroethane μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 5 <1.0 1,1-dichloroethene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichloropropane μg/L <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3-dichloropropane μg/L NE < 2.0 < 2.0 <2.0 < 2.0 <1.0 <1.0 <1.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 2,2-dichloropropane μg/L NE <1.0 1,1-dichloropropene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 hexachlorobutadiene ΝE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 2-hexanone μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 isopropylbenzene μg/L <1.0 <1.0 4-isopropytoluene NE μg/L <1.0 <1.0 <1.0 <1.0 NA NA NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 4-methyl-2-pentanone μg/L <3.0 <3.0 <3.0 <3.0 methylene chloride 5 <3.0 < 3.0 <3.0 < 5.0 < 5.0 < 5.0 <3.0 <3.0 <3.0 <3.0 μg/L NE < 3.0 <3.0 <3.0 <3.0 <1.0 <1.0 <1.0 < 3.0 <3.0 <3.0 <3.0 < 3.0 <3.0 < 3.0 n-butylbenzene μg/L n-propylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 sec-butylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 100 styrene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 tert-butylbenzene μg/L 1,1,1,2-tetrachloroethane NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,2,2-tetrachloroethane 10 μg/L < 2.0 <2.0 <2.0 <2.0 <1.0 <1.0 <1.0 < 2.0 < 2.0 <2.0 <2.0 < 2.0 < 2.0 < 2.0 20 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 tetrachloroethene (PCE) µg/L <1.0 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,2-dichloroethene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trans-1,3-dichloropropene NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE <1.0 <1.0 1,2,3-trichlorobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 1,2,4-trichlorobenzene 70 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,1-trichloroethane 200 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,2-trichloroethane 5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L trichloroethene (TCE) 5 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 trichlorofluoromethane NE μg/L <1.0 <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2,3-trichloropropane NE μg/L < 2.0 < 2.0 <2.0 <2.0 <2.5 <2.5 <2.5 <2.0 < 2.0 <2.0 <2.0 < 2.0 < 2.0 < 2.0 vinyl chloride 2 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.5 <1.5 <1.5 <1.5 620 <1.5 <1.5 <1.5 < 3.0 < 3.0 <3.0 <1.5 <1.5 <1.5 <1.5 xylenes, total μg/L **USEPA Method 300.0: Anions** NE < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 0.15 < 0.50 < 0.50 <1.00 < 0.50 < 0.50 < 0.50 bromide mg/L 250 22.8 20 chloride 22 21 20 22.2 22.4 21 22 20 21 23 22 mg/L 28 600 2,300 1,900 2,100 2,000 2,120 2,180 2,190 2,100 1,900 2,200 2,000 2,000 1,800 2,000 sulfate mg/L fluoride 1.6 1.6 < 0.50 < 0.50 < 0.50 0.373 0.420 0.522 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 0.74 1.0 mg/L nitrate + nitrite as N NE < 0.10 < 0.10 < 0.50 <1.0 < 0.100 < 0.100 < 0.100 < 0.50 < 0.50 <1.0 <1.0 <1.0 <1.0 < 0.50 mg/L NE <2.5 <2.5 < 2.5 phosphorus, orthophosphate (As P) mg/L < 0.50 <2.5 < 2.5 < 2.5 NA NA NA <2.5 < 2.5 <2.5 <2.5 **USEPA Method 200.7: Metals** NE 570 570 52 590 NA NA 530 580 610 620 590 560 580 Calcium mg/L NA Magnesium NE mg/L 140 150 14 150 NA NA NA 150 160 170 160 160 190 150 3.7 Potassium NE mg/L 11 5.1 3.2 NA NA NA 5.2 8.0 10.0 5.7 7.5 4.5 3.6 NE 220 210 200 210 220 210 Sodium mg/L 210 21 NA NA NA 200 210 190 SM 2320B Alkalinity Bicarbonate NE mg/L NA NA NA NA NA NA NA 281.6 280.6 282 280 279.9 281.5 278.1 NE NA NA NA NA NA NA NA < 2.00 < 2.00 <2.00 < 2.00 < 2.00 < 2.000 Carbonate < 2.00 mg/L Total Alkalinity NE mg/L NA NA NA NA NA NA NA 281.6 280.6 282 280 279.9 281.5 278.1 **USEPA Method SM2540C Modified: Total Dissolved Solids**

Notes:

μg/L: micrograms per liter

Total Dissolved Solids

mg/L: milligrams per liter

NA: not analyzed

NMWQCC: New Mexico Water Quality Control Commission

<: indicates result less than the stated laboratory reporting limit (RL)</p>

1,000

mg/L

Concentrations in **bold** and shaded exceed the New Mexico Water Quality Control Commission Standards, 20.6.2 of the New Mexico Administrative Code

3,400

3,470

3,370

3,300

3,640

3,310

3,270

2,920

3,490

3,000

3,430

3,310

3,490

3,370

ENSOLUM

TABLE 3 **GROUNDWATER ANALYTICAL RESULTS** Mansfield #11 Hilcorp Energy Company San Juan County, New Mexico MW05 **NMWQCC** Unit Analyte Standard 12/2/19 3/5/20 6/12/20 2/12/21 9/7/21 10/13/21 6/24/22 12/27/22 8/26/19 9/1/20 11/16/20 6/30/21 2/23/22 9/16/22 **USEPA Method 8260B - Volatiles** <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L benzene 1,000 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 toluene 700 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ethylbenzene methyl tert-butyl ether (MTBE) 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,2,4-trimethylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3,5-trimethylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichloroethane (EDC) 5 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dibromoethane (EDB) 0.005 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 30 <4.0 < 5.0 <4.0 <4.0 <4.0 total naphthalenes μg/L <4.0 <4.0 < 5.0 < 5.0 <4.0 <4.0 <4.0 <4.0 <4.0 ΝE < 50 < 50 <10 <10 <10 <10 <10 <10 <10 < 50 <10 <10 <10 <10 acetone μg/L NE <1.0 bromobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 bromodichloromethane <1.0 <1.0 μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 bromoform <1.0 <1.0 <1.0 <1.0 μg/L NE < 5.0 < 3.0 μg/L <3.0 < 3.0 <3.0 < 5.0 < 5.0 < 3.0 <3.0 <3.0 <3.0 < 3.0 < 3.0 < 3.0 bromomethane NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 2-butanone μg/L carbon disulfide NE <10 <10 NA NA NA <10 <10 <10 <10 μg/L <10 <10 <10 <10 <10 carbon tetrachloride <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 chlorobenzene μg/L <2.0 chloroethane NE μg/L <2.0 <2.0 <2.0 < 5.0 < 5.0 < 5.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 chloroform 100 μg/L <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <3.0 <2.5 <2.5 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 chloromethane μg/L <3.0 <3.0 <2.5 <3.0 <3.0 NE <1.0 2-chlorotoluene μg/L <1.0 <1.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4-chlorotoluene μg/L 70 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 cis-1,2-dichloroethene <1.0 <1.0 μg/L NE <1.0 <1.0 cis-1,3-dichloropropene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dibromo-3-chloropropane NE < 2.0 < 2.0 < 2.0 < 5.0 < 5.0 < 5.0 <2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 μg/L NE NA NA NA <1.0 <1.0 dibromochloromethane μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ΝE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 dibromomethane μg/L 1,2-dichlorobenzene 600 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3-dichlorobenzene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 75 1,4-dichlorobenzene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 dichlorodifluoromethane μg/L 1,1-dichloroethane 25 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,1-dichloroethene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2-dichloropropane μg/L <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,3-dichloropropane μg/L NE < 2.0 < 2.0 <2.0 <1.0 <1.0 <1.0 <2.0 < 2.0 < 2.0 <2.0 < 2.0 < 2.0 < 2.0 < 2.0 2,2-dichloropropane μg/L NE <1.0 <1.0 1,1-dichloropropene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 hexachlorobutadiene ΝE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE μg/L <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 2-hexanone NE <1.0 <1.0 isopropylbenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 4-isopropytoluene NE μg/L <1.0 <1.0 <1.0 NA NA NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 4-methyl-2-pentanone μg/L methylene chloride <3.0 <3.0 < 5.0 <3.0 <3.0 <3.0 <3.0 5 <3.0 < 5.0 < 5.0 <3.0 <3.0 <3.0 <3.0 μg/L n-butylbenzene NE μg/L < 3.0 <3.0 <3.0 <1.0 <1.0 <1.0 <3.0 < 3.0 < 3.0 <3.0 <3.0 < 3.0 <3.0 < 3.0 NE n-propylbenzene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 sec-butylbenzene NE μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 100 <1.0 <1.0 <1.0 <1.0 styrene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 tert-butylbenzene μg/L NE <1.0 1,1,1,2-tetrachloroethane μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,1,2,2-tetrachloroethane 10 μg/L < 2.0 < 2.0 <2.0 <1.0 <1.0 <1.0 < 2.0 < 2.0 < 2.0 < 2.0 <2.0 < 2.0 < 2.0 < 2.0 20 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 tetrachloroethene (PCE) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 100 trans-1,2-dichloroethene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L <1.0 <1.0 <1.0 <1.0 NE <1.0 <1.0 <1.0 trans-1,3-dichloropropene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L NE <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2,3-trichlorobenzene μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1,2,4-trichlorobenzene 70 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,1-trichloroethane 200 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 μg/L 1,1,2-trichloroethane 5 μg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0

chloride	250	mg/L	32	16	21	29.7	19.1	18.4	17	17	15	17	15	17	16	15
sulfate	600	mg/L	2,300	2,600	2,400	3,180	2,510	2,540	2,400	2,500	2,500	2,800	2,600	2,800	2,400	2,500
fluoride	1.6	mg/L	0.96	< 0.50	< 0.10	0.325	0.375	0.483	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
nitrate + nitrite as N	NE	mg/L	<0.20	< 0.50	<1.0	7.72	2.02	2.06	< 0.50	< 0.50	<1.0	<1.0	<1.0	<1.0	<1.0	0.54
phosphorus, orthophosphate (As P)	NE	mg/L	<10	<10	<10	NA	NA	NA	<10	<2.5	<2.5	420	2.5	<10	<2.5	<2.5
USEPA Method 200.7: Metals																
Calcium	NE	mg/L	490	480	520	NA	NA	NA	470	500	490	470	500	470	490	500
Magnesium	NE	mg/L	21	21	19	NA	NA	NA	21	20	20	22	23	22	23	26
Potassium	NE	mg/L	11	6.3	5.3	NA	NA	NA	4.9	5.7	5.5	5.7	4.9	5.7	4.9	5.9
Sodium	NE	mg/L	590	580	640	NA	NA	NA	590	620	650	650	670	650	700	720
						SI	VI 2320B Alkali	nity								
Bicarbonate	NE	mg/L	NA	NA	NA	NA	NA	NA	116.7	103.4	65.28	140.1	129.2	140.1	141.6	137.3
Carbonate	NE	mg/L	NA	NA	NA	NA	NA	NA	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.000
Total Alkalinity	NE	mg/L	NA	NA	NA	NA	NA	NA	116.7	103.4	65.28	140	129.2	140.1	141.6	137.3
USEPA Method SM2540C Modified: Total Dissolved Solids																
Total Dissolved Solids	1,000	mg/L	3,740	3,830	3,780	3,780	3,510	3,570	3,750	3,890	3,650	3,980	3,860	3,980	4,000	4,000
<u> </u>																

<1.0

< 5.0

<2.5

<1.0

< 3.0

USEPA Method 300.0: Anions

<1.0

< 5.0

<2.5

<1.0

< 3.0

<1.0

<1.0

<2.0

<1.0

<1.5

< 0.50

<1.0

<1.0

< 2.0

<1.0

<1.5

< 0.50

<1.0

<1.0

< 2.0

<1.0

<1.5

< 0.50

<1.0

<1.0

< 2.0

<1.0

<1.5

< 0.50

<1.0

<1.0

< 2.0

<1.0

<1.5

< 0.50

<1.0

<1.0

< 2.0

<1.0

<1.5

< 0.50

<1.0

<1.0

< 2.0

<1.0

<1.5

< 0.50

<1.0

<1.0

< 2.0

<1.0

<1.5

< 0.50

Notes:

μg/L: micrograms per liter

trichloroethene (TCE)

trichlorofluoromethane

1,2,3-trichloropropane

vinyl chloride

xylenes, total

bromide

5

NE

NE

2

620

ΝE

μg/L

μg/L

μg/L

μg/L

μg/L

mg/L

<1.0

<1.0

< 2.0

<1.0

<1.5

0.16

<1.0

<1.0

< 2.0

<1.0

<1.5

< 0.50

<1.0

<1.0

<2.0

<1.0

<1.5

< 0.10

<1.0

< 5.0

<2.5

<1.0

<3.0

<100

mg/L: milligrams per liter

NA: not analyzed

NMWQCC: New Mexico Water Quality Control Commission

<: indicates result less than the stated laboratory reporting limit (RL)</p>

TABLE 3 GROUNDWATER ANALYTICAL RESULTS Mansfield #11 Hilcorp Energy Company San Juan County, New Mexico

Description S	Analyte	NMWQCC Standard	Unit	EX WS
benzene	USEPA Meti		latiles	12/15/22
methylestreen (MTBE)		-	1	<1.0
methyl tent-butyl ether (MTBE) 100	toluene	1,000	μg/L	<1.0
1.2.4-trimetryberazone NE	•	+		
1,3,5-trimethylbenzene NE μg/L 140 1,2-dichtoroethane (EDC) 5 μg/L 140 1,2-dichtoroethane (EDC) 5 μg/L 140 1,2-dichtoroethane (EDC) 0,005 μg/L 7.6 acastone NE μg/L 22 bromodenzene NE μg/L 140 carbon tetrachloride NE μg/L 140 chloroethane NE μg/L 140 dibromonethane NE μg/L 140 1,2-dichloroethane NE μg/L 140 1,3-dichloroethane NE μg/L 140 1,4-dichloroethane NE μg/L 140 1,4-dichloroethane NE μg/L 140 1,1-dichloroethane NE μg/L 140 1,1-dichlo				
1,2-dichloroethane (EDC)	•	-	_	
1.2-dibromoethane (EDB)	•	+		
Beach NE		0.005		
bromodichtoromethane NE	total naphthalenes	30	μg/L	7.6
bromodichloromethane NE μg/L <1.0		-		
bromoform NE		-		
December NE				
2-butanone		-		
carbon tetrachloride 5 μg/L <1.0 chlorochazene NE μg/L <1.0 chlororethane NE μg/L <2.0 chloroform 100 μg/L <1.0 chlorotoluene NE μg/L <1.0 2-chlorotoluene NE μg/L <1.0 cis-13-dichloropropene NE μg/L <1.0 cis-13-dichloropropene NE μg/L <1.0 dis-13-dichloropropene NE μg/L <1.0 12-dibromo-3-chloropropane NE μg/L <1.0 dibromo-hloromethane NE μg/L <1.0 1,2-dichloropropane NE μg/L <1.0 1,3-dichloropropane NE μg/L <1.0 1,4-dichlorochemane 25 μg/L <1.0 1,1-dichloropropane NE μg/L <1.0 1,2-dichloropropane NE μg/L <1.0 1,2-dichloropropane NE μg/L <1.0	2-butanone	NE		<10
Chlorobenzene NE	carbon disulfide	NE	μg/L	<10
chlorolotrom NE μg/L <2.0 chlorolotrom 100 μg/L <1.0 chlorolotuene NE μg/L <1.0 2-chiorotoluene NE μg/L <1.0 4-chiorotoluene NE μg/L <1.0 cis-1,2-dichloroberene 70 μg/L <1.0 1,2-dibrono-3-chloropropane NE μg/L <1.0 dibromochloromethane NE μg/L <1.0 dibromochloromethane NE μg/L <1.0 1,2-dichlorobenzene 600 μg/L <1.0 1,3-dichloropropane NE μg/L <1.0 1,1-dichlorostenene 5 μg/L <1.0 1,1-dichloropropane 5 μg/L <1.0 1,2-dichloropropane NE μg/L <1.0 1,2-dichloropropane NE μg/L <1.0 1,2-dichloropropane NE μg/L <1.0 1,2-dichloropropane NE μg/L <1.0 <				
Chloroform		•		
chloromethane		-		
2-chlorotoluene NE μg/L <1.0 4-chlorotoluene NE μg/L <1.0		-		
4-chiorotoluene NE		-		
Cis-1,3-dichloropropene NE		NE		
1,2-dibromo-3-chloropropane NE	cis-1,2-dichloroethene	70		<1.0
dibromochloromethane NE μg/L <1.0				
dibromomethane NE	·	-		
1,2-dichlorobenzene NE		-	_	
1,3-dichlorobenzene NE μg/L <1.0 1,4-dichlorobenzene 75 μg/L <1.0 dichlorodifluoromethane NE μg/L <1.0 1,1-dichloroethane 25 μg/L <1.0 1,1-dichloroethane 5 μg/L <1.0 1,1-dichloropropane 5 μg/L <1.0 1,2-dichloropropane NE μg/L <1.0 2,2-dichloropropane NE μg/L <1.0 1,1-dichlorobutadiene NE μg/L <1.0 2-hexanone NE μg/L <1.0 2-hexanone NE μg/L <1.0 2-hexanone NE μg/L <1.0 3-hexaptopytoluene NE μg/L <1.0 4-isopropytoluene NE NE Ng/L		+		
1,4-dichlorobenzene	·	-	_	
dichlorodifluoromethane NE	·	+		
1,1-dichloroethene		NE		<1.0
1,2-dichloropropane	1,1-dichloroethane	25	μg/L	<1.0
1,3-dichloropropane NE		+		
2,2-dichloropropane		+		
1,1-dichloropropene NE		•		
hexachlorobutadiene NE				
2-hexanone NE μg/L <10 isopropylbenzene NE μg/L <1.0	·	+		
Isopropytoluene		+		
4-methyl-2-pentanone NE	isopropylbenzene	NE		<1.0
methylene chloride 5 μg/L <3.0 n-butylbenzene NE μg/L <3.0		NE	μg/L	
n-butylbenzene NE		+		
n-propylbenzene NE	-			
Sec-butylbenzene NE	-	-		
styrene 100 μg/L <1.0 tert-butylbenzene NE μg/L <1.0		+		
1,1,1,2-tetrachloroethane	·	-		
1,1,2,2-tetrachloroethane 10 μg/L <2.0 tetrachloroethene (PCE) 20 μg/L <1.0	tert-butylbenzene	NE	μg/L	<1.0
tetrachloroethene (PCE)			μg/L	
trans-1,2-dichloroethene 100 µg/L <1.0 trans-1,3-dichloropropene NE µg/L <1.0 1,2,3-trichlorobenzene NE µg/L <1.0 1,2,4-trichlorobenzene 70 µg/L <1.0 1,1,1-trichloroethane 200 µg/L <1.0 1,1,1-trichloroethane 5 µg/L <1.0 trichloroethene (TCE) 5 µg/L <1.0 trichlorofluoromethane NE µg/L <1.0 1,2,3-trichloropropane NE µg/L <1.0 vinyl chloride 2 µg/L <1.0 xylenes, total 620 µg/L 71 USEPA Method 300.0: Anions bromide NE mg/L 2.1 chloride 250 mg/L 490 sulfate 600 mg/L 8,500 fluoride 1.6 mg/L 1.6 nitrate + nitrite as N NE mg/L 2.8 phosphorus, orthophosphate (As P) NE mg/L <2.0 USEPA Method 200.7: Metals Calcium NE mg/L 23 Sodium NE mg/L 495.8 Carbonate NE mg/L 495.8 Carbonate NE mg/L 495.8 Carbonate NE mg/L 495.8 USEPA Method SM2540C Modified: Total Dissolved Solids		-		
trans-1,3-dichloropropene NE μg/L <1.0 1,2,3-trichlorobenzene NE μg/L <1.0		+		
1,2,3-trichlorobenzene	·	1		
1,2,4-trichlorobenzene 70		+		
1,1,1-trichloroethane 200 μg/L <1.0		-		
trichloroethene (TCE)		200		
trichlorofluoromethane NE μg/L <1.0 1,2,3-trichloropropane NE μg/L <2.0				
1,2,3-trichloropropane				
vinyl chloride 2 μg/L <1.0 xylenes, total 620 μg/L 71 USEPA Method 300.0: Anions bromide NE mg/L 2.1 chloride 250 mg/L 490 sulfate 600 mg/L 8,500 fluoride 1.6 mg/L 1.6 nitrate + nitrite as N NE mg/L 2.8 phosphorus, orthophosphate (As P) NE mg/L <50		1	_	
Xylenes, total G20	, , , , ,	+		
USEPA Method 300.0: Anions bromide NE mg/L 2.1 chloride 250 mg/L 490 sulfate 600 mg/L 8,500 fluoride 1.6 mg/L 1.6 nitrate + nitrite as N NE mg/L 2.8 phosphorus, orthophosphate (As P) NE mg/L <50	•			
chloride 250 mg/L 490 sulfate 600 mg/L 8,500 fluoride 1.6 mg/L 1.6 nitrate + nitrite as N NE mg/L 2.8 phosphorus, orthophosphate (As P) NE mg/L <50			•	
sulfate 600 mg/L 8,500 fluoride 1.6 mg/L 1.6 nitrate + nitrite as N NE mg/L 2.8 phosphorus, orthophosphate (As P) NE mg/L <50	bromide	NE	mg/L	2.1
fluoride 1.6 mg/L 1.6 nitrate + nitrite as N NE mg/L 2.8 phosphorus, orthophosphate (As P) NE mg/L <50		250	mg/L	
nitrate + nitrite as N NE mg/L 2.8 phosphorus, orthophosphate (As P) NE mg/L <50 USEPA Method 200.7: Metals Calcium NE mg/L 660 Magnesium NE mg/L 1,600 Potassium NE mg/L 23 Sodium NE mg/L 1,400 SM 2320B Alkalinity Bicarbonate NE mg/L 495.8 Carbonate NE mg/L <2.00		-		-
phosphorus, orthophosphate (As P) NE mg/L <50		1	_	
USEPA Method 200.7: Metals Calcium NE mg/L 660 Magnesium NE mg/L 1,600 Potassium NE mg/L 23 Sodium NE mg/L 1,400 SM 2320B Alkalinity Bicarbonate NE mg/L 495.8 Carbonate NE mg/L <2.00		-		
Calcium NE mg/L 660 Magnesium NE mg/L 1,600 Potassium NE mg/L 23 Sodium NE mg/L 1,400 SM 2320B Alkalinity Bicarbonate NE mg/L 495.8 Carbonate NE mg/L <2.00			_	\ 00
Magnesium NE mg/L 1,600 Potassium NE mg/L 23 Sodium NE mg/L 1,400 SM 2320B Alkalinity Bicarbonate NE mg/L 495.8 Carbonate NE mg/L <2.00		1		660
Sodium NE mg/L 1,400 SM 2320B Alkalinity Bicarbonate NE mg/L 495.8 Carbonate NE mg/L <2.00		+	_	1,600
SM 2320B Alkalinity Bicarbonate NE mg/L 495.8 Carbonate NE mg/L <2.00		+	mg/L	
Bicarbonate NE mg/L 495.8 Carbonate NE mg/L <2.00			mg/L	1,400
Carbonate NE mg/L <2.00 Total Alkalinity NE mg/L 495.8 USEPA Method SM2540C Modified: Total Dissolved Solids				405.0
Total Alkalinity NE mg/L 495.8 USEPA Method SM2540C Modified: Total Dissolved Solids		-		
USEPA Method SM2540C Modified: Total Dissolved Solids		-		
ו טואוסissoivea Solids 1,000 mg/L 15,100 mg/L	Total Dissolved Solids	1,000	mg/L	15,100

Notes:

μg/L: micrograms per liter

mg/L: milligrams per liter NA: not analyzed

NMWQCC: New Mexico Water Quality Control Commission

<: indicates result less than the stated laboratory reporting limit (RL)

APPENDIX A

NMOCD Correspondence

Josh Adams

From: Smith, Cory, EMNRD < Cory.Smith@state.nm.us>

Sent: Monday, July 22, 2019 8:12 AM

To: Jennifer Deal

Cc: Josh Adams; Ashley Ager

Subject: RE: NCS1913741281 Extension Request

Jennifer,

OCD approves HEC request for an extension for incident# nCS1913741281 to submit a completed Stage 1 and a proposed Stage 2 abatement plan no later than September 13, 2019.

For soil delineation at a minimum OCD recommends that HEC follows the guidelines of 19.15.29.11 NMAC for vertical and horizontal soil delineation. In addition please ensure that water samples collected for ground water delineation are sampled at a minimum for EPA 8260 (Full list), TDS and Cation/Anions. OCD also recommends the installation of an upgradient monitoring well.

Please include this approval in your Stage1/2 report.

If you have any questions please give me a call.

Cory Smith
Environmental Specialist
Oil Conservation Division
Energy, Minerals, & Natural Resources
1000 Rio Brazos, Aztec, NM 87410
(505)334-6178 ext 115
cory.smith@state.nm.us

From: Ashley Ager <aager@ltenv.com> Sent: Friday, July 19, 2019 8:51 AM

To: Smith, Cory, EMNRD <Cory.Smith@state.nm.us>; Jennifer Deal <jdeal@hilcorp.com>

Cc: Josh Adams < jadams@ltenv.com>

Subject: [EXT] RE: NCS1913741281 Extension Request

Cory,

Following our discussion yesterday regarding transitions from remediation of soil impact (Part 29) to include remediation of groundwater impact (Part 30) and conversations with Hilcorp about timelines for drilling and response: Hilcorp requests the original extension of the 90-day deadline in Part 29 to September 13, 2019 with the understanding that the report submitted to NMOCD by that deadline will consist of a combined Stage 1 and Stage 2 abatement plan as required by Part 30. That means we will report full vertical and lateral delineation of soil and groundwater, and provide a plan for remediation of both soil and groundwater. A proposal for public notification will also be included.

Please let us know if that is acceptable and thanks for your help.

Josh Adams

From: Smith, Cory, EMNRD < Cory.Smith@state.nm.us>

Sent: Tuesday, December 3, 2019 10:11 AM

To: Jennifer Deal Cc: Josh Adams

Subject: Mansfield #11 Remediation plan approval incident# NCS1913741281

Ms. Deal,

OCD has reviewed the remediation plan received on September 9, 2019 for a suspected historic hydrocarbon release discovered on May 2, 2019 at the Mansfield #11 (30-045-20992). The release has been assigned to incident# nCS1913741281 the submitted remediation plan has been approved with the following conditions of approval.

- HEC will physically mark/identify the current excavation side walls prior to the construction of the slopes and will maintain this mark so accurate sampling can be collected during final confirmation.
 - HEC will observe and verify with field PID that soils removed for slope construction is not impacted, these soils must be segregated from any impacted soils.
 - Failure to mark/monitor the overburden soils may result in HEC being required to verify those area are not impacted via soil sampling.
- OCD denies HEC request to collect an open excavation water sample for the purpose determining ground water impacts in the source area.
 - HEC will return to the site to install a temporary monitor well, develop and collect a ground water sample from the source area.
- HEC will provide OCD notice prior to the collection of final confirmation sampling per 19.15.29.12 NMAC.
- OCD has granted HEC an extension to submit the final closure report no later than February 21, 2020.
 - o If additional ground water impacts are found, HEC will submit an updated remediation plan that includes all of the soil sampling results, updated maps, etc. no later than February 21, 2020.

This condition of approval will be attached to the signed copy of the remediation plan and uploaded to the OCD imaging system. If you have any additional questions please give me a call.

Cory Smith
Environmental Specialist
Oil Conservation Division
Energy, Minerals, & Natural Resources
1000 Rio Brazos, Aztec, NM 87410
(505)334-6178 ext 115
cory.smith@state.nm.us

Attachments:

From: Smith, Cory, EMNRD jdeal@hilcorp.com

Cc: <u>Devin Hencmann</u>; <u>Ashley Ager</u>; <u>"Josh Adams"</u>

Subject: RE: Mansfield #11 (NCS1913741281) and Salty Dog (NCS1916853082)

Date: Friday, June 12, 2020 9:46:00 AM

image002.png image003.png image004.png

All,

I have reviewed the Remediation plan for the Mansfield #11 incident nCS1913741281 and have approved it with the following conditions of Approval

- HEC must submit and get approval of a small Land farm permit pursuant to 19.15.36.16 NMAC and follow all applicable requirements.
- Once a small Land Farm permit is approved HEC will send notification of the approval to the Division District Office via email notifying of the approval.
- HEC vadose zone sampling request does not meet the requirement of part 36 and is denied
- During remediation HEC must maintain site security(fencing) and an egress at the open excavation to ensure the protection of fresh water, human health and the environment.
 If HEC chooses to back fill the excavation prior to completion of land farmed remediation this requirement is null.
- A full closure report for the excavation is due no later than July 15, 2022

The basis of this approval is that this landform will be onsite for an extended period of time and needs to be approved by the land owner. If you have any additional questions please give me a call.

Please keep a copy of this electronic communication for your files, as no paper copy of the approval will be delivered. The signed C-147 will be saved in 3RF-28 electronic file on the OCD website.

Cory Smith
Environmental Specialist
Oil Conservation Division
Energy, Minerals, & Natural Resources
1000 Rio Brazos, Aztec, NM 87410
(505)334-6178 ext 115
cory.smith@state.nm.us

From: Josh Adams <jadams@ltenv.com> Sent: Thursday, June 4, 2020 1:31 PM

To: Smith, Cory, EMNRD < Cory. Smith@state.nm.us>

Cc: Devin Hencmann dhencmann@ltenv.com; Ashley Ager aager@ltenv.com; jdeal@hilcorp.com

Subject: [EXT] RE: Mansfield #11 (NCS1913741281) and Salty Dog (NCS1916853082)

Thank you and hope you are doing well.

Joshua G. Adams, G.I.T.
Staff Geologist
970.456.5750 *cell*970.385.1096 *direct*848 East Second Avenue Durango, CO 81301
www.ltenv.com

From: Smith, Cory, EMNRD < <u>Cory.Smith@state.nm.us</u>>

Sent: Thursday, June 4, 2020 1:28 PM **To:** Josh Adams < <u>jadams@ltenv.com</u>>

Cc: Devin Hencmann < dhencmann@ltenv.com>; Ashley Ager < aager@ltenv.com> Subject: RE: Mansfield #11 (NCS1913741281) and Salty Dog (NCS1916853082)

disclosure.

Josh,

Unfortunately I know they are there.. trying to get to them please do not resubmit duplicate copies

Cory Smith
Environmental Specialist
Oil Conservation Division
Energy, Minerals, & Natural Resources
1000 Rio Brazos, Aztec, NM 87410
(505)334-6178 ext 115
cory.smith@state.nm.us

From: Josh Adams < <u>jadams@ltenv.com</u>> Sent: Thursday, June 4, 2020 1:27 PM

To: Smith, Cory, EMNRD < <u>Cory.Smith@state.nm.us</u>>

Cc: Devin Hencmann < dhencmann@ltenv.com>; Ashley Ager < aager@ltenv.com> Subject: [EXT] Mansfield #11 (NCS1913741281) and Salty Dog (NCS1916853082)

Cory,

It's been more than 60 since the below reports were submitted for Hilcorp. I know you just haven't gotten to it yet, but we wanted to keep it on your radar. Thank you.

Mansfield #11 updated Remediation Work Plan (NCS1913741281) (PO: YRHNM-190912-C-1410)

• Salt Dog Water Transfer Station Stage 1 Abatement Plan (NCS1916853082) (PO: XK8BS-191220-C-1410)

disclosure.

Joshua G. Adams, G.I.T.
Staff Geologist
970.456.5750 *cell*970.385.1096 *direct*848 East Second Avenue Durango, CO 81301
www.ltenv.com

Think before you print. Click for our email

From: <u>Velez, Nelson, EMNRD</u>

To: <u>Stuart Hyde</u>; <u>Enviro, OCD, EMNRD</u>

Cc: <u>Devin Hencmann</u>; <u>Reece Hanson</u>; <u>Mitch Killough</u>

Subject: RE: [EXTERNAL] NCS1913741281 - Mansfield #11 Excavation Confirmation Sampling Notification

Date: Monday, June 13, 2022 8:47:03 AM

Attachments: <u>image001.pnq</u>

image002.png image003.png image004.png

[**EXTERNAL EMAIL**]

Stuart,

Thank you for the notice. If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances.

Regards

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@state.nm.us

Hrs.: 7:00-11:00 am & 12:00-3:30 pm Mon.-Thur. 7:00-11:00 am & 12:00-4:00 pm Fri.

From: Stuart Hyde <shyde@ensolum.com> Sent: Monday, June 13, 2022 8:42 AM

To: Velez, Nelson, EMNRD < Nelson. Velez@state.nm.us>; Enviro, OCD, EMNRD

<OCD.Enviro@state.nm.us>

Cc: Devin Hencmann dhencmann@ensolum.com; Reece Hanson rhanson@ensolum.com; Mitch Killough killough@hilcorp.com

Subject: [EXTERNAL] NCS1913741281 - Mansfield #11 Excavation Confirmation Sampling

Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson,

On behalf of Hilcorp, we are submitting this confirmation sampling notification for the Mansfield #11 excavation located at coordinates 36.7778969, -107.8062668. Confirmation soil samples will be collected on Wednesday June 15, Thursday June 16, and Friday June 17. We will keep you informed of any changes to this schedule. Please reach out with any questions regarding the upcoming sampling. Thank you.

Stuart Hyde, LG Senior Geologist 970-903-1607 Ensolum, LLC in f From: <u>Velez, Nelson, EMNRD</u>

To: <u>Stuart Hyde</u>

Cc: <u>Devin Hencmann</u>; <u>Mitch Killough</u>; <u>Bratcher, Mike, EMNRD</u>

Subject: Re: [EXTERNAL] NCS1913741281 - Mansfield #11 Request to Perform Alternative Remediation Activities

Date: Friday, June 17, 2022 3:34:58 PM

Attachments: <u>image001.png</u>

image002.png image003.png image004.png image001.png image002.png image003.png image004.png Microblaze.pdf

[**EXTERNAL EMAIL**]

Stuart,

My apologies for the late response. Computer & internet issues all afternoon.

Hilcorp's amendment to its remediation plan is approved.

Please keep a copy of this communication for inclusion within the appropriate reporting documentation.

Thanks and have an enjoyable weekend.

FYI, NMOCD will be closed this Monday, June 20, 2022.

Nelson V. (505) 469-6146 Sent from my iPhone

On Jun 17, 2022, at 10:10 AM, Stuart Hyde <shyde@ensolum.com> wrote:

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson,

Per our phone discussion yesterday, Hilcorp is currently excavating the remaining impacted soil at the Mansfield #11 site, NMOCD incident number NCS1913741281. As discussed, a majority of the impacted material has been removed from the excavation; however, there is a thin layer of impacted soil approximately 8 to 12 inches in thickness that is present at the interface between unconsolidated soil and consolidated sandstone along the east wall of the excavation. Monitoring well MW-4 is located east approximately 14 feet of this remaining impacted soil and is preventing further soil removal without compromising or destroying the well. At this point, all accessible impacted soil that can be excavated without compromising well MW-4 has been

removed.

Attached photograph "Excavation 1" is looking north, with the remaining impacts on the right of the photograph along the east sidewall. Photograph "Excavation 2" is looking east at the remaining impacted layer, which consists of dark gray stained soil with hydrocarbon odors and elevated PID readings. Of note, the blue/gray material beneath this stained layer is within the sandstone unit and is not believed to be impacted based on PID field screening and olfactory observations. However, we have sampled this blue/gray material to confirm that it does not exceed closure standards and are awaiting analytical results. The remaining impacted soil measures approximately 25 feet (north-south) by 15 feet (to the east) by 10 inches thick. Based on these measurements, the remaining volume of impacted soil is conservatively estimated to be 10 cubic yards.

At this site, VOCs analyzed by EPA Method 8260 have never been detected in any of the wells samples collected quarterly between 2019 and 2022 (including MW-4). Soil samples collected from MW-4 also indicated that BTEX and TPH concentrations in this area are below NMOCD Closure Criteria. Based on the minimal volume of impacted soil remaining at the site, the presence of well MW-4 located very close to the remaining impacted soil, and the groundwater results collected over the past three years, Hilcorp is requesting that the remaining impacted soil be treated in-situ and left in place. Insitu treatment will include the application of Micro-Blaze Emergency Liquid Spill Control amendment (see attached brochure) directly to the impacted area. Micro-Blaze will be applied until the impacted zone is fully saturated then allowed to infiltrate into the soil. At least three applications will be applied prior to backfilling the excavation. Based on the minimal volume of remaining impacted soil, as well as the soil and groundwater results gathered from the wells located at the site, this alternative remedial approach is believed to be equally protective of human health, the environment, and groundwater/surface water.

