Page 6

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following items must be included in the closure report.					
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC				
Photographs of the remediated site prior to backfill or photos of must be notified 2 days prior to liner inspection)	of the liner integ	rity if applicable (Note: appropriate OCD District office			
Laboratory analyses of final sampling (Note: appropriate ODC	District office m	nust be notified 2 days prior to final sampling)			
Description of remediation activities					
I hereby certify that the information given above is true and complet and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of a should their operations have failed to adequately investigate and rem human health or the environment. In addition, OCD acceptance of a compliance with any other federal, state, or local laws and/or regulat restore, reclaim, and re-vegetate the impacted surface area to the com accordance with 19.15.29.13 NMAC including notification to the OC	a release notificat a C-141 report by nediate contamina a C-141 report do tions. The responditions that exist CD when reclamations	ions and perform corrective actions for releases which y the OCD does not relieve the operator of liability ation that pose a threat to groundwater, surface water, es not relieve the operator of responsibility for nsible party acknowledges they must substantially ed prior to the release or their final land use in ation and re-vegetation are complete.			
Printed Name:	_ Title:				
Printed Name:	Date:				
OCD Only					
Received by: Jocelyn Harimon	Date:	01/25/2023			
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.					
Closure Approved by: <u>Robert Hamlet</u>	Date:	5/2/2023			
Printed Name: Robert Hamlet	Title:	Environmental Specialist - Advanced			

SITE INFORMATION

Closure Report Bear Bryant 31 Federal #001 Incident ID: nMLB1116755122 Eddy County, New Mexico Unit K Sec 31 T16S R29E 32.87556°, -104.11826°

Crude Oil Release Point of Release: Hole in Oil Tank Release Date: 05/30/2011 Volume Released: 240 Barrels of Crude Oil Volume Recovered: 220 Barrels of Crude Oil

CARMONA RESOURCES

Prepared for: Cimarex Energy Co. of Colorado 600 N. Marienfeld Street Suite 600 Midland, Texas 79701

> Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 415 Midland, Texas 79701

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 CONCLUSION

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	TEST TRENCH MAP	FIGURE 4	SAMPLE LOCATION
	APPEN	DICES	
APPENDIX A	TABLES		
APPENDIX B	PHOTOS		
APPENDIX C	INITIAL C-141 AND FI	NAL/NMOCD CO	DRRESPONDENCE
APPENDIX D	SITE CHARACTERIZATION AND GROUNDWATER		
APPENDIX E	LABORATORY REPOR	RTS	

January 6, 2023

New Mexico Oil Conservation Division 1220 South St, Francis Drive Santa Fe, New Mexico 87505

Re: Closure Report Bear Bryant 31 Federal #001 Cimarex Energy Co. of Colorado Site Location: Unit K, S31, T16S, R29E (Lat 32.87556°, Long -104.11826°) Eddy County, New Mexico

To whom it may concern:

On behalf of Cimarex Energy Co. of Colorado (Cimarex), Carmona Resources, LLC has prepared this letter to document site activities for the Bear Bryant 31 Federal #001. The site is located at 32.87556°, -104.11826° within Unit K, S31, T16S, R29E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the leak was discovered on May 30, 2011, caused by a small hole in an oil tank from internal corrosion. It resulted in approximately two hundred and forty (240) barrels of crude oil released, and two hundred and twenty (220) barrels of crude oil were recovered. The impacted area is located on the pad and is shown on Figure 4. The initial C-141 form is attached in Appendix C. This facility was reclaimed on December 12, 2022.

2.0 Site Characterization and Groundwater

The site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, one known water source is within a 0.50-mile radius of the location. The nearest identified well is approximately 1.33 miles Northwest of the site in S25, T16S, R28E and was drilled in 2015. The well has a reported depth to groundwater of 70' feet below the ground surface (ft bgs). A copy of the associated Summary Report is attached in Appendix D.

<u>3.0 NMAC Regulatory Criteria</u>

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).

• Chloride: 600 mg/kg.

4.0 Site Assessment Activities

On October 12, 2022, H&R Enterprises personnel were onsite to assess the site for reclamation purposes. Seven (7) trenches (TT-1 through TT-4, and TT-1B through TT-3B) were installed on the pad to total depths ranging from surface to 4.0' below the surface. See Figure 3 for the trench locations. Test Trench 1B (TT-1B) showed elevated chloride levels at 976 mg/kg at 1' below the surface however, confirmation samples were never collected after the area of TT-1B was excavated to 1'. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. Refer to Table 1.

On December 20, 2022, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts after the site was reclaimed. To assess the vertical and horizontal extent, six (6) sample points and four (4) horizontals sample points were advanced to depths ranging from the surface to 2' bgs inside the area of concern. See Figure 4 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

All samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

5.0 Conclusion

Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and Cimarex formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Mike Carmona Environmental Manager

Turnel Milua

Miranda Milwee

ha

Ashton Thielke Sr. Project Manager

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

APPENDIX A

•

Table 1CimarexBear Bryant 31 Federal #001Eddy County, New Mexico

				TPF	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	10/12/2022	0-1	ND	ND	ND	0	ND	ND	ND	ND	ND	64
TT-1	"	2.0	ND	ND	ND	0	ND	ND	ND	ND	ND	64
11-1	"	3.0	ND	ND	ND	0	ND	ND	ND	ND	ND	96
	"	4.0	ND	ND	ND	0	ND	ND	ND	ND	ND	32
	10/12/2022	0-1	ND	ND	ND	0	ND	ND	ND	ND	ND	288
TT 0	"	2.0	ND	ND	ND	0	ND	ND	ND	ND	ND	176
TT-2	"	3.0	ND	ND	ND	0	ND	ND	ND	ND	ND	48
	"	4.0	ND	ND	ND	0	ND	ND	ND	ND	ND	96
	10/12/2022	0-1	ND	ND	ND	0	ND	ND	ND	ND	ND	304
TT-3	"	2.0	ND	ND	ND	0	ND	ND	ND	ND	ND	176
11-3	"	3.0	ND	ND	ND	0	ND	ND	ND	ND	ND	144
	"	4.0	ND	ND	ND	0	ND	ND	ND	ND	ND	48
	10/12/2022	0-1	ND	ND	ND	0	ND	ND	ND	ND	ND	80
TT 4	"	2.0	ND	ND	ND	0	ND	ND	ND	ND	ND	80
TT-4	"	3.0	ND	ND	ND	0	ND	ND	ND	ND	ND	64
	"	4.0	ND	ND	ND	0	ND	ND	ND	ND	ND	16
	10/12/2022	0-1	ND	ND	ND	0	ND	ND	ND	ND	ND	976
TT-1B	"	2.0	ND	ND	ND	0	ND	ND	ND	ND	ND	80
11-18	"	3.0	ND	ND	ND	0	ND	ND	ND	ND	ND	96
	"	4.0	ND	ND	ND	0	ND	ND	ND	ND	ND	32
	10/12/2022	0-1	ND	ND	ND	0	ND	ND	ND	ND	ND	288
TT-2B	"	2.0	ND	ND	ND	0	ND	ND	ND	ND	ND	80
11-20	"	3.0	ND	ND	ND	0	ND	ND	ND	ND	ND	48
	"	4.0	ND	ND	ND	0	ND	ND	ND	ND	ND	32
	10/12/2022	0-1	ND	ND	ND	0	ND	ND	ND	ND	ND	112
TT-3B	"	2.0	ND	ND	ND	0	ND	ND	ND	ND	ND	64
11-30	"	3.0	ND	ND	ND	0	ND	ND	ND	ND	ND	112
	"	4.0	ND	ND	ND	0	ND	ND	ND	ND	ND	48
	ory Criteria ^A					100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft - feet

(TT) - Test Trench

(ND) - Analyte Not Detected

Removed

•

Table 2CimarexBear Bryant 31 Federal #001Eddy County, New Mexico

Sample D Date Dent MR O Total (mg/kg) (d00012) <		Dut	D. (1.(0)		TPF	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
S-1 " 1.5 <49.9	Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
'' 2.0 <49.9		12/20/2022	0-1	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	12.2
1/2 2.0 249.9 249.9 249.9 240.00199 20.00199 20.00199 20.00398 20.00404 20.00404 20.00404 20.00404 20.00404 20.00404 20.00404 20.00404 20.00408 20.00398 20.00398 20.00398 20.00398 20.00398	S-1	"	1.5	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	13.2
S-2 ' 1.5 <49.9		"	2.0	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	6.22
" 2.0 <49.8		12/20/2022	0-1	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	21.9
1/2 2.0 249.8 249.8 249.8 249.8 20.0199 20.00199 20.00199 20.00398 20.00400 20.00400 20.00400 20.00403 20.00403 20.00403 20.00403 20.00403 20.00404 20.00398 20.00398 20.00398 20.00398 20.00398 20.00398 20.00398 20.00398	S-2	"	1.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	42.5
S-3 " 1.5 <49.9		"	2.0	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	18.4
" 2.0 <50.0		12/20/2022	0-1	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	20.7
S-4 12/20/2022 0-1 <49.9	S-3	"	1.5	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	13.6
S-4 " 1.5 <49.8		"	2.0	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	12.9
" 2.0 <49.9		12/20/2022	0-1	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	21.3
S-5 12/20/2022 0-1 <49.9	S-4	"	1.5	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	20.0
S-5 " 1.5 <50.0		"	2.0	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	11.3
" 2.0 <49.9		12/20/2022	0-1	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	74.2
Image: Second	S-5	"	1.5	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	110
S-6 " 1.5 <50.0		"	2.0	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	85.5
" 2.0 <50.0		12/20/2022	0-1	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	43.0
H-1 12/20/2022 0-0.5 <49.9	S-6	"	1.5	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	17.1
H-2 12/20/2022 0-0.5 <49.9 <49.9 <49.9 <49.9 <0.00199 <0.00199 <0.00199 <0.00398 <0.00398 <5.00		"	2.0	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	9.70
	H-1	12/20/2022	0-0.5	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	14.2
	H-2	12/20/2022	0-0.5	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<5.00
IP3 IZZUIZUZZ 0-0.5 C45.3 C45.3 C45.3 C0.00200 C0.00200 C0.00333 C0.00333 <td>H-3</td> <td>12/20/2022</td> <td>0-0.5</td> <td><49.9</td> <td><49.9</td> <td><49.9</td> <td><49.9</td> <td><0.00200</td> <td><0.00200</td> <td><0.00200</td> <td><0.00399</td> <td><0.00399</td> <td>5.79</td>	H-3	12/20/2022	0-0.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	5.79
H-4 12/20/2022 0-0.5 <49.8 <49.8 <49.8 <49.8 <0.00201 <0.00201 <0.00201 <0.00402 <0.00402 <5.05	H-4	12/20/2022	0-0.5	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<5.05
Regulatory Criteria ^A 100 mg/kg 10 mg/kg - - 50 mg/kg 600 mg/kg (-) Not Analyzed - - - 50 mg/kg 600 mg/kg							100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft - feet

