

LT Environmental, Inc.

3300 North A Street, Building 1, #103 Midland, Texas 79705 432.704.5178

October 22, 2018

Mr. Mike Bratcher New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request Poker Lake Unit 68 Tank Battery Remediation Permit Number 2RP-2986 and 2RP-2987 Eddy County, New Mexico

Dear Mr. Bratcher:

LT Environmental, Inc. (LTE), on behalf of XTO Energy, Inc. (XTO), is pleased to present the following letter report detailing the excavation of impacted soil and confirmation soil sampling activities at the Poker Lake Unit (PLU) 68 tank battery (Site) in Unit Letter B, Section 20, Township 24 South, Range 31 East, in Eddy County, New Mexico (Figure 1). The purpose of the excavation activities was to address impacts to soil after two separate events caused the release of crude oil and produced water in the processing equipment containment area.

On April 19, 2015, a flow line developed a leak due to external corrosion, causing a release of approximately 8 barrels (bbls) of crude oil and 46 bbls of produced water. The spill impacted approximately 4,165 square feet of the process equipment earthen containment area. Free-standing liquid was removed with a vacuum truck; approximately 2 bbls of crude oil and 8 bbls of produced water were recovered. The former operator reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 on May 1, 2015 and was assigned Remediation Permit Number (RP) 2RP-2987 (Attachment 1).

On April 26, 2015, an unauthorized person cut and removed seals and opened a closed valve connected to an open-ended four-inch diameter poly flowline. The flowline had been used to supply produced water to drilling operations. The actions caused a release of approximately 269 bbls of produced water. The spill impacted approximately 11,000 square feet of the process equipment earthen containment area. Free-standing liquid was removed with a vacuum truck; approximately 200 bbls of produced water were recovered. The former operator reported the release to the NMOCD on a separate Form C-141 on May 1, 2015, and was assigned RP number: 2RP-2986 (Attachment 1).

Although the releases occurred while the facility was operated by the previous operator, XTO is the current operator and is committed to addressing any releases that remain unresolved. Since both releases occurred within the process equipment containment berm, the sampling and excavation activities were completed to address and close both releases simultaneously. Based

Bratcher, M. Page 2

on the results of the confirmation soil sampling events conducted after impacted soil was removed, XTO is requesting no further action for these release events.

BACKGROUND

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest water well data and known aquifer properties. The nearest permitted water well is C 02110, located approximately 3.3 miles west of the Site, with a depth to groundwater of 400 feet bgs and a total depth of 600 feet bgs. The Site is greater than 1,000 feet from a water source and greater than 200 feet from a private domestic water source. The closest surface water to the Site is a stock pond located approximately 0.96 miles northwest of the Site. Based on these criteria, the NMOCD site ranking for remediation action levels is 0, and the following remediation action levels apply: 10 milligrams per kilogram (mg/kg) benzene; 50 mg/kg total benzene, toluene, ethylbenzene, and total xylenes (BTEX); and 5,000 mg/kg total petroleum hydrocarbons (TPH). Based on standard practice in this region, LTE proposes a site-specific chloride action level of 600 mg/kg or within 10 percent (%) of the background concentrations.

PRELIMINARY SOIL SAMPLING

On January 4, 2018, an LTE scientist collected ten soil samples (SS-1 through SS-10) from a depth of 0.5 feet bgs to assess the lateral extent of soil impact. The soil sample locations, depicted on Figure 2, were based on information provided on both initial Form C-141s and field observations. Samples were screened for volatile aromatic hydrocarbons using a photo-ionization detector (PID) equipped with a 10.6 electron volt lamp in accordance with the NMOCD *Guidelines for Remediation of Leaks, Spills and Releases*, August 13, 1993. No Hydrocarbon odor was detected or soil staining observed at the Site. The soil samples were placed directly into pre-cleaned glass jars, labeled with location, date, time, sampler, and method of analysis, and immediately placed on ice. The samples were delivered at 4 degrees Celsius (°C) under strict chain-of-custody procedures to ESC Lab Sciences in Mount Juliet, Tennessee, for laboratory analysis of BTEX by United States Environmental Protection Agency (EPA) Method 8021B, TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) by EPA Method SW8015 Modified, and chloride by EPA Method 300.

Laboratory analytical results indicated one soil sample (SS-1) exceeded the NMOCD site-specific remediation action level for TPH and two soil samples (SS-5 and SS-8) exceeded the remediation action level for chloride. Analytical results are depicted on Figure 2 and summarized in Table 1, and the laboratory analytical report is included in Attachment 2.

EXCAVATION ACTIVITIES

During June 2018, LTE personnel returned to the Site to oversee excavation of impacted soil as indicated by visual staining, field screening, and laboratory analytical results exceeding the NMOCD remediation action levels in initial soil samples SS-1, SS-5, and SS-8. To delineate

Bratcher, M. Page 3

hydrocarbon and chloride impacts to soil and direct excavation activities, LTE screened soil using a PID and Hach[®] chloride QuanTab[®] test strips. Excavation activities commenced on June 13, 2018 and concluded on June 19, 2018. Impacted soil was removed from the release area to a depth of 0.5 feet bgs to 2 feet bgs by hydro excavation. The southern portion of the impacted area was mechanically excavated to a depth of 5 feet bgs. Please note that the excavation and confirmation soil samples associated with the excavation north of the containment berm were not associated with these releases. However, as a best management practice, visually stained soil was identified and excavated and confirmation soil samples (SS3A, SS13, SS14, and SS15) were collected.

Upon completion of excavation activities, LTE collected confirmation soil samples SS11 through SS21, SS1A, SS3A, SS5A, SS8A, FS1, and SW1 through SW4 from the final excavation extent. The soil samples were collected and handled as previously described and submitted to Xenco Laboratories in Midland, Texas. Analytical results are depicted on Figure 2 and summarized in Table 1, and the complete laboratory analytical reports are included as Attachment 2.

The excavation measured approximately 11,000 square feet around the process equipment with a depth of 0.5 feet to five feet bgs at the southern end of the excavation, where the spilled fluid pooled inside the containment. Approximately 180 cubic yards of impacted soil were removed from the excavation. The impacted soil was transported and properly disposed of at the R360 Landfarm, in Hobbs, New Mexico.

ANALYTICAL RESULTS

Laboratory analytical results confirmed that all soil samples collected from the final excavation extents (SS11 through SS21, SS1A, SS3A, SS5A, SS8A, FS1, and SW1 through SW4) were compliant with the NMOCD site-specific remediation action levels for BTEX, TPH, and chloride. Laboratory analytical results indicated initial soil sample SS-1 exceeded the NMOCD remediation action level for TPH. The area around initial sample SS-1 was excavated and subsequent soil sample SS1A indicated the TPH concentration was compliant with the NMOCD remediation action level. Initial soil samples SS-5 and SS-8 exceeded the NMOCD remediation action level for chloride. The area around SS-5 was excavated and subsequent soil sample SS-5A indicated the chloride concentration was compliant with the NMOCD remediation action level. The area around SS-8 was excavated and subsequent soil samples SW1, SW2, SW3, SW4, SS8A and floor sample FS1 indicated chloride concentrations were compliant with the NMOCD remediation action level. Laboratory analytical results are presented on Figure 2 and summarized in Table 1, and the complete laboratory analytical reports are included as Attachment 2.

CONCLUSIONS

The impacted soil was excavated and laboratory analytical results for the confirmation soil samples collected from the final excavation extents indicate that BTEX, TPH, and chloride

Bratcher, M. Page 4

concentrations are compliant with NMOCD site-specific remediation action levels. XTO has successfully removed the impacted soil at the Site and requests no further action for this release. Upon approval of this request, XTO will backfill the excavation with caliche well pad material. An updated NMOCD Form C-141 is included with Attachment 1.

If you have any questions or comments, please do not hesitate to contact Adrian Baker at (432) 887-1255 or <u>abaker@ltenv.com</u>.

Sincerely,

LT ENVIRONMENTAL, INC.

duin C

Adrian Baker Project Geologist

Ashley L. Ager

Ashley L. Ager, P.G. Senior Geologist

cc: Kyle Littrell, XTO Maria Pruett, NMOCD Jim Amos, BLM Shelly Tucker, BLM

Attachments:

- Figure 1 Site Location Map
- Figure 2 Soil Sample Locations
- Table 1Soil Analytical Results
- Attachment 1 Initial/Final NMOCD Form C-141 (2RP-2986 and 2RP-2987)

Attachment 2 Laboratory Analytical Reports

FIGURES

LT 2

Released to Imaging: 3/21/2023 7:37:55 AM

Released to Imaging: 3/21/2023 7:37:55 AM

TABLE

LT 2

TABLE 1 SOIL ANALYTICAL RESULTS PLU-68 TANK BATTERY REMEDIATION PERMIT NUMBERS 2RP-2986 and 2RP-2987 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	C6-C10 Gasoline Range Organics (mg/kg)	C10-C28 Diesel Range Organics (mg/kg)	C28-C40 Motor Oil Range Organics (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
SS-1	0.5	1/4/2018	< 0.000513	< 0.00513	< 0.000513	< 0.0154	< 0.00513	0.176	4,050	1,660	5,710	133
SS-2	0.5	1/4/2018	<0.000518 J4	< 0.00518	< 0.000518	< 0.00155	< 0.00518	< 0.104	<4.14	5.08	5.08	131
SS-3	0.5	1/4/2018	<0.000529 J4	< 0.00529	< 0.000529	< 0.00159	< 0.00529	< 0.106	2,720	1,270	3,990	63.6
SS-4	0.5	1/4/2018	<0.000549 J4	< 0.00549	< 0.000549	< 0.00165	< 0.00549	< 0.110	8.67	10.7	19.4	156
SS-5	0.5	1/4/2018	<0.000538 J4	<0.00538 J3, J6	<0.000538 J3, J6	<0.00161 J3, J6	< 0.00538	<0.108 J3, J6	214	159	373	1,600
SS-6	0.5	1/4/2018	<0.000612 J4	< 0.00612	< 0.000612	< 0.00184	< 0.00612	< 0.122	<4.90	<4.90	<4.90	138
SS-7	0.5	1/4/2018	< 0.000523	< 0.00523	< 0.000523	< 0.00157	< 0.00523	< 0.105	<4.18	5.70	5.70	273
SS-8	0.5	1/4/2018	<0.000600 J4	< 0.00600	< 0.000600	< 0.00180	< 0.00600	< 0.120	<4.80	<4.80	<4.80	7,390
SS-9	0.5	1/4/2018	0.000589	< 0.00513	< 0.000513	< 0.00154	0.000589	< 0.103	5.25	7.37	12.6	235
SS-10	0.5	1/4/2018	<0.000614 J4	< 0.00614	< 0.000614	< 0.00184	< 0.00614	< 0.123	<4.91	<4.91	<4.91	166
SS11	0.5	6/13/2018	< 0.00199	< 0.00199	< 0.00199	< 0.00199	< 0.00199	<15.0	<15.0	<15.0	<15.0	74.4
SS12	0.5	6/13/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<74.9	2,750	276	3,030	390
SS13	2	6/13/2018	< 0.00199	< 0.00199	< 0.00199	< 0.00199	< 0.00199	<15.0	<15.0	<15.0	<15.0	<4.90
SS14	2	6/13/2018	< 0.00199	< 0.00199	< 0.00199	< 0.00199	< 0.00199	<15.0	<15.0	<15.0	<15.0	<4.99
SS3A	2	6/13/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<14.9	<14.9	<14.9	<14.9	<4.99
SS8A	2	6/13/2018	< 0.00201	< 0.00201	< 0.00201	< 0.00201	< 0.00201	<14.9	<14.9	<14.9	<14.9	<4.99
SS1A	2	6/13/2018	< 0.00202	< 0.00202	< 0.00202	< 0.00202	< 0.00202	<15.0	<15.0	<15.0	<15.0	50.6
SS15	2	6/13/2018	< 0.00201	< 0.00201	< 0.00201	< 0.00201	< 0.00201	<15.0	<15.0	<15.0	<15.0	<4.98
SS5A	2	6/18/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	1,030	88.5	1,120	132
FS1	5	6/18/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	<15.0	<15.0	<15.0	8.44
SW1	3.5	6/18/2018	< 0.00201	< 0.00201	< 0.00201	< 0.00201	< 0.00201	<14.9	<14.9	<14.9	<14.9	13.4
SW2	3.5	6/18/2018	< 0.00199	< 0.00199	< 0.00199	< 0.00199	< 0.00199	<15.0	27.6	<15.0	27.6	40.2
SW3	3.5	6/18/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	<15.0	<15.0	<15.0	12.2
SW4	3.5	6/18/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	<15.0	<15.0	<15.0	17.9
SS16	0.5	6/19/2018	< 0.00202	< 0.00202	< 0.00202	< 0.00202	< 0.00202	<14.9	232	46.2	278	184
SS17	0.5	6/19/2018	< 0.00202	< 0.00202	< 0.00202	< 0.00202	< 0.00202	<15.0	27.7	<15.0	27.7	30.5
SS18	0.5	6/19/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	34.9	<15.0	34.9	539
SS19	0.5	6/19/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	15.3	<15.0	<15.0	15.3	8.55
SS20	0.5	6/19/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	504	80.4	584	34.5
SS21	0.5	6/19/2018	< 0.00199	< 0.00199	< 0.00199	< 0.00199	< 0.00199	<15.0	1,180	76.4	1,260	19.9
NMOCD R	emediation A	ction Levels	10	NE	NE	NE	50	NE	NE	NE	5,000	600

Notes:

Released to Imaging: 3/21/2023 7:37:55 AM

bgs - below ground surface

BTEX - benzene, toluene, ethylbenzene, and total xylenes

mg/kg - milligrams per kilogram

NE - Not established

NMOCD - New Mexico Oil Conservation Division

TPH - total petroleum hydrocarbons

< - indicates result is below laboratory reporting limits

 $\ensuremath{\textbf{Bold}}$ indicates result exceeds the applicable regulatory standard

J3 - The associated batch QC was outside the established quality control range for precision.

J4 - The associated batch QC was outside the established quality control range for accuracy.

J6 - The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Page 9 of 145

ATTACHMENT 1: INITIAL/FINAL NMOCD FORM C-141 (2RP-2986 and 2RP-2987)

र्षाट

Received by	OCD:	3/21/2023	7:35:43 AM
--------------------	------	-----------	------------

District 1 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NM OIL CONSERVATION

ARTESIA DISTRICT

Form C-141

Page 11 of 145

MAY 0 1 2015 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC. **RECEIVED**

R	lease	Not	ification	hne	Corrective .	Action
1/0	TCASC	1101	IIICALIUII	anu	COLLECTIVE .	ACHOIL

NAB 1512 540539 Name of Company: BOPCO, L.P.		OPERATOR	Initial Report	Final Report
Name of Company: BOPCO, L.P.	260737	Contact: Tony Savoie		
Address: 522 W. Mermod, Suite 704 C		Telephone No. 575-887-7329)	
Facility Name: PLU-68 Tank Battery		Facility Type: Exploration an	d Production	
Surface Owner: Federal	Mineral Own	er: Federal	API No. 30-015-2	5781

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
В	20	24S	31E	760	North	2080	East	Eddy
		_						

Latitude N 32. 208027° Longitude W 103.798545°

NATURE OF RELEASE

Type of Release: Produced water	Volume of Release: 269 bbls	Volume Recovered: 200 bbls
Source of Release: 4" poly line	Date and Hour of Occurrence:	Date and Hour of Discovery: 4/27/15 at
	4/26/15 At approximately 10:00	approximately 10:12 a.m.
	p.m	
Was Immediate Notice Given?	If YES, To Whom? NMOCD, Heat	her Patterson
🛛 Yes 🔲 No 🗌 Not Required		
By Whom? Tony Savoie	Date and Hour: 4/27/15 at 10:25 a.	m.
Was a Watercourse Reached?	If YES, Volume Impacting the Wat	
🗌 Yes 🖾 No		
If a Watercourse was Impacted, Describe Fully.*		
Describe Cause of Problem and Remedial Action Taken.*		
An un-authorized person cut, removed seals and opened a normally close	d value connected to an onen ended A	" poly line. This line had been used to
supply water to PW frac operations in the area. The SCADA trend record		
before 10 p.m. There were no BOPCO employees working in the area at t		
		re connections were pragged.
Describe Area Affected and Cleanup Action Taken.*	· · · · · · · · · · · · · · · · · · ·	
The spill impacted nearly the entire area of the earthen containment around	d the process area. Approximately 11,	,000 sq.ft.
All of the free standing fluid was recovered with a vacuum truck. The rele	ease is still under investigation by BO	PCO, the area was left as is pending the on-
going investigation. This is in the same area as a recent spill dated 4/19/13		
The impacted soil will be cleaned up in accordance to the NMOCD and B	LM remediation guidelines.	
I hereby certify that the information given above is true and complete to t		
regulations all operators are required to report and/or file certain release n public health or the environment. The acceptance of a C-141 report by th		
should their operations have failed to adequately investigate and remediat		
or the environment. In addition, NMOCD acceptance of a C-141 report d		
federal, state, or local laws and/or regulations.	bes not reneve the operator of respons	soundy for compliance with any other
	OIL CONSERV	VATION DIVISION
Signature: 1 Dy Danie		
0 -	Approved by Environmental Specialis	st: 1 //
Printed Name: Tony Savoie		The second
	515 LIF	ALLA
Title: Waste Management and Remediation Specialist	Approval Date: 5515	Expiration Date: N/A
E mail Address teasurie @hears at any	Conditions of A l	
E-mail Address: tasavoie@basspet.com	Conditions of Approval: Emediation per O.C.D. Rules	& Guidelinesttached
Date: 5/(/(5 Phone: 432-556-8730 \$	JBMIT REMEDIATION PROP	OSAL NO
	TER THAN: UI5115	
		- 2RP-2986

•

FIELD SPILL REPORT

Distribution List: CJ Barry, TA Savoie, B. Biehl, JR Smitherman, SF Johnson, W Hanna G Fletcher, J Fuqua, C Giese, J Brooks, M Titsworth, A Ruth, A Thompson, B Blevins, K Bright

DATE: April 26, 2015

LOCATION OF SPILL SITE: PLU 68 Battery (API 30-015-25781)

UL B-20-24S-31E, 760 FNL & 2080 FEL, Eddy Co.

GPS COORDINATES (Lat & Long): 32.207816 -103.798347

ESTIMATED VOLUMES (Oil & Water Separately):

*If BBLs Recovered are not available at time of Initial Report: Send in Follow-up report when numbers are known

Volume spilled:		BBIs Spilled	*BBls Recovered	Net Spilled		BBIs Spilled	*BBIs Recovered	Net Spilled
On ground /or earth berm -	Oil:			0	Water:	269	200	69
Contained in impervious liner -	Oil:			0	Water:			0
Total:	Oil:	0	0	0	Water:	269	200	69

DESCRIPTION (What happened?):

Pumper reported discharge valve on SWD pump that was installed for produce water frac operations had dart removed and seal cut. The valve was in the closed position and opened and the normally open discharge valve on SWD transfer line was closed.

The opened valve was connected to a tempőrary poly line that was used for frac operation that was not in use and not connected to anything (open-ended). PW flowed out the open end and inside the earthen berm surrounding the facility equipment. The contents of the line was recovered.

SPILL RESPONSE (How was the spill cleaned up?):

Vac truck on-site recovering fluid. Remediation to be done.