Hilcorp is requesting formal approval of this alternative remedial approach prior to conducting additional work at the site. Please feel free to reach out with any questions or comments regarding this plan or current site conditions. Thank you and talk to you soon.

Stuart Hyde, LG Senior Geologist 970-903-1607 Ensolum, LLC From: <u>Velez, Nelson, EMNRD</u>

To: <u>Stuart Hyde</u>; <u>Adeloye</u>, <u>Abiodun A</u>

Cc: Mitch Killough; Devin Hencmann; Enviro, OCD, EMNRD

Subject: RE: [EXTERNAL] NCS1913741281 - Mansfield #11 Remediation and Reporting Extension Request

Date: Thursday, July 14, 2022 9:47:18 AM

Attachments: <u>image001.pnq</u>

image002.png image003.png image004.png

[**EXTERNAL EMAIL**]

Stuart,

Time extension request is approved. The remediation due date will be updated within the incident page to October 13, 2022 (approximately 90 days).

Please keep a copy of this communication for inclusion within the appropriate report submittal.

The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances.

Regards

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@state.nm.us

Hrs.: 7:00-11:00 am & 12:00-3:30 pm Mon.-Thur. 7:00-11:00 am & 12:00-4:00 pm Fri.

From: Stuart Hyde <shyde@ensolum.com> Sent: Wednesday, July 13, 2022 5:08 PM

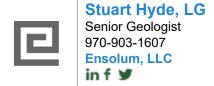
To: Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us>; Adeloye, Abiodun A <aadeloye@blm.gov> **Cc:** Mitch Killough <mkillough@hilcorp.com>; Devin Hencmann <dhencmann@ensolum.com>;

Enviro, OCD, EMNRD < OCD. Enviro@state.nm.us>

Subject: [EXTERNAL] NCS1913741281 - Mansfield #11 Remediation and Reporting Extension

Request

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.


Nelson and Emmanuel,

Hilcorp has completed the excavation of impacted soil and application of Micro-Blaze

bioamendment to remediate TPH-impacted soil at the Mansfield #11 site. As approved by the BLM and NMOCD, impacted soil was brought to the small landfarm constructed on the Mansfield #11N well pad just north of the site. The landfarm was constructed and will be operated in accordance with the BLM conditions of approval and 19.15.36 NMAC.

Confirmation floor and sidewall samples collected from the excavation indicate that TPH-impacted soil has been successfully removed, with the exception of a small lens of residual impacts located near well MW-4. As approved by the NMOCD on June 17, 2022, this small area of remaining impacted soil (conservatively estimated to be 10 cubic yards) was subsequently treated with three applications of Micro-Blaze Emergency Liquid Spill Control amendment. The three applications occurred on June 30, July 7, and July 14, 2022. To allow the Micro-Blaze to penetrate into the impacted zone and remediate the remaining TPH concentrations, Ensolum recommends waiting at least two weeks after the last application to resample the excavation sidewalls in this area for final closure (sidewall area "LWC-04"). Additionally, Hilcorp has delayed the installation of a temporary monitoring well in the excavation until the final soil confirmation samples are collected.

The original deadline for closure reporting for the site is July 15, 2022. Because of the alternative remediation approach implemented to specifically address the identified lens, Hilcorp is requesting a 90-day extension (October 13, 2022) to the remediation and reporting deadline in order to collect final confirmation samples within the excavation, as well as collect a groundwater grab sample from a temporary monitoring well, to be installed within the footprint of the excavation. Hilcorp will provide a full report documenting all remediation and sampling activities. If groundwater analytical results collected from the temporary monitoring well are below NMWQCC standards, Hilcorp will pursue closure for the release.

From: <u>Velez, Nelson, EMNRD</u>

To: <u>Stuart Hyde</u>; <u>Adeloye</u>, <u>Abiodun A</u>

Cc: <u>Mitch Killough</u>; <u>Devin Hencmann</u>; <u>Chad Perkins</u>; <u>Reece Hanson</u>

Subject: RE: [EXTERNAL] NCS1913741281 - Mansfield #11 Excavation Confirmation Sampling Notification

Date: Monday, November 14, 2022 3:00:50 PM

Attachments: <u>image006.png</u>

image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

Stuart,

Thank you for the notice. If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards

Nelson Velez • Environmental Specialist - Adv
Environmental Bureau | EMNRD - Oil Conservation Division
1000 Rio Brazos Road | Aztec, NM 87410
(505) 469-6146 | nelson.velez@emnrd.nm.gov NOTE NEW EMAIL ADDRESS
http://www.emnrd.state.nm.us/OCD/

From: Stuart Hyde <shyde@ensolum.com>
Sent: Monday, November 14, 2022 12:59 PM

To: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>; Adeloye, Abiodun A <aadeloye@blm.gov>

Cc: Mitch Killough <mkillough@hilcorp.com>; Devin Hencmann <dhencmann@ensolum.com>; Chad Perkins <cperkins@hilcorp.com>; Reece Hanson <rhanson@ensolum.com>

Subject: [EXTERNAL] NCS1913741281 - Mansfield #11 Excavation Confirmation Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

On behalf of Hilcorp Energy Company, Ensolum is submitting this notification to collect confirmation soil samples at the Mansfield #11 site on Thursday November 17, 2022 at 10:00 AM. The site is

located at coordinates 36.7778969, -107.8062668. Please reach out with any questions regarding the upcoming sampling. Thank you.

From: Stuart Hyde

To: <u>Velez, Nelson, EMNRD</u>; <u>Adeloye, Abiodun A</u>

Cc: Mitch Killough; Devin Hencmann; Chad Perkins; Eric Carroll

Subject: NCS1913741281 - Mansfield #11 Groundwater Sampling Notification

Date: Monday, December 12, 2022 10:23:00 AM

Attachments: <u>image001.png</u>

image002.png image003.png image004.png

Nelson and Emmanuel,

On behalf of Hilcorp Energy Company, Ensolum is submitting this notification to collect a confirmation groundwater sample at the Mansfield #11 site on Thursday December 15, 2022 at 10:00 AM. The site is located at coordinates 36.7778969, -107.8062668. As previous discussed with the NMOCD, a sample will be collected from the groundwater that has accumulated within the excavation footprint and analyzed for volatile organic compounds by EPA Method 8260, total dissolved solids, and cations/anions. With favorable groundwater analytical results, it is our intent to request final closure of both soil and groundwater portions of the site.

Please reach out with any questions regarding the upcoming sampling. Thank you.

Stuart Hyde, LG Senior Geologist 970-903-1607 Ensolum, LLC

APPENDIX B

Form C-137 EZ – Small Landfarm Registration

State of New Mexico Energy, Minerals and Natural Resources Department

Michelle Lujan Grisham Governor

Sarah Cottrell Propst Cabinet Secretary Adrienne Sandoval
Director, Oil Conservation Division

Todd E. Leahy, JD, PhD Deputy Secretary

October 15, 2021

Mr. Mitch Killough Hilcorp Energy Company 1111 Travis Street Houston, Texas 77002

RE: Small Registered Landfarm Approval
Hilcorp Energy Company
NM3-003 - Mansfield #11N Landfarm
NESW of Section 29, Township 30 North, Range 9 West, NMPM
San Juan County, New Mexico

Mr. Killough:

The Oil Conservation Division (OCD) has completed its review of Hilcorp Energy Company's (Hilcorp) registration application dated September 13, 20121 to construct and operate a small registered landfarm, referred to as Mansfield #11N, for the remediation of petroleum hydrocarbon-contaminated soils (excluding drill cuttings). The OCD hereby approves Hilcorp to construct and operate the registered small landfarm. Mansfield #11N, in compliance with the applicable requirements of 19.15.36.16 NMAC and with the following understanding and conditions:

- Hilcorp has proposed an area of 1.2 acres for their landfarm facility. The 1.2 acres shall incorporate the required landfarm cell berming to prevent rainwater run-on and run-off and *a single lift of eight inches or less* (approximately 1000 cubic yards per acre per eight-inch lift), as required of 19.15.36.7.A(5) NMAC; and
- Hilcorp shall achieve the following closure performance standards within three years
 from the registration date or shall remove landfarmed soils that have not or cannot be
 remediated to a division-approved surface waste management facility:
 - o benzene, as determined by EPA SW-846 method 8021 B or 8260B, shall not exceed 0.2 mg/kg (per 19.15.36.16.E(1)(a) NMAC);
 - o Total BTEX, as determined by EPA SW-846 method 8021 B or 8260B, shall not exceed 50 mg/kg (per 19.15.36.16.E(1)(b) NMAC);

Hilcorp Energy Company NM3 - 003 October 15, 2021 Page 2

- TPH, as determined by EPA SW-846 method 418.1 or the sum of GRO/DRO/MRO by EPA SW-846 method 8015M, shall not exceed 100 mg/kg (per Table I of 19.15.29.12 NMAC);
- o the GRO and DRO combined fraction, as determined by EPA SW-846 method 8015M, shall not exceed 500 mg/kg (per 19.15.36.16.E(1)(c) NMAC); and
- o chlorides, as determined by EPA method 300.1, shall not exceed 500 mg/kg (per 19.15.36.16.E(1)(d) NMAC).

If there are any questions, please do not hesitate to contact me at (505) 469-7486 or brad.a.jones@state.nm.us.

Respectfully,

Brad A. Jones

Environmental Specialist

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

For State Use Only: Registration #

> Form C-137 EZ Revised August 1, 2011

Submit 1 Copy to Santa Fe Office

REGISTRATION/ FINAL CLOSURE REPORT FOR SMALL LANDFARM

Section 7 of 19.15.36 NMAC defines a small landfarm as a centralized landfarm of two acres or less that has a total capacity of 2000 cubic yards or less in a single lift of eight inches or less, remains active for a maximum of three years from the date of its registration and that receives only petroleum hydrocarbon-contaminated soils (excluding drill cuttings) that are exempt or non-hazardous waste. The operator shall operate only one active small landfarm per governmental section at any time.

GENERAL	INF	ORMA	TION
1	v	Cmoll I	on dfo

1.	X	Small L	andfarm Re	egistration		Sı(*Must be subi	mall Land				ation date)	
2.	Operator:	Hilcorp	Energy Co	mpany								
	Address:	1111 Tr	avis Street, H	ouston, TX	77002							
	Contact Pers	on:	Mitch Killo	ough				Phone:		757-5247		
3.	Location:	NE	_/4	SW_/4	Section	29	Townsh	ip30)N	Range	9W	

REGISTRATION

- 1. As operator, are you the surface estate owner of the proposed site? \square Yes \square No If no, please attach a certification statement that demonstrates a written agreement is established with the surface estate owner authorizing the use of the site for the proposed small landfarm.
- 2. Will the proposed small landfarm comply with the siting requirements of Subsections A and B of 19.15.36.13 NMAC?
- X Yes No
 - **A.** Depth to ground water.
 - No small landfarm shall be located where ground water is less than 50 feet below the lowest elevation at which the operator will place oil field waste.
 - **B.** No surface waste management facility shall be located:
 - within 200 feet of a watercourse, lakebed, sinkhole or playa lake;
 - within an existing wellhead protection area or 100-year floodplain;
 - within, or within 500 feet of, a wetland;
 - within the area overlying a subsurface mine;
 - within 500 feet from the nearest permanent residence, school, hospital, institution or church in existence at the time of initial application; or
 - within an unstable area, unless the operator demonstrates that engineering measures have been incorporated into the surface waste management facility design to ensure that the surface waste management facility's integrity will not be compromised.
- 3. Attach a plat and topographic map showing the small landfarm's location in relation to governmental surveys (quarter-quarter section, township and range); highways or roads giving access to the small landfarm site; watercourses; fresh water sources, including wells and springs; oil and gas wells or other production facilities; and inhabited buildings within one mile of the site's perimeter.

Based on the information provided with this submittal, registration of a small landfarm can only be granted if the operator complies with the following understandings and conditions:

- The operator shall operate only one active small landfarm per governmental section at any time. No small landfarm shall be located more than one mile from the operator's nearest oil or gas well or other production facility.
- The operator shall accept only exempt or non-hazardous wastes consisting of soils (excluding drill cuttings) generated as a result of accidental releases from production operations, that are predominantly contaminated by petroleum hydrocarbons, do not contain free liquids, would pass the paint filter test and where testing shows chloride concentrations are 500 mg/kg or below.
 - The operator shall berm the landfarm to prevent rainwater run-on and run-off.
- The operator shall post a sign at the site readable from a distance of 50 feet and listing the operator's name; small landfarm registration number; location by unit letter, section, township and range; expiration date; and an emergency contact telephone number.
- The operator shall spread and disk contaminated soils in a single eight inch or less lift within 72 hours of receipt. The operator shall conduct treatment zone monitoring to ensure that the TPH concentration, as determined by EPA SW-846 method 8015M or EPA method 418.1 or other EPA method approved by the division, does not exceed 2500 mg/kg; and that the chloride

concentration, as determined by EPA method 300.1, does not exceed 500 mg/kg. The operator shall treat soils by disking at least once a month and by watering and adding bioremediation enhancing materials when needed.

- The operator shall maintain records reflecting the generator, the location of origin, the volume and type of oil field waste, the date of acceptance and the hauling company for each load of oil field waste received. The division shall post on its website each small landfarm's location, operator and registration date. In addition, the operator shall maintain records of the small landfarm's remediation activities in a form readily accessible for division inspection. The operator shall maintain all records for five years following the small landfarm's closure.
- The operator shall submit a final closure report on a form C-137 EZ, together with photographs of the closed site, to the environmental bureau in the division's Santa Fe office.

CERTIFICATION

I hereby certify that the information submitted with this registration is true, accurate and complete to the best of my knowledge and belief and agree to the understandings and conditions of this registration.

Name: Mitch Killough	Title: Environmental Specialist
Signature: Mh My	Date:9/13/2021
E-mail Address:mkillough@hilcorp.com	
OCD REGISTRATION: 🗵 Approved. Date: October 15, 2021	Denied. Date:
Comments: Please see the attached approval letter with condition	ns.
OCD Representative Signature:	
Title: Environmental Specialist	OCD Registration Number: NM3-003
Were the landfarmed soils able to achieve the closure performance stadate? Yes No (Please provide laboratory analytical researches) benzene, as determined by EPA SW-846 method 8021 B or 826. Total BTEX, as determined by EPA SW-846 method 8021 B or TPH, as determined by EPA SW-846 method 418.1 or other EP, mg/kg; the GRO and DRO combined fraction, as determined by chlorides, as determined by EPA method 300.1, shall not exceed from the exceeding states of the color of the closure performance of the color of the closure performance of the color of	sults) 100B, shall not exceed 0.2 mg/kg; 18260B, shall not exceed 50 mg/kg; A method approved by the division, shall not exceed 2500 mg/kg; A method approved by the division, shall not exceed 500 mg/kg; and di 500 mg/kg. Pepa SW-846 method 8015M, shall not exceed 500 mg/kg; and di 500 mg/kg. Pepa No (Please provide photos) metormance standards if left in place in accordance with division permission, recycles them, re-vegetate the cell filled on A of 19.15.36.18 NMAC; dilings, fences, roads and equipment; and soil sample from three to five feet below the middle of the due to rainfall events; the vadose zone soil sample shall be PH, BTEX and chlorides. If to the closure performance standards within three years and the cell filled in with native soil to the standards in Paragraph es No (Please provide photos)
Name:	Title:
Signature:	Date:
E-mail Address:	
OCD CLOSURE REVIEW: Closure Approved. Date :	Closure Denied. Date:
Comments:	
OCD Representative Signature:	
Title:	OCD Registration Number:

Form 3160-5 (June 2015)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPR	OVED
OMB No. 100	4-0137
Expires: January	31, 2013

N
١

SUNDRY NOTICES AND REPORTS ON WELLS Do not use this form for proposals to drill or to re-enter an abandoned well. Use Form 3160-3 (APD) for such proposals.			6. If Indian, Allottee or	Tribe	Name	
SUBMIT IN TRIPLICATE - Other instructions on page 2				7. If Unit of CA/Agreer	nent,	Name and/or No.
1. Type of Well						
Oil Well Gas Well Other				8. Well Name and No.		
2. Name of Operator			!	9. API Well No.		
3a. Address 3	Bb. Phone No. (incli	ıde area code)		10. Field and Pool or E	xplora	atory Area
4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description)				11. Country or Parish, S	State	
12. CHECK THE APPROPRIATE BO	X(ES) TO INDICA	TE NATURE OF	NOTIO	CE, REPORT OR OTH	ER D	ATA
TYPE OF SUBMISSION		TYPE O	F ACT	ION		
Acidize	Deepen		Produ	action (Start/Resume)	$\overline{}$	Water Shut-Off
Notice of Intent Actual Alter Casing	= 1	Fracturing	=	mation	H	Well Integrity
Cocino Romain	New Cons		_	mplete	\vdash	Other
Subsequent Report Casing Repair Change Plans	Plug and A			orarily Abandon		Other
Final Abandonment Notice Convert to Injection	Plug Back		-	Disposal		
Describe Proposed or Completed Operation: Clearly state all pert						
is ready for final inspection.)						
4. I hereby certify that the foregoing is true and correct. Name (Prince)						
	Title	2				
Signature Mackey Date						
THE SPACE	FOR FEDERA	L OR STATE	E OFI	ICE USE		
Approved by						
•						
		Title		D	ate	
Conditions of approval, if any, are attached. Approval of this notice do certify that the applicant holds legal or equitable title to those rights in which would entitle the applicant to conduct operations thereon.	Office					
Fitle 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it up false, fictitious or fraudulent statements or representations as to an			nd willf	ully to make to any dep	artme	ent or agency of the United States

(Instructions on page 2)

January 19, 2021

Bureau of Land Management Farmington Field Office 6251 College Boulevard Farmington, New Mexico 87402

RE: Request to Amend Conditions of Approval Hilcorp Energy Company
Mansfield #11 – NCS1913741281
San Juan County, New Mexico

To Whom It May Concern,

Following identification of a historical release by Hilcorp Energy Company (Hilcorp) at the Mansfield #11 natural gas production well, Hilcorp excavated approximately 2,000 cubic yards of soil and requested land use permission from the Bureau of Land Management (BLM) to remediate impacted soil via biopiling at the nearby Mansfield #11N, another well pad located on BLM surface with available space for remediation. Upon approval with conditions from the BLM, Hilcorp submitted a Revised Remediation Work Plan on February 19, 2020 to the New Mexico Oil Conservation Division (NMOCD). In response, the NMOCD is requiring Hilcorp to adhere to the requirements of the NMOCD small landfarm regulations (19.15.36.16 of the New Mexico Administrative Code [NMAC]), which differ slightly from the BLM conditions of approval (COAs) for the Site's biopiling work plan. The NMOCD has additionally requested that Hilcorp obtain acknowledgement from BLM of the differences between the NMOCD requirements and BLM's COAs. To comply with NMOCD's request, WSP USA Inc. (WSP) has attached for your review a table that summarizes the differences in the regulatory requirements and any proposed changes in landfarm construction, management, and closure based on compliance with 19.15.36.16 NMAC. In all but one case, Hilcorp will default to the more stringent of the BLM COAs and the NMOCD small landfarm regulations so that both regulatory directives can be met.

WSP has attempted to summarize the most significant differences below:

- Hilcorp will meet a closure standard for benzene of 0.2 milligrams per kilogram (mg/kg) as prescribed in the 19.15.36.16 NMAC instead of 10 mg/kg approved by the BLM. Hilcorp will comply with BLM's closure criteria of 100 mg/kg for TPH. Hilcorp will add NMOCD standards for BTEX, GRO+DRO, and chloride, which were not required by the BLM.
- Landfarm construction will comply with BLM requirements, but have stricter NMOCD constraints including:
 - The entire area will not exceed 2 acres,
 - Lift heights will be restricted to 8 inches instead of 24 inches,
 - o No more than 2,000 cubic yards of soil will be treated.
- Due to the time it has taken to identify and comply with the NMOCD requirements, along with projected time to receive final approval to proceed from NMOCD, Hilcorp is requesting BLM change the timeline for remediation to three years from the landfarm application acceptance date instead of two years from the release date. Hilcorp will submit sundry notices to the BLM each year following the application acceptance from the NMOCD. The reports will include

laboratory analytical results soil sampling, evaluation of remediation progress, and anticipated timeline to closure.

As stated above, for NMOCD to proceed with approval of small landfarm registration, it requires BLM acknowledge differences between the BLM COAs and NMOCD small landfarm requirements and for BLM to approve of any modifications. All differences are summarized in the attached table and show the most stringent requirement will be met. Due to the extended timeline required to receive approval of a work plan from NMOCD and subsequent small landfarm registration, Hilcorp requests approval to modify the timeline in the original BLM COAs. Hilcorp respectfully requests extension of the timeline for remediation from two years from the date of the release to three years from the application acceptance date.

Upon approval of this Sundry, Hilcorp can proceed with the final steps required for NMOCD small landfarm registration and begin remediation at the site.

Sincerely,

Jennifer Deal

Gennifer Deal

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: MANSFIELD Well Location: T30N / R9W / SEC 29 / County or Parish/State: SAN

Well Number: 11N Type of Well: CONVENTIONAL GAS Allottee or Tribe Name:

/ELL

Lease Number: NMSF077833A Unit or CA Name: MANSFIELD, Unit or CA Number:

MANSFIELD - W/2 MV NMNM73156, NMNM74066

US Well Number: 3004534321 Well Status: Producing Gas Well Operator: HILCORP ENERGY

COMPANY

Subsequent Report

Type of Submission: Subsequent Report

Type of Action: Surface Disturbance

Date Sundry Submitted: 02/10/2021 Time Sundry Submitted: 01:46

Date Operation Actually Began: 02/01/2021

Actual Procedure: Please see the attached Change of Plans. Attn: Ryan Joyner

SR Attachments

Actual Procedure

Sundry_Notice__Mansfield_11N_3160_005_1__20210210134541.pdf

Copy_of_Rule_36_BLM_COA_Comparison_JA_V2_20210210134541.pdf

Mansfield_11N_COA_20210210134541.pdf

BLM_letter_for_Sundry_20210210134541.pdf

EC504488_20210210134541.pdf

Well Name: MANSFIELD Well Location: T30N / R9W / SEC 29 / County or Parish/State: SAI

NESW / 36.780261 / 107.807377

Well Number: 11N Type of Well: CONVENTIONAL GAS Allottee or Tribe Name:

WELL

Lease Number: NMSF077833A Unit or CA Name: MANSFIELD, Unit or CA Number:

MANSFIELD - W/2 MV NMNM73156, NMNM74066

US Well Number: 3004534321 Well Status: Producing Gas Well Operator: HILCORP ENERGY

COMPANY

JUAN / NM

Operator Certification

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a submission of Form 3160-5 or a Sundry Notice.

Operator Electronic Signature: WALKER Signed on: FEB 10, 2021 01:45 PM

Name: HILCORP ENERGY COMPANY

Title: Operations/Regulatory Technician

Street Address: 1111 TRAVIS STREET

City: HOUSTON State: TX

Phone: (713) 209-2400

Email address: NOT ENTERED

Field Representative

Representative Name: Jennifer Deal

Street Address: 382 ROAD 3100

City: FARMINGTON State: NM Zip: 87401

Phone: (505)324-5128

Email address: jdeal@hilcorp.com

BLM Point of Contact

BLM POC Name: RYAN JOYNER BLM POC Title: Physical Scientist

BLM POC Phone: 9703851242 BLM POC Email Address: rjoyner@blm.gov

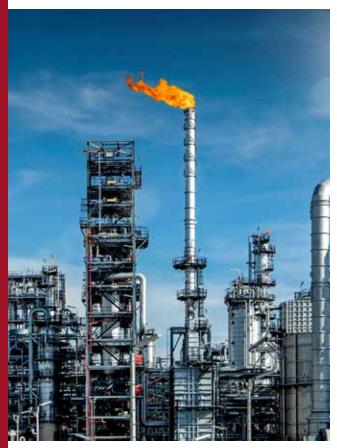
Disposition: Approved **Disposition Date:** 02/11/2021

Signature: Ryan Joyner

Page 2 of 2

APPENDIX C

Micro-Blaze Brochure and Safety Data Sheet



Micro-Blaze®

Emergency Liquid Spill Control

PRODUCT INFORMATION

REMEDIATES (LIST NOT EXHAUSTIVE)

- Acetone
- Acrylonitrite
- AFFF Waste
- Anti-Freeze
- Aviation Fuels
- Benzene & Benzene Compounds
- Crude Oil
- Diesel Fuel
- Dimethylformanide
- Fats
- Gasoline
- Grease
- Glycols
- Hydrocarbon Waste
- Kerosene
- Methanol
- Methyl Tertiary Butyl Ether (MTBE)
- Motor Oil
- Odor
- Organic Chemical Waste
- Organic Waste
- Paint Sludge
- Pipeline Condensation
- Polyurethane Resin Waste
- Sludge
- Toluene

Micro-Blaze®

Emergency Liquid Spill Control

Micro-Blaze® Emergency Liquid Spill Control is a safe, non-toxic, microbial formulation used for the bioremediation of hydrocarbons and other organic compounds. It breaks down, degrades, and digests organic waste while also suppressing vapors and eliminating flammability. The proprietary combination of wetting agents, nutrients, and microbes makes it an ideal formulation for use on many pollutants found in spills and contaminated sites.

Our microbes are naturally occurring, not genetically engineered, and found in soils and waters all over the earth. These microbes have been carefully researched, tested, and chosen for their affinity to degrade hydrocarbons and other organic waste.

USES

- Clean up hydrocarbon spills/leaks
- Soil bioremediation
- Vapor suppression
- Equipment, tank, and pipeline cleaning

BENEFITS

- Safe and cost-effective method for in-situ bioremediation of contaminated soils and water
- Elimination of vapors and LELs, creating a safe working environment
- Residue and runoff can be safely sent to industrial and municipal WWTPs
- 10-year shelf life and easy to use concentrate make it convenient to maintain on hand for future emergencies or everyday usage
- Listed on EPA NCP List as a bioremediation agent for 30 years*
- * This listing does not mean the EPA approves, recommends, licenses, certifies or authorizes the use of Micro-Blaze® Emergency Liquid Spill Control or any other product on an oil discharge. This listing only means that data has been submitted to EPA as required by subpart J of the NCP §300.915.

Product Details

Appearance:

Cream to tan, opaque liquid, perfumed

pH: 7.0 - 8.0

Shelf Life:

10 Years

Storage:

Avoid temperatures over 48°C for long periods of time. Avoid prolonged freezing.

CAUTION: KEEP OUT OF REACH OF CHILDREN.

Do not take internally. Avoid contact with eyes. Wash thoroughly after handling. Avoid breathing mist. Contains surfactants (soaps) which may irritate eyes or respiratory system. Use with adequate ventilation.

APPLICATION

Micro-Blaze® is a liquid concentrate and must be diluted before application.

DILUTION

Dilute with water between a 3% solution (3 parts Micro-Blaze®, 97 parts water) and a 10% solution (10 parts Micro-Blaze®, 90 parts water). Shake well before dilution and before application.

APPLICATION

Spray the diluted Micro-Blaze® directly onto the contamination with as much agitation as possible until the area is completely saturated. You can use any delivery system/sprayer, such as hand-held sprayers, fire extinguishers, power washers, CAFS systems, and water trucks.

For soil remediation, tilling the soil after application will help in achieving optimal results, though it is not required where not feasible.

HOW MUCH MICRO-BLAZE® DO I NEED?

1 gallon of Micro-Blaze® concentrate, after diluted, will treat either of the following:

- 10 gallons of spilled contamination
- 500 700 square feet of contaminated surface
- 5 7 cubic yards of contaminated soil

Contact a Micro-Blaze® sales representative for any additional application questions: technical@micro-blaze.com

PRODUCT SIZES & SPECS

1 Gallon Pail

SKU MBELSC-1
Dimensions 8"x8"x12"
Weight 9lbs

5 Gallon Pail

 SKU
 MBELSC-5

 Dimensions
 12"x12"x15"

 Weight
 47 lbs

 36 pails /pallet

55 Gallon Drum

 SKU
 MBELSC-55

 Dimensions
 24"x 24"x35"

 Weight
 500 lbs

 4 drums/pallet

275 Gallon Tote

SKU MBELSC-275 Dimensions 40"x48"x45" Weight 2,500 lbs

330 Gallon Tote

SKU MBELSC-330
Dimensions 40"x48"x54"
Weight 3,000 lbs

RELATED PRODUCTS:

CONCRETE STAIN REMOVER (CSR)

NON-FORMULATED



SCAN FOR MSDS FOR ALL PRODUCTS

PARTNERING WITH NATURE

FOR A CLEANER TOMORROW

Verde Environmental, Inc.

9223 Eastex Freeway Houston, TX 77093

Office: 713.691.6468 Toll Free: 800.626.6598

www.micro-blaze.com

Version 0522

1. IDENTIFICATION OF THE SUBSTANCE

Product identifier

Product Name: Micro-Blaze® Emergency Liquid Spill Control

Product Code: MBELSC

Recommended use of the chemical and restrictions on use

Recommended Use: Bioremediation/cleaning

Uses advised against: Please refer to Product Data Sheet

Details of the supplier of the Safety Data Sheet

Contact Manufacturer: Verde Environmental, Inc.

9223 Eastex Freeway Houston, TX USA 77093

Information Telephone Number: 1-713-691-6468

Emergency Telephone Number: 1-800-424-9300 (Chemtrec) 24 hours every day

2. HAZARDS IDENTIFICATION

Classification

Classification of the product is in accordance with 29CFR 1910.1200

Acute toxicity – Oral	Category 5
Serious eye damage/eye irritation	Category 2A
Skin sensitization	Category 1

Label elements

Emergency Overview

Warning

Hazard statements

May cause an allergic skin reaction Causes serious eye irritation May be harmful if swallowed

Appearance: Opaque Physical State: Liquid Odor: Slight fermentation odor

Date Issued: 22nd January, 2021 Page 1 of 8

Precautionary Statements - Prevention

Wear eye/face protection. Wear protective gloves. Avoid breathing dust/fume/gas/mist/vapors/spray.

<u>Precautionary Statements – Response</u>

Eyes IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing

Skin IF ON SKIN: Gently wash with plenty of soap and water

Inhalation IF INHALED: If breathing is difficult, remove victim to fresh air and keep at

rest in a position comfortable for breathing

Ingestion IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel

unwell

Precautionary Statements – Storage

Protect from sunlight. Do not expose to temperatures exceeding 50°C/122°F

Precautionary Statements – Disposal

Dispose of unused product and container in accordance with all applicable local and regional requirements

Hazards not otherwise classified (HNOC)

Not applicable

Other information

Health Hazard	1
Fire Hazard	0
Reactivity	0

3. COMPOSITION/INFORMATION ON INGREDIENTS

Name	Weight - %
Water and Proprietary Viable Spore Forming Cultures	> 80
Proprietary blend of Ethoxylated Alcohols and other Organic materials	3-9
Additives	2 - 5

4. FIRST AID MEASURES

First aid measures

Date Issued: 22nd January, 2021 Page 2 of 8

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15

minutes

Skin Contact Wash off immediately with soap and plenty of water

Inhalation Move to fresh air

Ingestion Clean mouth with water and afterwards drink plenty of water

Most important symptoms and effects, both acute and delayed

Main symptoms No information available

Indication of any immediate medical attention and special treatment needed

Notes to physician Treat symptomatically

5. FIRE FIGHTING MEASURES

Suitable Extinguishing Media

Use extinguishing measures that are appropriate to local circumstances and the surrounding environment

Specific Hazards Arising from the Chemical

No information available

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal Precautions Ensure adequate ventilation

Environmental precautions

Environmental Precautions It is not anticipated to be hazardous for the environment

Methods and material for containment and cleaning up

Methods for Clean-up Pick up and transfer to properly labeled containers

7. HANDLING AND STORAGE

Precautions for safe handling

Handling Handle in accordance with good industrial hygiene and safety practice

Date Issued: 22nd January, 2021 Page 3 of 8

Conditions for safe storage, including any incompatibilities

Storage Conditions Keep containers tightly closed in a dry, cool and well-ventilated place

Packaging Material There could be many packaging types for the product. The details are

given in other Verde Environmental, Inc. documents

Incompatible Materials Strong acids or alkali compounds and strong oxidizing agents may

inactivate biological cultures

8. EXPOSURE CONTROL/PERSONAL PROTECTION

Individual protection measures, such as personal protective equipment

Eye Protection Avoid contact with eyes

Skin and body protection No special technical protective measures are necessary

Respiratory protection In case of insufficient ventilation, wear suitable respiratory equipment

General Hygiene Considerations Handle in accordance with good industrial hygiene and safety practices

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical StateLiquidAppearanceTan, OpaqueOdorPleasant (perfume)Odor ThresholdNo information available

 $\begin{array}{cc} \underline{\textbf{Property}} \\ \textbf{pH} & \underline{\textbf{Values}} \\ 7.0 - 8.0 \end{array}$

Melting/freezing pointfreeze at 0°C/32°FEvaporation rate VALUENo information available

Flammability (solid, gas) Not flammable

Burning rate 100mm VALUENo information availableVapor pressureNo information availableVapor densityNo information availableSpecific gravityNo information available

Water solubility 99%

Solubility in other solventsNo information availablePartition Coefficient (n-octanol/water)No information availableAutoignition temperatureNo information availableDecomposition temperatureNo information availableViscosity of productNo information availableViscosityNo information available

Date Issued: 22nd January, 2021 Page 4 of 8

Explosive properties No information available **Oxidizing properties** No information available

Other Information

Softening Point No information available **VOC Content** No information available **Density** No information available

10. STABILITY AND REACTIVITY

Reactivity

No data available

Chemical stability

Stable under recommended storage conditions

Possibility of Hazardous Reactions

None under normal processing

Conditions to avoid

Extremes of temperature and direct sunlight

Incompatible materials

Strong acids or alkali compounds and strong oxidizing agents may inactivate biological cultures

Hazardous Decomposition Products

No information available

Toxicological Information

Information on likely routes of exposure

Inhalation There is no data available for this product

Avoid contact with eyes. Severely irritating to eyes Eye contact

Skin contact Repeated or prolonged skin contact may cause allergic reactions with

susceptible persons.

Ingestion may cause stomach discomfort **Ingestion**

Information on toxicological effects

No information available **Symptoms**

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Date Issued: 22nd January, 2021

Released to Imaging: 3/20/2023 2:50:29 PM

Safety Data Sheet Micro-Blaze® Emergency Liquid Spill Control

Sensitization May cause sensitization of susceptible persons

Mutagenic EffectsNo information availableReproductive EffectsNo information availableSpecific target organ systemic toxicityNo information availableAspiration hazardNo information available

12. ECOLOGICAL INFORMATION

Ecotoxicity

Chemical Name	Dahnia, acute	Algae, acute	Fish, acute
Proprietary blend of Ethoxylated	EC50 (48 hours): 5-10	EC50 (72 hours): 10- 100 mg/l	LC50: 1-10 mg/l
Alcohols	mg/l		

Persistence/Degradability

The organic components of the product are biodegradable.

Bioaccumulation/Accumulation

Chemical Name	Persistance and degradability	log Pow
Proprietary blend of Ethoxylated	Readily biodegradable (OECD TG	<0
Alcohols	301B	

Other adverse effects

No known effect

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Waste Disposal Method Dispose of contents/container in accordance with local regulation

Contaminated Packaging Empty containers should be taken for local recycling, recovery or waste

disposal

14. TRANSPORT INFORMATION

Transport regulations: No dangerous goods according to transport regulations

No special precautions required

Transport hazard class(es): N/A

Packing group: N/A

Environmental hazards: N/A

Date Issued: 22nd January, 2021 Page 6 of 8

Safety Data Sheet Micro-Blaze® Emergency Liquid Spill Control

15. REGULATORY INFORMATION

International Inventories

Legend:

TSCA – United States Toxic Substances Control Act Section 8(b) Inventory *DSL/NDSL* – Canadian Domestic Substances List/Non-Domestic Substances List

Federal Regulations

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and 40 CFR Part 372.

SARA 311/312 Hazardous

Categorization

Acute Health HazardNoChronic Health HazardNoFire HazardNoSudden Release of Pressure HazardNoReactive HazardNo

CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material.

State Regulations

California Proposition 65

This product does not contain any Proposition 65 chemicals

State Right-to-Know

U.S. EPA Label Information

EPA Pesticide Registration Number

Not Applicable

Canada

WHMIS Statement This product has been classified in accordance with the hazard criteria of the

Controlled Products Regulations (CPR) and the SDS contains all the information

required by the CPR.

Date Issued: 22nd January, 2021 Page 7 of 8

Safety Data Sheet Micro-Blaze® Emergency Liquid Spill Control

16. OTHER INFORMATION

Revision date: 01.22.2021 **Revision Summary**

No information available

Disclaimer

The information provided on this SDS is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guide for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered as a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other material or in any process, unless specified in the text. Furthermore, as the conditions of use are beyond the control of Verde Environmental, Inc., it is the responsibility of the customer to determine the conditions of safe use of this preparation.