(S) - Sample Point

(H) - Horizontal Sample

APPENDIX B

PHOTOGRAPHIC LOG

Cimarex

PHOTOGRAPHIC LOG

Cimarex

Photograph No. 4 Facility: Bear Bryant 31 Federal #001 (05.30.2011) County: Eddy County, New Mexico Description: View Southeast of reclaimed area. View Southeast of reclaimed area. Bear Bryant 61 Fed Com 1 20 Fed Com 1

APPENDIX C

Received by OCD: 1/24/2023 4:31:26 PM	:				Page 18 of 14
District 1 1625 N. Freuch Dr., Hobbs, NM 88240		of New Mexico			Form C-141
District II 1301 W Grand Avenue, Artesia, NM 88210	ergy Minera	ls and Natural Reso	urces	R	evised October 10, 2003
District III	Öil Cons	ervation Division		Submit 2	Copies to appropriate
1000 Rio Biazos Road, Aztec, NM 87410 District IV		th St. Francis Dr.			Office in accordance with Rule 116 on back
1220 S St Francis Dr , Santa Fe, NM 87505	Santa	Fe, NM 87505		<u> </u>	side of form
30-015-34906 Release I	Notificati	on and Correct	tive Action	n .	
nMLB1116755122		OPERATOR		Initial Report	Final Report
Name of Company-Cimarex Energy	162683	Contact- James Tin			
Address-600 N Marienfeld Ste 600, Midland Tx 79 Facility Name-Bear Bryant 31 fed com 1	9/01	Telephone No. 575 Facility Type- Tank			
Surface Owner N	<u>/lineral Owne</u>	<u>r</u>		Lease No.	
		ON OF RELEAS			1.1.1
Unit Letter Section Township Range Feet fi 31 14-S 29 E 1850	om the Nor		om the East/ FWL	West Line County -	Eddy
K 165					
Latitude32.875	56	Longitude104.1	1826		
	NATUR	E OF RELEASE			
Type of Release- crude oil		Volume of Release		Volume Recovered-	220 bbls
Was Immediate Notice Given?			130/2011		
Was immediate Notice Given?	Not Require	If YES, To Whom ed Mike Bratcher 10:3		00 am 5-31-11	
				· · · · · · · · · · · · · · · · · · ·	
Was a Watercourse Reached?	:	If YES, Volume In	npacting the Wa	tercourse.	
If a Watercourse was Impacted. Describe Fully.*					
	1			RECE	VED
Describe Cause of Problem and Remedial Action Take Small hole in oil tank below circulating line above weld	seem from inte	erhal corrosion		JUN 1	2011
e				NMOCD A	RTESIA
Describe Area Affected and Cleanup Action Take All oil was contained inside berm. Berm is lined with pl	antid land up a t			t.	
An on was contained inside berni. Berni is fined with pr	astic, nad vac t	rack pick up on and mov	e to next off tan	IK	
I hereby certify that the information given above is true	and complete to	o the best of my knowled	dge and understa	and that pursuant to NN	4OCD rules and
regulations all operators are required to report and/or file public health or the environment. The acceptance of a C	e certain release	e notifications and perfo	rm corrective ac	tions for releases whic	h may endanger
should their operations have failed to adequately investig	gate and remed	iate contamination that r	bose a threat to g	ground water, surface w	ater, human health
or the environment. In addition, NMOCD acceptance of	a C-141 repor	t does not relieve the op	erator of respon	sibility for compliance	with any other
federal, state, or local laws and/or regulations.	i		CONSERV	VATION DIVISI	
a fame i	1				
Signature Mames Jam		Approved by District	d By Mile	1 Branne	-
Printed Name: James Tinney	, 1	Approved by District	Supervisor:-		
Title: Assistant Production Foreman	1 1 3	Approval Date: 6/10	1/2011	Expiration Date:	
E-mail Address. jtinney@cimarex.com		Conditions of Approv	1	Attache	d 🔲
Date: 3-13-11 Phone: 575-706-0095	. · . ·	Remediation per (OCD Rules &		—
* Attach Additional Sheets If Necessary	Gu	udelines. SUBMIT R	EMEDIATION	72	20 101
	PR	OPOSAL NOT LATE	R THAN:	\mathcal{A}^{μ}	RP-797
		7/16/2011			- /
			i		
Released to Imaging: 5/2/2023 2:57:31 PM	1		1		

Released to Imaging: 5/2/2023 2:57:31 PM

Received by OCD: 1/24/2023 4:31:26 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 19 of 141
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)				
Did this release impact groundwater or surface water?					
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No				
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No				
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No				
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No				
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No				
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No				
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No				
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No				
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No				
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No				
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No				

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/24/2023 4:31:26 PM Form C-141 State of New Mexico			Page 20 of 141				
Form C-141			Incident ID				
Page 4	Oil Conservation Division	l	District RP				
			Facility ID				
			Application ID				
regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name:	ormation given above is true and complete to the required to report and/or file certain release no ment. The acceptance of a C-141 report by the gate and remediate contamination that pose a th of a C-141 report does not relieve the operator of	otifications and perform co coCD does not relieve the areat to groundwater, surfa of responsibility for comp Title: Date:	orrective actions for rele e operator of liability sh- ace water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws			
OCD Only							
Received by: Joce	lyn Harimon	Date:01/2	25/2023				

Page 6

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following in	tems must be included in the closure report.				
A scaled site and sampling diagram as described in 19.15.29.1	A scaled site and sampling diagram as described in 19.15.29.11 NMAC				
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)				
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)				
Description of remediation activities					
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.					
Printed Name:	_ Title:				
Printed Name:	Date:				
email:	Telephone:				
OCD Only					
Received by: Jocelyn Harimon	Date: 01/25/2023				
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.					
Closure Approved by:	Date:				
Printed Name:					

APPENDIX D

Received by OCD: 1/24/2023 4:31:26 PM Nearest water well

AND THE REAL PROPERTY AND ADDRESS OF THE OWNER OF THE OWNER

Cimarex Energy Co. of Colorado

70' - Drilled 2015

A MANNA

110' - Drilled 1998

Bear Bryant 31 Federal #001 (05.30.2011)

34.28' - Drilled 1994

Released to Imaging: 5/2/2023 2:57:31 PM

LegendPage 23 of 141Image: Display transformed stressImage: Display transformed stress<t

Vilis :

(mg)

Received by OCD: 1/24/2023 4:31:26 PM Hign Karst Cimarex Energy Co. of Colorado

Gear Bryant 31 Federal #001 (05.30.2011)

Legend

Page 24 of 141

• Bear Bryant 31 Federal #001 (05.30.2011) 🯉 High

/ Medium

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	(-					2=NE a	3=SW 4 rgest)) AD83 UTM in me	eters)	(In feet)	
POD Number	POD Sub- Code basin C	ounty		Q 16	-	Sec	Tws	Rng		x	Y	Distance	-	-	Water Column
RA 12299 POD1	RA	ED	4	3	3	25	16S	28E	5808	332	3639215 🌍	2125	115	70	45
RA 09342	RA	ED	4	4	3	19	16S	29E	5827	737	3640640* 🌍	2752	220	110	110
											Avera	ge Depth to	Water:	90	feet
												Minimum	Depth:	70	feet
												Maximum	Depth:	110	feet
Record Count: 2															

UTMNAD83 Radius Search (in meters):

Easting (X): 582500

Northing (Y): 3637898

Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Point of Diversion Summary

			(1				E 3=SW (largest)	4=SE)		IT.	M in meters)	
Well Tag	рог) Number	(1				Tws	Rng		X	Y III IIIeleis)	
,, en rug		12299 POD1	4	3	3	25	16S	28E	58083	-	3639215	9
x Driller Lic	ense:	1058	Driller	Com	pan	y:	KE	I'S DR	AILLING &	k Pl	UMP SERVI	ICE
Driller Na	me:	CLINTON KEY										
Drill Start	Date:	09/21/2015	Drill Fi	inish	Dat	e:	09	0/23/20)15	Plu	g Date:	
Log File D	ate:	10/07/2015	PCW F	Rev D	ate:			So			Source:	Shallow
Ритр Тур	e:		Pipe Di	ischai	rge	Size:		Estimated Yield:			d: 30 GPM	
Casing Siz	e:	4.50	Depth '	Well:			115 feet			Depth Water:		70 feet
X	Wate	er Bearing Stratifi	cations:		То	рI	Bottom	Desc	cription			
					7	0	80	Sand	lstone/Grav	vel/	Conglomera	ite
					8	0	90	Shale	e/Mudston	e/S	iltstone	
					10	5	115	Othe	er/Unknow	n		
X		Casing Perfe	orations:		То	рI	Bottom					
					9	5	115					

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

12/20/22 7:48 AM

POINT OF DIVERSION SUMMARY

Received by QCD: 1/24/2023 4:31:26 PM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

• See the Water Data for the Nation Blog for the latest news and updates.