¢,

PICTURE ATTACHMENT:

		• *	Co desta	10000			in a
Released t	0 IM(iging:	3/21/	2023 7.	:3	7 : 33 A	M

	jostangeras e rains of the	المحدول فقالماته تمامل مدد 📽	X ?	5 + Q. mm 1 teastuszt. Elne 1 m 1 2802 . 10.000 00 m 20. El C 22 m 0 . 19 qisted ozoszász
į.,		a na har eo antara en la subar en la su En la subar en la subar en En la subar en		

\$#54#354#35#£#34#35#159#168# <i>1</i> %02@00

10

1/1 - 1 - 1/1 + 1/1 + 2/1 = 0
Date: 4/27/15 (0)26 am
Dong Savore from Boblo
(Person Reporting) (Company)
is reporting a release at the <u>PLU & Batter</u> . (Site)
API#, SecT R
Occurred on:atatAM/PM. (Date of Occurrence) (Time of Occurrence)
Volyme released: greater the 25-36/ C-141 received: 5/1/15
Volume recovered: <u>ukn</u> 2RP- <u>2986</u> 2987(PW
Briefly Describe Cause of Problem and action taken: Valus eifle in Len hmall
geniel -or misaligned. filled earther bern
filled earther bern
this
(Initials)
FLARE NOTIFICATION
Call-In Sheet
Data:
Date:
Report Flare for from (Reporting Company) (Person Reporting)
Occurred on:atAM/PM. (Date) (Time of Occurrence) C-129/C-141 received:
Flared Inlet Gas for:
Total MCF:
Briefly Describe Cause of Problem and action taken:

(Initials)

51	C D: 3/21/2	1025 / 155145						NM (ISERVATION ^{Page 16} of 14
District 1 625 N. French	Dr., Hobbs, 1	NM 88240				New Mex				DISTRICT Form C-141
District II 11 S. First St.,	Artesia, NM	88210						MAY 0 1 2015 Revised August 8, 2 Submit 1 Copy to appropriate District Offic		
<u>000 Rio Brazo</u>	s Road, Azteo	c, NM 87410			Oil Conservation Division 1220 South St. Francis Dr.			Sut		cordance with 19.15.29 NMAC
<u>istrict IV</u> 220 S. St. Fran	ncis Dr., Santa	a Fe, NM 87505	;			h St. Franc Se, NM 875			RECE	IVED
			Dal					0.4: o		en e
0101		- 1010	Kele	ease Notific	eatio			cuor		
<u>IIABI</u>	51255	5 <u>4868</u> OPCO, L.P.		210043	27	OPERAT Contact: To			🛛 Initi	al Report 📃 Final Repo
	¥	/	04 Carls		2/		No. 575-887-73	29		
		92H at the P he Tank Batt		ank Battery. tion		Facility Typ	e: Exploration	and Pro	oduction	
Surface Ow	ner: Feder	al		Mineral)wner:	Federal			API No	0. 30-015-25781
				LOCA	ATIO	N OF REI	LEASE			
Unit Letter	Section	Township	Range	Feet from the	North	h/South Line	Feet from the		West Line	County
В	20	248	31E	760		orth	2080	Eas	st	Eddy
				Latitude N <u>32.</u>	20802	7º Longitud	ا∧ 103 7985 ما	5°		
						0		. <u> </u>		
Type of Rele	ease: Crude	Oil and Produ	ced water		URE	Volume of	EASE Release: 8 bbls c	rude	Volume I	Recovered: 2 bbls. Crude oil and
			-			oil and 46	bbls. PW		8 bbls PV	V
Source of Re	elease: 2 7/8	" flow line					lour of Occurrend	e:		Hour of Discovery: 4/19/15 at ately 10:00 a.m.
Was Immedi	iate Notice (If YES, To	Whom? NMOC	D, conta	ict name un	known.
			Yes [No 🗌 Not R	equired					
By Whom? Was a Water		abad?					lour: 4/20/15 at 1 blume Impacting			
was a water	Course Real		Yes 🗵	No		1111.5, v	nume impacting	ine wai	cicourse.	
If a Waterco	urse was Im	pacted, Descr	ibe Fully.	*						
		em and Reme				in alamn waa n	locad on the line	at tha ti	ima of diag	- A caption of nine was
replaced on 4		i a leak due ex	ternal cor	rosion. A tempora	ary repa	air clamp was p	blaced on the line	at the t	ime of disco	overy. A section of pipe was
•										
Describe Ar	ea Affected	and Cleanup A	Action Tal	ken *						
Desende Are										
The spill imp	pacted appro	oximately 4,16	5 sq.ft. of	f caliche/gravel ar	ea insid	de the earthen o	containment and	fenced 1	ocation aro	und the process equipment.
The spill imp All of the fre	ee standing f	oximately 4,16 fluid was reco	5 sq.ft. of vered with		The sta	ained area was	left as is pending	enced l the fina	ocation aro al remediati	und the process equipment.
The spill imp All of the fre	ee standing f	oximately 4,16 fluid was reco	5 sq.ft. of vered with	f caliche/gravel ar n a vacuum truck.	The sta	ained area was	left as is pending	enced l the fina	ocation aro al remediati	und the process equipment. on.
The spill imp All of the fre The impacted	e standing f d soil will b	oximately 4,16 fluid was reco e cleaned up i	5 sq.ft. of vered with n accorda	f caliche/gravel ar a vacuum truck. nce to the NMOC	The sta D and	ained area was BLM remediat	left as is pending ion guidelines.	the fina	al remediati	on.
The spill imp All of the fre The impacted I hereby certi regulations a	ee standing f d soil will b ify that the i ill operators	oximately 4,16 fluid was reco e cleaned up i information gi are required t	55 sq.ft. of vered with n accorda ven above o report a	f caliche/gravel ar n a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r	The sta D and	ained area was BLM remediat the best of my notifications a	left as is pending ion guidelines. knowledge and und perform correct	the fination the fination of t	al remediati	on. suant to NMOCD rules and eases which may endanger
The spill imp All of the fre The impacted I hereby certi regulations a public health	ee standing f d soil will b ify that the i ill operators o or the envi	oximately 4,16 fluid was reco e cleaned up i information gi are required t ronment. The	55 sq.ft. of vered with n accorda ven above o report a acceptan	f caliche/gravel ar a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 repo	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications an he NMOCD m	left as is pending ion guidelines. knowledge and und perform correct arked as "Final R	the fina indersta ctive act eport" o	nd that pure ions for rel	on. suant to NMOCD rules and eases which may endanger ieve the operator of liability
The spill imp All of the fre The impacted I hereby cert regulations a public health should their o or the enviro	ee standing f d soil will b ify that the i ill operators or the envi operations h onment. In a	oximately 4,16 fluid was reco e cleaned up i information gi are required t ronment. The nave failed to a addition, NMC	ven above o report a acceptan adequately OCD accept	f caliche/gravel ar a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 report investigate and r	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications an he NMOCD m ate contaminati	left as is pending ion guidelines. knowledge and u nd perform correc arked as "Final R on that pose a thi	the fina indersta ctive act eport" o eat to g	nd that purstions for rel does not rel round wate	on. suant to NMOCD rules and eases which may endanger
The spill imp All of the fre The impacted I hereby cert regulations a public health should their o or the enviro	ee standing f d soil will b ify that the i ill operators or the envi operations h onment. In a	oximately 4,16 fluid was reco e cleaned up i information gi are required t ronment. The nave failed to a	ven above o report a acceptan adequately OCD accept	f caliche/gravel ar a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 report investigate and r	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications an he NMOCD m ate contaminati	left as is pending ion guidelines. knowledge and und perform correct arked as "Final R on that pose a thi e the operator of	the fina indersta ctive act eport" of eat to g respons	al remediati nd that pur- ions for rel does not rel round wate ibility for c	on. suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
The spill imp All of the fre The impacted I hereby certi- regulations a public health should their o or the enviro federal, state	ee standing f d soil will b ify that the i ill operators or the envi operations h onment. In a	oximately 4,16 fluid was reco e cleaned up i information gi are required t ronment. The nave failed to a addition, NMC	ven above o report a acceptan adequately OCD accept	f caliche/gravel ar a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 report investigate and r	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications an he NMOCD m ate contaminati	left as is pending ion guidelines. knowledge and und perform correct arked as "Final R on that pose a thi e the operator of	the fina indersta ctive act eport" of eat to g respons	al remediati nd that pur- ions for rel does not rel round wate ibility for c	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health
The spill imp All of the fre The impacted I hereby certi- regulations a public health should their o or the enviro federal, state	ee standing f d soil will b ify that the i ill operators or the envi operations h onment. In a	oximately 4,16 fluid was reco e cleaned up i information gi are required t ronment. The nave failed to a addition, NMC	ven above o report a acceptan adequately OCD accept	f caliche/gravel ar a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 report investigate and r	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications at he NMOCD m ate contaminati does not reliev	left as is pending ion guidelines. knowledge and u nd perform correc arked as "Final R on that pose a thi e the operator of OIL CON	the fina indersta trive act eport" c eat to g respons SERV	al remediati nd that pur- ions for rel does not rel round wate ibility for c	on. suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
The spill imp All of the fre The impacted I hereby certi regulations a public health should their of or the enviro federal, state	ee standing f d soil will b ify that the i ill operators o or the envir operations h onment. In a e, or local law	information gi are required t ronment. The have failed to a addition, NMC ws and/or regu	ven above o report a acceptan adequately OCD accept	f caliche/gravel ar a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 report investigate and r	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications at he NMOCD m ate contaminati does not reliev	left as is pending ion guidelines. knowledge and und perform correct arked as "Final R on that pose a thi e the operator of	the fina indersta trive act eport" c eat to g respons SERV	al remediati nd that pur- ions for rel does not rel round wate ibility for c	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
The spill imp All of the fre The impacted I hereby certi- regulations a public health should their of or the enviro federal, state Signature:	ee standing f d soil will b ify that the i all operators or the envi operations h onment. In a c, or local law e: Tony Sav	information gi are required t ronment. The have failed to a addition, NMC ws and/or regu	ven above o report a acceptan adequately DCD accep ilations.	f caliche/gravel ar n a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 repo y investigate and r otance of a C-141	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications at he NMOCD m ate contaminati does not reliev	left as is pending ion guidelines. knowledge and und perform correct arked as "Final R on that pose a this e the operator of OIL CON Environmental S	the fina indersta trive act eport" c eat to g respons SERV pecialis	al remediati nd that pur- ions for rel does not rel round wate ibility for c	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION
The spill imp All of the fre The impacted I hereby certi- regulations a public health should their of or the enviro federal, state Signature:	ee standing f d soil will b ify that the i all operators or the envi operations h onment. In a c, or local law e: Tony Sav Managemen	oximately 4,16 fluid was reco e cleaned up i information gi are required t ronment. The have failed to a addition, NMC ws and/or regu	ven above o report at acceptan- adequately DCD accep ilations.	f caliche/gravel ar n a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 repo y investigate and r otance of a C-141	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications an he NMOCD m ate contaminati does not reliev Approved by Approval Dat	left as is pending ion guidelines. knowledge and und perform correct arked as "Final R on that pose a this e the operator of <u>OIL CON</u> Environmental S te: $5/5/16$	the fina understa ctive act eport" o eat to g respons SERV pecialis	al remediati nd that pur- cions for rel does not rel round wate ibility for c <u>VATION</u> t: <u>//</u> Expiration	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health compliance with any other DIVISION Date: NHA-
The spill imp All of the fre The impacted I hereby cert regulations a public health should their of or the enviro federal, state Signature: Printed Name Title: Waste E-mail Addre	ee standing f d soil will b ify that the i all operators or the envi operations h onment. In a c, or local law e: Tony Sav Managemen ess: tasavoie	oximately 4,16 fluid was reco e cleaned up i information gi are required t ronment. The have failed to a addition, NMC ws and/or reginer of the second metand Remedien e@basspet.com	ven above o report at acceptan- adequately DCD acceptan- adequately DCD acceptan- adot adot adot adot adot adot adot adot	f caliche/gravel ar n a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 repo y investigate and r otance of a C-141	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications an he NMOCD m ate contaminati does not reliev Approved by Approval Dat Conditions of Remediatio	left as is pending ion guidelines. knowledge and und perform correct arked as "Final R on that pose a this e the operator of <u>OIL CON</u> Environmental S te: $5/5/1/F$ Approval: DN PER O.C.D.	the fination of the fination o	al remediati nd that pur- ions for rel does not rel round wate ibility for c <u>VATION</u> t: <u>//</u> Expiration 8 & Guide	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION Date: NHA Date: NHA
The spill imp All of the fre The impacted I hereby certi regulations a public health should their of or the enviro federal, state Signature: Printed Name Title: Waste E-mail Addre Date:	ee standing f d soil will b ify that the i all operators or the envir operations h onment. In a c, or local law e: Tony Sav Managemen ess: tasavoid	oximately 4,16 fluid was reco e cleaned up i information gi are required t ronment. The have failed to a addition, NMC ws and/or reginer of the second metand Remedien e@basspet.com	ven above o report at acceptan adequately DCD acceptan adequately DCD acceptant adequately DCD acceptant adequately Add Add Add Add Add Add Add Add Add Add	f caliche/gravel ar n a vacuum truck. nce to the NMOC e is true and comp nd/or file certain r ce of a C-141 repo y investigate and r otance of a C-141	The sta D and olete to release ort by t	ained area was BLM remediat the best of my notifications an he NMOCD m ate contaminati does not reliev Approved by Approval Dat Conditions of Remediatio	left as is pending ion guidelines. knowledge and und perform correct arked as "Final R on that pose a thing on that pose a thing the operator of <u>OIL CON</u> Environmental S ce: $5/5/7$	the fination of the fination o	al remediati nd that pur- ions for rel does not rel round wate ibility for c <u>VATION</u> t: <u>//</u> Expiration 8 & Guide	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION Date: NHA Date: NHA

•

FIELD SPILL REPORT

Distribution List: CJ Barry, TA Savoie, B. Biehl, JR Smitherman, SF Johnson, W Hanna G Fletcher, J Fuqua, C Giese, J Brooks, M Titsworth, A Ruth, A Thompson, B Blevins, K Bright

DATE: April 19, 2015

LOCATION OF SPILL SITE:	PLU 392H flowline at PLU68 Btry (API 30-015-25781)

UL B-20-24S-31E 760 FNL & 2080 FEL, Eddy Co.

GPS COORDINATES (Lat & Long): 32.208027 -103.798545

ESTIMATED VOLUMES (Oil & Water Separately):

*If BBLs Recovered are not available at time of Initial Report: Send in Follow-up report when numbers are known

Volume spilled:		BBIs Spilled	*BBls Recovered	Net Spilled		BBIs Spilled	*BBis Recovered	Net Spilled
On ground /or earth berm -	Oil:	8	2	6	Water:	46	8	38
Contained in impervious liner - O				0 \	Water:			0
Total:	Oil:	8	2	6	Water:	46	8	38

DESCRIPTION (What happened?):

EHS was notified of a release of fluids from a corroded flowline within the confines of the PLU 68 Battery's process equipment earthen containment. The leak was discovered sometime around 10a.m. 4/19. All fluids remained within the berm.

SPILL RESPONSE (How was the spill cleaned up?):

Line was clamped on 4/19 and the crew replaced the line section on 4/20. Notification to NMOCD was made by email at 10:00 am today and BLM was notified by phone. An initial form C-141 will be submitted. Total recovered 10bbls. (Estimated 2 bbl oil and 8 bbl produced water) Remediation to be planned

PICTURE ATTACHMENT:

age 20 0 91 the state of the s 1¹⁰ " Q - 7. W. in a state Cast and a second 化脱氧化 人名德 · An s Sugar, and the starting 100 Cabo E. Server Ships 2 den 88 9 5100 NS 32.20202.52 75866 501 buiuagua siya ana pada da busio herappar patrices and אפיבקבי אין איר 120006129 AUSONA SUNA MARTINA PRODUCT buiusqui sigge on · Sale Sti 71090 51 78 · [7 Berran bba 26 M K put to be have a ball AR. ··· 14 . A & A 6374. 6966 M Sainten 6 H P SSOOND 40 San' thoy Jain Willow Willingt to Hollogues deal wallow it a Hope Mur No other 2H3 51.02.1 YB OJRAGJRG IN IN LIVE JO ana **W9d08** eleased to In

1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 21 of 145 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID		
District RP	2RP-2986	
Facility ID		
Application ID		

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380	
Contact Name Kyle Littrell	Contact Telephone 432-221-7331	
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD)	
Contact mailing address 522 W. Mermod, Suite 704 Carlsbad, NM 88220		

Location of Release Source

Latitude 32.208027

(NAD 83 in decimal degrees to 5 decimal places)

Site Name PLU-68 Tank Battery	Site Type Tank Battery	
Date Release 4/26/15	API# 30-015-25781	

Unit Letter	Section	Township	Range	County	
В	20	24S	31E	Eddy	

Surface Owner: State Federal Tribal Private (Name: State_

Nature and Volume of Release

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 269	Volume Recovered (bbls) 200
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

An un-authorized person cut, removed seals and opened a normally closed valve connected to an open ended 4" poly line. This line had been used to supply water to PW frac operations in the area. The SCADA trend recorder showed the PW pump was operating with normal on-off cycles until shortly before 10 pm. There were no Bopco employees working in the area at this time. The line was removed and the connections were plugged.

eceivea by OCD: 3/21/202	3 7:35:43 Astate of New Mexico	Incident ID	Page 22 of 1
e 2 Oil Conservation Division	District RP	2RP-2986	
		Facility ID	
	Application ID		
release as defined by 19.15.29.7(A) NMAC?	An unauthorized release of a volume, excluding gas	es, of 25 barrels or more.	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

It impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kyle Littrell	Title: SH&E Coordinator	
Signature:	Date: 10/22/2018	
email: Kyle_Littrell@xtoenergy.com	Telephone: <u>432-221-7331</u>	
OCD Only		
Received by:	Date:	

Received by OCD: 3/21/2023 7:35:43 AM state of New Mexico Page 6 Oil Conservation Division

Incident ID	Page 23 of 14
District RP	2RP-2986
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Kyle Littrell	Title: SH&E Coordinator	
Signature: Signature	Date: 10/22/2018	
email: <u>Ryle_Littrell@xtoenergy.com</u>	Telephone: <u>432-221-7331</u>	

OCD Only

Received by: ____

Date:

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:
Printed Name:	Title:

1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	2RP-2987
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380	
Contact Name Kyle Littrell	Contact Telephone 432-221-7331	
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD)	
Contact mailing address 522 W. Mermod, Suite 704 Carlsbad, NM 88220		

Location of Release Source

Latitude 32.208027_

Longitude -103.798545_ ____(NAD 83 in decimal degrees to 5 decimal places)

Site Name PLU 392H at the PLU-68 Tank Battery	Site Type Tank Battery	
Date Release 4/26/15	API# 30-015-25781	

Unit Letter	Section	Township	Range	County	
В	20	248	31E	Eddy	

Surface Owner: State Federal Tribal Private (Name: State_

Nature and Volume of Release

🛛 Crude Oil	Volume Released (bbls) 8	Volume Recovered (bbls) 2
Produced Water	Volume Released (bbls) 46	Volume Recovered (bbls) 8
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

A 2 7/8" flow developed a leak due to external corrosion. A temporary repair clamp was placed on the line at the time of the discovery. A section of pipe was replaced on 4/20/2015/

Page 24 of 145

Browed by OCD: 3/21/2023 7:35:43 A Mate of New Mexico		Incident ID	Page 25 of
ge 2 Oil Conservation Division Was this a major release as defined by 19.15.29.7(A) NMAC? If YES, for what reason(s) does the responsible part An unauthorized release of a volume, excluding gas ☑ Yes □ No No	District RP	2RP-2987	
	Facility ID		
	Application ID		
	ses, of 25 barrels of more.		
	otice given to the OCD? By whom? To whom? What when the other stress of the other stre	nen and by what means (phone,	email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \boxtimes The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kyle Littrell	Title: SH&E Coordinator
Signature:	Date: <u>10/22/2018</u>
email: Kyle_Littrell@xtoenergy.com	Telephone: <u>432-221-7331</u>
OCD Only	
Received by:	Date:

Former by DCD: 3/21/2023 7:35:43 A State of New MexicoPage 6Oil Conservation Division

Incident ID	Page 26 of 14:
District RP	2RP-2987
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Kyle Littrell	Title: SH&E Coordinator
Signature: Sefiture	Date: <u>10/22/2018</u>
email: Kyle_Littrell@xtoenergy.com	Telephone: <u>432-221-7331</u>
OCD Only	

Received by:

Date:

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:
Printed Name:	Title:

ANALYTICAL REPORT

Page 28 of 145

XTO Energy- Delaware Division

Sample Delivery Group:	L961528
Samples Received:	01/06/2018
Project Number:	30-015-25781
Description:	Confrimation Soil Sampling
Site:	PLU-68 TANK BATTERY
Report To:	Kyle Littrell
	6401 N Holiday Hill Rd
	Suite 200
	Midland, TX 79707

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

<u>Released to Imaging: 3/21/2023 7:37:55 AM</u> 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.esclabsciences.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SS1 L961528-01	6
SS2 L961528-02	7
SS3 L961528-03	8
SS4 L961528-04	9
SS5 L961528-05	10
SS6 L961528-06	11
SS7 L961528-07	12
SS8 L961528-08	13
SS9 L961528-09	14
SS10 L961528-10	15
Qc: Quality Control Summary	16
Total Solids by Method 2540 G-2011	16
Wet Chemistry by Method 300.0	21
Volatile Organic Compounds (GC) by Method 8015/8021	23
Volatile Organic Compounds (GC) by Method 8021	25
Semi-Volatile Organic Compounds (GC) by Method 8015	26
GI: Glossary of Terms	27
Al: Accreditations & Locations	28
Sc: Sample Chain of Custody	29

SDG: L961528

DATE/TIME: 01/12/18 10:47

PAGE: 2 of 29 Received by OCD: 3/21/2023 7:35:43 AM SAMPLE SUMMARY

ONE LAB. NAT Rage 30 of 15

Received by OCD: 3/21/2023 7:35:43 AM	SAMPLE SU	JMMAF	2Y	ON	IE LAB. NAT RAGA G	3 <u>0</u> oj
SS1 L961528-01 Solid			Collected by Aaron Williamson	Collected date/time 01/04/18 08:03	Received date/time 01/06/18 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	_
Total Solids by Method 2540 G-2011	WG1060779	1	01/09/18 12:42	01/09/18 12:53	KDW	_
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/08/18 22:28	MAJ	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 12:33	LRL	
Volatile Organic Compounds (GC) by Method 8021	WG1061990	1	01/06/18 18:43	01/11/18 16:07	BMB	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	50	01/08/18 19:43	01/11/18 08:01	ACM	
			Collected by	Collected date/time	Received date/time	
SS2 L961528-02 Solid			Aaron Williamson	01/04/18 08:06	01/06/18 08:45	_
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	
Total Solids by Method 2540 G-2011	WG1060776	1	01/09/18 12:55	01/09/18 13:07	KDW	-
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/08/18 22:36	MAJ	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 12:57	LRL	
Semi-Volatile Organic Compounds (GC) by Method 8015/8021	WG1060456	1	01/08/18 19:43	01/10/18 23:02	ACM	
torune organic compounds (oc) by method bold	W01000430	I	51/00/10 10. 1 0	01/10/10 23.0Z		
			Collected by	Collected date/time	Received date/time	
SS3 L961528-03 Solid			Aaron Williamson	01/04/18 08:09	01/06/18 08:45	_
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	
Total Solids by Method 2540 G-2011	WG1059974	1	01/09/18 14:06	01/09/18 14:22	JD	-
Wet Chemistry by Method 300.0	WG1061358	1	01/10/18 15:44	01/10/18 17:38	DR	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 13:22	LRL	
Semi-Volatile Organic Compounds (GC) by Method 8015/8021	WG1060456	20	01/08/18 19:43	01/11/18 07:47	ACM	
to be a second of the second o	100000000	20	01/00/10 10.40	UTTTU UT.TI		
SS4 L961528-04 Solid			Collected by Aaron Williamson	Collected date/time 01/04/18 08:13	Received date/time 01/06/18 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	-
Total Solids by Method 2540 G-2011	WG1059974	1	01/09/18 14:06	01/09/18 14:22	JD	_
Wet Chemistry by Method 300.0	WG1061358	1	01/10/18 15:44	01/10/18 17:45	DR	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 13:46	LRL	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 23:15	ACM	
			Collected by	Collected date/time	Received date/time	
SS5 L961528-05 Solid			Aaron Williamson	01/04/18 08:16	01/06/18 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	-
Total Solids by Method 2540 G-2011	WG1060779	1	01/09/18 12:42	01/09/18 12:53	KDW	_
Wet Chemistry by Method 300.0	WG1060409	5	01/08/18 16:26	01/08/18 22:45	MAJ	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 14:10	LRL	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	5	01/08/18 19:43	01/11/18 01:05	ACM	
			Collected by	Collected date/time	Received date/time	
SS6 L961528-06 Solid			Aaron Williamson	01/04/18 08:18	01/06/18 08:45	_
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	
Total Solids by Method 2540 G-2011	WG1059974	1	01/09/18 14:06	01/09/18 14:22	JD	_
Wet Chemistry by Method 300.0	WG1061358	1	01/10/18 15:44	01/10/18 17:54	DR	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 14:34	LRL	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 23:29	ACM	
Released to Imaging: 3/21/2023 7:37:55 AM XTO Energy- Delaware Division	PROJECT: 30-015-25781		SDG: L961528	DATE/TIME: 01/12/18 10:47		PAGE 3 of 29
	50-015-23761		200020	01/12/10 10.4/	3	25 10 25