Date Issued: 22nd January, 2021 Page 8 of 8

APPENDIX D

Laboratory Analytical Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

March 10, 2022

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Mansfield 11 OrderNo.: 2202C18

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 5 sample(s) on 2/25/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #1

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 9:50:00 AM

 Lab ID:
 2202C18-001
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JMT
Fluoride	ND	0.50	mg/L	5	2/25/2022 5:43:50 PM
Chloride	23	2.5	mg/L	5	2/25/2022 5:43:50 PM
Bromide	ND	0.50	mg/L	5	2/25/2022 5:43:50 PM
Phosphorus, Orthophosphate (As P)	ND	2.5 H		5	2/25/2022 5:43:50 PM
Sulfate	2000	50 *	mg/L	100	3/8/2022 9:19:20 PM
Nitrate+Nitrite as N	ND	1.0	mg/L	5	2/25/2022 10:39:57 PM
EPA METHOD 200.7: METALS					Analyst: ELS
Calcium	610	10	mg/L	10	3/2/2022 6:03:25 PM
Magnesium	150	10	mg/L	10	3/2/2022 6:03:25 PM
Potassium	9.8	1.0	mg/L	1	3/2/2022 6:01:02 PM
Sodium	230	10	mg/L	10	3/2/2022 6:03:25 PM
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Toluene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Ethylbenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Naphthalene	ND	2.0	μg/L	1	3/1/2022 1:04:48 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/1/2022 1:04:48 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/1/2022 1:04:48 PM
Acetone	ND	10	μg/L	1	3/1/2022 1:04:48 PM
Bromobenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Bromoform	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Bromomethane	ND	3.0	μg/L	1	3/1/2022 1:04:48 PM
2-Butanone	ND	10	μg/L	1	3/1/2022 1:04:48 PM
Carbon disulfide	ND	10	μg/L	1	3/1/2022 1:04:48 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Chlorobenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Chloroethane	ND	2.0	μg/L	1	3/1/2022 1:04:48 PM
Chloroform	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Chloromethane	ND	3.0	μg/L	1	3/1/2022 1:04:48 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
cis-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #1

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 9:50:00 AM

 Lab ID:
 2202C18-001
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/1/2022 1:04:48 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Dibromomethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/1/2022 1:04:48 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
2-Hexanone	ND	10	μg/L	1	3/1/2022 1:04:48 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/1/2022 1:04:48 PM
Methylene Chloride	ND	3.0	μg/L	1	3/1/2022 1:04:48 PM
n-Butylbenzene	ND	3.0	μg/L	1	3/1/2022 1:04:48 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Styrene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/1/2022 1:04:48 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/1/2022 1:04:48 PM
Vinyl chloride	ND	1.0	μg/L	1	3/1/2022 1:04:48 PM
Xylenes, Total	ND	1.5	μg/L	1	3/1/2022 1:04:48 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #1

Project: Mansfield 11 Collection Date: 2/23/2022 9:50:00 AM 2202C18-001 Lab ID: Matrix: AQUEOUS Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
Surr: 1,2-Dichloroethane-d4	111	70-130	%Rec	1	3/1/2022 1:04:48 PM
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	1	3/1/2022 1:04:48 PM
Surr: Dibromofluoromethane	107	70-130	%Rec	1	3/1/2022 1:04:48 PM
Surr: Toluene-d8	102	70-130	%Rec	1	3/1/2022 1:04:48 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN
Conductivity	3400	10	µmhos/d	: 1	3/1/2022 2:21:16 PM
SM2320B: ALKALINITY					Analyst: LRN
Bicarbonate (As CaCO3)	278.8	20.00	mg/L Ca	1	3/1/2022 2:21:16 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	3/1/2022 2:21:16 PM
Total Alkalinity (as CaCO3)	278.8	20.00	mg/L Ca	1	3/1/2022 2:21:16 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	3240	200 *	D mg/L	1	3/3/2022 1:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank

Е Estimated value

J Analyte detected below quantitation limits

Sample pH Not In Range

Page 3 of 23 RL Reporting Limit

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #2

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 10:55:00 AM

 Lab ID:
 2202C18-002
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Q	Qual Unit	s DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JMT
Fluoride	ND	0.50	mg/l	_ 5	2/25/2022 6:09:35 PM
Chloride	21	2.5	mg/l	_ 5	2/25/2022 6:09:35 PM
Bromide	ND	0.50	mg/l	_ 5	2/25/2022 6:09:35 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	H mg/l	_ 5	2/25/2022 6:09:35 PM
Sulfate	1900	50	* mg/l	_ 100	3/8/2022 9:31:44 PM
Nitrate+Nitrite as N	ND	1.0	mg/l	- 5	2/25/2022 10:52:49 PM
EPA METHOD 200.7: METALS					Analyst: ELS
Calcium	580	10	mg/l	_ 10	3/2/2022 6:08:09 PM
Magnesium	150	10	mg/l	_ 10	3/2/2022 6:08:09 PM
Potassium	8.0	1.0	mg/l	_ 1	3/2/2022 6:05:47 PM
Sodium	200	10	mg/l	_ 10	3/2/2022 6:08:09 PM
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Toluene	ND	1.0	μg/L		3/1/2022 2:30:30 PM
Ethylbenzene	ND	1.0	μg/L		3/1/2022 2:30:30 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L		3/1/2022 2:30:30 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L		3/1/2022 2:30:30 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L		3/1/2022 2:30:30 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L		3/1/2022 2:30:30 PM
Naphthalene	ND	2.0	μg/L	1	3/1/2022 2:30:30 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/1/2022 2:30:30 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/1/2022 2:30:30 PM
Acetone	ND	10	μg/L	1	3/1/2022 2:30:30 PM
Bromobenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Bromoform	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Bromomethane	ND	3.0	μg/L	1	3/1/2022 2:30:30 PM
2-Butanone	ND	10	μg/L	1	3/1/2022 2:30:30 PM
Carbon disulfide	ND	10	μg/L	1	3/1/2022 2:30:30 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Chlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Chloroethane	ND	2.0	μg/L	1	3/1/2022 2:30:30 PM
Chloroform	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Chloromethane	ND	3.0	μg/L	1	3/1/2022 2:30:30 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
4-Chlorotoluene	ND	1.0	μg/L		3/1/2022 2:30:30 PM
cis-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #2

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 10:55:00 AM

 Lab ID:
 2202C18-002
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/1/2022 2:30:30 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Dibromomethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/1/2022 2:30:30 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
2-Hexanone	ND	10	μg/L	1	3/1/2022 2:30:30 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/1/2022 2:30:30 PM
Methylene Chloride	ND	3.0	μg/L	1	3/1/2022 2:30:30 PM
n-Butylbenzene	ND	3.0	μg/L	1	3/1/2022 2:30:30 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Styrene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/1/2022 2:30:30 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/1/2022 2:30:30 PM
Vinyl chloride	ND	1.0	μg/L	1	3/1/2022 2:30:30 PM
Xylenes, Total	ND	1.5	μg/L	1	3/1/2022 2:30:30 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #2

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 10:55:00 AM

 Lab ID:
 2202C18-002
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
Surr: 1,2-Dichloroethane-d4	109	70-130	%Rec	1	3/1/2022 2:30:30 PM
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	3/1/2022 2:30:30 PM
Surr: Dibromofluoromethane	106	70-130	%Rec	1	3/1/2022 2:30:30 PM
Surr: Toluene-d8	102	70-130	%Rec	1	3/1/2022 2:30:30 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN
Conductivity	3300	10	µmhos	/c 1	3/1/2022 2:35:35 PM
SM2320B: ALKALINITY					Analyst: LRN
Bicarbonate (As CaCO3)	283.8	20.00	mg/L C	a 1	3/1/2022 2:35:35 PM
Carbonate (As CaCO3)	ND	2.000	mg/L C	a 1	3/1/2022 2:35:35 PM
Total Alkalinity (as CaCO3)	283.8	20.00	mg/L C	a 1	3/1/2022 2:35:35 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	3270	200	*D mg/L	1	3/3/2022 1:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #3

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 2:30:00 PM

 Lab ID:
 2202C18-003
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Ç	Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: JMT
Fluoride	ND	0.50		mg/L	5	2/25/2022 6:35:19 PM
Chloride	19	2.5		mg/L	5	2/25/2022 6:35:19 PM
Bromide	ND	0.50		mg/L	5	2/25/2022 6:35:19 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	2/25/2022 6:35:19 PM
Sulfate	1600	50	*	mg/L	100	3/8/2022 9:44:09 PM
Nitrate+Nitrite as N	ND	1.0		mg/L	5	2/25/2022 11:05:41 PM
EPA METHOD 200.7: METALS						Analyst: ELS
Calcium	610	10		mg/L	10	3/2/2022 6:12:45 PM
Magnesium	33	1.0		mg/L	1	3/2/2022 6:10:30 PM
Potassium	3.3	1.0		mg/L	1	3/2/2022 6:10:30 PM
Sodium	200	10		mg/L	10	3/2/2022 6:12:45 PM
EPA METHOD 8260B: VOLATILES						Analyst: JR
Benzene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Toluene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Ethylbenzene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Naphthalene	ND	2.0		μg/L	1	3/1/2022 2:59:14 PM
1-Methylnaphthalene	ND	4.0		μg/L	1	3/1/2022 2:59:14 PM
2-Methylnaphthalene	ND	4.0		μg/L	1	3/1/2022 2:59:14 PM
Acetone	ND	10		μg/L	1	3/1/2022 2:59:14 PM
Bromobenzene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Bromodichloromethane	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Bromoform	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Bromomethane	ND	3.0		μg/L	1	3/1/2022 2:59:14 PM
2-Butanone	ND	10		μg/L	1	3/1/2022 2:59:14 PM
Carbon disulfide	ND	10		μg/L	1	3/1/2022 2:59:14 PM
Carbon Tetrachloride	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Chlorobenzene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Chloroethane	ND	2.0		μg/L	1	3/1/2022 2:59:14 PM
Chloroform	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
Chloromethane	ND	3.0		μg/L	1	3/1/2022 2:59:14 PM
2-Chlorotoluene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
4-Chlorotoluene	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM
cis-1,2-DCE	ND	1.0		μg/L	1	3/1/2022 2:59:14 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #3

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 2:30:00 PM

 Lab ID:
 2202C18-003
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/1/2022 2:59:14 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
Dibromomethane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/1/2022 2:59:14 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
2-Hexanone	ND	10	μg/L	1	3/1/2022 2:59:14 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/1/2022 2:59:14 PM
Methylene Chloride	ND	3.0	μg/L	1	3/1/2022 2:59:14 PM
n-Butylbenzene	ND	3.0	μg/L	1	3/1/2022 2:59:14 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
Styrene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/1/2022 2:59:14 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/1/2022 2:59:14 PM
Vinyl chloride	ND	1.0	μg/L	1	3/1/2022 2:59:14 PM
Xylenes, Total	ND	1.5	μg/L	1	3/1/2022 2:59:14 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #3

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 2:30:00 PM

 Lab ID:
 2202C18-003
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
Surr: 1,2-Dichloroethane-d4	113	70-130	%Rec	1	3/1/2022 2:59:14 PM
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	3/1/2022 2:59:14 PM
Surr: Dibromofluoromethane	108	70-130	%Rec	1	3/1/2022 2:59:14 PM
Surr: Toluene-d8	101	70-130	%Rec	1	3/1/2022 2:59:14 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN
Conductivity	3000	10	µmhos/c	1	3/1/2022 2:50:13 PM
SM2320B: ALKALINITY					Analyst: LRN
Bicarbonate (As CaCO3)	263.7	20.00	mg/L Ca	1	3/1/2022 2:50:13 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	3/1/2022 2:50:13 PM
Total Alkalinity (as CaCO3)	263.7	20.00	mg/L Ca	1	3/1/2022 2:50:13 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	2860	100 *D	mg/L	1	3/3/2022 1:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #4

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 1:30:00 PM

 Lab ID:
 2202C18-004
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JMT
Fluoride	ND	0.50	mg/L	5	2/25/2022 7:01:03 PM
Chloride	20	2.5	mg/L	5	2/25/2022 7:01:03 PM
Bromide	ND	0.50	mg/L	5	2/25/2022 7:01:03 PM
Phosphorus, Orthophosphate (As P)	ND	2.5 H		5	2/25/2022 7:01:03 PM
Sulfate	2000	50 *	mg/L	100	3/8/2022 9:56:34 PM
Nitrate+Nitrite as N	ND	1.0	mg/L	5	2/25/2022 11:18:34 PM
EPA METHOD 200.7: METALS					Analyst: ELS
Calcium	620	10	mg/L	10	3/2/2022 6:26:08 PM
Magnesium	160	10	mg/L	10	3/2/2022 6:26:08 PM
Potassium	5.7	1.0	mg/L	1	3/2/2022 6:23:50 PM
Sodium	210	10	mg/L	10	3/2/2022 6:26:08 PM
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Toluene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Ethylbenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Naphthalene	ND	2.0	μg/L	1	3/1/2022 3:27:50 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/1/2022 3:27:50 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/1/2022 3:27:50 PM
Acetone	ND	10	μg/L	1	3/1/2022 3:27:50 PM
Bromobenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Bromoform	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Bromomethane	ND	3.0	μg/L	1	3/1/2022 3:27:50 PM
2-Butanone	ND	10	μg/L	1	3/1/2022 3:27:50 PM
Carbon disulfide	ND	10	μg/L	1	3/1/2022 3:27:50 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Chlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Chloroethane	ND	2.0	μg/L	1	3/1/2022 3:27:50 PM
Chloroform	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Chloromethane	ND	3.0	μg/L	1	3/1/2022 3:27:50 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
cis-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #4

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 1:30:00 PM

 Lab ID:
 2202C18-004
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/1/2022 3:27:50 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Dibromomethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/1/2022 3:27:50 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
2-Hexanone	ND	10	μg/L	1	3/1/2022 3:27:50 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/1/2022 3:27:50 PM
Methylene Chloride	ND	3.0	μg/L	1	3/1/2022 3:27:50 PM
n-Butylbenzene	ND	3.0	μg/L	1	3/1/2022 3:27:50 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Styrene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/1/2022 3:27:50 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/1/2022 3:27:50 PM
Vinyl chloride	ND	1.0	μg/L	1	3/1/2022 3:27:50 PM
Xylenes, Total	ND	1.5	μg/L	1	3/1/2022 3:27:50 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 23

Analytical Report

Lab Order **2202C18**Date Reported: **3/10/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #4

 Project:
 Mansfield 11
 Collection Date: 2/23/2022 1:30:00 PM

 Lab ID:
 2202C18-004
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	1	3/1/2022 3:27:50 PM
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	3/1/2022 3:27:50 PM
Surr: Dibromofluoromethane	103	70-130	%Rec	1	3/1/2022 3:27:50 PM
Surr: Toluene-d8	99.1	70-130	%Rec	1	3/1/2022 3:27:50 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN
Conductivity	3400	10	µmhos/c	1	3/1/2022 3:04:07 PM
SM2320B: ALKALINITY					Analyst: LRN
Bicarbonate (As CaCO3)	280.0	20.00	mg/L Ca	1	3/1/2022 3:04:07 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	3/1/2022 3:04:07 PM
Total Alkalinity (as CaCO3)	280.0	20.00	mg/L Ca	1	3/1/2022 3:04:07 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	3430	200 *D	mg/L	1	3/3/2022 1:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #5

 Project:
 Mansfield 11
 Collection Date: 2/22/2022 12:55:00 PM

 Lab ID:
 2202C18-005
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JMT
Fluoride	ND	0.50	mg/L	5	2/25/2022 5:18:04 PM
Chloride	15	2.5	mg/L	5	2/25/2022 5:18:04 PM
Bromide	ND	0.50	mg/L	5	2/25/2022 5:18:04 PM
Phosphorus, Orthophosphate (As P)	2.5	2.5	H mg/L	5	2/25/2022 5:18:04 PM
Sulfate	2600	50	* mg/L	100	3/8/2022 10:08:59 PM
Nitrate+Nitrite as N	ND	1.0	mg/L	5	2/25/2022 10:27:04 PM
EPA METHOD 200.7: METALS					Analyst: ELS
Calcium	500	10	mg/L	10	3/2/2022 6:30:42 PM
Magnesium	23	1.0	mg/L	1	3/2/2022 6:28:30 PM
Potassium	4.9	1.0	mg/L	1	3/2/2022 6:28:30 PM
Sodium	670	10	mg/L	10	3/2/2022 6:30:42 PM
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Toluene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Ethylbenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Naphthalene	ND	2.0	μg/L	1	3/1/2022 3:56:21 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/1/2022 3:56:21 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/1/2022 3:56:21 PM
Acetone	ND	10	μg/L	1	3/1/2022 3:56:21 PM
Bromobenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Bromoform	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Bromomethane	ND	3.0	μg/L	1	3/1/2022 3:56:21 PM
2-Butanone	ND	10	μg/L	1	3/1/2022 3:56:21 PM
Carbon disulfide	ND	10	μg/L	1	3/1/2022 3:56:21 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Chlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Chloroethane	ND	2.0	μg/L	1	3/1/2022 3:56:21 PM
Chloroform	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Chloromethane	ND	3.0	μg/L	1	3/1/2022 3:56:21 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
cis-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #5

 Project:
 Mansfield 11
 Collection Date: 2/22/2022 12:55:00 PM

 Lab ID:
 2202C18-005
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/1/2022 3:56:21 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Dibromomethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/1/2022 3:56:21 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
2-Hexanone	ND	10	μg/L	1	3/1/2022 3:56:21 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/1/2022 3:56:21 PM
Methylene Chloride	ND	3.0	μg/L	1	3/1/2022 3:56:21 PM
n-Butylbenzene	ND	3.0	μg/L	1	3/1/2022 3:56:21 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Styrene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/1/2022 3:56:21 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/1/2022 3:56:21 PM
Vinyl chloride	ND	1.0	μg/L	1	3/1/2022 3:56:21 PM
Xylenes, Total	ND	1.5	μg/L	1	3/1/2022 3:56:21 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 23

Date Reported: 3/10/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW #5

 Project:
 Mansfield 11
 Collection Date: 2/22/2022 12:55:00 PM

 Lab ID:
 2202C18-005
 Matrix: AQUEOUS
 Received Date: 2/25/2022 8:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	1	3/1/2022 3:56:21 PM
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	1	3/1/2022 3:56:21 PM
Surr: Dibromofluoromethane	102	70-130	%Rec	1	3/1/2022 3:56:21 PM
Surr: Toluene-d8	102	70-130	%Rec	1	3/1/2022 3:56:21 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN
Conductivity	4400	10	µmhos	/c 1	3/1/2022 3:18:35 PM
SM2320B: ALKALINITY					Analyst: LRN
Bicarbonate (As CaCO3)	129.2	20.00	mg/L C	a 1	3/1/2022 3:18:35 PM
Carbonate (As CaCO3)	ND	2.000	mg/L C	a 1	3/1/2022 3:18:35 PM
Total Alkalinity (as CaCO3)	129.2	20.00	mg/L C	a 1	3/1/2022 3:18:35 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	3860	40.0	D mg/L	1	3/3/2022 1:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: 2202C18 10-Mar-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB-65862 SampType: MBLK TestCode: EPA Method 200.7: Metals

Client ID: PBW Batch ID: 65862 RunNo: 86204

Prep Date: 3/1/2022 Analysis Date: 3/2/2022 SeqNo: 3038167 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual

Calcium ND 1.0 Magnesium ND 1.0 ND Potassium 1.0 Sodium ND 1.0

Sample ID: LLLCS-65862 TestCode: EPA Method 200.7: Metals SampType: LCSLL

Client ID: **BatchQC** Batch ID: 65862 RunNo: 86204

SeqNo: 3038169 Prep Date: 3/1/2022 Analysis Date: 3/2/2022 Units: mg/L

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Calcium ND 1.0 0.5000 0 103 50 150 0 105 ND 1.0 0.5000 50 150 Magnesium Potassium ND 1.0 0.5000 0 108 50 150 ND 0.5000 0 95.1 50 Sodium 1.0 150

Sample ID: LCS-65862 SampType: LCS TestCode: EPA Method 200.7: Metals

Client ID: LCSW Batch ID: 65862 RunNo: 86204

Prep Date: 3/1/2022 Analysis Date: 3/2/2022 SeqNo: 3038171 Units: mg/L PQL SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result LowLimit HighLimit Qual 50 1.0 50.00 0 99.2 85 115 Calcium Magnesium 51 1.0 50.00 0 102 85 115 0 Potassium 50 50.00 100 85 115 1.0 Sodium 51 1.0 50.00 0 102 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank

Е Estimated value

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 16 of 23

Hall Environmental Analysis Laboratory, Inc.

2202C18

WO#:

10-Mar-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB	SampT	SampType: mblk			tCode: El	;				
Client ID: PBW	Batch	Batch ID: R86110			RunNo: 86110					
Prep Date:	Analysis Date: 2/25/2022			SeqNo: 3035509			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								
Sample ID: LCS	SampT	ype: Ics		Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: LCSW	Batch	n ID: R8	6110	F	RunNo: 8	6110				

Client ID: LCSW	Batch	n ID: R8	6110	F	RunNo: 80	6110				
Prep Date:	Analysis D	ate: 2/ 2	25/2022	S	SeqNo: 3035517 Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.47	0.10	0.5000	0	93.1	90	110			
Chloride	4.7	0.50	5.000	0	93.3	90	110			
Bromide	2.4	0.10	2.500	0	96.7	90	110			
Phosphorus, Orthophosphate (As P	4.5	0.50	5.000	0	90.0	90	110			
Nitrate+Nitrite as N	3.4	0.20	3.500	0	98.6	90	110			

Sample ID: MB	SampTy	ype: m b	olk	Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: PBW	Batch	ID: R8	6348	F	RunNo: 8	6348				
Prep Date:	Analysis Da	ate: 3/	8/2022	8	SeqNo: 3	045446	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate	ND	0.50								

Sample ID: LCS	SampT	ype: Ics	;	Tes	tCode: El	PA Method	S			
Client ID: LCSW	Batch	1D: R8	6348	F	RunNo: 8	6348				
Prep Date:	Analysis D	Analysis Date: 3/8/2022				045447	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate	9.9	0.50	10.00	0	98.7	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 17 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2202C18**

10-Mar-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	ATILES				
Client ID: LCSW	Batch	n ID: R8	6177	F	RunNo: 86177						
Prep Date:	Analysis Date: 3/1/2022			8	SeqNo: 3037528 U			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	22	1.0	20.00	0	108	70	130				
Toluene	21	1.0	20.00	0	107	70	130				
Chlorobenzene	21	1.0	20.00	0	105	70	130				
1,1-Dichloroethene	21	1.0	20.00	0	107	70	130				
Trichloroethene (TCE)	21	1.0	20.00	0	104	70	130				
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130				
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130				
Surr: Dibromofluoromethane	11		10.00		109	70	130				
Surr: Toluene-d8	10		10.00		101	70	130				

Sample ID: 2202c18-001ams	SampT	SampType: MS TestCode: EPA Method 8260B: VOLATILES								
Client ID: MW #1	Batch	1D: R8	6177	F	RunNo: 86177					
Prep Date:	Analysis D	ate: 3/	1/2022	9	SeqNo: 30	037530	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.6	70	130			
Toluene	20	1.0	20.00	0	98.0	70	130			
Chlorobenzene	19	1.0	20.00	0	93.9	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	91.6	70	130			
Trichloroethene (TCE)	18	1.0	20.00	0	91.7	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Sample ID: 2202c18-001amsd	SampT	ype: MS	SD	Tes	tCode: El	ATILES				
Client ID: MW #1	Batch	n ID: R8	6177	F	RunNo: 86177					
Prep Date:	Analysis D	ate: 3/	1/2022	S	SeqNo: 30	037531	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.0	70	130	0.643	20	
Toluene	18	1.0	20.00	0	92.1	70	130	6.21	20	
Chlorobenzene	18	1.0	20.00	0	88.7	70	130	5.73	20	
1,1-Dichloroethene	18	1.0	20.00	0	88.2	70	130	3.75	20	
Trichloroethene (TCE)	17	1.0	20.00	0	86.7	70	130	5.62	20	
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130	0	0	
Surr: 4-Bromofluorobenzene	11		10.00		109	70	130	0	0	
Surr: Dibromofluoromethane	11		10.00		106	70	130	0	0	
Surr: Toluene-d8	9.8		10.00		98.4	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 23

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 2202C18

10-Mar-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb

· ·		
Client ID: PBW	Batch ID: R86177	RunNo: 86177
Pren Date:	Analysis Data: 3/1/2022	SeaNo: 3037548 Units: ua/l

TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batc	h ID: R	86177	RunNo: 86177						
Prep Date:	Analysis [Date: 3/	/1/2022	SeqNo: 3037548		Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
, and the change										

Qualifiers:

2,2-Dichloropropane

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference

ND

2.0

- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 19 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2202C18**

10-Mar-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb SampType: MBLK					TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batch	n ID: R8	6177	F	RunNo: 80	6177						
Prep Date:	Analysis D	ate: 3/	1/2022	SeqNo: 3037548 Unit		Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
1,1-Dichloropropene	ND	1.0										
Hexachlorobutadiene	ND	1.0										
2-Hexanone	ND	10										
Isopropylbenzene	ND	1.0										
4-Isopropyltoluene	ND	1.0										
4-Methyl-2-pentanone	ND	10										
Methylene Chloride	ND	3.0										
n-Butylbenzene	ND	3.0										
n-Propylbenzene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
tert-Butylbenzene	ND	1.0										
1,1,1,2-Tetrachloroethane	ND	1.0										
1,1,2,2-Tetrachloroethane	ND	2.0										
Tetrachloroethene (PCE)	ND	1.0										
trans-1,2-DCE	ND	1.0										
trans-1,3-Dichloropropene	ND	1.0										
1,2,3-Trichlorobenzene	ND	1.0										
1,2,4-Trichlorobenzene	ND	1.0										
1,1,1-Trichloroethane	ND	1.0										
1,1,2-Trichloroethane	ND	1.0										
Trichloroethene (TCE)	ND	1.0										
Trichlorofluoromethane	ND	1.0										
1,2,3-Trichloropropane	ND	2.0										
Vinyl chloride	ND	1.0										
Xylenes, Total	ND	1.5										
Surr: 1,2-Dichloroethane-d4	11		10.00		110	70	130					
Surr: 4-Bromofluorobenzene	10		10.00		104	70	130					
Surr: Dibromofluoromethane	11		10.00		108	70	130					
Surr: Toluene-d8	10		10.00		100	70	130					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 23

Hall Environmental Analysis Laboratory, Inc.

100

WO#: 2202C18 10-Mar-22

Client: HILCORP ENERGY

Project: Mansfield 11

Conductivity

Sample ID: Ics-1 100.2uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R86174 RunNo: 86174

10

SeqNo: 3037398 Prep Date: Analysis Date: 3/1/2022 Units: µmhos/cm

100.0

Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0

85

115

102

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank

Estimated value

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 21 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#:

2202C18 10-Mar-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R86174 RunNo: 86174

Prep Date: Analysis Date: 3/1/2022 SeqNo: 3037261 Units: mg/L CaCO3

SPK value SPK Ref Val %REC LowLimit **RPDLimit** Analyte Result PQL HighLimit %RPD Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R86174 RunNo: 86174

Prep Date: Analysis Date: 3/1/2022 SeqNo: 3037262 Units: mg/L CaCO3

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual

Total Alkalinity (as CaCO3) 73.80 20.00 80.00 92.2 110

Sample ID: MB-2 ALK SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R86174 RunNo: 86174

Prep Date: Analysis Date: 3/1/2022 SeqNo: 3037284 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: LCS-2 ALK SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R86174 RunNo: 86174

Prep Date: Analysis Date: 3/1/2022 SeqNo: 3037285 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Total Alkalinity (as CaCO3) 73.68 20.00 80.00 92.1 110 n 90

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 22 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2202C18**

10-Mar-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB-65858 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 65858 RunNo: 86225

Prep Date: 3/1/2022 Analysis Date: 3/3/2022 SeqNo: 3039204 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-65858 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 65858 RunNo: 86225

Prep Date: 3/1/2022 Analysis Date: 3/3/2022 SeqNo: 3039205 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1020 20.0 1000 0 102 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 23

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name:	HILCORP	ENERGY	Work	Order Numbe	r: 2202C18		RcptNo	: 1
Received By:	Cheyenn	e Cason	2/25/20	22 8:00:00 AM	1	Chul		
Completed By:	Sean Livi	ingston	2/25/20	22 9:00:02 AM	1	Chul	,	
Reviewed By:	WOL	2/25				Jr-6	John	
,	7 4-0(122					
Chain of Cus	tody							
1. Is Chain of Cu	ustody comp	olete?			Yes 🗸	No 🗌	Not Present	
2. How was the	sample deli	vered?			Courier			
Log In								
3. Was an attem	pt made to	cool the sampl	es?		Yes 🗸	No 🗌	NA 🗆	
			7.50		700 🖭			
4. Were all samp	oles received	d at a temperat	ure of >0° C	to 6.0°C	Yes 🗸	No 🗌	NA 🗌	
5. Sample(s) in p	aroner conta	inor(s)2			V [4	Na 🗆		
o. Gample(s) in p	oroper conta	iliter(s)?			Yes 🗸	No 🗌		
6. Sufficient sam	ple volume t	for indicated te	st(s)?		Yes 🗸	No 🗌		
7. Are samples (except VOA	and ONG) pro	perly preserve	ed?	Yes 🗸	No 🗌		
8. Was preservat	tive added to	bottles?			Yes \square	No 🗹	NA 🗌	
9. Received at lea	ast 1 vial wit	th headspace	<1/4" for AQ V	OA?	Yes	No 🗌	NA 🗸	
0. Were any sam					Yes	No 🗸		
							# of preserved bottles checked	
1. Does paperwo					Yes 🗸	No 🗌	for pH:	
(Note discrepa		20				\square	Adjusted?	>12 unless noted)
2. Are matrices of					Yes 🗹	No ∐	Adjusted? /	70
 Is it clear what Were all holding 					Yes 🗸	No ☐	Checked by:	102/25/2
(If no, notify cu					Yes 🗹	No L	Checked by.	, 9/20/1
pecial Handli	ing (if apı	olicable)						
5. Was client not			ith this order?		Yes	No 🗌	NA 🗹	
Person I	Notified:		A Deliver of the State of the S	Date:	HKING COLUMN COLUMN	Merchanism and Edition and P		
By Who	m:		ATTERNOOP PLEATURE CE	Via:	eMail [Phone Fax	☐ In Person	
Regardir	ng:			MANUFACTURE STATE OF THE STATE OF	Market Market States			
Client In	structions:						CAN MATERIAL A LONG A GOLD CONTRACTOR AND A CONTRACTOR AN	
16. Additional ren	narks:							_
7. Cooler Inform	nation							
Cooler No	Temp °C	Condition	Seal Intact	Seal No S	Seal Date	Signed By	Acceptance	
1	2.2	Good				-3.55		

7
e
0
as
Se .
2
to
9
3
80
2
0,0
3
12
9
13
02
23
2
5
9
1
.29
P

Client: Hilcorp Farmington NM	X Standard Project Name	□ Rus	sh					HAI	LL I	EN\	VIR	ON	ME	NT	AL ORY
Mailing Address: 382 Road 3100 Aztec, NM 87410							•							41C	PK 18
Billing Address: PO Box 61529 Houston, TX 77208	Mansfield #11 Project #:			www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109					D: 1/						
Phone #: 505-486-9543		-				Геl. 5	05-3	45-39			505-3		07		13/2
email or Fax#: khoekstra@hilcorp.com	Project Manag	er:	-		4				Ana	llysis	Requ	est			023
QA/QC Package: Mkilough Ehlorp, com ☐ Standard ☐ Level 4 (Full Validation)	1)	1. V	, (Semi Lose	1231111 112304 12304	3									11.38
Accreditation: Az Compliance Discrete Discret	Sampler:	Kurt Hoekst			3	FIEL									:38:18 AM
□ EDD (Type)	On Ice:	№ Yes	□ No		Į Į	10							$ \ $		
	# of Coolers: (Cooler Temp(including CF): 2.3-0.1-2.\$2				0 40ml V	upies	SPE!								
Date Time Matrix Sample Name	Container Type and #	Preservative Type	HEAL No.	Cations/Anions/TDS 500ml	Volatiles 8260 40ml VOA HCI	No SAMP	FILTE								
2-23 9:50 Water MW* \	Various	Various	001	X				-	+	\vdash	+	+-	\vdash	+	+
2-23 10:55 Water MW = 2	Various	Various	002	X			十	+	+	\vdash	-	+	-	+	++
2-23 2:30 Water MW # 3	Various	Various	003	X			\dashv	+	+-	\vdash		-			+
2-23 1:30 Water MW# 4	Various	Various	004	X	X		-	+	+-	\vdash	-	-		+	
12:22 12:155 Water MW # 5		Various	00 5	x			+	+	+	\vdash	-	+	\dashv	+	++
														+	
				H	\dashv	+	+	+		+	_	\Box			
				H	+	+	+	+	\vdash	+	+	++	+	+	\vdash
				\Box	\neg	\neg	\top	+	Н	+	+	\forall	\dashv	+	HH
													+		
Date: Time: Bellinish to all	Ant 1	a:	Date Time	Rem Sec			 int								
13/2 1810 MANG	Received by: Via: Date Time Cer 7/25/- 0800														Page
If necessary, samples submitted to Hall Environmental may be su	bcontracted to other acci	redited laboratories.	. This serves as notice of this	possibi	lity. Ar	ny sub-	contrac	ted data	will be	clearly n	otated or	n the ana	alvtical re		102

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 12, 2022

Stuart Hyde HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Mansfield H11 OrderNo.: 2206E17

Dear Stuart Hyde:

Hall Environmental Analysis Laboratory received 5 sample(s) on 6/25/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW01

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 1:30:00 PM

 Lab ID:
 2206E17-001
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	ND	0.50	mg/L	5	6/27/2022 5:45:51 PM
Chloride	23	2.5	mg/L	5	6/27/2022 5:45:51 PM
Bromide	ND	0.50	mg/L	5	6/27/2022 5:45:51 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	H mg/L	5	6/27/2022 5:45:51 PM
Sulfate	2100	50	* mg/L	100	6/30/2022 3:48:58 PM
Nitrate+Nitrite as N	ND	1.0	mg/L	5	7/5/2022 2:27:01 PM
EPA METHOD 200.7: METALS					Analyst: JLF
Calcium	550	10	mg/L	10	6/29/2022 9:09:00 PM
Magnesium	120	10	mg/L	10	6/29/2022 9:09:00 PM
Potassium	6.2	1.0	mg/L	1	6/29/2022 9:06:50 PM
Sodium	200	10	mg/L	10	6/29/2022 9:09:00 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Toluene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Ethylbenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Naphthalene	ND	2.0	μg/L	1	7/5/2022 12:02:13 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	7/5/2022 12:02:13 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	7/5/2022 12:02:13 PM
Acetone	ND	10	μg/L	1	7/5/2022 12:02:13 PM
Bromobenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Bromodichloromethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Bromoform	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Bromomethane	ND	3.0	μg/L	1	7/5/2022 12:02:13 PM
2-Butanone	ND	10	μg/L	1	7/5/2022 12:02:13 PM
Carbon disulfide	ND	10	μg/L	1	7/5/2022 12:02:13 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Chlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Chloroethane	ND	2.0	μg/L	1	7/5/2022 12:02:13 PM
Chloroform	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Chloromethane	ND	3.0	μg/L	1	7/5/2022 12:02:13 PM
2-Chlorotoluene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
4-Chlorotoluene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
cis-1,2-DCE	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW01

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 1:30:00 PM

 Lab ID:
 2206E17-001
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	7/5/2022 12:02:13 PM
Dibromochloromethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Dibromomethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	7/5/2022 12:02:13 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
2-Hexanone	ND	10	μg/L	1	7/5/2022 12:02:13 PM
Isopropylbenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	7/5/2022 12:02:13 PM
Methylene Chloride	ND	3.0	μg/L	1	7/5/2022 12:02:13 PM
n-Butylbenzene	ND	3.0	μg/L	1	7/5/2022 12:02:13 PM
n-Propylbenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
sec-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Styrene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
tert-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	7/5/2022 12:02:13 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
trans-1,2-DCE	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	7/5/2022 12:02:13 PM
Vinyl chloride	ND	1.0	μg/L	1	7/5/2022 12:02:13 PM
Xylenes, Total	ND	1.5	μg/L	1	7/5/2022 12:02:13 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW01

