District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NCS1932437061
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EPIC Energy L.L.C	OGRID 320949
Contact Name Vanessa Fields	Contact Telephone 505-787-9100
Contact email vanessa@walsheng.net	Incident # (assigned by OCD) NCS1932437061
Contact mailing address 7415 East Main Street Farmington, NM 87402	

Location of Release Source

Latitude 36.229099_

Longitude -107.584953_ (NAD 83 in decimal degrees to 5 decimal places)

Site Name State J-5 J-7 Tank Battery	Site Type Oil
Date Release Discovered: 10/24/2019	API# (if applicable) N/A

Unit Letter	Section	Township	Range	County	
C	11	23N	07W	Rio Arriba	

Surface Owner: State Federal Tribal Private (Name: _____)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil Volume Released (bbls) 87 BBLS		Volume Recovered (bbls)83 BBLS		
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)		
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No		
Condensate	Volume Released (bbls)	Volume Recovered (bbls)		
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)		
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)		
A truck was onsite whe	n the release occurred. All oil released remained inside of the release. Epic Energy began remediation efforts by	ons began when the valve to the tank was turned it broke. the bermed area. Notification was made to the NMOCD removing the impacted soil and transported to		

<i>Received by OCD: 3/30/20</i> form C-141	23 11:03:41 AM State of New Mexico		Page 2
nge 6	Oil Conservation Division	Incident ID	NCS1932437061
		District RP	
		Facility ID	
r	· · · · · · · · · · · · · · · · · · ·	Application ID	
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible part Release quantity over 25 BBLS	ty consider this a major release	?
🛛 Yes 🗌 No			
	totice given to the OCD? By whom? To whom? When the by email and phone notification on 10/24/2019	en and by what means (phone,	email, etc)?
	n by eman and phone notified for 10/24/2017		
	Т		
	Initial Response	e	
The responsible	party must undertake the following actions immediately unless they	could create a safety hazard that wou	ld result in injury
\square The source of the rel	ease has been stopped.		
·	as been secured to protect human health and the enviro	onment.	
Released materials h	ave been contained via the use of berms or dikes, abso	orbent pads, or other containme	nt devices.
	ecoverable materials have been removed and managed	A	
-	d above have <u>not</u> been undertaken, explain why:		
	,,,,		
	IAC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have		
	nt area (see 19.15.29.11(A)(5)(a) NMAC), please attac		
I hereby certify that the info	umation given above is true and complete to the best of my	knowledge and understand that nu	regions to OCD rules and

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:Regulatory Specialist
Signature:	Date:11/01/2019
email:vanessa@walsheng.net	Telephone: _505-787-9100
OCD Only	
Received by:	Date:

Site Assessment/Characterization

Page 3 of 46

Page 6

Received by OCD: 3 Form C-141

Oil Conservation Division

Incident ID	NCS1932437061
District RP	
Facility ID	
Application ID	

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?		
Did this release impact groundwater or surface water?		
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No	
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	□ Yes 🛛 No	
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?		
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No □ Yes ⊠ No	
Are the lateral extents of the release within 300 feet of a wetland?		
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔀 No	
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No	
Are the lateral extents of the release within a 100-year floodplain?	🗋 Yes 🛛 No	
	🗌 Yes 🔀 No	
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No	

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklis	E Each of the following items must be included in the	report

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD:	3/30/2023 11:03:41 AM State of New I				Page 4 of 46
Page 6	Oil Conservatior			Incident ID	NCS1932437061
I hereby certify that regulations all oper public health or the failed to adequately	t the information given above is true and co ators are required to report and/or file certa environment. The acceptance of a C-141 v investigate and remediate contamination t eptance of a C-141 report does not relieve t	omplete to the best of my kn ain release notifications and report by the OCD does not that pose a threat to groundw	perform co relieve the /ater, surfac	rrective actions for rele operator of liability sho ce water, human health	eases which may endanger ould their operations have or the environment. In
Printed Name:	Vanessa Fields	Title:Regulatory	y Complia	nce Manager	
Signature:		Date:	_5/20/202	20	
email:vanessa(@walsheng.net	Telephone:	_505-787	-9100	
OCD Only Received by:	Jocelyn Harimon	Dat	e:03	/30/2023	

Oil Conservation Division

	Page 5 of 4	46
Incident ID	NCS1932437061	
District RP		
Facility ID		
Application ID		

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name:
OCD Only
Received by: Jocelyn Harimon Date: 03/30/2023
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.
Closure Approved by: Nelson Velez Date: 05/02/2023 Printed Name: Nelson Velez Title: Environmental Specialist – Adv
Printed Name: Nelson Velez Title: Environmental Specialist – Adv

State J 5-7 Tank Battery NCS1932437061 Summary of Events

On October 24, 2019 Epic Energy was onsite to pull the water tank when operations began when the valve to the tank was turned it broke. An Oil truck was onsite when the release occurred and was able to collect all standing liquids. All oil released remained inside the bermed area while all standing fluid. Notification was made to the NMOCD and State Land Office of the release. Epic Energy began remediation efforts by removing the impacted soil and transported to Envirotech Land Farm. Confirmation samples were collected on December 26, 2019. Further remediation was conducted on the South portion and Final confirmation sample was collected on April 8, 2020. A representative from the NMOCD and/or Surface Agency was not present during the sampling event. The composite sample was transported via ice to Envirotech Lab and was tested in accordance with NMOCD 19.15.29 Table 1 requirements.

Depth to groundwater being over 100' based on the I water reports from the New Mexico Engineers State Water data base and a test well drilled on Enduring/WPX Chaco 163H and attached sitting criteria.