SAMPLE SUMMARY

ONE LAB. NAT Rage 31 of 15

			Collected by Aaron Williamson	Collected date/time 01/04/18 08:21	Received date/time 01/06/18 08:45
SS7 L961528-07 Solid			Adfon Willidnson	01/04/18 08:21	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1060773	1	01/09/18 13:10	01/09/18 13:17	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/08/18 22:53	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 14:58	LRL
Volatile Organic Compounds (GC) by Method 8021	WG1061990	1	01/06/18 18:43	01/11/18 16:28	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 23:43	ACM
			Collected by	Collected date/time	Received date/time
SS8 L961528-08 Solid			Aaron Williamson	01/04/18 08:24	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1060773	1	01/09/18 13:10	01/09/18 13:17	KDW
Net Chemistry by Method 300.0	WG1060409	20	01/08/18 16:26	01/08/18 23:02	MAJ
/olatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 15:37	LRL
iemi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/11/18 00:12	ACM
			Collected by	Collected date/time	Received date/time
SS9 L961528-09 Solid			Aaron Williamson	01/04/18 08:27	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Fotal Solids by Method 2540 G-2011	WG1060773	1	01/09/18 13:10	01/09/18 13:17	KDW
Net Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/08/18 23:10	MAJ
/olatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 16:00	LRL
Volatile Organic Compounds (GC) by Method 8021	WG1061990	1	01/06/18 18:43	01/11/18 16:49	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 22:22	ACM
			Collected by	Collected date/time	Received date/time
SS10 L961528-10 Solid			Aaron Williamson	01/04/18 08:30	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Total Salida by Mathad 2540 C 2011	WC1060779	1	date/time	date/time	KDW
Total Solids by Method 2540 G-2011	WG1060778	1	01/10/18 12:40	01/10/18 12:43	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/08/18 23:44	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060816	1	01/06/18 18:43	01/09/18 16:24	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/11/18 00:26	ACM

PROJECT: 30-015-25781

SDG: L961528 DATE/TIME: 01/12/18 10:47 PAGE: 4 of 29

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Technical Service Representative

SDG: L961528

DATE/TIME: 01/12/18 10:47

PAGE: 5 of 29

SAMPLE RESULTS - 01

Collected date/time: 01/04/18 08:03

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution A	Analysis	Batch		
Analyte	%		(date / time			
Total Solids	97.4		1 (01/09/2018 12:53	WG1060779		
Wet Chemistry by Met	hod 300.0						
	Result (dry)	Qualifier	RDL (dry	y) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	133		10.3	1	01/08/2018 22:28	WG1060409	
Volatile Organic Comp	. ,	-					
Volatile Organic Comp	Result (dry)	by Method <u>Qualifier</u>	8015/80 RDL (dry		Analysis	Batch	
Volatile Organic Comp	. ,	-			Analysis date / time	Batch	
	Result (dry)	-	RDL (dry	y) Dilution	•	Batch WG1061990	
Analyte	Result (dry) mg/kg	-	RDL (dry mg/kg	y) Dilution	date / time		
Analyte Benzene	Result (dry) mg/kg ND	-	RDL (dry mg/kg 0.00051	y) Dilution 13 1 1	date / time 01/11/2018 16:07	<u>WG1061990</u>	
Analyte Benzene Toluene	Result (dry) mg/kg ND ND	-	RDL (dry mg/kg 0.00051 0.00513	Dilution 13 1 14 1 15 1 13 1	date / time 01/11/2018 16:07 01/09/2018 12:33	WG1061990 WG1060816	
Analyte Benzene Toluene Ethylbenzene	Result (dry) mg/kg ND ND ND	-	RDL (dry mg/kg 0.00051 0.00513 0.00051	Dilution 13 1 1 1 13 1 13 1	date / time 01/11/2018 16:07 01/09/2018 12:33 01/09/2018 12:33	WG1061990 WG1060816 WG1060816	
Analyte Benzene Toluene Ethylbenzene Total Xylene	Result (dry) mg/kg ND ND ND ND ND	-	RDL (dry mg/kg 0.00051 0.00513 0.00051 0.00154	V) Dilution I3 1 I3 1 I3 1 I3 1 I3 1 I3 1	date / time 01/11/2018 16:07 01/09/2018 12:33 01/09/2018 12:33 01/09/2018 12:33	WG1061990 WG1060816 WG1060816 WG1060816	
Analyte Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction	Result (dry) mg/kg ND ND ND ND 0.176	-	RDL (dry mg/kg 0.000513 0.000513 0.000514 0.00154 0.103	y) Dilution 13 1 13 1 13 1 13 1 13 1 1 1 0	date / time 01/11/2018 16:07 01/09/2018 12:33 01/09/2018 12:33 01/09/2018 12:33 01/09/2018 12:33	WG1061990 WG1060816 WG1060816 WG1060816 WG1060816	
Analyte Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)	Result (dry) mg/kg ND ND ND 0.176 85.0	-	RDL (dry mg/kg 0.000513 0.000513 0.000514 0.00154 0.103 77.0-120	Dilution I3 1 I4 1 I5 1 I5 1 I6 1 I7 1 I8 1 I9 1 I1 1 I7 1 I8 1 I9 1 I9 1 I9 1 I9 1	date / time 01/11/2018 16:07 01/09/2018 12:33 01/09/2018 12:33 01/09/2018 12:33 01/09/2018 12:33 01/09/2018 12:33 01/09/2018 12:33 01/09/2018 12:33	WG1061990 WG1060816 WG1060816 WG1060816 WG1060816 WG1060816 WG1060816 WG1060816 WG1060816 WG1060816	

Semi-Volatile Organic Compounds (GC) by Method 8015

87.9

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	4050		205	50	01/11/2018 08:01	WG1060456
C28-C40 Oil Range	1660		205	50	01/11/2018 08:01	WG1060456
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		01/11/2018 08:01	WG1060456

01/11/2018 16:07

75.0-128

SDG: L961528 WG1061990

SAMPLE RESULTS - 02

Sc

Collected date/time: 01/04/18 08:06

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	96.6		1	01/09/2018 13:07	WG1060776		
Wet Chemistry by Met	hod 300.0						
	Result (dry)	Qualifier	RDL (c	lry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	131		10.4	1	01/08/2018 22:36	<u>WG1060409</u>	
^{Chloride} Volatile Organic Comp		by Method <u>Qualifier</u>			01/08/2018 22:36 Analysis	WG1060409 Batch	
	pounds (GC)		1 8015/8	lry) Dilution			
Volatile Organic Comp	Result (dry)		8015/8 RDL (c	lry) Dilution	Analysis		
Volatile Organic Comp Analyte	Dounds (GC) Result (dry) mg/kg	Qualifier	8015/8 RDL (c mg/kg	Iry) Dilution	Analysis date / time	Batch	
Volatile Organic Comp Analyte Benzene	Dounds (GC) Result (dry) mg/kg ND	Qualifier	8015/8 RDL (c mg/kg 0.000	Iry)Dilution5181181	Analysis date / time 01/09/2018 12:57	Batch WG1060816	
Volatile Organic Comp Analyte Benzene Toluene	Result (dry) mg/kg ND ND	Qualifier	8015/8 RDL (c mg/kg 0.000 0.005	Dilution 518 1 18 1 518 1	Analysis date / time 01/09/2018 12:57 01/09/2018 12:57	Batch WG1060816 WG1060816	
Volatile Organic Comp Analyte Benzene Toluene Ethylbenzene	Result (dry) mg/kg ND ND ND ND	Qualifier	RDL (c mg/kg 0.000 0.005 0.000	Dilution 518 1 18 1 518 1	Analysis date / time 01/09/2018 12:57 01/09/2018 12:57 01/09/2018 12:57	Batch WG1060816 WG1060816 WG1060816	

01/09/2018 12:57

Semi-Volatile Organic Compounds (GC) by Method 8015

117

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.14	1	01/10/2018 23:02	WG1060456
C28-C40 Oil Range	5.08		4.14	1	01/10/2018 23:02	WG1060456
(S) o-Terphenyl	65.4		18.0-148		01/10/2018 23:02	WG1060456

75.0-128

SDG: L961528 DATE/TIME: 01/12/18 10:47

WG1060816

SAMPLE RESULTS - 03

Sc

Collected date/time: 01/04/18 08:09

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Fotal Solids	94.5		1	01/09/2018 14:22	WG1059974		
Wet Chemistry by Me	thod 300.0						
	Result (dry)	Qualifier	RDL (c	dry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	I	date / time		
Chloride	63.6		10.6	1	01/10/2018 17:38	<u>WG1061358</u>	
Volatile Organic Com	pounds (GC) Result (dry)	by Method <u>Qualifier</u>	1 8015/8 RDL (c	dry) Dilution	Analysis	WG1061358 Batch	
Volatile Organic Com Analyte	pounds (GC) Result (dry) mg/kg	Qualifier	8015/8 RDL (c mg/kg	dry) Dilution	Analysis date / time	Batch	
Volatile Organic Com Analyte Benzene	pounds (GC) Result (dry) mg/kg ND		8015/8 RDL (c mg/kg 0.000	dry) Dilution J J529 1	Analysis date / time 01/09/2018 13:22		
Volatile Organic Com Analyte	pounds (GC) Result (dry) mg/kg	Qualifier	8015/8 RDL (c mg/kg	dry) Dilution J J529 1	Analysis date / time	Batch	
Volatile Organic Com Analyte Benzene	pounds (GC) Result (dry) mg/kg ND	Qualifier	8015/8 RDL (c mg/kg 0.000	Dilution Dilution 529 1 29 1	Analysis date / time 01/09/2018 13:22	Batch WG1060816	
Volatile Organic Com Analyte Benzene Foluene	Pounds (GC) Result (dry) mg/kg ND ND	Qualifier	8015/8 RDL (c mg/kg 0.000 0.005	Dilution J J529 1 J29 1 J529	Analysis date / time 01/09/2018 13:22 01/09/2018 13:22	Batch WG1060816 WG1060816	
Volatile Organic Com Analyte Benzene Foluene Ethylbenzene	Pounds (GC) Result (dry) mg/kg ND ND ND	Qualifier	RDL (c mg/kg 0.000 0.005 0.000	Dilution 0 0529 1 0529 1 0529 1 0529 1 0529 1 0529 1	Analysis date / time 01/09/2018 13:22 01/09/2018 13:22 01/09/2018 13:22	Batch WG1060816 WG1060816 WG1060816	

Semi-Volatile Organic Compounds (GC) by Method 8015

91.4

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	2720		84.6	20	01/11/2018 07:47	WG1060456
C28-C40 Oil Range	1270		84.6	20	01/11/2018 07:47	<u>WG1060456</u>
(S) o-Terphenyl	218	<u>J7</u>	18.0-148		01/11/2018 07:47	WG1060456

01/09/2018 13:22

75.0-128

SDG: L961528 DATE/TIME: 01/12/18 10:47

WG1060816

SAMPLE RESULTS - 04

Sr

Total Solids by Method 2540 G-2011

Collected date/time: 01/04/18 08:13

Chloride

							1 Cm
	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time			2
Total Solids	91.2		1	01/09/2018 14:22	WG1059974		Tc
Wet Chemistry b	by Method 300.0						³ Ss
	Result (dry)	Qualifier	RDL (d	Iry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4

1

01/10/2018 17:45

WG1061358

11.0

Volatile Organic Compounds (GC) by Method 8015/8021

156

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		ľ
Benzene	ND	J4	0.000549	1	01/09/2018 13:46	WG1060816	
Toluene	ND		0.00549	1	01/09/2018 13:46	<u>WG1060816</u>	7
Ethylbenzene	ND		0.000549	1	01/09/2018 13:46	<u>WG1060816</u>	Ľ
Total Xylene	ND		0.00165	1	01/09/2018 13:46	<u>WG1060816</u>	8
TPH (GC/FID) Low Fraction	ND		0.110	1	01/09/2018 13:46	<u>WG1060816</u>	Ĭ
(S) a,a,a-Trifluorotoluene(FID)	110		77.0-120		01/09/2018 13:46	<u>WG1060816</u>	
(S) a,a,a-Trifluorotoluene(PID)	115		75.0-128		01/09/2018 13:46	WG1060816	9

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	8.67		4.39	1	01/10/2018 23:15	WG1060456
C28-C40 Oil Range	10.7		4.39	1	01/10/2018 23:15	WG1060456
(S) o-Terphenyl	66.9		18.0-148		01/10/2018 23:15	WG1060456

SDG: L961528
Received by OCD: 3/21/2023 7:35:43 AM

SAMPLE RESULTS - 05 L961528

Total Solids by Method 2540 G-2011

Collected date/time: 01/04/18 08:16

	Resu	t <u>Qualifier</u>	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.0		1	01/09/2018 12:53	<u>WG1060779</u>	² Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0						Ss
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		 ⁴ Cn
Chloride	1600		53.8	5	01/08/2018 22:45	WG1060409	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>	C
Analyte	mg/kg		mg/kg		date / time		[°] Q0
Benzene	ND	<u>J4</u>	0.000538	1	01/09/2018 14:10	WG1060816	
Toluene	ND	<u>J3 J6</u>	0.00538	1	01/09/2018 14:10	WG1060816	⁷ Gl
Ethylbenzene	ND	<u>J3 J6</u>	0.000538	1	01/09/2018 14:10	WG1060816	
Total Xylene	ND	<u>J3 J6</u>	0.00161	1	01/09/2018 14:10	WG1060816	8
TPH (GC/FID) Low Fraction	ND	<u>J3 J6</u>	0.108	1	01/09/2018 14:10	WG1060816	ĬAĬ
(S) a,a,a-Trifluorotoluene(FID)	105		77.0-120		01/09/2018 14:10	WG1060816	
(S) a,a,a-Trifluorotoluene(PID)	109		75.0-128		01/09/2018 14:10	WG1060816	°Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	214		21.5	5	01/11/2018 01:05	WG1060456
C28-C40 Oil Range	159		21.5	5	01/11/2018 01:05	<u>WG1060456</u>
(S) o-Terphenyl	48.4		18.0-148		01/11/2018 01:05	WG1060456

SDG: L961528

DATE/TIME: 01/12/18 10:47

Regeived by OCD: 3/21/2023 7:35:43 AM

Collected date/time: 01/04/18 08:18

SAMPLE RESULTS - 06 L961528

ONE LAB. NAT Rage 38 of 15

⁵Sr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	81.6		1	01/09/2018 14:22	WG1059974	́Тс

Wet Chemistry by Method 300.0

Wet Chemistry by	y Method 300.0						ໍSs
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4 Cn
Chloride	138		12.2	1	01/10/2018 17:54	WG1061358	CII

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		_ି Q
Benzene	ND	J4	0.000612	1	01/09/2018 14:34	WG1060816	
Toluene	ND		0.00612	1	01/09/2018 14:34	WG1060816	⁷ G
Ethylbenzene	ND		0.000612	1	01/09/2018 14:34	WG1060816	U
Total Xylene	ND		0.00184	1	01/09/2018 14:34	<u>WG1060816</u>	8
TPH (GC/FID) Low Fraction	ND		0.122	1	01/09/2018 14:34	<u>WG1060816</u>	Ă
(S) a,a,a-Trifluorotoluene(FID)	111		77.0-120		01/09/2018 14:34	<u>WG1060816</u>	
(S) a,a,a-Trifluorotoluene(PID)	116		75.0-128		01/09/2018 14:34	WG1060816	°Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.90	1	01/10/2018 23:29	WG1060456
C28-C40 Oil Range	ND		4.90	1	01/10/2018 23:29	WG1060456
(S) o-Terphenyl	64.8		18.0-148		01/10/2018 23:29	WG1060456

SDG: L961528 Received by OCD: 3/21/2023 7:35:43 AM

SAMPLE RESULTS - 07 L961528

Sr

Total Solids by Method 2540 G-2011

Collected date/time: 01/04/18 08:21

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		
Total Solids	95.7		1	01/09/2018 13:17	WG1060773	Tc
Wet Chemistry b	by Method 300.0					³ Ss

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Chloride	273		10.5	1	01/08/2018 22:53	WG1060409	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000523	1	01/11/2018 16:28	WG1061990	
Toluene	ND		0.00523	1	01/09/2018 14:58	WG1060816	Ī
Ethylbenzene	ND		0.000523	1	01/09/2018 14:58	WG1060816	
Total Xylene	ND		0.00157	1	01/09/2018 14:58	WG1060816	
TPH (GC/FID) Low Fraction	ND		0.105	1	01/09/2018 14:58	WG1060816	
(S) a,a,a-Trifluorotoluene(FID)	91.4		77.0-120		01/11/2018 16:28	<u>WG1061990</u>	L
(S) a,a,a-Trifluorotoluene(FID)	111		77.0-120		01/09/2018 14:58	WG1060816	1
(S) a,a,a-Trifluorotoluene(PID)	94.3		75.0-128		01/11/2018 16:28	WG1061990	
(S) a,a,a-Trifluorotoluene(PID)	115		75.0-128		01/09/2018 14:58	WG1060816	_

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.18	1	01/10/2018 23:43	WG1060456
C28-C40 Oil Range	5.70		4.18	1	01/10/2018 23:43	WG1060456
(S) o-Terphenyl	70.8		18.0-148		01/10/2018 23:43	WG1060456

SDG: L961528

Regejved by OCD: 3/21/2023 7:35:43 AM

Collected date/time: 01/04/18 08:24

SAMPLE RESULTS - 08 L961528

⁵Sr

Total Solids by Method 2540 G-2011

						 Cn
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	83.4		1	01/09/2018 13:17	<u>WG1060773</u>	ЪТс

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0						³Ss
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Chloride	7390		240	20	01/08/2018 23:02	WG1060409	CII

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	C
Analyte	mg/kg		mg/kg		date / time		6
Benzene	ND	J4	0.000600	1	01/09/2018 15:37	WG1060816	
Toluene	ND		0.00600	1	01/09/2018 15:37	<u>WG1060816</u>	7
Ethylbenzene	ND		0.000600	1	01/09/2018 15:37	WG1060816	
Total Xylene	ND		0.00180	1	01/09/2018 15:37	WG1060816	8
TPH (GC/FID) Low Fraction	ND		0.120	1	01/09/2018 15:37	<u>WG1060816</u>	Ŭ
(S) a,a,a-Trifluorotoluene(FID)	111		77.0-120		01/09/2018 15:37	WG1060816	L
(S) a,a,a-Trifluorotoluene(PID)	116		75.0-128		01/09/2018 15:37	WG1060816	9

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.80	1	01/11/2018 00:12	WG1060456
C28-C40 Oil Range	ND		4.80	1	01/11/2018 00:12	WG1060456
(S) o-Terphenyl	61.2		18.0-148		01/11/2018 00:12	WG1060456

SDG: L961528

DATE/TIME: 01/12/18 10:47 Received by OCD: 3/21/2023 7:35:43 AM

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 01/04/18 08:27

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	97.5		1	01/09/2018 13:17	WG1060773		
Wet Chemistry I	by Method 300 0						
	-	0 115			• • •	D	
	Result (dry)	Qualifier	RDL (c	lry) Dilution	Analysis	Batch	
Analyte	-	Qualifier	RDL (c mg/kg		Analysis date / time	Batch	
	Result (dry)	Qualifier				Batch WG1060409	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.000589		0.000513	1	01/11/2018 16:49	WG1061990	
Toluene	ND		0.00513	1	01/09/2018 16:00	WG1060816	
Ethylbenzene	ND		0.000513	1	01/09/2018 16:00	WG1060816	
Fotal Xylene	ND		0.00154	1	01/09/2018 16:00	WG1060816	
FPH (GC/FID) Low Fraction	ND		0.103	1	01/09/2018 16:00	WG1060816	
(S) a,a,a-Trifluorotoluene(FID)	91.0		77.0-120		01/11/2018 16:49	WG1061990	
(S) a,a,a-Trifluorotoluene(FID)	111		77.0-120		01/09/2018 16:00	WG1060816	
(S) a,a,a-Trifluorotoluene(PID)	93.8		75.0-128		01/11/2018 16:49	WG1061990	
(S) a,a,a-Trifluorotoluene(PID)	117		75.0-128		01/09/2018 16:00	WG1060816	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	5.25		4.10	1	01/10/2018 22:22	<u>WG1060456</u>
C28-C40 Oil Range	7.37		4.10	1	01/10/2018 22:22	<u>WG1060456</u>
(S) o-Terphenyl	66.4		18.0-148		01/10/2018 22:22	WG1060456

Receiped by OCD: 3/21/2023 7:35:43 AM

SAMPLE RESULTS - 10

Sc

Collected date/time: 01/04/18 08:30

(S) a,a,a-Trifluorotoluene(FID)

(S) a,a,a-Trifluorotoluene(PID)

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	81.5		1	01/10/2018 12:43	WG1060778	
Wet Chemistry by N	Nethod 300.0					
	Result (dry)	Qualifier	RDL (dry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	J	date / time	
Chloride	166		12.3	1	01/08/2018 23:44	WG1060409
Volatile Organic Co	ompounds (GC)	by Methoc	1 8015/8	3021		
Volatile Organic Co	ompounds (GC) Result (dry)	by Methoc <u>Qualifier</u>	d 8015/8 RDL (Analysis	Batch
Volatile Organic Co	,	-		dry) Dilution	Analysis date / time	Batch
	Result (dry)	Qualifier	RDL (dry) Dilution	-	Batch WG1060816
Analyte	Result (dry) mg/kg	-	RDL ((mg/kg	dry) Dilution J D614 1	date / time	
Analyte Benzene	Result (dry) mg/kg ND	Qualifier	RDL (mg/kg 0.000	dry) Dilution 0 0614 1 514 1	date / time 01/09/2018 16:24	WG1060816
Analyte Benzene Toluene	Result (dry) mg/kg ND ND	Qualifier	RDL ((mg/kg 0.000	dry) Dilution 0 0614 1 0614 1 0614 1	date / time 01/09/2018 16:24 01/09/2018 16:24	WG1060816 WG1060816

01/09/2018 16:24

01/09/2018 16:24

Semi-Volatile Organic Compounds (GC) by Method 8015

111

117

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.91	1	01/11/2018 00:26	WG1060456
C28-C40 Oil Range	ND		4.91	1	01/11/2018 00:26	WG1060456
(S) o-Terphenyl	67.6		18.0-148		01/11/2018 00:26	WG1060456

77.0-120

75.0-128

SDG: L961528 DATE/TIME: 01/12/18 10:47

WG1060816

WG1060816

Reserved by OGD7 A/21/2023 7:35:43 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L961528-03,04,06