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 1:30:00 PM

 Lab ID:
 2206E17-001
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	1	7/5/2022 12:02:13 PM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	7/5/2022 12:02:13 PM
Surr: Dibromofluoromethane	112	70-130	%Rec	1	7/5/2022 12:02:13 PM
Surr: Toluene-d8	102	70-130	%Rec	1	7/5/2022 12:02:13 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN
Conductivity	3500	10	µmhos/d	1	6/29/2022 1:52:48 PM
SM4500-H+B / 9040C: PH					Analyst: CAS
рН	7.32	F	H pH units	: 1	6/27/2022 9:17:21 PM
SM2320B: ALKALINITY					Analyst: CAS
Bicarbonate (As CaCO3)	281.5	20.00	mg/L Ca	a 1	6/27/2022 9:17:21 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	a 1	6/27/2022 9:17:21 PM
Total Alkalinity (as CaCO3)	281.5	20.00	mg/L Ca	a 1	6/27/2022 9:17:21 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	3010	200 *[O mg/L	1	7/1/2022 6:39:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW02

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 12:47:00 PM

 Lab ID:
 2206E17-002
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	ND	0.50	mg/L	5	6/27/2022 6:11:35 PM
Chloride	21	2.5	mg/L	5	6/27/2022 6:11:35 PM
Bromide	ND	0.50	mg/L	5	6/27/2022 6:11:35 PM
Phosphorus, Orthophosphate (As P)	ND	2.5 H	H mg/L	5	6/27/2022 6:11:35 PM
Sulfate	2100	50	* mg/L	100	6/30/2022 4:01:50 PM
Nitrate+Nitrite as N	ND	1.0	mg/L	5	7/5/2022 2:39:53 PM
EPA METHOD 200.7: METALS					Analyst: JLF
Calcium	540	10	mg/L	10	6/29/2022 9:13:14 PM
Magnesium	140	10	mg/L	10	6/29/2022 9:13:14 PM
Potassium	5.7	1.0	mg/L	1	6/29/2022 9:11:10 PM
Sodium	190	10	mg/L	10	6/29/2022 9:13:14 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Toluene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Ethylbenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Naphthalene	ND	2.0	μg/L	1	7/5/2022 12:30:56 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	7/5/2022 12:30:56 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	7/5/2022 12:30:56 PM
Acetone	ND	10	μg/L	1	7/5/2022 12:30:56 PM
Bromobenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Bromodichloromethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Bromoform	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Bromomethane	ND	3.0	μg/L	1	7/5/2022 12:30:56 PM
2-Butanone	ND	10	μg/L	1	7/5/2022 12:30:56 PM
Carbon disulfide	ND	10	μg/L	1	7/5/2022 12:30:56 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Chlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Chloroethane	ND	2.0	μg/L	1	7/5/2022 12:30:56 PM
Chloroform	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Chloromethane	ND	3.0	μg/L	1	7/5/2022 12:30:56 PM
2-Chlorotoluene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
4-Chlorotoluene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
cis-1,2-DCE	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW02

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 12:47:00 PM

 Lab ID:
 2206E17-002
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	7/5/2022 12:30:56 PM
Dibromochloromethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Dibromomethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	7/5/2022 12:30:56 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
2-Hexanone	ND	10	μg/L	1	7/5/2022 12:30:56 PM
Isopropylbenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	7/5/2022 12:30:56 PM
Methylene Chloride	ND	3.0	μg/L	1	7/5/2022 12:30:56 PM
n-Butylbenzene	ND	3.0	μg/L	1	7/5/2022 12:30:56 PM
n-Propylbenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
sec-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Styrene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
tert-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	7/5/2022 12:30:56 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
trans-1,2-DCE	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	7/5/2022 12:30:56 PM
Vinyl chloride	ND	1.0	μg/L	1	7/5/2022 12:30:56 PM
Xylenes, Total	ND	1.5	μg/L	1	7/5/2022 12:30:56 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW02

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 12:47:00 PM

 Lab ID:
 2206E17-002
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qu	ual T	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Surr: 1,2-Dichloroethane-d4	114	70-130		%Rec	1	7/5/2022 12:30:56 PM
Surr: 4-Bromofluorobenzene	105	70-130		%Rec	1	7/5/2022 12:30:56 PM
Surr: Dibromofluoromethane	118	70-130		%Rec	1	7/5/2022 12:30:56 PM
Surr: Toluene-d8	102	70-130		%Rec	1	7/5/2022 12:30:56 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: LRN
Conductivity	3500	10		µmhos/c	1	6/29/2022 1:55:48 PM
SM4500-H+B / 9040C: PH						Analyst: CAS
рН	7.28		Н	pH units	1	6/27/2022 9:31:32 PM
SM2320B: ALKALINITY						Analyst: CAS
Bicarbonate (As CaCO3)	284.4	20.00		mg/L Ca	1	6/27/2022 9:31:32 PM
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	6/27/2022 9:31:32 PM
Total Alkalinity (as CaCO3)	284.4	20.00		mg/L Ca	1	6/27/2022 9:31:32 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: KS
Total Dissolved Solids	3430	200	*D	mg/L	1	7/1/2022 6:39:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW03

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 2:07:00 PM

 Lab ID:
 2206E17-003
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL (Qual U	Jnits	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: JTT
Fluoride	ND	0.50		mg/L	5	6/27/2022 7:03:04 PM
Chloride	20	2.5		mg/L	5	6/27/2022 7:03:04 PM
Bromide	ND	0.50		mg/L	5	6/27/2022 7:03:04 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	6/27/2022 7:03:04 PM
Sulfate	1900	25	*	mg/L	50	6/30/2022 4:14:43 PM
Nitrate+Nitrite as N	ND	1.0		mg/L	5	7/5/2022 2:52:45 PM
EPA METHOD 200.7: METALS						Analyst: JLF
Calcium	590	10		mg/L	10	6/29/2022 9:17:29 PM
Magnesium	34	1.0		mg/L	1	6/29/2022 9:15:25 PM
Potassium	4.6	1.0		mg/L	1	6/29/2022 9:15:25 PM
Sodium	190	10		mg/L	10	6/29/2022 9:17:29 PM
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Benzene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Toluene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Ethylbenzene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Naphthalene	ND	2.0		μg/L	1	7/5/2022 12:59:33 PM
1-Methylnaphthalene	ND	4.0		μg/L	1	7/5/2022 12:59:33 PM
2-Methylnaphthalene	ND	4.0		μg/L	1	7/5/2022 12:59:33 PM
Acetone	ND	10		μg/L	1	7/5/2022 12:59:33 PM
Bromobenzene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Bromodichloromethane	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Bromoform	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Bromomethane	ND	3.0		μg/L	1	7/5/2022 12:59:33 PM
2-Butanone	ND	10		μg/L	1	7/5/2022 12:59:33 PM
Carbon disulfide	ND	10		μg/L	1	7/5/2022 12:59:33 PM
Carbon Tetrachloride	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Chlorobenzene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Chloroethane	ND	2.0		μg/L	1	7/5/2022 12:59:33 PM
Chloroform	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
Chloromethane	ND	3.0		μg/L	1	7/5/2022 12:59:33 PM
2-Chlorotoluene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
4-Chlorotoluene	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM
cis-1,2-DCE	ND	1.0		μg/L	1	7/5/2022 12:59:33 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW03

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 2:07:00 PM

 Lab ID:
 2206E17-003
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	7/5/2022 12:59:33 PM
Dibromochloromethane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
Dibromomethane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	7/5/2022 12:59:33 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
2-Hexanone	ND	10	μg/L	1	7/5/2022 12:59:33 PM
Isopropylbenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	7/5/2022 12:59:33 PM
Methylene Chloride	ND	3.0	μg/L	1	7/5/2022 12:59:33 PM
n-Butylbenzene	ND	3.0	μg/L	1	7/5/2022 12:59:33 PM
n-Propylbenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
sec-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
Styrene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
tert-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	7/5/2022 12:59:33 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
trans-1,2-DCE	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	7/5/2022 12:59:33 PM
Vinyl chloride	ND	1.0	μg/L	1	7/5/2022 12:59:33 PM
Xylenes, Total	ND	1.5	μg/L	1	7/5/2022 12:59:33 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW03

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 2:07:00 PM

 Lab ID:
 2206E17-003
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Surr: 1,2-Dichloroethane-d4	114	70-130	%Rec	1	7/5/2022 12:59:33 PM
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	1	7/5/2022 12:59:33 PM
Surr: Dibromofluoromethane	118	70-130	%Rec	1	7/5/2022 12:59:33 PM
Surr: Toluene-d8	100	70-130	%Rec	1	7/5/2022 12:59:33 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN
Conductivity	3100	10	µmhos/	c 1	6/29/2022 1:58:48 PM
SM4500-H+B / 9040C: PH					Analyst: CAS
рН	7.42	I	H pH units	s 1	6/27/2022 9:45:54 PM
SM2320B: ALKALINITY					Analyst: CAS
Bicarbonate (As CaCO3)	265.8	20.00	mg/L C	a 1	6/27/2022 9:45:54 PM
Carbonate (As CaCO3)	ND	2.000	mg/L C	a 1	6/27/2022 9:45:54 PM
Total Alkalinity (as CaCO3)	265.8	20.00	mg/L C	a 1	6/27/2022 9:45:54 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	3000	100 *	D mg/L	1	7/1/2022 6:39:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW04

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 12:00:00 PM

 Lab ID:
 2206E17-004
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: JTT
Fluoride	ND	0.50		mg/L	5	6/27/2022 7:28:48 PM
Chloride	21	2.5		mg/L	5	6/27/2022 7:28:48 PM
Bromide	ND	0.50		mg/L	5	6/27/2022 7:28:48 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	6/27/2022 7:28:48 PM
Sulfate	2000	50	*	mg/L	100	6/30/2022 4:53:19 PM
Nitrate+Nitrite as N	ND	1.0		mg/L	5	7/5/2022 3:05:37 PM
EPA METHOD 200.7: METALS						Analyst: JLF
Calcium	590	10		mg/L	10	6/29/2022 9:21:54 PM
Magnesium	160	10		mg/L	10	6/29/2022 9:21:54 PM
Potassium	7.5	1.0		mg/L	1	6/29/2022 9:19:41 PM
Sodium	190	10		mg/L	10	6/29/2022 9:21:54 PM
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Benzene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Toluene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Ethylbenzene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Naphthalene	ND	2.0		μg/L	1	7/5/2022 1:28:08 PM
1-Methylnaphthalene	ND	4.0		μg/L	1	7/5/2022 1:28:08 PM
2-Methylnaphthalene	ND	4.0		μg/L	1	7/5/2022 1:28:08 PM
Acetone	ND	10		μg/L	1	7/5/2022 1:28:08 PM
Bromobenzene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Bromodichloromethane	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Bromoform	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Bromomethane	ND	3.0		μg/L	1	7/5/2022 1:28:08 PM
2-Butanone	ND	10		μg/L	1	7/5/2022 1:28:08 PM
Carbon disulfide	ND	10		μg/L	1	7/5/2022 1:28:08 PM
Carbon Tetrachloride	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Chlorobenzene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Chloroethane	ND	2.0		μg/L	1	7/5/2022 1:28:08 PM
Chloroform	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
Chloromethane	ND	3.0		μg/L	1	7/5/2022 1:28:08 PM
2-Chlorotoluene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
4-Chlorotoluene	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM
cis-1,2-DCE	ND	1.0		μg/L	1	7/5/2022 1:28:08 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 25

Analytical Report

Lab Order **2206E17**

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW04

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 12:00:00 PM

 Lab ID:
 2206E17-004
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	7/5/2022 1:28:08 PM
Dibromochloromethane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
Dibromomethane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	7/5/2022 1:28:08 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
2-Hexanone	ND	10	μg/L	1	7/5/2022 1:28:08 PM
Isopropylbenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	7/5/2022 1:28:08 PM
Methylene Chloride	ND	3.0	μg/L	1	7/5/2022 1:28:08 PM
n-Butylbenzene	ND	3.0	μg/L	1	7/5/2022 1:28:08 PM
n-Propylbenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
sec-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
Styrene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
tert-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	7/5/2022 1:28:08 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
trans-1,2-DCE	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	7/5/2022 1:28:08 PM
Vinyl chloride	ND	1.0	μg/L	1	7/5/2022 1:28:08 PM
Xylenes, Total	ND	1.5	μg/L	1	7/5/2022 1:28:08 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW04

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 12:00:00 PM

 Lab ID:
 2206E17-004
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Surr: 1,2-Dichloroethane-d4	114	70-130	%Rec	1	7/5/2022 1:28:08 PM
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	7/5/2022 1:28:08 PM
Surr: Dibromofluoromethane	118	70-130	%Rec	1	7/5/2022 1:28:08 PM
Surr: Toluene-d8	102	70-130	%Rec	1	7/5/2022 1:28:08 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: LRN
Conductivity	3500	10	µmhos/c	: 1	6/29/2022 2:01:48 PM
SM4500-H+B / 9040C: PH					Analyst: CAS
рН	7.38	H	H pH units	1	6/27/2022 9:59:31 PM
SM2320B: ALKALINITY					Analyst: CAS
Bicarbonate (As CaCO3)	279.9	20.00	mg/L Ca	1	6/27/2022 9:59:31 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	6/27/2022 9:59:31 PM
Total Alkalinity (as CaCO3)	279.9	20.00	mg/L Ca	1	6/27/2022 9:59:31 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	3310	200 *[O mg/L	1	7/1/2022 6:39:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 12 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW05

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 2:42:00 PM

 Lab ID:
 2206E17-005
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Q	Qual Un	its DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	ND	0.50	m	g/L 5	6/27/2022 8:20:16 PM
Chloride	17	2.5	m	g/L 5	6/27/2022 8:20:16 PM
Bromide	ND	0.50	m	g/L 5	6/27/2022 8:20:16 PM
Phosphorus, Orthophosphate (As P)	ND	10	H m	g/L 20	6/27/2022 8:33:08 PM
Sulfate	2800	50	* m	g/L 100	6/30/2022 5:06:12 PM
Nitrate+Nitrite as N	ND	1.0	m	g/L 5	7/5/2022 3:18:28 PM
EPA METHOD 200.7: METALS					Analyst: JLF
Calcium	470	10	m	g/L 10	6/29/2022 9:34:20 PM
Magnesium	22	1.0	m	y/L 1	6/29/2022 9:32:16 PM
Potassium	5.7	1.0	m	y/L 1	6/29/2022 9:32:16 PM
Sodium	650	10	m	g/L 10	6/29/2022 9:34:20 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μο	/L 1	7/5/2022 1:56:47 PM
Toluene	ND	1.0	μο		7/5/2022 1:56:47 PM
Ethylbenzene	ND	1.0	μg		7/5/2022 1:56:47 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg		7/5/2022 1:56:47 PM
1,2,4-Trimethylbenzene	ND	1.0	μg		7/5/2022 1:56:47 PM
1,3,5-Trimethylbenzene	ND	1.0	μο		7/5/2022 1:56:47 PM
1,2-Dichloroethane (EDC)	ND	1.0	μο	/L 1	7/5/2022 1:56:47 PM
1,2-Dibromoethane (EDB)	ND	1.0	μο	/L 1	7/5/2022 1:56:47 PM
Naphthalene	ND	2.0	μς	/L 1	7/5/2022 1:56:47 PM
1-Methylnaphthalene	ND	4.0	μο	/L 1	7/5/2022 1:56:47 PM
2-Methylnaphthalene	ND	4.0	μο	/L 1	7/5/2022 1:56:47 PM
Acetone	ND	10	μο	/L 1	7/5/2022 1:56:47 PM
Bromobenzene	ND	1.0	μο	/L 1	7/5/2022 1:56:47 PM
Bromodichloromethane	ND	1.0	μο	/L 1	7/5/2022 1:56:47 PM
Bromoform	ND	1.0	μο	/L 1	7/5/2022 1:56:47 PM
Bromomethane	ND	3.0	μο	/L 1	7/5/2022 1:56:47 PM
2-Butanone	ND	10	μο	/L 1	7/5/2022 1:56:47 PM
Carbon disulfide	ND	10	μο	/L 1	7/5/2022 1:56:47 PM
Carbon Tetrachloride	ND	1.0	μο	/L 1	7/5/2022 1:56:47 PM
Chlorobenzene	ND	1.0	μο	/L 1	7/5/2022 1:56:47 PM
Chloroethane	ND	2.0	μο	/L 1	7/5/2022 1:56:47 PM
Chloroform	ND	1.0	μς	/L 1	7/5/2022 1:56:47 PM
Chloromethane	ND	3.0	μς	/L 1	7/5/2022 1:56:47 PM
2-Chlorotoluene	ND	1.0	μς	/L 1	7/5/2022 1:56:47 PM
4-Chlorotoluene	ND	1.0	μς		7/5/2022 1:56:47 PM
cis-1,2-DCE	ND	1.0	μg	/L 1	7/5/2022 1:56:47 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW05

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 2:42:00 PM

 Lab ID:
 2206E17-005
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	7/5/2022 1:56:47 PM
Dibromochloromethane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
Dibromomethane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	7/5/2022 1:56:47 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
2-Hexanone	ND	10	μg/L	1	7/5/2022 1:56:47 PM
Isopropylbenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	7/5/2022 1:56:47 PM
Methylene Chloride	ND	3.0	μg/L	1	7/5/2022 1:56:47 PM
n-Butylbenzene	ND	3.0	μg/L	1	7/5/2022 1:56:47 PM
n-Propylbenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
sec-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
Styrene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
tert-Butylbenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	7/5/2022 1:56:47 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
trans-1,2-DCE	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	7/5/2022 1:56:47 PM
Vinyl chloride	ND	1.0	μg/L	1	7/5/2022 1:56:47 PM
Xylenes, Total	ND	1.5	μg/L	1	7/5/2022 1:56:47 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 25

Date Reported: 7/12/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW05

 Project:
 Mansfield H11
 Collection Date: 6/24/2022 2:42:00 PM

 Lab ID:
 2206E17-005
 Matrix: GROUNDWA
 Received Date: 6/25/2022 9:30:00 AM

Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Surr: 1,2-Dichloroethane-d4	112	70-130		%Rec	1	7/5/2022 1:56:47 PM
Surr: 4-Bromofluorobenzene	103	70-130		%Rec	1	7/5/2022 1:56:47 PM
Surr: Dibromofluoromethane	120	70-130		%Rec	1	7/5/2022 1:56:47 PM
Surr: Toluene-d8	102	70-130		%Rec	1	7/5/2022 1:56:47 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: LRN
Conductivity	4600	10		µmhos/c	1	6/29/2022 2:04:48 PM
SM4500-H+B / 9040C: PH						Analyst: CAS
рН	7.64		Н	pH units	1	6/27/2022 10:13:40 PM
SM2320B: ALKALINITY						Analyst: CAS
Bicarbonate (As CaCO3)	140.1	20.00		mg/L Ca	1	6/27/2022 10:13:40 PM
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	6/27/2022 10:13:40 PM
Total Alkalinity (as CaCO3)	140.1	20.00		mg/L Ca	1	6/27/2022 10:13:40 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: KS
Total Dissolved Solids	3980	100	*D	mg/L	1	7/1/2022 6:39:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 25

Hall Environmental Analysis Laboratory, Inc.

2206E17 12-Jul-22

WO#:

Client: HILCORP ENERGY
Project: Mansfield H11

Sample ID: MB-68406 SampType: MBLK TestCode: EPA Method 200.7: Metals Client ID: PBW Batch ID: 68406 RunNo: 89144 Prep Date: 6/28/2022 Analysis Date: 6/29/2022 SeqNo: 3167860 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Calcium ND 1.0 Magnesium ND 1.0 ND Potassium 1.0 Sodium ND 1.0

Sample ID: LCSLL-68406	SampT	ype: LC	SLL	TestCode: EPA Method 200.7: Metals								
Client ID: BatchQC	Batch	n ID: 68 4	106	F	RunNo: 89	9144						
Prep Date: 6/28/2022	Analysis D	oate: 6/2	29/2022	5	SeqNo: 31	167861	Units: mg/L	nits: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Calcium	ND	1.0	0.5000	0	99.4	50	150					
Magnesium	ND	1.0	0.5000	0	100	50	150					
Potassium	ND	1.0	0.5000	0	102	50	150					
Sodium	ND	1.0	0.5000	0	102	50	150					

Sample ID: LCS-68406	SampT	ype: LC	S	Tes	tCode: EF							
Client ID: LCSW	Batch	1D: 68 4	106	F	RunNo: 89	9144						
Prep Date: 6/28/2022	Analysis D	ate: 6/ 2	29/2022	SeqNo: 3167862			Units: mg/L	nits: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Calcium	50	1.0	50.00	0	99.3	85	115					
Magnesium	50	1.0	50.00	0	100	85	115					
Potassium	50	1.0	50.00	0	99.4	85	115					
Sodium	50	1.0	50.00	0	101	85	115					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2206E17**

12-Jul-22

Client:	HILCORP ENERGY
Project:	Mansfield H11

Sample ID: MB	SampType: mblk			Tes						
Client ID: PBW	Batch ID: R89065			F	RunNo: 89065					
Prep Date:	Analysis [Date: 6/ 2	27/2022	9	SeqNo: 31	163601	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P)	ND	0.50								

Sample ID: LCS	Samp1	ype: Ics		Tes	stCode: EF	PA Method	300.0: Anions			
Client ID: LCSW	Batcl	Batch ID: R89065 RunNo: 89065								
Prep Date:	Analysis D	Date: 6/2	27/2022	5	SeqNo: 31	163602	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.51	0.10	0.5000	0	102	90	110			
Chloride	4.7	0.50	5.000	0	94.9	90	110			
Bromide	2.5	0.10	2.500	0	99.6	90	110			
Phosphorus, Orthophosphate (As P)	4.7	0.50	5.000	0	93.1	90	110			

Sample ID: 2206E17-004BMS	Samp ⁻	Гуре: ms	;	Tes	TestCode: EPA Method 300.0: Anions					
Client ID: MW04	Batc	h ID: R8	9065	F	RunNo: 89	9065				
Prep Date:	Analysis [Date: 6/ 2	27/2022	5	SeqNo: 31	163639	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.8	0.50	2.500	0.3910	95.8	79.7	110			
Chloride	46	2.5	25.00	20.85	99.9	86.3	114			
Bromide	13	0.50	12.50	0	101	91.2	106			

Sample ID:	2206E17-004BMSD	SampT	ype: ms	d	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	MW04	Batch	1D: R8 9	9065	F	RunNo: 89	9065				
Prep Date:		Analysis D	ate: 6/2	27/2022	5	SeqNo: 31	163640	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		2.8	0.50	2.500	0.3910	96.5	79.7	110	0.626	20	
Chloride		45	2.5	25.00	20.85	98.2	86.3	114	0.934	20	
Bromide		13	0.50	12.50	0	100	91.2	106	0.131	20	

Sample ID: MB	SampType: mblk	TestCode: EPA Method 300.0: Anions
Client ID: PBW	Batch ID: R89175	RunNo: 89175
Prep Date:	Analysis Date: 6/30/2022	SeqNo: 3169519 Units: mg/L
Analyte	Result PQL SPK valu	ue SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Sulfate	ND 0.50	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 25

Hall Environmental Analysis Laboratory, Inc.

2206E17 12-Jul-22

WO#:

Client: HILCORP ENERGY

Project: Mansfield H11

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R89249 RunNo: 89249

Prep Date: Analysis Date: 7/5/2022 SeqNo: 3173045 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nitrate+Nitrite as N ND 0.20

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R89249 RunNo: 89249

Prep Date: Analysis Date: 7/5/2022 SeqNo: 3173046 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nitrate+Nitrite as N 3.6 0.20 3.500 0 102 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 25

Hall Environmental Analysis Laboratory, Inc.

2206E17 12-Jul-22

WO#:

Client: HILCORP ENERGY

Project: Mansfield H11

Sample ID: 100ng Ics	Samp1	SampType: LCS TestCode: EPA Method 8260B: VOLATILES								
Client ID: LCSW	Batcl	h ID: R8	9226	RunNo: 89226						
Prep Date:	Analysis D	Date: 7/	5/2022	9	SeqNo: 3	171976	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	108	70	130			
Toluene	20	1.0	20.00	0	99.0	70	130			
Chlorobenzene	21	1.0	20.00	0	103	70	130			
1,1-Dichloroethene	21	1.0	20.00	0	107	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	101	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130			
Surr: Dibromofluoromethane	11		10.00		114	70	130			
Surr: Toluene-d8	9.8		10.00		98.1	70	130			

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW Batch ID: R89226 RunNo: 89226

Prep Date: Analysis Date: 7/5/2022 SeqNo: 3171983 Units: µg/L

Analyte Result POL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qua
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 25

Hall Environmental Analysis Laboratory, Inc.

2206E17 12-Jul-22

WO#:

Client: HILCORP ENERGY

Project: Mansfield H11

Sample ID: mb	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES	l
Client ID: PBW	Batch ID: R89226	RunNo: 89226	
Prep Date:	Analysis Date: 7/5/2022	SeqNo: 3171983 Units: μ g/L	

Client ID: PBW	Batc	n ID: R8	9226	ŀ	Runno: 8	9226				
Prep Date:	Analysis [Date: 7/	5/2022	;	SeqNo: 3	171983	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
•										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 20 of 25

Hall Environmental Analysis Laboratory, Inc.

2206E17 12-Jul-22

WO#:

Client: HILCORP ENERGY

Project: Mansfield H11

Sample ID: mb	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW Batch ID: R89226 RunNo: 89226

Olicherd. I DVV	Daio	11 1D. 10	3220	'	turii vo. O	322U				
Prep Date:	Analysis I	Date: 7/	5/2022	;	SeqNo: 3	171983	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		109	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		105	70	130			
Surr: Dibromofluoromethane	11		10.00		112	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Sample ID: 2206e17-001a ms	SampT	ype: MS	i	TestCode: EPA Method 8260B: VOLATILES						
Client ID: MW01	Batch	n ID: R8 9	9226	F	RunNo: 89	9226				
Prep Date:	Analysis D	oate: 7/5	5/2022	9	SeqNo: 31	172954	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	24	1.0	20.00	0	120	70	130			
Toluene	21	1.0	20.00	0	104	70	130			
Chlorobenzene	21	1.0	20.00	0	103	70	130			
1,1-Dichloroethene	23	1.0	20.00	0	116	70	130			
Trichloroethene (TCE)	22	1.0	20.00	0	110	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		112	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		106	70	130			
Surr: Dibromofluoromethane	13		10.00		127	70	130			
Surr: Toluene-d8	9.9		10.00		99.0	70	130			

Sample ID: 2206e17-001a msd	SampT	ype: MS	D	TestCode: EPA Method 8260B: VOLATILES						
Client ID: MW01	Batch	n ID: R8 9	9226	F	RunNo: 89	9226				
Prep Date:	Analysis D	ate: 7/5	5/2022	5	SeqNo: 31	172955	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	23	1.0	20.00	0	117	70	130	2.50	20	•
Toluene	20	1.0	20.00	0	100	70	130	3.62	20	
Chlorobenzene	20	1.0	20.00	0	101	70	130	1.93	20	
1,1-Dichloroethene	22	1.0	20.00	0	108	70	130	7.36	20	
Trichloroethene (TCE)	22	1.0	20.00	0	109	70	130	0.673	20	
Surr: 1,2-Dichloroethane-d4	11		10.00		115	70	130	0	0	
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130	0	0	
Surr: Dibromofluoromethane	13		10.00		126	70	130	0	0	
Surr: Toluene-d8	9.9		10.00		99.2	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 25

Hall Environmental Analysis Laboratory, Inc.

2206E17 12-Jul-22

WO#:

Client: HILCORP ENERGY

Project: Mansfield H11

Sample ID: Ics-1 99.6uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R89141 RunNo: 89141

Prep Date: Analysis Date: 6/29/2022 SeqNo: 3167818 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 10 99.60 0 102 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 22 of 25

Hall Environmental Analysis Laboratory, Inc.

7.67

2206E17 12-Jul-22

Н

WO#:

Client: HILCORP ENERGY

Project: Mansfield H11

рΗ

Sample ID: 2206E17-005B dup SampType: DUP TestCode: SM4500-H+B / 9040C: pH

Client ID: MW05 Batch ID: R89067 RunNo: 89067

Prep Date: Analysis Date: 6/27/2022 SeqNo: 3163845 Units: pH units

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 23 of 25

Hall Environmental Analysis Laboratory, Inc.

2206E17 12-Jul-22

WO#:

Client: HILCORP ENERGY

Project: Mansfield H11

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: A89067 RunNo: 89067

Prep Date: Analysis Date: 6/27/2022 SeqNo: 3163739 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: A89067 RunNo: 89067

Prep Date: Analysis Date: 6/27/2022 SeqNo: 3163741 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 74.84 20.00 80.00 0 93.5 90 110

Sample ID: 2206E17-005B dup SampType: dup TestCode: SM2320B: Alkalinity

Client ID: MW05 Batch ID: A89067 RunNo: 89067

Prep Date: Analysis Date: 6/27/2022 SeqNo: 3163756 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 139.8 20.00 0.200 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 24 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2206E17**

12-Jul-22

Client: HILCORP ENERGY

Project: Mansfield H11

Sample ID: MB-68467 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 68467 RunNo: 89199

Prep Date: 6/30/2022 Analysis Date: 7/1/2022 SeqNo: 3170769 Units: mq/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-68467 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 68467 RunNo: 89199

Prep Date: 6/30/2022 Analysis Date: 7/1/2022 SeqNo: 3170770 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 25 of 25

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

C	Client Name:	HILCORF	PENERGY	Worl	k Order Nur	mber: 220	6E17		RcptN	o: 1		ļ
R	eceived By:	Sean Liv	vingston	6/25/20	022 9:30:00) AM		5_/	nat			
С	ompleted By:	Sean Liv	vingston	6/25/20	022 11:59:4	5 AM		<	not-			
R	eviewed By:	JN6/	127/22					JL	17 01-			
<u>Cł</u>	nain of Cus	stody										
1.	Is Chain of C	Custody com	plete?			Yes	✓	No 🗌	Not Present			
2.	How was the	e sample del	ivered?			<u>Cou</u>	rier					
	og In											
3.	Was an atter	mpt made to	cool the samp	oles?		Yes	V	No 🗌	NA 🗆			
4.	Were all sam	ples receive	d at a tempera	ature of >0° C	to 6.0°C	Yes	V	No 🗌	NA 🗆			
5.	Sample(s) in	proper cont	ainer(s)?			Yes	V	No 🗌				
6.	Sufficient san	nple volume	for indicated to	est(s)?		Yes	✓	No 🗆				
7.	Are samples ((except VOA	and ONG) pro	operly preserve	ed?	Yes	V	No 🗌				
8.	Was preserva	ative added t	o bottles?			Yes		No 🗸	NA 🗌			
9.	Received at le	east 1 vial w	ith headspace	<1/4" for AQ \	/OA?	Yes	V	No 🗌	NA 🗌			
10.	Were any sar	mple contain	ers received b	roken?		Yes		No 🗸				
11.	Does paperwo	ork match bo	ottle lahels?			Yes		No 🗆	# of preserved bottles checked	v		
			nain of custody)		Yes	V	No 📙	for pH:	r >12 unles	ss noted)	
12.	Are matrices o	correctly ide	ntified on Chai	n of Custody?		Yes	✓	No 🗌	Adjusted?	NO		
			ere requested	?		Yes	✓	No 🗌			_	
	Nere all holdi		e to be met? authorization.)			Yes	~	No 🗌	Checked by:	KPa	6.27	. 27
	cial Handl											
			discrepancies v	vith this order?	,	Yes		No 🗆	NA 🗹			
	Person	Notified:	T		Date	: [************					
	By Who	om:			Via:	еМа	ail 🗀	Phone Fax	☐ In Person			
	Regardi											
	Client Ir	nstructions:					***************************************					
16.	Additional rer	marks:										
17.	Cooler Infor	<u>mation</u>										
	Cooler No			Seal Intact	Seal No	Seal Da	ate	Signed By				
	2	0.9	Good									

Released to Imaging: 3/20/2023 2:50:29 PM

Client:	H:lo	org litch	Killongh	Turn-Around Standard Project Nam Project #:	۲٦	h			HALL ENVIRONMENTA ANALYSIS LABORATOR www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request												
QA/QC	Package: ndard		□ Level 4 (Full Validation)		yde enso	lun.com	TMB's (8021)	RO / MRO)	PCB's		OSIMS		PO4, SO4	7515	Keq		S. le Loyde S.				138:18 AM
□ NEL	(Type)	□ Other		On Ice: # of Coolers: Cooler Temp Container		□ No .9 ±0=0.9 (°C)	BTEX / MTBE / TME	0	8081 Pesticides/8082 PCB's	EDB (Method 504.1)	PAHs by 8310 or 8270SIMS	RCRA 8 Metals	CI, F, Br, NO ₃ , NO ₂ ,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	10C" by 8	N	ations	Anions	# 5
Date 6/24/12	Time	Matrix G W	Sample Name MWOI	Type and #	Type Cool	2206E17	B	占	808		PA	8	ਠੰ	826	827	Tot	<u>د</u>	+			
01	1247		M WOZ		()	001							-	\dashv		-	$\stackrel{\wedge}{\mathbb{H}}$	X	X	X	$\frac{x}{1}$
	1407		MV03			003			\dashv	\dashv	\dashv	-		-	\dashv		+	+	+	+	+
	1200		MWOY			653			\dashv	7	-	\dashv	+	\dashv	-	- Y	+	+	+	+	+
V	1992	1	MW05	1	1	205											1	1	1	1	1
													-								_
4/24/2	1222	Relinquishe	12	Received by:	Via:	Date Time 21/22 552 Date Time C 25/22 9.30	Rem	narks	: ¿	C'-	1	7 1007	50n (@ e	15	olu	~ .	· cs	<u> </u>		Page 130 of

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 04, 2022

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Mansfield 11 OrderNo.: 2209884

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 5 sample(s) on 9/17/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-1

Project: Mansfield 11 Collection Date: 9/16/2022 10:35:00 AM

Lab ID: 2209884-001 **Matrix:** AQUEOUS **Received Date:** 9/17/2022 7:45:00 AM

Analyses	Result	RL (Qual U	Jnits	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: JTT
Fluoride	0.69	0.50	1	mg/L	5	9/21/2022 12:31:51 PM
Chloride	21	2.5	ı	mg/L	5	9/19/2022 8:36:12 PM
Bromide	ND	0.50	I	mg/L	5	9/19/2022 8:36:12 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	9/19/2022 8:36:12 PM
Sulfate	1900	25	* 1	mg/L	50	9/21/2022 12:44:44 PM
Nitrate+Nitrite as N	ND	1.0	I	mg/L	5	9/19/2022 11:41:14 PM
EPA METHOD 200.7: METALS						Analyst: VP
Calcium	560	10	1	mg/L	10	9/23/2022 11:22:17 AM
Magnesium	130	5.0	1	mg/L	5	9/21/2022 12:28:00 PM
Potassium	5.4	1.0	1	mg/L	1	9/21/2022 12:26:34 PM
Sodium	220	5.0	I	mg/L	5	9/21/2022 12:28:00 PM
EPA METHOD 8260B: VOLATILES						Analyst: CCM
Benzene	ND	1.0	1	µg/L	1	9/20/2022 7:19:00 PM
Toluene	ND	1.0		μg/L	1	9/20/2022 7:19:00 PM
Ethylbenzene	ND	1.0		μg/L	1	9/20/2022 7:19:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	9/20/2022 7:19:00 PM
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	9/20/2022 7:19:00 PM
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	9/20/2022 7:19:00 PM
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	9/20/2022 7:19:00 PM
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	9/20/2022 7:19:00 PM
Naphthalene	ND	2.0	i	μg/L	1	9/20/2022 7:19:00 PM
1-Methylnaphthalene	ND	4.0	I	μg/L	1	9/20/2022 7:19:00 PM
2-Methylnaphthalene	ND	4.0	1	μg/L	1	9/20/2022 7:19:00 PM
Acetone	ND	10	1	μg/L	1	9/20/2022 7:19:00 PM
Bromobenzene	ND	1.0	1	μg/L	1	9/20/2022 7:19:00 PM
Bromodichloromethane	ND	1.0	1	μg/L	1	9/20/2022 7:19:00 PM
Bromoform	ND	1.0	1	μg/L	1	9/20/2022 7:19:00 PM
Bromomethane	ND	3.0	1	μg/L	1	9/20/2022 7:19:00 PM
2-Butanone	ND	10	1	μg/L	1	9/20/2022 7:19:00 PM
Carbon disulfide	ND	10	1	μg/L	1	9/20/2022 7:19:00 PM
Carbon Tetrachloride	ND	1.0	1	μg/L	1	9/20/2022 7:19:00 PM
Chlorobenzene	ND	1.0	I	μg/L	1	9/20/2022 7:19:00 PM
Chloroethane	ND	2.0	1	μg/L	1	9/20/2022 7:19:00 PM
Chloroform	ND	1.0	I	μg/L	1	9/20/2022 7:19:00 PM
Chloromethane	ND	3.0	1	μg/L	1	9/20/2022 7:19:00 PM
2-Chlorotoluene	ND	1.0	I	μg/L	1	9/20/2022 7:19:00 PM
4-Chlorotoluene	ND	1.0		μg/L	1	9/20/2022 7:19:00 PM
cis-1,2-DCE	ND	1.0	1	µg/L	1	9/20/2022 7:19:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-1

