

3300 North A Street, Building 1, #103 Midland, Texas 79705 432,704,5178

August 6, 2018

Mr. Mike Bratcher New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request JRU #36 Remediation Permit Number 2RP-2981 and 2RP-3617 Eddy County, New Mexico

Dear Mr. Bratcher:

LT Environmental, Inc. (LTE), on behalf of XTO Energy, Inc. (XTO), is pleased to present the following letter report detailing the soil sampling activities at the JRU #36 well pad (Site) in Unit Letter G, Section 1, Township 23 South, Range 30 East, in Eddy County, New Mexico (Figure 1). The purpose of the investigation was to assess impacts to soil after two separate events caused the release of crude oil in the processing equipment containment area.

On April 23, 2015, an air eliminator failure on the circulating pump broke off at the valve due to vibration of the pump, causing a release of approximately 20 barrels (bbls) of crude oil. The spill impacted approximately 2,000 square feet of the containment area. Free-standing liquid was removed with a vacuum truck; approximately 11 bbls of crude oil was recovered. The former operator reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 on April 29, 2015, and was assigned Remediation Permit Number (RP) 2RP-2981 (Attachment 1).

On February 1, 2016, a discharge bleed valve was left open on the circulating pump. This caused a release of approximately 17 barrels (bbls) of crude oil. The spill impacted approximately 1,575 square feet of the well pad within the process equipment area. Free-standing liquid was removed with a vacuum truck; approximately 5 bbls of crude oil was recovered. The former operator reported the release to the NMOCD on a Release Notification and Corrective Action Form C-141 on March 15, 2016, and was assigned 2RP-3617 (Attachment 1).

Although the releases occurred while the facility was operated by the previous operator, XTO is the current operator and is committed to addressing any releases that remain unresolved. The sampling was conducted to assess current site conditions. Based on the results of the confirmation sampling events conducted after impacted soil was removed, XTO is requesting no further action for these release events.

Bratcher, M. Page 2

BACKGROUND

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest water well data and known aquifer properties. The nearest permitted water well is C 03139, located approximately 0.44 miles southeast of the Site, with a depth to groundwater of 354 feet bgs and a total depth of 425 feet bgs. The Site is greater than 1,000 feet from a water source and greater than 200 feet from a private domestic water source. The closest surface water to the Site is an arroyo located approximately 0.74 miles southwest of the Site. Based on these criteria, the NMOCD site ranking for remediation action levels is 0, and the following remediation action levels apply: 10 milligrams per kilogram (mg/kg) benzene; 50 mg/kg benzene, toluene, ethylbenzene, and total xylenes (BTEX); and 5,000 mg/kg total petroleum hydrocarbons (TPH). Based on standard practice in this region, LTE proposes a site-specific chloride action level of 600 mg/kg or within 10 percent (%) of the background concentrations.

SOIL SAMPLING

On January 4, 2018, an LTE scientist collected nine soil samples (SS-1 through SS-9) from a depth of 0.5 feet bgs to determine the lateral extent of soil impact. The soil sample locations, depicted on Figure 2, were based on information provided on both the initial Form C-141s and field observations. Both releases were a result of the circulating pump in the processing equipment area. The latitude and longitude on the Form C-141 for 2RP-3617 is incorrect and was corrected to be 32.336152, -103.831835 on the final Form C-141. Samples were screened for volatile aromatic hydrocarbons using a photo-ionization detector (PID) equipped with a 10.6 electron volt lamp in accordance with the NMOCD Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993. Hydrocarbon odor or soil staining was not observed at the Site. The soil samples were placed directly into pre-cleaned glass jars, labeled with location, date, time, sampler, and method of analysis, and immediately placed on ice. The samples were delivered at 4 degrees Celsius (°C) under strict chain-of-custody procedures to ESC Lab Sciences in Mount Juliet, Tennessee, for laboratory analysis of BTEX by United States Environmental Protection Agency (EPA) Method 8021B, total petroleum hydrocarbons (TPH)-gasoline range organics (GRO), TPHdiesel range organics (DRO), and TPH-oil range organics (ORO) by EPA Method SW8015 Modified, and chloride by EPA Method 300.

Laboratory analytical results indicated two soil samples (SS-1 and SS-5) exceeded the NMOCD site-specific remediation action level for TPH. No soil samples exceeded the remediation action level for chloride. Analytical results are depicted on Figure 2 and summarized in Table 1, and the laboratory analytical reports are attached.

EXCAVATION ACTIVITIES

Based on results of the initial sampling, XTO excavated in the areas around surface samples SS-1 and SS-5 on April 18 through May 25, 2018. An LTE scientist field screened soil using a PID and

Bratcher, M. Page 3

chloride test strips to direct the hydro-vacuum and hand digging to delineate and remove impacted soil laterally and vertically in two excavations. LTE collected eleven confirmation soil samples (SS-2, SS-3, SS-4, SS-6 through SS-11, SS1A, and SS5A). Samples collected on April 19 and May 25, 2018, were collected and handled as previously described and submitted to Xenco Laboratories in Midland, Texas.

The western excavation was approximately 72 square feet with an average depth of three feet. The eastern excavation was approximately 190 square feet with a depth ranging from 1 foot to 2 feet. The horizontal extents of these two excavations are illustrated on Figure 2. Approximately 17 cubic yards of impacted soil were removed via hand digging and hydro excavation. Impacted soil from the western and the eastern excavations were transported and properly disposed of at the Lea Land and R360, in Eunice, New Mexico, and Hobbs, New Mexico.

ANALYTICAL RESULTS

Laboratory analytical results for the soil samples indicated BTEX and chloride concentrations were compliant with NMOCD remediation action levels. Laboratory analytical results indicated concentrations of TPH were compliant with the NMOCD remediation action level of 5,000 mg/kg in all soil samples except SS-1 and SS-5. The areas around sample locations SS-1 and SS-5 were excavated and subsequent soil samples SS1A and SS5A indicated TPH concentrations of 189 mg/kg and 24.2 mg/kg, respectively. Laboratory analytical results are presented on Figure 2 and summarized in Table 1, and the complete laboratory analytical report is included as Attachment 2.

CONCLUSIONS

Laboratory analytical results for eleven confirmation soil samples collected within the former release footprints indicate impact to soil, as defined by concentrations of BTEX, TPH, and chloride, do not exceed NMOCD site-specific remediation action levels. Initial response efforts, natural degradation, and remediation work has mitigated impacts at this Site, and XTO therefore respectfully requests no further action for these releases.

Bratcher, M. Page 4

If you have any questions or comments, please do not hesitate to contact Adrian Baker at (432) 887-1255 or <u>abaker@ltenv.com</u>.

Sincerely,

LT ENVIRONMENTAL, INC.

Aduan Baker

Adrian Baker Project Geologist

Ashley L. ager

Ashley L. Ager, P.G. Senior Geologist

cc: Kyle Littrell, XTO Maria Pruett, NMOCD Jim Amos, BLM Shelly Tucker, BLM

Attachments:

Figure 1 Site Location Map

Figure 2 Soil Sample Locations

Table 1Soil Analytical Results

Attachment 1 Initial/Final NMOCD Form C-141 (2RP-2981 and 2RP-3617)

Attachment 2 Laboratory Analytical Reports

FIGURES

Released to Imaging: 3/21/2023 7:52:47 AM

Released to Imaging: 3/21/2023 7:52:47 AM

P:\XTO Energy\GIS\MXD\012918001_JRU 36\012918001_FIG01_SL_2018.mxd

Released to Imaging: 3/21/2023 7:52:47 AM

P:\XTO Energy\GIS\MXD\012918001_JRU 36\012918001_FIG02_SITE_2018.mxd

TABLE

TABLE 1 SOIL ANALYTICAL RESULTS JRU #36 REMEDIATION PERMIT NUMBER 2RP-2981 and 2RP-3617 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	C6-C10 Gasoline Range Organics (mg/kg)	C10-C28 Diesel Range Organics (mg/kg)	C28-C40 Motor Oil Range Organics (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
SS-1	0.5	1/4/2018	< 0.000529	< 0.00529	0.0456	6.06	6.1056	183	12,300	3,100	15,583	456
SS1A	1.8	4/19/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	189	<15.0	189	64.1
SS-2	0.5	1/4/2018	< 0.000550	< 0.00550	< 0.000550	< 0.00165	< 0.00550	< 0.110	5.41	4.91	10.32	54.9
SS-3	0.5	1/4/2018	< 0.000543	< 0.00543	< 0.000543	< 0.00163	< 0.00543	< 0.109	1,730	717	2,447	97.8
SS-4	0.5	1/4/2018	< 0.000595	< 0.00595	< 0.000595	< 0.00178	< 0.00595	< 0.119	<4.76	<4.76	<4.76	105
SS-5	0.5	1/4/2018	< 0.000573	< 0.00573	0.000733 B	0.0117	0.012433	1.58	7,180	2,830	10,011	70.3
SS5A	1.3	4/19/2018	< 0.00202	< 0.00202	< 0.00202	< 0.00202	< 0.00202	<15.0	24.2	<15.0	24.2	19.2
SS-6	0.5	1/4/2018	< 0.000565	< 0.00565	< 0.000565	< 0.00170	< 0.00565	< 0.113	281	126	407	60.7
SS-7	0.5	1/4/2018	< 0.000536	<0.00536 J3	<0.000536 J3	<0.00161 J3, J6	< 0.00536	<0.107 J3	29.5	17.9	47.4	561
SS-8	0.5	1/4/2018	< 0.000529	< 0.00529	< 0.000529	< 0.00159	< 0.00529	< 0.106	<4.23	<4.23	<4.23	79.1
SS-9	0.5	1/4/2018	< 0.000515	< 0.00515	< 0.000515	< 0.00155	< 0.00515	< 0.103	<4.12	4.42	4.42	62.3
SS10	0.5	5/25/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	255	21.3	276	<4.92
SS11	0.5	5/25/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	72.5	4,000	44.5	4,120	98.5
NMOCD I	Remediation Acti	on Levels	10	NE	NE	NE	50	NE	NE	NE	5,000	600

Notes:

bgs - below ground surface

BTEX - benzene, toluene, ethylbenzene, and total xylenes

mg/kg - milligrams per kilogram

NE - Not established

NMOCD - New Mexico Oil Conservation Division

TPH - total petroleum hydrocarbons

< - indicates result is less than the stated laboratory method detection limit

Bold indicates result exceeds the applicable regulatory standard.

B - Same analyte is found in the associated blank.

J3 - The associated batch QC was outside the established quality control range for precision.