Sample Criteria	BTEEX 8260	Benzene	Diesel Range	Gasoline Range	Oil Range	Chloride
North	Non-	Non-	Non-	Non-	Non-	Non-
	Detect	Detect	Detect	Detect	Detect	Detect
Middle	Non-	Non-	Non-	Non-	Non-	Non-
	Detect	Detect	Detect	Detect	Detect	Detect
South	15.1 mg/kg	Non-	20,500	127	4,070	Non-
		Detect	mg/kg	mg/kg	mg/kg	Detect
South	Non-	Non-	Non-	Non-	Non-	Non-
Re-Sample	Detect	Detect	Detect	Detect	Detect	Detect

(Please see attached sitting criteria)

Closure Criteria Sampling Standards

		Table I	
	Closure Criteria for	Soils Impacted by a Release	
Minimum depth below any point within the horizontal boundary of the release to ground water less than 10,000 mg/l TDS	Constituent	Method*	Limit**
\leq 50 feet	Chloride***	EPA 300.0 or SM4500 Cl B	600 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg
51 feet-100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	10,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg
>100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	20,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg

Chaco 163H Depth to Groundwater Reference

New Mexico Office of the State Engineer Water Column/Average Depth to Water (R=POD has (A CLW##### in the POD suffix indicates the been replaced. POD has been replaced O=orphaned, (quarters are 1=NW 2=NE 3=SW 4=SE) C=the file is & no longer serves a water right file.) closed) (quarters are smalles) to largest) (NAD83 UTM in meters) (In feet) POD 0.0.0 Depth Depth, Water Code Subbasin County 6416 4 Sec Tws Rng POD Number X Y Well Water Column - -SJ 01507 RA 3 3 4 10 23N 07W 269889 4013098* 1709 900 809 SJ 02233 RA 1 1 2 15 23N 07W 269856 4012864* 1100 SJ 02233 CLW223636 0 RA 1 1 2 15 23N 07W 269856 4012864* 1100 Average Depth to Water: 900 feet Minimum Depth: 900 feet Maximum Depth: 900 feet Record Count: 3 PLSS Search:

Township: 23N Range: 07W

Depth to Groundwater Reference > 100'

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)

No records found.

Section(s): 11

Township: 23N Range: 07W

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/28/20 3:12 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Released to Imaging: 5/2/2023 12:51:39 PM

State J 5-7 Distance to Surface Water

State J 5-7 Sample Points 3 (5) point Composite Samples Collected

Released to Imaging: 5/2/2023 12:51:39 PM

Released to Imaging: 5/2/2023 12:51:39 PM

National Flood Hazard Layer FIRMette

Legend

Page 18 of 46

Received by OCD: 3/30/2023 11:03:41 AM

Analytical Report

Report Summary

Client: Epic Energy

Samples Received: 12/26/2019 Job Number: 18012-0006 Work Order: P912079 Project Name/Location: State J 517

Report Reviewed By:

Walter Hindenn

Date: 1/3/20

Walter Hinchman, Laboratory Director

Envirotech Inc. certifies the test results meet all requirements of TNI unless footnoted otherwise. Statement of Data Authenticity: Envirotech, Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. Envirotech, Inc, holds the Utah TNI certification NM009792018-1 for the data reported. Envirotech, Inc, holds the Texas TNI certification T104704557-19-2 for the data reported.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

Labadmin@envirotech-inc.com

envirotech-inc.com

Page 1 of 11

Page 19 of 46

Epic Energy	Project Name:	State J 517	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	01/03/20 11:54

Analytical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
State J 517 North	P912079-01A	Soil	12/26/19	12/26/19	Glass Jar, 4 oz.
State J 517 Middle	P912079-02A	Soil	12/26/19	12/26/19	Glass Jar, 4 oz.
State J 517 South	P912079-03A	Soil	12/26/19	12/26/19	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Page 2 of 11

	the second s								
Epic Energy	Project	t Name:	State	J 517					
7420 Main Street	Project	1801	18012-0006					Reported:	
Farmington NM, 87402	Project	Project Manager: Michael Dean							54
		State	J 517 No	orth					
			79-01 (Sc	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-	-130	1953009	12/30/19	01/01/20	EPA 8260B	
Surrogate: Toluene-d8		103 %	70-	-130	1953009	12/30/19	01/01/20	EPA 8260B	
Surrogate: Bromofluorobenzene		97.3 %	70-	-130	1953009	12/30/19	01/01/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/O	RO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	1953003	12/30/19	12/30/19	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	1953003	12/30/19	12/30/19	EPA 8015D	
Surrogate: n-Nonane		74.9 %	50-	-200	1953003	12/30/19	12/30/19	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-	130	1953009	12/30/19	01/01/20	EPA 8015D	
Surrogate: Toluene-d8		103 %	70-	130	1953009	12/30/19	01/01/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.3 %	70-	130	1953009	12/30/19	01/01/20	EPA 8015D	
Anions by 300.0/9056A							_		
Chloride	ND	20.0	mg/kg	1	1953014	12/31/19	01/02/20	EPA 300.0/9056A	

Ph (505) 632-0615 Fx (505) 632-1865

Epic Energy	Project	t Name:	State	J 517					
7420 Main Street	Project	Project Number:		2-0006	Reported:				
Farmington NM, 87402	Project	Project Manager: Michael Dean							54
			J 517 Mi		the second second				
		P9120 Reporting	79-02 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	70-	-130	1953009	12/30/19	01/01/20	EPA 8260B	
Surrogate: Toluene-d8		99.9 %	70-	-130	1953009	12/30/19	01/01/20	EPA 8260B	
Surrogate: Bromofluorobenzene		96.2 %	70-	-130	1953009	12/30/19	01/01/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/	ORO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	1953003	12/30/19	12/30/19	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	1953003	12/30/19	12/30/19	EPA 8015D	
Surrogate: n-Nonane		84.5 %	50-	-200	1953003	12/30/19	12/30/19	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	1953009	12/30/19	01/01/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	70-	130	1953009	12/30/19	01/01/20	EPA 8015D	
Surrogate: Toluene-d8		99.9 %	70-	130	1953009	12/30/19	01/01/20	EPA 8015D	
Surrogate: Bromofluorobenzene		96.2 %	70-	130	1953009	12/30/19	01/01/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	20.0	mg/kg	1	1953014	12/31/19	01/02/20	EPA 300.0/9056A	