Qc

Gl

Â

Sc

Method Blank (MB)

iviethod Blank	(IVIB)						
(MB) R3278464-1 0	1/09/18 14:22						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.001						

L961178-02 Original Sample (OS) • Duplicate (DUP)

L961178-02 Orig	ginal Sample	(OS) • Dup	licate (D	OUP)			
(OS) L961178-02 01/0)9/18 14:22 • (DUP)	R3278464-3	01/09/18 14	:22			
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	83.7	85.2	1	2		5	

Laboratory Control Sample (LCS)

(LCS) R3278464-2 01/09	9/18 14:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

SDG: L961528

DATE/TIME: 01/12/18 10:47

PAGE: 16 of 29

Regioned by OGD7 3/21/2023 7:35:43 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

ິQc

Gl

A

Sc

Method Blank (MB)

				1
01/09/18 13:17				
MB Result	MB Qualifier	MB MDL	MB RDL	2
%		%	%	
0.002				
				3
	01/09/18 13:17 MB Result %	01/09/18 13:17 MB Result <u>MB Qualifier</u> %	01/09/18 13:17 MB Result <u>MB Qualifier</u> MB MDL % %	D1/O9/18 13:17 MB Result <u>MB Qualifier</u> MB MDL MB RDL % % %

L961517-04 Original Sample (OS) • Duplicate (DUP)

(OS) L961517-04 01/09/18 13:17 • (DUP) R3278455-3 01/09/18 13:17	
--	--

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.3	94.3	1	0		5

Laboratory Control Sample (LCS)

(LCS) R3278455-2 01	1/09/18 13:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

DATE/TIME: 01/12/18 10:47 PAGE: 17 of 29

Regioned by OGD7 &/21/2023 7:35:43 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L961528-02

Cn

Sr

ິQc

Gl

A

Sc

Method Blank (MB)

vietnod Blank	(IVIB)			
MB) R3278452-1 0	1/09/18 13:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Fotal Solids	0.002			

L961517-14 Original Sample (OS) • Duplicate (DUP)

(OS) L961517-14	01/09/18 13:07	• (DUP) R3278452-3	01/09/18 13:07
-----------------	----------------	--------------------	----------------

. ,	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD imits	
Analyte	%	%		%		,	
Total Solids	89.7	89.3	1	0			

Laboratory Control Sample (LCS)

(LCS) R3278452-2 01/	/09/18 13:07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

DATE/TIME: 01/12/18 10:47

PAGE: 18 of 29

Regeired by OGD7 8/21/2023 7:35:43 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L961528-10

ONE LAB. NAT Rage 46 of 145

Cn

Sr

[°]Qc

Gl

A

Sc

Method Blank (MB)

Method Blank	< (MB)				1
(MB) R3278697-1	01/10/18 12:43				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	⁻Tc
Total Solids	0.001				
					³ Ss

L961506-01 Original Sample (OS) • Duplicate (DUP)

(OS) L961506-01 01/10/18	12:43 • (DUP) R	3278697-3 0	01/10/18 12:4	13		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	77.4	80.0	1	3		5

Laboratory Control Sample (LCS)

(LCS) R3278697-2 01/1	10/18 12:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

SDG: L961528

DATE/TIME: 01/12/18 10:47

PAGE: 19 of 29

Regeived by OGD7 3/21/2023 7:35:43 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L961528-01,05

Gl

Â

Sc

Method Blank (MB)

L961532-03 Original Sample (OS) • Duplicate (DUP)

L961532-03 C	Original Sample ((OS) • Dup	licate (۲	DUP)				
(OS) L961532-03 C	01/09/18 12:53 • (DUP)	, R3278447-3	01/09/18 1.	2:53				
	Original Resul	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	%	%		%		%		
Total Solids	92.1	92.1	1	0		5		

Laboratory Control Sample (LCS)

(LCS) R3278447-2 01,	/09/18 12:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

SDG: L961528

DATE/TIME: 01/12/18 10:47

PAGE: 20 of 29

Reg @ q b 0 (21/2023 7:35:43 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3278237-1 01/0	8/18 17:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	3.47	J	0.795	10.0

L961528-09 Original Sample (OS) • Duplicate (DUP)

(OS) L961528-09 01/08/18	8 23:10 • (DUP) F	R3278237-4 (01/08/18 23	3:19		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	235	225	1	4.39		20

L961532-09 Original Sample (OS) • Duplicate (DUP)

(OS) L961532-09 01/09/1	18 01:39 • (DUP)	R3278237-7	01/09/18 0	1:47			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	60.4	58.5	1	3.27		20	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278237-2 01/08	/18 18:05 • (LCS	D) R3278237-3	3 01/08/18 18:13	3						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chloride	200	199	200	99.4	100	90-110			0.657	20

L961532-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-01 01/08/18	23:53 • (MS) R3	8278237-5 01/	09/18 00:01 • (MSD) R327823	37-6 01/09/18 (00:10						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	431	1010	986	116	111	1	80-120	E		2.62	20

Released to	Imaging ^{AC} \$/24/2023	7:37:55 AM
	XTO Energy- Delaware Div	ision

PROJECT: 30-015-25781

SDG: L961528 DATE/TIME: 01/12/18 10:47 PAGE: 21 of 29 ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

Тс

Ss

Reg cive of B:8/21/2023 7:35:43 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L961528-03,04,06

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3278660-1 01	1/10/18 16:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	1.65	J	0.795	10.0

L962135-01 Original Sample (OS) • Duplicate (DUP)

(OS) L962135-01 01/10/18	8 18:02 • (DUP) R3	3278660-4 C	01/10/18 18:1	1		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	11600	10400	20	11.3		20

L962201-10 Original Sample (OS) • Duplicate (DUP)

L962201-10 C	priginal Sample (OS) • Dup	licate (D	OUP)			⁷ Gl
(OS) L962201-10 C	1/10/18 21:10 • (DUP) R	3278660-7 C	1/10/18 21:1	9			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/kg	mg/kg		%		%	
Chloride	552	551	1	0.224		20	⁹ Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278660-2 01/10/18	Spike Amount			LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chloride	200	201	198	100	99.1	90-110			1.17	20

SDG: L961528

DATE/TIME: 01/12/18 10:47

PAGE: 22 of 29 Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY 1961528-01,02,03,04,05,06,07,08,09,10

Ср

Тс

Ss

Cn

Sr

[´]Qc

GI

AI

Sc

Method Blank (MB)

(MB) R3278825-5 01/09	(MB) R3278825-5 01/09/18 11:33											
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/kg		mg/kg	mg/kg								
Benzene	U		0.000120	0.000500								
Toluene	U		0.000150	0.00500								
Ethylbenzene	U		0.000110	0.000500								
Total Xylene	U		0.000460	0.00150								
TPH (GC/FID) Low Fraction	U		0.0217	0.100								
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120								
(S) a,a,a-Trifluorotoluene(PID)	119			75.0-128								

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278825-1 01/09/18 09:34 • (LCSD) R3278825-2 01/09/18 09:57										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0641	0.0629	128	126	71.0-121	<u>J4</u>	<u>J4</u>	1.93	20
Toluene	0.0500	0.0578	0.0560	116	112	72.0-120			3.19	20
Ethylbenzene	0.0500	0.0561	0.0546	112	109	76.0-121			2.63	20
Total Xylene	0.150	0.158	0.154	105	103	75.0-124			2.63	20
(S) a,a,a-Trifluorotoluene(FID)				112	113	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				118	118	75.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278825-3 01/09/18 10:21 • (LCSD) R3278825-4 01/09/18 10:45											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	6.19	6.08	113	111	70.0-136			1.78	20	
(S) a,a,a-Trifluorotoluene(FID)				119	119	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				130	130	75.0-128	<u>J1</u>	<u>J1</u>			

Released to	Imaging? 3/21/2023	7:37:55 AM
	XTO Energy- Delaware Div	ision

PROJECT: 30-015-25781

SDG: L961528 DATE/TIME: 01/12/18 10:47 PAGE: 23 of 29

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY <u>1961528-01,02,03,04,05,06,07,08,09,10</u>

Τс

Ss

Cn

Śr

[´]Qc

GI

AI

Sc

L961528-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	. ,		,	,								
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0538	ND	0.0100	0.00779	18.6	14.5	1	10.0-146			25.0	29
Toluene	0.0538	ND	0.00490	0.00311	9.11	5.78	1	10.0-143	<u>J6</u>	<u>13 16</u>	44.8	30
Ethylbenzene	0.0538	ND	0.00190	0.000796	3.53	1.48	1	10.0-147	<u>J6</u>	<u>13 16</u>	81.8	31
Total Xylene	0.161	ND	0.00631	0.00294	3.91	1.82	1	10.0-149	<u>J6</u>	<u>13 16</u>	73.1	30
(S) a,a,a-Trifluorotoluene(FID)					107	106		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					111	110		75.0-128				

L961528-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961528-05 01/09/18 14:10 • (MS) R3278825-8 01/09/18 19:39 • (MSD) R3278825-9 01/09/18 20:03												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.92	ND	0.276	0.184	4.27	2.71	1	10.0-147	<u>J6</u>	<u>13 16</u>	40.1	30
(S) a,a,a-Trifluorotoluene(FID)					106	105		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					111	109		75.0-128				

SDG: L961528 DATE/TIME: 01/12/18 10:47

PAGE: 24 of 29

Regioned by 09 D: 3/21/2023 7:35:43 AM

Volatile Organic Compounds (GC) by Method 8021

QUALITY CONTROL SUMMARY L961528-01,07,09

Sr

°Sc

Method Blank (MB)

Method Blank (ME	3)					¹ Cp					
(MB) R3278896-5 01/11/18 13:20											
	MB Result	MB Qualifier	MB MDL	MB RDL		2					
Analyte	mg/kg		mg/kg	mg/kg		Tc					
Benzene	U		0.000120	0.000500							
(S) a,a,a-Trifluorotoluene(FID)	93.4			77.0-120		³ Ss					
(S) a,a,a-Trifluorotoluene(PID)	95.8			75.0-128		⁴ Cn					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278896-1 01/11/	8 11:35 • (LCSD)	R3278896-2	01/11/18 11:56								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.0500	0.0466	0.0457	93.2	91.4	71.0-121			1.87	20	
(S) a,a,a-Trifluorotoluene(FID)				92.3	92.3	77.0-120					
(S) a.a.a-Trifluorotoluene(PID)				95.7	95.5	75.0-128					

SDG: L961528

DATE/TIME: 01/12/18 10:47

PAGE: 25 of 29 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L961528-01,02,03,04,05,06,07,08,09,10

¹Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank (M	ю)				
(MB) R3278394-1 01/09	9/18 19:44				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	63.5			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278394-2 01/09/18 19:59 • (LCSD) R3278394-3 01/09/18 20:13											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	60.0	41.0	35.2	68.3	58.6	50.0-150			15.2	20	
(S) o-Terphenyl				72.3	64.5	18.0-148					

L961532-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-09 01/10/18 23:57 • (MS) R3278802-1 01/10/18 22:35 • (MSD) R3278802-2 01/10/18 22:48												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	61.8	ND	43.9	45.6	67.5	70.2	1	50.0-150			3.86	20
(S) o-Terphenyl					57.9	58.2		18.0-148				

DATE/TIME: 01/12/18 10:47 PAGE: 26 of 29

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

ADDIEVIALIONS and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 30-015-25781

SDG: L961528 DATE/TIME: 01/12/18 10:47

Received by OCD: 3/21/2023 7:35:43 AMCCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Connecticut	PH-0197	North Carolina ¹	DW21704
-lorida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
daho	TN00003	Oklahoma	9915
llinois	200008	Oregon	TN200002
ndiana	C-TN-01	Pennsylvania	68-02979
owa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
ouisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

DATE/TIME: 01/12/18 10:47

Received by OCD: 3/21/2023 7:35:43 AM

		Billing Information:		1	Analysis / Container / Preservative							Chain of Custody Page of					
LTE			X	TO		Pres Chk										*	ESC
Project	trell		A	Abaker @L	IL® Xtoenergy TENV. com	com	21	15	.300.1								7122 TH 3
Description: Conf. rmat Phone: 1-970-317-186	Clines Decision	44	mpling	Collected: Lab Project #	NA	1	Method 80	10d 80	Method							Fax: 615-758-5859	01528
Collected by (print): Aaron Williamson Collected by (siggature):	PLU-6	D #	(2RP-29) attery	9 P.O. # 0 2 9 9 Quote #	3002	-	10000	Method	EPA							Acctnum: X ⁻ Template:	TOMTX
mmediately Packed on Ice N_ Y_	Same D Next Da Two Da Three D	ayFive ny5 Day y10 D		Date Res	ults Needed	No. of	EX EPA	H EPA	oride							Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs		9	3	1						Shipped Via:	Sample # (lat
551	Grab	55	6"	1-4-18	08.03	1	J	J	7					125.0	-		-01
552	Grab	55	6."	1-4-18	08:06	1	J,	1	1				22	-		1.1.1	102
553	Grab	55	6"	1-4-18	08:09	i.	1	V	V			32.0		132		80° 1	-02
554	Grab	55	64	1-4-18	08:13	1	J,	1	1	Set.				1	100		-04
55 5	Grab	55	61	1-4-18	08:16	1	V,	1	\checkmark		1		- 1	1997		1	15
556	Grab	55	6"	1-4-18	08:18	1	J.	V,						The second		132	-06
557	Grab	55	6	1-4-18	08:22	1	V	V	V						-		-07
558	Brab	55	6"	1-4-18	08:24	1	V	V,	1					ALC: U			08
559	Grab	55	6	1-4-18	08:27	1	V	1	1					1	1	1	09
3510	Grab	55	611	1-4-18	08:30	1	1	V	1	-10		1					10
Matrix: - Soll AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater W - Disking Woter	Remarks:		1							pH	4	Temp Other		COC 1 Bott]	Seal Pr Signed/ les arr	le Receipt C esent/Intact Accurate: ive intact: tles used:	
W - Drinking Water	Samples retur	ned via: dExCou	rier	Tr	acking #	0	22	MI	110	210	11	0	a li	Suffi	icient	volume sent: If Applicat	
telinquined by : (Signature)	1	Date:		ime: 10:00 R	seinestoy: (Signatu	re)	Pe	1	Tr	ip Blank I		TBR	C/MEOH	Prese	sero He irvatio	adspace: n Correct/Ch	ecked: _Y
telinquisbed by : (Signature)	1	Date:	5 1	2:30	ceived by: (Signatu		1	and it		12	°C	Bottles	Received:	O CHAN	servation	required by Lo	gin: Date/Tim
Relinquished by : (Signature) Leased to Imaging: 3/21/20.		Date:	T	ime: Re	teiven for lab by: (Signat	M	ha)_0(5-18	Time:	5	Hold:		and	Conditio

for LT Environmental, Inc.

Project Manager: Adrian Baker

PLU 68

012918002

22-JUN-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-26), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-15) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

22-JUN-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): **589384 PLU 68** Project Address: NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 589384. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 589384 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession promer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 589384

LT Environmental, Inc., Arvada, CO

PLU 68

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS11	S	06-13-18 13:00	6 In	589384-001
SS12	S	06-13-18 13:15	6 In	589384-002
SS13	S	06-13-18 15:00	2 In	589384-003
SS14	S	06-13-18 15:05	2 In	589384-004
SS3A	S	06-13-18 15:10	2 In	589384-005
SS8A	S	06-13-18 13:30	2 In	589384-006
SS1A	S	06-13-18 16:00	2 In	589384-007
SS15	S	06-13-18 16:15	2 In	589384-008

Version: 1.%

.

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: PLU 68

 Project ID:
 012918002

 Work Order Number(s):
 589384

ATORIES

Report Date: 22-JUN-18 Date Received: 06/15/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3054072 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:012918002Contact:Adrian BakerProject Location:NM

Certificate of Analysis Summary 589384

LT Environmental, Inc., Arvada, CO Project Name: PLU 68

Date Received in Lab:Fri Jun-15-18 10:30 amReport Date:22-JUN-18Project Manager:Jessica Kramer

	Lab Id:	589384-0	001	589384-0	002	589384-0	003	589384-	004	589384-0	005	589384-0	006
An alusia Dogu astad	Field Id:	SS11		SS12		SS13		SS14		SS3A	.	SS8A	
Analysis Requested	Depth:	6- In		6- In		2- In		2- In		2- In		2- In	
	Matrix:	SOIL		SOIL	,	SOIL		SOIL	,	SOIL	,	SOIL	,
	Sampled:	Jun-13-18	13:00	Jun-13-18	13:15	Jun-13-18	15:00	Jun-13-18	15:05	Jun-13-18	15:10	Jun-13-18	13:30
BTEX by EPA 8021B	Extracted:	Jun-20-18	17:00	Jun-20-18	17:00	Jun-20-18	17:00	Jun-20-18	17:00	Jun-20-18	17:00	Jun-20-18	17:00
	Analyzed:	Jun-21-18	06:55	Jun-21-18	07:14	Jun-21-18	18:58	Jun-21-18	19:16	Jun-21-18	19:35	Jun-21-18	19:53
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene	·	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201
Toluene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201
Ethylbenzene	<0.00199 0.0019		0.00199	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201
m,p-Xylenes	n,p-Xylenes		0.00398	< 0.00400	0.00400	< 0.00398	0.00398	< 0.00398	0.00398	< 0.00401	0.00401	< 0.00402	0.00402
o-Xylene		<0.00199 0.00199		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201
Total Xylenes		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201
Total BTEX		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201
Inorganic Anions by EPA 300	Extracted:	Jun-20-18	11:30	Jun-20-18 11:30		Jun-20-18 11:30		Jun-20-18 12:30		Jun-20-18 12:30		Jun-20-18 12:30	
	Analyzed:	Jun-20-18	14:59	Jun-20-18	15:04	Jun-20-18	15:09	Jun-20-18	15:42	Jun-20-18	15:58	Jun-20-18	16:09
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		74.4	5.00	390	4.97	<4.90	4.90	<4.99	4.99	<4.99	4.99	<4.99	4.99
TPH by SW8015 Mod	Extracted:	Jun-15-18	18:00	Jun-15-18	18:00	Jun-15-18	18:00	Jun-15-18	18:00	Jun-15-18	18:00	Jun-15-18	18:00
	Analyzed:	Jun-17-18	12:47	Jun-17-18	13:07	Jun-17-18	13:27	Jun-17-18	13:47	Jun-17-18	14:07	Jun-17-18	14:27
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)	*	<15.0	15.0	<74.9	74.9	<15.0	15.0	<15.0	15.0	<14.9	14.9	<14.9	14.9
Diesel Range Organics (DRO)		<15.0	15.0	2750	74.9	<15.0	15.0	<15.0	15.0	<14.9	14.9	<14.9	14.9
Oil Range Hydrocarbons (ORO)		<15.0	15.0	276	74.9	<15.0	15.0	<15.0	15.0	<14.9	14.9	<14.9	14.9
Total TPH		<15.0	15.0	3030	74.9	<15.0	15.0	<15.0	15.0	<14.9	14.9	<14.9	14.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

lession Veamer

Jessica Kramer Project Assistant

Page 5 of 28

Contact: Adrian Baker Project Location: NM Certificate of Analysis Summary 589384

LT Environmental, Inc., Arvada, CO Project Name: PLU 68

Date Received in Lab:Fri Jun-15-18 10:30 amReport Date:22-JUN-18Project Manager:Jessica Kramer

	Lab Id:	589384-0	007	589384-0	00		
					00		
Analysis Requested	Field Id:	SS1A		SS15			
Analysis Requested	Depth:	2- In		2- In			
	Matrix:	SOIL		SOIL			
	Sampled:	Jun-13-18	16:00	Jun-13-18 1	6:15		
BTEX by EPA 8021B	Extracted:	Jun-20-18	17:00	Jun-20-18 1	7:00		
	Analyzed:	Jun-21-18	20:12	Jun-21-18 2	0:30		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00202	0.00202	< 0.00201	0.00201		
Toluene		< 0.00202	0.00202	< 0.00201	0.00201		
Ethylbenzene		< 0.00202	0.00202	< 0.00201	0.00201		
m,p-Xylenes		< 0.00404	0.00404	< 0.00402	0.00402		
o-Xylene		< 0.00202	0.00202		0.00201		
Total Xylenes		< 0.00202	0.00202	< 0.00201	0.00201		
Total BTEX		< 0.00202	0.00202	< 0.00201	0.00201		
Inorganic Anions by EPA 300	Extracted:	Jun-20-18	12:30	Jun-20-18 1	2:30		
	Analyzed:	Jun-20-18	16:15	Jun-20-18 1	6:20		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		50.6	5.00	<4.98	4.98		
TPH by SW8015 Mod	Extracted:	Jun-15-18	18:00	Jun-15-18 1	8:00		
	Analyzed:	Jun-17-18	14:48	Jun-17-18 1	5:08		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0		
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0		
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<15.0	15.0		
Total TPH		<15.0	15.0	<15.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

lession Veamer

Jessica Kramer Project Assistant

Page 6 of 28

LT Environmental, Inc., Arvada, CO

Sample Id:	SS11		Matrix:	Soil		Date Received:06.15.18 10.30					
Lab Sample	Id: 589384-001		Date Colle	cted: 06.13.18 13.00	Sample Depth: 6 In						
Analytical M	ethod: Inorganic Anion	s by EPA 300				Prep Method: E30	00P				
Tech:	SCM					% Moisture:					
Analyst:	SCM		Date Prep:	06.20.18 11.30		Basis: We	t Weight				
Seq Number:	3054083										
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil			
Chloride		16887-00-6	74.4	5.00	mg/kg	06.20.18 14.59		1			

Analytical Method: TPH by SW801:	5 Mod				P	rep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Pre	p: 06.15	.18 18.00	E	Basis: We	t Weight	
Seq Number: 3053883								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.17.18 12.47	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	06.17.18 12.47	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.17.18 12.47	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.17.18 12.47	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	80	%	70-135	06.17.18 12.47		
o-Terphenyl		84-15-1	78	%	70-135	06.17.18 12.47		

LT Environmental, Inc., Arvada, CO

Sample Id:SS11Lab Sample Id:589384-001	Matrix: Soil Date Collected: 06.13.18	Date Received:06.15.18 10.30 13.00 Sample Depth: 6 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054072	Date Prep: 06.20.18	Prep Method: SW5030B % Moisture: 17.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.21.18 06.55	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.21.18 06.55	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.21.18 06.55	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.21.18 06.55	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.21.18 06.55	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.21.18 06.55	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.21.18 06.55	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	112	%	70-130	06.21.18 06.55		
1,4-Difluorobenzene		540-36-3	100	%	70-130	06.21.18 06.55		