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list = • 325141104082301

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 325141104082301 17S.28E.02.424314

Eddy County, New Mexico

Latitude 32°51'41", Longitude 104°08'23" NAD27 Land-surface elevation 3,571 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the San Andres Limestone (313SADR) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measure
1948-12-03		D	62610		3541.83	NGVD29	Р	Z	2	
1948-12-03		D	62611		3543.37	NAVD88	Р	Z	2	
1948-12-03		D	72019	27.63			Р	Z	2	
1983-04-13		D	62610		3541.74	NGVD29	1	2	7	
1983-04-13		D	62611		3543.28	NAVD88	1	Z	2	
1983-04-13		D	72019	27.72			1	2	7	
1986-05-21		D	62610		3541.49	NGVD29	1	S	5	
1986-05-21		D	62611		3543.03	NAVD88	1	S	5	
1986-05-21		D	72019	27.97			1	S	5	
1989-01-30		D	62610		3540.89	NGVD29	1	S	5	
1989-01-30		D	62611		3542.43	NAVD88	1	S	5	
1989-01-30		D	72019	28.57			1	S	5	
1994-03-01		D	62610		3535.18	NGVD29	1	S	5	
1994-03-01		D	62611		3536.72	NAVD88	1	S	5	
1994-03-01		D	72019	34.28			1	9	5	

Received_by 65CD: 1/24/2023 4:31:26 PM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

Evalopation

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-12-20 09:54:13 EST 0.28 0.23 nadww01 USA.gov

.

New Mexico Office of the State Engineer **Point of Diversion Summary**

		• •									
		• •				0 /		(NAI			
POD	Number	Q64	Q16	Q4	Sec	Tws	Rng		Х	Y	
RA (09342	4	4	3	19	16S	29E	582	737	3640640*	
ense:	1064	Driller	Com	pan	y:	DE	LFOR	D W. MA	ARTI	N	
ne:	DELFORD MAI	RTIN									
Drill Start Date: 05/02/1998			inish	Dat	e:	05/03/1998			Plug Date:		
ate:	05/08/1998	PCW I	Rev D	ate				So	Shallow		
e:		Pipe D	ischa	rge	Size:			Es	d: 30 GPM		
Casing Size: 5.50			Well:			220 feet			Depth Water:		110 feet
Wate	r Bearing Stratif	ications:		То	p I	Bottom	n Des	cription			
				14	3	204	Sha	llow Allı	ıviun	n/Basin Fill	
	Casing Per	forations:		То	p I	Bottom					
				14	0	220)				
1	RA (ense: ne: Date: ate: e: e:	ne: DELFORD MAI Date: 05/02/1998 ate: 05/08/1998 e: e: 5.50 Water Bearing Stratif	POD NumberQ64RA 093424ense:1064Drillerne:DELFORD MARTINDate:05/02/1998Drill Fate:05/08/1998PCW Ie:Pipe D	POD NumberQ64 Q16RA 093424ense:1064Driller Commence:DELFORD MARTINDate:05/02/1998Drill Finishate:05/08/1998PCW Rcv De:Pipe Dischae:5.50Depth Well:Water Bearing Stratifications:	POD Number Q64 Q16 Q4 RA 09342 4 4 3 ense: 1064 Driller Companies ne: DELFORD MARTIN Date: 05/02/1998 Drill Finish Date ate: 05/08/1998 PCW Rcv Date: e: Pipe Discharge e: 5.50 Depth Well: Water Bearing Stratifications: To 14 Casing Perforations: To	POD NumberQ64 Q16 Q4 SecRA 09342443ense:1064Driller Company:ne:DELFORD MARTINDate:05/02/1998Drill Finish Date:ate:05/08/1998PCW Rcv Date:e:Pipe Discharge Size:e:5.50Depth Well:Vater Bearing Stratifications:Top I143	POD NumberQ64 Q16 Q4 SecTwsRA 0934244319168ense:1064Driller Company:DEne:DELFORD MARTINDete:0.000Date:05/02/1998Drill Finish Date:0.000ate:05/08/1998PCW Rcv Date:0.000e:Pipe Discharge Size:0.000e:5.50Depth Well:2.000Water Bearing Stratifications:TopBottom143204Casing Perforations:Top	POD NumberQ64 Q16 Q4 SecTwsRngRA 093424431916S29Eense:1064Driller Company:DELFORme:DELFORD MARTINDELFORD MARTINDELFORD MARTINDate:05/02/1998Drill Finish Date:05/03/1ate:05/08/1998PCW Rcv Date:220 feete:Pipe Discharge Size:220 feetwater Bearing Stratifications:TopBottomDes143204Sha	POD NumberQ64 Q16 Q4 SecTwsRngRA 093424431916S29E582ense:1064Driller Company:DELFORD W. MAne:DELFORD MARTINDELFORD MARTINDate:05/02/1998Drill Finish Date:05/03/1998ate:05/08/1998PCW Rcv Date:e:Pipe Discharge Size:e:5.50Depth Well:220 feetVater Bearing Stratifications:TopBottom143204Shallow AllaCasing Perforations:TopBottom	POD Number Q64 Q16 Q4 Sec Tws Rng X RA 09342 4 4 3 19 16S 29E 582737 ense: 1064 Driller Company: DELFORD W. MARTI ne: DELFORD MARTIN DELFORD W. MARTI Date: 05/02/1998 Drill Finish Date: 05/03/1998 Phoote and the second s	POD NumberQ64 Q16 Q4 SecTwsRngXYRA 093424431916S29E5827373640640*ense:1064Driller Company:DELFORD W. MARTINne:DELFORD MARTINDate:05/02/1998Drill Finish Date:05/03/1998Plug Date:ate:05/08/1998PCW Rcv Date:Source:e:Pipe Discharge Size:Estimated Yiele:5.50Depth Well:220 feetDepth Water:Ukater Bearing Stratifications:TopBottom143204Shallow Alluvium/Basin FillCasing Perforations:TopBottom

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/20/22 7:50 AM

POINT OF DIVERSION SUMMARY

New Mexico NFHL Data

December 20, 2022

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

APPENDIX E

Received by OCD: 1/24/2023 4:31:26 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701 Generated 12/31/2022 9:58:13 AM

JOB DESCRIPTION

Bear Bryant 31 Federal Com #001 SDG NUMBER Eddy Co, NM

JOB NUMBER

880-23046-1

Page 32 of 141

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Received by OCD: 1/24/2023 4:31:26 PM

Eurofins Midland

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 12/31/2022 9:58:13 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 34 of 141

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	20
	22
	29
Lab Chronicle	34
Certification Summary	40
Method Summary	41
Sample Summary	42
	43
	45
-	

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VO	A	
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	8
U	Indicates the analyte was analyzed for but not detected.	C C
HPLC/IC		9
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	10
U	Indicates the analyte was analyzed for but not detected.	
Glossary		1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	11

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Page 35 of 141

Eurofins Midland

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

TEQ

TNTC

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23046-1 SDG: Eddy Co, NM

Job ID: 880-23046-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-23046-1

Receipt

The samples were received on 12/22/2022 1:34 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.5°C

Receipt Exceptions

The following samples analyzed for method <TPH 8015> were received and analyzed from an unpreserved bulk soil jar.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-42831 and analytical batch 880-42773 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-42831 and analytical batch 880-42773 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-42386 and analytical batch 880-42572 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-42710 and analytical batch 880-42808 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-42711 and analytical batch 880-42899 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.
Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Client Sample ID: S-1 (0-1') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		12/28/22 14:45	12/30/22 12:17	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/28/22 14:45	12/30/22 12:17	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/28/22 14:45	12/30/22 12:17	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/28/22 14:45	12/30/22 12:17	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/28/22 14:45	12/30/22 12:17	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/28/22 14:45	12/30/22 12:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				12/28/22 14:45	12/30/22 12:17	1
1,4-Difluorobenzene (Surr)	87		70 - 130				12/28/22 14:45	12/30/22 12:17	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/29/22 13:59	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		12/28/22 17:11	12/29/22 04:09	1
Diesel Range Organics (Over C10-C28)	<49.9	U F1	49.9		mg/Kg		12/28/22 17:11	12/29/22 04:09	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 04:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	134	S1+	70 - 130				12/28/22 17:11	12/29/22 04:09	1
o-Terphenyl	144	S1+	70 - 130				12/28/22 17:11	12/29/22 04:09	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.2		5.04		mg/Kg			12/30/22 05:37	1
lient Sample ID: S-1 (1'.5)							Lab Sam	ple ID: 880-2	3046-2
ate Collected: 12/20/22 00:00								Matri	x: Solid
ate Received: 12/22/22 13:34									
Method: SW846 8021B - Volatile				MD	11-14	-	Drenered	Analyzad	DH F
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202		0.00202		mg/Kg		12/28/22 14:45	12/30/22 12:38	1
Toluene	< 0.00202		0.00202		mg/Kg		12/28/22 14:45	12/30/22 12:38	1
Ethylbenzene	<0.00202		0.00202		mg/Kg		12/28/22 14:45	12/30/22 12:38	1
n-Xvlene & p-Xvlene	< 0.00404	U	0.00404		mg/Kg		12/28/22 14:45	12/30/22 12:38	

m-Xylene & p-Xylene o-Xylene	<0.00404 <0.00202		0.00404 0.00202	mg/Kg mg/Kg	12/28/22 14:45 12/28/22 14:45	12/30/22 12:38 12/30/22 12:38	1
Xylenes, Total	<0.00202	-	0.00202	mg/Kg	12/28/22 14:45	12/30/22 12:38	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	% <i>Recovery</i>	Qualifier	Limits 70 - 130		Prepared 12/28/22 14:45	Analyzed 12/30/22 12:38	Dil Fac

Eurofins Midland

Page 37 of 141

Matrix: Solid

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-1

Released to Imaging: 5/2/2023 2:57:31 PM

Project/Site: Bear Bryant 31 Federal Com #001

Client Sample Results

Page 38 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Matrix: Solid

5

Lab Sample ID: 880-23046-2

Client Sample ID: S-1 (1'.5)

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/29/22 13:59	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9		mg/Kg		12/28/22 17:11	12/29/22 05:14	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 05:14	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 05:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				12/28/22 17:11	12/29/22 05:14	1
o-Terphenyl	120		70 - 130				12/28/22 17:11	12/29/22 05:14	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13.2	F1	5.01		mg/Kg			12/30/22 05:45	1
lient Sample ID: S-1 (2')								ple ID: 880-2	

Date Received: 12/22/22 13:34

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 12:58	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 12:58	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 12:58	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 12:58	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 12:58	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				12/28/22 14:45	12/30/22 12:58	1
1,4-Difluorobenzene (Surr)	85		70 - 130				12/28/22 14:45	12/30/22 12:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/29/22 13:59	1
Method: SW846 8015B NM - D	iesel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9		mg/Kg		12/28/22 17:11	12/29/22 05:36	1