Project: Mansfield 11 **Collection Date:** 9/16/2022 10:35:00 AM

Lab ID: 2209884-001 **Matrix:** AQUEOUS **Received Date:** 9/17/2022 7:45:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCN
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	9/20/2022 7:19:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
Dibromomethane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	9/20/2022 7:19:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
2-Hexanone	ND	10	μg/L	1	9/20/2022 7:19:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2022 7:19:00 PM
Methylene Chloride	ND	3.0	μg/L	1	9/20/2022 7:19:00 PM
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2022 7:19:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
Styrene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2022 7:19:00 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2022 7:19:00 PM
Vinyl chloride	ND	1.0	μg/L	1	9/20/2022 7:19:00 PM
Xylenes, Total	ND	1.5	μg/L	1	9/20/2022 7:19:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-1

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 10:35:00 AM

 Lab ID:
 2209884-001
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	9/20/2022 7:19:00 PM
Surr: 4-Bromofluorobenzene	90.4	70-130	%Rec	1	9/20/2022 7:19:00 PM
Surr: Dibromofluoromethane	102	70-130	%Rec	1	9/20/2022 7:19:00 PM
Surr: Toluene-d8	88.2	70-130	%Rec	1	9/20/2022 7:19:00 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: JTT
Conductivity	3300	10	μmhos	/c 1	9/19/2022 2:35:03 PM
SM2320B: ALKALINITY					Analyst: JTT
Bicarbonate (As CaCO3)	286.7	20.00	mg/L C	Ca 1	9/19/2022 2:35:03 PM
Carbonate (As CaCO3)	ND	2.000	mg/L C	Ca 1	9/19/2022 2:35:03 PM
Total Alkalinity (as CaCO3)	286.7	20.00	mg/L C	Ca 1	9/19/2022 2:35:03 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: SNS
Total Dissolved Solids	3260	40.0	*D mg/L	1	9/21/2022 4:34:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-2

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 11:15:00 AM

 Lab ID:
 2209884-002
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Result **RL Qual Units** DF **Date Analyzed** Analyses **EPA METHOD 300.0: ANIONS** Analyst: JTT Fluoride 0.87 0.50 mg/L 5 9/21/2022 12:57:35 PM 2.5 Chloride 20 mg/L 5 9/19/2022 9:06:56 PM mg/L **Bromide** ND 0.50 5 9/19/2022 9:06:56 PM Phosphorus, Orthophosphate (As P) ND 2.5 Н mg/L 5 9/19/2022 9:06:56 PM 1900 Sulfate 25 mg/L 50 9/21/2022 1:49:05 PM Nitrate+Nitrite as N ND 1.0 mg/L 5 9/19/2022 11:56:39 PM **EPA METHOD 200.7: METALS** Analyst: VP Calcium 530 10 mg/L 10 9/23/2022 11:23:55 AM Magnesium 150 5.0 5 9/21/2022 12:30:52 PM mg/L Potassium 5.4 1.0 mg/L 1 9/21/2022 12:29:29 PM 9/21/2022 12:30:52 PM Sodium 200 5.0 mg/L 5 **EPA METHOD 8260B: VOLATILES** Analyst: CCM 9/20/2022 7:42:00 PM ND Benzene 1.0 μg/L 1 Toluene ND 1.0 µg/L 1 9/20/2022 7:42:00 PM ND Ethylbenzene 1 0 μg/L 1 9/20/2022 7:42:00 PM Methyl tert-butyl ether (MTBE) NΠ 1.0 μg/L 1 9/20/2022 7:42:00 PM 1,2,4-Trimethylbenzene ND 1 9/20/2022 7:42:00 PM 1.0 μg/L 1,3,5-Trimethylbenzene ND 1.0 μg/L 1 9/20/2022 7:42:00 PM 1,2-Dichloroethane (EDC) ND 1.0 µg/L 1 9/20/2022 7:42:00 PM 1,2-Dibromoethane (EDB) ND μg/L 1 9/20/2022 7:42:00 PM 1.0 Naphthalene ND 2.0 µg/L 1 9/20/2022 7:42:00 PM 1-Methylnaphthalene ND 4.0 μg/L 1 9/20/2022 7:42:00 PM 2-Methylnaphthalene ND 4.0 µg/L 1 9/20/2022 7:42:00 PM ND Acetone 10 μg/L 1 9/20/2022 7:42:00 PM ND 9/20/2022 7:42:00 PM Bromobenzene 1.0 μg/L 1 Bromodichloromethane ND 1.0 μg/L 1 9/20/2022 7:42:00 PM **Bromoform** ND 1.0 µg/L 1 9/20/2022 7:42:00 PM ND 1 9/20/2022 7:42:00 PM Bromomethane 3.0 μg/L 2-Butanone ND 10 μg/L 1 9/20/2022 7:42:00 PM ND Carbon disulfide 10 µg/L 1 9/20/2022 7:42:00 PM Carbon Tetrachloride ND 1.0 1 9/20/2022 7:42:00 PM μg/L Chlorobenzene ND 1.0 µg/L 1 9/20/2022 7:42:00 PM Chloroethane ND 2.0 9/20/2022 7:42:00 PM μg/L 1 Chloroform ND 1.0 µg/L 1 9/20/2022 7:42:00 PM Chloromethane ND 3.0 μg/L 1 9/20/2022 7:42:00 PM 2-Chlorotoluene ND 1 9/20/2022 7:42:00 PM 1.0 μg/L 9/20/2022 7:42:00 PM 4-Chlorotoluene ND 1 1.0 μg/L cis-1,2-DCE 9/20/2022 7:42:00 PM ND 1.0 μg/L

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-2

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 11:15:00 AM

 Lab ID:
 2209884-002
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	9/20/2022 7:42:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
Dibromomethane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	9/20/2022 7:42:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
2-Hexanone	ND	10	μg/L	1	9/20/2022 7:42:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2022 7:42:00 PM
Methylene Chloride	ND	3.0	μg/L	1	9/20/2022 7:42:00 PM
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2022 7:42:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
Styrene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2022 7:42:00 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2022 7:42:00 PM
Vinyl chloride	ND	1.0	μg/L	1	9/20/2022 7:42:00 PM
Xylenes, Total	ND	1.5	μg/L	1	9/20/2022 7:42:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-2

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 11:15:00 AM

 Lab ID:
 2209884-002
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	9/20/2022 7:42:00 PM
Surr: 4-Bromofluorobenzene	90.3	70-130	%Rec	1	9/20/2022 7:42:00 PM
Surr: Dibromofluoromethane	101	70-130	%Rec	1	9/20/2022 7:42:00 PM
Surr: Toluene-d8	87.8	70-130	%Rec	1	9/20/2022 7:42:00 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: JTT
Conductivity	3400	10	µmhos	/c 1	9/19/2022 2:49:26 PM
SM2320B: ALKALINITY					Analyst: JTT
Bicarbonate (As CaCO3)	289.0	20.00	mg/L C	a 1	9/19/2022 2:49:26 PM
Carbonate (As CaCO3)	ND	2.000	mg/L C	a 1	9/19/2022 2:49:26 PM
Total Alkalinity (as CaCO3)	289.0	20.00	mg/L C	a 1	9/19/2022 2:49:26 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: SNS
Total Dissolved Solids	3300	40.0	*D mg/L	1	9/21/2022 4:34:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-3

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 11:55:00 AM

 Lab ID:
 2209884-003
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	ND	0.50	mg/L	5	9/19/2022 9:38:28 PM
Chloride	20	2.5	mg/L	5	9/19/2022 9:38:28 PM
Bromide	ND	0.50	mg/L	5	9/19/2022 9:38:28 PM
Phosphorus, Orthophosphate (As P)	ND	2.5 H	l mg/L	5	9/19/2022 9:38:28 PM
Sulfate	1600	25 *	mg/L	50	9/21/2022 2:01:56 PM
Nitrate+Nitrite as N	ND	1.0	mg/L	5	9/20/2022 12:12:04 AM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	600	10	mg/L	10	9/23/2022 11:25:38 AM
Magnesium	36	1.0	mg/L	1	9/21/2022 12:32:07 PM
Potassium	3.4	1.0	mg/L	1	9/21/2022 12:32:07 PM
Sodium	210	5.0	mg/L	5	9/21/2022 12:38:37 PM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Toluene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Ethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Naphthalene	ND	2.0	μg/L	1	9/20/2022 8:05:00 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	9/20/2022 8:05:00 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	9/20/2022 8:05:00 PM
Acetone	ND	10	μg/L	1	9/20/2022 8:05:00 PM
Bromobenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Bromoform	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Bromomethane	ND	3.0	μg/L	1	9/20/2022 8:05:00 PM
2-Butanone	ND	10	μg/L	1	9/20/2022 8:05:00 PM
Carbon disulfide	ND	10	μg/L	1	9/20/2022 8:05:00 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Chlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Chloroethane	ND	2.0	μg/L	1	9/20/2022 8:05:00 PM
Chloroform	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Chloromethane	ND	3.0	μg/L	1	9/20/2022 8:05:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
cis-1,2-DCE	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-3

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 11:55:00 AM

 Lab ID:
 2209884-003
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	9/20/2022 8:05:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Dibromomethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	9/20/2022 8:05:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
2-Hexanone	ND	10	μg/L	1	9/20/2022 8:05:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2022 8:05:00 PM
Methylene Chloride	ND	3.0	μg/L	1	9/20/2022 8:05:00 PM
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2022 8:05:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Styrene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2022 8:05:00 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2022 8:05:00 PM
Vinyl chloride	ND	1.0	μg/L	1	9/20/2022 8:05:00 PM
Xylenes, Total	ND	1.5	μg/L	1	9/20/2022 8:05:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-3

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 11:55:00 AM

 Lab ID:
 2209884-003
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: CCM
Surr: 1,2-Dichloroethane-d4	104	70-130		%Rec	1	9/20/2022 8:05:00 PM
Surr: 4-Bromofluorobenzene	89.4	70-130		%Rec	1	9/20/2022 8:05:00 PM
Surr: Dibromofluoromethane	103	70-130		%Rec	1	9/20/2022 8:05:00 PM
Surr: Toluene-d8	88.0	70-130		%Rec	1	9/20/2022 8:05:00 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: JTT
Conductivity	3000	10		µmhos/c	1	9/19/2022 3:03:54 PM
SM2320B: ALKALINITY						Analyst: JTT
Bicarbonate (As CaCO3)	273.7	20.00		mg/L Ca	1	9/19/2022 3:03:54 PM
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	9/19/2022 3:03:54 PM
Total Alkalinity (as CaCO3)	273.7	20.00		mg/L Ca	1	9/19/2022 3:03:54 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: SNS
Total Dissolved Solids	2850	40.0	*D	mg/L	1	9/21/2022 4:34:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-4

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 12:30:00 PM

 Lab ID:
 2209884-004
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	0.74	0.50	mg/L	5	9/21/2022 2:27:40 PM
Chloride	23	2.5	mg/L	5	9/19/2022 10:10:10 PM
Bromide	ND	0.50	mg/L	5	9/19/2022 10:10:10 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	H mg/L	5	9/19/2022 10:10:10 PM
Sulfate	1800	50	* mg/L	100	9/21/2022 2:14:48 PM
Nitrate+Nitrite as N	ND	1.0	mg/L	5	9/20/2022 12:27:28 AM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	560	10	mg/L	10	9/23/2022 11:27:13 AM
Magnesium	190	5.0	mg/L	5	9/21/2022 12:44:16 PM
Potassium	4.5	1.0	mg/L	1	9/21/2022 12:40:08 PM
Sodium	220	5.0	mg/L	5	9/21/2022 12:44:16 PM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Toluene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Ethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Naphthalene	ND	2.0	μg/L	1	9/20/2022 8:28:00 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	9/20/2022 8:28:00 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	9/20/2022 8:28:00 PM
Acetone	ND	10	μg/L	1	9/20/2022 8:28:00 PM
Bromobenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Bromoform	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Bromomethane	ND	3.0	μg/L	1	9/20/2022 8:28:00 PM
2-Butanone	ND	10	μg/L	1	9/20/2022 8:28:00 PM
Carbon disulfide	ND	10	μg/L	1	9/20/2022 8:28:00 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Chlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Chloroethane	ND	2.0	μg/L	1	9/20/2022 8:28:00 PM
Chloroform	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Chloromethane	ND	3.0	μg/L	1	9/20/2022 8:28:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
cis-1,2-DCE	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-4

Project: Mansfield 11 Collection Date: 9/16/2022 12:30:00 PM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	9/20/2022 8:28:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Dibromomethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	9/20/2022 8:28:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
2-Hexanone	ND	10	μg/L	1	9/20/2022 8:28:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2022 8:28:00 PM
Methylene Chloride	ND	3.0	μg/L	1	9/20/2022 8:28:00 PM
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2022 8:28:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Styrene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2022 8:28:00 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2022 8:28:00 PM
Vinyl chloride	ND	1.0	μg/L	1	9/20/2022 8:28:00 PM
Xylenes, Total	ND	1.5	μg/L	1	9/20/2022 8:28:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-4

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 12:30:00 PM

 Lab ID:
 2209884-004
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	1	9/20/2022 8:28:00 PM
Surr: 4-Bromofluorobenzene	91.5	70-130	%Rec	1	9/20/2022 8:28:00 PM
Surr: Dibromofluoromethane	105	70-130	%Rec	1	9/20/2022 8:28:00 PM
Surr: Toluene-d8	87.8	70-130	%Rec	1	9/20/2022 8:28:00 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: JTT
Conductivity	3500	10	μmhos	/c 1	9/19/2022 3:17:57 PM
SM2320B: ALKALINITY					Analyst: JTT
Bicarbonate (As CaCO3)	281.5	20.00	mg/L C	a 1	9/19/2022 3:17:57 PM
Carbonate (As CaCO3)	ND	2.000	mg/L C	a 1	9/19/2022 3:17:57 PM
Total Alkalinity (as CaCO3)	281.5	20.00	mg/L C	a 1	9/19/2022 3:17:57 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: SNS
Total Dissolved Solids	3490	40.0	*D mg/L	1	9/21/2022 4:34:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 25

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-5

Project: Mansfield 11 **Collection Date:** 9/16/2022 1:00:00 PM

Lab ID: 2209884-005 **Matrix:** AQUEOUS **Received Date:** 9/17/2022 7:45:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	ND	0.50	mg/L	5	9/19/2022 10:41:07 PM
Chloride	16	2.5	mg/L	5	9/19/2022 10:41:07 PM
Bromide	ND	0.50	mg/L	5	9/19/2022 10:41:07 PM
Phosphorus, Orthophosphate (As P)	ND	2.5 H	mg/L	5	9/19/2022 10:41:07 PM
Sulfate	2400	50 *	mg/L	100	9/21/2022 2:40:32 PM
Nitrate+Nitrite as N	ND	1.0	mg/L	5	9/20/2022 12:42:53 AM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	490	5.0	mg/L	5	9/23/2022 11:30:33 AM
Magnesium	23	1.0	mg/L	1	9/21/2022 12:48:40 PM
Potassium	4.9	1.0	mg/L	1	9/21/2022 12:48:40 PM
Sodium	700	10	mg/L	10	9/23/2022 11:28:53 AM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Toluene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Ethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Naphthalene	ND	2.0	μg/L	1	9/20/2022 8:51:00 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	9/20/2022 8:51:00 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	9/20/2022 8:51:00 PM
Acetone	ND	10	μg/L	1	9/20/2022 8:51:00 PM
Bromobenzene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Bromoform	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Bromomethane	ND	3.0	μg/L	1	9/20/2022 8:51:00 PM
2-Butanone	ND	10	μg/L	1	9/20/2022 8:51:00 PM
Carbon disulfide	ND	10	μg/L	1	9/20/2022 8:51:00 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Chlorobenzene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Chloroethane	ND	2.0	μg/L	1	9/20/2022 8:51:00 PM
Chloroform	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
Chloromethane	ND	3.0	μg/L	1	9/20/2022 8:51:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM
cis-1,2-DCE	ND	1.0	μg/L	1	9/20/2022 8:51:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 25

2209884-005

Lab ID:

Analytical Report Lab Order 2209884

Received Date: 9/17/2022 7:45:00 AM

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-5

Project: Mansfield 11 Collection Date: 9/16/2022 1:00:00 PM Matrix: AQUEOUS

Result **RL Qual Units** DF **Date Analyzed** Analyses **EPA METHOD 8260B: VOLATILES** Analyst: CCM μg/L cis-1.3-Dichloropropene ND 1.0 1 9/20/2022 8:51:00 PM 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 9/20/2022 8:51:00 PM ND Dibromochloromethane 1.0 μg/L 1 9/20/2022 8:51:00 PM Dibromomethane ND 1.0 μg/L 1 9/20/2022 8:51:00 PM ND 1.2-Dichlorobenzene 1.0 μg/L 1 9/20/2022 8:51:00 PM 1,3-Dichlorobenzene ND 1.0 μg/L 1 9/20/2022 8:51:00 PM ND 1,4-Dichlorobenzene 1.0 μg/L 1 9/20/2022 8:51:00 PM Dichlorodifluoromethane ND 1.0 μg/L 1 9/20/2022 8:51:00 PM ND 1,1-Dichloroethane 1.0 µg/L 1 9/20/2022 8:51:00 PM 1.1-Dichloroethene ND 1 0 μg/L 1 9/20/2022 8:51:00 PM 1,2-Dichloropropane ND 1.0 µg/L 1 9/20/2022 8:51:00 PM ND μg/L 9/20/2022 8:51:00 PM 1,3-Dichloropropane 1.0 1 2,2-Dichloropropane ND 2.0 µg/L 1 9/20/2022 8:51:00 PM NΠ 1 9/20/2022 8:51:00 PM 1,1-Dichloropropene 1.0 μg/L Hexachlorobutadiene ND 1.0 µg/L 1 9/20/2022 8:51:00 PM ND 2-Hexanone 10 μg/L 1 9/20/2022 8:51:00 PM Isopropylbenzene NΠ 1.0 μg/L 1 9/20/2022 8:51:00 PM 4-Isopropyltoluene ND 1 1.0 μg/L 9/20/2022 8:51:00 PM 4-Methyl-2-pentanone ND 10 μg/L 1 9/20/2022 8:51:00 PM Methylene Chloride ND 3.0 µg/L 1 9/20/2022 8:51:00 PM n-Butylbenzene ND 3.0 1 9/20/2022 8:51:00 PM μg/L n-Propylbenzene ND 1.0 µg/L 1 9/20/2022 8:51:00 PM sec-Butylbenzene ND 1.0 μg/L 1 9/20/2022 8:51:00 PM Styrene ND 1.0 µg/L 1 9/20/2022 8:51:00 PM tert-Butylbenzene NΠ 1.0 μg/L 1 9/20/2022 8:51:00 PM 1,1,1,2-Tetrachloroethane ND 9/20/2022 8:51:00 PM 1.0 μg/L 1 ND 2.0 1,1,2,2-Tetrachloroethane μg/L 1 9/20/2022 8:51:00 PM Tetrachloroethene (PCE) ND 1.0 µg/L 1 9/20/2022 8:51:00 PM trans-1,2-DCE ND 1 1.0 μg/L 9/20/2022 8:51:00 PM trans-1,3-Dichloropropene ND 1.0 μg/L 1 9/20/2022 8:51:00 PM ND 1 1,2,3-Trichlorobenzene 1.0 µg/L 9/20/2022 8:51:00 PM ND 1.0 1 9/20/2022 8:51:00 PM 1,2,4-Trichlorobenzene μg/L 1,1,1-Trichloroethane ND 1.0 µg/L 1 9/20/2022 8:51:00 PM ND 1,1,2-Trichloroethane 1.0 μg/L 1 9/20/2022 8:51:00 PM Trichloroethene (TCE) ND 1.0 µg/L 1 9/20/2022 8:51:00 PM Trichlorofluoromethane ND 1 1.0 μg/L 9/20/2022 8:51:00 PM 1,2,3-Trichloropropane ND 1 9/20/2022 8:51:00 PM 2.0 μg/L Vinyl chloride ND 1 1.0 μg/L 9/20/2022 8:51:00 PM Xylenes, Total 9/20/2022 8:51:00 PM ND 1.5 μg/L

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Е Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL

Page 14 of 25

Analytical Report Lab Order 2209884

Date Reported: 10/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-5

 Project:
 Mansfield 11
 Collection Date: 9/16/2022 1:00:00 PM

 Lab ID:
 2209884-005
 Matrix: AQUEOUS
 Received Date: 9/17/2022 7:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	9/20/2022 8:51:00 PM
Surr: 4-Bromofluorobenzene	90.2	70-130	%Rec	1	9/20/2022 8:51:00 PM
Surr: Dibromofluoromethane	104	70-130	%Rec	1	9/20/2022 8:51:00 PM
Surr: Toluene-d8	87.4	70-130	%Rec	1	9/20/2022 8:51:00 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: JTT
Conductivity	4500	10	µmhos/d	: 1	9/19/2022 3:32:30 PM
SM2320B: ALKALINITY					Analyst: JTT
Bicarbonate (As CaCO3)	141.6	20.00	mg/L Ca	1	9/19/2022 3:32:30 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	9/19/2022 3:32:30 PM
Total Alkalinity (as CaCO3)	141.6	20.00	mg/L Ca	1	9/19/2022 3:32:30 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: SNS
Total Dissolved Solids	4000	20.0	* mg/L	1	9/21/2022 4:34:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884** *05-Oct-22*

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB-70299	Tes	tCode: EF	PA Method	200.7: Metals						
Client ID: PBW	Batch	n ID: 702	299	RunNo: 91216						
Prep Date: 9/20/2022	Analysis D	Date: 9/2	21/2022	5	SeqNo: 32	263482	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Sodium	ND	1.0								

Sample ID: LCSLL-70	299 SampT	Type: LC :	SLL	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: BatchQC	Batcl	h ID: 702	299	F	RunNo: 91	1216				
Prep Date: 9/20/202	2 Analysis D	Date: 9/2	21/2022	5	SeqNo: 32	263483	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0	0.5000	0	104	50	150			
Magnesium	ND	1.0	0.5000	0	106	50	150			
Potassium	ND	1.0	0.5000	0	106	50	150			
Sodium	ND	1.0	0.5000	0	107	50	150			

Sample ID: LCS-702	299 Samp	SampType: LCS			tCode: EF	PA Method				
Client ID: LCSW	Bato	ch ID: 702	299	F	RunNo: 9	1216				
Prep Date: 9/20/20	Analysis	Date: 9/2	21/2022	5	SeqNo: 32	263484	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	51	1.0	50.00	0	102	85	115			
Magnesium	52	1.0	50.00	0	105	85	115			
Potassium	51	1.0	50.00	0	101	85	115			
Sodium	52	1.0	50.00	0	103	85	115			

Sample ID:	2209884-004CMS	Sampl	ype: MS		les	tCode: EF	PA Method	200.7: Metals			
Client ID:	MW-4	Batch	ID: 702	99	F	RunNo: 9 1	1216				
Prep Date:	9/20/2022	Analysis D	ate: 9/2	21/2022	5	SeqNo: 32	263530	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Potassium		57	1.0	50.00	4.525	106	70	130			

Sample ID:	2209884-004CMSD	SampT	ype: MS	D	Tes	tCode: EF	A Method	200.7: Metals			
Client ID:	MW-4	Batch	ID: 702	299	F	RunNo: 9 1	216				
Prep Date:	9/20/2022	Analysis D	ate: 9/2	21/2022	5	SeqNo: 32	263531	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Potassium		57	1.0	50.00	4.525	104	70	130	1.60	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884** *05-Oct-22*

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: 2209884-004CMS SampType: MS TestCode: EPA Method 200.7: Metals

Client ID: MW-4 Batch ID: 70299 RunNo: 91216

Prep Date: 9/20/2022 Analysis Date: 9/21/2022 SeqNo: 3263535 Units: mg/L

SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result **PQL** LowLimit Qual Magnesium 230 5.0 50.00 185.4 98.3 70 130 Sodium 270 5.0 50.00 221.5 92.6 70 130

Sample ID: 2209884-004CMSD SampType: MSD TestCode: EPA Method 200.7: Metals

Client ID: **MW-4** Batch ID: **70299** RunNo: **91216**

Prep Date: 9/20/2022 Analysis Date: 9/21/2022 SeqNo: 3263537 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Magnesium 230 5.0 50.00 185.4 93.5 70 1.02 20 Sodium 270 5.0 50.00 221.5 92.6 70 130 0.00108 20

Sample ID: 2209884-005CMS SampType: MS TestCode: EPA Method 200.7: Metals

Client ID: MW-5 Batch ID: 70299 RunNo: 91216

Prep Date: 9/20/2022 Analysis Date: 9/21/2022 SeqNo: 3263541 Units: mg/L

SPK value **RPDLimit** SPK Ref Val %REC %RPD Analyte Result **PQL** LowLimit HighLimit Qual Magnesium 74 1.0 50.00 22.79 103 70 130 50.00 130 Potassium 57 1.0 4.886 104 70

Sample ID: 2209884-005CMSD SampType: MSD TestCode: EPA Method 200.7: Metals

Client ID: MW-5 Batch ID: 70299 RunNo: 91216

Prep Date: 9/20/2022 Analysis Date: 9/21/2022 SeqNo: 3263542 Units: mg/L

Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 76 1.0 50.00 22.79 106 70 130 2.15 20 Magnesium Potassium 58 1.0 50.00 4.886 107 70 130 1.86 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884** *05-Oct-22*

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB	Samp1	уре: МЕ	BLK	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID: PBW	Batcl	n ID: R9	1145	F	RunNo: 91145					
Prep Date:	Analysis D	Date: 9/	19/2022	9	SeqNo: 32	260946	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P)	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								

Sample ID: LCS	SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID: LCSW	Batcl	n ID: R9	1145	F	RunNo: 91	1145				
Prep Date:	Analysis D	Date: 9/ 1	19/2022	5	SeqNo: 32	260947	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.54	0.10	0.5000	0	109	90	110			_
Chloride	4.8	0.50	5.000	0	95.0	90	110			
Bromide	2.5	0.10	2.500	0	98.9	90	110			
Phosphorus, Orthophosphate (As P)	4.5	0.50	5.000	0	90.7	90	110			
Nitrate+Nitrite as N	3.6	0.20	3.500	0	102	90	110			

Sample ID: MB	SampT	ype: ME	BLK	TestCode: EPA Method 300.0: Anions						
Client ID: PBW	Batch	n ID: R9	1145	F	RunNo: 91	1145				
Prep Date:	Analysis D	Date: 9/	19/2022	5	SeqNo: 32	260983	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P)	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								

Sample ID: LCS	SampT	ype: LC	s	TestCode: EPA Method			300.0: Anions			
Client ID: LCSW	Batcl	n ID: R9	1145	RunNo: 91145						
Prep Date:	Analysis D	Date: 9/	19/2022	5	SeqNo: 32	260984	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.55	0.10	0.5000	0	111	90	110			S
Chloride	4.8	0.50	5.000	0	96.7	90	110			
Bromide	2.5	0.10	2.500	0	100	90	110			
Phosphorus, Orthophosphate (As P)	4.7	0.50	5.000	0	94.2	90	110			
Nitrate+Nitrite as N	3.6	0.20	3.500	0	103	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884**

Qual

05-Oct-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R91222 RunNo: 91222

Prep Date: Analysis Date: 9/21/2022 SeqNo: 3264319 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Fluoride
 ND
 0.10

 Sulfate
 ND
 0.50

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R91222 RunNo: 91222

Prep Date: Analysis Date: 9/21/2022 SeqNo: 3264320 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Fluoride 0.53 0.10 0.5000 0 105 90 0 97.7 Sulfate 9.8 0.50 10.00 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 19 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: 2209884 05-Oct-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: 100ng lcs SampType: LCS				TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	n ID: R9	1153	F	RunNo: 91	1153				
Prep Date:	Analysis D	Date: 9/2	20/2022	9	SeqNo: 32	261708	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130			
Toluene	20	1.0	20.00	0	98.9	70	130			
Chlorobenzene	20	1.0	20.00	0	101	70	130			
1,1-Dichloroethene	19	1.0	20.00	0	95.1	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	102	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	9.0		10.00		90.1	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.0		10.00		90.0	70	130			

Sample ID: MB SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Batch ID: **R91153** Client ID: PBW RunNo: 91153 Prep Date: Analysis Date: 9/20/2022 SeqNo: 3261716 Units: µg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte

Benzene	ND	1.0	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
Methyl tert-butyl ether (MTBE)	ND	1.0	
1,2,4-Trimethylbenzene	ND	1.0	
1,3,5-Trimethylbenzene	ND	1.0	
1,2-Dichloroethane (EDC)	ND	1.0	
1,2-Dibromoethane (EDB)	ND	1.0	
Naphthalene	ND	2.0	
1-Methylnaphthalene	ND	4.0	
2-Methylnaphthalene	ND	4.0	
Acetone	ND	10	
Bromobenzene	ND	1.0	
Bromodichloromethane	ND	1.0	
Bromoform	ND	1.0	
Bromomethane	ND	3.0	
2-Butanone	ND	10	
Carbon disulfide	ND	10	
Carbon Tetrachloride	ND	1.0	
Chlorobenzene	ND	1.0	
Chloroethane	ND	2.0	
Chloroform	ND	1.0	
Chloromethane	ND	3.0	
2-Chlorotoluene	ND	1.0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 20 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884**

05-Oct-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB	Samp1	уре: МЕ	BLK	TestCode: EPA Method 8260B: VOLATILES								
Client ID: PBW	Batcl	n ID: R9	1153	F	RunNo: 91	1153						
Prep Date:	Analysis [Date: 9/ 2	20/2022	;	SeqNo: 32	261716	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
1-Chlorotoluene	ND	1.0										
cis-1,2-DCE	ND	1.0										
cis-1,3-Dichloropropene	ND	1.0										
1,2-Dibromo-3-chloropropane	ND	2.0										
Dibromochloromethane	ND	1.0										
Dibromomethane	ND	1.0										
1,2-Dichlorobenzene	ND	1.0										
1,3-Dichlorobenzene	ND	1.0										
1,4-Dichlorobenzene	ND	1.0										
Dichlorodifluoromethane	ND	1.0										
1,1-Dichloroethane	ND	1.0										
1,1-Dichloroethene	ND	1.0										
1,2-Dichloropropane	ND	1.0										
1,3-Dichloropropane	ND	1.0										
2,2-Dichloropropane	ND	2.0										
1,1-Dichloropropene	ND	1.0										
Hexachlorobutadiene	ND	1.0										
2-Hexanone	ND	10										
sopropylbenzene	ND	1.0										
1-Isopropyltoluene	ND	1.0										
1-Methyl-2-pentanone	ND	10										
Methylene Chloride	ND	3.0										
n-Butylbenzene	ND	3.0										
n-Propylbenzene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
ert-Butylbenzene	ND	1.0										
1,1,1,2-Tetrachloroethane	ND	1.0										
1,1,2,2-Tetrachloroethane	ND	2.0										
Tetrachloroethene (PCE)	ND	1.0										
rans-1,2-DCE	ND	1.0										
rans-1,3-Dichloropropene	ND	1.0										
1,2,3-Trichlorobenzene	ND	1.0										
1,2,4-Trichlorobenzene	ND	1.0										
1,1,1-Trichloroethane	ND	1.0										
1,1,2-Trichloroethane	ND	1.0										
Trichloroethene (TCE)	ND	1.0										
Trichlorofluoromethane	ND	1.0										
1,2,3-Trichloropropane	ND ND	2.0										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884** *05-Oct-22*

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB Client ID: PBW	•	TestCode: EPA Method 8260B: VOLA ch ID: R91153 RunNo: 91153						TILES		
Prep Date:	Analysis [20/2022		SeqNo: 32		Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		106	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		92.7	70	130			
Surr: Dibromofluoromethane	11		10.00		105	70	130			
Surr: Toluene-d8	9.0		10.00		89.8	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884** *05-Oct-22*

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: Ics-1 98.9uS eC SampType: LCS TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R91160 RunNo: 91160

Prep Date: Analysis Date: 9/19/2022 SeqNo: 3261531 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 99 10 98.90 0 99.8 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 23 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884** *05-Oct-22*

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb-1 alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R91160 RunNo: 91160

Prep Date: Analysis Date: 9/19/2022 SeqNo: 3261497 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R91160 RunNo: 91160

Prep Date: Analysis Date: 9/19/2022 SeqNo: 3261498 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.00 20.00 80.00 0 97.5 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 24 of 25

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209884**

05-Oct-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB-70287 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 70287 RunNo: 91214

Prep Date: 9/20/2022 Analysis Date: 9/21/2022 SeqNo: 3263359 Units: mq/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-70287 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 70287 RunNo: 91214

Prep Date: 9/20/2022 Analysis Date: 9/21/2022 SeqNo: 3263360 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1020 20.0 1000 0 102 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 25

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

LABORATORY

C	lient Name:	HILCORP	ENERGY	Wo	rk Order Numbe	r: 220	9884		Rcp	otNo: 1
R	eceived By:	Juan Roj	as	9/17/2	2022 7:45:00 AN	Л		General)		
С	ompleted By:	Cheyenn		9/19/	2022 8:15:23 AM	Л		(Janes)		
R	eviewed By:	110 -	55.7			•		Gue		
<u>Cł</u>	nain of Cus	<u>tody</u>								
1.	Is Chain of Cu	ustody comp	olete?			Yes	V	No 🗌	Not Present [
2.	How was the	sample deli	vered?			Cou	rier			
	og In Was an attem	pt made to	cool the sam	nles?		Yes		No 🗌	NA [
		pau .o	ood the our	pico:		165	V	140	NA L	
4.	Were all samp	les received	d at a tempe	rature of >0°	C to 6.0°C	Yes	✓	No 🗌	NA [
5.	Sample(s) in p	oroper conta	niner(s)?			Yes	✓	No 🗌		
6.	Sufficient sam	ple volume i	for indicated	test(s)?		Yes	V	No 🗌		
7.	Are samples (e	except VOA	and ONG) p	roperly preser	ved?	Yes	V	No 🗌		
8.	Was preservat	ive added to	bottles?			Yes		No 🗸	NA 🗆]
9.	Received at lea	ast 1 vial wit	th headspace	e <1/4" for AQ	VOA?	Yes	✓	No 🗌	NA 🗆	
10.	Were any sam	ple contain	ers received	broken?		Yes		No 🗸		
									# of preserved bottles checked	in
	Does paperwoi (Note discrepa			w)		Yes	✓	No 🗌	for pH:	2 or >12 unloss noted)
	Are matrices co				?	Yes	V	No 🗌	Adjusted?	2 or >12 unless noted)
	s it clear what				•	Yes		No 🗆		
	Were all holdin (If no, notify cu)		Yes		No 🗌	Checked by	inalial22
Spe	cial Handli	ng (if app	olicable)							
	Was client not			with this orde	r?	Yes		No 🗌	NA N	
	Person N	Notified:			Date:	ANTONOOS STATE	SACTORIS ACTION	Management of the Control of the Con		
	By Whor	m:			Via: [eMa	ail 🗆	Phone Fax	In Person	
	Regardir	ng:		COURT DE CONTRACTOR DE CONTRAC		TOTAL SERVICE	-			
	Client In:	structions:								
16.	Additional rem	narks:								
17.	Cooler Inforn	nation								
	Cooler No	Temp °C	Condition	Seal Intac	Seal No	Seal Da	ate	Signed By		
	1	1.9	Good	Yes				•		

\approx
6
~
100
2
6
2
-
0
_
-
2
-8
νQ
=
-2
- 4
• •
240
~
1
1
2
20
2
20/2
20/2
20/202
20/202
20/2
20/2023
20/2023 2
20/2023
20/2023 2:
20/2023 2:5
20/2023 2:50
20/2023 2:50:
20/2023 2:50:
20/2023 2:50:2
20/2023 2:50:2
20/2023 2:50:29
20/2023 2:50:29
20/2023 2:50:29 P
20/2023 2:50:29 PM
20/2023 2:50:29 PM
20/2023 2:50:29 P