LT Environmental, Inc., Arvada, CO

Sample Id: SS12 Lab Sample Id: 589384-002		Matrix: Date Collec	Soil cted: 06.13.18 13.15		Date Received:06. Sample Depth: 6 In	0	
Analytical Method: Inorganic Anic	ons by EPA 300				Prep Method: E3	00P	
Tech: SCM					% Moisture:		
Analyst: SCM		Date Prep:	06.20.18 11.30		Basis: We	t Weight	
Seq Number: 3054083		ľ					
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	390	4.97	mg/kg	06.20.18 15.04		1
Analytical Method: TPH by SW80	15 Mod				Prep Method: TX	1005P	
Tech: ARM					% Moisture:		
Analyst:ARMSeq Number:3053883		Date Prep:	06.15.18 18.00		Basis: We	et Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<74.9	74.9	mg/kg	06.17.18 13.07	U	5
Diesel Range Organics (DRO)	C10C28DRO	2750	74.9	mg/kg	06.17.18 13.07		5
Oil Range Hydrocarbons (ORO)	PHCG2835	276	74.9	mg/kg	06.17.18 13.07		5
Total TPH	PHC635	3030	74.9	mg/kg	06.17.18 13.07		5

PHC635	3030	74.9		mg/kg	06.17.18 13.07		
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	78	%	70-135	06.17.18 13.07		
	84-15-1	82	%	70-135	06.17.18 13.07		
	PHC635	Cas Number 111-85-3	Cas Number% Recovery111-85-378	Cas Number% RecoveryUnits111-85-378%	% Cas Number% RecoveryUnitsLimits111-85-378%70-135	% Units Limits Analysis Date 111-85-3 78 % 70-135 06.17.18 13.07	% Cas Number RecoveryUnitsLimitsAnalysis DateFlag111-85-378%70-13506.17.1813.07

LT Environmental, Inc., Arvada, CO

Sample Id:SS12Lab Sample Id:589384-002	Matrix: Soil Date Collected: 06.13.18 13.15	Date Received:06.15.18 10.30 Sample Depth: 6 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054072	Date Prep: 06.20.18 17.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.21.18 07.14	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.21.18 07.14	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.21.18 07.14	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	06.21.18 07.14	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.21.18 07.14	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.21.18 07.14	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.21.18 07.14	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	78	%	70-130	06.21.18 07.14		
1,4-Difluorobenzene		540-36-3	94	%	70-130	06.21.18 07.14		

Seq Number: 3053883

Certificate of Analytical Results 589384

LT Environmental, Inc., Arvada, CO

Sample Id Lab Sample	SS13 d. Id: 589384-003		Matrix: Date Collec	Soil eted: 06.13.18 15.00		Date Received:06. Sample Depth: 2 In	0	
Analytical I Tech: Analyst: Seq Numbe	Method: Inorganic Ani SCM SCM r: 3054083	ons by EPA 300	Date Prep:	06.20.18 11.30		Prep Method: E30 % Moisture: Basis: We	00P t Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	<4.90	4.90	mg/kg	06.20.18 15.09	U	1
Analytical I Tech:	Method: TPH by SW80)15 Mod				Prep Method: TX % Moisture:	1005P	
Analyst:	ARM		Date Prep:	06.15.18 18.00			t Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.17.18 13.27	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	06.17.18 13.27	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.17.18 13.27	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.17.18 13.27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	80	%	70-135	06.17.18 13.27		
o-Terphenyl		84-15-1	83	%	70-135	06.17.18 13.27		

LT Environmental, Inc., Arvada, CO

Sample Id:SS13Lab Sample Id:589384-003	Matrix: Soil Date Collected: 06.13.18 15	Date Received:06.15.18 10.30.00Sample Depth: 2 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054072	Date Prep: 06.20.18 17	Prep Method: SW5030B % Moisture: 7.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.21.18 18.58	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.21.18 18.58	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.21.18 18.58	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.21.18 18.58	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.21.18 18.58	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.21.18 18.58	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.21.18 18.58	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	100	%	70-130	06.21.18 18.58		
1,4-Difluorobenzene		540-36-3	102	%	70-130	06.21.18 18.58		

Seq Number: 3053883

Certificate of Analytical Results 589384

LT Environmental, Inc., Arvada, CO

Sample Id Lab Sample	SS14 di: 589384-004		Matrix: Date Collec	Soil cted: 06.13.18 15.05		Date Received:06. Sample Depth: 2 I	0	
Analytical I Tech: Analyst: Seq Numbe	Method: Inorganic Ani SCM SCM r: 3054090	ons by EPA 300	Date Prep:	06.20.18 12.30		Prep Method: E3 % Moisture: Basis: We	00P et Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	<4.99	4.99	mg/kg	06.20.18 15.42	U	1
Analytical I Tech:	Method: TPH by SW8(ARM)15 Mod				Prep Method: TX % Moisture:	1005P	
Analyst:	ARM		Date Prep:	06.15.18 18.00			et Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.17.18 13.47	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	06.17.18 13.47	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.17.18 13.47	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.17.18 13.47	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	78	%	70-135	06.17.18 13.47		
o-Terphenyl		84-15-1	81	%	70-135	06.17.18 13.47		

LT Environmental, Inc., Arvada, CO

Sample Id:SS14Lab Sample Id:589384-004	Matrix: Soil Date Collected: 06.13.18 15.05	Date Received:06.15.18 10.30 Sample Depth: 2 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054072	Date Prep: 06.20.18 17.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.21.18 19.16	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.21.18 19.16	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.21.18 19.16	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.21.18 19.16	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.21.18 19.16	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.21.18 19.16	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.21.18 19.16	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	91	%	70-130	06.21.18 19.16		
1,4-Difluorobenzene		540-36-3	99	%	70-130	06.21.18 19.16		

LT Environmental, Inc., Arvada, CO

Sample Id:SS3ALab Sample Id:589384-005			Matrix: Date Collec	Soil cted: 06.13.18 15.10	Date Received:06.15.18 10.30 Sample Depth: 2 In				
Analytical M Tech: Analyst: Seq Number	lethod: Inorganic Anior SCM SCM : 3054090	is by EPA 300	Date Prep:	06.20.18 12.30		Prep Method: E30 % Moisture: Basis: We	00P t Weight		
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride		16887-00-6	<4.99	4.99	mg/kg	06.20.18 15.58	U	1	
Analytical M Tech: Analyst:	lethod: TPH by SW801 ARM ARM	5 Mod	Date Prep:	06.15.18 18.00		Prep Method: TX % Moisture: Basis: We	1005P t Weight		

Seq Number: 3053883								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	14.9		mg/kg	06.17.18 14.07	U	1
Diesel Range Organics (DRO)	C10C28DRO	<14.9	14.9		mg/kg	06.17.18 14.07	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<14.9	14.9		mg/kg	06.17.18 14.07	U	1
Total TPH	PHC635	<14.9	14.9		mg/kg	06.17.18 14.07	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	78	%	70-135	06.17.18 14.07		
o-Terphenyl		84-15-1	79	%	70-135	06.17.18 14.07		

LT Environmental, Inc., Arvada, CO

Sample Id:SS3ALab Sample Id:589384-005	Matrix: Soil Date Collected: 06.13.18 15.10	Date Received:06.15.18 10.30 Sample Depth: 2 In			
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054072	Date Prep: 06.20.18 17.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight			

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.21.18 19.35	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.21.18 19.35	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.21.18 19.35	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.21.18 19.35	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.21.18 19.35	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.21.18 19.35	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.21.18 19.35	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	98	%	70-130	06.21.18 19.35		
1,4-Difluorobenzene		540-36-3	106	%	70-130	06.21.18 19.35		

LT Environmental, Inc., Arvada, CO

Sample Id: SS8A Lab Sample Id: 589384-006		Matrix: Date Collec	Soil cted: 06.13.18 13.30		Date Received:06.15.18 10.30 Sample Depth: 2 In		
Analytical Method: InorganicTech:SCMAnalyst:SCMSeq Number:3054090	Anions by EPA 300	Date Prep:	06.20.18 12.30		Prep Method: E30 % Moisture: Basis: We	00P et Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	<4.99	4.99	mg/kg	06.20.18 16.09	U	1
Analytical Method: TPH by S Tech: ARM Analyst: ARM Seg Number: 3053883	W8015 Mod	Date Prep:	06.15.18 18.00		Prep Method: TX % Moisture: Basis: We	1005P et Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	14.9		mg/kg	06.17.18 14.27	U	1
Diesel Range Organics (DRO)	C10C28DRO	<14.9	14.9		mg/kg	06.17.18 14.27	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<14.9	14.9		mg/kg	06.17.18 14.27	U	1
Total TPH	PHC635	<14.9	14.9		mg/kg	06.17.18 14.27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	78	%	70-135	06.17.18 14.27		
o-Terphenyl		84-15-1	80	%	70-135	06.17.18 14.27		

LT Environmental, Inc., Arvada, CO

Sample Id:SS8ALab Sample Id:589384-006	Matrix: Soil Date Collected: 06.13.1	Date Received:06.15.18 10.30 18 13.30 Sample Depth: 2 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054072	Date Prep: 06.20.1	Prep Method: SW5030B % Moisture: 18 17.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.21.18 19.53	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.21.18 19.53	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.21.18 19.53	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.21.18 19.53	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.21.18 19.53	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.21.18 19.53	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.21.18 19.53	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	90	%	70-130	06.21.18 19.53		
4-Bromofluorobenzene		460-00-4	93	%	70-130	06.21.18 19.53		

Seq Number: 3053883

Certificate of Analytical Results 589384

LT Environmental, Inc., Arvada, CO

Sample Id: Lab Sample	SS1A Id: 589384-007		Matrix: Date Collec	Soil cted: 06.13.18 16.00		Date Received:06.15.18 10.3 Sample Depth: 2 In		
Analytical M Tech: Analyst: Seq Number:	lethod: Inorganic Anion SCM SCM : 3054090	s by EPA 300	Date Prep:	06.20.18 12.30		Prep Method: E3 % Moisture: Basis: We	00P et Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	50.6	5.00	mg/kg	06.20.18 16.15		1
Tech:	lethod: TPH by SW801: ARM	5 Mod				Prep Method: TX % Moisture:		
Analyst:	ARM		Date Prep:	06.15.18 18.00		Basis: We	t Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.17.18 14.48	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	06.17.18 14.48	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.17.18 14.48	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.17.18 14.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	81	%	70-135	06.17.18 14.48		
o-Terphenyl		84-15-1	85	%	70-135	06.17.18 14.48		

LT Environmental, Inc., Arvada, CO

Sample Id:SS1ALab Sample Id:589384-007	Matrix: Soil Date Collected: 06.13.18 16.00	Date Received:06.15.18 10.30 Sample Depth: 2 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054072	Date Prep: 06.20.18 17.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	06.21.18 20.12	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	06.21.18 20.12	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	06.21.18 20.12	U	1
m,p-Xylenes	179601-23-1	< 0.00404	0.00404		mg/kg	06.21.18 20.12	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	06.21.18 20.12	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	06.21.18 20.12	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	06.21.18 20.12	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	96	%	70-130	06.21.18 20.12		
4-Bromofluorobenzene		460-00-4	96	%	70-130	06.21.18 20.12		

LT Environmental, Inc., Arvada, CO

Sample Id: SS15 Lab Sample Id: 5893		Matrix: Date Collec	Soil ted: 06.13.18 16.15		Date Received:06.15.18 10.30 Sample Depth: 2 In		
Analytical Method: Tech: SCM Analyst: SCM Seq Number: 30540		Date Prep:	06.20.18 12.30		Prep Method: E3 % Moisture: Basis: W	800P et Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	<4.98	4.98	mg/kg	06.20.18 16.20	U	1
Analytical Method: Tech: ARM	TPH by SW8015 Mod				Prep Method: TX % Moisture:	K1005P	

Seq Number: 3053883								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.17.18 15.08	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	06.17.18 15.08	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.17.18 15.08	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.17.18 15.08	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	81	%	70-135	06.17.18 15.08		
o-Terphenyl		84-15-1	82	%	70-135	06.17.18 15.08		

LT Environmental, Inc., Arvada, CO

Sample Id:SS15Lab Sample Id:589384-008	Matrix: Soil Date Collected: 06.13.18 16.15	Date Received:06.15.18 10.30 Sample Depth: 2 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054072	Date Prep: 06.20.18 17.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.21.18 20.30	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.21.18 20.30	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.21.18 20.30	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.21.18 20.30	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.21.18 20.30	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.21.18 20.30	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.21.18 20.30	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	97	%	70-130	06.21.18 20.30		
4-Bromofluorobenzene		460-00-4	95	%	70-130	06.21.18 20.30		

LABORATORIES

Flagging Criteria

Page 79 of 145

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Received by OCD: 3/21/2023 7:35:43 AM

QC Summary 589384

LT Environmental, Inc.

PLU 68

Analytical Method:	Inorganic Anions b	y EPA 300						Pre	p Metho	d: E3	00P	
Seq Number:	3054083			Matrix:	Solid				Date Pre	p: 06	.20.18	
MB Sample Id:	7657014-1-BLK		LCS San	nple Id:	7657014-1	-BKS		LCSD	Sample	Id: 76	57014-1-BSD	
Parameter	MB	Spike	LCS	LCS	LCSD	LCSD	Limits	%RPD R	PD Limit	Units	Analysis	Flag
	Result	Amount	Result	%Rec	Result	%Rec					Date	riag

Analytical Method:	Inorganic Anions b	y EPA 300						Pr	ep Metho	d: E30	00P	
Seq Number:	3054090			Matrix:	Solid				Date Pre	ep: 06.2	20.18	
MB Sample Id:	7657015-1-BLK		LCS Sar	nple Id:	7657015-	1-BKS		LCSI	O Sample	Id: 765	7015-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag

Analytical Method:	Inorganic Anions b	y EPA 300						Pı	ep Metho	od: E30	OP	
Seq Number:	3054083			Matrix:	Soil				Date Pro	ep: 06.2	0.18	
Parent Sample Id:	589362-005		MS Sar	nple Id:	589362-00)5 S		MS	D Sample	e Id: 5893	362-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	413	250	639	90	638	90	90-110	0	20	mg/kg	06.20.18 12:49	

Analytical Method:	Inorganic Anions b	y EPA 300						Pr	ep Metho	od: E300	OP 90	
Seq Number:	3054083			Matrix:	Soil				Date Pre	ep: 06.2	0.18	
Parent Sample Id:	589362-014		MS Sar	nple Id:	589362-01	14 S		MSI	O Sample	e Id: 5893	362-014 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	21.7	245	268	101	266	100	90-110	1	20	mg/kg	06.20.18 14:05	

Analytical Method:	Inorganic Anions b	y EPA 300						P	rep Meth	od: E30	OP	
Seq Number:	3054090			Matrix:	Soil				Date Pr	ep: 06.	20.18	
Parent Sample Id:	589384-004		MS Sar	nple Id:	589384-00)4 S		MS	D Sample	e Id: 589	384-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Received by OCD: 3/21/2023 7:35:43 AM

QC Summary 589384

LT Environmental, Inc.

PLU 68

Analytical Method:	Inorganic Anions b	y EPA 300						Pr	ep Metho	od: E30	0P	
Seq Number:	3054090			Matrix:	Soil				Date Pre	ep: 06.2	0.18	
Parent Sample Id:	589385-004		MS Sar	nple Id:	589385-00)4 S		MSI	O Sample	Id: 5893	385-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD 1	RPD Limi	it Units	Analysis Date	Flag
Chloride	273	249	501	92	501	92	90-110	0	20	mg/kg	06.20.18 17:16	

Analytical Method: Seq Number: MB Sample Id:	TPH by S 3053883 7656922-1		od	LCS Sar	Matrix: nple Id:		1-BKS			Prep Methoo Date Prej SD Sample	p: 06.1	.005P 5.18 5922-1-BSD	
Parameter	1000722	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits) RPD Limit		Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	829	83	869	87	70-135	5	20	mg/kg	06.17.18 11:06	
Diesel Range Organics	(DRO)	<15.0	1000	874	87	916	92	70-135	5	20	mg/kg	06.17.18 11:06	
Surrogate		MB %Rec	MB Flag			LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
1-Chlorooctane		84		1	18		124			70-135	%	06.17.18 11:06	
o-Terphenyl		89		1	00		105			70-135	%	06.17.18 11:06	

Analytical Method: Seq Number: Parent Sample Id:	TPH by S 3053883 589288-00		lod		Matrix: nple Id:		01 S			rep Method Date Prep D Sample I	o: 06.1	1005P 15.18 288-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	998	810	81	811	81	70-135	0	20	mg/kg	06.17.18 12:07	
Diesel Range Organics	(DRO)	<15.0	998	820	82	820	82	70-135	0	20	mg/kg	06.17.18 12:07	
Surrogate					1S Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	13		113		7	0-135	%	06.17.18 12:07	
o-Terphenyl				9	94		90		7	0-135	%	06.17.18 12:07	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

QC Summary 589384

LT Environmental, Inc.

PLU 68

Analytical Method:	BTEX by EPA 802	1B]	Prep Meth	od: SW:	5030B	
Seq Number:	3054072			Matrix:	Solid				Date Pr	ep: 06.2	0.18	
MB Sample Id:	7657020-1-BLK		LCS Sar	nple Id:	7657020-	1-BKS		LC	SD Sample	e Id: 765'	7020-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI	ORPD Lim	it Units	Analysis Date	Flag
Benzene	< 0.00200	0.0998	0.0885	89	0.0850	85	70-130	4	35	mg/kg	06.21.18 03:35	
Toluene	< 0.00200	0.0998	0.0910	91	0.0896	90	70-130	2	35	mg/kg	06.21.18 03:35	
Ethylbenzene	< 0.00200	0.0998	0.0908	91	0.0889	89	70-130	2	35	mg/kg	06.21.18 03:35	
m,p-Xylenes	< 0.00399	0.200	0.186	93	0.185	93	70-130	1	35	mg/kg	06.21.18 03:35	
o-Xylene	< 0.00200	0.0998	0.0887	89	0.0879	88	70-130	1	35	mg/kg	06.21.18 03:35	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSE %Rec		-	Limits	Units	Analysis Date	
1,4-Difluorobenzene	124		9	96		96		,	70-130	%	06.21.18 03:35	
4-Bromofluorobenzene	101		1	00		105		,	70-130	%	06.21.18 03:35	

Analytical Method:	BTEX by EPA 8021	1B							Prep Metho	i: SW:	5030B	
Seq Number:	3054072]	Matrix:	Soil				Date Prep	p: 06.2	0.18	
Parent Sample Id:	589475-003		MS San	nple Id:	589475-00)3 S		М	SD Sample	Id: 5894	475-003 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPI) RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.0998	0.0725	73	0.0712	71	70-130	2	35	mg/kg	06.21.18 04:12	
Toluene	< 0.00200	0.0998	0.0738	74	0.0766	77	70-130	4	35	mg/kg	06.21.18 04:12	
Ethylbenzene	< 0.00200	0.0998	0.0727	73	0.0741	74	70-130	2	35	mg/kg	06.21.18 04:12	
m,p-Xylenes	< 0.00399	0.200	0.149	75	0.154	77	70-130	3	35	mg/kg	06.21.18 04:12	
o-Xylene	< 0.00200	0.0998	0.0707	71	0.0747	75	70-130	6	35	mg/kg	06.21.18 04:12	
Surrogate				IS Rec	MS Flag	MSD %Ree			Limits	Units	Analysis Date	
1,4-Difluorobenzene			9	91		101			70-130	%	06.21.18 04:12	
4-Bromofluorobenzene			8	38		111			70-130	%	06.21.18 04:12	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Setting the Standard since 1990 Stafford, Texas (281-240-4200) BORATORIES

Page 83 of 145

Received	by	OCD:	3/21/2023	7:35:43	AM

Stafford, Texas (281-240-4200)	San	San Antonio, Texas (210-509-3334)	Phoenix, Arizona (480-355-0900)	
Dallas Texas (214-902-0300)	Midi	Midland, Texas (432-704-5251)		
		www.xenco.com	Xenco Quote # Xenco Job #	589374
Client / Reporting Information		Project Information	Analytical Information	Matrix Codes
Company Name / Branch: UT Environmental Inc Permin office	Proje	Project Name/Number: PUU 68 / 012 918 002		W = Water S = Soll/Sed/Solid
or North "A" Sty Blog 1, Unit #103 million !	1995 Lide			GW =Ground Water DW = Drinking Water P = Product
Email: Ababe & Henv, com 432-704-5176		Andre To: YTO Evergy - Wyle Litting		SW = Surface water SL = Sludge
Project Contact: At Arian Barkal	PON	PO Number:	· · · · · · · · · · · · · · · · · · ·	WI = Wipe
Samplers's Name Danil Thorport		1 ALE AND ALE	/	O = Oil WW= Waste Water
No. Field ID / Point of Collection		Zn e	STE TP4	
	Sample Depth Da	Date Time Matrix bothes HCI NaOH/2 Acetate HNO3 NaOH/	B	Field Comments
1 9511	\perp	Soil 1	* * ×	
2 3214	6			
3 226	2			
4 57(1				
5 539H				
= 22 MA	_ 0			
S				
10				
		Jata Deliverable Information	Notes:	
Same Day TAT 5 Day TAT		Level II Std QC Level IV (Full Data Pkg /raw data)	g /raw data)	
Next Day EMERGENCY		Level III Std QC+ Forms TRRP Level IV		
2 Day EMERGENCY		Level 3 (CLP Forms) UST / RG -411		
3 Day EMERGENCY Starvar		TRRP Checklist		
TAT Starts Day received by Lab, if received by 5:00 pm	0 pm	sceived by 5:00 pm		* 772482759813
Relipdinsted by Sampler:	Date Time:	IGMD Received By: (Charles Relinquished By:	Date Time: Received By:	
Shut	Bate Time:	Received By: 3 Marchell Collector & MMUL By	Ma (a) 4 (b) (5:30, / A	all althe INT
5 Felinquished by:	Date Time:	Received By: Clistody Seal #	Preservéd where applicable	On Ice Copier Temp. 1 Thermo. Corr. Factor
losses or expenses incurred by the Client if such loses are due to circumstances b will be enforced unless previously negotiated under a fully executed client contract	eyond the control of	losses or expenses incurred by the Client if such loses are used to incurred or the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples and shall be asserting and shall be asserted at Series and succontractors. If assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall be asserted at the same succession of the cost of samples and shall be asserted at the same service. Yes the cost of samples and shall be asserted at the same service is an analyzed will be and shall be asserted at the same service. Yes the same service is an analyzed will be inviced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.	I terms and conditions of service. Xenco will be liable only for limited to the cost of samples. Any samples received by Xer	or the cost of samples and shall hot assume any responsibility for any rco but not analyzed will be involced at \$5 per sample. These terms

Released to Imaging: 3/21/2023 7:37:55 AM

Final 1.000

Received by OCD: 3/21/2023 7:35:43 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 06/15/2018 10:30:00 AM Temperature Measuring device used : R8 Work Order #: 589384 Comments Sample Receipt Checklist 4.1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No

#18 Water VOC samples have zero headspace?