· ···· , ··					-		· · · · · ,	
Gasoline Range Organics	<49.9	U *1	49.9	mg/Kg	_	12/28/22 17:11	12/29/22 05:36	
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		12/28/22 17:11	12/29/22 05:36	
C10-C28)								

Eurofins Midland

Client Sample ID: S-1 (2')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 05:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	131	S1+	70 - 130				12/28/22 17:11	12/29/22 05:36	
o-Terphenyl	141	S1+	70 - 130				12/28/22 17:11	12/29/22 05:36	
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	pluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	6.22		5.05		mg/Kg			12/30/22 06:12	
lient Sample ID: S-2 (0-1)							Lab Sam	ple ID: 880-2	3046-4
• • • • •							Lab Sam	-	
Date Collected: 12/20/22 00:00							Lab Sam	-	
bate Collected: 12/20/22 00:00 bate Received: 12/22/22 13:34	Organic Comp	ounds (GC)					Lab Sam	-	3046-4 ix: Solic
ate Collected: 12/20/22 00:00 ate Received: 12/22/22 13:34 Method: SW846 8021B - Volatile	•	ounds (GC) Qualifier	RL	MDL	Unit	D	Lab Sam	-	
ate Collected: 12/20/22 00:00 ate Received: 12/22/22 13:34 Method: SW846 8021B - Volatile Analyte	•	Qualifier		MDL	Unit mg/Kg	<u>D</u>		Matri	ix: Solic
ate Collected: 12/20/22 00:00 ate Received: 12/22/22 13:34 Method: SW846 8021B - Volatile Analyte Benzene	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Matri	ix: Solid
ate Collected: 12/20/22 00:00 ate Received: 12/22/22 13:34 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.00199	Qualifier U U	RL 0.00199	MDL	mg/Kg	<u> </u>	Prepared 12/28/22 14:45	Matri Analyzed 12/30/22 13:19	ix: Solid
ate Collected: 12/20/22 00:00 ate Received: 12/22/22 13:34 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Result <0.00199 <0.00199	Qualifier U U U	RL 0.00199 0.00199	MDL	mg/Kg mg/Kg	D	Prepared 12/28/22 14:45 12/28/22 14:45	Matri Analyzed 12/30/22 13:19 12/30/22 13:19	ix: Solie
Client Sample ID: S-2 (0-1') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00199	Qualifier U U U	RL 0.00199 0.00199 0.00199	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 12/28/22 14:45 12/28/22 14:45 12/28/22 14:45	Matri Analyzed 12/30/22 13:19 12/30/22 13:19 12/30/22 13:19	ix: Solid

Surrogate	%Recovery	Qualifier	Limits	Prepared An	alyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130	12/28/22 14:45 12/30	/22 13:19	1
1,4-Difluorobenzene (Surr)	66	S1-	70 - 130	12/28/22 14:45 12/30	/22 13:19	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/31/22 10:35	1

Method: SW846 8015 NM - Diesel	Range Organics (DRO) (GC)					
Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8 U	49.8	mg/Kg			12/29/22 13:59	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U *1	49.8		mg/Kg		12/28/22 17:11	12/29/22 05:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		12/28/22 17:11	12/29/22 05:58	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/28/22 17:11	12/29/22 05:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130				12/28/22 17:11	12/29/22 05:58	1
o-Terphenyl	131	S1+	70 - 130				12/28/22 17:11	12/29/22 05:58	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - Se	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.9		4.96		mg/Kg			12/30/22 06:20	1

Job ID: 880-23046-1 SDG: Eddy Co, NM Lab Sample ID: 880-23046-3 Matrix: Solid

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Client Sample ID: S-2 (1.5') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 13:40	
Foluene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 13:40	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 13:40	1
n-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/28/22 14:45	12/30/22 13:40	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 13:40	1
Kylenes, Total	<0.00399	U	0.00399		mg/Kg		12/28/22 14:45	12/30/22 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				12/28/22 14:45	12/30/22 13:40	1
1,4-Difluorobenzene (Surr)	91		70 - 130				12/28/22 14:45	12/30/22 13:40	1
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Diese									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/29/22 13:59	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		12/28/22 17:11	12/29/22 06:20	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 06:20	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 06:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				12/28/22 17:11	12/29/22 06:20	1
o-Terphenyl	120		70 - 130				12/28/22 17:11	12/29/22 06:20	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	42.5		5.04		mg/Kg			12/30/22 06:47	1
lient Sample ID: S-2 (2')							Lab Sam	ple ID: 880-2	3046-6
ate Collected: 12/20/22 00:00								Matri	ix: Solid
ate Received: 12/22/22 13:34									
Method: SW846 8021B - Volatile	• •								
		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte				WDL	Unit		Tiopaloa	Analyzeu	Dirrac
-		U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 14:00	1
Analyte Benzene Toluene		U					<u> </u>		

m-Xylene & p-Xylene	<0.00398 U	J	0.00398	mg/Kg	12/28/22 14:45	12/30/22 14:00	1
o-Xylene	<0.00199 U	J	0.00199	mg/Kg	12/28/22 14:45	12/30/22 14:00	1
Xylenes, Total	<0.00398 U	J	0.00398	mg/Kg	12/28/22 14:45	12/30/22 14:00	1
Surrogate	%Recovery Q	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery Q 83	Qualifier	Limits 70 - 130		Prepared 12/28/22 14:45	Analyzed 12/30/22 14:00	Dil Fac

Eurofins Midland

Page 40 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-5

Matrix: Solid

5

Project/Site: Bear Bryant 31 Federal Com #001

Job ID: 880-23046-1 SDG: Eddy Co, NM

Matrix: Solid

5

Lab Sample ID: 880-23046-6

Client Sample ID: S-2 (2')

Client: Carmona Resources

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			12/29/22 13:59	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U *1	49.8		mg/Kg		12/28/22 17:11	12/29/22 06:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		12/28/22 17:11	12/29/22 06:41	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/28/22 17:11	12/29/22 06:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130				12/28/22 17:11	12/29/22 06:41	1
o-Terphenyl	121		70 - 130				12/28/22 17:11	12/29/22 06:41	1
Method: MCAWW 300.0 - Anions,	Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18.4		4.98		mg/Kg			12/30/22 06:55	1
lient Sample ID: S-3 (0-1')							Lab Sam	ple ID: 880-2	3046-7
ate Collected: 12/20/22 00:00								Matri	ix: Solid
ate Received: 12/22/22 13:34									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 14:21	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 14:21	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 14:21	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/28/22 14:45	12/30/22 14:21	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 14:21	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/28/22 14:45	12/30/22 14:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				12/28/22 14:45	12/30/22 14:21	1
1,4-Difluorobenzene (Surr)	77		70 _ 130				12/28/22 14:45	12/30/22 14:21	1

Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/29/22 13:59	1
- Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9		mg/Kg		12/28/22 17:11	12/29/22 07:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 07:03	1
C10-C28)									

Eurofins Midland

Client Sample ID: S-3 (0-1')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 07:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				12/28/22 17:11	12/29/22 07:03	
o-Terphenyl	122		70 - 130				12/28/22 17:11	12/29/22 07:03	
			- luik la						
Method: MCAWW 300.0 - Anions Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	20.7		4.95		mg/Kg			12/30/22 07:04	
lient Sample ID: S-3 (1.5')							Lab Sam	ple ID: 880-2	3046-
ate Collected: 12/20/22 00:00								Matri	x: Soli
ate Received: 12/22/22 13:34									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		12/28/22 14:45	12/30/22 14:41	
Toluene	<0.00202	U	0.00202		mg/Kg		12/28/22 14:45	12/30/22 14:41	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/28/22 14:45	12/30/22 14:41	
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		12/28/22 14:45	12/30/22 14:41	
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/28/22 14:45	12/30/22 14:41	
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		12/28/22 14:45	12/30/22 14:41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	89		70 - 130				12/28/22 14:45	12/30/22 14:41	
1,4-Difluorobenzene (Surr)	87		70 - 130				12/28/22 14:45	12/30/22 14:41	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403		mg/Kg			12/31/22 10:35	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			12/29/22 13:59	
			(00)						
Method: SW846 8015B NM - Dies		Qualifier	(GC) RL	MDI	Unit	D	Bronorod	Applyzod	Dil Fa
Analyte				MDL			Prepared	Analyzed	
Gasoline Range Organics (GRO)-C6-C10	<49.9	0 1	49.9		mg/Kg		12/28/22 17:11	12/29/22 07:24	
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 07:24	
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/28/22 17:11	12/29/22 07:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Chlorooctane	108		70 - 130				12/28/22 17:11	12/29/22 07:24	
o-Terphenyl	118		70 - 130				12/28/22 17:11	12/29/22 07:24	
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	13.6		5.00		mg/Kg			12/30/22 07:13	

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-7

Matrix: Solid

5

Eurofins Midland

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Client Sample ID: S-3 (2') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/28/22 14:45	12/30/22 15:02	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/28/22 14:45	12/30/22 15:02	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/28/22 14:45	12/30/22 15:02	1
n-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		12/28/22 14:45	12/30/22 15:02	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/28/22 14:45	12/30/22 15:02	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		12/28/22 14:45	12/30/22 15:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	88		70 - 130				12/28/22 14:45	12/30/22 15:02	1
1,4-Difluorobenzene (Surr)	71		70 - 130				12/28/22 14:45	12/30/22 15:02	1
Method: TAL SOP Total BTEX - 1									
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Diese									
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/29/22 13:59	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<50.0	U *1	50.0		mg/Kg		12/28/22 17:11	12/29/22 07:43	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/28/22 17:11	12/29/22 07:43	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/28/22 17:11	12/29/22 07:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	0.005	S1-	70 - 130				12/28/22 17:11	12/29/22 07:43	1
p-Terphenyl	0.03	S1-	70 - 130				12/28/22 17:11	12/29/22 07:43	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.9		5.00		mg/Kg			12/30/22 07:21	1
lient Sample ID: S-4 (0-1')							Lab Samp	le ID: 880-23	046-10
ate Collected: 12/20/22 00:00								Matri	x: Solid
ate Received: 12/22/22 13:34									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 15:22	1
Toluene	< 0.00199	11	0.00199		mg/Kg		12/28/22 14:45	12/30/22 15:22	1
Toluelle	<0.00199	0	0.00199		mg/rtg		12/20/22 14.45	12/30/22 13.22	i.