	Cha	in-of-	Custody Record	Turn-Around Ti	me:		7 p				A 1			/TE		NBM	n	n -u- /	Recei
Client:	Hilcorp	Farmingt	on NM	X Standard	□ Rusl	n											IEN		AL ve RY
				Project Name:			1							nment					_
Mailing	Address	s: 382 Ro	ad 3100 Aztec, NM 87410		Mansfield #	11		40	001 H					uerqu			100		ЭСД:
Billing	Address:	PO Box	61529 Houston, TX 77208	Project #:	Widtholicia #	<u> </u>	1)5-34				505-					1/1:
Phone		505-486		7					GI. JC	70-04	J-39	NAME OF TAXABLE PARTY.	CONTRACTOR OF THE PARTY OF	Regi					
email o	r Fax#:	Brandon	.Sinclair@hilcorp.com	Project Manage	er:		804	Office Const		205200000						Misucini			131
QA/QC □ Star	Package:		□ Level 4 (Full Validation)	M:tch	Mitch Killough														1.38:18
Accred	itation:	□ Az Co	mpliance	Sampler:	Brandon Sin		250ml HNO3, 125ml H2SO4	亨											
□ NEL		□ Other		On Ice:				40ml VOA HCI											
□ EDD	(Type)		 		2		300ml,	l m											
, n				Cooler Temp(inc	luding CF).	06-1.9	, SOTA	8260 4			1								
Date	Time	Matrix	Sample Name	Container Type	Preservative Type		L Cations/Anions/TDS	Volatiles 82											
·				anu #	 	2209884		>	\vdash	\dashv	+	+	+	$\vdash \vdash$	\dashv	+	+	+	++
9-16	1035	Water	MW-1	Various	Various	001	X	Х			+	-	_	\vdash	4	\dashv	\bot	+	+
	1115	Water	MW-2	Various	Various	COZ	Х	Х	\sqcup		_	_	_	\sqcup	_	_	\perp	\perp	$\bot \bot$
	1155	Water	MW-3	Various	Various	003	X	Х						Ш		\perp		\perp	
	1230	Water	MW-4	Various	Various	004	Х	х											
	1300	Water	MW-5	Various	Various	005	Х	Х											
											\perp					\perp		\perp	
																\perp		\perp	
											\perp					\perp		\perp	
Date:	Time: 1554	Relinquish	ed by:	Received by:	Via:	Date Time -9/14/22 \ 554	Rer	nark	s: S	peci	al	Po	c.ns	مک	ze f	Note	1		
Date:	Time:	Relinguish	ed by:	0,	Via:	Date' Time	1												Page
1/14/22	1846	1/4	Muthait	24	lumer.	9/17/22 7/45	+												e 1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 12, 2023

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Mansfield 11 OrderNo.: 2212E08

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 5 sample(s) on 12/28/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-1

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 1:15:00 PM

 Lab ID:
 2212E08-001
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	ND	0.50	mg/L	5	12/28/2022 3:21:40 PM
Chloride	21	2.5	mg/L	5	12/28/2022 3:21:40 PM
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	12/28/2022 3:21:40 PM
Bromide	ND	0.50	mg/L	5	12/28/2022 3:21:40 PM
Nitrogen, Nitrate (As N)	ND	0.50	mg/L	5	12/28/2022 3:21:40 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	12/28/2022 3:21:40 PM
Sulfate	2000	25	* mg/L	50	1/5/2023 3:31:11 AM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	550	5.0	E mg/L	5	1/11/2023 8:59:41 AM
Magnesium	120	5.0	mg/L	5	1/11/2023 8:59:41 AM
Potassium	3.4	1.0	mg/L	1	1/3/2023 2:35:09 PM
Sodium	210	5.0	mg/L	5	1/11/2023 8:59:41 AM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Toluene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Ethylbenzene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Naphthalene	ND	2.0	μg/L	1	1/3/2023 9:12:54 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 9:12:54 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 9:12:54 PM
Acetone	ND	10	μg/L	1	1/3/2023 9:12:54 PM
Bromobenzene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Bromodichloromethane	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Bromoform	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Bromomethane	ND	3.0	μg/L	1	1/3/2023 9:12:54 PM
2-Butanone	ND	10	μg/L	1	1/3/2023 9:12:54 PM
Carbon disulfide	ND	10	μg/L	1	1/3/2023 9:12:54 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Chlorobenzene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Chloroethane	ND	2.0	μg/L	1	1/3/2023 9:12:54 PM
Chloroform	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
Chloromethane	ND	3.0	μg/L	1	1/3/2023 9:12:54 PM
2-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM
4-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 9:12:54 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-1

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 1:15:00 PM

 Lab ID:
 2212E08-001
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

EPA METHOD 8260B: VOLATILES cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0	μg/L μg/L μg/L	1 1	Analyst: RAA 1/3/2023 9:12:54 PM
cis-1,3-DichloropropeneND1.01,2-Dibromo-3-chloropropaneND2.0DibromochloromethaneND1.0DibromomethaneND1.0	μg/L		1/3/2023 0·12·54 DM
1,2-Dibromo-3-chloropropaneND2.0DibromochloromethaneND1.0DibromomethaneND1.0		1	1/3/2023 3.12.34 1 10
DibromochloromethaneND1.0DibromomethaneND1.0	ua/L		1/3/2023 9:12:54 PM
Dibromomethane ND 1.0		1	1/3/2023 9:12:54 PM
	μg/L	1	1/3/2023 9:12:54 PM
1,2-Dichlorobenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
	μg/L	1	1/3/2023 9:12:54 PM
1,3-Dichlorobenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,4-Dichlorobenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
Dichlorodifluoromethane ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,1-Dichloroethane ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,1-Dichloroethene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,2-Dichloropropane ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,3-Dichloropropane ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
2,2-Dichloropropane ND 2.0	μg/L	1	1/3/2023 9:12:54 PM
1,1-Dichloropropene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
Hexachlorobutadiene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
2-Hexanone ND 10	μg/L	1	1/3/2023 9:12:54 PM
Isopropylbenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
4-Isopropyltoluene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
4-Methyl-2-pentanone ND 10	μg/L	1	1/3/2023 9:12:54 PM
Methylene Chloride ND 3.0	μg/L	1	1/3/2023 9:12:54 PM
n-Butylbenzene ND 3.0	μg/L	1	1/3/2023 9:12:54 PM
n-Propylbenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
sec-Butylbenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
Styrene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
tert-Butylbenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,1,1,2-Tetrachloroethane ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,1,2,2-Tetrachloroethane ND 2.0	μg/L	1	1/3/2023 9:12:54 PM
Tetrachloroethene (PCE) ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
trans-1,2-DCE ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
trans-1,3-Dichloropropene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,2,3-Trichlorobenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,2,4-Trichlorobenzene ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,1,1-Trichloroethane ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,1,2-Trichloroethane ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
Trichloroethene (TCE) ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
Trichlorofluoromethane ND 1.0	μg/L	1	1/3/2023 9:12:54 PM
1,2,3-Trichloropropane ND 2.0	μg/L	1	1/3/2023 9:12:54 PM
Vinyl chloride ND 1.0	μg/L	1	1/3/2023 9:12:54 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-1

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 1:15:00 PM

 Lab ID:
 2212E08-001
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Xylenes, Total	ND	1.5		μg/L	1	1/3/2023 9:12:54 PM
Surr: 1,2-Dichloroethane-d4	99.3	70-130		%Rec	1	1/3/2023 9:12:54 PM
Surr: 4-Bromofluorobenzene	102	70-130		%Rec	1	1/3/2023 9:12:54 PM
Surr: Dibromofluoromethane	100	70-130		%Rec	1	1/3/2023 9:12:54 PM
Surr: Toluene-d8	102	70-130		%Rec	1	1/3/2023 9:12:54 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: JTT
Conductivity	3400	10		µmhos/c	1	1/4/2023 11:43:37 AM
SM2320B: ALKALINITY						Analyst: SNS
Bicarbonate (As CaCO3)	287.6	20.00		mg/L Ca	1	12/28/2022 6:07:39 PM
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/28/2022 6:07:39 PM
Total Alkalinity (as CaCO3)	287.6	20.00		mg/L Ca	1	12/28/2022 6:07:39 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: SNS
Total Dissolved Solids	3160	100	*D	mg/L	1	12/30/2022 4:07:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-2

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 1:40:00 PM

 Lab ID:
 2212E08-002
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	1.3	0.50	mg/L	5	12/28/2022 3:47:23 PM
Chloride	20	2.5	mg/L	5	12/28/2022 3:47:23 PM
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	12/28/2022 3:47:23 PM
Bromide	ND	0.50	mg/L	5	12/28/2022 3:47:23 PM
Nitrogen, Nitrate (As N)	ND	0.50	mg/L	5	12/28/2022 3:47:23 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	12/28/2022 3:47:23 PM
Sulfate	1800	25 *	mg/L	50	1/5/2023 3:44:02 AM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	550	10	mg/L	10	1/11/2023 9:06:10 AM
Magnesium	140	5.0	mg/L	5	1/9/2023 5:44:06 PM
Potassium	3.6	1.0	mg/L	1	1/3/2023 2:39:47 PM
Sodium	200	5.0	mg/L	5	1/9/2023 5:44:06 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Toluene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Ethylbenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Naphthalene	ND	2.0	μg/L	1	1/3/2023 9:39:58 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 9:39:58 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 9:39:58 PM
Acetone	ND	10	μg/L	1	1/3/2023 9:39:58 PM
Bromobenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Bromodichloromethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Bromoform	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Bromomethane	ND	3.0	μg/L	1	1/3/2023 9:39:58 PM
2-Butanone	ND	10	μg/L	1	1/3/2023 9:39:58 PM
Carbon disulfide	ND	10	μg/L	1	1/3/2023 9:39:58 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Chlorobenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Chloroethane	ND	2.0	μg/L	1	1/3/2023 9:39:58 PM
Chloroform	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Chloromethane	ND	3.0	μg/L	1	1/3/2023 9:39:58 PM
2-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
4-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-2

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 1:40:00 PM

 Lab ID:
 2212E08-002
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,2-DCE	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/3/2023 9:39:58 PM
Dibromochloromethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Dibromomethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/3/2023 9:39:58 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
2-Hexanone	ND	10	μg/L	1	1/3/2023 9:39:58 PM
Isopropylbenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/3/2023 9:39:58 PM
Methylene Chloride	ND	3.0	μg/L	1	1/3/2023 9:39:58 PM
n-Butylbenzene	ND	3.0	μg/L	1	1/3/2023 9:39:58 PM
n-Propylbenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
sec-Butylbenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Styrene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
tert-Butylbenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/3/2023 9:39:58 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
trans-1,2-DCE	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/3/2023 9:39:58 PM
Vinyl chloride	ND	1.0	μg/L	1	1/3/2023 9:39:58 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-2

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 1:40:00 PM

 Lab ID:
 2212E08-002
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Xylenes, Total	ND	1.5		μg/L	1	1/3/2023 9:39:58 PM
Surr: 1,2-Dichloroethane-d4	102	70-130		%Rec	1	1/3/2023 9:39:58 PM
Surr: 4-Bromofluorobenzene	107	70-130		%Rec	1	1/3/2023 9:39:58 PM
Surr: Dibromofluoromethane	98.4	70-130		%Rec	1	1/3/2023 9:39:58 PM
Surr: Toluene-d8	89.3	70-130		%Rec	1	1/3/2023 9:39:58 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: JTT
Conductivity	3500	10		µmhos/c	1	1/4/2023 11:46:34 AM
SM2320B: ALKALINITY						Analyst: SNS
Bicarbonate (As CaCO3)	288.3	20.00		mg/L Ca	1	12/28/2022 6:21:58 PM
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/28/2022 6:21:58 PM
Total Alkalinity (as CaCO3)	288.3	20.00		mg/L Ca	1	12/28/2022 6:21:58 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: SNS
Total Dissolved Solids	3070	100	*D	mg/L	1	12/30/2022 4:07:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-3

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 12:40:00 PM

 Lab ID:
 2212E08-003
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	ND	0.50	mg/L	5	12/28/2022 4:13:06 PM
Chloride	20	2.5	mg/L	5	12/28/2022 4:13:06 PM
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	12/28/2022 4:13:06 PM
Bromide	ND	0.50	mg/L	5	12/28/2022 4:13:06 PM
Nitrogen, Nitrate (As N)	ND	0.50	mg/L	5	12/28/2022 4:13:06 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	12/28/2022 4:13:06 PM
Sulfate	1600	25 *	mg/L	50	1/5/2023 3:56:54 AM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	610	10	mg/L	10	1/9/2023 6:03:46 PM
Magnesium	35	1.0	mg/L	1	1/3/2023 2:44:56 PM
Potassium	2.6	1.0	mg/L	1	1/3/2023 2:44:56 PM
Sodium	200	5.0	mg/L	5	1/9/2023 5:53:10 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Toluene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Ethylbenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Naphthalene	ND	2.0	μg/L	1	1/3/2023 10:07:00 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 10:07:00 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 10:07:00 PM
Acetone	ND	10	μg/L	1	1/3/2023 10:07:00 PM
Bromobenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Bromoform	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Bromomethane	ND	3.0	μg/L	1	1/3/2023 10:07:00 PM
2-Butanone	ND	10	μg/L	1	1/3/2023 10:07:00 PM
Carbon disulfide	ND	10	μg/L	1	1/3/2023 10:07:00 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Chlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Chloroethane	ND	2.0	μg/L	1	1/3/2023 10:07:00 PM
Chloroform	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Chloromethane	ND	3.0	μg/L	1	1/3/2023 10:07:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-3

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 12:40:00 PM

 Lab ID:
 2212E08-003
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,2-DCE	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/3/2023 10:07:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Dibromomethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/3/2023 10:07:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
2-Hexanone	ND	10	μg/L	1	1/3/2023 10:07:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/3/2023 10:07:00 PM
Methylene Chloride	ND	3.0	μg/L	1	1/3/2023 10:07:00 PM
n-Butylbenzene	ND	3.0	μg/L	1	1/3/2023 10:07:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Styrene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/3/2023 10:07:00 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
trans-1,2-DCE	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/3/2023 10:07:00 PM
Vinyl chloride	ND	1.0	μg/L	1	1/3/2023 10:07:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-3

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 12:40:00 PM

 Lab ID:
 2212E08-003
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Xylenes, Total	ND	1.5	μg/L	1	1/3/2023 10:07:00 PM
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	1/3/2023 10:07:00 PM
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	1	1/3/2023 10:07:00 PM
Surr: Dibromofluoromethane	97.5	70-130	%Rec	1	1/3/2023 10:07:00 PM
Surr: Toluene-d8	90.8	70-130	%Rec	1	1/3/2023 10:07:00 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: JTT
Conductivity	3100	10	µmhos/c	1	1/4/2023 11:49:34 AM
SM2320B: ALKALINITY					Analyst: SNS
Bicarbonate (As CaCO3)	274.0	20.00	mg/L Ca	1	12/28/2022 6:36:21 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	12/28/2022 6:36:21 PM
Total Alkalinity (as CaCO3)	274.0	20.00	mg/L Ca	1	12/28/2022 6:36:21 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: SNS
Total Dissolved Solids	2850	40.0 *	D mg/L	1	12/30/2022 4:07:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ple pH Not In Range
Opting Limit Page 9 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-4

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 2:15:00 PM

 Lab ID:
 2212E08-004
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	1.0	0.50	mg/L	5	12/28/2022 5:04:30 PM
Chloride	22	2.5	mg/L	5	12/28/2022 5:04:30 PM
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	12/28/2022 5:04:30 PM
Bromide	ND	0.50	mg/L	5	12/28/2022 5:04:30 PM
Nitrogen, Nitrate (As N)	ND	0.50	mg/L	5	12/28/2022 5:04:30 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	12/28/2022 5:04:30 PM
Sulfate	2000	25 *	mg/L	50	1/5/2023 4:09:46 AM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	580	10	mg/L	10	1/9/2023 6:09:37 PM
Magnesium	150	5.0	mg/L	5	1/9/2023 6:06:38 PM
Potassium	3.6	1.0	mg/L	1	1/3/2023 2:46:39 PM
Sodium	210	5.0	mg/L	5	1/9/2023 6:06:38 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Toluene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Ethylbenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Naphthalene	ND	2.0	μg/L	1	1/3/2023 10:34:03 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 10:34:03 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 10:34:03 PM
Acetone	ND	10	μg/L	1	1/3/2023 10:34:03 PM
Bromobenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Bromodichloromethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Bromoform	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Bromomethane	ND	3.0	μg/L	1	1/3/2023 10:34:03 PM
2-Butanone	ND	10	μg/L	1	1/3/2023 10:34:03 PM
Carbon disulfide	ND	10	μg/L	1	1/3/2023 10:34:03 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Chlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Chloroethane	ND	2.0	μg/L	1	1/3/2023 10:34:03 PM
Chloroform	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Chloromethane	ND	3.0	μg/L	1	1/3/2023 10:34:03 PM
2-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
4-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-4

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 2:15:00 PM

 Lab ID:
 2212E08-004
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,2-DCE	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/3/2023 10:34:03 PM
Dibromochloromethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Dibromomethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/3/2023 10:34:03 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
2-Hexanone	ND	10	μg/L	1	1/3/2023 10:34:03 PM
Isopropylbenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/3/2023 10:34:03 PM
Methylene Chloride	ND	3.0	μg/L	1	1/3/2023 10:34:03 PM
n-Butylbenzene	ND	3.0	μg/L	1	1/3/2023 10:34:03 PM
n-Propylbenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
sec-Butylbenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Styrene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
tert-Butylbenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/3/2023 10:34:03 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
trans-1,2-DCE	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/3/2023 10:34:03 PM
Vinyl chloride	ND	1.0	μg/L	1	1/3/2023 10:34:03 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-4

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 2:15:00 PM

 Lab ID:
 2212E08-004
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Xylenes, Total	ND	1.5		μg/L	1	1/3/2023 10:34:03 PM
Surr: 1,2-Dichloroethane-d4	96.9	70-130		%Rec	1	1/3/2023 10:34:03 PM
Surr: 4-Bromofluorobenzene	108	70-130		%Rec	1	1/3/2023 10:34:03 PM
Surr: Dibromofluoromethane	103	70-130		%Rec	1	1/3/2023 10:34:03 PM
Surr: Toluene-d8	94.8	70-130		%Rec	1	1/3/2023 10:34:03 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: JTT
Conductivity	3600	10		µmhos/c	1	1/4/2023 11:52:38 AM
SM2320B: ALKALINITY						Analyst: SNS
Bicarbonate (As CaCO3)	278.1	20.00		mg/L Ca	1	12/28/2022 6:50:08 PM
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/28/2022 6:50:08 PM
Total Alkalinity (as CaCO3)	278.1	20.00		mg/L Ca	1	12/28/2022 6:50:08 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: SNS
Total Dissolved Solids	3370	100	*D	mg/L	1	12/30/2022 4:07:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-5

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 3:00:00 PM

 Lab ID:
 2212E08-005
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JTT
Fluoride	ND	0.50	mg/L	5	12/28/2022 5:55:57 PM
Chloride	15	2.5	mg/L	5	12/28/2022 5:55:57 PM
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	12/28/2022 5:55:57 PM
Bromide	ND	0.50	mg/L	5	12/28/2022 5:55:57 PM
Nitrogen, Nitrate (As N)	0.54	0.50	mg/L	5	12/28/2022 5:55:57 PM
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	12/28/2022 5:55:57 PM
Sulfate	2500	50 *	mg/L	100	1/5/2023 4:22:38 AM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	500	10	mg/L	10	1/9/2023 6:15:29 PM
Magnesium	26	1.0	mg/L	1	1/3/2023 2:48:06 PM
Potassium	5.9	1.0	mg/L	1	1/3/2023 2:48:06 PM
Sodium	720	10	mg/L	10	1/9/2023 6:15:29 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Toluene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Ethylbenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Naphthalene	ND	2.0	μg/L	1	1/3/2023 11:01:04 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 11:01:04 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	1/3/2023 11:01:04 PM
Acetone	ND	10	μg/L	1	1/3/2023 11:01:04 PM
Bromobenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Bromodichloromethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Bromoform	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Bromomethane	ND	3.0	μg/L	1	1/3/2023 11:01:04 PM
2-Butanone	ND	10	μg/L	1	1/3/2023 11:01:04 PM
Carbon disulfide	ND	10	μg/L	1	1/3/2023 11:01:04 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Chlorobenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Chloroethane	ND	2.0	μg/L	1	1/3/2023 11:01:04 PM
Chloroform	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Chloromethane	ND	3.0	μg/L	1	1/3/2023 11:01:04 PM
2-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
4-Chlorotoluene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-5

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 3:00:00 PM

 Lab ID:
 2212E08-005
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
cis-1,2-DCE	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/3/2023 11:01:04 PM
Dibromochloromethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Dibromomethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/3/2023 11:01:04 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
2-Hexanone	ND	10	μg/L	1	1/3/2023 11:01:04 PM
Isopropylbenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/3/2023 11:01:04 PM
Methylene Chloride	ND	3.0	μg/L	1	1/3/2023 11:01:04 PM
n-Butylbenzene	ND	3.0	μg/L	1	1/3/2023 11:01:04 PM
n-Propylbenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
sec-Butylbenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Styrene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
tert-Butylbenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/3/2023 11:01:04 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
trans-1,2-DCE	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/3/2023 11:01:04 PM
Vinyl chloride	ND	1.0	μg/L	1	1/3/2023 11:01:04 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 26

Date Reported: 1/12/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-5

 Project:
 Mansfield 11
 Collection Date: 12/27/2022 3:00:00 PM

 Lab ID:
 2212E08-005
 Matrix: AQUEOUS
 Received Date: 12/28/2022 6:45:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Xylenes, Total	ND	1.5	μg/L	1	1/3/2023 11:01:04 PM
Surr: 1,2-Dichloroethane-d4	93.0	70-130	%Rec	1	1/3/2023 11:01:04 PM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	1/3/2023 11:01:04 PM
Surr: Dibromofluoromethane	96.2	70-130	%Rec	1	1/3/2023 11:01:04 PM
Surr: Toluene-d8	96.7	70-130	%Rec	1	1/3/2023 11:01:04 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: JTT
Conductivity	4600	10	μmhos	/c 1	1/4/2023 11:55:38 AM
SM2320B: ALKALINITY					Analyst: SNS
Bicarbonate (As CaCO3)	137.3	20.00	mg/L C	a 1	12/28/2022 7:04:08 PM
Carbonate (As CaCO3)	ND	2.000	mg/L C	a 1	12/28/2022 7:04:08 PM
Total Alkalinity (as CaCO3)	137.3	20.00	mg/L C	a 1	12/28/2022 7:04:08 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: SNS
Total Dissolved Solids	4000	20.0	* mg/L	1	12/30/2022 4:07:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 26

Hall Environmental Analysis Laboratory, Inc.

ND

1.0

WO#: **2212E08**

12-Jan-23

Client: HILCORP ENERGY

Project: Mansfield 11

Sodium

Sample ID: MB-72387	MB-72387 SampType: MBLK				tCode: El	PA Method				
Client ID: PBW	Batch	1D: 72	387	F	RunNo: 93679					
Prep Date: 12/30/2022	Analysis D	ate: 1/	3/2023	S	SeqNo: 3381193					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0								
Magnesium	ND	1.0								
Potassium	ND	1.0								

Sample ID: LCSLL-72387	SampT	ype: LC	SLL	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: BatchQC	Batch	ID: 72 :	387	F	RunNo: 9:	3679				
Prep Date: 12/30/2022	Analysis D	ate: 1/	3/2023	8	SeqNo: 3	381194	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0	0.5000	0	103	50	150			
Magnesium	ND	1.0	0.5000	0	107	50	150			
Potassium	ND	1.0	0.5000	0	103	50	150			
Sodium	ND	1.0	0.5000	0	106	50	150			

Sample ID: LCS-72387	SampT	ype: LC	S	Tes	200.7: Metals					
Client ID: LCSW	Batch	n ID: 72 :	387	F						
Prep Date: 12/30/2022	Analysis D	ate: 1/	3/2023	8	SeqNo: 3381195					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	51	1.0	50.00	0	101	85	115			
Magnesium	52	1.0	50.00	0	103	85	115			
Potassium	50	1.0	50.00	0	100	85	115			
Sodium	50	1.0	50.00	0	100	85	115			

Sample ID: 2212E08-001CMS	SampTy	/pe: MS	3	Tes	tCode: El	EPA Method 200.7: Metals					
Client ID: MW-1	Batch	ID: 72	387	F	RunNo: 9	3679					
Prep Date: 12/30/2022	Analysis Da	ate: 1/	3/2023	S	SeqNo: 3381307			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Potassium	58	1.0	50.00	3.367	110	70	130	•			

Sample ID: 2212E08-001CMSI	S ampT	ype: M \$	SD	Tes	TestCode: EPA Method 200.7: Metals						
Client ID: MW-1	Batch	ID: 72	387	F	RunNo: 9:	3679					
Prep Date: 12/30/2022	Analysis D	ate: 1/	3/2023	S	SeqNo: 3	381308	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Potassium	58	1.0	50.00	3.367	110	70	130	0.414	20		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 26

Hall Environmental Analysis Laboratory, Inc.

WO#: 2212E08 12-Jan-23

HILCORP ENERGY **Client:**

Project: Mansfield 11

Sample ID: 2212E08-002CMS SampType: MS TestCode: EPA Method 200.7: Metals

MW-2 Client ID: Batch ID: 72387 RunNo: 93679

Prep Date: 12/30/2022 Analysis Date: 1/3/2023 SeqNo: 3381310 Units: mg/L

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual

Potassium 59 1.0 50.00 3.567 110 70 130

Sample ID: 2212E08-002CMSD SampType: MSD TestCode: EPA Method 200.7: Metals

Client ID: MW-2 Batch ID: 72387 RunNo: 93679

Prep Date: 12/30/2022 Analysis Date: 1/3/2023 SeqNo: 3381311 Units: mg/L

RPDLimit Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual Potassium 1.0 50.00 3.567 111 0.868 20

Sample ID: 2212E08-002CMS SampType: MS TestCode: EPA Method 200.7: Metals

Client ID: MW-2 Batch ID: 72387 RunNo: 93812

Prep Date: Analysis Date: 1/9/2023 SeqNo: 3386638 Units: mg/L 12/30/2022

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual Magnesium 200 5.0 50.00 144.2 102 70 130 70 250 5.0 50.00 198.3 95.4 130 Sodium

Sample ID: 2212E08-002CMSD SampType: MSD TestCode: EPA Method 200.7: Metals

Client ID: MW-2 Batch ID: 72387 RunNo: 93812

Prep Date: 12/30/2022 Analysis Date: 1/9/2023 SeqNo: 3386639 Units: mg/L

%RPD **RPDLimit** PQL SPK value SPK Ref Val %REC HighLimit Analyte Result I owl imit Qual Magnesium 190 5.0 50.00 144.2 102 70 130 0 20 Sodium 250 5.0 50.00 198.3 94.1 70 130 0 20

Sample ID: 2212E08-001CMS SampType: MS TestCode: EPA Method 200.7: Metals

Client ID: MW-1 RunNo: 93866 Batch ID: 72387

Prep Date: 12/30/2022 Analysis Date: 1/11/2023 SeqNo: 3388671 Units: mg/L **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual 69.0 70 ES Calcium 590 5.0 50.00 552.0 130 Magnesium 160 5.0 50.00 117.4 91.5 70 130 Sodium 250 5.0 50.00 206.6 77 4 70 130

Sample ID: 2212E08-001CMSD SampType: MSD TestCode: EPA Method 200.7: Metals

Client ID: MW-1 Batch ID: 72387 RunNo: 93866

Prep Date: 12/30/2022 Analysis Date: 1/11/2023 SeqNo: 3388672 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

620 5.0 50.00 552.0 137 70 130 5.65 20 ES Calcium

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Ε
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 17 of 26

Hall Environmental Analysis Laboratory, Inc.

2212E08 12-Jan-23

Qual

WO#:

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: 2212E08-001CMSD SampType: MSD TestCode: EPA Method 200.7: Metals

Client ID: MW-1 Batch ID: 72387 RunNo: 93866

Prep Date: 12/30/2022 Analysis Date: 1/11/2023 SeqNo: 3388672 Units: mg/L

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Magnesium	170	5.0	50.00	117.4	108	70	130	5.04	20
Sodium	260	5.0	50.00	206.6	107	70	130	5.80	20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 26

Hall Environmental Analysis Laboratory, Inc.

2212E08

WO#:

12-Jan-23

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R93611 RunNo: 93611

Prep Date: Analysis Date: 12/28/2022 SeqNo: 3377947 Units: mg/L

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual Fluoride ND 0.10 Chloride ND 0.50 Nitrogen, Nitrite (As N) ND 0.10 Bromide ND 0.10 Nitrogen, Nitrate (As N) ND 0.10 Phosphorus, Orthophosphate (As P ND 0.50

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R93611 RunNo: 93611 Prep Date: Analysis Date: 12/28/2022 SeqNo: 3377948 Units: mg/L SPK value SPK Ref Val %REC %RPD **RPDLimit** PQL HighLimit Qual Analyte Result LowLimit Fluoride 0.51 0.10 0.5000 O 103 90 110 0 91.0 90 0.50 5.000 110 Chloride 4.6 0 94.6 90 Nitrogen, Nitrite (As N) 0.95 0.10 1.000 110 Bromide 2.3 0.10 2.500 0 93.2 90 110 2.500 0 97.1 Nitrogen, Nitrate (As N) 24 0.10 90 110 Phosphorus, Orthophosphate (As P 4.6 0.50 5.000 0 91.7 90 110

Sample ID: 2212E08-004BMS TestCode: EPA Method 300.0: Anions SampType: MS Client ID: Batch ID: R93611 RunNo: 93611 MW-4 Prep Date: Analysis Date: 12/28/2022 SeqNo: 3377970 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.50 3.2 2.500 1.006 89.3 78.6 114 Fluoride Chloride 45 2.5 25.00 22.43 88.3 82.8 107 Nitrogen, Nitrite (As N) 89.1 82.5 4.5 0.50 5.000 0 104 Bromide 11 0.50 12.50 0 89.9 89.4 110 0.50 0 Nitrogen, Nitrate (As N) 12 12.50 93.2 89.5 113

0

Sample ID: 2212E08-004BMSD TestCode: EPA Method 300.0: Anions SampType: MSD Client ID: MW-4 Batch ID: R93611 RunNo: 93611 Prep Date: Analysis Date: 12/28/2022 SeqNo: 3377971 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit Fluoride 3.2 0.50 2.500 1.006 89.6 78.6 114 0.231 20 45 2.5 25.00 22.43 88.6 82.8 107 0.149 20 Chloride Nitrogen, Nitrite (As N) 0.50 90.2 82.5 20 4.5 5.000 0 104 1.22 **Bromide** 11 0.50 12.50 0 91.6 89.4 110 1.84 20

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix

Phosphorus, Orthophosphate (As P

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.

20

2.5

25.00

B Analyte detected in the associated Method Blank

81.2

80.9

104

- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 26

Hall Environmental Analysis Laboratory, Inc.

WO#: 2212E08

12-Jan-23

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: 2212E08-004BMSD SampType: MSD TestCode: EPA Method 300.0: Anions

Client ID: MW-4 Batch ID: R93611 RunNo: 93611

Prep Date: Analysis Date: 12/28/2022 SeqNo: 3377971 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Result LowLimit Nitrogen, Nitrate (As N) 12 0.50 12.50 0 94.4 89.5 113 1.37 20 Phosphorus, Orthophosphate (As P 21 2.5 25.00 0 82.4 80.9 104 1.47 20

Sample ID: MB TestCode: EPA Method 300.0: Anions SampType: MBLK

Client ID: PBW Batch ID: A93721 RunNo: 93721

Prep Date: Analysis Date: 1/5/2023 SeqNo: 3383045 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Sulfate ND 0.50

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: A93721 RunNo: 93721

Prep Date: Analysis Date: 1/5/2023 SeqNo: 3383046 Units: mq/L

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 9.9 0.50 10.00 99.5 90 110 ٥

Sulfate

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 20 of 26

Hall Environmental Analysis Laboratory, Inc.

2212E08 12-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: 100ng lcs	SampT	ype: LC	s	Tes	TestCode: EPA Method 8260B: VOLATILES					
Client ID: LCSW	Batch	n ID: R9	3684	F	RunNo: 9					
Prep Date:	Analysis Date: 1/3/2023			8	SeqNo: 3	381603	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	92.3	70	130			
Toluene	19	1.0	20.00	0	92.5	70	130			
Chlorobenzene	20	1.0	20.00	0	98.7	70	130			
1,1-Dichloroethene	17	1.0	20.00	0	84.2	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	85.8	70	130			
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.5	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		96.9	70	130			
Surr: Dibromofluoromethane	8.7		10.00		87.2	70	130			
Surr: Toluene-d8	9.0		10.00		90.2	70	130			

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW Batch ID: R93684 RunNo: 93684

Prep Date: Analysis Date: 1/3/2023 SeqNo: 3381621 Units: µg/L

Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
ND	1.0								
ND	1.0								
ND	1.0								
ND	1.0								
ND	1.0								
ND	1.0								
ND	1.0								
ND	1.0								
ND	2.0								
ND	4.0								
ND	4.0								
ND	10								
ND	1.0								
ND	1.0								
ND	1.0								
ND	3.0								
ND	10								
ND	10								
ND	1.0								
ND	1.0								
ND	2.0								
ND	1.0								
ND	3.0								
ND	1.0								
	ND N	ND 1.0 ND 3.0 ND 10 ND 1.0	ND 1.0 ND 2.0 ND 4.0 ND 4.0 ND 10 ND 1.0	ND 1.0 ND 2.0 ND 4.0 ND 4.0 ND 10 ND 1.0 ND 3.0 ND 10 ND 3.0 ND 10 ND 1.0 ND 3.0 ND 1.0 ND 1.0 ND 3.0	ND 1.0 ND 2.0 ND 4.0 ND 4.0 ND 10 ND 1.0 ND 3.0 ND 10 ND 3.0 ND 10 ND 10 ND 3.0 ND 10 ND 3.0 ND 1.0 ND 3.0	ND 1.0 ND 2.0 ND 4.0 ND 4.0 ND 10 ND 1.0 ND 3.0 ND 10 ND 3.0 ND 10 ND 10 ND 1.0 ND 3.0 ND 10 ND 3.0 ND 1.0 ND 3.0	ND 1.0 ND 2.0 ND 4.0 ND 4.0 ND 10 ND 1.0 ND 3.0 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 1.0 ND 3.0 ND 1.0 ND 1.0 ND 3.0	ND 1.0 ND 2.0 ND 4.0 ND 4.0 ND 10 ND 10 ND 1.0 ND 10 ND 3.0 ND 10 ND 1.0 ND 3.0 ND 10 ND 3.0 ND 1.0 ND 3.0	ND 1.0 ND 2.0 ND 4.0 ND 4.0 ND 10 ND 10 ND 10 ND 1.0 ND 3.0 ND 10 ND 1.0 ND 3.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 26

Hall Environmental Analysis Laboratory, Inc.

2212E08

WO#:

12-Jan-23

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW Batch ID: R93684 RunNo: 93684

Prep Date: Analysis Date: 1/3/2023 SeqNo: 3381621 Units: µg/L

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual 4-Chlorotoluene ND 1.0 cis-1.2-DCE ND 1.0 ND cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 2.0 1,1-Dichloropropene ND 1.0 ND Hexachlorobutadiene 1.0 2-Hexanone ND 10 Isopropylbenzene ND 1.0 4-Isopropyltoluene ND 1.0 ND 4-Methyl-2-pentanone 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 ND 1.0 Styrene tert-Butylbenzene ND 1.0 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 trans-1,2-DCE ND 1.0 ND 1.0 trans-1,3-Dichloropropene 1,2,3-Trichlorobenzene ND 1.0

Qualifiers:

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

ND

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

2.0

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 26

Hall Environmental Analysis Laboratory, Inc.

2212E08 12-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb	SampT	ype: ME	BLK	TestCode: EPA Method 8260B: VOLATILES								
Client ID: PBW	Batch	ID: R9	3684	F	RunNo: 9	3684						
Prep Date:	Analysis D	ate: 1/	3/2023	8	SeqNo: 3	381621	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Vinyl chloride	ND	1.0										
Xylenes, Total	ND	1.5										
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130					
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130					
Surr: Dibromofluoromethane	9.5		10.00		94.7	70	130					
Surr: Toluene-d8	9.8		10.00		97.9	70	130					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 26

Hall Environmental Analysis Laboratory, Inc.

2212E08 12-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: Ics-1 99.4uS eC SampType: LCS TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R93716 RunNo: 93716

Prep Date: Analysis Date: 1/4/2023 SeqNo: 3382829 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 10 99.40 0 101 85 115

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 26

Hall Environmental Analysis Laboratory, Inc.

WO#: **2212E08** *12-Jan-23*

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: A93608 RunNo: 93608

Prep Date: Analysis Date: 12/28/2022 SeqNo: 3377798 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: A93608 RunNo: 93608

Prep Date: Analysis Date: 12/28/2022 SeqNo: 3377799 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.88 20.00 80.00 0 98.6 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 25 of 26

Hall Environmental Analysis Laboratory, Inc.