5796 Highway	64, Farmington,	NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Epic Energy	Project	t Name:	State	e J 517					
7420 Main Street	Project	Project Number:		2-0006				Reported:	
Farmington NM, 87402	Project	t Manager:	Mich	nael Dean				01/03/20 11:	54
			J 517 Sc						
			79-03 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0500	mg/kg	2	1953009	12/30/19	01/03/20	EPA 8260B	
Toluene	3.62	0.0500	mg/kg	2	1953009	12/30/19	01/03/20	EPA 8260B	
Ethylbenzene	2.06	0.0500	mg/kg	2	1953009	12/30/19	01/03/20	EPA 8260B	
p,m-Xylene	10.8	0.100	mg/kg	2	1953009	12/30/19	01/03/20	EPA 8260B	
o-Xylene	4.26	0.0500	mg/kg	2	1953009	12/30/19	01/03/20	EPA 8260B	
Total Xylenes	15.1	0.0500	mg/kg	2	1953009	12/30/19	01/03/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		98.5 %	70	-130	1953009	12/30/19	01/03/20	EPA 8260B	
Surrogate: Toluene-d8		105 %	70	-130	1953009	12/30/19	01/03/20	EPA 8260B	
Surrogate: Bromofluorobenzene		102 %	70	-130	1953009	12/30/19	01/03/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DR	O/ORO								
Diesel Range Organics (C10-C28)	20500	125	mg/kg	5	1953003	12/30/19	12/30/19	EPA 8015D	
Oil Range Organics (C28-C40)	4070	250	mg/kg	5	1953003	12/30/19	12/30/19	EPA 8015D	
Surrogate: n-Nonane	12	650 %	50-	-200	1953003	12/30/19	12/30/19	EPA 8015D	<i>S3</i>
Nonhalogenated Organics by 8015 - GR	0								
Gasoline Range Organics (C6-C10)	127	40.0	mg/kg	2	1953009	12/30/19	01/03/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		98.5 %	70-	-130	1953009	12/30/19	01/03/20	EPA 8015D	
Surrogate: Toluene-d8		105 %	70-	-130	1953009	12/30/19	01/03/20	EPA 8015D	
Surrogate: Bromofluorobenzene		102 %	70-	-130	1953009	12/30/19	01/03/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	20.0	mg/kg	1	1953014	12/31/19	01/02/20	EPA 300.0/9056A	-

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com Labadmin@envirotech-inc.com

Page 5 of 11

Released to Imaging: 5/2/2023 12:51:39 PM

Epic Energy	Project Name:	State J 517	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	01/03/20 11:54

Volatile Organic Compounds by 8260 - Quality Control

Envirotech Analytical Laboratory

			·		v					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1953009 - Purge and Trap EPA 5030A										
Blank (1953009-BLK1)				Prepared: 1	2/30/19 1 A	Analyzed: 0	1/01/20 0			
Benzene	ND	0.0250	mg/kg							
Toluene	ND	0.0250								
Ethylbenzene	ND	0.0250								
p,m-Xylene	ND	0.0500								
o-Xylene	ND	0.0250								
Total Xylenes	ND	0.0250								
Surrogate: 1,2-Dichloroethane-d4	0.493		"	0.500		98.6	70-130			
Surrogate: Toluene-d8	0.503		"	0.500		101	70-130			
Surrogate: Bromofluorobenzene	0.456		"	0.500		91.2	70-130			
LCS (1953009-BS1)				Prepared: 1	2/30/19 1 A	analyzed: 0	1/01/20 0			
Benzene	2.19	0.0250	mg/kg	2.50		87.6	70-130			
Toluene	2.19	0.0250	"	2.50		87.6	70-130			
Ethylbenzene	2.29	0.0250		2.50		91.8	70-130			
o,m-Xylene	4.44	0.0500	н	5.00		88.8	70-130			
p-Xylene	2.21	0.0250	"	2.50		88.3	70-130			
Fotal Xylenes	6.65	0.0250	"	7.50		88.7	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.499		11	0.500		99.8	70-130			
Surrogate: Toluene-d8	0.508		"	0.500		102	70-130			
Surrogate: Bromofluorobenzene	0.496		n	0.500		99.1	70-130			
Matrix Spike (1953009-MS1)	Sou	rce: P912078-	01	Prepared: 1	2/30/19 1 A	nalyzed: 0				
Benzene	2.20	0.0250	mg/kg	2.50	ND	87.9	48-131			
Toluene	2.23	0.0250		2.50	ND	89.3	48-130			
Ethylbenzene	2.31	0.0250		2.50	ND	92.6	45-135			
o,m-Xylene	4.45	0.0500		5.00	ND	89.1	43-135			
o-Xylene	2.21	0.0250		2.50	ND	88.6	43-135			
fotal Xylenes	6.67	0.0250	"	7.50	ND	88.9	43-135			
Surrogate: 1,2-Dichloroethane-d4	0.507		"	0.500		101	70-130			
Surrogate: Toluene-d8	0.517		"	0.500		103	70-130			
Surrogate: Bromofluorobenzene	0.501		"	0.500		100	70-130			
Matrix Spike Dup (1953009-MSD1)	Sou	rce: P912078-	01	Prepared: 1	2/30/19 1 A	nalyzed: 0	1/01/20 0			
Benzene	2.24	0.0250	mg/kg	2.50	ND	89.8	48-131	2.12	23	
oluene	2.36	0.0250	"	2.50	ND	94.5	48-130	5.63	24	
Ethylbenzene	2.46	0.0250	"	2.50	ND	98.4	45-135	6.12	27	
o,m-Xylene	4.74	0.0500	"	5.00	ND	94.7	43-135	6.10	27	
-Xylene	2.37	0.0250	"	2.50	ND	94.7	43-135	6.66	27	
Total Xylenes	7.10	0.0250	"	7.50	ND	94.7	43-135	6.29	27	
urrogate: 1,2-Dichloroethane-d4	0.482		"	0.500		96.4	70-130			
urrogate: Toluene-d8	0.520		"	0.500		104	70-130			
Surrogate: Bromofluorobenzene	0.513		"	0.500		104	70-130			
	11.010			0.500		105	70-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

Labadmin@envirotech-inc.com

envirotech-inc.com

	Epic Energy	Project Name:	State J 517	
	7420 Main Street	Project Number:	18012-0006	Reported:
L	Farmington NM, 87402	Project Manager:	Michael Dean	01/03/20 11:54