Page 43 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-9

Matrix: Solid

Project/Site: Bear Bryant 31 Federal Com #001

Client Sample Results

Page 44 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Matrix: Solid

5

Lab Sample ID: 880-23046-10

Client Sample ID: S-4 (0-1')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Client: Carmona Resources

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal BTEX	<0.00398	U	0.00398		mg/Kg			12/31/22 10:35	1
Nethod: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<49.9	U	49.9		mg/Kg			12/30/22 12:41	1
Nethod: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Basoline Range Organics	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 16:42	1
GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 16:42	1
C10-C28)									
II Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Chlorooctane	109		70 - 130				12/29/22 08:29	12/29/22 16:42	1
-Terphenyl	105		70 - 130				12/29/22 08:29	12/29/22 16:42	1
Nethod: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.3		5.03		mg/Kg			12/30/22 07:30	1

Collected: 12/20/22 Date Received: 12/22/22 13:34

Matrix: Solid

_	
Method: SW846 8021B - Volatile Organic Comp	ounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 17:37	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 17:37	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 17:37	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 17:37	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 17:37	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130				12/28/22 14:45	12/30/22 17:37	1
1,4-Difluorobenzene (Surr)	83		70 - 130				12/28/22 14:45	12/30/22 17:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/31/22 10:35	1
	A - Diesel Range Organ			МП	Unit	п	Propared	Analyzod	Dil Ea
Analyte	•••	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	•••	Qualifier		MDL	Unit mg/Kg	D	Prepared	Analyzed 12/30/22 12:41	Dil Fac
Analyte Total TPH	Result <49.8	Qualifier	RL	MDL		<u> </u>	Prepared		Dil Fac
Analyte	Result <49.8	Qualifier	RL	MDL		<u> </u>	Prepared		Dil Fac

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		12/29/22 08:29	12/29/22 17:04	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		12/29/22 08:29	12/29/22 17:04	1
C10-C28)								

Eurofins Midland

Client Sample ID: S-4 (1.5')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/29/22 08:29	12/29/22 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	135	S1+	70 - 130				12/29/22 08:29	12/29/22 17:04	1
o-Terphenyl	126		70 - 130				12/29/22 08:29	12/29/22 17:04	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	20.0		4.99		mg/Kg			12/30/22 07:39	1
lient Sample ID: S-4 (2')							Lab Samp	le ID: 880-23	046-12
ate Collected: 12/20/22 00:00								Matri	x: Solid
Date Received: 12/22/22 13:34									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 17:57	1

Tolucito	-0.00200	0	0.00200	ing/itg	12/20/22 14.40	12/00/22 11:01	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	12/28/22 14:45	12/30/22 17:57	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg	12/28/22 14:45	12/30/22 17:57	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	12/28/22 14:45	12/30/22 17:57	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg	12/28/22 14:45	12/30/22 17:57	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130		12/28/22 14:45	12/30/22 17:57	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/31/22 10:35	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<49.9	U	49.9		mg/Kg			12/30/22 12:41	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 17:25	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 17:25	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 17:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	122		70 - 130				12/29/22 08:29	12/29/22 17:25	1
o-Terphenyl	115		70 - 130				12/29/22 08:29	12/29/22 17:25	1
Method: MCAWW 300.0 - Anions	Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.3		5.01		mg/Kg			12/23/22 19:31	1

5

Job ID: 880-23046-1

Lab Sample ID: 880-23046-11

SDG: Eddy Co, NM

Matrix: Solid

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Client Sample ID: S-5 (0-1')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 18:18	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 18:18	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 18:18	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 18:18	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 18:18	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 18:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				12/28/22 14:45	12/30/22 18:18	1
1,4-Difluorobenzene (Surr)	94		70 - 130				12/28/22 14:45	12/30/22 18:18	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/30/22 12:41	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 17:46	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 17:46	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	139	S1+	70 - 130				12/29/22 08:29	12/29/22 17:46	1
o-Terphenyl	129		70 - 130				12/29/22 08:29	12/29/22 17:46	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	74.2		5.02		mg/Kg			12/23/22 19:36	1
lient Sample ID: S-5 (1.5')							Lab Samp	le ID: 880-23	046-14
ate Collected: 12/20/22 00:00 ate Received: 12/22/22 13:34								Matri	x: Solid
	Ormania Carro	oundo (00)							
Method: SW846 8021B - Volatile Analyte		OUNDS (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
· ·					-				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 18:38	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 18:38	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 18:38	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/28/22 14:45	12/30/22 18:38	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 18:38	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/28/22 14:45	12/30/22 18:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				12/28/22 14:45	12/30/22 18:38	1
1,4-Difluorobenzene (Surr)	88		70 - 130				12/28/22 14:45	12/30/22 18:38	1

Eurofins Midland

Page 46 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-13

Matrix: Solid

Project/Site: Bear Bryant 31 Federal Com #001

Client Sample Results

Page 47 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-14

Client Sample ID: S-5 (1.5')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/31/22 10:35	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/30/22 12:41	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 18:08	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 18:08	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 18:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				12/29/22 08:29	12/29/22 18:08	1
o-Terphenyl	107		70 - 130				12/29/22 08:29	12/29/22 18:08	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		5.00		mg/Kg			12/23/22 19:41	1

Client Sample ID: S-5 (2')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Lab Sample ID: 880-23046-15 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 18:59	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 18:59	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 18:59	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/28/22 14:45	12/30/22 18:59	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 18:59	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/28/22 14:45	12/30/22 18:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				12/28/22 14:45	12/30/22 18:59	1
1,4-Difluorobenzene (Surr)	87		70 - 130				12/28/22 14:45	12/30/22 18:59	1

Analyte Total BTEX		Qualifier	RL 0.00399	MDL	Unit mg/Kg	<u> </u>	Prepared	Analyzed 12/31/22 10:35	Dil Fac 1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/30/22 12:41	1
- Method: SW846 8015B NM - D	viesel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 18:29	1

Eurofins Midland

12/29/22 18:29

12/29/22 08:29

Matrix: Solid

5

Diesel Range Organics (Over

C10-C28)

49.9

mg/Kg

<49.9 U

Project/Site: Bear Bryant 31 Federal Com #001

Job ID: 880-23046-1 SDG: Eddy Co, NM

Matrix: Solid

Lab Sample ID: 880-23046-15

Client Sample ID: S-5 (2')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 18:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	119		70 - 130				12/29/22 08:29	12/29/22 18:29	1
o-Terphenyl	114		70 - 130				12/29/22 08:29	12/29/22 18:29	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	85.5		4.97		mg/Kg			12/23/22 19:46	1
lient Sample ID: S-6 (0-1')							Lab Samp	le ID: 880-23	046-16
ate Collected: 12/20/22 00:00							-	Matri	x: Solid

Date Received: 12/22/22 13:34

Method: SW846 8021B - Volati	lie Organic Comp	ounas (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 19:19	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 19:19	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 19:19	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 19:19	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 19:19	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 19:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130				12/28/22 14:45	12/30/22 19:19	1
1,4-Difluorobenzene (Surr)	74		70 - 130				12/28/22 14:45	12/30/22 19:19	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg	_		12/31/22 10:35	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Total TPH	<50.0	U	50.0		mg/Kg			12/30/22 12:41	1		

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 19:13	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 19:13	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 19:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130				12/29/22 08:29	12/29/22 19:13	1
o-Terphenyl	109		70 - 130				12/29/22 08:29	12/29/22 19:13	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	43.0		4.99		mg/Kg			12/23/22 19:51	1