J6 - The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ATTACHMENT 1: INITIAL/FINAL NMOCD FORM C-141 (2RP-2981 and 2RP-3617)

In 1625 N. French Dr., Hobos, NM 88240District IIEnergy Minerals aDistrict IIIOil Conserv1000 Rio Brazos Road, Aztec, NM 874101220 SouthDistrict IV1220 South1220 S. St. Francis Dr., Santa Fe, NM 87505Santa Fe,Release Notification aNAB [$5 2 4 37 \lfloor_{9} 8 $ Oil ConservName of Company: BOPCO, L.P.Auo 737	NM OIL CONSERVATION ARTESIA DISTRICT Form C-141 New Mexico Form C-141 New Mexico Form C-141 New Mexico Form C-141 New Mexico Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC. RECEIVED NM 87505 Initial Report Final Report Ontact: Bradley Blevins
	elephone No. 575-887-7329 acility Type: Exploration and Production
Surface Owner: Federal Mineral Owner: F	
	, , , , , , , , , , , , , , , , , , ,
Unit Letter Section Township Range Feet from the North/S	OF RELEASE outh Line Feet from the East/West Line County orth 1860 East Eddy
Latitude: <u>N 32.336152°</u>	Longitude: <u>W 103.831835°</u>
NATURE O	FRELEASE
Type of Release: oil Source of Release: An air eliminator failure on the circulating pump. The air eliminator broke off at the valve due to vibration of the pump. Was Immediate Notice Given?	Volume of Release: 20 bbls Volume Recovered: 11 bbls Date and Hour of Occurrence: Date and Hour of Discovery: 4/23/15 @ 8:24 am 4/23/15 @ 8:24 am If YES, To Whom? If YES, To Whom?
Yes No Not Required	Mike Bratcher, OCD; Jim Amos, BLM via email
By Whom? Bradley Blevins Was a Watercourse Reached?	Date and Hour: 4/24/15 @ 2:55 pm If YES, Volume Impacting the Watercourse: Not Applicable
If a Watercourse was Impacted, Describe Fully.* Not Applicable	· .
Describe Cause of Problem and Remedial Action Taken.* An air eliminator failure on the circulating pump. The air eliminator broke Describe Area Affected and Cleanup Action Taken.*	off at the valve due to vibration of the pump.
The release impacted approximately 2,000 sq. ft. of containment area. Vacu with the NMOCD and BLM remediation guidelines.	um truck recovered 11 bbls of fluid. The area will be remediated in accordance
I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the t should their operations have failed to adequately investigate and remediate or the environment. In addition, NMOCD acceptance of a C-141 report doe federal, state, or local laws and/or regulations.	fications and perform corrective actions for releases which may endanger MOCD marked as "Final Report" does not relieve the operator of liability contamination that pose a threat to ground water, surface water, human health
Signature: Scalley Scall	OIL CONSERVATION DIVISION
Printed Name: Bradley Blevins	Elalie Avy CC
	proval Date: 04110 Expiration Date:
	nditions of Approval: Attached ediation per O.C.D. Rules & Guidelines
Attach Additional Sheets If Necessary	MIT REMEDIATION PROPOSAL NO ER THAN: UI415 ZRP-298

.

District I 1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> 811 S. First St., Artesia, NM 88210 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505	Energy Minera Oil Cons 1220 Sou	ervation Div 1th St. Franc Fe, NM 875	l Resources vision is Dr. 05	aco	Form C-141 Revised April 3, 2017 to appropriate District Office in cordance with 19.15.29 NMAC.
		OPERAT	OR	🔲 Initial	Report 🛛 Final Report
Name of Company XTO Energy		Contact Ky	e Littrell		
Address 3104 E Greene Street Carlsba	id, N.M. 88220		No. 432-221-73		
Facility Name JRU #36		Facility Typ	e Exploration a	nd Production	
Surface Owner Federal	Mineral Owne	r Federal		API No.	30-015-27686
	LOCATIO	N OF REL	EASE		
Unit Letter Section Township Ra		th/South Line	Feet from the	East/West	County
G 1 238 .	30E 1980	North	1860	Line	Eddy
				East	
Latitude	_N 32.336152	Longitude	103.831835	NAD	83
	NATURE	OF RELE	ASE		
Type of Release Crude Oil		Volume of	Release 20 bbls	Volume R	ecovered 11 bbls
Source of Release An air eleiminator failu	ure on the circulating numn	Date and L	Iour of Occurrenc	Date and I	Hour of Discovery
The air eliminator broke off at the valve du		4/23/15 8:2		4/23/15 8:	
Was Immediate Notice Given?		If YES, To			
	s 🗌 No 🗌 Not Require			mos, BLM via ema	il
By Whom? Bradley Blevins Was a Watercourse Reached?			Iour: 4/24/15 @ 2 blume Impacting t		
	es 🖾 No	N/A	nume impacting t	lie watercourse.	
If a Watercourse was Impacted, Describe F					
If a watercourse was impacted, Desenter	ully. N/A				
Describe Cause of Problem and Remedial A An air eliminator failure on the circulating		oke off at the va	lve due to vibratio	on of the pump.	
				n or the pump.	
Describe Area Affected and Cleanup Actio The release impacted approximately 2,000				hhle of fluid	
The release impacted approximately 2,000	square leet of containment	area. vacuum tr	uck recovered 11	bbis of fluid.	
Between January 4, 2018 and May 25, 2018					
samples from within and surrounding the p					
confirmation soil samples indicate imp specific remediation action level. Initia					
no further action for this release.		degradation,		nuve remediated t	
I hereby certify that the information given a regulations all operators are required to rep					
public health or the environment. The acce					
should their operations have failed to adequ	uately investigate and remed	iate contaminati	on that pose a three	eat to ground water,	surface water, human health
or the environment. In addition, NMOCD a federal, state, or local laws and/or regulatio		t does not reliev	e the operator of i	responsibility for co	mpliance with any other
	1		OIL CONS	SERVATION	DIVISION
Simon Certification	4				
Signature Situat		Annround her	Environmental S	nocialist:	
Printed Name: Kyle Littrell		Approved by	Environmental S		
Title: SH&E Coordinator		Approval Dat	e:	Expiration I	Date:
				Enpiration	
E-mail Address: Kyle Littrell@xtoenergy.c					
L-mail Address, Kyle_Littlemaxtoenergy,	com	Conditions of	Approval:		Attached

* Attach Additional Sheets If Necessary

NM OIL CONSERVATION

Page 13 of 71

.

.

			ARTESI	A DISTRI	CT	
District II Energy M		New Mexico and Natural Resources	MAR	1 5 201	6,	Form C-141 Revised August 8, 2011
811 S. First St., Artesia, NM 88210 District III Oil	Conser	vation Division	Subi	mit 1 Copy	to appropri	ate District Office in
1000 Rio Brazos Road, Aztec, NM 87410		St. Francis Dr.	REC	CEIVED	cordance w	ith 19.15.29 NMAC.
1000 C Ct English Dr. Cont. D. Mike 07505		, NM 87505				
	ication	and Corrective A	Action			
NAB1408139873		OPERATOR		🗵 Initia	al Report	Final Report
Name of Company: BOPCO, L.P.		Contact: Amy Ruth				· · · · · · · · · · · · · · · · · · ·
Address: 522 W. Mermod, Suite 704 Carlsbad, N.M. 882 Facility Name: James Ranch Unit #036		Telephone No. 575-887-73 Facility Type: Exploration		duction		
			anu FIO			
Surface Owner: Federal Mineral	Owner:	Federal		API No	<u>. 30-015-</u>	27686
		OF RELEASE				·····
Unit Letter Section Township Range Feet from the G 1 23S 30E 1980	North/S	South Line Feet from the 1860	East/V East	Vest Line	County Eddy	
		Longitude103.86167			L/	
—		OF RELEASE	<u></u>			
Type of Release Crude Oil		Volume of Release 17 bb	ols	Volume I	Recovered	5 bbls
Source of Release Valve on Circulating Pump		Date and Hour of Occurrer 2/1/2016 Time Unknown	nce	Date and 2/1/2016	Hour of Dis	scovery
Was Immediate Notice Given?	Required	If YES, To Whom?			0.000	
By Whom? N/A		Date and Hour N/A				
Was a Watercourse Reached?	<u></u>	If YES, Volume Impacting	the Wate	rcourse.		<u></u>
Yes 🛛 No		. N/A				
If a Watercourse was Impacted, Describe Fully.* N/A						
Describe Cause of Problem and Remedial Action Taken.*		· · · · · · · · · · · · · · · · · · ·				
A discharge bleed valve was left open on the circulating pump.	The valve	was closed and the handle w	as remov	ed from th	e valve.	
Describe Area Affected and Cleanup Action Taken.*						
The leak affected 1573 square feet of well pad within the proces	ss equipme	nt area. Standing fluids were	e recovere	ed.		
I hereby certify that the information given above is true and con	nplete to th	e best of my knowledge and	understau	nd that pur	suant to NM	OCD rules and
regulations all operators are required to report and/or file certain	n release no	otifications and perform corre	ective act	ions for rel	leases which	n may endanger
public health or the environment. The acceptance of a C-141 re should their operations have failed to adequately investigate and	eport by the d remediate	e NMOCD marked as "Final e contamination that pose a the	Report [®] d	ioes not rel round wate	neve the ope	ater, human health
or the environment. In addition, NMOCD acceptance of a C-14	41 report de	oes not relieve the operator o	frespons	ibility for c	compliance	with any other
federal, state, or local laws and/or regulations.			TOPPN		DIVIOL	
A Tott		OIL CON	NSERV	ATION	DIVISIO	
Signature: 1 mm Auch		Signed	P. H			
Printed Name: Anny C. Ruth		Approved by Environmental	Specialis	<u> // / / / / / / / / / / / / / / / / / </u>	Protect 3	2 <u></u>
Title: EHS Remediation Specialist		Approval Date: 3/2//	16	Expiration	Date: 1	A
E-mail Address: ACRuth@basspet.com		Conditions of Approval:			A	
		Romediation per O.C.	D. Rule	es & Gui	identies:	···
Date: 3/15/2016 Phone: 432-661-0571 Attach Additional Sheets If Necessary	I	USMIT REMEDIALLY	}}<i>P</i>P<i>f</i>)POSAL		
remon reductional oncers in recessely		_ATER THAN:4	$\mu \mu \mu$	<u></u>	- Zk	P-3617

Released to Imaging: 3/21/2023 7:52:47 AM

.

•

District I 1625 N. French Dr., Hobbs, NM 88240 District II	State of Energy Minerals	f New Mex s and Natura			Form C-141 Revised April 3, 2017
811 S. First St., Artesia, NM 88210 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505	1220 Sout	ervation Div th St. Franc Fe, NM 875	sis Dr.	Submit 1 Copy ac	to appropriate District Office in cordance with 19.15.29 NMAC.
	ase Notification			tion	
		OPERAT	OR	🗌 Initial	Report 🛛 Final Report
Name of Company XTO Energy Address 3104 E Greene Street Carlsbad, N	M 88220	Contact Ky		21	
Facility Name JRU #36	.IVI. 88220		No. 432-221-73 be Exploration a		
Surface Owner Federal	Mineral Owner				. 30-015-27686
			FASE		
Unit Letter GSection 1Township 23SRange 30E		th/South Line North	Feet from the 1860	East/West Line East	County Eddy
LatitudeN	32.336152L	ongitude	103.831835	NAI	083
	NATURE	OF RELE	ASE		
Type of Release Crude Oil		Volume of	Release 17 bbls	Volume I	Recovered 5 bbls
Source of Release Valve on circulating pump			Hour of Occurrent		Hour of Discovery
Was Immediate Notice Given?] No 🛛 Not Required	If YES, To	Time unknown Whom?	2/1/16 8:3	50 A.M
By Whom? N/A		Date and H			
Was a Watercourse Reached?	🛛 No	If YES, VO N/A	olume Impacting	the Watercourse.	
If a Watercourse was Impacted, Describe Fully	* N/A				
Describe Cause of Problem and Remedial Action A discharge bleed valve was left open on the ci		ve was closed a	nd the handle was	s removed from the	valve.
Describe Area Affected and Cleanup Action Ta The leak affected 1,575 square feet of well pad		ment area Star	nding fluids were	recovered	
Between January 4, 2018 and May 25, 2018, X samples from within and surrounding the proce confirmation soil samples indicate impact specific remediation action level. Initial re- no further action for this release.	TO collected soil sample ssing equipment area on to soil, as defined by c	s and excavate the north side oncentrations	d impacted soil at of the well pad. L of BTEX, TPH	the Site. LTE colle aboratory analyti , and chloride, do	cal results for the eleven o not exceed NMOCD site-
I hereby certify that the information given above regulations all operators are required to report a public health or the environment. The acceptant should their operations have failed to adequated or the environment. In addition, NMOCD acce federal, state, or local laws and/or regulations.	nd/or file certain release ce of a C-141 report by t y investigate and remedia	notifications a he NMOCD m ate contaminati	nd perform correct arked as "Final R on that pose a thr	tive actions for rele eport" does not reli eat to ground water	eases which may endanger eve the operator of liability , surface water, human health
Signature: Stephen	<i></i>	A		SERVATION	DIVISION
Printed Name: Kyle Littrell		Approved by	Environmental S		
Title: SH&E Coordinator		Approval Da	te:	Expiration	Date:
E-mail Address: Kyle_Littrell@xtoenergy.com		Conditions of	f Approval:		Attached
Date: 8/01/2018 P	hone: 432-221-7331				