2212E08 12-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB-72374 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 72374 RunNo: 93734

Prep Date: 12/29/2022 Analysis Date: 12/30/2022 SeqNo: 3383491 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-72374 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 72374 RunNo: 93734

Prep Date: 12/29/2022 Analysis Date: 12/30/2022 SeqNo: 3383492 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 992 20.0 1000 0 99.2 80 120

Sample ID: 2212E08-005BDUP SampType: DUP TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: MW-5 Batch ID: 72374 RunNo: 93734

Prep Date: 12/29/2022 Analysis Date: 12/30/2022 SeqNo: 3383512 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 4020 20.0 0.623 10 *

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 26 of 26

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 3/20/2023 2:50:29 PM

Client Name: HILCORP E	NERGY Work Order N	lumber: 2212E08		RcptNo: 1	
Received By: Isaiah Ort	iz 12/28/2022 6:4	5:00 AM	エーロー	4	
Completed By: Isaiah Ort	iz 12/28/2022 8:45	5:06 AM	INO	*	
Reviewed By: / 12-2	%· 7z				
Chain of Custody					
1. Is Chain of Custody comp	ete?	Yes 🗹	No 🗆	Not Present	
2. How was the sample delive	ered?	Courier			
<u>Log In</u> 3. Was an attempt made to c	ool the samples?	Yes 🗸	No 🗆	na 🗆	
4. Were all samples received	at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗆	
5. Sample(s) in proper contain	ner(s)?	Yes 🗹	No 🗆		
6. Sufficient sample volume for	or indicated test(s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA	and ONG) properly preserved?	Yes 🗹	No 🗆 🗴	- rester	
8. Was preservative added to	bottles?	Yes 🗹	No.	NA 🗌	
9. Received at least 1 vial wit	h headspace <1/4" for AQ VOA?	Yes 🗹	No 🗌	na 🗆	
10. Were any sample contained	ers received broken?	Yes	No 🗹	# of preserved bottles checked	
11. Does paperwork match bot (Note discrepancies on cha		Yes 🗹	No 🗆	for pH: 5 (<2) or >12 unless no	ted)
12. Are matrices correctly iden	tified on Chain of Custody?	Yes 🗹	No 🗆	Adjusted?	_
13. Is it clear what analyses we	ere requested?	Yes 🗹	No 🗆	7 (4)	
14. Were all holding times able (If no, notify customer for a		Yes 🗹	No 🗆	Checked by: See close	1
Special Handling (if app					
15. Was client notified of all di		Yes 🗌	No 🗌	NA 🗹	
Person Notified: By Whom: Regarding: Client Instructions:		Oate: /ia:	hone Fax	☐ In Person	
16. Additional remarks: Color 17. Cooler Information Cooler No Temp °C 1.4	rected for proper pt Condition Seal Intact Seal N Good Yes	et su	のしついらく っていして Signed By	# 7051	>

Received	by OCD Cha	: 1/13/20 in-ot-	23 11:38:18 AM Custody Record	Turn-Around Ti	me:														87 of 238
		Farmingt		X Standard	□ Rush	1						EN							AL RY
				Project Name:								llenvi					\		K I
Mailing	Address	: 382 Ro	ad 3100 Aztec, NM 87410		Mansfield #1	1		490	า1 Ha	ww wkins							100		
Billing A	Address:	PO Box	61529 Houston, TX 77208	Project #:	manonoid # 1		1			-345-			-	-		4107			
Phone		505-486							. 000		THE PART OF	nalys		-	1000	_			
email o	r Fax#:	Brandor	.Sinclair@hilcorp.com	Project Manage	er:		\$ P		T				\top		П		T	T	
QA/QC I □ Stan	Package: ndard		□ Level 4 (Full Validation)	Mitch	K:11	ayah	25.45 ESTE												
Accredi	itation:	□ Az Co	ompliance	Sampler:	Brandon Sin	clair	2	모											
□ NEL		□ Other		On Ice:		□ No	7	Ş								1			
	(Type) _.	T		# of Coolers: Cooler Temp(incl	(F \$ 5	lm0											
Date	Time	Matrix	Sample Name	Container Type			Cations/Anions/TDS	Volatiles 8260 40ml VOA HCI											
12-27	1315	Water	MW-I	Various	Various	001	X	х											
	1340	Water	MW-2	Various	Various	002	X	х										\bot	
	1240	Water	MW-3	Various	Various	00-3	x	X											
	1415	Water	MW-4	Various	Various	004	X	Х											
	1500	Water	MW-5	Various	Various	005	X	х											
13											_								
											_								
														_					
	ļ	ļ					1		_						_		4		
	ļ <u> </u>						_				_	Ш				\perp		\perp	
	-							\sqcup		_ _		\square	_						
Dete	Timo	Dolinguich	land but	Desci ed b	Mod	Data Time		لبل											
Date:	Time:	Relinquish Relinquish Relinquish		Received by:	Via:	Date Time Date Time Date Time	Rei	marks	3 :	Pre	ser	د ا	<u>ر</u> مر	tiv	~ /	An	רעי	\sim	رملے
Date: (2/21/21/21/21/21/21/21/21/21/21/21/21/21	Time:	1	Myas	40	cocur	1428/22 064	 \$												

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 28, 2022

Stuart Hyde HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Mansfield 11 OrderNo.: 2211B13

Dear Stuart Hyde:

Hall Environmental Analysis Laboratory received 2 sample(s) on 11/18/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 11/28/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: LFC

Project: Mansfield 11 Collection Date: 11/17/2022 11:55:00 AM Lab ID: 2211B13-001 Matrix: MEOH (SOIL) **Received Date:** 11/18/2022 6:20:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	11/18/2022 10:01:32 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/18/2022 10:01:32 AM
Surr: DNOP	105	21-129	%Rec	1	11/18/2022 10:01:32 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.0	mg/Kg	1	11/18/2022 2:26:55 PM
Surr: BFB	91.7	37.7-212	%Rec	1	11/18/2022 2:26:55 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.020	mg/Kg	1	11/18/2022 2:26:55 PM
Toluene	ND	0.040	mg/Kg	1	11/18/2022 2:26:55 PM
Ethylbenzene	ND	0.040	mg/Kg	1	11/18/2022 2:26:55 PM
Xylenes, Total	ND	0.079	mg/Kg	1	11/18/2022 2:26:55 PM
Surr: 4-Bromofluorobenzene	93.0	70-130	%Rec	1	11/18/2022 2:26:55 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	ND	60	mg/Kg	20	11/18/2022 12:17:57 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Ε
- J Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

Date Reported: 11/28/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: LWC-04B

 Project:
 Mansfield 11
 Collection Date: 11/17/2022 12:05:00 PM

 Lab ID:
 2211B13-002
 Matrix: MEOH (SOIL)
 Received Date: 11/18/2022 6:20:00 AM

Result **RL Qual Units** DF **Date Analyzed Analyses EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: **DGH** Diesel Range Organics (DRO) ND 13 mg/Kg 1 11/18/2022 10:11:56 AM Motor Oil Range Organics (MRO) ND 43 mg/Kg 1 11/18/2022 10:11:56 AM Surr: DNOP 103 21-129 %Rec 1 11/18/2022 10:11:56 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 11/18/2022 2:50:45 PM 4.0 mg/Kg 1 Surr: BFB 92.2 37.7-212 %Rec 1 11/18/2022 2:50:45 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 11/18/2022 2:50:45 PM 0.020 mg/Kg 1 Toluene ND 0.040 mg/Kg 1 11/18/2022 2:50:45 PM Ethylbenzene ND 0.040 mg/Kg 1 11/18/2022 2:50:45 PM Xylenes, Total ND 0.080 mg/Kg 11/18/2022 2:50:45 PM 1 Surr: 4-Bromofluorobenzene 94.0 70-130 %Rec 1 11/18/2022 2:50:45 PM **EPA METHOD 300.0: ANIONS** Analyst: MRA Chloride mg/Kg 11/18/2022 12:30:22 PM ND 60 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **2211B13**

28-Nov-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: MB-71590 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 71590 RunNo: 92690

Prep Date: 11/18/2022 Analysis Date: 11/18/2022 SeqNo: 3336788 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID: LCS-71590 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 71590 RunNo: 92690

Prep Date: 11/18/2022 Analysis Date: 11/18/2022 SeqNo: 3336789 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 94.5 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: 2211B13

28-Nov-22

Client: HILCORP ENERGY

Project: Mansfield 11

Surr: DNOP

Sample ID: LCS-71589 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 71589 RunNo: 92689 Units: mg/Kg Prep Date: 11/18/2022 Analysis Date: 11/18/2022 SeqNo: 3335128 **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual

Diesel Range Organics (DRO) 47 15 50.00 0 93.8 64.4 127 Surr: DNOP 5.3 5.000 106 21 129

Sample ID: MB-71589 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: PBS Batch ID: 71589 RunNo: 92689

9.5

Prep Date: 11/18/2022 Analysis Date: 11/18/2022 SeqNo: 3335129 Units: mg/Kg

10.00

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 15 Motor Oil Range Organics (MRO) ND 50

94.7

21

129

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

2211B13 28-Nov-22

WO#:

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: B92694 RunNo: 92694

Prep Date: Analysis Date: 11/18/2022 SeqNo: 3335416 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 970 1000 97.1 37.7 212

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: B92694 RunNo: 92694

Prep Date: Analysis Date: 11/18/2022 SeqNo: 3335417 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 21
 5.0
 25.00
 0
 85.8
 72.3
 137

 Surr: BFB
 1800
 1000
 180
 37.7
 212

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **2211B13**

28-Nov-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: mb	Samp	Гуре: МЕ	BLK	TestCode: EPA Method 8021B: Volatiles									
Client ID: PBS	Batcl	h ID: D9 :	2694	F	RunNo: 92	2694							
Prep Date: Analysis Date: 11/18/2022				5	SeqNo: 33	335494	Units: mg/K	Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	ND	0.025											
Toluene	ND	0.050											
Ethylbenzene	ND	0.050											
Xylenes, Total	ND	0.10											
Surr: 4-Bromofluorobenzene	1.0		1.000		101	70	130						

Sample ID: 100ng btex Ics	Samp	Гуре: LC	S	TestCode: EPA Method 8021B: Volatiles							
Client ID: LCSS	Batc	h ID: D9 :	2694	F	RunNo: 92	2694					
Prep Date:	Analysis [Date: 11	/18/2022	9	SeqNo: 33	335495	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.97	0.025	1.000	0	96.8	80	120				
Toluene	0.97	0.050	1.000	0	97.4	80	120				
Ethylbenzene	0.97	0.050	1.000	0	96.8	80	120				
Xylenes, Total	2.9	0.10	3.000	0	97.7	80	120				
Surr: 4-Bromofluorobenzene	0.99		1.000		99.3	70	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 3/20/2023 2:50:29 PM

West and Market		neosite. Wi	w.hallenvironmenta	.com		
Client Name:	Hilcorp Energy	Work Order Num	nber: 2211B13		RcptNo:	1
Received By:	Tracy Casarrubias	11/18/2022 6:20:0	0 AM			
Completed By:	Tracy Casarrubias	11/18/2022 7:02:5	4 AM			
Reviewed By:	TIME	11/18/22				
Chain of Cus	<u>tody</u>					
1. Is Chain of C	ustody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	sample delivered?		Courier			
<u>Log In</u> 3. Was an attern	npt made to cool the sam	ples?	Yes 🗹	No 🗆	NA 🗆	
4. Were all samp	oles received at a temper	rature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗆	
5. Sample(s) in	proper container(s)?		Yes 🗹	No 🗆		
6. Sufficient sam	ple volume for indicated	test(s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) p	roperly preserved?	Yes 🗹	No 🗌		
8. Was preserva	tive added to bottles?		Yes 🗌	No 🗹	NA 🗆	
9. Received at le	east 1 vial with headspace	e <1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
10. Were any sar	nple containers received	broken?	Yes	No 🗹	# of preserved	
	ork match bottle labels? ancies on chain of custod	(y)	Yes 🗹	No 🗆	bottles checked for pH: (<2 or >	12 unless noted)
12. Are matrices o	correctly identified on Cha	ain of Custody?	Yes 🗹	No 🗌	Adjusted?	
13. Is it clear what	t analyses were requeste	d?	Yes 🗹	No 🗌		4 1
	ng times able to be met? ustomer for authorization.		Yes 🗹	No 🗆	Checked by:	2011/18/2
Special Handl	ing (if applicable)				-	
15. Was client no	tified of all discrepancies	with this order?	Yes 🗌	No 🗌	NA 🗹	
Person	Notified:	Date	: [
By Who		Via:	☐ eMail ☐ P	hone 🗌 Fax	☐ In Person	
Regardi Client Ir	ing: nstructions:				1000	
16. Additional rei	, a					
17. <u>Cooler Infor</u> Cooler No	<u>mation</u>	Seal Intact Seal No	Seal Date	Signed By		

		-of-Cι	stody Record	Turn-Around	Time:			9	1990	Н	ΙΔ	11	FI	NV	TR	20	NN	1F	NT	ΔΙ	
	TIC	ch K	:llough	Project Name	l⇔ ⊠(Rush	Next Day		490	 	A	N. www	AL v.hal	YS lenv	ironr	nent	AE al.co	30	RA	ТО		•
				Project #:	twitter = # les	was planty a		Te	l. 50	5-34	5-39	975	F	ах	505-	345-	4107	,	n I Model		
Phone	#:			14.23	1. 4. 1	N 4 N 1 112 106						А	naly	/sis	Req	uest					
	Package:		□ Level 4 (Full Validation)	Project Mana	ager: Stua e@ensolu	rt Hyde .m.com	TMB's (8021)	TPH-8015D/GRO / DRO / MRO)	PCB's		8270SIMS		, PO4, SO4			Total Coliform (Present/Absent)	300.0)				
□ NEL		□ Az Co □ Other	ompliance	Sampler: On Ice: # of Coolers:	V Yes	□ No	E / TIME	RO / DF	les/8082	1504.1)	능	als	O ₃ , NO ₂ ,		/OA)	n (Prese	7				
	(Type)				D(including CF): 1.4 Preservative	THE REPORT OF THE PARTY OF THE	BTEX JMTBE /	1-8015D/(8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	Cl, F, Br, NO3,	8260 (VOA)	8270 (Semi-VOA)	al Colifor	hloride				
Date	Time	Matrix	Sample Name	Type and #	Type	2211813		自	808	ä	PA	RC	ر ت	826	827	Tota	C	100 (11)			
1/1/12	1155	501	LFC	1,402	Cool	001	X	X									χ	Jun			
1	1205	1	LWC-04B	1	7	feedball of the state of the st	×	X		4	16 .					11 11 	X	3	Arrest Lie		_
										\dashv					- 1	10.4	1 29		-	+	
					131 1846 1								2010								
		-																_	3	_	-
	/-								\dashv			-	-	_							
2					-					\subseteq		1 11				B) (
				and the second s	and the second s		· Service Serv				=				/						-
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\vdash	-	\dashv		er sel	10 15 1 10 1 10 1 1		191	11.77	17 W	\Rightarrow	-	#		+
Date: Date: Vi7 2	Time: 358 Time: 1804	Relinquish		Received by:	Via: Com	Date Time 1//17/72 /358 Date Time 6:20	Ren	narks	: :	ch	140	50	n 6	en	Sol	~ ~~		»~~			

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 03, 2023

Stuart Hyde HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Mansfield OrderNo.: 2212A16

Dear Stuart Hyde:

Hall Environmental Analysis Laboratory received 1 sample(s) on 12/16/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: EX WS

 Project:
 Mansfield
 Collection Date: 12/15/2022 11:15:00 AM

 Lab ID:
 2212A16-001
 Matrix: AQUEOUS
 Received Date: 12/16/2022 7:40:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: JMT
Fluoride	1.6	1.0	mg/L	10	12/16/2022 2:57:45 PM
Chloride	490	50	* mg/L	100	12/16/2022 3:10:06 PM
Nitrogen, Nitrite (As N)	2.8	1.0	* mg/L	10	12/16/2022 2:57:45 PM
Bromide	2.1	1.0	mg/L	10	12/16/2022 2:57:45 PM
Nitrogen, Nitrate (As N)	14	1.0	* mg/L	10	12/16/2022 2:57:45 PM
Phosphorus, Orthophosphate (As P)	ND	50	mg/L	100	12/16/2022 3:10:06 PM
Sulfate	8500	250	* mg/L	500	12/29/2022 9:08:14 PM
EPA METHOD 200.7: METALS					Analyst: VP
Calcium	660	10	mg/L	10	12/20/2022 3:51:39 PM
Magnesium	1600	100	mg/L	100	12/20/2022 3:55:41 PM
Potassium	23	1.0	mg/L	1	12/20/2022 3:50:21 PM
Sodium	1400	100	mg/L	100	12/20/2022 3:55:41 PM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Toluene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Ethylbenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,2,4-Trimethylbenzene	67	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,3,5-Trimethylbenzene	140	10	μg/L	10	12/21/2022 9:53:00 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Naphthalene	2.4	2.0	μg/L	1	12/20/2022 2:00:00 PM
1-Methylnaphthalene	5.2	4.0	μg/L	1	12/20/2022 2:00:00 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	12/20/2022 2:00:00 PM
Acetone	22	10	μg/L	1	12/20/2022 2:00:00 PM
Bromobenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Bromoform	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Bromomethane	ND	3.0	μg/L	1	12/20/2022 2:00:00 PM
2-Butanone	ND	10	μg/L	1	12/20/2022 2:00:00 PM
Carbon disulfide	ND	10	μg/L	1	12/20/2022 2:00:00 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Chlorobenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Chloroethane	ND	2.0	μg/L	1	12/20/2022 2:00:00 PM
Chloroform	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Chloromethane	ND	3.0	μg/L	1	12/20/2022 2:00:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 10

CLIENT: HILCORP ENERGY

Analytical Report

Lab Order **2212A16**Date Reported: **1/3/2023**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: EX WS

 Project:
 Mansfield
 Collection Date: 12/15/2022 11:15:00 AM

 Lab ID:
 2212A16-001
 Matrix: AQUEOUS
 Received Date: 12/16/2022 7:40:00 AM

Analyses	Result	RL Qua	d Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
cis-1,2-DCE	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	12/20/2022 2:00:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Dibromomethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	12/20/2022 2:00:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
2-Hexanone	ND	10	μg/L	1	12/20/2022 2:00:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
4-Isopropyltoluene	4.6	1.0	μg/L	1	12/20/2022 2:00:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	12/20/2022 2:00:00 PM
Methylene Chloride	ND	3.0	μg/L	1	12/20/2022 2:00:00 PM
n-Butylbenzene	ND	3.0	μg/L	1	12/20/2022 2:00:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Styrene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	12/20/2022 2:00:00 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
trans-1,2-DCE	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	12/20/2022 2:00:00 PM
Vinyl chloride	ND	1.0	μg/L	1	12/20/2022 2:00:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 10

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: EX WS

 Project:
 Mansfield
 Collection Date: 12/15/2022 11:15:00 AM

 Lab ID:
 2212A16-001
 Matrix: AQUEOUS
 Received Date: 12/16/2022 7:40:00 AM

Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: CCM
Xylenes, Total	71	1.5		μg/L	1	12/20/2022 2:00:00 PM
Surr: 1,2-Dichloroethane-d4	92.7	70-130		%Rec	1	12/20/2022 2:00:00 PM
Surr: 4-Bromofluorobenzene	96.6	70-130		%Rec	1	12/20/2022 2:00:00 PM
Surr: Dibromofluoromethane	95.1	70-130		%Rec	1	12/20/2022 2:00:00 PM
Surr: Toluene-d8	108	70-130		%Rec	1	12/20/2022 2:00:00 PM
SM2320B: ALKALINITY						Analyst: CAS
Bicarbonate (As CaCO3)	495.8	20.00		mg/L Ca	1	12/22/2022 7:51:29 PM
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/22/2022 7:51:29 PM
Total Alkalinity (as CaCO3)	495.8	20.00		mg/L Ca	1	12/22/2022 7:51:29 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: SNS
Total Dissolved Solids	15100	200	*D	mg/L	1	12/27/2022 8:45:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 10

Hall Environmental Analysis Laboratory, Inc.

2212A16 03-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Mansfield

Sample ID: MB-72192	SampT	уре: МЕ	BLK	Tes	tCode: EF					
Client ID: PBW	Batch	ID: 72 1	192	F	RunNo: 93	3444				
Prep Date: 12/19/2022	Analysis D	ate: 12	/20/2022	9	SeqNo: 33	370213	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Sodium	ND	1.0								

Sample ID: LCSLL-72192	SampT	ype: LC	SLL	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: BatchQC	Batch	n ID: 721	192	F	RunNo: 93	3444				
Prep Date: 12/19/2022	Analysis D	ate: 12	/20/2022	9	SeqNo: 33	370214	Units: mg/L			
Analyte	Result	Result PQL SPK value SPK Ref			%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0	0.5000	0	106	50	150			
Magnesium	ND	1.0	0.5000	0	109	50	150			
Potassium	ND	1.0	0.5000	0	108	50	150			
Sodium	ND 1.0 0.5000			0	0 111 50					

Sample ID: LCS-72192	SampT	SampType: LCS TestCode: EPA Meth								
Client ID: LCSW	Batch	ID: 721	192	F	RunNo: 93	3444				
Prep Date: 12/19/2022	Analysis D	ate: 12	/20/2022	5	SeqNo: 33	370218	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium	53	1.0	50.00	0	106	85	115			
Magnesium	53	1.0	50.00	0	107	85	115			
Potassium	51	1.0	50.00	0	103	85	115			
Sodium	53	1.0	50.00	0	105	85	115			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 10

Hall Environmental Analysis Laboratory, Inc.

2212A16 03-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Mansfield

Sample ID: MR

Sample ID: MB	Samp1	ype: mb	lk	TestCode: EPA Method 300.0: Anion						
Client ID: PBW	Batcl	n ID: R9 :	3381	F	RunNo: 9:	3381				
Prep Date:	Analysis D	Date: 12	/16/2022	\$	SeqNo: 3	367319	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Nitrogen, Nitrite (As N)	ND	0.10								
Bromide	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Phosphorus, Orthophosphate (As P)	ND	0.50								
Sample ID: LCS	SampT	ype: Ics	SampType: Ics TestCode: EPA Methoc							
Client ID: LCSW	Batcl	n ID: R9 :	3381	F	RunNo: 9:	3381				
Client ID: LCSW Prep Date:	Batcl Analysis D	_			RunNo: 9; SeqNo: 3;		Units: mg/L			
		_					Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Prep Date:	Analysis [)ate: 12	/16/2022	5	SeqNo: 3;	367320	J	%RPD	RPDLimit	Qual
Prep Date:	Analysis D	PQL	2/16/2022 SPK value	SPK Ref Val	SeqNo: 3;	367320 LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte Fluoride	Analysis D Result 0.52	PQL 0.10	SPK value 0.5000	SPK Ref Val	SeqNo: 3; %REC 104	367320 LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte Fluoride Chloride	Analysis E Result 0.52 4.6	PQL 0.10 0.50	SPK value 0.5000 5.000	SPK Ref Val 0 0	SeqNo: 3: %REC 104 92.4	367320 LowLimit 90 90	HighLimit 110 110	%RPD	RPDLimit	Qual
Prep Date: Analyte Fluoride Chloride Nitrogen, Nitrite (As N)	Analysis E Result 0.52 4.6 0.96	PQL 0.10 0.50 0.10	SPK value 0.5000 5.000 1.000	SPK Ref Val 0 0 0	%REC 104 92.4 95.6	367320 LowLimit 90 90 90	HighLimit 110 110 110	%RPD	RPDLimit	Qual

Sample ID: LCS	SampType: Ics	Tes	tCode: EP	A Method	300.0: Anions				
Client ID: LCSW	Batch ID: R93	R	RunNo: 93	618					
Prep Date:	Analysis Date: 12/2	S	SeqNo: 33	79434	Units: mg/L				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate	9.5 0.50	10.00	0	94.9	90	110			

Sample ID: MB	SampType	e: mblk	Tes	tCode: EPA	Method	300.0: Anions			
Client ID: PBW	Batch ID	: R93618	F	RunNo: 936	18				
Prep Date:	Analysis Date	e: 12/29/2022	9	SeqNo: 337	9435	Units: mg/L			
Analyte	Result F	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	

Sulfate ND 0.50

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 5 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2212A16 03-Jan-23**

Client: HILCORP ENERGY

Project: Mansfield

Sample ID: 100ng lcs	SampT	SampType: LCS			tCode: EF	PA Method	8260B: VOLA	TILES				
Client ID: LCSW	Batch	n ID: R9	3457	F	RunNo: 93	3457						
Prep Date:	Analysis D	Analysis Date: 12/21/2022		SeqNo: 3370848			Units: %Rec					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Surr: 1,2-Dichloroethane-d4	8.6		10.00	86.5			130					
Surr: 4-Bromofluorobenzene	10		10.00	102 70			130					
Surr: Dibromofluoromethane	9.3		10.00		92.5		92.5 70		130			
Surr: Toluene-d8	9.9	10.00			99.4	70	130					

Sample ID: 100ng Ics	SampType: LCS TestCode: EPA Method 8260B: VOLATILES									
Client ID: LCSW	Batcl	h ID: R9 :	3456	F	RunNo: 93	3456				
Prep Date:	Analysis D)ate: 12	/20/2022	5	SeqNo: 33	370926	Units: µg/L			
Analyte			HighLimit	%RPD	RPDLimit	Qual				
Benzene	20	1.0	20.00	0	99.3	70	130	<u> </u>	<u> </u>	
Toluene	22	1.0	20.00	0	109	70	130			
Chlorobenzene	23	1.0	20.00	0	114	70	130			
1,1-Dichloroethene	20	1.0	20.00	0	102	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	95.6	70	130			
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.3	70	130			
Surr: 4-Bromofluorobenzene	11		10.00	107 70		130				
Surr: Dibromofluoromethane	9.6		10.00	0 95.9 70			130			
Surr: Toluene-d8	10		10.00	102 70			130			

Sample ID: mb	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	n ID: R9 :	3456	F	RunNo: 9;	3456				
Prep Date:	Analysis D	oate: 12	/20/2022	5	SeqNo: 3;	370927	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								

Qualifiers:

Bromomethane

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.

ND

3.0

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 10

Hall Environmental Analysis Laboratory, Inc.

2212A16 03-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Mansfield

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW Batch ID: **R93456** RunNo: 93456 Units: µg/L Prep Date: Analysis Date: 12/20/2022 SeqNo: 3370927 PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual 2-Butanone ND 10 Carbon disulfide ND 10 ND Carbon Tetrachloride 1.0 Chlorobenzene ND 1.0 Chloroethane ND 2.0 ND Chloroform 1.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 ND cis-1,2-DCE 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 ND 1,4-Dichlorobenzene 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 ND 1,1-Dichloroethene 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 2.0 ND 1.0 1,1-Dichloropropene Hexachlorobutadiene ND 1.0 ND 10 2-Hexanone Isopropylbenzene ND 1.0 4-Isopropyltoluene ND 1.0 4-Methyl-2-pentanone ND 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 Styrene ND 1.0 ND 1.0 tert-Butylbenzene 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 trans-1,2-DCE ND 1.0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 10

Hall Environmental Analysis Laboratory, Inc.

2212A16 03-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Mansfield

Sample ID: mb	SampT	SampType: MBLK Batch ID: R93456			tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	n ID: R9 :	3456	F	RunNo: 93	3456				
Prep Date:	Analysis D)ate: 12	/20/2022	5	SeqNo: 33	370927	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND 1.0									
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.0	70	130			
Surr: 4-Bromofluorobenzene	10 10.00				101	70	130			
Surr: Dibromofluoromethane	10 10.00				101	70	130			
Surr: Toluene-d8	10 10.00				101	70	130			

Sample ID: mb	Sampi	ype: ME	BLK	I es	stCode: EF	TILES				
Client ID: PBW	Batcl	h ID: R9	3457	F	RunNo: 93	3457				
Prep Date:	Analysis D	Analysis Date: 12/21/2022			SeqNo: 33	377540	Units: µg/L			
Analyte				SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,3,5-Trimethylbenzene	ND				-		_	-	•	
Surr: 1,2-Dichloroethane-d4	8.9		10.00		89.4 7					
Surr: 4-Bromofluorobenzene	9.7 10.00		97.0		70	130				
Surr: Dibromofluoromethane	9.3 10.00		93.2 70			130				
Surr: Toluene-d8	9.7 10.00		96.7 70			130				

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 8 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: 2212A16 03-Jan-23

Client: HILCORP ENERGY

Project: Mansfield

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: **R93524** RunNo: 93524

Prep Date: Analysis Date: 12/22/2022 SeqNo: 3373801 Units: mg/L CaCO3

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: **R93524** RunNo: 93524

Prep Date: Analysis Date: 12/22/2022 SeqNo: 3373802 Units: mg/L CaCO3

SPK value SPK Ref Val Analyte %REC HighLimit %RPD **RPDLimit** Result PQL LowLimit Qual

Total Alkalinity (as CaCO3) 78.40 20.00 80.00 98.0 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 9 of 10

Hall Environmental Analysis Laboratory, Inc.

2212A16

WO#:

03-Jan-23

Client: HILCORP ENERGY

Project: Mansfield

Sample ID: MB-72259 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 72259 RunNo: 93559

Prep Date: 12/21/2022 Analysis Date: 12/27/2022 SeqNo: 3375513 Units: mq/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-72259 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 72259 RunNo: 93559

Prep Date: 12/21/2022 Analysis Date: 12/27/2022 SeqNo: 3375514 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1020 20.0 1000 0 102 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 10

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque. NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 3/20/2023 2:50:29 PM

Client Name:	HILCORP	ENERGY	Work	Order Nun	nber: 2212A16		RcptNo:	1
Received By:	Tracy Cas	arrubias	12/16/2	022 7:40:0	0 AM			
Completed By:	Tracy Cas	arrubias	12/16/2	022 8:47:3	5 AM			
Reviewed By:	Se 12	livler						
Chain of Cust	tody							
1. Is Chain of Cu	stody comp	lete?			Yes 🗹	No 🗌	Not Present \square	
2. How was the	sample deliv	rered?			Courier			
<u>Log In</u>								
3. Was an attem	pt made to o	cool the samp	les?		Yes 🗹	No 🗌	NA 🗌	
4. Were all samp	les received	at a tempera	ture of >0° C	to 6.0°C	Yes 🗹	No 🗌	na 🗆	
5. Sample(s) in p	roper conta	iner(s)?			Yes 🗹	No 🗆		
6. Sufficient sam	ple volume f	or indicated to	est(s)?		Yes 🗹	No 🗌		
7. Are samples (except VOA	and ONG) pro	perly preserve	ed?	Yes 🗹	No 🗌		
8. Was preservat	ive added to	bottles?			Yes 🗌	No 🗸	NA 🗆	
9. Received at lea	ast 1 vial wit	h headspace	<1/4" for AQ \	OA?	Yes 🗹	No 🗆	na 🗆	
10. Were any sam	ple containe	ers received b	roken?		Yes 🗀	No 🗹	# of preserved	
11. Does paperwo (Note discrepa)		Yes 🗹	No 🗆	bottles checked for pH:	>12 unless noted
12. Are matrices o		•			Yes 🗹	No 🗌	Adjusted? /	0
13. Is it clear what	analyses we	ere requested	?		Yes 🗹	No 🗆		
14. Were all holdin (If no, notify cu	-				Yes 🗹	No 🗆	Checked by:	12.16.22
Special Handli		·					U	
15. Was client not	ified of all di	screpancies v	with this order	?	Yes 🗌	No 🗌	NA 🗹	-
Person I	Notified:			Date	: [***************************************		
By Who	m:			Via:	eMail] Phone [] Fax	☐ In Person	
Regardi	ng:						-	
Client In	structions:		DF					
16. Additional ren	narks:							
17. Cooler Inform		1						
Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By	THE PROPERTY OF THE PROPERTY O	
1	1.5	Good	Yes					

Client: Hi I/O P Energy Company Standard Project Name: Project Name: Mailing Address: Project Manager: Tel. 505-346-3975 Fax 505-345-4107	C	hain	-of-Cu	stody Record	Turn-Around						_										911	
Mailing Address: Mailing Address: Mansfield	Client:	Him	co Ena				,															
Project #: Project Manager: Project Manager:				rgy company															K/	110	JK	. Υ
Project #: Project Manager: Project Manager:	Mailing	Address	S:		Mans	field																
Phone #: email or Fax#: QNOC Package: Standard Level 4 (Full Validation) Accreditation: Accreditation: Date Time Matrix Sample Name Date: Time: Refinquished by: Repaived by: Vis. Repaived by: Repaived by: Vis. Repaived by: Vi						. ,																
Project Manager: Seuart Hydr - Ensolum Sampler: Seuart Hydr - Ensolum	Phono				-			Tac/	Те	el. 50)5-34	45-3		Alle Louis Brains				Andrew Street	7	70700		TI ACE IT
Standard					Project Mana	ader.							- 4	-	7515	Req		the second		STATE OF THE PARTY OF		BATTER ST
12-15 11:15 AQ EX WS Grarious Various MI XX X X X X X X X X X X X X X X X X X					1			021)	MRO	3,s		<u>S</u>				14	sen	1 1/1-	t and	1 11 1	ĺ	
12-15 11:15 AQ EX WS Grarious Wallous MI XX X X X X X X X X X X X X X X X X X				☐ Level 4 (Full Validation)	3040/6	HYDR - EN	1501am	8) s	0/1	PCE		NS(PO		340	t/Ab		1,000	=		
12-15 11:15 AQ EX WS Grarious Various MI XX X X X X X X X X X X X X X X X X X	Accred	itation:	□ Az Co	ompliance	Sampler:	E Carroll	- Dallie I	MB	/ DR		(1	3270		<u>o</u> 2			esen		<			
12-15 11:15 AQ EX WS Grarious Various MI XX X X X X X X X X X X X X X X X X X	<u> </u>		☐ Other	•	On Ice:	Yes Yes		_	RO,	8/se	504	ō	<u> </u>			OA)	(Pre		l #4	٧ >		
12-15 11:15 AQ EX WS Grarious Various MI XX X X X X X X X X X X X X X X X X X) (Type) _.	T				-01-15 (°C)		D(G	icid	hod	3310	/leta	2	8	n	orm	=0	×	, 2,		
12-15 11:15 AQ EX WS Grarious Various MI XX X X X X X X X X X X X X X X X X X					Cooler Terrip	(including CF). (a)	0.(= (-3 (0)	_ ≥	3015	Pes	Met	þ	8	Ä,	(VO	(Ser	Colif	12	Mo	6		
12-15 11:15 AQ EX WS Grarious Various MI XX X X X X X X X X X X X X X X X X X	Date	Time	Matrix	Sample Name	Container Preservative HEAL No.				TPH:8	8081	EDB (PAHs	RCR/	Cl, F,	8260	8270	Total	F	ડુ	A/k		
Date: Time: Relinquished by: 12-15 12-1 12-15 12-1 12-15 12-1 12-15 12-1 12-1	12-15	11:15	AQ	EX WS	6 various	Various	Application of the second							$\overline{}$			A RESTAUR	×				
12-15 1221 Ecta Cavarol		122				motor in the second					141	unful to t	A-CLU	n miss	-	×11151	TANK			DC 111	\top	100
12-15 1221 Ecta Carroll WAWAT 12/15/22 1221 Date: Time: Relinquished by: Received by: Via: Date Time 12, 1810 Time: Relinquished by: Time 12, 1810 Time: Relinquished by: Via: Date Time 13, 1810 Time: Relinquished by: Via: Date Time 14, 1810 Time: Relinquished by: Via: Date Time 15, 1810 Time: Relinquished by: Via: Date Time 16, 1810 Time: Relinquished by: Via: Date Time 17, 1810 Time: Relinquished by: Via: Date Time 18, 1810 Time: Relinquished by: V												- 17	TO 110		ton	1	100	10			+	+
12-15 1221 Ecta Cavarol		1971			100								22(°)= =		Hall	11.5	pi c'i	. (1-1	to per c	e Brigar	\dashv	LIF
12-15 1221 Ecta Cavarol						1991				\vdash		To all	- 1				m i				\dashv	+
12-15 1221 Ecta Cavarol						in alleria	- - - - - - - - - -	_		\vdash				J 1/Jacks							\dashv	
12-15 1221 Ecta Cavarol						<u> </u>			Н	-						-			pl poli	1711	+	_
12-15 1221 Ecta Carroll WAWAT 12/15/22 1221 Date: Time: Relinquished by: Received by: Via: Date Time 12, 1810 Time: Relinquished by: Time 12, 1810 Time: Relinquished by: Via: Date Time 13, 1810 Time: Relinquished by: Via: Date Time 14, 1810 Time: Relinquished by: Via: Date Time 15, 1810 Time: Relinquished by: Via: Date Time 16, 1810 Time: Relinquished by: Via: Date Time 17, 1810 Time: Relinquished by: Via: Date Time 18, 1810 Time: Relinquished by: V	<u> </u>						NELSKE TO PERSON	_	1		-			70,000					-	\dashv	-	+
12-15 1221 Ecta Carroll WAWAT 12/15/22 1221 Date: Time: Relinquished by: Received by: Via: Date Time 12, 1810 Time: Relinquished by: Time 12, 1810 Time: Relinquished by: Via: Date Time 13, 1810 Time: Relinquished by: Via: Date Time 14, 1810 Time: Relinquished by: Via: Date Time 15, 1810 Time: Relinquished by: Via: Date Time 16, 1810 Time: Relinquished by: Via: Date Time 17, 1810 Time: Relinquished by: Via: Date Time 18, 1810 Time: Relinquished by: V					-			<u> </u>				1 (5 1 1 lb)		Parent III	COMMON TO		10 N	170 m	1721	-	\dashv	+
12-15 1221 Ecta Cavarol								_							12.00	127					-	_
12-15 1221 Ecta Cavarol			-				Partie William and America	H	Н				2.3							_		
12-15 1221 Ecta Carroll WAWAT 12/15/22 1221 Date: Time: Relinquished by: Received by: Via: Date Time 12, 1810 Time: Relinquished by: Time 12, 1810 Time: Relinquished by: Via: Date Time 13, 1810 Time: Relinquished by: Via: Date Time 14, 1810 Time: Relinquished by: Via: Date Time 15, 1810 Time: Relinquished by: Via: Date Time 16, 1810 Time: Relinquished by: Via: Date Time 17, 1810 Time: Relinquished by: Via: Date Time 18, 1810 Time: Relinquished by: V							The Other The	_		-		w at in-	10)	100 101 A 1 A								-
12-15 1221 Extra Carroll & What 12/15/22 1221 Date: Time: Relinquished by: Received by: Via: Date Time 12, 1816 Relinquished by: Received by: Via: Date Time 12, 1816 Relinquished by: Received by: Via: Date Time	Date:	Date: Time: Relinquished by:		Received by:	yia:	Date Time	Ren	nark] s:		and the second							944				
Date: Time: Relinquished by: Received by: Via: Date Time 7:40	12-15	1221	Ensi	e (peroll	1/ WAL	Nas	12/5/20 1721															
15/12 1 Minth Mallo	Date:	Time:	Relinquish	ed by:	1/ 0 -		Date Time	1	00	۵ . ر	200	2/1/	0116	en	150	lum	1.00	רמכ				
	15/13	1810	1 In	istu Walls			12/16/22															