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Client Sample ID: S-6 (1.5')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 19:40	1
oluene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 19:40	1
thylbenzene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 19:40	
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 19:40	
-Xylene	<0.00199	U	0.00199		mg/Kg		12/28/22 14:45	12/30/22 19:40	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/28/22 14:45	12/30/22 19:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	84		70 - 130				12/28/22 14:45	12/30/22 19:40	1
,4-Difluorobenzene (Surr)	72		70 - 130				12/28/22 14:45	12/30/22 19:40	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	ulation							
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal BTEX	<0.00398	U	0.00398		mg/Kg			12/31/22 10:35	1
Aethod: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	<50.0		50.0		malka			12/30/22 12:41	
	<50.0	U	50.0		mg/Kg			12/00/22 12.41	
Method: SW846 8015B NM - Die					ilig/Kg			12/00/22 12.41	
	sel Range Orga			MDL		D	Prepared	Analyzed	Dil Fa
/lethod: SW846 8015B NM - Die	sel Range Orga	nics (DRO) Qualifier	(GC)	MDL		<u>D</u>	Prepared 12/29/22 08:29		
Nethod: SW846 8015B NM - Die Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga	nics (DRO) Qualifier U	(GC)	MDL	Unit	<u>D</u>	· · ·	Analyzed	
Nethod: SW846 8015B NM - Die Analyte Gasoline Range Organics GRO)-C6-C10	sel Range Orga Result <50.0	nics (DRO) Qualifier U	(GC) 	MDL	Unit mg/Kg	<u> </u>	12/29/22 08:29	Analyzed	,
Method: SW846 8015B NM - Die Malyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga 	nics (DRO) Qualifier U	(GC) <u>RL</u> 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	12/29/22 08:29 12/29/22 08:29	Analyzed 12/29/22 19:34 12/29/22 19:34	
Method: SW846 8015B NM - Die Malyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	sel Range Orga <u>Result</u> <50.0 <50.0 <50.0	nics (DRO) Qualifier U U U	(GC) <u>RL</u> 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u> </u>	12/29/22 08:29 12/29/22 08:29 12/29/22 08:29	Analyzed 12/29/22 19:34 12/29/22 19:34 12/29/22 19:34	Dil Fa
Method: SW846 8015B NM - Die Malyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	sel Range Orga <u>Result</u> <50.0 <50.0 <50.0 %Recovery	nics (DRO) Qualifier U U U	(GC) <u>RL</u> 50.0 50.0 50.0 Limits	MDL	Unit mg/Kg mg/Kg	<u> </u>	12/29/22 08:29 12/29/22 08:29 12/29/22 08:29 Prepared	Analyzed 12/29/22 19:34 12/29/22 19:34 12/29/22 19:34 Analyzed	Dil Fa
Method: SW846 8015B NM - Die Malyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate -Chlorooctane	sel Range Orga <u>Result</u> <50.0 <50.0 <50.0 <80.0 %Recovery 116 113	nics (DRO) Qualifier U U Qualifier	(GC) <u>RL</u> 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg	<u> </u>	12/29/22 08:29 12/29/22 08:29 12/29/22 08:29 Prepared 12/29/22 08:29	Analyzed 12/29/22 19:34 12/29/22 19:34 12/29/22 19:34 Analyzed 12/29/22 19:34	Dil Fa
Method: SW846 8015B NM - Die Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate -Chlorooctane -Terphenyl	sel Range Orga <u>Result</u> <50.0 <50.0 <50.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0	nics (DRO) Qualifier U U Qualifier	(GC) <u>RL</u> 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	12/29/22 08:29 12/29/22 08:29 12/29/22 08:29 Prepared 12/29/22 08:29	Analyzed 12/29/22 19:34 12/29/22 19:34 12/29/22 19:34 Analyzed 12/29/22 19:34	Dil Fac
Method: SW846 8015B NM - Die Malyte GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate -Chlorooctane -Terphenyl Method: MCAWW 300.0 - Anions	sel Range Orga <u>Result</u> <50.0 <50.0 <50.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0 <750.0	nics (DRO) Qualifier U U Qualifier	(GC) <u>RL</u> 50.0 50.0 <u>50.0</u> <u>Limits</u> 70 - 130 70 - 130 70 - 130		Unit mg/Kg mg/Kg		12/29/22 08:29 12/29/22 08:29 12/29/22 08:29 Prepared 12/29/22 08:29 12/29/22 08:29	Analyzed 12/29/22 19:34 12/29/22 19:34 12/29/22 19:34 Analyzed 12/29/22 19:34 12/29/22 19:34	Dil Fa
Method: SW846 8015B NM - Die Malyte Sasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over 210-C28) DII Range Organics (Over C28-C36) Surrogate -Chlorooctane -Terphenyl Method: MCAWW 300.0 - Anions Malyte	sel Range Orga <u>Result</u> <50.0 <50.0 <50.0 <80.0 %Recovery 116 113 s, Ion Chromato Result	nics (DRO) Qualifier U U Qualifier	(GC) <u>RL</u> 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 001uble <u>RL</u>		Unit mg/Kg mg/Kg Unit		12/29/22 08:29 12/29/22 08:29 12/29/22 08:29 Prepared 12/29/22 08:29 12/29/22 08:29 Prepared	Analyzed 12/29/22 19:34 12/29/22 19:34 12/29/22 19:34 Analyzed Analyzed	Dil Fa
Method: SW846 8015B NM - Die Malyte GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate -Chlorooctane -Terphenyl Method: MCAWW 300.0 - Anions Malyte Chloride	sel Range Orga <u>Result</u> <50.0 <50.0 <50.0 <80.0 %Recovery 116 113 s, Ion Chromato Result	nics (DRO) Qualifier U U Qualifier	(GC) <u>RL</u> 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 001uble <u>RL</u>		Unit mg/Kg mg/Kg Unit		12/29/22 08:29 12/29/22 08:29 12/29/22 08:29 Prepared 12/29/22 08:29 12/29/22 08:29 Prepared	Analyzed 12/29/22 19:34 12/29/22 19:34 12/29/22 19:34 Analyzed 12/29/22 19:34 12/29/22 19:34 12/29/22 19:34 12/29/22 19:56 Ie ID: 880-23	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 20:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 20:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 20:01	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/28/22 14:45	12/30/22 20:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 20:01	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/28/22 14:45	12/30/22 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				12/28/22 14:45	12/30/22 20:01	1
1,4-Difluorobenzene (Surr)	90		70 - 130				12/28/22 14:45	12/30/22 20:01	1

Page 49 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-17

Matrix: Solid

5

Released to Imaging: 5/2/2023 2:57:31 PM

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23046-1

Client Sample ID: S-6 (2')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal BTEX	<0.00399	U	0.00399		mg/Kg			12/31/22 10:35	1
lethod: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/30/22 12:41	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Basoline Range Organics	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 19:56	1
GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 19:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 19:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Chlorooctane	124		70 - 130				12/29/22 08:29	12/29/22 19:56	1
-Terphenyl	120		70 - 130				12/29/22 08:29	12/29/22 19:56	1
Method: MCAWW 300.0 - Anions		• • •							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.70	F1	5.02		mg/Kg			12/30/22 12:53	1

Matrix: Solid

SDG: Eddy Co, NM Lab Sample ID: 880-23046-18

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-23046-1	S-1 (0-1')	102	87
880-23046-1 MS	S-1 (0-1')	99	93
880-23046-1 MSD	S-1 (0-1')	101	87
880-23046-2	S-1 (1'.5)	105	82
880-23046-3	S-1 (2')	103	85
880-23046-4	S-2 (0-1')	83	66 S1-
880-23046-5	S-2 (1.5')	94	91
880-23046-6	S-2 (2')	83	74
880-23046-7	S-3 (0-1')	103	77
880-23046-8	S-3 (1.5')	89	87
880-23046-9	S-3 (2')	88	71
880-23046-10	S-4 (0-1')	87	79
880-23046-11	S-4 (1.5')	69 S1-	83
880-23046-12	S-4 (2')	87	92
880-23046-13	S-5 (0-1')	93	94
880-23046-14	S-5 (1.5')	86	88
880-23046-15	S-5 (2')	93	87
880-23046-16	S-6 (0-1')	87	74
880-23046-17	S-6 (1.5')	84	72
880-23046-18	S-6 (2')	91	90
LCS 880-42813/1-A	Lab Control Sample	103	92
LCSD 880-42813/2-A	Lab Control Sample Dup	78	98
MB 880-42813/5-A	Method Blank	78	87
Surrogate Legend			

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 Lab Sample ID **Client Sample ID** (70 - 130)(70-130) 880-23043-A-1-F MS Matrix Spike 60 S1-53 S1-880-23043-A-1-G MSD Matrix Spike Duplicate 62 S1-46 S1-880-23046-1 S-1 (0-1') 134 S1+ 144 S1+ 880-23046-1 MS S-1 (0-1') 113 110 880-23046-1 MSD S-1 (0-1') 98 96 880-23046-2 S-1 (1'.5) 109 120 131 S1+ 141 S1+ 880-23046-3 S-1 (2') 880-23046-4 S-2 (0-1') 121 131 S1+ 880-23046-5 S-2 (1.5') 110 120 880-23046-6 S-2 (2') 111 121 880-23046-7 112 122 S-3 (0-1') 880-23046-8 S-3 (1.5') 108 118 880-23046-9 S-3 (2') 0.005 S1-0.03 S1-880-23046-10 S-4 (0-1') 109 105 880-23046-11 S-4 (1.5') 135 S1+ 126 880-23046-12 S-4 (2') 122 115

Page 51 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Prep Type: Total/NA

Eurofins Midland

Prep Type: Total/NA

Client: Carmona Resources Job ID: 880-23046-1 Project/Site: Bear Bryant 31 Federal Com #001 SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Prep Type: Total/NA

Matrix:	So	lid
matrix.	00	

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		. 5
880-23046-13	S-5 (0-1')	139 S1+	129		
880-23046-14	S-5 (1.5')	110	107		G
880-23046-15	S-5 (2')	119	114		6
880-23046-16	S-6 (0-1')	112	109		
880-23046-17	S-6 (1.5')	116	113		
880-23046-18	S-6 (2')	124	120		
LCS 880-42831/2-A	Lab Control Sample	104	115		5
LCS 880-42834/2-A	Lab Control Sample	102	115		
LCSD 880-42831/3-A	Lab Control Sample Dup	92	105		9
LCSD 880-42834/3-A	Lab Control Sample Dup	110	122		
MB 880-42831/1-A	Method Blank	105	116		
MB 880-42834/1-A	Method Blank	113	113		
Surrogate Legend					

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

Lab Sample ID: MB 880-42813/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid								Prep Type: 1	otal/NA
Analysis Batch: 42923								Prep Batch	n: 42813
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 11:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 11:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 11:56	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/28/22 14:45	12/30/22 11:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/28/22 14:45	12/30/22 11:56	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/28/22 14:45	12/30/22 11:56	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130				12/28/22 14:45	12/30/22 11:56	1
1,4-Difluorobenzene (Surr)	87		70 - 130				12/28/22 14:45	12/30/22 11:56	1

Lab Sample ID: LCS 880-42813/1-A Matrix: Solid

Analysis Batch: 42923

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09811		mg/Kg		98	70 - 130	
Toluene	0.100	0.08936		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.08775		mg/Kg		88	70 - 130	
m-Xylene & p-Xylene	0.200	0.1858		mg/Kg		93	70 - 130	
o-Xylene	0.100	0.09609		mg/Kg		96	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: LCSD 880-42813/2-A

Matrix: Solid and a market

Analysis Batch: 42923							Prep	Batch:	42813
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1124		mg/Kg		112	70 - 130	14	35
Toluene	0.100	0.09152		mg/Kg		92	70 - 130	2	35
Ethylbenzene	0.100	0.07731		mg/Kg		77	70 - 130	13	35
m-Xylene & p-Xylene	0.200	0.1539		mg/Kg		77	70 - 130	19	35
o-Xylene	0.100	0.07760		mg/Kg		78	70 - 130	21	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	78		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: 880-23046-1 MS Matrix: Solid

Analysis Potoby 42022

Analysis Batch: 42923									Prep	Batch: 42813
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.101	0.1065		mg/Kg		106	70 - 130	
Toluene	<0.00201	U	0.101	0.09443		mg/Kg		94	70 - 130	

Eurofins Midland

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 42813

Client Sample ID: S-1 (0-1')