* Attach Additional Sheets If Necessary

ANALYTICAL REPORT

Page 16 of 71

XTO Energy- Delaware Division

Sample Delivery Group:	L961532
Samples Received:	01/06/2018
Project Number:	30-015-27686
Description:	Confrimation Soil Sampling
Site:	JRU #36 (2RP-298I)
Report To:	Kyle Littrell
	6401 N Holiday Hill Rd
	Suite 200
	Midland, TX 79707

Entire Report Reviewed By:

Daptime R Richards

Daphne Richards Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SS1 L961532-01	6
SS2 L961532-02	7
SS3 L961532-03	8
SS4 L961532-04	9
SS5 L961532-05	10
SS6 L961532-06	11
SS7 L961532-07	12
SS8 L961532-08	13
SS9 L961532-09	14
Qc: Quality Control Summary	15
Total Solids by Method 2540 G-2011	15
Wet Chemistry by Method 300.0	20
Volatile Organic Compounds (GC) by Method 8015/8021	21
Semi-Volatile Organic Compounds (GC) by Method 8015	23
GI: Glossary of Terms	24
Al: Accreditations & Locations	25
Sc: Sample Chain of Custody	26

Ср

SDG: L961532

DATE/TIME: 01/15/18 09:45 PAGE:

2 of 26

SAMPLE SUMMARY

ONE LAB. NATI Rage 18 0

Received by OCD: 3/21/2023 /:51:42 AM	SAMPLE SU	JIVIIVIAI	τĭ	UN	IE LAB. NATIO rag
SS1 L961532-01 Solid			Collected by Aaron Williamson	Collected date/time 01/04/18 11:08	Received date/time 01/06/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1060778	1	01/10/18 12:40	01/10/18 12:43	KDW
Vet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/08/18 23:53	MAJ
/olatile Organic Compounds (GC) by Method 8015/8021	WG1060512	25	01/08/18 07:33	01/09/18 18:38	BMB
/olatile Organic Compounds (GC) by Method 8021	WG1060512	1	01/08/18 07:33	01/09/18 15:26	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	50	01/08/18 19:43	01/11/18 08:16	ACM
			Collected by	Collected date/time	Received date/time
SS2 L961532-02 Solid			Aaron Williamson	01/04/18 11:17	01/06/18 08:45
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
atal Salids by Mathad 2540 C 2011	WG1060784	1	01/10/18 11:03	01/10/18 11:05	KD/W
otal Solids by Method 2540 G-2011 /et Chemistry by Method 300.0	WG1060784 WG1060409				KDW MAJ
		1	01/08/18 16:26	01/09/18 00:18	
olatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/09/18 18:01	01/09/18 19:00	BMB
olatile Organic Compounds (GC) by Method 8021	WG1060512	1	01/08/18 07:33	01/09/18 15:48	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/11/18 00:39	ACM
			Collected by	Collected date/time	Received date/time
SS3 L961532-03 Solid			Aaron Williamson	01/04/18 11:20	01/06/18 08:45
Aethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1060779	1	01/09/18 12:42	01/09/18 12:53	KDW
et Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:27	MAJ
platile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/04/18 11:20	01/09/18 19:22	BMB
olatile Organic Compounds (GC) by Method 8021	WG1060512	1	01/08/18 07:33	01/09/18 16:10	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	10	01/08/18 19:43	01/11/18 07:34	ACM
			Collected by	Collected date/time	Received date/time
S4 L961532-04 Solid			Aaron Williamson	01/04/18 11:23	01/06/18 08:45
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1060784	1	01/10/18 11:03	01/10/18 11:05	KDW
et Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:35	MAJ
olatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 17:12	BMB
emi-Volatile Organic Compounds (GC) by Method 001/3021	WG1060456	1	01/08/18 19:43	01/11/18 00:52	ACM
			Collected by	Collected date/time	Received date/time
SS5 L961532-05 Solid			Aaron Williamson	01/04/18 11:26	01/06/18 08:45
fethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1059974	1	01/09/18 14:06	01/09/18 14:22	JD
/et Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:44	MAJ
olatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/09/18 16:32	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	50	01/08/18 19:43	01/11/18 08:30	ACM
S6 L961532-06 Solid			Collected by Aaron Williamson	Collected date/time 01/04/18 11:29	Received date/time 01/06/18 08:45
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
otal Solids by Method 2540 G-2011	WG1060779	1	date/time 01/09/18 12:42	date/time 01/09/18 12:53	KDW
Vet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:53	MAJ
Jolatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 17:55	BMB
eleased to Imaging: 3/21/2023 7:52:47 AM	PROJECT:		SDG:	DATE/TIME:	

SAMPLE SUMMARY

ONE LAB. NATI Rage 19 0

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

SS6 L961532-06 Solid			Collected by Aaron Williamson	Collected date/time 01/04/18 11:29	Received date/time 01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
inculou	Daten	Dilution	date/time	date/time	Analyst
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 07:57	ACM
			Collected by	Collected date/time	Received date/time
SS7 L961532-07 Solid			Aaron Williamson	01/04/18 11:34	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1060773	1	01/09/18 13:10	01/09/18 13:17	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 01:05	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 18:16	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 07:13	ACM
			Collected by	Collected date/time	Received date/time
SS8 L961532-08 Solid			Aaron Williamson	01/04/18 11:37	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1060784	1	01/10/18 11:03	01/10/18 11:05	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 01:30	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 18:37	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 07:27	ACM
			Collected by	Collected date/time	Received date/time
SS9 L961532-09 Solid			Aaron Williamson	01/04/18 11:40	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1060784	1	01/10/18 11:03	01/10/18 11:05	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 01:39	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 18:59	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 23:57	ACM

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 4 of 26

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Technical Service Representative

SDG: L961532

DATE/TIME: 01/15/18 09:45

PAGE: 5 of 26

SAMPLE RESULTS - 01 L961532

Collected date/time: 01/04/18 11:08

	Result	Qualifier	Dilution Ar	nalysis	Batch		
Analyte	%		da	ate / time			
Total Solids	94.5		1 01	/10/2018 12:43	WG1060778		
Wet Chemistry by Met	hod 300.0						
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	456		10.6	1	01/08/2018 23:53	WG1060409	
Volatile Organic Comp					Analysis	Batch	
	Result (dry)	by Method <u>Qualifier</u>	RDL (dry)	21 Dilution	Analysis	Batch	
					Analysis date / time	Batch	
Volatile Organic Comp Analyte ^{Benzene}	Result (dry)		RDL (dry)	Dilution	,	Batch WG1060512	
Analyte	Result (dry) mg/kg		RDL (dry) mg/kg	Dilution	date / time		
Analyte Benzene	Result (dry) mg/kg ND		RDL (dry) mg/kg 0.000529	Dilution) 1 1	date / time 01/09/2018 15:26	WG1060512	
Analyte Benzene Toluene	Result (dry) mg/kg ND ND		RDL (dry) mg/kg 0.000529 0.00529	Dilution) 1 1	date / time 01/09/2018 15:26 01/09/2018 15:26	WG1060512 WG1060512	
Analyte Benzene Toluene Ethylbenzene	Result (dry) mg/kg ND ND 0.0456		RDL (dry) mg/kg 0.000529 0.00529 0.000529	Dilution 1 1 1 1	date / time 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 15:26	WG1060512 WG1060512 WG1060512	
Analyte Benzene Toluene Ethylbenzene Total Xylene	Result (dry) mg/kg ND 0.0456 6.06		RDL (dry) mg/kg 0.000529 0.000529 0.000529 0.000529	Dilution Dil	date / time 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 15:38	WG1060512 WG1060512 WG1060512 WG1060512	
Analyte Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction	Result (dry) mg/kg ND 0.0456 6.06 183	Qualifier	RDL (dry) mg/kg 0.000529 0.00529 0.000529 0.0397 2.65	Dilution Dil	date / time 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 18:38 01/09/2018 18:38	WG1060512 WG1060512 WG1060512 WG1060512 WG1060512	
Analyte Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)	Result (dry) mg/kg ND 0.0456 6.06 183 63.1	Qualifier	RDL (dry) mg/kg 0.000529 0.00529 0.000529 0.00397 2.65 77.0-120	Dilution Dil	date / time 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 15:26 01/09/2018 18:38 01/09/2018 18:38 01/09/2018 18:38 01/09/2018 15:26	WG1060512 WG1060512 WG1060512 WG1060512 WG1060512 WG1060512	

Sample Narrative:

L961532-01 WG1060512: Low surrogates due to matrix interference. Confirmed by a previous run.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	12300		212	50	01/11/2018 08:16	WG1060456
C28-C40 Oil Range	3100		212	50	01/11/2018 08:16	WG1060456
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		01/11/2018 08:16	WG1060456

SDG: L961532

SAMPLE RESULTS - 02

Collected date/time: 01/04/18 11:17

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	90.9		1	01/10/2018 11:05	WG1060784		
Wet Chemistry by Metl	hod 300.0						
	Result (dry)	Qualifier	RDL (d	lry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	54.9		11.0	1	01/09/2018 00:18	WG1060409	
Volatile Organic Comp	. ,						
Volatile Organic Comp	Result (dry)	by Method <u>Qualifier</u>	8015/8 RDL (d		Analysis	Batch	
Volatile Organic Comp Analyte	. ,			lry) Dilution	Analysis date / time	Batch	
	Result (dry)		RDL (d	lry) Dilution	•	Batch WG1060512	
Analyte Benzene	Result (dry) mg/kg		RDL (d mg/kg	Iry) Dilution	date / time		
Analyte Benzene Toluene	Result (dry) mg/kg ND		RDL (d mg/kg 0.000	Iry)Dilution5501501	date / time 01/09/2018 15:48	WG1060512	
Analyte Benzene Toluene Ethylbenzene	Result (dry) mg/kg ND ND		RDL (d mg/kg 0.000	Dilution 550 1 50 1 550 1	date / time 01/09/2018 15:48 01/09/2018 15:48	WG1060512 WG1060512	
Analyte	Result (dry) mg/kg ND ND ND		RDL (d mg/kg 0.000 0.005 0.005	Dilution 550 1 50 1 550 1	date / time 01/09/2018 15:48 01/09/2018 15:48 01/09/2018 15:48	WG1060512 WG1060512 WG1060512	
Analyte Benzene Toluene Ethylbenzene Total Xylene	Result (dry) mg/kg ND ND ND ND ND		RDL (d mg/kg 0.000 0.005 0.000 0.000	Dilution 550 1 50 1 550 1 550 1 550 1 55 1 55 1	date / time 01/09/2018 15:48 01/09/2018 15:48 01/09/2018 15:48 01/09/2018 15:48 01/09/2018 15:00	WG1060512 WG1060512 WG1060512 WG1060512	
Analyte Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction	Result (dry) mg/kg ND ND ND ND ND ND		RDL (d mg/kg 0.0005 0.0005 0.0006 0.0016 0.110	Dilution 550 1 50 1 550 1 550 1 55 1 20 20	date / time 01/09/2018 15:48 01/09/2018 15:48 01/09/2018 15:48 01/09/2018 19:00 01/09/2018 19:00	WG1060512 WG1060512 WG1060512 WG1060512 WG1060512	

Semi-Volatile Organic Compounds (GC) by Method 8015

97.6

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	5.41		4.40	1	01/11/2018 00:39	WG1060456
C28-C40 Oil Range	4.91		4.40	1	01/11/2018 00:39	WG1060456
(S) o-Terphenyl	66.1		18.0-148		01/11/2018 00:39	WG1060456