4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Hall Environmental Analysis Laboratory

July 01, 2022

Stuart Hyde HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Mansfield 11 OrderNo.: 2206B72

Dear Stuart Hyde:

Hall Environmental Analysis Laboratory received 15 sample(s) on 6/22/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

anded

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: FC-01

Project: Mansfield 11
 Collection Date: 6/21/2022 1:50:00 PM

 Lab ID: 2206B72-001
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					Analyst: ED
Diesel Range Organics (DRO)	36	14	mg/Kg	1	6/24/2022 9:16:24 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	6/24/2022 9:16:24 PM
Surr: DNOP	82.5	51.1-141	%Rec	1	6/24/2022 9:16:24 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/25/2022 12:50:00 AM
Surr: BFB	91.9	37.7-212	%Rec	1	6/25/2022 12:50:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	6/25/2022 12:50:00 AM
Toluene	ND	0.050	mg/Kg	1	6/25/2022 12:50:00 AM
Ethylbenzene	ND	0.050	mg/Kg	1	6/25/2022 12:50:00 AM
Xylenes, Total	ND	0.10	mg/Kg	1	6/25/2022 12:50:00 AM
Surr: 4-Bromofluorobenzene	89.9	70-130	%Rec	1	6/25/2022 12:50:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: FC-02

Project: Mansfield 11
 Collection Date: 6/21/2022 1:55:00 PM

 Lab ID: 2206B72-002
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS				Analyst: ED	
Diesel Range Organics (DRO)	44	15	mg/Kg	1	6/24/2022 9:27:17 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	6/24/2022 9:27:17 PM
Surr: DNOP	83.9	51.1-141	%Rec	1	6/24/2022 9:27:17 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	6/25/2022 1:10:00 AM
Surr: BFB	91.6	37.7-212	%Rec	1	6/25/2022 1:10:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	6/25/2022 1:10:00 AM
Toluene	ND	0.049	mg/Kg	1	6/25/2022 1:10:00 AM
Ethylbenzene	ND	0.049	mg/Kg	1	6/25/2022 1:10:00 AM
Xylenes, Total	ND	0.097	mg/Kg	1	6/25/2022 1:10:00 AM
Surr: 4-Bromofluorobenzene	84.8	70-130	%Rec	1	6/25/2022 1:10:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: FC-03

Project: Mansfield 11
 Collection Date: 6/21/2022 2:02:00 PM

 Lab ID: 2206B72-003
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					Analyst: ED
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	6/24/2022 9:38:10 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	6/24/2022 9:38:10 PM
Surr: DNOP	86.8	51.1-141	%Rec	1	6/24/2022 9:38:10 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/25/2022 1:30:00 AM
Surr: BFB	87.6	37.7-212	%Rec	1	6/25/2022 1:30:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	6/25/2022 1:30:00 AM
Toluene	ND	0.050	mg/Kg	1	6/25/2022 1:30:00 AM
Ethylbenzene	ND	0.050	mg/Kg	1	6/25/2022 1:30:00 AM
Xylenes, Total	ND	0.10	mg/Kg	1	6/25/2022 1:30:00 AM
Surr: 4-Bromofluorobenzene	85.5	70-130	%Rec	1	6/25/2022 1:30:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: FC-04

Project: Mansfield 11
 Collection Date: 6/21/2022 1:59:00 PM

 Lab ID: 2206B72-004
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					Analyst: ED
Diesel Range Organics (DRO)	ND	13	mg/Kg	1	6/24/2022 9:49:05 PM
Motor Oil Range Organics (MRO)	ND	43	mg/Kg	1	6/24/2022 9:49:05 PM
Surr: DNOP	85.5	51.1-141	%Rec	1	6/24/2022 9:49:05 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	6/25/2022 1:49:00 AM
Surr: BFB	90.2	37.7-212	%Rec	1	6/25/2022 1:49:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	6/25/2022 1:49:00 AM
Toluene	ND	0.049	mg/Kg	1	6/25/2022 1:49:00 AM
Ethylbenzene	ND	0.049	mg/Kg	1	6/25/2022 1:49:00 AM
Xylenes, Total	ND	0.097	mg/Kg	1	6/25/2022 1:49:00 AM
Surr: 4-Bromofluorobenzene	86.2	70-130	%Rec	1	6/25/2022 1:49:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: UWC-01

Project: Mansfield 11
 Collection Date: 6/21/2022 2:07:00 PM

 Lab ID: 2206B72-005
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					Analyst: ED
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	6/24/2022 10:00:00 PM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	6/24/2022 10:00:00 PM
Surr: DNOP	88.7	51.1-141	%Rec	1	6/24/2022 10:00:00 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	6/25/2022 2:09:00 AM
Surr: BFB	86.1	37.7-212	%Rec	1	6/25/2022 2:09:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.023	mg/Kg	1	6/25/2022 2:09:00 AM
Toluene	ND	0.046	mg/Kg	1	6/25/2022 2:09:00 AM
Ethylbenzene	ND	0.046	mg/Kg	1	6/25/2022 2:09:00 AM
Xylenes, Total	ND	0.092	mg/Kg	1	6/25/2022 2:09:00 AM
Surr: 4-Bromofluorobenzene	85.7	70-130	%Rec	1	6/25/2022 2:09:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: LWC-01

Project: Mansfield 11
 Collection Date: 6/21/2022 2:10:00 PM

 Lab ID: 2206B72-006
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					Analyst: ED
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	6/24/2022 10:10:56 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	6/24/2022 10:10:56 PM
Surr: DNOP	80.7	51.1-141	%Rec	1	6/24/2022 10:10:56 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	6/25/2022 2:29:00 AM
Surr: BFB	86.4	37.7-212	%Rec	1	6/25/2022 2:29:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.023	mg/Kg	1	6/25/2022 2:29:00 AM
Toluene	ND	0.046	mg/Kg	1	6/25/2022 2:29:00 AM
Ethylbenzene	ND	0.046	mg/Kg	1	6/25/2022 2:29:00 AM
Xylenes, Total	ND	0.093	mg/Kg	1	6/25/2022 2:29:00 AM
Surr: 4-Bromofluorobenzene	84.7	70-130	%Rec	1	6/25/2022 2:29:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: UWC-02

Project: Mansfield 11
 Collection Date: 6/21/2022 2:14:00 PM

 Lab ID: 2206B72-007
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: ED
Diesel Range Organics (DRO)	ND	13	mg/Kg	1	6/24/2022 6:09:51 PM
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	6/24/2022 6:09:51 PM
Surr: DNOP	92.9	51.1-141	%Rec	1	6/24/2022 6:09:51 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/25/2022 2:49:00 AM
Surr: BFB	87.1	37.7-212	%Rec	1	6/25/2022 2:49:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	6/25/2022 2:49:00 AM
Toluene	ND	0.050	mg/Kg	1	6/25/2022 2:49:00 AM
Ethylbenzene	ND	0.050	mg/Kg	1	6/25/2022 2:49:00 AM
Xylenes, Total	ND	0.099	mg/Kg	1	6/25/2022 2:49:00 AM
Surr: 4-Bromofluorobenzene	86.0	70-130	%Rec	1	6/25/2022 2:49:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: LWC-02

Project: Mansfield 11
 Collection Date: 6/21/2022 2:18:00 PM

 Lab ID: 2206B72-008
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: ED
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	6/27/2022 12:55:45 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	6/27/2022 12:55:45 PM
Surr: DNOP	119	51.1-141	%Rec	1	6/27/2022 12:55:45 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	6/25/2022 3:09:00 AM
Surr: BFB	86.9	37.7-212	%Rec	1	6/25/2022 3:09:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.023	mg/Kg	1	6/25/2022 3:09:00 AM
Toluene	ND	0.046	mg/Kg	1	6/25/2022 3:09:00 AM
Ethylbenzene	ND	0.046	mg/Kg	1	6/25/2022 3:09:00 AM
Xylenes, Total	ND	0.092	mg/Kg	1	6/25/2022 3:09:00 AM
Surr: 4-Bromofluorobenzene	84.8	70-130	%Rec	1	6/25/2022 3:09:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: UWC-03

Project: Mansfield 11
 Collection Date: 6/21/2022 2:46:00 PM

 Lab ID: 2206B72-009
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	SANICS				Analyst: ED
Diesel Range Organics (DRO)	ND	13	mg/Kg	1	6/27/2022 2:44:06 PM
Motor Oil Range Organics (MRO)	ND	43	mg/Kg	1	6/27/2022 2:44:06 PM
Surr: DNOP	96.1	51.1-141	%Rec	1	6/27/2022 2:44:06 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	6/25/2022 3:28:00 AM
Surr: BFB	86.7	37.7-212	%Rec	1	6/25/2022 3:28:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.023	mg/Kg	1	6/25/2022 3:28:00 AM
Toluene	ND	0.046	mg/Kg	1	6/25/2022 3:28:00 AM
Ethylbenzene	ND	0.046	mg/Kg	1	6/25/2022 3:28:00 AM
Xylenes, Total	ND	0.091	mg/Kg	1	6/25/2022 3:28:00 AM
Surr: 4-Bromofluorobenzene	83.1	70-130	%Rec	1	6/25/2022 3:28:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: LWC-03

Project: Mansfield 11
 Collection Date: 6/21/2022 2:49:00 PM

 Lab ID: 2206B72-010
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: ED
Diesel Range Organics (DRO)	ND	13	mg/Kg	1	6/27/2022 2:54:45 PM
Motor Oil Range Organics (MRO)	ND	43	mg/Kg	1	6/27/2022 2:54:45 PM
Surr: DNOP	120	51.1-141	%Rec	1	6/27/2022 2:54:45 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	6/25/2022 3:48:00 AM
Surr: BFB	85.9	37.7-212	%Rec	1	6/25/2022 3:48:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	6/25/2022 3:48:00 AM
Toluene	ND	0.047	mg/Kg	1	6/25/2022 3:48:00 AM
Ethylbenzene	ND	0.047	mg/Kg	1	6/25/2022 3:48:00 AM
Xylenes, Total	ND	0.095	mg/Kg	1	6/25/2022 3:48:00 AM
Surr: 4-Bromofluorobenzene	85.8	70-130	%Rec	1	6/25/2022 3:48:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: UWC-04

Project: Mansfield 11
 Collection Date: 6/21/2022 2:38:00 PM

 Lab ID: 2206B72-011
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: ED
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	6/27/2022 3:05:27 PM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	6/27/2022 3:05:27 PM
Surr: DNOP	96.0	51.1-141	%Rec	1	6/27/2022 3:05:27 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/25/2022 5:47:00 AM
Surr: BFB	86.1	37.7-212	%Rec	1	6/25/2022 5:47:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	6/25/2022 5:47:00 AM
Toluene	ND	0.050	mg/Kg	1	6/25/2022 5:47:00 AM
Ethylbenzene	ND	0.050	mg/Kg	1	6/25/2022 5:47:00 AM
Xylenes, Total	ND	0.10	mg/Kg	1	6/25/2022 5:47:00 AM
Surr: 4-Bromofluorobenzene	85.0	70-130	%Rec	1	6/25/2022 5:47:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: LWC-04

Project: Mansfield 11
 Collection Date: 6/21/2022 2:42:00 PM

 Lab ID: 2206B72-012
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: ED
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	6/27/2022 3:16:09 PM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	6/27/2022 3:16:09 PM
Surr: DNOP	97.4	51.1-141	%Rec	1	6/27/2022 3:16:09 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/25/2022 6:46:00 AM
Surr: BFB	93.8	37.7-212	%Rec	1	6/25/2022 6:46:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	6/25/2022 6:46:00 AM
Toluene	ND	0.050	mg/Kg	1	6/25/2022 6:46:00 AM
Ethylbenzene	ND	0.050	mg/Kg	1	6/25/2022 6:46:00 AM
Xylenes, Total	ND	0.10	mg/Kg	1	6/25/2022 6:46:00 AM
Surr: 4-Bromofluorobenzene	90.2	70-130	%Rec	1	6/25/2022 6:46:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: LWC-05

Project: Mansfield 11
 Collection Date: 6/21/2022 2:32:00 PM

 Lab ID: 2206B72-013
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: ED
Diesel Range Organics (DRO)	17	13	mg/Kg	1	6/27/2022 3:26:53 PM
Motor Oil Range Organics (MRO)	ND	43	mg/Kg	1	6/27/2022 3:26:53 PM
Surr: DNOP	95.9	51.1-141	%Rec	1	6/27/2022 3:26:53 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	6/25/2022 7:46:00 AM
Surr: BFB	87.5	37.7-212	%Rec	1	6/25/2022 7:46:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.023	mg/Kg	1	6/25/2022 7:46:00 AM
Toluene	ND	0.047	mg/Kg	1	6/25/2022 7:46:00 AM
Ethylbenzene	ND	0.047	mg/Kg	1	6/25/2022 7:46:00 AM
Xylenes, Total	ND	0.094	mg/Kg	1	6/25/2022 7:46:00 AM
Surr: 4-Bromofluorobenzene	84.8	70-130	%Rec	1	6/25/2022 7:46:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: UWC-05

Project: Mansfield 11
 Collection Date: 6/21/2022 2:34:00 PM

 Lab ID: 2206B72-014
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: ED
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	6/27/2022 3:37:36 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	6/27/2022 3:37:36 PM
Surr: DNOP	95.5	51.1-141	%Rec	1	6/27/2022 3:37:36 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	6/25/2022 8:06:00 AM
Surr: BFB	88.9	37.7-212	%Rec	1	6/25/2022 8:06:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	6/25/2022 8:06:00 AM
Toluene	ND	0.047	mg/Kg	1	6/25/2022 8:06:00 AM
Ethylbenzene	ND	0.047	mg/Kg	1	6/25/2022 8:06:00 AM
Xylenes, Total	ND	0.095	mg/Kg	1	6/25/2022 8:06:00 AM
Surr: 4-Bromofluorobenzene	85.6	70-130	%Rec	1	6/25/2022 8:06:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 21

Date Reported: 7/1/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: LWC-06

Project: Mansfield 11
 Collection Date: 6/21/2022 2:28:00 PM

 Lab ID: 2206B72-015
 Matrix: SOIL
 Received Date: 6/22/2022 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: ED
Diesel Range Organics (DRO)	21	13	mg/Kg	1	6/27/2022 3:48:18 PM
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	6/27/2022 3:48:18 PM
Surr: DNOP	101	51.1-141	%Rec	1	6/27/2022 3:48:18 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	6/25/2022 8:25:00 AM
Surr: BFB	87.6	37.7-212	%Rec	1	6/25/2022 8:25:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.023	mg/Kg	1	6/25/2022 8:25:00 AM
Toluene	ND	0.047	mg/Kg	1	6/25/2022 8:25:00 AM
Ethylbenzene	ND	0.047	mg/Kg	1	6/25/2022 8:25:00 AM
Xylenes, Total	ND	0.093	mg/Kg	1	6/25/2022 8:25:00 AM
Surr: 4-Bromofluorobenzene	84.7	70-130	%Rec	1	6/25/2022 8:25:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 21

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2206B72** *01-Jul-22*

Client: HILCORP ENERGY

Project: Mansfield 11

Project: Mansfield	111									
Sample ID: LCS-68331	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch	ID: 68	331	F	RunNo: 8	9016				
Prep Date: 6/23/2022	Analysis D	ate: 6/	24/2022	S	SeqNo: 3	161315	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	60	15	50.00	0	121	64.4	127			
Surr: DNOP	5.8		5.000		116	51.1	141			
Sample ID: MB-68331	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch	ID: 68	331	F	RunNo: 8	9016				
Prep Date: 6/23/2022	Analysis D	ate: 6/	24/2022	5	SeqNo: 3	161317	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15								
Motor Oil Range Organics (MRO)	ND	50	40.00		07.0	E4.4	4.44			
Surr: DNOP	9.7		10.00		97.3	51.1	141			
Sample ID: LCS-68328	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch	ID: 68	328	F	RunNo: 8	9016				
Prep Date: 6/23/2022	Analysis D	ate: 6/	24/2022	5	SeqNo: 3	162504	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	54	15	50.00	0	108	64.4	127			
Surr: DNOP	5.0		5.000		99.8	51.1	141			
Sample ID: MB-68328	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch	ID: 68	328	F	RunNo: 8	9016				
Prep Date: 6/23/2022	Analysis D	ate: 6/	24/2022	5	SeqNo: 3	162505	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.4		10.00		94.1	51.1	141			
Sample ID: 2206B72-008AMS	SampT	ype: M \$	3	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LWC-02	Batch	ID: 68	344	F	RunNo: 8	9051				
Prep Date: 6/24/2022	Analysis D	ate: 6/	27/2022	5	SeqNo: 3	162984	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	45	13	44.21	0	102	36.1	154			·

Qualifiers:

Surr: DNOP

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference

4.1

B Analyte detected in the associated Method Blank

92.7

51.1

141

E Estimated value

4.421

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 21

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

01-Jul-22

2206B72

WO#:

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: 2206B72-008AMSD SampType: MSD TestCode: EPA Method 8015M/D: Diesel Range Organics RunNo: 89051 Client ID: LWC-02 Batch ID: 68344 Prep Date: 6/24/2022 Analysis Date: 6/27/2022 SeqNo: 3162985 Units: mg/Kg PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Diesel Range Organics (DRO) 0 47 14 45.25 103 36.1 154 2.95 33.9 Surr: DNOP 4.0 4.525 89.0 51.1 141 0

Sample ID: LCS-68344 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 68344 RunNo: 89051 Prep Date: 6/24/2022 Analysis Date: 6/27/2022 SeqNo: 3162989 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 49 15 50.00 0 98.5 64.4 127 Surr: DNOP 4.4 5.000 87.0 51.1 141

Sample ID: MB-68344 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 68344 RunNo: 89051 Prep Date: 6/24/2022 Analysis Date: 6/27/2022 SeqNo: 3162990 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual Diesel Range Organics (DRO) ND 15

 Motor Oil Range Organics (MRO)
 ND
 50

 Surr: DNOP
 9.7
 10.00
 97.3
 51.1
 141

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 21

OC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2206B72**

01-Jul-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: Ics-68296 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 68296 RunNo: 89028

Prep Date: 6/22/2022 Analysis Date: 6/24/2022 SeqNo: 3161636 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Surr: BFB
 1900
 1000
 191
 37.7
 212

Sample ID: mb-68296 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: 68296 RunNo: 89028

Prep Date: 6/22/2022 Analysis Date: 6/24/2022 SeqNo: 3161637 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Surr: BFB
 870
 1000
 86.6
 37.7
 212

Sample ID: Ics-68315 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 68315 RunNo: 89028

Prep Date: 6/23/2022 Analysis Date: 6/24/2022 SeqNo: 3161660 Units: mg/Kg

Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Qual Gasoline Range Organics (GRO) 23 5.0 25.00 0 93.9 72.3 137

Surr: BFB 1900 1000 188 37.7 212

Sample ID: mb-68315 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: 68315 RunNo: 89028

Prep Date: 6/23/2022 Analysis Date: 6/24/2022 SeqNo: 3161661 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 870 1000 87.5 37.7 212

Sample ID: Ics-68325 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 68325 RunNo: 89028

Prep Date: 6/23/2022 Analysis Date: 6/25/2022 SeqNo: 3161684 Units: mg/Kg

PQL SPK Ref Val %REC HighLimit %RPD **RPDLimit** Result SPK value LowLimit Qual 25.00 5.0 n 100 72.3 137

 Gasoline Range Organics (GRO)
 25
 5.0
 25.00
 0
 100
 72.3
 137

 Surr: BFB
 1900
 1000
 193
 37.7
 212

Sample ID: mb-68325 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: 68325 RunNo: 89028

Prep Date: 6/23/2022 Analysis Date: 6/25/2022 SeqNo: 3161685 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

 Gasoline Range Organics (GRO)
 ND
 5.0

 Surr: BFB
 860
 1000
 86.2
 37.7
 212

Qualifiers:

Value exceeds Maximum Contaminant Level
 D Sample Diluted Due to Matrix

D Sample Diluted Due to Matrix
H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 21

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

2206B72 01-Jul-22

WO#:

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: 2206b72-011ams SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: **UWC-04** Batch ID: **68325** RunNo: **89028**

Prep Date: 6/23/2022 Analysis Date: 6/25/2022 SeqNo: 3161687 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Gasoline Range Organics (GRO) 28 5.0 24.93 0 111 70 130

 Gasoline Range Organics (GRO)
 28
 5.0
 24.93
 0
 111
 70
 130

 Surr: BFB
 2100
 997.0
 208
 37.7
 212

Sample ID: 2206b72-011amsd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: **UWC-04** Batch ID: **68325** RunNo: **89028**

Prep Date: 6/23/2022 Analysis Date: 6/25/2022 SeqNo: 3161688 Units: mg/Kg

RPDLimit Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual 70 Gasoline Range Organics (GRO) 25 5.0 24.90 0 101 130 9.75 20 Surr: BFB 2000 996.0 201 37.7 212 0 0

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 21

OC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: 2206B72 01-Jul-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: Ics-68296 SampType: LCS TestCode: EPA Method 8021B: Volatiles

LCSS Client ID: Batch ID: 68296 RunNo: 89028

Prep Date: Analysis Date: 6/24/2022 SeqNo: 3161708 Units: %Rec 6/22/2022

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result %REC LowLimit HighLimit Qual

130 Surr: 4-Bromofluorobenzene 0.88 1.000 88.3 70

Sample ID: mb-68296 SampType: MBLK TestCode: EPA Method 8021B: Volatiles

Client ID: PBS Batch ID: 68296 RunNo: 89028

Prep Date: 6/22/2022 Analysis Date: 6/24/2022 SeqNo: 3161709 Units: %Rec

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual

Surr: 4-Bromofluorobenzene 0.86 1.000 86.0 130

Sample ID: Ics-68315 SampType: LCS TestCode: EPA Method 8021B: Volatiles Client ID: LCSS Batch ID: 68315 RunNo: 89028 Prep Date: Analysis Date: 6/24/2022 SeqNo: 3161732 Units: mg/Kg 6/23/2022 %REC PQL SPK value SPK Ref Val HighLimit %RPD **RPDLimit** Qual Analyte Result I owl imit 0.93 0.025 1.000 92.8 80 120 Benzene 0.050 0 93.7 80 120 Toluene 0.94 1.000 Ethylbenzene 0.92 0.050 1.000 0 92.1 80 120 0 Xylenes, Total 2.7 0.10 3.000 91.1 80 120 Surr: 4-Bromofluorobenzene 0.85 1.000 85.1 70 130

Sample ID: mb-68315 SampType: MBLK TestCode: EPA Method 8021B: Volatiles

Client ID: PBS Batch ID: 68315 RunNo: 89028

Prep Date: 6/23/2022 Analysis Date: 6/24/2022 SeqNo: 3161733 Units: mg/Kg

Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Benzene ND 0.025 ND 0.050 Toluene ND 0.050 Ethylbenzene Xylenes, Total ND 0.10

Surr: 4-Bromofluorobenzene 0.83 1.000 83.0 70 130

Sample ID: Ics-68325 SampType: LCS TestCode: EPA Method 8021B: Volatiles Client ID: LCSS Batch ID: 68325 RunNo: 89028 Prep Date: Analysis Date: 6/25/2022 SeqNo: 3161756 6/23/2022 Units: mg/Kg LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Benzene 0.91 0.025 1.000 0 91.4 80 120 Toluene 0.92 0.050 1.000 0 91.7 80 120 Ethylbenzene 0.91 0.050 1.000 0 90.8 80 120 3.000 0 90.2 80 Xylenes, Total 2.7 0.10 120

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 20 of 21

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: 2206B72

01-Jul-22

Client: HILCORP ENERGY

Project: Mansfield 11

Sample ID: Ics-68325 SampType: LCS TestCode: EPA Method 8021B: Volatiles

Client ID: LCSS Batch ID: 68325 RunNo: 89028

Prep Date: Analysis Date: 6/25/2022 SeqNo: 3161756 6/23/2022 Units: mq/Kq

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result LowLimit HighLimit Qual

Surr: 4-Bromofluorobenzene 0.85 1.000 84.5 70 130

Sample ID: mb-68325 SampType: MBLK TestCode: EPA Method 8021B: Volatiles

Client ID: PBS Batch ID: 68325 RunNo: 89028

Prep Date: 6/23/2022 Analysis Date: 6/25/2022 SeqNo: 3161757 Units: mg/Kg

SPK value SPK Ref Val %REC LowLimit **RPDLimit** Analyte Result PQL HighLimit %RPD Qual

Benzene ND 0.025 Toluene ND 0.050 ND 0.050 Ethylbenzene Xylenes, Total ND 0.10

0.85 1.000 70 130 Surr: 4-Bromofluorobenzene 84.8

Sample ID: 2206b72-012ams TestCode: EPA Method 8021B: Volatiles SampType: MS

LWC-04 RunNo: 89028 Client ID: Batch ID: 68325

Prep Date: 6/23/2022 Analysis Date: 6/25/2022 SeqNo: 3161760 Units: mg/Kg

SPK value SPK Ref Val Result PQL %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 1.0 0.025 0.9950 0 104 68.8 120 Renzene Toluene 1.1 0.050 0.9950 0 106 73.6 124 0 107 72.7 Ethylbenzene 1 1 0.050 0.9950 129 Xylenes, Total 3.2 0.10 2.985 0 106 75.7 126 Surr: 4-Bromofluorobenzene 0.90 0.9950 90.5 130 70

Sample ID: 2206b72-012amsd SampType: MSD TestCode: EPA Method 8021B: Volatiles

Client ID: LWC-04 Batch ID: 68325 RunNo: 89028

Prep Date: 6/23/2022	Analysis [Date: 6/	25/2022	5	SeqNo: 3161761		Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.025	0.9990	0	103	68.8	120	0.765	20	
Toluene	1.0	0.050	0.9990	0	105	73.6	124	0.940	20	
Ethylbenzene	1.1	0.050	0.9990	0	105	72.7	129	1.44	20	
Xylenes, Total	3.1	0.10	2.997	0	104	75.7	126	1.08	20	
Surr: 4-Bromofluorobenzene	0.87		0.9990		87.6	70	130	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank

Estimated value

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 21 of 21

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HIL	CORP ENERGY	Work Order Num	ber: 2206B72	RcptNo: 1		
Received By: Cl	heyenne Cason	6/22/2022 7:00:00	АМ	Chul		
Completed By: Se	ean Livingston	6/22/2022 12:12:29	PM	Chul S-L	m ==/	
Reviewed By: フル	16/22/22				751-	
Chain of Custod	<u>l</u> y					
1. Is Chain of Custo	dy complete?		Yes 🗸	No 🗌	Not Present	
2. How was the sam	ple delivered?		Courier			
<u>Log In</u> 3. Was an attempt m	nade to cool the sample	s?	Yes 🗸	No 🗌	NA 🗆	
4. Were all samples	received at a temperatu	re of >0° C to 6.0°C	Yes 🗸	No 🗌	NA 🗆	
5. Sample(s) in prop	er container(s)?		Yes 🗸	No 🗌		
6. Sufficient sample v	volume for indicated tes	t(s)?	Yes 🗹	No 🗌		
7. Are samples (exce	ept VOA and ONG) prop	erly preserved?	Yes 🗸	No 🗌		
8. Was preservative	added to bottles?		Yes	No 🗸	NA 🗆	
9. Received at least	1 vial with headspace <	1/4" for AQ VOA?	Yes	No 🗌	NA 🗹	
10. Were any sample	containers received bro	ken?	Yes	No 🗸	# of preserved	
11. Does paperwork m	natch bottle labels? es on chain of custody)		Yes 🗸	No 🗆	bottles checked for pH:	>12 unless noted)
12. Are matrices corre	ctly identified on Chain	of Custody?	Yes 🗸	No 🗆	Adjusted?	<i></i>
13. Is it clear what ana	alyses were requested?		Yes 🗸	No 🗌		21.
14. Were all holding ti			Yes 🗸	No 🗌	Checked by:	OS 6.22-22
	mer for authorization.)			L		
Special Handling 15. Was client notified	(IT applicable) d of all discrepancies wi	th this order?	Yes	No 🗌	NA 🗸	
Person Noti	fied:	Date	: [
By Whom:		Via:	eMail 🔲 F	Phone Fax	☐ In Person	
Regarding:		THE RESIDENCE OF THE PARTY OF T				
Client Instru	ctions:	Control of the Contro	***************************************			
16. Additional remark	(S:					
17. Cooler Informati	ion					
Cooler No T	emp °C Condition	Seal Intact Seal No	Seal Date	Signed By		
1 5.5	5 Good					

Page 1 of 2 Turn-Around Time: Chain-of-Custody Record HALL ENVIRONMENTAL 5 day □ Rush ANALYSIS LABORATORY Mailing Address: Project Name: Mans field #11 www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Project #: Tel. 505-345-3975 Fax 505-345-4107 **Analysis Request** Phone #: email or Fax#: mkillough Chilcorp.com SO₄ Project Manager: Strart Hyde TPH:8015D(GRO / DRO / MRO); Coliform (Present/Absent) BTEX) -MTBE / TMB's (8021) 8081 Pesticides/8082 PCB's PAHs by 8310 or 8270SIMS shyde @ ensolum, com QA/QC Package: CI, F, Br, NO₃, NO₂, PO₄, □ Level 4 (Full Validation) □ Standard Reece Hanson EDB (Method 504.1) Accreditation:

Az Compliance Sampler: 8270 (Semi-VOA) □ No □ NELAC □ Other On Ice: ¥ Yes ☐ EDD (Type) # of Coolers: 1 8260 (VOA) Cooler Temp(including CF): 5.4+0.1 = 5.45.5 (°C) HEAL No. Container Preservative Sample Name 2206372 Date Time Matrix Type and # Type FC-01 6/21/22 402 1350 Cool 001 FC-02 1353 007 FC-03 1402 203 FC-04 1359 004 1407 UWC-01 005 1416 LW6-01 000 uwc-02 Lwc-02 007 100 WWC-03 1446 009 LWC-03 1449 010 1438 UWC-04 011 LWC-04 012 Released to Imaging: Relinquished by: Received by: Date (C; Thanson @ en sol um. com Remarks: 6/21/22 [1/23] Date Time Relinquished by: If necessary, samples supprifted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

page 20 / 2

Chain-of-Custody Record			Turn-Around Time:						_												
Client: Til con			Standard □ Rush				HALL ENVIRONMENTAL														
#Atta: Mitch Killough			Droject Names			ANALYSIS LABORATORY															
Mailing Address:			Mans Field #11			www.hallenvironmental.com															
			Project #:			4901 Hawkins NE - Albuquerque, NM 87109															
			-	-				Te	el. 50	5-34	5-39	Secretary of	Delivery of the last of the la	SCHOOL STATE	Service of the last of the las	-345-	THE RESERVE OF THE PERSON NAMED IN	7			
Phone #:											Α		/sis	Req	uest						
email o				Project Manager: 5 to + Ity M			21)	100	/ /				SO ₄			ent)					
QA/QC Package: ☐ Standard ☐ Level 4 (Full Validation)				, -				TPH:8015D(GRO / DRO / MRO)	PCB's		8270SIMS		PO ₄ ,			Total Coliform (Present/Absent)					
Accredi	*	□ Az Cc	ompliance	Compler			TMB's (8021)	NS NS			270) ₂ , F			ent					
□ NEL		□ Other	•	Sampler: On Ice: ☑ Yes □ No				170	/808	504.1)			NO ₂ ,		4	Pres					
			# of Coolers: 1				GR	ides	d 5	100	tals	õ		/0/	m (F						
				Cooler Temp	(including CF): 5.4	+0.1=5.5 (°C)	M	15D(stic	etho	/83	Me	ر ک	OA)	-ime	lifor					
				Container	Preservative	HEAL No.		:80	1 Pe	Š	ls b	% ¥8		S	(S)	ပို					
Date	Time	Matrix	Sample Name	Personal Vision areas	Type	HEAL NO.	BTEX MTBE	团	8081 Pesticides/8082	EDB (Method	PAHs by 8310 or	RCRA 8 Metals	CI, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	Fota					
6/21/22	1432	901	LWC-05	1,402	C-01	013	X	X		_			Ť				\neg	十	十	\top	\top
	1434		UWC-05			014						r .					\neg	\top	十	\top	\top
1	1428	1	LWC-06		1	015	1	4				\dashv						\dashv	+	+	+
										\neg	\dashv	\neg					\dashv	+	+	十	$\dashv \dashv$
								\dashv	\dashv	+	+	-	\dashv				\dashv	+	+	+	\dashv
								\dashv	\dashv	+	\dashv	\dashv	\dashv	-	\dashv	-		+	_	+	\dashv
								\dashv	\dashv	+	\dashv	\dashv	\dashv			-	-	\dashv	+	+	
							-		\dashv	\dashv	\dashv	\dashv	-				_	\dashv	+	\dashv	
									_	_	_	_						_	\perp	\perp	
h	_								_	_	_			\perp			\perp	\dashv	_	\bot	
‡——						H _a			\perp	_		\perp									
707															-						
Date:	Time:	Deline::!-!	ad b																		
Pate: Relinquished by:						Remarks:															
01	Time:	Relinquishe	ed by:	Received by:	Via:	121/22 1623															m
1/21/22	1824	A	10~ 101	_	via.	Date Time															4
			Com Clark 6700														1			0300	
Kec If	necessary,	samples subi	mitted to Hall Environmental may be subc	ontracted to other ac	ccredited laboratories	s. This serves as notice of this	possib	oility. A	ny sub	o-contr	acted	data w	vill be	clearly	notat	ed on t	the ana	alytical	report.	i.	Roll

APPENDIX E

Photographic Log

PHOTOGRAPHIC LOG

Mansfield #11
San Juan County, New Mexico
Hilcorp Energy Company

Photograph 1

Excavation extent in January 2022 prior to the additional soil removal. View looking south.

Photograph 2

Total excavation extent in June 2022, looking northwest.

PHOTOGRAPHIC LOG

Mansfield #11
San Juan County, New Mexico
Hilcorp Energy Company

Photograph 3

Photograph of groundwater accumulated in the bottom of the open excavation. A grab-groundwater sample was collected from this area on December 15, 2022.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 175906

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	175906
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
nvelez	None	3/20/2023