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Katie Lowe

Date: 06/15/2018

N/A

Checklist reviewed by:

fession hearner

Jessica Kramer

Date: 06/15/2018

for LT Environmental, Inc.

Project Manager: Adrian Baker

PLU 68

012918002

09-JUL-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-26), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-15) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

09-JUL-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): **589754 PLU 68** Project Address: NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 589754. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 589754 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession knomen

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 589754

LT Environmental, Inc., Arvada, CO

PLU 68

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS5A	S	06-18-18 15:45	2 ft	589754-001

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: PLU 68

 Project ID:
 012918002

 Work Order Number(s):
 589754

ATORIES

Report Date:09-JUL-18Date Received:06/20/2018

Sample receipt non conformances and comments: NEW VERSION GENERATED 07/09/18. per clients email, correct sample ID. SSSA to SS5A. JKR

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3054380 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:012918002Contact:Adrian BakerProject Location:NM

Certificate of Analysis Summary 589754

LT Environmental, Inc., Arvada, CO Project Name: PLU 68

Date Received in Lab:Wed Jun-20-18 10:35 amReport Date:09-JUL-18Project Manager:Jessica Kramer

Lab Id:	589754-001					
Depth:	2- ft					
Matrix:	SOIL					
Sampled:	Jun-18-18 15:45					
Extracted:	Jun-24-18 07:30	l				
Analyzed:	Jun-24-18 20:15					
Units/RL:	mg/kg RL					
	<0.00200 0.00200					
	<0.00200 0.00200					
	<0.00200 0.00200					
	<0.00399 0.00399					
	<0.00200 0.00200					
	<0.00200 0.00200					
	<0.00200 0.00200					
Extracted:	Jun-25-18 08:30					
Analyzed:	Jun-25-18 10:43					
Units/RL:	mg/kg RL					
	132 4.92					
Extracted:	Jun-21-18 12:00					
Analyzed:	Jun-22-18 07:37					
Units/RL:	mg/kg RL					
	<15.0 15.0					
	1030 15.0					
	88.5 15.0					
	1120 15.0					
	Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed:	Field Id: SS5A Depth: 2- ft Matrix: SOIL Sampled: Jun-18-18 15:45 Extracted: Jun-24-18 07:30 Analyzed: Jun-24-18 07:30 Matrix: SOIL Units/RL: mg/kg RL 0<00200 0.00200 0.00200 < < 0.00200 0.00200 < < < 0.00200 0.00200 < < < Matrix: Jun-25-18 08:30 Analyzed: Jun-25-18 08:30 Analyzed: Jun-25-18 08:30 Manalyzed: Jun-25-18 08:30 Analyzed: Jun-25-18 08:30 Analyzed: Jun-25-18 08:30 Matrix: Mg/kg RL Units/RL: Mg/kg RL Jun-21-18 12:00 Analyzed: Jun-22-18 07:37 Units/RL: Mg/kg	Field Id: SS5A Depth: 2- ft Matrix: SOIL Sampled: Jun-18-18 15:45 Extracted: Jun-24-18 07:30 Analyzed: Jun-24-18 20:15 Units/RL: mg/kg RL <0.00200	Field Id: SS5A Depth: 2- ft Matrix: SOIL Sampled: Jun-18-18 15:45 Extracted: Jun-24-18 07:30 Analyzed: Jun-24-18 07:30 Analyzed: Jun-24-18 20:15 Units/RL: mg/kg RL <0.00200	Field Id: SSSA Depth: 2- ft Matrix: SOIL Sampled: Jun-18-18 15:45 Extracted: Jun-24-18 07:30 Analyzed: Jun-24-18 20:15 Units/RL: mg/kg RL 0 0.00200 I	Field 14: SSSA Depth: 2. ft Matrix: SOIL Sampled: Jun-18.18 15.45 Extracted: Jun-24.18 07.30 Analyzed: Jun-24.18 07.30 Analyzed: Jun-24.18 00.15 Units/RL: mg/g RL -0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 -0.00200 0.00200 Extracted: Jun-25-18 08.30 Analyzed: Jun-25-18 08.30 Analyzed: Jun-21-18 12.00 Analyzed: Jun-22-18 07.37 Units/RL: mg/kg RL

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession knomen

Jessica Kramer Project Assistant

Page 5 of 13

LT Environmental, Inc., Arvada, CO

d: Inorganic Anions b CM CM	by EPA 300				Prep Method:	E300P	
)54491		Date Prep:	06.25.18 08.30		% Moisture: Basis:	Wet Weight	
	Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
	16887-00-6	132	4.92	mg/kg	06.25.18 10.4	43	1
RM	лоd		06 21 18 12 22		% Moisture:		
d	54491 I: TPH by SW8015 N	54491 Cas Number 16887-00-6 I: TPH by SW8015 Mod	54491 Cas Number Result 16887-00-6 132 I: TPH by SW8015 Mod RM	54491 Cas Number Result RL 16887-00-6 132 4.92 I: TPH by SW8015 Mod RM	State Frep. Solution constraints Cas Number Result RL Units 16887-00-6 132 4.92 mg/kg I: TPH by SW8015 Mod Mod Mod Mod	State Trep: Content of state Cas Number Result RL Units 16887-00-6 132 4.92 mg/kg 06.25.18 10.4 I: TPH by SW8015 Mod Prep Method: % Moisture:	State Frep. Solder Frep. Solder Frep. Cas Number Result RL Units Analysis Date Flag 16887-00-6 132 4.92 mg/kg 06.25.18 10.43 I: TPH by SW8015 Mod Prep Method: TX1005P % Moisture:

Seq Number: 3054456								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.22.18 07.37	U	1
Diesel Range Organics (DRO)	C10C28DRO	1030	15.0		mg/kg	06.22.18 07.37		1
Oil Range Hydrocarbons (ORO)	PHCG2835	88.5	15.0		mg/kg	06.22.18 07.37		1
Total TPH	PHC635	1120	15.0		mg/kg	06.22.18 07.37		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	83	%	70-135	06.22.18 07.37		
o-Terphenyl		84-15-1	86	%	70-135	06.22.18 07.37		

LT Environmental, Inc., Arvada, CO

Sample Id: SS5A Lab Sample Id: 589754-001	Matrix: Soil Date Collected: 06.18.18 15.45	Date Received:06.20.18 10.35 Sample Depth:2 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3054380	Date Prep: 06.24.18 07.30	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.24.18 20.15	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.24.18 20.15	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.24.18 20.15	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.24.18 20.15	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.24.18 20.15	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.24.18 20.15	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.24.18 20.15	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	79	%	70-130	06.24.18 20.15		
1,4-Difluorobenzene		540-36-3	97	%	70-130	06.24.18 20.15		

Flagging Criteria

Page 92 of 145

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Cli	ent Sample	BLK	Method Blank	
BKS/LC	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Received by OCD: 3/21/2023 7:35:43 AM

LT Environmental, Inc.

PLU 68

Analytical Method: Seq Number: MB Sample Id:	Inorganic Anions by I 3054491 7657208-1-BLK	EPA 300		Matrix: mple Id:	Solid 7657208-	1-BKS			ep Metho Date Pre D Sample	ep: 06.2		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Chloride	<4.99	250	237	95	237	95	90-110	0	20	mg/kg	06.25.18 09:43	
Analytical Method: Seq Number: Parent Sample Id:	Inorganic Anions by I 3054491 589731-012	EPA 300	MS Sat	Matrix: mple Id:	Soil 589731-0	12 S			rep Metho Date Pre D Sample	ep: 06.2		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Chloride	821	250	993	69	997	70	90-110	0	20	mg/kg	06.25.18 10:00	Х
Analytical Method:	Inorganic Anions by I	EPA 300						Pı	ep Metho	od: E30)P	

111111, 11011100		.,							op meun	<i>Ju.</i> == =		
Seq Number:	3054491			Matrix:	Soil				Date Pre	ep: 06.2	5.18	
Parent Sample Id:	589755-005		MS Sa	mple Id:	589755-0	05 S		MS	D Sample	e Id: 589	755-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Chloride	20.8	246	253	94	253	94	90-110	0	20	mg/kg	06.25.18 11:15	

Analytical Method:	TPH by S	W8015 M	od						Р	rep Metho	od: TX1	1005P	
Seq Number:	3054456				Matrix:	Solid				Date Pr	ep: 06.2	21.18	
MB Sample Id:	7657122-	1-BLK		LCS Sat	mple Id:	7657122-	1-BKS		LCS	SD Sample	e Id: 765	7122-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	880	88	818	82	70-135	7	20	mg/kg	06.21.18 19:34	
Diesel Range Organics	(DRO)	<15.0	1000	899	90	876	88	70-135	3	20	mg/kg	06.21.18 19:34	
Surrogate		MB %Rec	MB Flag			LCS Flag	LCSE %Rec		_	imits	Units	Analysis Date	
1-Chlorooctane		78		1	07		127		70	0-135	%	06.21.18 19:34	
o-Terphenyl		82		1	01		103		70	0-135	%	06.21.18 19:34	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

$$\begin{split} LCS &= Laboratory \ Control \ Sample \\ A &= Parent \ Result \\ C &= MS/LCS \ Result \\ E &= MSD/LCSD \ Result \end{split}$$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

LT Environmental, Inc.

PLU 68

Analytical Method:	TPH by S	W8015 M	lod						P	rep Metho	od: TX1	.005P	
Seq Number:	3054456				Matrix:	Soil				Date Pr	ep: 06.2	1.18	
Parent Sample Id:	589756-0	01		MS Sat	mple Id:	589756-0	01 S		MS	D Sample	e Id: 589	756-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<15.0	997	<15.0	0	<15.0	0	70-135	NC	20	mg/kg	06.21.18 20:36	Х
Diesel Range Organics ((DRO)	36.3	997	31.8	0	33.5	0	70-135	5	20	mg/kg	06.21.18 20:36	Х
Surrogate				MS %Rec		MS MSD Flag %Rec				mits	Units	Analysis Date	
1-Chlorooctane				:	86		87		70)-135	%	06.21.18 20:36	
o-Terphenyl				:	88		89		70)-135	%	06.21.18 20:36	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3054380 7657207-1-BLK	ΙB		Matrix: mple Id:	Solid 7657207-	1-BKS			rep Meth Date Pr D Sample	ep: 06.2	5030B 4.18 7207-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.0998	0.0855	86	0.0956	96	70-130	11	35	mg/kg	06.24.18 16:36	
Toluene	< 0.00200	0.0998	0.0878	88	0.101	101	70-130	14	35	mg/kg	06.24.18 16:36	
Ethylbenzene	< 0.00200	0.0998	0.0872	87	0.0999	100	70-130	14	35	mg/kg	06.24.18 16:36	
m,p-Xylenes	< 0.00399	0.200	0.181	91	0.209	104	70-130	14	35	mg/kg	06.24.18 16:36	
o-Xylene	< 0.00200	0.0998	0.0850	85	0.0983	98	70-130	15	35	mg/kg	06.24.18 16:36	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSE %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	107		8	89		95		70)-130	%	06.24.18 16:36	
4-Bromofluorobenzene	79		8	84		93		70	0-130	%	06.24.18 16:36	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 1 3054380 589610-001	lB		Matrix: mple Id:	Soil 589610-0	01 S			rep Methe Date Pr D Sample	ep: 06.2	5030B 24.18 610-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.0795	80	0.0726	73	70-130	9	35	mg/kg	06.24.18 17:12	
Toluene	< 0.00199	0.0996	0.0855	86	0.0791	79	70-130	8	35	mg/kg	06.24.18 17:12	
Ethylbenzene	< 0.00199	0.0996	0.0815	82	0.0758	76	70-130	7	35	mg/kg	06.24.18 17:12	
m,p-Xylenes	< 0.00398	0.199	0.170	85	0.158	79	70-130	7	35	mg/kg	06.24.18 17:12	
o-Xylene	< 0.00199	0.0996	0.0816	82	0.0731	73	70-130	11	35	mg/kg	06.24.18 17:12	
Surrogate				1S Rec	MS Flag	MSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene			ç	93		74		70	0-130	%	06.24.18 17:12	
4-Bromofluorobenzene			9	92		82		70	0-130	%	06.24.18 17:12	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

3 Relinquished by:		Relinq uished by Sampler	TAT Starts Day received	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT	Turnaround Time (Business days)	5 (() ()	7	4 00	ω Ν	1 555A	No. Field ID / Po	1.DA	Samplers's Name:	Email: Abakue Ifiny, (0m Project Contact: NA: 2 2.4.1	3300 N, "A" Street Ruild, 51 Unit 163	Company Name / Branch: レイド ・ Pu	Client / Reporting Information		Stafford, TX (281) 240-4200 Dallas, TX (214) 902-0300	Setting the Standard since 1990	XENCO LABORATORIES	
3 4 4 Relinquished by: Date Time: Received By: Custody Seal # Preserved where applicable 4 5 Date Time: Received By: Custody Seal # Preserved where applicable 4 5 Date Time: Received By: Custody Seal # Preserved where applicable 4 6 Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco. Its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples days and shall not assume for any losses or expenses incurred by the Client if such tasses are due to circumstances beyond the contract of Xanco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be sample. These terms will be enforced unless previously negotiated under a fully executed client contract. 95 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be applied to each project. Xenco's liability will be finded to the cost of samples. Any samples received by Xenco but not analyzed will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be applied to each project. Xenco's liability will be finded to the cost of samples. Any samples received by Xenco but not analyzed will be applied to each project. Xenco's liability will be the cost of samples. Any samples received by Xenco but not analyzed	6/18/18 Date Time:	SAMPLE CUSTODY MUST BE DO	TAT Starts Day received by Lab, if received by 5:00 pm	U Standor d	Contract TAT	7 Day TAT	5 Day TAT	iss days)					J.	Field ID / Point of Collection Sample	ACTURE CARLED MILLION LIVER	DAME THE AND THE AND	FENV, (Om 432-7645178	the survey of the prime is	Perman Office	ation		El Paso, TX (915) 585-3443 Lubbock, TX (806) 794-1296	0661		
Received By: Received By: Section 1 Received By: Section 1 Section 1 Section 2 Set beyond the control of Xenco. A minimum rest beyond the control of Xenco. A minimum	Time: Received By:	BE DOCUMENTED BELOW EACH TIME S		Level II Repo	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC	Data					1:05 5451 \$1319	Date Time Matrix		PO Number: → ↓ ↓ ↓ ·		V,	Project Name/Number: PUX 68 / 0) 24 (800	Project Information					
4 Custody Seal # co, its affiliates and subcontractors. It assign m charge of \$75 will be applied to each proje	Relinquished By:	DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING DOURIER DELIX e: Received By: A A A A Religioushed By: A A	\sim	Level II Report with TRRP checklist		2C+ Forms TRRP Level IV		Data Deliverable Information						HCI NaOH/Zn Acetate HNO3 H2SO4 NaOH NaHSO4		9802 - J	- Kyle Lithan		K 0031	ation		Midland, TX (432) 704-5440 San Antonio, TX (210) 509-3334 www.xenco.com			
al # Preserved where applicable	Date Time	_\ i ≥i			-411	Ĩ	Level IV (Full Data Pkg /raw data)						000000	MEOH NONE BT	<u> </u>	lh.					Analytic	Phoenix, AZ (480) 355-0900 Service Center - Baton Rouge, LA (832) 712-8143 Xenco Quote # Xenc		ODY	
e applicable of the service. Xenco will be liable only for the the cost of samples. Any samples received the cost of samples.	8 15:3	PReceived and	FED-EX / UPS: Tracking #					Notes:							· · · · · · · · · · · · · · · · · · ·				,		Analytical Information	LA (832) 712-8143 Xenco Job #			
cost of samples and shall not assume ived by Xenco but not analyzed will be	ANY AN		17251181105											Field Comments		A = Air	SL - Sludge OW = Oripean/Sea Water O = Oil WW = Waste Water	DW = Drinking Wate) P = Product SW = Surface Water	W = Water S = Soil/Sed/Solid GW = Ground Water		Matrix Codes	Service Center-Amarillo, TX (806)678-451 Service Center-Hobbs, NM (575) 392-7550	N D D D D D D D D D D D D D D D D D D D		
ssume any responsibility will be invoiced at \$5 per	N N		0504		-									ω 		* .	n/Sea Water ∍ Water	ing Water :e Water	//Solid d Water	-	ides	Amarilio, TX (806)678-4514 Hobbs, NM (575) 392-7550	2	Revision 2016.1	

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Received by OCD: 3/21/2023 7:35:43 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Date/ Time Received: 06/20/2018 10:35:15 AM Work Order #: 589754

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used : R8

Sample Ree	ceipt Checklist	Comments
#1 *Temperature of cooler(s)?	4.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	Νο	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	N/A	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Bull Tal Brianna Teel

Date: 06/20/2018

Checklist reviewed by: festion Warner

Jessica Kramer

Date: 06/20/2018

for LT Environmental, Inc.

Project Manager: Adrian Baker

PLU 68

012918002

09-JUL-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-26), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-15) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

09-JUL-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): **589935 PLU 68** Project Address: NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 589935. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 589935 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession knomen

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 589935

LT Environmental, Inc., Arvada, CO

PLU 68

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS16	S	06-19-18 15:35	6 In	589935-001
SS17	S	06-19-18 15:40	6 In	589935-002
SS18	S	06-19-18 15:45	6 In	589935-003
SS19	S	06-19-18 15:50	6 In	589935-004
SS20	S	06-19-18 15:55	6 In	589935-005
SS21	S	06-19-18 16:06	6 In	589935-006

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: PLU 68

 Project ID:
 012918002

 Work Order Number(s):
 589935

Report Date: 09-JUL-18 Date Received: 06/21/2018

Sample receipt non conformances and comments:

NEW VERSION GENERATED 07/09/18. per client email, changed sample 001 from SS18 to SS16 JKR

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3054604 Inorganic Anions by EPA 300

Lab Sample ID 589937-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 589935-001, -002, -003, -004, -005, -006.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3054624 BTEX by EPA 8021B

Lab Sample ID 589935-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 589935-001, -002, -003, -004, -005.

The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Ethylbenzene, m,p-Xylenes Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits.

Samples in the analytical batch are: 589935-001, -002, -003, -004, -005

Batch: LBA-3054711 BTEX by EPA 8021B

Ethylbenzene, m,p-Xylenes, o-Xylene Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits. Samples in the analytical batch are: 589935-006

Lab Sample ID 589935-006 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD).

Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Benzene recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 589935-006.