01/09/2018 19:00

WG1060512

75.0-128

SDG: L961532

SAMPLE RESULTS - 03

AI

Sc

Collected date/time: 01/04/18 11:20

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	92.1		1	01/09/2018 12:53	WG1060779		
Wet Chemistry b	y Method 300.0						
	Result (dry)	Qualifier	RDL (d	dry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	I	date / time		
Chloride	97.8		10.9	1	01/09/2018 00:27	WG1060409	
Volatile Organic	Compounds (GC)	by Method	8015/8	021			
	Result (dry)	Qualifier	RDL (o	try) Dilution	Analysis	Batch	
Analyte	Result (dry) mg/kg	Qualifier	RDL (o mg/kg		Analysis date / time	<u>Batch</u>	
Analyte Benzene		<u>Qualifier</u>			•	Batch WG1060512	
	mg/kg	<u>Qualifier</u>	mg/kg	543 1	date / time		
Benzene	mg/kg	<u>Qualifier</u>	mg/kg	543 1 43 1	date / time 01/09/2018 16:10	WG1060512	

Total Aylene	ND	0.00163	1	01/09/2018 19:22	WG1060512
TPH (GC/FID) Low Fraction	ND	0.109	1	01/09/2018 19:22	WG1060512
(S) a,a,a-Trifluorotoluene(FID)	89.5	77.0-120		01/09/2018 19:22	WG1060512
(S) a,a,a-Trifluorotoluene(FID)	81.9	77.0-120		01/09/2018 16:10	WG1060512
(S) a,a,a-Trifluorotoluene(PID)	87.8	75.0-128		01/09/2018 16:10	WG1060512
(S) a,a,a-Trifluorotoluene(PID)	96.3	75.0-128		01/09/2018 19:22	WG1060512

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	1730		43.4	10	01/11/2018 07:34	WG1060456
C28-C40 Oil Range	717		43.4	10	01/11/2018 07:34	<u>WG1060456</u>
(S) o-Terphenyl	212		18.0-148		01/11/2018 07:34	WG1060456

Sample Narrative:

L961532-03 WG1060456: High surrogate due to matrix

SDG: L961532

SAMPLE RESULTS - 04

Sc

Collected date/time: 01/04/18 11:23

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	84.1		1	01/10/2018 11:05	WG1060784	
Wet Chemistry by Me	ethod 300.0					
	Result (dry)	Qualifier	RDL (d	dry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	I	date / time	
Chloride	105		11.9	1	01/09/2018 00:35	WG1060409
Chloride Volatile Organic Con		by Methoc <u>Qualifier</u>			01/09/2018 00:35 Analysis	WG1060409 Batch
Volatile Organic Con	npounds (GC)	-	8015/8	dry) Dilution		
Volatile Organic Con Analyte	Result (dry)	-	1 8015/8 RDL (0	dry) Dilution	Analysis	
Volatile Organic Con Analyte Benzene	npounds (GC) Result (dry) mg/kg	-	8015/8 RDL (r mg/kg	dry) Dilution 1 595 1	Analysis date / time	Batch
Volatile Organic Con Analyte Benzene	Result (dry) mg/kg ND	-	8015/8 RDL (c mg/kg 0.000	bilution 595 1 95 1	Analysis date / time 01/08/2018 17:12	Batch WG1060512
Volatile Organic Con Analyte Benzene Toluene	Result (dry) mg/kg ND ND	-	8015/8 RDL (c mg/kg 0.000 0.005	Dilution 1 595 1 95 1 595 1	Analysis date / time 01/08/2018 17:12 01/08/2018 17:12	Batch WG1060512 WG1060512
Volatile Organic Con Analyte Benzene Toluene Ethylbenzene	Result (dry) mg/kg ND ND ND ND	-	8015/8 RDL (c mg/kg 0.000 0.005 0.000	Dilution 1 595 1 95 1 595 1	Analysis date / time 01/08/2018 17:12 01/08/2018 17:12 01/08/2018 17:12	Batch WG1060512 WG1060512 WG1060512

Semi-Volatile Organic Compounds (GC) by Method 8015

94.8

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.76	1	01/11/2018 00:52	WG1060456
C28-C40 Oil Range	ND		4.76	1	01/11/2018 00:52	WG1060456
(S) o-Terphenyl	63.2		18.0-148		01/11/2018 00:52	WG1060456

01/08/2018 17:12

WG1060512

75.0-128

SAMPLE RESULTS - 05

Cn

Total Solids by Method 2540 G-2011

Collected date/time: 01/04/18 11:26

							1 Cn
	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time			2
Total Solids	87.3		1	01/09/2018 14:22	WG1059974		Tc
Wet Chemistry b	by Method 300.0						³ Ss
	Result (dry)	Qualifier	RDL (d	dry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	l	date / time		4 Cn

1

01/09/2018 00:44

WG1060409

11.5

Volatile Organic Compounds (GC) by Method 8015/8021

70.3

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.000573	1	01/09/2018 16:32	WG1060512
Toluene	ND		0.00573	1	01/09/2018 16:32	WG1060512
Ethylbenzene	0.000733	B	0.000573	1	01/09/2018 16:32	WG1060512
Total Xylene	0.0117		0.00172	1	01/09/2018 16:32	WG1060512
TPH (GC/FID) Low Fraction	1.58		0.115	1	01/09/2018 16:32	WG1060512
(S) a,a,a-Trifluorotoluene(FID)	65.6	<u>J2</u>	77.0-120		01/09/2018 16:32	WG1060512
(S) a,a,a-Trifluorotoluene(PID)	70.1	<u>J2</u>	75.0-128		01/09/2018 16:32	WG1060512

Sample Narrative:

Chloride

L961532-05 WG1060512: Low surrogates due to matrix interference. Confirmed by a previous run.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	7180		229	50	01/11/2018 08:30	WG1060456
C28-C40 Oil Range	2830		229	50	01/11/2018 08:30	WG1060456
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		01/11/2018 08:30	WG1060456

SAMPLE RESULTS - 06

Sc

Collected date/time: 01/04/18 11:29

(S) a,a,a-Trifluorotoluene(FID)

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	88.5		1	01/09/2018 12:53	WG1060779	
Wet Chemistry by M	ethod 300.0					
	Result (dry)	Qualifier	RDL (dry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	ļ	date / time	
Chloride	60.7		11.3	1	01/09/2018 00:53	WG1060409
Volatile Organic Cor	npounds (GC)	by Methoc	1 8015/8	8021		
	Result (dry)	Qualifier	RDL (dry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	l	date / time	
Benzene	ND		0.000	565 1	01/08/2018 17:55	WG1060512
Toluene	ND		0.005	65 1	01/08/2018 17:55	WG1060512
Ethylbenzene	ND		0.000	565 1	01/08/2018 17:55	WG1060512
Total Xylene	ND		0.001	70 1	01/08/2018 17:55	WG1060512

01/08/2018 17:55

01/08/2018 17:55

Semi-Volatile Organic Compounds (GC) by Method 8015

87.8

92.4

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	281		4.52	1	01/10/2018 07:57	<u>WG1060456</u>
C28-C40 Oil Range	126		4.52	1	01/10/2018 07:57	<u>WG1060456</u>
(S) o-Terphenyl	56.0		18.0-148		01/10/2018 07:57	WG1060456

77.0-120

75.0-128

SDG: L961532 DATE/TIME: 01/15/18 09:45

WG1060512

WG1060512

SAMPLE RESULTS - 07 L961532

Collected date/time: 01/04/18 11:34

(S) a,a,a-Trifluorotoluene(FID)

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	93.3		1	01/09/2018 13:17	<u>WG1060773</u>	
Wet Chemistry by M	ethod 300.0					
	Result (dry)	Qualifier	RDL (c	Iry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	561		10.7	1	01/09/2018 01:05	WG1060409
chionae	501		10.7	1	01/03/2010 01:03	
Volatile Organic Cor		by Method		021	01/03/2010 01:03	<u></u>
		by Method <u>Qualifier</u>			Analysis	Batch
	mpounds (GC)	-	1 8015/8	Iry) Dilution		
Volatile Organic Cor	npounds (GC) Result (dry)	-	d 8015/8 RDL (c	Iry) Dilution	Analysis	
Volatile Organic Cor Analyte	mpounds (GC) Result (dry) mg/kg	-	d 8015/8 RDL (c mg/kg	Iry) Dilution	Analysis date / time	Batch
Volatile Organic Cor Analyte Benzene	Result (dry) mg/kg ND	Qualifier	8015/8 RDL (c mg/kg 0.000	Dilution 536 1 36 1	Analysis date / time 01/08/2018 18:16	Batch WG1060512
Volatile Organic Cor Analyte Benzene Toluene	Result (dry) mg/kg ND ND	Qualifier J3	8015/8 RDL (c mg/kg 0.000 0.005	Iry) Dilution 536 1 36 1 536 1	Analysis date / time 01/08/2018 18:16 01/08/2018 18:16	Batch WG1060512 WG1060512

Semi-Volatile Organic Compounds (GC) by Method 8015

89.8

95.1

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	29.5		4.29	1	01/10/2018 07:13	WG1060456
C28-C40 Oil Range	17.9		4.29	1	01/10/2018 07:13	WG1060456
(S) o-Terphenyl	53.7		18.0-148		01/10/2018 07:13	WG1060456

01/08/2018 18:16

01/08/2018 18:16

77.0-120

75.0-128

WG1060512

WG1060512

SDG: L961532

DATE/TIME: 01/15/18 09:45

Sc

SAMPLE RESULTS - 08

Collected date/time: 01/04/18 11:37

(S) a,a,a-Trifluorotoluene(FID)

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	94.5		1	01/10/2018 11:05	WG1060784	
Wet Chemistry by	Method 300.0					
	Result (dry)	Qualifier	RDL (d	ry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	79.1		10.6	1	01/09/2018 01:30	WG1060409
Chionde	75.1		10.0	1	01/03/2018 01.30	W01000+05
Volatile Organic C		by Method		021	01/03/2010 01.30	<u>worooo+os</u>
		by Methoc <u>Qualifier</u>			Analysis	Batch
	ompounds (GC)		9 8015/8	ry) Dilution		
Volatile Organic C	ompounds (GC) Result (dry)		d 8015/8 RDL (c	ry) Dilution	Analysis	
Volatile Organic C Analyte	ompounds (GC) Result (dry) mg/kg		d 8015/8 RDL (c mg/kg	ry) Dilution	Analysis date / time	Batch
Volatile Organic C Analyte Benzene	ompounds (GC) Result (dry) mg/kg ND		d 8015/8 RDL (a mg/kg 0.000	Implication Dilution 529 1 29 1	Analysis date / time 01/08/2018 18:37	Batch WG1060512
Volatile Organic C Analyte Benzene Toluene	ompounds (GC) Result (dry) mg/kg ND ND		d 8015/8 RDL (c mg/kg 0.000 0.005	Dilution 529 1 29 1 529 1	Analysis date / time 01/08/2018 18:37 01/08/2018 18:37	Batch WG1060512 WG1060512

01/08/2018 18:37

01/08/2018 18:37

WG1060512

WG1060512

Semi-Volatile Organic Compounds (GC) by Method 8015

89.6

95.5

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.23	1	01/10/2018 07:27	WG1060456
C28-C40 Oil Range	ND		4.23	1	01/10/2018 07:27	WG1060456
(S) o-Terphenyl	66.6		18.0-148		01/10/2018 07:27	WG1060456