Nonhalogenated Organics by 8015 - DRO/ORO - Quality Control

Envirotech Analytical Laboratory

					•					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1953003 - DRO Extraction EPA 3570										
Blank (1953003-BLK1)				Prepared: 1	12/30/19 0 4	Analyzed: 1	2/30/19 1			
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							
Oil Range Organics (C28-C40)	ND	50.0								
Surrogate: n-Nonane	47.1		"	50.0		94.3	50-200			
LCS (1953003-BS1)				Prepared: 1	12/30/19 0 A	Analyzed: 1	2/30/19 1			
Diesel Range Organics (C10-C28)	461	25.0	mg/kg	500		92.2	38-132			
Surrogate: n-Nonane	47.6		"	50.0		95.2	50-200			
Matrix Spike (1953003-MS1)	Sou	rce: P912078-	01	Prepared: 1	2/30/19 0 A	Analyzed: 1	2/30/19 2			
Diesel Range Organics (C10-C28)	663	25.0	mg/kg	500	148	103	38-132			
Surrogate: n-Nonane	56.9		"	50.0		114	50-200			
Matrix Spike Dup (1953003-MSD1)	Sou	rce: P912078-	01	Prepared: 1	2/30/19 0 A	Analyzed: 1	2/30/19 2			
Diesel Range Organics (C10-C28)	622	25.0	mg/kg	500	148	94.9	38-132	6.25	20	
Surrogate: n-Nonane	56.6		"	50.0		113	50-200			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

Page 7 of 11

Epic Energy	Project Name:	State J 517	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	01/03/20 11:54

Nonhalogenated Organics by 8015 - GRO - Quality Control

Envirotech Analytical Laboratory

Result	Reporting		Spike	Courses					
	Limit	Units	Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Prepared: 1	2/30/19 1 A	analyzed: 0	1/01/20 0			
ND	20.0	mg/kg							
0.493		"	0.500		98.6	70-130	_		
0.503		"	0.500		101	70-130			
0.456		"	0.500		91.2	70-130			
			Prepared: 1	2/30/19 1 A	nalyzed: 0	1/01/20 0			
52.9	20.0	mg/kg	50.0		106	70-130			
0.505		"	0.500		101	70-130			
0.510		"	0.500		102	70-130			
0.484		"	0.500		96.7	70-130			
Sou	rce: P912078-0	01	Prepared: 1	2/30/19 1 A	nalyzed: 0	1/01/20 0			
53.0	20.0	mg/kg	50.0	ND	106	70-130			
0.478		"	0.500		95.5	70-130			
0.502		"	0.500		100	70-130			
0.487		"	0.500		97.4	70-130			
Sou	rce: P912078-0)1	Prepared: 1	2/30/19 1 A	nalyzed: 01	/01/20 0			
53.6	20.0	mg/kg	50.0	ND	107	70-130	1.18	20	
0.494		"	0.500		98.8	70-130			
0.503		"	0.500		101	70-130			
0.492		"	0.500		98.4	70-130			
	0.493 0.503 0.456 52.9 0.505 0.510 0.484 Sou 53.0 0.478 0.502 0.487 Sou 53.6 0.494 0.503	0.493 0.503 0.456 52.9 20.0 0.505 0.510 0.484 Source: P912078-0 53.0 20.0 0.478 0.502 0.487 Source: P912078-0 53.6 20.0 0.494 0.503	0.493 " 0.503 " 0.505 " 52.9 20.0 mg/kg 0.505 " 0.510 " 0.484 " 53.0 20.0 mg/kg 0.484 " 53.0 20.0 mg/kg 0.478 " 0.502 " 0.487 " 53.6 20.0 mg/kg 0.487 " 53.6 20.0 mg/kg 0.494 " " 0.503 " "	ND 20.0 mg/kg 0.493 " 0.500 0.503 " 0.500 0.456 " 0.500 0.456 " 0.500 0.456 " 0.500 0.505 " 0.500 0.505 " 0.500 0.510 " 0.500 0.484 " 0.500 0.484 " 0.500 0.478 " 0.500 0.478 " 0.500 0.487 " 0.500 0.487 " 0.500 0.487 " 0.500 0.487 " 0.500 0.487 " 0.500 0.487 " 0.500 0.494 " 0.500 0.503 " 0.500	ND 20.0 mg/kg 0.493 " 0.500 0.503 " 0.500 0.456 " 0.500 0.456 " 0.500 0.456 " 0.500 Prepared: 12/30/19 1 A 52.9 20.0 mg/kg 52.9 20.0 mg/kg 50.0 0.505 " 0.500 0.500 0.510 " 0.500 0.500 0.484 " 0.500 0.500 0.484 " 0.500 ND 0.478 " 0.500 0.0 0.478 " 0.500 0.600 0.487 " 0.500 0.487 53.6 20.0 mg/kg 50.0 ND 0.494 " 0.500 ND 0.503	ND 20.0 mg/kg 0.493 " 0.500 98.6 0.503 " 0.500 101 0.456 " 0.500 91.2 Prepared: 12/30/19 1 Analyzed: 0 52.9 20.0 mg/kg 50.0 106 0.505 " 0.500 101 0.510 " 0.500 102 0.484 " 0.500 96.7 Source: P912078-01 Prepared: 12/30/19 1 Analyzed: 01 53.0 20.0 mg/kg 50.0 ND 106 0.478 " 0.500 95.5 0.502 100 0.487 97.4 Source: P912078-01 Prepared: 12/30/19 1 Analyzed: 01 53.6 20.0 mg/kg 50.0 ND 100 0.487 " 0.500 97.4 100 0.487 98.8 0.503 101	0.493 " 0.500 98.6 70-130 0.503 " 0.500 101 70-130 0.456 " 0.500 91.2 70-130 0.456 " 0.500 91.2 70-130 0.456 " 0.500 101 70-130 0.456 " 0.500 102 70-130 52.9 20.0 mg/kg 50.0 106 70-130 0.505 " 0.500 101 70-130 0.510 " 0.500 102 70-130 0.484 " 0.500 96.7 70-130 0.478 " 0.500 ND 106 70-130 0.478 " 0.500 ND 106 70-130 0.478 " 0.500 ND 106 70-130 0.487 " 0.500 ND 100 70-130 0.487 " 0.500 97.4 70-130	ND 20.0 mg/kg 0.493 " 0.500 98.6 70-130 0.503 " 0.500 101 70-130 0.456 " 0.500 91.2 70-130 0.456 " 0.500 91.2 70-130 Prepared: 12/30/19 1 Analyzed: 01/01/20 0 52.9 20.0 mg/kg 50.0 106 70-130 0.505 " 0.500 101 70-130 0.510 " 0.500 102 70-130 0.484 " 0.500 96.7 70-130 53.0 20.0 mg/kg 50.0 ND 106 70-130 0.478 " 0.500 ND 106 70-130 0.502 " 0.500 95.5 70-130 0.487 " 0.500 97.4 70-130 0.487 " 0.500 97.4 70-130 0.487 " 0.500 ND	ND 20.0 mg/kg 0.493 " 0.500 98.6 70-130 0.503 " 0.500 101 70-130 0.456 " 0.500 91.2 70-130 0.456 " 0.500 91.2 70-130 Prepared: 12/30/19 1 Analyzed: 01/01/20 0 52.9 20.0 mg/kg 50.0 106 70-130 0.505 " 0.500 102 70-130 70-130 0.505 " 0.500 102 70-130 70-130 0.510 " 0.500 96.7 70-130 70-130 0.484 " 0.500 96.7 70-130 70-130 0.478 " 0.500 ND 106 70-130 0.478 " 0.500 95.5 70-130 0.487 " 0.500 97.4 70-130 0.487 " 0.500 97.4 70-130 0.487 "