The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Received by OCD: 3/21/2023 7:35:43 AM

Page 102 of 145

Client Name: LT Environmental, Inc. Project Name: PLU 68

 Project ID:
 012918002

 Work Order Number(s):
 589935

Report Date:09-JUL-18Date Received:06/21/2018

Project Id:012918002Contact:Adrian BakerProject Location:NM

Certificate of Analysis Summary 589935

LT Environmental, Inc., Arvada, CO Project Name: PLU 68

Date Received in Lab:Thu Jun-21-18 10:16 amReport Date:09-JUL-18Project Manager:Jessica Kramer

	Lab Id:	589935-(001	589935-0	002	589935-(003	589935-	004	589935-	005	589935-(006
A so a lugia Do un osto d	Field Id:	SS16		SS17		SS18		SS19		SS20		SS21	
Analysis Requested	Depth:	6- In		6- In		6- In		6- In		6- In		6- In	
	Matrix:	SOIL		SOIL		SOIL	,	SOIL	,	SOIL		SOIL	
	Sampled:	Jun-19-18	15:35	Jun-19-18	15:40	Jun-19-18	15:45	Jun-19-18	15:50	Jun-19-18	15:55	Jun-19-18	16:06
BTEX by EPA 8021B	Extracted:	Jun-25-18	14:30	Jun-25-18	4:30	Jun-25-18	14:30	Jun-25-18	14:30	Jun-25-18	14:30	Jun-26-18	15:15
	Analyzed:	Jun-26-18	01:23	Jun-26-18 (9:01	Jun-26-18	10:13	Jun-26-18	10:31	Jun-26-18	10:50	Jun-27-18	01:29
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199
Toluene		< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199
Ethylbenzene		< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199
m,p-Xylenes		< 0.00403	0.00403	< 0.00404	0.00404	< 0.00401	0.00401	< 0.00399	0.00399	< 0.00400	0.00400	< 0.00398	0.00398
o-Xylene		< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199
Total Xylenes		< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199
Total BTEX		< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199
Inorganic Anions by EPA 300	Extracted:	Jun-25-18	16:00	Jun-25-18 1	6:00	Jun-25-18	16:00	Jun-25-18	16:00	Jun-25-18	16:00	Jun-25-18	16:00
	Analyzed:	Jun-25-18	18:51	Jun-25-18 1	9:08	Jun-25-18	19:13	Jun-25-18	19:29	Jun-25-18	19:35	Jun-25-18	19:40
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		184	4.93	30.5	4.98	539	4.95	8.55	4.95	34.5	5.00	19.9	4.95
TPH by SW8015 Mod	Extracted:	Jun-21-18	12:00	Jun-21-18	2:00	Jun-21-18	12:00	Jun-21-18	12:00	Jun-21-18	12:00	Jun-21-18	12:00
	Analyzed:	Jun-22-18	01:19	Jun-22-18 (01:40	Jun-22-18 (02:00	Jun-22-18	02:20	Jun-22-18	07:57	Jun-22-18	08:17
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<14.9	14.9	<15.0	15.0	<15.0	15.0	15.3	15.0	<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		232	14.9	27.7	15.0	34.9	15.0	<15.0	15.0	504	15.0	1180	15.0
Oil Range Hydrocarbons (ORO)		46.2	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0	80.4	15.0	76.4	15.0
Total TPH		278	14.9	27.7	15.0	34.9	15.0	15.3	15.0	584	15.0	1260	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession knomen

Jessica Kramer Project Assistant

Page 6 of 25

LT Environmental, Inc., Arvada, CO

Sample Id: SS16 Lab Sample Id: 589935-001		Matrix: Date Collec	Soil cted: 06.19.18 15.35		Date Received:06 Sample Depth:6 I		5
Analytical Method: Inorganic Anio	ns by EPA 300				Prep Method: E3	00P	
Tech: SCM					% Moisture:		
Analyst: SCM		Date Prep:	06.25.18 16.00		Basis: W	et Weight	
Seq Number: 3054604							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	184	4.93	mg/kg	06.25.18 18.51		1
Analytical Method: TPH by SW80	5 Mod				Prep Method: TX	K1005P	
Tech: ARM					% Moisture:		
Analyst: ARM		Date Prep:	06.21.18 12.00		Basis: W	et Weight	
Seq Number: 3054456							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	14.9	mg/kg	06.22.18 01.19	U	1

Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	14.9		mg/kg	06.22.18 01.19	U	1
Diesel Range Organics (DRO)	C10C28DRO	232	14.9		mg/kg	06.22.18 01.19		1
Oil Range Hydrocarbons (ORO)	PHCG2835	46.2	14.9		mg/kg	06.22.18 01.19		1
Total TPH	PHC635	278	14.9		mg/kg	06.22.18 01.19		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	81	%	70-135	06.22.18 01.19		
o-Terphenyl		84-15-1	83	%	70-135	06.22.18 01.19		

LT Environmental, Inc., Arvada, CO

Sample Id: SS16	Matrix: Soil	Date Received:06.21.18 10.16
Lab Sample Id: 589935-001	Date Collected: 06.19.18 15.35	Sample Depth:6 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054624	Date Prep: 06.25.18 14.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	06.26.18 01.23	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	06.26.18 01.23	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	06.26.18 01.23	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	06.26.18 01.23	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	06.26.18 01.23	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	06.26.18 01.23	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	06.26.18 01.23	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	104	%	70-130	06.26.18 01.23		
4-Bromofluorobenzene		460-00-4	102	%	70-130	06.26.18 01.23		

LT Environmental, Inc., Arvada, CO

Sample Id: SS17 Lab Sample Id: 589935-002		Matrix: Date Collec	Soil ted: 06.19.18 15.40		Date Received Sample Depth		
Analytical Method:Inorganic AniorTech:SCMAnalyst:SCMSeq Number:3054604	as by EPA 300	Date Prep:	06.25.18 16.00		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride	16887-00-6	30.5	4.98	mg/kg	06.25.18 19.0)8	1
Analytical Method: TPH by SW8015 Tech: ARM Analyst: ARM Seq Number: 3054456	5 Mod	Date Prep:	06.21.18 12.00		Prep Method: % Moisture: Basis:	TX1005P Wet Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.22.18 01.40	U	1
Diesel Range Organics (DRO)	C10C28DRO	27.7	15.0		mg/kg	06.22.18 01.40		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.22.18 01.40	U	1
Total TPH	PHC635	27.7	15.0		mg/kg	06.22.18 01.40		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	82	%	70-135	06.22.18 01.40		
o-Terphenyl		84-15-1	85	%	70-135	06.22.18 01.40		

LT Environmental, Inc., Arvada, CO

Sample Id: SS17	Matrix: Soil	Date Received:06.21.18 10.16		
Lab Sample Id: 589935-002	Date Collected: 06.19.18 15.40	Sample Depth:6 In		
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054624	Date Prep: 06.25.18 14.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight		

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	06.26.18 09.01	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	06.26.18 09.01	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	06.26.18 09.01	U	1
m,p-Xylenes	179601-23-1	< 0.00404	0.00404		mg/kg	06.26.18 09.01	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	06.26.18 09.01	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	06.26.18 09.01	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	06.26.18 09.01	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	97	%	70-130	06.26.18 09.01		
1,4-Difluorobenzene		540-36-3	99	%	70-130	06.26.18 09.01		

LT Environmental, Inc., Arvada, CO

Sample Id: SS18 Lab Sample Id: 589935-003		Matrix: Date Collec	Soil cted: 06.19.18 15.45	Date Received:06.21.18 10.16 Sample Depth:6 In			
Analytical Method: Inorganic Anio	ns by EPA 300				Prep Method: E30)0P	
Tech: SCM					% Moisture:		
Analyst: SCM		Date Prep:	06.25.18 16.00		Basis: We	t Weight	
Seq Number: 3054604							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	539	4.95	mg/kg	06.25.18 19.13		1
Analytical Method: TPH by SW801 Tech: ARM Analyst: ARM	Date Prep:	06.21.18 12.00	Prep Method: TX1005P % Moisture: Basis: Wet Weight				
Seq Number: 3054456							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0	mg/kg	06.22.18 02.00	U	1
Diesel Range Organics (DRO)	C10C28DRO	34.9	15.0	mg/kg	06.22.18 02.00		1

Diesel Range Organics (DRO)	CI0C28DRO	34.9	15.0		mg/kg	06.22.18 02.00		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.22.18 02.00	U	1
Total TPH	PHC635	34.9	15.0		mg/kg	06.22.18 02.00		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	79	%	70-135	06.22.18 02.00		
o-Terphenyl		84-15-1	82	%	70-135	06.22.18 02.00		

LT Environmental, Inc., Arvada, CO

Sample Id: SS18 Lab Sample Id: 589935-003	Matrix: Soil Date Collected: 06.19.18 15.45	Date Received:06.21.18 10.16 Sample Depth:6 In			
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:			
Analyst: ALJ Seq Number: 3054624	Date Prep: 06.25.18 14.30	Basis: Wet Weight			

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.26.18 10.13	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.26.18 10.13	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.26.18 10.13	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.26.18 10.13	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.26.18 10.13	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.26.18 10.13	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.26.18 10.13	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	96	%	70-130	06.26.18 10.13		
1,4-Difluorobenzene		540-36-3	88	%	70-130	06.26.18 10.13		

LT Environmental, Inc., Arvada, CO

Sample Id: SS19 Lab Sample Id: 589935-004		Matrix: Date Colle	Soil cted: 06.19.18 15.50		Date Received:06.21.18 10.16 Sample Depth:6 In		
Analytical Method: Inorganic Anio	ns by EPA 300				Prep Method: E30)0P	
Tech: SCM					% Moisture:		
Analyst: SCM		Date Prep:	06.25.18 16.00		Basis: We	t Weight	
Seq Number: 3054604		1				-	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	8.55	4.95	mg/kg	06.25.18 19.29		1
Analytical Method: TPH by SW801	5 Mod				Prep Method: TX	1005P	
Tech: ARM					% Moisture:		
Analyst: ARM		Date Prep:	06.21.18 12.00		Basis: We	t Weight	
Seq Number: 3054456							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	15.3	15.0	mg/kg	06.22.18 02.20		1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0	mg/kg	06.22.18 02.20	U	1

					00				
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.22.18 02.20	U	1	
Total TPH	PHC635	15.3	15.0		mg/kg	06.22.18 02.20		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane o-Terphenyl		111-85-3 84-15-1	79 78	% %	70-135 70-135	06.22.18 02.20 06.22.18 02.20			
0-reiphenyi		04-13-1	70	70	70-155	00.22.18 02.20			

LT Environmental, Inc., Arvada, CO

Sample Id:SS19Lab Sample Id:589935-004	Matrix: Soil Date Collected: 06.19.18 15.50	Date Received:06.21.18 10.16 Sample Depth:6 In			
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054624	Date Prep: 06.25.18 14.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight			

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.26.18 10.31	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.26.18 10.31	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.26.18 10.31	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.26.18 10.31	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.26.18 10.31	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.26.18 10.31	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.26.18 10.31	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	103	%	70-130	06.26.18 10.31		
4-Bromofluorobenzene		460-00-4	96	%	70-130	06.26.18 10.31		

LT Environmental, Inc., Arvada, CO

Sample Id: SS20 Lab Sample Id: 589935-005		Matrix: Date Collec	Soil ted: 06.19.18 15.55	Date Received:06.21.18 10.16 Sample Depth:6 In			5
Analytical Method: Inorganic Anio Tech: SCM Analyst: SCM Seq Number: 3054604	ons by EPA 300	Date Prep:	06.25.18 16.00		Prep Method: 1 % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride	16887-00-6	34.5	5.00	mg/kg	06.25.18 19.3	5	1
Analytical Method: TPH by SW80 Tech: ARM Analyst: ARM	15 Mod	Date Prep:	06.21.18 12.00		Prep Method: 7 % Moisture: Basis:	TX1005P Wet Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.22.18 07.57	U	1
Diesel Range Organics (DRO)	C10C28DRO	504	15.0		mg/kg	06.22.18 07.57		1
Oil Range Hydrocarbons (ORO)	PHCG2835	80.4	15.0		mg/kg	06.22.18 07.57		1
Total TPH	PHC635	584	15.0		mg/kg	06.22.18 07.57		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	80	%	70-135	06.22.18 07.57		
o-Terphenyl		84-15-1	80	%	70-135	06.22.18 07.57		

LT Environmental, Inc., Arvada, CO

Sample Id: SS20	Matrix: Soil	Date Received:06.21.18 10.16			
Lab Sample Id: 589935-005	Date Collected: 06.19.18 15.55	Sample Depth:6 In			
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054624	Date Prep: 06.25.18 14.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight			

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.26.18 10.50	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.26.18 10.50	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.26.18 10.50	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	06.26.18 10.50	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.26.18 10.50	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.26.18 10.50	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.26.18 10.50	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	91	%	70-130	06.26.18 10.50		
1,4-Difluorobenzene		540-36-3	93	%	70-130	06.26.18 10.50		

LT Environmental, Inc., Arvada, CO

Sample Id: SS21 Lab Sample Id: 589935-006		Matrix: Date Collec	Soil cted: 06.19.18 16.06	Date Received:06.21.18 10.16 Sample Depth:6 In			5
Analytical Method: Inorganic Anio	ons by EPA 300				Prep Method: E30)0P	
Tech: SCM	-				% Moisture:		
Analyst: SCM		Date Prep:	06.25.18 16.00		Basis: We	t Weight	
Seq Number: 3054604		I				C	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	19.9	4.95	mg/kg	06.25.18 19.40		1
Analytical Method: TPH by SW801	15 Mod				Prep Method: TX	1005P	
Tech: ARM					% Moisture:		
Analyst: ARM		Date Prep:	06.21.18 12.00		Basis: We	t Weight	
Seq Number: 3054456							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0	mg/kg	06.22.18 08.17	U	1
Diesel Range Organics (DRO)	C10C28DRO	1180	15.0	mg/kg	06.22.18 08.17		1

Analyst: ARM		Date Prej	p: 06.21.	18 12.00	E	Basis: We	t Weight	
Seq Number: 3054456								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.22.18 08.17	U	1
Diesel Range Organics (DRO)	C10C28DRO	1180	15.0		mg/kg	06.22.18 08.17		1
Oil Range Hydrocarbons (ORO)	PHCG2835	76.4	15.0		mg/kg	06.22.18 08.17		1
Total TPH	PHC635	1260	15.0		mg/kg	06.22.18 08.17		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	80	%	70-135	06.22.18 08.17		
o-Terphenyl		84-15-1	90	%	70-135	06.22.18 08.17		

LT Environmental, Inc., Arvada, CO

Sample Id: SS21	Matrix: Soil	Date Received:06.21.18 10.16
Lab Sample Id: 589935-006	Date Collected: 06.19.18 16.06	Sample Depth:6 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054711	Date Prep: 06.26.18 15.15	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.27.18 01.29	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.27.18 01.29	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.27.18 01.29	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.27.18 01.29	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.27.18 01.29	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.27.18 01.29	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.27.18 01.29	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	99	%	70-130	06.27.18 01.29		
1,4-Difluorobenzene		540-36-3	95	%	70-130	06.27.18 01.29		

LABORATORIES

Flagging Criteria

Page 116 of 145

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Cli	ent Sample	BLK	Method Blank	
BKS/LC	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Received by OCD: 3/21/2023 7:35:43 AM

Chloride

184

247

398

QC Summary 589935

LT Environmental, Inc.

PLU 68

Analytical Method: Seq Number: MB Sample Id:	Inorganic Anions by EPA 30 3054604 7657314-1-BLK	Matrix: Sol LCS Sample Id: 765		Prep Method: E300P Date Prep: 06.25.18 LCSD Sample Id: 7657314-1-BSD	
Parameter	MB Spike Result Amount		CSD LCSD Limits Result %Rec	%RP RPD Units Analysis Flag D Limit Date	,
Chloride	<5.00 250	244 98	240 96 90-110	2 20 mg/kg 06.25.18 17:25	
Analytical Method:	Inorganic Anions by EPA 30)		Prep Method: E300P	
Seq Number:	3054604	Matrix: Soi	1	Date Prep: 06.25.18	
Parent Sample Id:	589935-001	MS Sample Id: 589	9935-001 S	MSD Sample Id: 589935-001 SD	
Parameter	Parent Spike Result Amount		MSD MSD Limits Result %Rec	%RP RPD Units Analysis Flag D Limit Date	1

Analytical Method:	Inorganic Anions by	y EPA 300						Pı	ep Metho	od: E30	0P	
Seq Number:	3054604			Matrix:	Soil				Date Pre	ep: 06.2	5.18	
Parent Sample Id:	589937-001		MS Sat	mple Id:	589937-0	01 S		MS	D Sample	Id: 5899	937-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Chloride	8.44	250	248	96	252	97	90-110	2	20	mg/kg	06.25.18 17:41	

87

397

86 90-110

0

20

mg/kg

06.25.18 18:57

Х

Analytical Method:	TPH by SV	V8015 M	od						Р	Prep Metho	od: TX1	.005P	
Seq Number:	3054456				Matrix:	Solid				Date Pr	ep: 06.2	1.18	
MB Sample Id:	7657122-1-	BLK		LCS Sat	mple Id:	7657122-	1-BKS		LCS	SD Sample	e Id: 765	7122-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<15.0	1000	880	88	818	82	70-135	7	20	mg/kg	06.21.18 19:34	
Diesel Range Organics ((DRO)	<15.0	1000	899	90	876	88	70-135	3	20	mg/kg	06.21.18 19:34	
Surrogate		MB %Rec	MB Flag			LCS Flag	LCSE %Rec			imits	Units	Analysis Date	
1-Chlorooctane		78		1	07		127		70	0-135	%	06.21.18 19:34	
o-Terphenyl		82		1	01		103		70	0-135	%	06.21.18 19:34	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

QC Summary 589935

LT Environmental, Inc.

PLU 68

Analytical Method:	TPH by S	SW8015 M	lod						P	rep Meth	od: TX1	005P	
Seq Number:	3054456				Matrix:	Soil				Date Pr	ep: 06.2	1.18	
Parent Sample Id:	589756-0	01		MS Sat	mple Id:	589756-0	01 S		MS	D Sample	e Id: 589	756-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	997	<15.0	0	<15.0	0	70-135	NC	20	mg/kg	06.21.18 20:36	Х
Diesel Range Organics	(DRO)	36.3	997	31.8	0	33.5	0	70-135	5	20	mg/kg	06.21.18 20:36	Х
Surrogate						MS Flag	MSD %Ree			imits	Units	Analysis Date	
1-Chlorooctane				:	86		87		70)-135	%	06.21.18 20:36	
o-Terphenyl				:	88		89		70)-135	%	06.21.18 20:36	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3054624 7657332-1-BLK	lB		Matrix: mple Id:	Solid 7657332-	1-BKS			Prep Methe Date Pr SD Sample	ep: 06.2	5030B 25.18 7332-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00202	0.101	0.0986	98	0.0902	89	70-130	9	35	mg/kg	06.25.18 23:36	
Toluene	< 0.00202	0.101	0.102	101	0.0941	93	70-130	8	35	mg/kg	06.25.18 23:36	
Ethylbenzene	< 0.00202	0.101	0.102	101	0.0936	93	70-130	9	35	mg/kg	06.25.18 23:36	
m,p-Xylenes	< 0.00403	0.202	0.212	105	0.193	96	70-130	9	35	mg/kg	06.25.18 23:36	
o-Xylene	< 0.00202	0.101	0.0988	98	0.0918	91	70-130	7	35	mg/kg	06.25.18 23:36	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	104		1	08		97		7	0-130	%	06.25.18 23:36	
4-Bromofluorobenzene	88		9	95		90		7	0-130	%	06.25.18 23:36	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3054711 7657386-1-BLK	lB		Matrix: mple Id:	Solid 7657386-	1-BKS			rep Meth Date Pr D Sample	ep: 06.2	5030B 26.18 7386-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00202	0.101	0.100	99	0.0915	92	70-130	9	35	mg/kg	06.26.18 23:42	
Toluene	< 0.00202	0.101	0.105	104	0.0952	95	70-130	10	35	mg/kg	06.26.18 23:42	
Ethylbenzene	< 0.00202	0.101	0.104	103	0.0953	95	70-130	9	35	mg/kg	06.26.18 23:42	
m,p-Xylenes	< 0.00403	0.202	0.217	107	0.197	99	70-130	10	35	mg/kg	06.26.18 23:42	
o-Xylene	< 0.00202	0.101	0.100	99	0.0926	93	70-130	8	35	mg/kg	06.26.18 23:42	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	91		1	09		101		70	0-130	%	06.26.18 23:42	
4-Bromofluorobenzene	93		1	01		93		70	0-130	%	06.26.18 23:42	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 21 of 25

QC Summary 589935

LT Environmental, Inc.

PLU 68

Analytical Method:	BTEX by EPA 8021	1B						Р	rep Meth	od: SW:	5030B	
Seq Number:	3054624			Matrix:	Soil				Date Pr	ep: 06.2	25.18	
Parent Sample Id:	589935-001		MS Sat	mple Id:	589935-0	01 S		MS	D Sample	e Id: 589	935-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.0518	52	0.0517	52	70-130	0	35	mg/kg	06.26.18 00:10	Х
Toluene	< 0.00199	0.0996	0.0272	27	0.0259	26	70-130	5	35	mg/kg	06.26.18 00:10	Х
Ethylbenzene	< 0.00199	0.0996	0.0121	12	0.00791	8	70-130	42	35	mg/kg	06.26.18 00:10	XF
m,p-Xylenes	< 0.00398	0.199	0.0221	11	0.0143	7	70-130	43	35	mg/kg	06.26.18 00:10	XF
o-Xylene	< 0.00199	0.0996	0.0106	11	0.00967	10	70-130	9	35	mg/kg	06.26.18 00:10	Х
Surrogate				1S Rec	MS Flag	MSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene			9	9 9		102		70	0-130	%	06.26.18 00:10	
4-Bromofluorobenzene		86 90 70-130 % 06.26.18 00:10										

Analytical Method:	BTEX by EPA 802	1B						Р	rep Meth	od: SW:	5030B	
Seq Number:	3054711			Matrix:	Soil				Date Pr	ep: 06.2	6.18	
Parent Sample Id:	589935-006		MS Sar	nple Id:	589935-0	06 S		MS	D Sample	e Id: 589	935-006 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	% RP D	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0793	79	0.0599	59	70-130	28	35	mg/kg	06.27.18 00:16	Х
Toluene	< 0.00200	0.100	0.0617	62	0.0439	43	70-130	34	35	mg/kg	06.27.18 00:16	Х
Ethylbenzene	< 0.00200	0.100	0.0480	48	0.0291	29	70-130	49	35	mg/kg	06.27.18 00:16	XF
m,p-Xylenes	< 0.00401	0.200	0.0965	48	0.0610	30	70-130	45	35	mg/kg	06.27.18 00:16	XF
o-Xylene	< 0.00200	0.100	0.0454	45	0.0286	28	70-130	45	35	mg/kg	06.27.18 00:16	XF
Surrogate					MS Flag	MSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene			1	20		97		70	0-130	%	06.27.18 00:16	
4-Bromofluorobenzene												

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

$$\begin{split} LCS &= Laboratory \ Control \ Sample \\ A &= Parent \ Result \\ C &= MS/LCS \ Result \\ E &= MSD/LCSD \ Result \end{split}$$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

router, seynature or uns occurrent and reiniquisime for any losses or expense incurred by the Client if s sample. These terms will be enforced unless previou	Relinquished by: 5	Marver WUCO	Relinguisched by Sampler:		3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT	10 Turnaround Time (Business days)	2	7	• \ c?? •	5 5530			1 2112 2 DIC	- Cark	No. Field ID / Point of Collection		- 11 E	Project Contact: Advis y Bon Mr	ADDAVILLE 1 TEMULION	soon N. " St. building , unt 103 Milling)	Company Name / Branch. VI Environmental , Diconic n Ottile Company Address:	Client / Reporting Information		Dallas, TX (214) 902-0300	Setting the Standard since 1990	
uch losses are due to circumstance sly negotiated under a fully execute	Date Th	Date Time:	Date Time:	if received by 5:00 pm SAMPLE CUSTODY MUST B	Annord	Contract TAT	🗌 7 Day ТАТ	5 Day TAT				4				- 0	17 1000			Thomas	Ŵ	ALIS has ZCM WI	+ 103 Milling, TV +	-			Lubbock, TX (806) 794-1296	EI 0300 TY (045) 585-3443	
Note: Stylinkure or inits document and reindynasimient or admiptor on some provider internation or or company or Action, is a initiated and sourcommediates in a subcompany or Action, is a initiated and source of a source of a style of a source of the control of Xenco. A minimum charge of \$75 will be applied to each project sample. These terms will be enforced unless previously negotiated under a fully executed client contract.	ne: Received By: VOV	16 15:30 Manuel (0)24/18	1010 Receiv		Level II Report with TRRP checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC	Data Deliverable Information			4 1606 4 4	1355 1 1	1550 1	1545 1	1 1540 1		Time Marrie Marrie HCI HaOH/Zn Accetate		926- 120	PO Number:		23	Project Location: NW 68 012918003	nformation		San Antonio, TX (210) 509-3334 www.xenco.com	Midland TY (A32) 704-5440	Page of
Xenco's				OSSESSION, INCLUDING COURIER DELIVERY	klist	UST / RG -411	TRRP Level IV	Level IV (Full Data Pkg /raw data)										5	Number of preserved bottles		(#12)			6003		Analyt	Service Center - Baton Rouge, LA (832) 712-8143 Xenco Quote # Xenco	Dhopsiv A7 (480) 355-0000	
itability will be limited to the cost of samples. Any samples received by Xenco but not analyzad will be invoiced at $\$5$ per $\frac{3}{2}$ %	Preserved where applicable On Cooler	Received By: 4	17;20 2 Amm W	FED-EX / UPS					Notes:							· · · · ·						-				Analytical Information	**** SS	Servic	
noo but not analyzad will be invoiced at \$5 per			MM	D D I LOP C														Field Comments			WW ≕ Waste Water A ≕ Air	OW = Ocean/Sea Water WI = Wipe 0 = Oil	P = Product SW = Surface Water SL - Sludge	S = Soil/Sed/Solid GW = Ground Water DW = Drinking Water	W = Water	Matrix Codes	Vice Center-Hobbs, NM (575) 392-7550	Service Center. Amarillo TX (806)678.4514	

CHAIN OF CUSTODY

Revision 2016.1

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Received by OCD: 3/21/2023 7:35:43 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 06/21/2018 10:16:00 AM Temperature Measuring device used : R8 Work Order #: 589935 Sample Receipt Checklist #1 *Temperature of cooler(s)? 4.2

	4.2
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 Custody Seals intact on sample bottles?	N/A
#6*Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	No
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	N/A
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 06/21/2018

Comments

Checklist reviewed by:

Jessica Kramer

Date: 06/21/2018

Analytical Report 589937

for LT Environmental, Inc.