77.0-120

75.0-128

SDG: L961532 DATE/TIME: 01/15/18 09:45 Sc

SAMPLE RESULTS - 09

Sc

Collected date/time: 01/04/18 11:40

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Fotal Solids	97.1		1	01/10/2018 11:05	WG1060784		
Wet Chemistry by Met	hod 300.0						
	Result (dry)	Qualifier	RDL (c	dry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	J	date / time		
Chloride	62.3		10.3	1	01/09/2018 01:39	<u>WG1060409</u>	
^{Chloride} Volatile Organic Comp		by Method <u>Qualifier</u>			01/09/2018 01:39 Analysis	WG1060409 Batch	
	oounds (GC)		8015/8	dry) Dilution			
Volatile Organic Comp	Dounds (GC) Result (dry)		8015/8 RDL (c	dry) Dilution	Analysis		
Volatile Organic Comp Analyte	Dounds (GC) Result (dry) mg/kg		8015/8 RDL (c mg/kg	dry) Dilution 1 515 1	Analysis date / time	Batch	
Volatile Organic Comp Analyte Benzene	Result (dry) mg/kg ND		8015/8 RDL (c mg/kg 0.000	bilution 515 1 15 1	Analysis date / time 01/08/2018 18:59	Batch WG1060512	
Volatile Organic Comp Analyte Benzene Foluene	Result (dry) mg/kg ND ND		8015/8 RDL (c mg/kg 0.000 0.005	Dilution 1 515 1 15 1 515 1	Analysis date / time 01/08/2018 18:59 01/08/2018 18:59	Batch WG1060512 WG1060512	
Volatile Organic Comp Analyte Benzene Foluene Ethylbenzene	Result (dry) mg/kg ND ND ND ND		8015/8 RDL (c mg/kg 0.000 0.005 0.000	Dilution 1 515 1 15 1 515 1	Analysis date / time 01/08/2018 18:59 01/08/2018 18:59 01/08/2018 18:59	Batch WG1060512 WG1060512 WG1060512	

Semi-Volatile Organic Compounds (GC) by Method 8015

94.3

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.12	1	01/10/2018 23:57	WG1060456
C28-C40 Oil Range	4.42		4.12	1	01/10/2018 23:57	WG1060456
(S) o-Terphenyl	76.0		18.0-148		01/10/2018 23:57	WG1060456

01/08/2018 18:59

75.0-128

WG1060512

Reg cive oby OGD7 A/21/2023 7:51:42 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L961532-05

ONE LAB. NATI Rage 30 0

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(IVIB)				
(MB) R3278464-1	01/09/18 14:22				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.001				

L961178-02 Original Sample (OS) • Duplicate (DUP)

L961178-02 Origina	al Sample ((OS) • Dupl	icate (D	UP)			
(OS) L961178-02 01/09/18	3 14:22 • (DUP) R	3278464-3 (01/09/18 14	:22			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	83.7	85.2	1	2		5	

Laboratory Control Sample (LCS)

(LCS) R3278464-2 01/0	9/18 14:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

SDG: L961532

DATE/TIME: 01/15/18 09:45

PAGE: 15 of 26

Reg cive of by OGD7 3/21/2023 7:51:42 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L961532-07

Cn

Sr

[°]Qc

Gl

A

Sc

Method Blank (MB)

MB)					1
09/18 13:17					
MB Result	MB Qualifier	MB MDL	/B RDL		
%		%	6		
0.002					
	09/18 13:17 MB Result %	D9/18 13:17 MB Result <u>MB Qualifier</u> %	D9/18 13:17 MB Result <u>MB Qualifier</u> MB MDL N % % 9	D9/18 13:17 MB Result MB Qualifier MB MDL MB RDL % % %	D9/18 13:17 MB Result MB Qualifier MB MDL MB RDL % % %

L961517-04 Original Sample (OS) • Duplicate (DUP)

(OS) L961517-04 01/09/18 1	13:17 • (DUP) R3278455-3	01/09/18 13:17		
			DUP RPD	

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	, DUP RPD - Limits
Analyte	%	%		%		%
Total Solids	94.3	94.3	1	0		5

Laboratory Control Sample (LCS)

(LCS) R3278455-2 01/0	09/18 13:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

DATE/TIME: 01/15/18 09:45

PAGE: 16 of 26

Reg cive the OGD7 8/21/2023 7:51:42 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATI Rage 32 0

Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

				1
01/10/18 12:43				
MB Result	MB Qualifier	MB MDL	MB RDL	2
%		%	К	-
0.001				
				3
	1/10/18 12:43 MB Result %	1/10/18 12:43 MB Result <u>MB Qualifier</u> %	1/10/18 12:43 MB Result <u>MB Qualifier</u> MB MDL N % % 9	1/10/18 12:43 MB Result MB Qualifier MB MDL MB RDL % % %

L961506-01 Original Sample (OS) • Duplicate (DUP)

(OS) L961506-01 01/10/18	8 12:43 • (DUP) R	3278697-3 0	1/10/18 12:4	13		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	77.4	80.0	1	3		5

Laboratory Control Sample (LCS)

(LCS) R3278697-2 01/1	(LCS) R3278697-2 01/10/18 12:43							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	%	%	%	%				
Total Solids	50.0	50.0	100	85-115				

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 17 of 26

Regioned by OGD7 3/21/2023 7:51:42 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

(MB) R3278447-1 01/09	9/18 12:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.002			

L961532-03 Original Sample (OS) • Duplicate (DUP)

(OS) L961532-03 01/09	9/18 12:53 • (DUP)	R3278447-3	01/09/18 12	2:53		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.1	92.1	1	0		5

Laboratory Control Sample (LCS)

(LCS) R3278447-2 01/	(LCS) R3278447-2 01/09/18 12:53							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	%	%	%	%				
Total Solids	50.0	50.0	100	85-115				

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 18 of 26

Reg cive of the OGDE A/21/2023 7:51:42 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

ິQc

Gl

AI

Sc

Method Blank (MB)

)				l'Cn
3278693-1 01/10/1	8 11:05				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
2	%		%	%	Tc
olids	0				
					³ Ss

L961534-21 Original Sample (OS) • Duplicate (DUP)

(OS) L961534-21	01/10/18 11:05	• (DUP) R3278693-3	01/10/18 11:05
-----------------	----------------	--------------------	----------------

	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	RPD ts	
Analyte	%	%		%			
Total Solids	76.9	77.0	1	0			

Laboratory Control Sample (LCS)

(LCS) R3278693-2 01/10	(LCS) R3278693-2 01/10/18 11:05							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	%	%	%	%				
Total Solids	50.0	50.0	100	85-115				

DATE/TIME: 01/15/18 09:45 PAGE: 19 of 26

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY 1961532-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3278237-1 01/08	8/18 17:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	3.47	J	0.795	10.0

L961528-09 Original Sample (OS) • Duplicate (DUP)

(OS) L961528-09 01/08/18	3 23:10 • (DUP) F	२३२७८२३७-५ ०	1/08/18 23	3:19		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	235	225	1	4.39		20

L961532-09 Original Sample (OS) • Duplicate (DUP)

OCS) L961532-09 O1/09/18 O1:27 Original Result (dry) DUP Result (dry) DUP Result (dry) DUP RPD DUP Qualifier Limits DUP RPD Limits			
	961532-09 01/09/18	18 01:39 • (DUP) R3278237-7 01/09/18 01:47	
			JP Qualifier Limits
anyte ingrky ingrky // //	3	mg/kg mg/kg %	%
Chloride 62.3 60.3 1 3.27 20	e	62.3 60.3 1 3.27	20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278237-2 01/08/18 18:05 • (LCSD) R3278237-3 01/08/18 18:13											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Chloride	200	199	200	99.4	100	90-110			0.657	20	

L961532-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-01 01/08/18 23:53 • (MS) R3278237-5 01/09/18 00:01 • (MSD) R3278237-6 01/09/18 00:10												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	529	456	1070	1040	116	111	1	80-120	E		2.62	20

Released to	Imaging?3/24/2023	7:52:47 AM
	XTO Energy- Delaware Div	ision

PROJECT: 30-015-27686

SDG: L961532 DATE/TIME: 01/15/18 09:45

PAGE: 20 of 26

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Ср

Τс

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Ср

Τс

Ss

Cn

Sr

[´]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3278105-5 01/08/1	18 11:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	0.000207	J	0.000150	0.00500
Ethylbenzene	0.000113	J	0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	92.4			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	96.3			75.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278105-1 01/08/1	CS) R3278105-1 01/08/18 09:46 • (LCSD) R3278105-2 01/08/18 10:07									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0448	0.0450	89.7	90.1	71.0-121			0.456	20
Toluene	0.0500	0.0473	0.0471	94.7	94.2	72.0-120			0.484	20
Ethylbenzene	0.0500	0.0486	0.0485	97.2	96.9	76.0-121			0.247	20
Total Xylene	0.150	0.146	0.147	97.6	97.7	75.0-124			0.0683	20
(S) a,a,a-Trifluorotoluene(FID)				89.8	89.6	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				93.0	92.4	75.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278105-3 01/08/18 10:29 • (LCSD) R3278105-4 01/08/18 10:50												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
TPH (GC/FID) Low Fraction	5.50	4.88	4.76	88.7	86.5	70.0-136			2.47	20		
(S) a,a,a-Trifluorotoluene(FID)				87.7	85.9	77.0-120						
(S) a,a,a-Trifluorotoluene(PID)				104	103	75.0-128						

SDG: L961532 DATE/TIME: 01/15/18 09:45
Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Ср

Τс

Ss

Cn

Sr

[´]Qc

GI

AI

Sc

L961532-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-07 01/08/18 18:16 • (MS) R3278105-6 01/08/18 19:20 • (MSD) R3278105-7 01/08/18 19:41													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	0.0536	ND	0.0233	0.0274	43.5	51.2	1	10.0-146			16.2	29	
Toluene	0.0536	ND	0.0171	0.0238	31.6	44.1	1	10.0-143		<u>J3</u>	32.7	30	
Ethylbenzene	0.0536	ND	0.0106	0.0180	19.5	33.5	1	10.0-147		<u>J3</u>	52.3	31	
Total Xylene	0.161	ND	0.0309	0.0536	19.2	33.3	1	10.0-149	<u>J6</u>	<u>13 16</u>	53.8	30	
(S) a,a,a-Trifluorotoluene(FID)					89.0	88.9		77.0-120					
(S) a,a,a-Trifluorotoluene(PID)					92.2	91.7		75.0-128					

L961532-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-07 01/08/18	DS) L961532-07 01/08/18 18:16 • (MS) R3278105-8 01/08/18 20:02 • (MSD) R3278105-9 01/08/18 20:24											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.89	ND	4.13	1.18	70.1	20.0	1	10.0-147		<u>J3</u>	111	30
(S) a,a,a-Trifluorotoluene(FID)					86.2	88.9		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					96.4	92.8		75.0-128				

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 22 of 26

6

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY 1961532-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3278394-1 01/09/18 19:44										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
C10-C28 Diesel Range	U		1.61	4.00						
C28-C40 Oil Range	U		0.274	4.00						
(S) o-Terphenyl	63.5			18.0-148						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278394-2 01/0)9/18 19:59 • (LCS	D) R3278394	-3 01/09/18 20:	13							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	60.0	41.0	35.2	68.3	58.6	50.0-150			15.2	20	
(S) o-Terphenyl				72.3	64.5	18.0-148					

L961532-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-09 01/10/18	(OS) L961532-09 01/10/18 23:57 • (MS) R3278802-1 01/10/18 22:35 • (MSD) R3278802-2 01/10/18 22:48													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
C10-C28 Diesel Range	61.8	ND	43.9	45.6	67.5	70.2	1	50.0-150			3.86	20		
(S) o-Terphenyl					57.9	58.2		18.0-148						

DATE/TIME: 01/15/18 09:45 Sc

Cp

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
JG	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L961532

Received by OCD: 3/21/2023 7:51:42 AMCCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Connecticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
daho	TN00003	Oklahoma	9915
llinois	200008	Oregon	TN200002
ndiana	C-TN-01	Pennsylvania	68-02979
owa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{r/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Released to Imaging: 3/21/2023 7:52:47 AM XTO Energy- Delaware Division PROJECT: 30-015-27686