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway	64.	Farmington.	NM	87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Page 8 of 11

Epic Energy	Project Name:	State J 517	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	01/03/20 11:54

Anions by 300.0/9056A - Quality Control

Envirotech Analytical Laboratory

					•					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1953014 - Anion Extraction EPA 30	0.0/9056A									
Blank (1953014-BLK1)				Prepared: 1	2/31/1914	Analyzed: 0	1/02/20 1			
Chloride	ND	20.0	mg/kg							
LCS (1953014-BS1)				Prepared: 1	2/31/19 1 A	Analyzed: 0	1/02/20 1			
Chloride	251	20.0	mg/kg	250		100	90-110			
Matrix Spike (1953014-MS1)	Sourc	e: P912078-	01	Prepared: 1	2/31/19 1 A	Analyzed: 0	1/02/20 1			
Chloride	338	20.0	mg/kg	250	57.5	112	80-120			
Matrix Spike Dup (1953014-MSD1)	Sourc	e: P912078-	01	Prepared: 1	2/31/19 1 A	Analyzed: 0	1/02/20 1			
Chloride	341	20.0	mg/kg	250	57.5	114	80-120	1.06	20	

QC Summary Report

Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values my differ slightly.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865	envirotech-inc.com
24 Hour Emergency Response Phone (800) 362-1879		Labadmin@envirotech-inc.com

Page 9 of 11

Epic Energy	Project Name:	State J 517	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	01/03/20 11:54

Notes and Definitions

S3 Surrogate spike recovery exceeded acceptance limits due to interfering target and/or non-target analytes.

ND	Analyte NOT DETECTED at or above the reporting limit	i,
----	--	----

NR Not Reported

RPD Relative Percent Difference

** Methods marked with ** are non-accredited methods.

Soil data is reported on an "as received" weight basis, unless reported otherwise.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com Labadmin@envirotech-inc.com

Released to Imaging: 5/2/2023 12:51:39 PM

.

atorysien virotech-inc.co

roject Manager: ルノレクサイズ L DEAN ddress: フイリグ ビ MAIN STREET Ad ty, State, Zip FARMINUTUN N.M. 81402 Cit	Report Attention port due by: ##### 1-3-20 tention: VANESSA FIELDS	Lab V		Labl	Jse O			TA	T	E	PA Program
roject Manager: ルノレクサイズ L DEAN ddress: フイリグ ビ MAIN STREET Ad ty, State, Zip FARMINUTUN N.M. 81402 Cit		Lab W	MOH								
ddress: 7415 E MAIN STREET Ad ty, State, Zip FARMINI TON N.M. 82402 Cit	tention: VANESSA FIELDS					Num		1D	3D	RCRA	CWA SDW
ty, State, Zip FARMINUTON N.M. 8:402 Cit		Pq	1207	9	19	612-	00000				
	dress: 7415 E MAIN		Sector management		Analy	sis an	d Metho	bd			State NM CO UT A
	y, State, Zip FARMINGTON N.M. 81402	15	15								NM CO UT A
	one: 505-787-9100	y 80	V 80			0.0					
mail: MICHAEL, DEAN & WALSHENE, NET EM	nail: VANESSA & WALSHEND, NET	90	qO	826(010	300	-				X
Time Date Matrix No Containers Sample ID	Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	VOC by 8260	Metals 6010	Chloride 300.0	TPH 418.1				Remarks
15mm 12.26.19 5 6 STATE J-51	1 NORTH 1		XX		eto	X					Normal
2011 12:2619 S G STATE J-5+	17 MIDDLE 2	x	xx	-	Ŕ	X					
30 Am 12.26.19 5 6 STATE J. 51	-7 Sount 3	X	x y	e	(in	X					
			_	_					_		
			_	-	-			$\left \right $			
			_	_	-			$\left \right $	_		
dditional Instructions:											
lield sampler), attest to the validity and authenticity of this sample. I am aware that the of collection is considered fraud and may be grounds for legal action. Sampled by:		, date or	_								e the day they are sampled o C on subsequent days.
Inquished by: (Signature) Date 12-22 Time	Received by: (Signature) Date	7	ime 1:25	PM	Rec	eiver	on ice:			e Only	
linquished by: (Signature) Date Time	Received by: (Signature) Date		ïme		T1 AVC	5 Ten	np °C	<u>T2</u>			<u>T3</u>
mple Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other	Containe	r Type:	g - gla	ass, p	- poly	/plast	ic ag - a	mher e	lass	V-VOA	
ite: Samples are discarded 30 days after results are reported unless other mples is applicable only to those samples received by the laboratory with	arrangements are made. Hazardous samples will be re	turned to	o client	or disr	osed o	f at the	client exp	ense. Th	ne repo	ort for the	analysis of the above