Prep Type: Total/NA

QC Sample Results

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23046-1 SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-23046-1 M	S										Clie	nt Sample ID		
Matrix: Solid												Prep Typ	e: To	tal/NA
Analysis Batch: 42923												Prep Ba	tch:	4281:
	Sample	Samp	ole	Spike		MS N	IS					%Rec		
Analyte	Result	Quali	fier	Added	Re	sult C	Qualifier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00201	U		0.101	0.08	587		mg/Kg			85	70 - 130		
m-Xylene & p-Xylene	< 0.00402	U		0.202	0.1	805		mg/Kg			90	70 - 130		
o-Xylene	<0.00201	U		0.101	0.09	083		mg/Kg			90	70 - 130		
	MS	MS												
Surrogate	%Recovery	Quali	fier	Limits										
4-Bromofluorobenzene (Surr)	99			70 - 130										
1,4-Difluorobenzene (Surr)	93			70 - 130										
Lab Sample ID: 880-23046-1 M	SD										Clie	nt Sample ID	: S-1	(0-1"
Matrix: Solid												Prep Typ		
Analysis Batch: 42923												Prep Ba		
-	Sample	Samp	ole	Spike	Ν	ISD N	ISD					%Rec		RP
Analyte	Result	Quali	fier	Added	Re	sult C	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Benzene	<0.00201	U		0.0990	0.08	544		mg/Kg			86	70 - 130	22	3
Toluene	<0.00201	U		0.0990	0.08	757		mg/Kg			88	70 - 130	8	3
Ethylbenzene	<0.00201	U		0.0990	0.07	895		mg/Kg			80	70 - 130	8	35
m-Xylene & p-Xylene	<0.00402	U		0.198	0.1	678		mg/Kg			85	70 - 130	7	35
o-Xylene	<0.00201	U		0.0990	0.08	432		mg/Kg			85	70 - 130	7	3
	MSD	MSD												
Surrogate	%Recovery	Qual	fier	Limits										
4-Bromofluorobenzene (Surr)	101			70 - 130										
1,4-Difluorobenzene (Surr)	87			70 - 130										
lethod: 8015B NM - Diese	I Range O	rgan	ics (DR	(GC)										
Lab Sample ID: MB 880-42831/	/1-A										Client Sa	ample ID: Me	thod	Blanl
Matrix: Solid												Prep Typ		
Analysis Batch: 42773												Prep Ba		
		мв	мв									1100 20		
Analyte	R	esult	Qualifier		RL	м	DL Unit	:	D	Р	repared	Analyzed		Dil Fa
Gasoline Range Organics			U		50.0		mg/	Kg			8/22 17:11	12/29/22 03:0	3	
(GRO)-C6-C10 Diesel Range Organics (Over		<50.0	U		50.0		mg/	Kg		12/2	8/22 17:11	12/29/22 03:0	3	
C10-C28) Oll Papage Organize (Over C28, C26)		<50.0			50.0		m~!	4		10/0	8/22 17:11	12/29/22 03:0	2	
Oll Range Organics (Over C28-C36)	•	-50.0	U		50.0		mg/	NY		12/2	0/22 17:11	12/29/22 03:0	13	

	MB M	В	
Surrogate	%Recovery Q	ualifier	Limits
1-Chlorooctane	105		70 - 130
o-Terphenyl	116		70 - 130

Lab Sample ID: LCS 880-42831/2-A Matrix: Solid alveie Rateh 40770

Analysis Batch: 42773							Prep	Batch: 42831
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1002		mg/Kg		100	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1077		mg/Kg		108	70 - 130	
C10-C28)								

Eurofins Midland

Prep Type: Total/NA

Dil Fac

1

1

Analyzed

12/28/22 17:11 12/29/22 03:03

12/28/22 17:11 12/29/22 03:03

Client Sample ID: Lab Control Sample

Prepared

QC Sample Results

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Page 55 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: LCS 880-428	831/2-A						Client	t Sample	ID: Lab Co	ontrol Sa	ample
Matrix: Solid									Prep 1	ype: To	tal/N/
Analysis Batch: 42773									Prep	Batch:	4283 ⁻
	105	LCS									
Surrogato	%Recovery		Limits								
Surrogate 1-Chlorooctane		Quaimer	70 - 130								
	115		70 - 130 70 - 130								
o-Terphenyl	115		70 - 730								
Lab Sample ID: LCSD 880-4	2831/3-A					Clie	nt San	nole ID:	Lab Contro		e Dur
Matrix: Solid										ype: To	
Analysis Batch: 42773										Batch:	
			Spike	LCSD	LCSD				%Rec	Batom	RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	767.2		mg/Kg		77	70 - 130	27	20
(GRO)-C6-C10					-						_`
Diesel Range Organics (Over			1000	982.8		mg/Kg		98	70 - 130	9	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane	<u></u>	quamer	70 - 130								
o-Terphenyl	105		70 - 130								
Analysis Batch: 42773	Sample	Sample	Spike	MS	MS					Spe: To Batch:	
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U *1	999	1173		mg/Kg		113	70 - 130		
(GRO)-C6-C10						0 0					
Diesel Range Organics (Over	<49.9	U F1	999	1351	F1	mg/Kg		132	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	110		70 - 130								
Lab Sample ID: 880-23046-1	MSD							Cli	ent Sample	ID: S-1	(0-1')
Matrix: Solid									Prep 1	ype: To	tal/NA
Analysis Batch: 42773										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<49.9	U *1	999	1034		mg/Kg		99	70 - 130	13	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U F1	999	1204		mg/Kg		117	70 - 130	11	20
C10-C28)											
C10-C28)	MSD	MSD									
C10-C28) Surrogate	MSD %Recovery		Limits								

96

o-Terphenyl

70 - 130

Lab Sample ID: MB 880-42834/1-A

Matrix: Solid

(GRO)-C6-C10

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Analysis Batch: 42861

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

QC Sample Results

RL

50.0

50.0

50.0

Limits

70 - 130

70 - 130

MDL Unit

mg/Kg

mg/Kg

mg/Kg

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MB MB

<50.0 U

<50.0 U

<50.0 U

MB MB

%Recovery Qualifier

113

113

Result Qualifier

		Job ID: 880- SDG: Eddy	
	Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
D	Prepared	Analyzed	Dil Fac
	12/29/22 08:29	12/29/22 13:34	1
	12/29/22 08:29	12/29/22 13:34	1
	12/29/22 08:29	12/29/22 13:34	1
	Prepared	Analyzed	Dil Fac
	12/29/22 08:29	12/29/22 13:34	1

12/29/22 13:34

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

12/29/22 08:29

_	
Lab Sample ID: LCS 880-42834/2-4	4
Matrix: Solid	
Analysis Batch: 42861	

Analysis Batch: 42861							Prep	Batch: 42834
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	918.0		mg/Kg		92	70 - 130	
(GRO)-C6-C10 Diesel Range Organics (Over	1000	1002		mg/Kg		100	70 - 130	
C10-C28)		1002						

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	115		70 - 130

Lab Sample ID: LCSD 880-42834/3-A

Matrix: Solid

Analysis Batch: 42861							Prep Batch: 42834			
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	824.8		mg/Kg		82	70 - 130	11	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	1088		mg/Kg		109	70 - 130	8	20	
C10-C28)										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	110		70 - 130
o-Terphenyl	122		70 - 130

Lab Sample ID: 880-23043-A-1-F MS Matrix: Solid

Analysis Batch: 42861									Prep	Batch: 42834
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	898.0		mg/Kg		85	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U	999	1122		mg/Kg		112	70 - 130	

7

Lab Sample ID: 880-23043-A-1-F MS

Lab Sample ID: 880-23043-A-1-G MSD

Matrix: Solid

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Analysis Batch: 42861

Analysis Batch: 42861

Gasoline Range Organics

Diesel Range Organics (Over

QC Sample Results

Limits

70 - 130

70 - 130

Spike

Added

999

999

Limits

70 - 130

70 - 130

MSD MSD

1005

946.9

Result Qualifier

Unit

mg/Kg

mg/Kg

D

%Rec

96

95

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS

60 S1-

53 S1-

Sample Sample

<49.9 U

<49.9 U

MSD MSD

62 S1-

46 S1-

%Recovery Qualifier

Result Qualifier

%Recovery Qualifier

Page	57	of	ŀ

Job ID: 880-23046-1 SDG: Eddy Co, NM

RPD

11

17

%Rec

Limits

70 - 130

70 - 130

Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 42834 7 **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA Prep Batch: 42834 RPD Limit 20 20

Method:	300.0 -	Anions.	lon	Chromatography	
in our our	000.0	/		omonacography	

Materia Oalid												Client S	ample ID:		
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 42572			MD												
Avelia		MB						11		-			A		DH 5
Analyte			Qualifier		RL		MDL			D	Pr	repared	Analyz		Dil Fac
Chloride	<5	5.00	U		5.00			mg/Kg					12/23/22	17:27	1
Lab Sample ID: LCS 880-42386/2-A										Cli	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 42572															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
				250		241.3			mg/Kg			97	90 - 110		
Chloride				200					5 5						
-				200						ent S	am	ple ID: I	Lab Contro	ol Samp	e Dup
Chloride Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid				200						ent S	Sam	ple ID: I	Lab Contro Prep		
Lab Sample ID: LCSD 880-42386/3-A				200						ent S	Sam	ple ID:		ol Samp Type: S	
Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid				Spike		LCSD	LCSI	D		ent S	am	ple ID: I			
Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid										ent S	Sam D	ple ID: %Rec	Prep		oluble
Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid Analysis Batch: 42572				Spike		LCSD			Cli	ent S		-	Prep %Rec	Type: S	oluble RPD
Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid Analysis Batch: 42572 Analyte Chloride				Spike Added		LCSD Result			Cli	ent S		%Rec 108	Prep %Rec Limits 90 - 110	Type: S 	Oluble RPD Limit 20
Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid Analysis Batch: 42572 Analyte				Spike Added		LCSD Result			Cli	ent S		%Rec 108	Prep %Rec Limits 90 - 110 Sample ID	Type: S <u>RPD</u> 11 : Matrix	oluble RPD Limit 20 Spike
Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid Analysis Batch: 42572 Analyte Chloride Lab Sample ID: 880-22954-A-1-E MS				Spike Added		LCSD Result			Cli	ent S		%Rec 108	Prep %Rec Limits 90 - 110 Sample ID	Type: S 	oluble RPD Limit 20 Spike
Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid Analysis Batch: 42572 Analyte Chloride Lab Sample ID: 880-22954-A-1-E MS Matrix: Solid Analysis Batch: 42572	ample	Samp		Spike Added		LCSD Result			Cli	ent S		%Rec 108	Prep %Rec Limits 90 - 110 Sample ID	Type: S <u>RPD</u> 11 : Matrix	oluble RPD Limit 20 Spike
Lab Sample ID: LCSD 880-42386/3-A Matrix: Solid Analysis Batch: 42572 Analyte Chloride Lab Sample ID: 880-22954-A-1-E MS Matrix: Solid Analysis Batch: 42572	ample			Spike Added 250		LCSD Result 268.9	Qual	ifier	Cli	ent S		%Rec 108	Prep %Rec Limits 90 - 110 Sample ID Prep	Type: S <u>RPD</u> 11 : Matrix	oluble RPD Limit 20 Spike