SDG: L961532 DATE/TIME: 01/15/18 09:45

ceived by OCD: 3/21/2023 7:	:51:42 AM		Billing Infor	mation:			<u> </u>			Ar	nalysis / Conta	iner / Prese	rvative		Chain of Custody	Page 4
LTE		8	,	XTD			Pres Chk								₩I	ESC
port to: Kyle Littre oject escription: Confirmatione: *: 1-970-317-1867 oliected by (print): Aaron Williamson oliected by (signature):	Client Project + 30-C Site/Facility ID JRU	15-2 # # # # # # # # # # # # #	Anples 27686 (27686) (27698) (27698) (27698)	yle_Li++re baker@Li City/State Collected: Lab Project # P.O. # P.O. # Quote # Date Resu	1800	:em N/M D1	-	EX EPA Method 8021	H EPA Method 8015	ride					12065 Lebenon Bit Mount Julee, TN 37 Phone: 615-758-58 Phone: 800-767-58 Fex: 615-758-5859 L # 9 (6 (G092 Acctnum: X 1 Template: Prelogin: TSR: PB:	532
Sample ID	Comp/Grab	Matrix *	Depth	Date	т	me	Cntrs	37	TPH	ChI			-0-		Shipped Via: Remarks	Sample # (lab only)
561	01	55	11	1-4-10	11	68	11	7	1	J						-01
551 .	brab	35	11	1-4-18	11	-17	1	J	T	J.						102
552	Grab	55	10	1-4-18	11	20	i	V	V	J			102	123.5		-03
554	Grab	55	111	1-4-18	11	22	It	1	1	J	0.61			1.2		04
555	Grab	55	60	1-4-18	11	26	II	V	V	1					1 1 1 1 1 2	-05
661	Grab	55	20	1-4-10	111	20		1	J	1				125		14
336	Grab	55	170	1-11-10	11:	20	1 i	1	J	V	1			1000		11
221	Grab		6"	1-4-18	11.	20	2 1	/	1	1				1000		-08
558	Grab	55	6"	1 1 18	1.	21	1	V	V.	V						-09
559	6 rab	55	0	1- 4-18	111	40	1	V	V	V	-					-10
ARW Soli AIR - Air F - Filter - Groundwater B - Bioassay V - WasteWater	Remarks:		16								pH	Temp		COC Seal COC Sign Bottles Correct	ample Receipt (Present/Intact) ed/Accurate: arrive intact: bottles used: ent volume sent	hecklist
W - Drinking Water T - Other	Samples retur	idExCou			racking # eccived t	(Signa	8	21	111	10	Trip Blank Re	ceived: Yes	No	VOA Zer	If Applica Headspace: stion Correct/C	ble _Y _N
elingdished by : (Signature)		Date:	-18	10:00	K	1.000	2	4	1	X		Н	CHAMBOH			
elipquished by : (Signature)	1	Date:		All I wanted and the second se		v: (Signa	iture)	JC I			Temp: 2	and the second se	s Received:	If preserv	ation required by L	ogin: Date/Time
Relinquished by : (Signature)		Date:	0		Aceived	or lab by	: (Signa	ture)	nah.	Be	Date:	Time	215	Hold:		Condition: NCF / OK

Released to Imaging: 3/21/2023 7:52:47 AM

Project Id:

Project Location:

Contact:

(2RP-2981 & 2RP-3618)

Adrian Baker

NM

Certificate of Analysis Summary 583282

LT Environmental, Inc., Arvada, CO

Project Name: JRU 36

Date Received in Lab:Sat Apr-21-18 10:00 amReport Date:27-APR-18Project Manager:Jessica Kramer

	Lab Id:	583282-00	1	583282-0	002		
Analysis Requested	Field Id:	SS5A		SS1A			
Anulysis Kequesleu	Depth:	16- In		22- In	ı		
	Matrix:	SOIL		SOIL			
	Sampled:	Apr-19-18 09	9:00	Apr-19-18	09:40		
BTEX by EPA 8021B	Extracted:	Apr-24-18 13	3:00	Apr-24-18	13:00		
	Analyzed:	Apr-24-18 20	0:03	Apr-24-18	20:22		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00202	0.00202	<0.00200	0.00200		
Toluene		< 0.00202	0.00202	< 0.00200	0.00200		
Ethylbenzene		< 0.00202	0.00202	< 0.00200	0.00200		
m,p-Xylenes		< 0.00403	0.00403	< 0.00401	0.00401		
o-Xylene		< 0.00202	0.00202	< 0.00200	0.00200		
Total Xylenes		< 0.00202	0.00202	< 0.00200	0.00200		
Total BTEX		<0.00202	0.00202	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	Apr-26-18 10	5:00	Apr-26-18	16:00		
	Analyzed:	Apr-26-18 19	9:42	Apr-26-18	19:53		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		19.2	4.98	64.1	4.96		
TPH By SW8015 Mod	Extracted:	Apr-25-18 10	5:00	Apr-25-18	16:00		
	Analyzed:	Apr-25-18 22	2:40	Apr-26-18	00:02		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0		
Diesel Range Organics (DRO)		24.2	15.0	189	15.0		
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<15.0	15.0		
Total TPH		24.2	15.0	189	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession knomen

Jessica Kramer Project Assistant

Analytical Report 583282

for

LT Environmental, Inc.

Project Manager: Adrian Baker

JRU 36

(2RP-2981 & 2RP-3618)

27-APR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

27-APR-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): **583282 JRU 36** Project Address: NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 583282. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 583282 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 583282

LT Environmental, Inc., Arvada, CO

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS5A	S	04-19-18 09:00	16 In	583282-001
SS1A	S	04-19-18 09:40	22 In	583282-002

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: JRU 36

Project ID: (2RP-2981 & 2RP-3618) Work Order Number(s): 583282

BORATORIES

Report Date: 27-APR-18 Date Received: 04/21/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3047816 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

LT Environmental, Inc., Arvada, CO

Sample Id:	SS5A		Matrix:	Soil		Date Received:04.2	21.18 10.0	0
Lab Sample I	d: 583282-001		Date Colle	ected: 04.19.18 09.00		Sample Depth: 16	ĺn	
Analytical Mo	ethod: Chloride by EP	A 300				Prep Method: E30)0P	
Tech:	OJS					% Moisture:		
Analyst:	SCM		Date Prep:	: 04.26.18 16.00		Basis: We	t Weight	
Seq Number:	3048105							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	19.2	4.98	mg/kg	04.26.18 19.42		1

Analytical Method: TPH By SW801	5 Mod				Р	rep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Pre	p: 04.25	.18 16.00	E	Basis: We	et Weight	
Seq Number: 3047990								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	04.25.18 22.40	U	1
Diesel Range Organics (DRO)	C10C28DRO	24.2	15.0		mg/kg	04.25.18 22.40		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	04.25.18 22.40	U	1
Total TPH	PHC635	24.2	15.0		mg/kg	04.25.18 22.40		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	108	%	70-135	04.25.18 22.40		
o-Terphenyl		84-15-1	111	%	70-135	04.25.18 22.40		

LT Environmental, Inc., Arvada, CO

Sample Id:SS5ALab Sample Id:583282-001	Matrix: Soil Date Collected: 04.19.18 09.00	Date Received:04.21.18 10.00 Sample Depth: 16 In			
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3047816	Date Prep: 04.24.18 13.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight			

Parameter	Cas Number Result	RL		Units	Analysis Date	Flag	Dil	
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	04.24.18 20.03	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	103	%	70-130	04.24.18 20.03		
4-Bromofluorobenzene		460-00-4	98	%	70-130	04.24.18 20.03		

LT Environmental, Inc., Arvada, CO

Sample Id:SS1ALab Sample Id:583282-002		Matrix: Date Collec	Soil cted: 04.19.18 09.40		Date Received:04.2 Sample Depth: 22 I		0
Analytical Method: Chloride by EF	PA 300]	Prep Method: E30	00P	
Tech: OJS					% Moisture:		
Analyst: SCM		Date Prep:	04.26.18 16.00	j	Basis: Wet	t Weight	
Seq Number: 3048105		1					
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	64.1	4.96	mg/kg	04.26.18 19.53		1
Analytical Method: TPH By SW80 Tech: ARM Analyst: ARM	15 Mod	Date Prep:	04.25.18 16.00		Prep Method: TX % Moisture: Basis: Wet	1005P t Weight	
Seq Number: 3047990	~	. .					
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0	mg/kg	04.26.18 00.02	U	1
Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	PHC610 C10C28DRO	<15.0 189	15.0 15.0	mg/kg mg/kg	04.26.18 00.02 04.26.18 00.02	U	1 1

Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	04.26.18 00.02	U	1	
Total TPH	PHC635	189	15.0		mg/kg	04.26.18 00.02		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	106	%	70-135	04.26.18 00.02			
o-Terphenyl		84-15-1	108	%	70-135	04.26.18 00.02			

LT Environmental, Inc., Arvada, CO

Sample Id:SS1ALab Sample Id:583282-002	Matrix: Soil Date Collected: 04.19.18 09.40	Date Received:04.21.18 10.00 Sample Depth: 22 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3047816	Date Prep: 04.24.18 13.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	04.24.18 20.22	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	99	%	70-130	04.24.18 20.22		
4-Bromofluorobenzene		460-00-4	89	%	70-130	04.24.18 20.22		

Flagging Criteria

Page 51 of 71

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Cli	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 583282

LT Environmental, Inc.

JRU 36

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E30	00P	
Seq Number:	3048105				Matrix: Solid				Date Pre	ep: 04.2	26.18	
MB Sample Id:	7643509-1-BLK		LCS Sample Id: 7643509-1-BKS					LCSI	D Sample	Id: 764	7643509-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Chloride	<5.00	250	235	94	235	94	90-110	0	20	mg/kg	04.26.18 18:40	

Analytical Method:	Chloride by EPA 3	00						Pre	ep Metho	d: E30	0P		
Seq Number:	3048105 Matri 583288-001 MS Sample I				Soil				Date Pre	p: 04.2	6.18		
Parent Sample Id:	583288-001 MS Sample I				583288-00	01 S		MSE	O Sample	Id: 583	583288-001 SD		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD F	RPD Limit	Units	Analysis Date	Flag	
Chloride	25.2	250	247	89	247	89	90-110	0	20	mg/kg	04.26.18 21:36	Х	

Analytical Method:	Chloride by EPA 30	00						Pi	rep Meth	od: E30	0P	
Seq Number:	3048105	Matrix: Soil				Date Prep:			6.18			
Parent Sample Id:	583452-018		MS Sample Id: 583452-018 S					MS	D Sample	e Id: 583	452-018 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	131	249	375	98	373	97	90-110	1	20	mg/kg	04.26.18 19:11	

Analytical Method:	TPH By S	W8015 M	od]	Prep Method	l: TX1	.005P	
Seq Number:	3047990				Matrix:	Solid				Date Prep	o: 04.2	5.18	
MB Sample Id:	7643471-1	-BLK		LCS Sar	nple Id:	7643471-	1-BKS		LC	SD Sample l	ld: 764	3471-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	1010	101	1070	107	70-135	6	20	mg/kg	04.25.18 21:46	
Diesel Range Organics	(DRO)	<15.0	1000	1010	101	1090	109	70-135	8	20	mg/kg	04.25.18 21:46	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
1-Chlorooctane		111		1	14		122		-	0-135	%	04.25.18 21:46	
o-Terphenyl		116		1	13		121		-	0-135	%	04.25.18 21:46	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

LT Environmental, Inc.