Received by OCD: 3/30/2023 11:03:41 AM

Analytical Report

Report Summary

Client: Epic Energy

Samples Received: 4/8/2020 Job Number: 18012-0006 Work Order: P004023 Project Name/Location: State J 517 TB South

Report Reviewed By:

Walter Hinden

Date: 4/13/20

Walter Hinchman, Laboratory Director

Envirotech Inc. certifies the test results meet all requirements of TNI unless footnoted otherwise. Statement of Data Authenticity: Envirotech, Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. Envirotech, Inc, holds the Utah TNI certification NM009792018-1 for the data reported. Envirotech, Inc, holds the Texas TNI certification T104704557-19-2 for the data reported.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com Labadmin@envirotech-inc.com

Page 1 of 9

Epic Energy	Project Name:	State J 517 TB South	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	04/13/20 12:00

Analytical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
State J 517 TB South	P004023-01A	Soil	04/08/20	04/08/20	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Epic Energy	Project	Name:	State	J 517 TB So	outh				
7420 Main Street	Project	Number:	1801	2-0006		Reported:			
Farmington NM, 87402	Project	Manager:	Mich	ael Dean			04/13/20 12:00		
		State J	517 TB S	South					
		P0040	23-01 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2015020	04/09/20	04/10/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2015020	04/09/20	04/10/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015020	04/09/20	04/10/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015020	04/09/20	04/10/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2015020	04/09/20	04/10/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2015020	04/09/20	04/10/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		107 %	50-	-150	2015020	04/09/20	04/10/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/	ORO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2015016	04/10/20	04/10/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2015016	04/10/20	04/10/20	EPA 8015D	
Surrogate: n-Nonane		90.6 %	50-	-200	2015016	04/10/20	04/10/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015020	04/09/20	04/10/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.4 %	50-	-150	2015020	04/09/20	04/10/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	20.0	mg/kg	1	2015022	04/09/20	04/09/20	EPA 300.0/9056A	

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Epic Energy	Project Name:	State J 517 TB South	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	04/13/20 12:00

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2015020 - Purge and Trap EPA 5030A										
Blank (2015020-BLK1)				Prepared: (04/09/20 0 A	Analyzed: 0	04/09/20 2			
Benzene	ND	0.0250	mg/kg							
Toluene	ND	0.0250	п							
Ethylbenzene	ND	0.0250								
o,m-Xylene	ND	0.0500								
o-Xylene	ND	0.0250								
Total Xylenes	ND	0.0250								
Surrogate: 4-Bromochlorobenzene-PID	8.50		н	8.00		106	50-150			
LCS (2015020-BS1)				Prepared: ()4/09/20 0 A	Analyzed: 0	4/09/20 2			
Benzene	4.11	0.0250	mg/kg	5.00		82.2	70-130			
foluene	4.43	0.0250	"	5.00		88.6	70-130			
Ethylbenzene	4.45	0.0250		5.00		89.0	70-130			
,m-Xylene	8.85	0.0500		10.0		88.5	70-130			
-Xylene	4.45	0.0250	11	5.00		88.9	70-130			
Total Xylenes	13.3	0.0250		15.0		88.6	0-200			
Surrogate: 4-Bromochlorobenzene-PID	8.64		n	8.00		108	50-150			
Matrix Spike (2015020-MS1)	Sou	rce: P004011-	03	Prepared: 0)4/09/20 0 A	Analyzed: 0	4/09/20 2			
Benzene	4.57	0.0250	mg/kg	5.00	ND	91.5	54.3-133			
oluene	4.94	0.0250	"	5.00	ND	98.8	61.4-130			
Ethylbenzene	4.99	0.0250		5.00	ND	99.8	61.4-133			
o,m-Xylene	9.91	0.0500		10.0	ND	99.1	63.3-131			
p-Xylene	4.95	0.0250	н	5.00	ND	99.1	63.3-131			
fotal Xylenes	14.9	0.0250	л	15.0	ND	99.1	0-200			
Surrogate: 4-Bromochlorobenzene-PID	8.71		"	8.00		109	50-150			
Matrix Spike Dup (2015020-MSD1)	Sou	rce: P004011-0	03	Prepared: 0)4/09/20 0 A	Analyzed: 0	4/10/20 0			
Benzene	4.42	0.0250	mg/kg	5.00	ND	88.4	54.3-133	3.41	20	
oluene	4.76	0.0250	"	5.00	ND	95.2	61.4-130	3.74	20	
Ethylbenzene	4.82	0.0250		5.00	ND	96.4	61.4-133	3.45	20	
,m-Xylene	9.56	0.0500		10.0	ND	95.6	63.3-131	3.59	20	
-Xylene	4.78	0.0250		5.00	ND	95.6	63.3-131	3.57	20	
Total Xylenes	14.3	0.0250		15.0	ND	95.6	0-200	3.59	200	
Surrogate: 4-Bromochlorobenzene-PID	8.69	anneor parille	"	8.00		109	50-150	0.000		
nan Arab Taharan II. Ina mana Abada Abada Mana Abada										

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Epic Energy	Project Name:	State J 517 TB South	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	04/13/20 12:00

Envirotech Analytical Laboratory

			v		v					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2015016 - DRO Extraction EPA 3570										
Blank (2015016-BLK1)				Prepared &	Analyzed:	04/09/20 0				
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							
Oil Range Organics (C28-C40)	ND	50.0								
Surrogate: n-Nonane	44.4		"	50.0		88.8	50-200			
LCS (2015016-BS1)				Prepared: ()4/09/20 0 A	Analyzed: 0	4/09/20 1			
Diesel Range Organics (C10-C28)	471	25.0	mg/kg	500		94.2	38-132			
Surrogate: n-Nonane	47.3		n	50.0		94.7	50-200			
Matrix Spike (2015016-MS1)	Sour	ce: P004024-	07	Prepared: 04/09/20 0 Analyzed: 04/09/20 1			4/09/20 1			
Diesel Range Organics (C10-C28)	520	25.0	mg/kg	500	30.3	97.9	38-132			
Surrogate: n-Nonane	44.7		и	50.0		89.3	50-200			
Matrix Spike Dup (2015016-MSD1)	Sour	ce: P004024-	07	Prepared: 0	04/09/20 0 A	Analyzed: 0	4/09/20 2			
Diesel Range Organics (C10-C28)	531	25.0	mg/kg	500	30.3	100	38-132	2.08	20	
Surrogate: n-Nonane	49.8		"	50.0		99.6	50-200			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway	64,	Farmington,	NM 87401	
--------------	-----	-------------	----------	--