Project Manager: Adrian Baker

PLU 68

012918002

27-JUN-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-26), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-15) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

27-JUN-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): **589937 PLU 68** Project Address: NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 589937. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 589937 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession beamer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 589937

LT Environmental, Inc., Arvada, CO

PLU 68

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
FS1	S	06-18-18 16:00	5 In	589937-001
SW1	S	06-18-18 16:05	3 - 5 In	589937-002
SW2	S	06-18-18 16:10	3 - 5 In	589937-003
SW3	S	06-18-18 16:15	3 - 5 In	589937-004
SW4	S	06-18-18 16:20	3 - 5 In	589937-005

.

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: PLU 68

 Project ID:
 012918002

 Work Order Number(s):
 589937

ATORIES

Report Date:27-JUN-18Date Received:06/21/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3054711 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:012918002Contact:Adrian BakerProject Location:NM

Certificate of Analysis Summary 589937

LT Environmental, Inc., Arvada, CO Project Name: PLU 68

Date Received in Lab:Thu Jun-21-18 10:16 amReport Date:27-JUN-18Project Manager:Jessica Kramer

	Lab Id:	589937-0	001	589937-0	002	589937-0	003	589937-	004	589937-	005	
A surface Description I	Field Id:	FS1		SW1		SW2		SW3		SW4		
Analysis Requested	Depth:	5- In		3-5 In		3-5 In		3-5 In		3-5 Ir	ı i	
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL		
	Sampled:	Jun-18-18	16:00	Jun-18-18	16:05	Jun-18-18	16:10	Jun-18-18	16:15	Jun-18-18	16:20	
BTEX by EPA 8021B	Extracted:	Jun-26-18	15:15	Jun-26-18	15:15	Jun-26-18	15:15	Jun-26-18	15:15	Jun-26-18	15:15	
	Analyzed:	Jun-27-18	01:48	Jun-27-18	02:06	Jun-27-18 (09:46	Jun-27-18	02:40	Jun-27-18	02:58	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Benzene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Toluene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Ethylbenzene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
m,p-Xylenes		< 0.00399	0.00399	< 0.00402	0.00402	< 0.00398	0.00398	< 0.00399	0.00399	< 0.00401	0.00401	
o-Xylene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Total Xylenes		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Total BTEX		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Inorganic Anions by EPA 300	Extracted:	Jun-25-18	16:00	Jun-25-18 16:00		Jun-25-18 16:00		Jun-25-18 16:00		Jun-25-18 16:00		
	Analyzed:	Jun-25-18	17:36	Jun-25-18	17:52	Jun-25-18	17:57	Jun-25-18	18:03	Jun-25-18	18:08	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		8.44	5.00	13.4	4.98	40.2	4.96	12.2	4.96	17.9	4.93	
TPH by SW8015 Mod	Extracted:	Jun-22-18	09:00	Jun-22-18	09:00	Jun-22-18	09:00	Jun-22-18	09:00	Jun-22-18	09:00	
	Analyzed:	Jun-22-18	11:43	Jun-22-18	12:44	Jun-22-18	13:04	Jun-22-18	13:24	Jun-22-18	13:45	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0	
Diesel Range Organics (DRO)		<15.0	15.0	<14.9	14.9	27.6	15.0	<15.0	15.0	<15.0	15.0	
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0	
Total TPH		<15.0	15.0	<14.9	14.9	27.6	15.0	<15.0	15.0	<15.0	15.0	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession knomen

Jessica Kramer Project Assistant

Page 5 of 21

LT Environmental, Inc., Arvada, CO

Sample Id:	1			Soil	Date Received:06.2				
Lab Sample I	d: 589937-001		Date Colle	ected: 06.18.18 16.00		n			
Analytical Me	ethod: Inorganic Anior	ns by EPA 300				Prep Method: E3	00P		
Tech:	SCM					% Moisture:			
Analyst:	SCM		Date Prepa	: 06.25.18 16.00		Basis: We	et Weight		
Seq Number:	3054604								
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride		16887-00-6	8.44	5.00	mg/kg	06.25.18 17.36		1	

Analytical Method: TPH by SW801 Tech: ARM Analyst: ARM Seq Number: 3054583	5 Mod	Date Pre	ep: 06.22	18 09.00	9/	Prep Method: TX 6 Moisture: Basis: We	1005P t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.22.18 11.43	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	06.22.18 11.43	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.22.18 11.43	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.22.18 11.43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	75	%	70-135	06.22.18 11.43		
o-Terphenyl		84-15-1	81	%	70-135	06.22.18 11.43		

LT Environmental, Inc., Arvada, CO

Sample Id: FS1	Matrix: Soil	Date Received:06.21.18 10.16
Lab Sample Id: 589937-001	Date Collected: 06.18.18 16.00	Sample Depth:5 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054711	Date Prep: 06.26.18 15.15	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.27.18 01.48	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.27.18 01.48	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.27.18 01.48	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.27.18 01.48	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.27.18 01.48	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.27.18 01.48	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.27.18 01.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	111	%	70-130	06.27.18 01.48		
4-Bromofluorobenzene		460-00-4	100	%	70-130	06.27.18 01.48		

LT Environmental, Inc., Arvada, CO

Sample Id:	SW1		Matrix:	Soil		Date Received:06.	21.18 10.16	5
Lab Sample I	ld: 589937-002		Date Colle	cted: 06.18.18 16.05		Sample Depth:3 -	5 In	
Analytical M	ethod: Inorganic Anior	is by EPA 300				Prep Method: E30)0P	
Tech:	SCM					% Moisture:		
Analyst:	SCM		Date Prep:	06.25.18 16.00		Basis: We	t Weight	
Seq Number:	3054604							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	13.4	4.98	mg/kg	06.25.18 17.52		1
A 1 (* 11)		- N - 1					10050	

15 Mod					1	K1005P	
				9	6 Moisture:		
	Date Pre	ep: 06.22.	18 09.00	E	Basis: W	et Weight	
Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	<14.9	14.9		mg/kg	06.22.18 12.44	U	1
C10C28DRO	<14.9	14.9		mg/kg	06.22.18 12.44	U	1
PHCG2835	<14.9	14.9		mg/kg	06.22.18 12.44	U	1
PHC635	<14.9	14.9		mg/kg	06.22.18 12.44	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	78	%	70-135	06.22.18 12.44		
	84-15-1	82	%	70 135	06.22.18 12.44		
	Cas Number PHC610 C10C28DRO PHCG2835	Cas Number Result PHC610 <14.9	Cas Number Result RL PHC610 <14.9	Date Prep: 06.22.18 09.00 Cas Number Result RL PHC610 <14.9	Cas Number Result RL Units PHC610 <14.9	Cas Number Result RL Units Analysis Date PHC610 <14.9	Y % Moisture: Date Prep: 06.22.18 09.00 Basis: Wet Weight Cas Number Result RL Units Analysis Date Flag PHC610 <14.9

LT Environmental, Inc., Arvada, CO

Sample Id: SW1	Matrix: Soil	Date Received:06.21.18 10.16
Lab Sample Id: 589937-002	Date Collected: 06.18.18 16.05	Sample Depth:3 - 5 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054711	Date Prep: 06.26.18 15.15	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.27.18 02.06	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.27.18 02.06	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.27.18 02.06	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.27.18 02.06	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.27.18 02.06	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.27.18 02.06	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.27.18 02.06	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	78	%	70-130	06.27.18 02.06		
1,4-Difluorobenzene		540-36-3	85	%	70-130	06.27.18 02.06		

LT Environmental, Inc., Arvada, CO

Sample Id: SW2 Lab Sample Id: 589937-003		Matrix: Date Collec	Soil ted: 06.18.18 16.10	Date Received:06.21.18 10.16 Sample Depth:3 - 5 In			i
Analytical Method: Inorganic ArTech:SCMAnalyst:SCMSeq Number:3054604	nions by EPA 300	Date Prep:	06.25.18 16.00		Prep Method: E3 % Moisture: Basis: W	300P Tet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	40.2	4.96	mg/kg	06.25.18 17.57		1
Analytical Method: TPH by SW8 Tech: ARM Analyst: ARM Seq Number: 3054583	8015 Mod	Date Prep:	06.22.18 09.00		Prep Method: T2 % Moisture: Basis: W	X1005P Tet Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.22.18 13.04	U	1
Diesel Range Organics (DRO)	C10C28DRO	27.6	15.0		mg/kg	06.22.18 13.04		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.22.18 13.04	U	1
Total TPH	PHC635	27.6	15.0		mg/kg	06.22.18 13.04		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	78	%	70-135	06.22.18 13.04		
o-Terphenyl		84-15-1	81	%	70-135	06.22.18 13.04		

LT Environmental, Inc., Arvada, CO

Sample Id: SW2	Matrix: Soil	Date Received:06.21.18 10.16		
Lab Sample Id: 589937-003	Date Collected: 06.18.18 16.10	Sample Depth:3 - 5 In		
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054711	Date Prep: 06.26.18 15.15	Prep Method: SW5030B % Moisture: Basis: Wet Weight		

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.27.18 09.46	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.27.18 09.46	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.27.18 09.46	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.27.18 09.46	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.27.18 09.46	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.27.18 09.46	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.27.18 09.46	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	93	%	70-130	06.27.18 09.46		
1,4-Difluorobenzene		540-36-3	103	%	70-130	06.27.18 09.46		

LT Environmental, Inc., Arvada, CO

Sample Id:	SW3		Matrix:	Soil	Ι	Date Received:06.	.21.18 10.10	5	
Lab Sample Id: 589937-004			Date Collected: 06.18.18 16.15			Sample Depth: 3 - 5 In			
Analytical M	ethod: Inorganic Anio	ns by EPA 300			I	Prep Method: E3	00P		
Tech:	SCM				ç	% Moisture:			
Analyst:	SCM		Date Prep	06.25.18 16.00	I	Basis: We	et Weight		
Seq Number	: 3054604								
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride		16887-00-6	12.2	4.96	mg/kg	06.25.18 18.03		1	

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P								
Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Pre	p: 06.22	.18 09.00	В	Basis: We	et Weight	
Seq Number: 3054583								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.22.18 13.24	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	06.22.18 13.24	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.22.18 13.24	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.22.18 13.24	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	77	%	70-135	06.22.18 13.24		
o-Terphenyl		84-15-1	81	%	70-135	06.22.18 13.24		

LT Environmental, Inc., Arvada, CO

Sample Id: SW3 Lab Sample Id: 589937-004	Matrix: Soil Date Collected: 06.18.18 16.15	Date Received:06.21.18 10.16 Sample Depth:3 - 5 In
Analytical Method: BTEX by EPA 8021B Tech: ALJ Analyst: ALJ	Date Prep: 06.26.18 15.15	Prep Method: SW5030B % Moisture: Basis: Wet Weight
Seq Number: 3054711	Due 110p. 00.20110 10.10	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.27.18 02.40	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.27.18 02.40	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.27.18 02.40	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.27.18 02.40	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.27.18 02.40	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.27.18 02.40	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.27.18 02.40	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	88	%	70-130	06.27.18 02.40		
4-Bromofluorobenzene		460-00-4	93	%	70-130	06.27.18 02.40		

LT Environmental, Inc., Arvada, CO

Sample Id: SW4		Matrix:	Soil]	Date Received:06.	21.18 10.16	ó
Lab Sample Id: 589937	-005	Date Collec	ted: 06.18.18 16.20	Sample Depth:3 - 5 In			
Analytical Method: Ir	organic Anions by EPA 300]	Prep Method: E30	00P	
Tech: SCM					% Moisture:		
Analyst: SCM		Date Prep:	06.25.18 16.00]	Basis: We	t Weight	
Seq Number: 305460	Ļ						
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	17.9	4.93	mg/kg	06.25.18 18.08		1

Analytical Method: TPH by SW801:	5 Mod				P	rep Method: TX	(1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Pre	p: 06.22.	18 09.00	E	Basis: We	et Weight	
Seq Number: 3054583								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.22.18 13.45	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	06.22.18 13.45	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	06.22.18 13.45	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.22.18 13.45	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	80	%	70-135	06.22.18 13.45		
o-Terphenyl		84-15-1	83	%	70-135	06.22.18 13.45		

LT Environmental, Inc., Arvada, CO

Sample Id:SW4Lab Sample Id:589937-005	Matrix: Soil Date Collected: 06.18.18 16.20	Date Received:06.21.18 10.16 Sample Depth:3 - 5 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3054711	Date Prep: 06.26.18 15.15	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.27.18 02.58	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.27.18 02.58	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.27.18 02.58	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.27.18 02.58	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.27.18 02.58	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.27.18 02.58	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.27.18 02.58	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	102	%	70-130	06.27.18 02.58		
1,4-Difluorobenzene		540-36-3	101	%	70-130	06.27.18 02.58		

LABORATORIES

Flagging Criteria

Page 138 of 145

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	oratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Received by OCD: 3/21/2023 7:35:43 AM

LT Environmental, Inc.

PLU 68

Analytical Method:	Inorganic Ai	nions by	EPA 300						Pı	rep Metho	od: E30	0P	
Seq Number:	3054604				Matrix:	Solid				Date Pre	ep: 06.2	5.18	
MB Sample Id:	7657314-1-E	BLK		LCS Sat	mple Id:	7657314-	1-BKS		LCS	D Sample	e Id: 765	7314-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Chloride		< 5.00	250	244	98	240	96	90-110	2	20	mg/kg	06.25.18 17:25	
Analytical Method:	Inorganic Ai	nions by	v EPA 300						Pı	rep Metho	od: E30	0P	
Seq Number:	3054604				Matrix:	Soil				Date Pre	ep: 06.2	5.18	

Parent Sample Id:	589935-001		MS Sa	mple Id:	589935-0	01 S		MS		Id: 5899	935-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Chloride	184	247	398	87	397	86	90-110	0	20	mg/kg	06.25.18 18:57	Х

Analytical Method:	Inorganic Anions by	y EPA 300						Pı	ep Metho	od: E30	0P	
Seq Number:	3054604			Matrix:	Soil				Date Pre	ep: 06.2	5.18	
Parent Sample Id:	589937-001		MS Sa	mple Id:	589937-0	01 S		MS	D Sample	Id: 5899	937-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Chloride	8.44	250	248	96	252	97	90-110	2	20	mg/kg	06.25.18 17:41	

Analytical Method:	TPH by S	PH by SW8015 Mod				Prep Method: TX1005P							
Seq Number:	3054583	3054583			Matrix: Solid				Date Prep: 06.22.18				
MB Sample Id:	7657318-1-BLK			LCS Sample Id: 7657318-1-BKS			LCSD Sample Id: 7657318-1-BSD						
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<15.0	1000	859	86	842	84	70-135	2	20	mg/kg	06.22.18 11:02	
Diesel Range Organics	(DRO)	<15.0	1000	879	88	890	89	70-135	1	20	mg/kg	06.22.18 11:02	
Surrogate		MB %Rec	MB Flag			LCS Flag	LCSE %Rec		_	imits	Units	Analysis Date	
1-Chlorooctane		78		1	03		103		7	0-135	%	06.22.18 11:02	
o-Terphenyl		83		9	96		100		7	0-135	%	06.22.18 11:02	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

$$\begin{split} LCS &= Laboratory \ Control \ Sample \\ A &= Parent \ Result \\ C &= MS/LCS \ Result \\ E &= MSD/LCSD \ Result \end{split}$$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

LT Environmental, Inc.

PLU 68

Analytical Method:	TPH by S	PH by SW8015 Mod				Prep Method: TX1005P							
Seq Number:	3054583				Matrix:	Soil				Date Pr	ep: 06.2	2.18	
Parent Sample Id:	589937-0	01		MS Sa	mple Id:	589937-0	01 S		MS	D Sample	e Id: 589	937-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<15.0	998	837	84	848	85	70-135	1	20	mg/kg	06.22.18 12:03	
Diesel Range Organics	(DRO)	<15.0	998	866	87	879	88	70-135	1	20	mg/kg	06.22.18 12:03	
Surrogate					AS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	00		106	i	70)-135	%	06.22.18 12:03	
o-Terphenyl					95		97		70)-135	%	06.22.18 12:03	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3054711 7657386-1-BLK	1B		Matrix: nple Id:	Solid 7657386-	1-BKS			rep Metho Date Pr D Sample	ep: 06.2	5030B 26.18 7386-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00202	0.101	0.100	99	0.0915	92	70-130	9	35	mg/kg	06.26.18 23:42	
Toluene	< 0.00202	0.101	0.105	104	0.0952	95	70-130	10	35	mg/kg	06.26.18 23:42	
Ethylbenzene	< 0.00202	0.101	0.104	103	0.0953	95	70-130	9	35	mg/kg	06.26.18 23:42	
m,p-Xylenes	< 0.00403	0.202	0.217	107	0.197	99	70-130	10	35	mg/kg	06.26.18 23:42	
o-Xylene	< 0.00202	0.101	0.100	99	0.0926	93	70-130	8	35	mg/kg	06.26.18 23:42	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSE %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	91		1	09		101		70)-130	%	06.26.18 23:42	
4-Bromofluorobenzene	93		1	01		93		7()-130	%	06.26.18 23:42	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3054711 589935-006	1B		Matrix: nple Id:	Soil 589935-0	06 S			rep Metho Date Pr D Sample	ep: 06.2	5030B 26.18 935-006 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP D	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0793	79	0.0599	59	70-130	28	35	mg/kg	06.27.18 00:16	Х
Toluene	< 0.00200	0.100	0.0617	62	0.0439	43	70-130	34	35	mg/kg	06.27.18 00:16	Х
Ethylbenzene	< 0.00200	0.100	0.0480	48	0.0291	29	70-130	49	35	mg/kg	06.27.18 00:16	XF
m,p-Xylenes	< 0.00401	0.200	0.0965	48	0.0610	30	70-130	45	35	mg/kg	06.27.18 00:16	XF
o-Xylene	< 0.00200	0.100	0.0454	45	0.0286	28	70-130	45	35	mg/kg	06.27.18 00:16	XF
Surrogate				-10-	MS Flag	MSD %Rec		_	imits	Units	Analysis Date	
1,4-Difluorobenzene			1	20		97		70)-130	%	06.27.18 00:16	
4-Bromofluorobenzene			ç	98		98		70)-130	%	06.27.18 00:16	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Setting the Standard since 1990 Stafford, Texas (281-240-4200)

HAIN OF CUSTODY Page

Stafford,Texas (281-240-4200)	San Antonio, Texas (210-509-3334)	Phoenix, Arizona (480-355-0900)
Dallas Texas (214-902-0300)	Midland, Texas (432-704-5251)	
	WWWW.Xenco.com	Xenco Quote # Xenco Job # SSY S
		Analytical Information * Matrix Codes
Client / Reporting Information	Project Information	
Environmental Int, - Permian	ile Project NamenNumber: PLW 68 / OIDALISOOD	W = Water S = Soil/Sed/Solid
Jos N AU & Wildim / why b3 Midhad TX	J Project Location: N/M	GW =Ground Water DW = Drinking Water
	Invoice To:	SW=Surface water SL=Sludge
Project Contact: Adrian Baker	PO Number:	
+	3800-046	TE P 14 WW= Waste Water WW= Waste Water
	Collection Number of preserved bottles	A=Alr
No. Field ID / Point of Collection Sample	# of	
		,
	VLAS - VLAS	
e ms		
4 5w3	1615 1 1 1 1 1 1	
5 SW4 4	*	4
σ		
7		
œ		
ω		
10 Turnarrund Time / Business dave)		
Same Day TAT 5 Day TAT	Level II Std QC Level IV (Full Data Pkg /raw data)	g /raw data)
Next Day EMERGENCY	Level III Std QC+ Forms TRRP Level IV	· · ·
2 Day EMERGENCY Contract TAT	Level 3 (CLP Forms) UST / RG -411	
3 Day EMERGENCY STANDUL A	TRRP Checklist	
TAT Starts Day received by Láb, if received by 5:00 pm	says F clistony wist be notimented below each time says as such assession we there accurate	
Relinquished by Sampler: Date	Date Time: / / / Received By: Relinquished By:	Date Time:
Relinquished by:		5 12 20
Kelinquished by: Date Time	Date Time: Recharder By: WC Custody Seal #	Preserved where applicable On the Coder Jempy Thermo Corr. Factor
Notice: Notice: Signature of this document and relinquishment of samples constitutes a vi losses or expenses incurred by the Client if such losses are due to circumstances beyond will be enforced unless previously negotiated under a fully executed client contract.	alid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be it	Notice: Netice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such bases are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be expliced to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be involced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

Final 1.000

Page 141 of 145

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide. Received by OCD: 3/21/2023 7:35:43 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Date/ Time Received: 06/21/2018 10:16:00 AM Work Order #: 589937

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used : R8

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	4.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	N/A	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 06/21/2018

Checklist reviewed by: Jessign Whamee

Jessica Kramer

Date: 06/21/2018

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

COMMENTS

Operator:	OGRID:
BOPCO, L.P.	260737
6401 Holiday Hill Rd	Action Number:
Midland, TX 79707	199079
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)
COMMENTS	·

COMMENTS

Created By		Comment Date
amaxwell	Historical document upload	3/21/2023

Page 144 of 145

Action 199079

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
BOPCO, L.P.	260737
6401 Holiday Hill Rd	Action Number:
Midland, TX 79707	199079
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)

CONDITIONS

Created By	Condition	Condition Date
amaxwell	None	3/21/2023

Action 199079