JRU 36

Analytical Method:	TPH By S	W8015 N	Iod						I	Prep Method	l: TX1	1005P	
Seq Number:	3047990				Matrix:	Soil				Date Prep	o: 04.2	25.18	
Parent Sample Id:	583282-00	1		MS Sar	nple Id:	583282-0	01 S		MS	SD Sample l	ld: 5832	282-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	998	1060	106	1010	101	70-135	5	20	mg/kg	04.25.18 23:06	
Diesel Range Organics	(DRO)	24.2	998	1060	104	1020	100	70-135	4	20	mg/kg	04.25.18 23:06	
Surrogate					1S Rec	MS Flag	MSD %Re		-	Limits	Units	Analysis Date	
1-Chlorooctane				1	25		118		7	0-135	%	04.25.18 23:06	
o-Terphenyl				1	21		115		7	0-135	%	04.25.18 23:06	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3047816 7643366-1-BLK	B	LCS San	Matrix: nple Id:	Solid 7643366-	1-BKS			Prep Methoo Date Prep SD Sample 1	p: 04.2	5030B 4.18 3366-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI) RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00202	0.101	0.115	114	0.114	114	70-130	1	35	mg/kg	04.24.18 17:48	
Toluene	< 0.00202	0.101	0.109	108	0.108	108	70-130	1	35	mg/kg	04.24.18 17:48	
Ethylbenzene	< 0.00202	0.101	0.110	109	0.108	108	70-130	2	35	mg/kg	04.24.18 17:48	
m,p-Xylenes	< 0.00403	0.202	0.226	112	0.224	112	70-130	1	35	mg/kg	04.24.18 17:48	
o-Xylene	< 0.00202	0.101	0.114	113	0.112	112	70-130	2	35	mg/kg	04.24.18 17:48	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSD %Rec			Limits	Units	Analysis Date	
1,4-Difluorobenzene	95		1	08		109			70-130	%	04.24.18 17:48	
4-Bromofluorobenzene	89		1	02		93			70-130	%	04.24.18 17:48	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3047816 583285-001	1B	MS San	Matrix: nple Id:	Soil 583285-00	01 S			Prep Methoo Date Prej SD Sample	p: 04.2	5030B 4.18 285-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPI) RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.0998	0.0983	98	0.0878	88	70-130	11	35	mg/kg	04.24.18 18:27	
Toluene	< 0.00200	0.0998	0.0934	94	0.0824	82	70-130	13	35	mg/kg	04.24.18 18:27	
Ethylbenzene	< 0.00200	0.0998	0.0937	94	0.0796	80	70-130	16	35	mg/kg	04.24.18 18:27	
m,p-Xylenes	< 0.00399	0.200	0.192	96	0.162	81	70-130	17	35	mg/kg	04.24.18 18:27	
o-Xylene	< 0.00200	0.0998	0.0977	98	0.0834	83	70-130	16	35	mg/kg	04.24.18 18:27	
Surrogate				1S Rec	MS Flag	MSD %Rec			Limits	Units	Analysis Date	
1,4-Difluorobenzene			1	08		109			70-130	%	04.24.18 18:27	
4-Bromofluorobenzene			1	06		103			70-130	%	04.24.18 18:27	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

ABORATORIES

CHAIN OF CUSTODY

Received by	• OCL): 3/2	1/202	23 7:5.	1:42	AM	ſ			
Will Sol	ω	-				_		_	0	

-	ມ: ວ ພ	/21/.	20	23	7:5.	1:42	2 A	M												15 -	No		Sa	Pro	m	co	50				Pa	ge	54 of 7.
Relinquished by:	Relinquished by:	Relinquished by Sampler:		TAT Starts Day received by Lab, if received by 5:00 pm	3 Day EMERGENCY	2 Day EMERGENCY				Turnaround Time (Business days)	;; œ	· 00	,	7	B	5	4	ω	2 551A	1	lo. Field ID / Point of Collection	BUC Carpon		<u>abaker@ltenv.com</u> Project Contact: Adrian Baker	Email:	Company Address: 3300 North A Street Building 1, Unit #103 Midland Texas	Company Name / Branch: LTE/Midland	Client / Reporting Information			Stafford, Texas (281-240-4200)	Setting the Standard since 1990	LABORATORIES
Dat	Dat	No Da	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY	received by 5:00 p		Contract TAT					v		_						2;	6			,	439-894-5641	Phone No:	ũ							
Date Time:	Date Time:	Date Time:	JST BE DOC	З				_			_	_	_	_					The 1,20	2	Sample Depth	Co		8	Invo	Proj	Proj				Sal		
77 6		8	UMENTED		_				_				+	_						HIMING C	Date	Collection		•	Invoice To:	Project Location:	Project Name/Number:		Contraction of the	114114, 102	1 Antonio		
Received By:	Received By:	Received By:	BELOW EAG		TRR	Leve	Leve	Leve											0940	0900	Time		20-015	Kyle Littrell XTO Energy		2	lumber:	Projec		<u></u>	San Antonio, Texas (210-509-3334)		CH
y:		у: 2470 (H TIME SA		TRRP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC		Data	_	+	_	_					1	5	Matrix bo	9	D	Y	111	NIM	TRU	Project Information		WWW	10-509-3		Page _ of
		GRO ATO	MPLES CI		st	orms)	C+ Forms			Deliverabl	+	+	+								# of bottles	1400	7696		-	7	w	ion		www.xenco.com	334)]	
	(2965	HANGE PO						,	Data Deliverable Information											NaOH/Zn Acetate	Number	-				6			om			
4 Cust	Reffin	Relin	SSESSION					Lev	- 1	on											HNO3 H2SO4	Number of preserved bottles	180-2061										CUSTOD
4 Custody Seal #	Relfinquished By:	Relinguished By:	I, INCLUD			UST / RG -411	TRRP Level IV	Level IV (Full Data			+	┿	+	+	-						NaOH NaHSO4	ived bot	0						1				STO
#		By:	ING COU			7	<							_					X	×	MEOH NONE	ttles	2011										
		Gauralez	RIER DEI					Pkg /raw data)		-		+		+					1 7	X	BTEX	10	3					-		Xenco	Phoe		Y
Prese			IVERY				×	data)		-									×	X	ТРН									Xenco Quote #	Phoenix, Arizona (480-355-0900)		
Preserved where applicable	Date Time:	Date Time:									-								×	~	Chloride							_	Anal		rizona		
nere ap	me:		-	E				+	_		+	_	+	_	+	_												_	Analytical Information		480-35		
plicable		2:55		D-EX / I						Notes:	+	+	+	+	+													_	Iformati		5-0900		
4	Recei	Recei		FED-EX / UPS: Tracking #																									on	Xenco Job #	5		
70	Received By:	Received By: 2		acking						_	+	+	+	_	_	_														Job #			
On Ice				#						-	+	+	+	+	+	-												_	F	£			
Cooler Temp.																					7									1281			
Thermo. Corr. Factor												2									Field Comments	A = Air		SW = Surface water SL = Sludge OW =Ocean/Sea Water WI = Wipe	P = Product	GW =Ground Water DW = Drinking Water	W = Water S = Soil/Sed/Solid		Matrix Codes	7			

Received by OCD: 3/21/2023 7:51:42 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 04/21/2018 10:00:00 AM Temperature Measuring device used : R8 Work Order #: 583282 Comments Sample Receipt Checklist #1 *Temperature of cooler(s)? -1 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes TPh received in bulk container #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

#18 Water VOC samples have zero headspace?

Katie Lowe

Date: 04/23/2018

N/A

Checklist reviewed by:

fession kramer

Jessica Kramer

Date: 04/23/2018

Released to Imaging: 3/21/2023 7:52:47 AM

for LT Environmental, Inc.

Project Manager: Adrian Baker JRU-36 Battery/ 012918001

04-JUN-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-26), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

04-JUN-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 587528 JRU-36 Battery/ 012918001 Project Address: NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 587528. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 587528 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession promer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 587528

LT Environmental, Inc., Arvada, CO

JRU-36 Battery/ 012918001

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS10	S	05-25-18 13:00	- 6 In	587528-001
SS11	S	05-25-18 13:05	- 6 In	587528-002

Version: 1.%

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: JRU-36 Battery/ 012918001

Project ID: Work Order Number(s): 587528

BORATORIES

Report Date:04-JUN-18Date Received:05/30/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3052094 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id: Adrian Baker

Contact:

Project Location: NM Certificate of Analysis Summary 587528

LT Environmental, Inc., Arvada, CO Project Name: JRU-36 Battery/ 012918001

Date Received in Lab: Wed May-30-18 10:40 am **Report Date:** 04-JUN-18 Project Manager: Jessica Kramer

	Lab Id:	587528-0	001	587528-(002			
					102			
Analysis Requested	Field Id:	SS10		SS11				
Analysis Requested	Depth:	6 In		6 In				
	Matrix:	SOIL		SOIL				
	Sampled:	May-25-18	13:00	May-25-18	13:05			
BTEX by EPA 8021B	Extracted:	May-31-18	15:00	May-31-18	15:00			
	Analyzed:	May-31-18	21:21	May-31-18	21:37			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Benzene		< 0.00200	0.00200	< 0.00200	0.00200			
Toluene		< 0.00200	0.00200	< 0.00200	0.00200			
Ethylbenzene		< 0.00200	0.00200	< 0.00200	0.00200			
m,p-Xylenes		< 0.00401	0.00401	< 0.00400	0.00400			
o-Xylene		< 0.00200	0.00200	< 0.00200	0.00200			
Total Xylenes		< 0.00200	0.00200	< 0.00200	0.00200			
Total BTEX		< 0.00200	0.00200	< 0.00200	0.00200			
Inorganic Anions by EPA 300	Extracted:	May-31-18	08:30	May-31-18	08:30			
	Analyzed:	May-31-18	10:47	May-31-18	11:29			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Chloride		<4.92	4.92	98.5	4.97			
TPH by SW8015 Mod	Extracted:	May-31-18	07:00	May-31-18	07:00			
	Analyzed:	Jun-01-18 (07:52	Jun-01-18 (08:12			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	72.5	15.0			
Diesel Range Organics (DRO)		255	15.0	4000	15.0			
Oil Range Hydrocarbons (ORO)		21.3	15.0	44.5	15.0			
Total TPH		276	15.0	4120	15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

lession beamer

Jessica Kramer Project Assistant

Final 1.000

LT Environmental, Inc., Arvada, CO

Sample Id: Lab Sample I	SS10 d: 587528-001		Matrix: Date Colle	Soil cted: 05.25.18 13.00		Date Received:05 Sample Depth: 6		0
ľ	ethod: Inorganic Anions	by EPA 300				Prep Method: E3		
Tech:	SCM					% Moisture:		
Analyst:	SCM		Date Prep:	05.31.18 08.30		Basis: W	et Weight	
Seq Number:	3051902							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	<4.92	4.92	mg/kg	05.31.18 10.47	U	1

Analytical Method: TPH by SW801	5 Mod				P	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	o: 05.31.	18 07.00	E	Basis: We	t Weight	
Seq Number: 3052046								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.01.18 07.52	U	1
Diesel Range Organics (DRO)	C10C28DRO	255	15.0		mg/kg	06.01.18 07.52		1
Oil Range Hydrocarbons (ORO)	PHCG2835	21.3	15.0		mg/kg	06.01.18 07.52		1
Total TPH	PHC635	276	15.0		mg/kg	06.01.18 07.52		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	88	%	70-135	06.01.18 07.52		
o-Terphenyl		84-15-1	94	%	70-135	06.01.18 07.52		

LT Environmental, Inc., Arvada, CO

Sample Id:SS10Lab Sample Id:587528-001	Matrix: Soil Date Collected: 05.25.18 13.00	Date Received:05.30.18 10.40 Sample Depth: 6 In
Analytical Method:BTEX by EPA 8021BTech:JUMAnalyst:JUMSeq Number:3052094	Date Prep: 05.31.18 15.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	05.31.18 21.21	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	88	%	70-130	05.31.18 21.21		
4-Bromofluorobenzene		460-00-4	112	%	70-130	05.31.18 21.21		