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Epic Energy	Project Name:	State J 517 TB South	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	04/13/20 12:00

Nonhalogenated Organics by 8015 - GRO - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2015020 - Purge and Trap EPA 5030A	۱									
Blank (2015020-BLK1)				Prepared: (04/09/20 0 A	Analyzed: 0	4/09/20 2			
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg							
Surrogate: 1-Chloro-4-fluorobenzene-F1D	7.08		н	8.00		88.5	50-150			
LCS (2015020-BS2)				Prepared: (04/09/20 0 A	Analyzed: 0	4/09/20 2			
Gasoline Range Organics (C6-C10)	44.9	20.0	mg/kg	50.0		89.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-F1D	7.10		"	8.00		88.7	50-150			
Matrix Spike (2015020-MS2)	Sourc	ce: P004011-	03	Prepared: 04/09/20 0 Analyzed: 04/10/20 0			4/10/20 0			
Gasoline Range Organics (C6-C10)	46.5	20.0	mg/kg	50.0	ND	92.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.08		"	8.00		88.5	50-150			
Matrix Spike Dup (2015020-MSD2)	Sourc	ce: P004011-	03	Prepared: ()4/09/20 0 A	Analyzed: 0	4/10/20 0			
Gasoline Range Organics (C6-C10)	49.8	20.0	mg/kg	50.0	ND	99.7	70-130	6.98	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.25		"	8.00		90.6	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

Page 6 of 9

Anions by 300.0/9056A - Quality Control							
Farmington NM, 87402	Project Manager:	Michael Dean	04/13/20 12:00				
7420 Main Street	Project Number:	18012-0006	Reported:				
Epic Energy	Project Name:	State J 517 TB South					

Envirotech Analytical Laboratory

					v					
Analyte	Result	Reporting	11-:	Spike	Source	0/DEC	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2015022 - Anion Extraction EPA 3	00.0/9056A									
Blank (2015022-BLK1)				Prepared: 0	04/09/20 0 A	Analyzed: 0	4/09/20 2			
Chloride	ND	20.0	mg/kg							
LCS (2015022-BS1)				Prepared: 0	04/09/20 0 A	Analyzed: 0	4/09/20 2			
Chloride	249	20.0	mg/kg	250		99.5	90-110			
Matrix Spike (2015022-MS1)	Sourc	e: P004025-0	01	Prepared: 0)4/09/20 0 A	Analyzed: 0	4/09/20 2			
Chloride	254	20.0	mg/kg	250	ND	102	80-120			
Matrix Spike Dup (2015022-MSD1)	Sourc	e: P004025-0	01	Prepared: 0	04/09/20 0 A	Analyzed: 0	4/09/20 2			
Chloride	254	20.0	mg/kg	250	ND	102	80-120	0.102	20	

QC Summary Report

Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values my differ slightly.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865	envirotech-inc.c
24 Hour Emergency Response Phone (800) 362-1879		Labadmin@envirotech-inc.cc

Epic Energy	Project Name:	State J 517 TB South	
7420 Main Street	Project Number:	18012-0006	Reported:
Farmington NM, 87402	Project Manager:	Michael Dean	04/13/20 12:00

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
RPD	Relative Percent Difference
**	Methods marked with ** are non-accredited methods.

Soil data is reported on an "as received" weight basis, unless reported otherwise.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

	5796 Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865
-	24 Hour Emergency Response Phone (800) 362-1879	

Page 8 of 9

Released to Imaging: 5/2/2023 12:51:39 PM

Project I	nformati	on				Chain	of Cus	stody											Page _/	of
Client:	EPIC	TENER	LY LL	C	_	Report Attenti	ion		Lab Use Only						TAT		EPA Program			
Project: STATE J 5 ET TB SOUTH					Report due by: # 4-17-20			Lab	WO	ŧ		Job	Num	ber	11	D 3D	RCRA	CWA	SDWA	
Project Manager: MICHHEL L DEAN					_ <u>A</u>	Attention: VANESSA FIELDS			P004023				1801	2-0	006					0
Address: 7415 E MAIN STREET						Address: 7415 E MAIN			1						d Met	hod			Sta	ate
City, Sta	te, Zip F	ARMIN	ution N.	M. 8:40	2 C	City, State, Zip FARMINGTON N. M. 81402			15										NM CO	UTA
		20.0			D	hone: 5 767- 9105	3		/ 80	/ 80	-			0						
Email: /	IICH AEL	, DEAN	G WALS	HENE. N	ET EI	mail: VANESSA @ WAL	SHEN	6. NET	ROb	RO b	y 802	826(6010	e 300	8.1				X	
Time Sampled	Date Sampled	Matrix	No Containers	Sample ID)			Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0	TPH 418.1				Rem	narks
9:10Am	4-8-20	.5	6	STATE	3 5-7	TB South		1	X	×	X			X						
																	1			
															-		+			-
															+		+			
						19. (9. august 1. aug									_					
															+	-	-			
																	+-			
Additio	nal Instru	uctions:	L					I												
							,													
I, (field samp	ler), attest to	the validity a	nd authenticit	y of this sample	e. I am aware th	at tampering with or intentionally mislab	elling the	samplo location	n, date d	or			Sample	s requiri d packed	ng therma I in ice at a	preserva in avg ten	ition must	be received or but less than	n ice the day they a 6 °C on subsequent	
time of colle	ection is consi	dered traud a	nd may be gro	unds for legal a	action. Sampled	by: Flack	N V	In		-	_									
Min	hed by: (Sig	mature)	- Hate	-8-20	3:30P	" Rais Lopes	/	48	20	l	5:3	30	Rec	eived	l on ic	e:	Lab U	se Only N		
Relinquist	ned by: (Sig	(nature)	Date		Time	at tampering with or intentionally mislab by: <u><u><u><u></u></u><u><u></u><u><u></u></u><u><u></u><u><u></u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u>		Date		Time			T1 AVG	Ten	np °C	- 1			<u>T3</u>	
Sample Ma	trix: S - Soil	Sd - Solid, S	Sg - Sludge,	A - Aqueous,	O - Other			Containe	r Typ	e: g -	glas	s, p -	poly	plast	ic, ag	- amb	er glas	s, v - VO	A	
Note: Samp	ples are disc	arded 30 da	ys after resu	ults are repor	ted unless oth	er arrangements are made. Hazard		ples will be re	eturned	d to cli	ient or	dispo	sed of	at the	client e	expense	e. The re	eport for th	he analysis of t	he above
samples is	applicable o	nly to those	samples re	ceived by the	laboratory wi	th this COC. The liability of the labo	praotry is	limited to th	ie amo	unt pa	aid for	on the	e repo	rt.						
- >						-0.07.10.0-0.07.07.07.07.07.07.07.07.07.07.07.07.07														

5796 US Highway 64, Farmington, NM 87401 Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879

.

From:	Vanessa Fields
To:	Smith, Cory, EMNRD
Subject:	RE: Extension Request on Epic Energy State J 5&J7 tank Battery nCS1932437061
Date:	Thursday, March 19, 2020 7:35:00 AM

Thank you Cory!

Vanessa Fields

Regulatory Compliance Manager Walsh Engineering /Epic Energy LLC. O: 505-327-4892 C: 505-787-9100 vanessa@walsheng.net

From: Smith, Cory, EMNRD <Cory.Smith@state.nm.us>
Sent: Thursday, March 19, 2020 7:31 AM
To: Vanessa Fields <vanessa@walsheng.net>
Subject: RE: Extension Request on Epic Energy State J 5&J7 tank Battery nCS1932437061

Vanessa,

Sorry I missed your call yesterday I was in a meeting and forgot to return it!.

OCD approves your extension request for nCS1932437061 please submit the report no later than April 20, 2020

Thank you,

From: Vanessa Fields <<u>vanessa@walsheng.net</u>>
Sent: Wednesday, March 18, 2020 2:19 PM
To: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>
Subject: [EXT] RE: Extension Request on Epic Energy State J 5&J7 tank Battery nCS1932437061

Good afternoon Cory,

I am on in a mandated self-quarantine and will need a little more time to collect the final sample on the State J 5&7. The south portion is the only area that will need sampled.

Thank you,

Vanessa Fields

Regulatory Compliance Manager Walsh Engineering /Epic Energy LLC. O: 505-327-4892 C: 505-787-9100 vanessa@walsheng.net

From: Vanessa Fields
Sent: Tuesday, March 10, 2020 2:08 PM
To: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>
Cc: Adeloye, Abiodun <<u>aadeloye@blm.gov</u>>; Michael Dean <<u>michael.dean@walsheng.net</u>>
Subject: RE: Extension Request on Epic Energy State J 5&J7 tank Battery nCS1932437061

Good afternoon,

Due to weather Epic Energy is rescheduling the refenced sampling to Friday March 13, 2020.

Thank you,

Vanessa Fields

Regulatory Compliance Manager Walsh Engineering /Epic Energy LLC. O: 505-327-4892 C: 505-787-9100 vanessa@walsheng.net

From: Vanessa Fields
Sent: Monday, March 9, 2020 9:36 AM
To: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>
Cc: Adeloye, Abiodun <<u>aadeloye@blm.gov</u>>; Michael Dean <<u>michael.dean@walsheng.net</u>>
Subject: RE: Extension Request on Epic Energy State J 5&J7 tank Battery nCS1932437061

Good morning,

Epic Energy request final confirmation sampling for the State J 5 &J7 for Wednesday March 11, 2020 at 9:00am. Epic Energy will sample the Lybrook Federal #004 following the State J5&J7 sampling. The Federal #004 was a release from a BGT removal.

Please let me know if you have any questions.

Thank you, Vanessa Fields Regulatory Compliance Manager Walsh Engineering /Epic Energy LLC. O: 505-327-4892 C: 505-787-9100 vanessa@walsheng.net

From: Vanessa Fields
Sent: Monday, January 13, 2020 10:21 AM
To: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>
Subject: RE: Extension Request on Epic Energy State J 5&J7 tank Battery nCS1932437061

Thank you very much. I will include this in the final C-141.

Thank you,

Vanessa Fields

Regulatory Compliance Manager Walsh Engineering /Epic Energy LLC. O: 505-327-4892 C: 505-787-9100 vanessa@walsheng.net

From: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>
Sent: Monday, January 13, 2020 10:11 AM
To: Vanessa Fields <<u>vanessa@walsheng.net</u>>
Subject: RE: Extension Request on Epic Energy State J 5&J7 tank Battery nCS1932437061

Vanessa,

OCD approves Epics Energy request for additional remediation time due to weather. The completed closure plan is must be uploaded to the OCD portal no later than March 23, 2020.

Please include this approval in your Closure report.

Cory Smith Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 115 cory.smith@state.nm.us From: Vanessa Fields <<u>vanessa@walsheng.net</u>>
Sent: Wednesday, January 8, 2020 3:14 PM
To: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>
Subject: [EXT] Extension Request on Epic Energy State J 5&J7 tank Battery nCS1932437061

Good afternoon Cory,

Epic Energy is requesting a 60 day extension to continue remediation efforts on the State J5 & J7 tank battery due to continual hydrocarbons being identified and weather permitting. The north and middle sections of the excavation were non-detect. However, the South portion of the release area continues to display high hydrocarbons.

Thank you,

Vanessa Fields

Regulatory Compliance Manager Walsh Engineering /Epic Energy LLC. O: 505-327-4892 C: 505-787-9100 vanessa@walsheng.net

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:				
EPIC ENERGY, L.L.C.	372834				
332 Road 3100	Action Number:				
Aztec, NM 87410	202301				
	Action Type:				
	[C-141] Release Corrective Action (C-141)				
CONDITIONS					

Γ	Created	Condition	Condition
	By		Date
	nvelez	None	5/2/2023

CONDITIONS

Action 202301