Seq Number: 3052046

Certificate of Analytical Results 587528

LT Environmental, Inc., Arvada, CO

Sample Id: Lab Sample	SS11 Id: 587528-002		Matrix: Date Collec	Soil ted: 05.25.18 13.05		Date Received:05. Sample Depth: 6 I		0
Analytical M Tech: Analyst: Seq Number	lethod: Inorganic Anions SCM SCM : 3051902	s by EPA 300	Date Prep:	05.31.18 08.30		Prep Method: E3(% Moisture: Basis: We	00P t Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	98.5	4.97	mg/kg	05.31.18 11.29		1
Analytical M Tech: Analyst:	lethod: TPH by SW8015 ARM ARM	9 Mod	Date Prep:	05.31.18 07.00		Prep Method: TX % Moisture: Basis: We	1005P t Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	72.5	15.0		mg/kg	06.01.18 08.12		1
Diesel Range Organics (DRO)	C10C28DRO	4000	15.0		mg/kg	06.01.18 08.12		1
Oil Range Hydrocarbons (ORO)	PHCG2835	44.5	15.0		mg/kg	06.01.18 08.12		1
Total TPH	PHC635	4120	15.0		mg/kg	06.01.18 08.12		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	108	%	70-135	06.01.18 08.12		
o-Terphenyl		84-15-1	123	%	70-135	06.01.18 08.12		

LT Environmental, Inc., Arvada, CO

Sample Id:SS11Lab Sample Id:587528-002	Matrix: Soil Date Collected: 05.25.18 13.05	Date Received:05.30.18 10.40 Sample Depth: 6 In
Analytical Method:BTEX by EPA 8021BTech:JUMAnalyst:JUMSeq Number:3052094	Date Prep: 05.31.18 15.00	Prep Method:SW5030B% Moisture:Basis:Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	05.31.18 21.37	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	111	%	70-130	05.31.18 21.37		
4-Bromofluorobenzene		460-00-4	118	%	70-130	05.31.18 21.37		

Flagging Criteria

Page 65 of 71

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

LT Environmental, Inc.

JRU-36 Battery/ 012918001

Analytical Method:	Inorganic Anions b	y EPA 300						Pr	ep Metho	d: E3	00P	
Seq Number:	3051902			Matrix:	Solid				Date Pre	p: 05	.31.18	
MB Sample Id:	7655767-1-BLK		LCS Sar	nple Id:	7655767-	1-BKS		LCSI	O Sample	Id: 76	55767-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Chloride	< 5.00	250	269	108	269	108	90-110	0	20	mg/kg	05.31.18 09:22	

Analytical Method:	Inorganic Anions b	y EPA 300						Pr	ep Metho	d: E30	00P	
Seq Number:	3051902			Matrix:	Soil				Date Pre	p: 05.	31.18	
Parent Sample Id:	587377-005		MS Sar	nple Id:	587377-00)5 S		MSI	O Sample	Id: 587	377-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Chloride		250	277	109	278	109	90-110	0	20	mg/kg	05.31.18 09:38	

Analytical Method:	Inorganic Anions b	y EPA 300						Pı	ep Meth	od: E30	0P	
Seq Number:	3051902			Matrix:	Soil				Date Pr	ep: 05.3	1.18	
Parent Sample Id:	587528-001		MS Sar	nple Id:	587528-00	01 S		MS	D Sample	e Id: 587	528-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag

Analytical Method:	TPH by S	W8015 M	od						I	Prep Method	l: TX1	.005P	
Seq Number:	3052046				Matrix:	Solid				Date Prep	p: 05.3	1.18	
MB Sample Id:	7655868-1	-BLK		LCS Sar	nple Id:	7655868-	1-BKS		LCS	SD Sample	Id: 765	5868-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	920	92	953	95	70-135	4	20	mg/kg	05.31.18 10:15	
Diesel Range Organics	(DRO)	<15.0	1000	993	99	1040	104	70-135	5	20	mg/kg	05.31.18 10:15	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
1-Chlorooctane		86		1	26		128		7	0-135	%	05.31.18 10:15	
o-Terphenyl		92		1	19		121		7	0-135	%	05.31.18 10:15	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference
$$\begin{split} & [D] = 100*(C-A) \ / \ B \\ & RPD = 200* \ | \ (C-E) \ / \ (C+E) \ | \\ & [D] = 100*(C) \ / \ [B] \\ & Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{split}$$

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

LT Environmental, Inc.

JRU-36 Battery/ 012918001

Analytical Method:	TPH by SV	W8015 M	od						F	Prep Method	l: TX1	005P	
Seq Number:	3052046				Matrix:	Soil				Date Prep	o: 05.3	1.18	
Parent Sample Id:	587529-00	1		MS Sar	nple Id:	587529-0	01 S		MS	SD Sample l	ld: 5875	529-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	999	896	90	894	90	70-135	0	20	mg/kg	05.31.18 11:19	
Diesel Range Organics	(DRO)	<15.0	999	979	98	980	98	70-135	0	20	mg/kg	05.31.18 11:19	
Surrogate					AS Rec	MS Flag	MSD %Ree			Limits	Units	Analysis Date	
1-Chlorooctane				1	02		103		7	0-135	%	05.31.18 11:19	
o-Terphenyl				1	.03		104		7	0-135	%	05.31.18 11:19	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3052094 7655894-1-BLK	1B	LCS San	Matrix: nple Id:		1-BKS			Prep Metho Date Pre SD Sample	p: 05.3	5030B 51.18 5894-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI) RPD Limi	t Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.102	102	0.0961	96	70-130	6	35	mg/kg	05.31.18 18:01	
Toluene	< 0.00200	0.100	0.0948	95	0.0990	99	70-130	4	35	mg/kg	05.31.18 18:01	
Ethylbenzene	< 0.00200	0.100	0.0949	95	0.0962	96	70-130	1	35	mg/kg	05.31.18 18:01	
m,p-Xylenes	< 0.00401	0.200	0.201	101	0.202	100	70-130	0	35	mg/kg	05.31.18 18:01	
o-Xylene	< 0.00200	0.100	0.109	109	0.107	107	70-130	2	35	mg/kg	05.31.18 18:01	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSD %Rec			Limits	Units	Analysis Date	
1,4-Difluorobenzene	101		9	93		91			70-130	%	05.31.18 18:01	
4-Bromofluorobenzene	125		8	36		103			70-130	%	05.31.18 18:01	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3052094 587374-002	1B		Matrix: nple Id:			Prep Meth Date Pr		5030B 1.18	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec		Limits		Units	Analysis Date	Flag
Benzene	0.00616	0.0992	0.0262	20		70-130		mg/kg	05.31.18 18:35	Х
Toluene	0.0459	0.0992	0.0540	8		70-130		mg/kg	05.31.18 18:35	Х
Ethylbenzene	0.0117	0.0992	0.0177	6		70-130		mg/kg	05.31.18 18:35	Х
m,p-Xylenes	0.0893	0.198	0.0957	3		70-130		mg/kg	05.31.18 18:35	Х
o-Xylene	0.0314	0.0992	0.0334	2		70-130		mg/kg	05.31.18 18:35	Х
Surrogate				AS Rec	MS Flag		Limits	Units	Analysis Date	
1,4-Difluorobenzene			8	81			70-130	%	05.31.18 18:35	
4-Bromofluorobenzene			1	02			70-130	%	05.31.18 18:35	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

ABURAT URIES CHAIN OF CUSTODY

Page ____ Of ___

	~	L					
Released to	Imaging:	3/21/	2023	7:52:4	(7 A	M	

Received by OCD: 3/21/2023 7:51:42	AM
------------------------------------	----

San Antonio, Texas (21:060:333) Phoenix, Aizona (480:355-0900 Milland, Toxas (52:704:259) Immy 2010 Terms 1000 Immy 2010 Immy 2010 Immy 2010 Immy 2010 Project Information Project Information Immy 2010 Immy 2010 Project Information Immy 2010 Immy 2010 Immy 2010 Immy 2010 Project Information Immy 2010 Immy 2010 Immy 2010 Immy 2010 Project Information Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immove Tre: Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immove Tre: Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immove Tre: Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immove Tre: Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immove Tre: Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immove Tre: Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immove Tre: Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immove Tre: Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immy 2010 Immy 2010 <th>vais litte.</th> <th>Relinquished by: Strong Andrew Andrew</th> <th>Relinquithed-fly: Date Time:</th> <th></th> <th></th> <th>TAT Starts Day received by Lab, if received by 5:00 pm</th> <th>3 Day EMERGENCY Stardord</th> <th>Contract TAT</th> <th>-</th> <th>]</th> <th>Turnaround Time (Business days)</th> <th>5</th> <th>6</th> <th>œ</th> <th>7</th> <th>6</th> <th>51</th> <th>4</th> <th>ω</th> <th>2 5511 6"</th> <th></th> <th></th> <th>Field ID / Point of Collection</th> <th>Samplers's Name ()A MUL (N. W. W. G)</th> <th>Adrian Baylor</th> <th>abaker @ Henvilor 432-894-564</th> <th>Email: 460 LV 60+ Are Arvada, (0 80003</th> <th>Company Address: (Arisbad / Midland</th> <th>Client' Reporting Information</th> <th></th> <th></th> <th>Dallas Texas (214-902-0300)</th> <th>Stafford,Texas (281-240-4200)</th> <th>Setting the Standard since 1990</th>	vais litte.	Relinquished by: Strong Andrew	Relinquithed-fly: Date Time:			TAT Starts Day received by Lab, if received by 5:00 pm	3 Day EMERGENCY Stardord	Contract TAT	-]	Turnaround Time (Business days)	5	6	œ	7	6	51	4	ω	2 5511 6"			Field ID / Point of Collection	Samplers's Name ()A MUL (N. W. W. G)	Adrian Baylor	abaker @ Henvilor 432-894-564	Email: 460 LV 60+ Are Arvada, (0 80003	Company Address: (Arisbad / Midland	Client' Reporting Information			Dallas Texas (214-902-0300)	Stafford,Texas (281-240-4200)	Setting the Standard since 1990
Phoenix, Arizona (480-355-0900)	5 Custody Seal # Preserved where applicable On ice Cooler Temp. Thermo. Corr. Factor	10:40 3 Ball China	Received By	Received By: N MAR Relinquished By:	OCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIE		TRRP Checklist			Uotitituotuti hidraanaa merc	Data Delivershie Information									1305	1300 504 1	Marrix 2011 Marrix 2011 HQI NaOHI/Zn: Acetate HNO3 H2SO4 NaOH NaOH NaOH NaOH VIEOH						mber JRU-36 Bathry	Project Information	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	WWW XBROD COTT	Midland, Texas (432-704-5251)	San Antonio, Texas (210-509-3334)	
	Preserved where applicable				LIVERY				data)	Notes:												TEH	L						Analytical Information	88	Xenco Quote # Xenco Job #	Phoenix, Anzona (480-355-0900)	Distanti, Administration appoint	

Received by OCD: 3/21/2023 7:51:42 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 05/30/2018 10:40:00 AM Temperature Measuring device used : R8 Work Order #: 587528 Comments Sample Receipt Checklist 2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes TPH WAS RECEIVED IN BULK CONTAINERS #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? N/A #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Brianna Teel

Date: 05/30/2018

Checklist reviewed by: Jessica Warmer

Jessica Kramer

Date: 05/30/2018

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

COMMENTS

Operator:	OGRID:
BOPCO, L.P.	260737
6401 Holiday Hill Rd	Action Number:
Midland, TX 79707	199100
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)
COMMENTS	

COMMENTS

Created By		Comment Date
amaxwell	Historical document upload	3/21/2023

Page 70 of 71

Action 199100

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
BOPCO, L.P.	260737
6401 Holiday Hill Rd	Action Number:
Midland, TX 79707	199100
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)
	-

CONDITIONS

Created By	Condition	Condition Date
amaxwell	None	3/21/2023

Page 71 of 71

Action 199100