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Page 58 of 141

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-22954-A-1-F M	50						onent	bample i	D: Matrix Sp		
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 42572											
	-	Sample	Spike		MSD				%Rec		RPD
Analyte		Qualifier	Added		t Qualifier	Unit	D		Limits	RPD	Limit
Chloride	280	F1	250	522.	l	mg/Kg		97	90 - 110	5	20
Lab Sample ID: MB 880-42710/1-A								Client S	Sample ID:	Method	Blank
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 42808		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		D	Prepared	Analyz	red	Dil Fac
Chloride		<5.00 U		5.00	mg/K	9		Tiopulou	12/30/22		1
_ Lab Sample ID: LCS 880-42710/2-A							Clier	nt Sample	e ID: Lab Co	ontrol S	ample
Matrix: Solid							U IIOI	it oumpr		Type: S	
Analysis Batch: 42808									пер	Type. O	olubie
Analysis Daten. 42000			Spike	LC	LCS				%Rec		
Analyte			Added		t Qualifier	Unit	D	%Rec	Limits		
Chloride			250	251.8		mg/Kg		101	90 - 110		
_ Lab Sample ID: LCSD 880-42710/3-	Δ					Cli	iont Sa	mnle ID:	Lab Contro	l Samni	
Matrix: Solid	^					0.		inpic ib.		Type: S	
Analysis Batch: 42808									пер	Type. O	olubie
Analysis Batch. 42000			Spike	LCSI	LCSD				%Rec		RPD
			•			11	D	%Rec	Limits	RPD	Limit
Δηριντο											
Analyte Chloride			Added 250	Resu	t Qualifier	Unit mg/Kg		101	90 - 110	0	20
Chloride								101	90 - 110	0	20
Chloride Lab Sample ID: 880-23046-2 MS							D	101	90 - 110	0 e ID: S-1	20 (1'.5)
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid							0	101	90 - 110	0	20 (1'.5)
Chloride Lab Sample ID: 880-23046-2 MS	Sample	Sample	250	252.				101	90 - 110 ient Sample Prep	0 e ID: S-1	20 (1'.5)
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808	-	Sample Qualifier	250 Spike	252. M:	B MS	mg/Kg		101 Cli	90 - 110 ient Sample Prep %Rec	0 e ID: S-1	20 (1'.5)
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid	-	Qualifier	250	252. M:	6 MS t Qualifier		D	101 Cli	90 - 110 ient Sample Prep	0 e ID: S-1	20 (1'.5)
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride	Result	Qualifier	250 Spike Added	252. M: Resul	6 MS t Qualifier	mg/Kg Unit		101 Cli %Rec 110	90 - 110 ient Sample Prep %Rec Limits 90 - 110	0 9 ID: S-1 Type: S	 (1'.5) oluble
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD	Result	Qualifier	250 Spike Added	252. M: Resul	6 MS t Qualifier	mg/Kg Unit		101 Cli %Rec 110	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample	0 e ID: S-1 Type: S 	(1'.5) oluble
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid	Result	Qualifier	250 Spike Added	252. M: Resul	6 MS t Qualifier	mg/Kg Unit		101 Cli %Rec 110	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample	0 9 ID: S-1 Type: S	(1'.5) oluble
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD	Result 13.2	Qualifier F1	250 Spike Added 251	252. M: Resul 288.	S MS t Qualifier	mg/Kg Unit		101 Cli %Rec 110	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep	0 e ID: S-1 Type: S 	(1'.5) oluble
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808	Result 13.2 Sample	Qualifier F1 Sample	250 Spike Added 251 Spike	252. M: <u>Resul</u> 288.	S MS t Qualifier	mg/Kg Unit mg/Kg	D	101 Cli <u>%Rec</u> 110 Cli	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec	0 e ID: S-1 Type: S 	20 (1'.5) oluble (1'.5) oluble RPD
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid	Result 13.2 Sample	Qualifier F1 Sample	250 Spike Added 251	252. M: 288. 288. MSI Resul	S MS t Qualifier	mg/Kg Unit		101 Cli <u>%Rec</u> 110 Cli	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep	0 e ID: S-1 Type: S 	(1'.5) oluble (1'.5) oluble
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Chloride	Result 13.2 Sample Result	Qualifier F1 Sample	250 Spike Added 251 Spike Added	252. M: 288. 288. MSI Resul	MS Qualifier MSD Qualifier	mg/Kg Unit mg/Kg Unit	D	101 Cli %Rec 110 Cli %Rec 114	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110	0 e ID: S-1 Type: S 	(1'.5) oluble (1'.5) oluble RPD Limit 20
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A	Result 13.2 Sample Result	Qualifier F1 Sample	250 Spike Added 251 Spike Added	252. M: 288. 288. MSI Resul	MS Qualifier MSD Qualifier	mg/Kg Unit mg/Kg Unit	D	101 Cli %Rec 110 Cli %Rec 114	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID:	0 e ID: S-1 Type: S 	(1'.5) oluble (1'.5) oluble RPD Limit 20 Blank
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A Matrix: Solid	Result 13.2 Sample Result	Qualifier F1 Sample	250 Spike Added 251 Spike Added	252. M: 288. 288. MSI Resul	MS Qualifier MSD Qualifier	mg/Kg Unit mg/Kg Unit	D	101 Cli %Rec 110 Cli %Rec 114	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID:	0 e ID: S-1 Type: S 	(1'.5) oluble (1'.5) oluble RPD Limit 20 Blank
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A	Result 13.2 Sample Result	Qualifier F1 Sample	250 Spike Added 251 Spike Added	252. M: 288. 288. MSI Resul	MS Qualifier MSD Qualifier	mg/Kg Unit mg/Kg Unit	D	101 Cli %Rec 110 Cli %Rec 114	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID:	0 e ID: S-1 Type: S 	(1'.5) oluble (1'.5) oluble RPD Limit 20 Blank
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A Matrix: Solid	Result 13.2 Sample Result 13.2	Qualifier F1 Sample Qualifier F1	250 Spike Added 251 Spike Added	252. M: 288. 288. MSI Resul	MS Qualifier MSD Qualifier	mg/Kg Unit mg/Kg Unit	D	101 Cli %Rec 110 Cli %Rec 114	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID:	ID: S-1 Type: S ID: S-1 Type: S End type: S RPD 4 Method Type: S	(1'.5) oluble (1'.5) oluble RPD Limit 20 Blank
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A Matrix: Solid Analysis Batch: 42899	Result 13.2 Sample Result 13.2	Qualifier F1 Sample Qualifier F1 MB MB	250 Spike Added 251 Spike Added	252. M: 288. 288. MSI Resul 299.	MS Qualifier MSD Qualifier F1	Unit mg/Kg Unit mg/Kg	D	101 Cli %Rec 110 Cli 114 Client \$	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID: Prep	0 e ID: S-1 Type: S e ID: S-1 Type: S 4 Method Type: S	(1'.5) oluble (1'.5) oluble RPD Limit 20 Blank oluble
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A Matrix: Solid Analysis Batch: 42899 Analyte	Result 13.2 Sample Result 13.2	Qualifier F1 Sample Qualifier F1 MB MB esult Qualifier	250 Spike Added 251 Spike Added	252. M3 Resul 288. MSI Resul 299.	MS t Qualifier MSD t Qualifier 3 F1	Unit mg/Kg Unit mg/Kg	D	101 Cli <u>%Rec</u> 110 Cli <u>%Rec</u> 114 Client \$	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID: Prep Analyz	0 e ID: S-1 Type: S e ID: S-1 Type: S Method Type: S eed 12:39	20 (1'.5) oluble (1'.5) oluble RPD Limit 20 Blank oluble Dil Fac
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A Matrix: Solid Analysis Batch: 42899 Analyte Chloride Chloride	Result 13.2 Sample Result 13.2	Qualifier F1 Sample Qualifier F1 MB MB esult Qualifier	250 Spike Added 251 Spike Added	252. M3 Resul 288. MSI Resul 299.	MS t Qualifier MSD t Qualifier 3 F1	Unit mg/Kg Unit mg/Kg	D	101 Cli <u>%Rec</u> 110 Cli <u>%Rec</u> 114 Client \$	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID: Prep Analyz 12/30/22 e ID: Lab Co	0 e ID: S-1 Type: S e ID: S-1 Type: S Method Type: S eed 12:39	20 (1'.5) oluble (1'.5) oluble RPD Limit 20 Blank oluble Dil Fac 1 ample
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A Matrix: Solid Analysis Batch: 42899 Analyte Chloride Lab Sample ID: LCS 880-42711/2-A	Result 13.2 Sample Result 13.2	Qualifier F1 Sample Qualifier F1 MB MB esult Qualifier	250 Spike Added 251 Spike Added	252. M3 Resul 288. MSI Resul 299.	MS t Qualifier MSD t Qualifier 3 F1	Unit mg/Kg Unit mg/Kg	D	101 Cli <u>%Rec</u> 110 Cli <u>%Rec</u> 114 Client \$	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID: Prep Analyz 12/30/22 e ID: Lab Co	0 e ID: S-1 Type: S e ID: S-1 Type: S e ID: S-1 Type: S <u>RPD</u> 4 Method Type: S <u>red</u> 12:39	20 (1'.5) oluble (1'.5) oluble RPD Limit 20 Blank oluble Dil Fac 1 ample
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A Matrix: Solid Analysis Batch: 42899 Analyte Chloride Lab Sample ID: LCS 880-42711/2-A Matrix: Solid	Result 13.2 Sample Result 13.2	Qualifier F1 Sample Qualifier F1 MB MB esult Qualifier	250 Spike Added 251 Spike Added	252. Resul 288. MSI 299.3 Resul 299.3 5.00	MS t Qualifier MSD t Qualifier 3 F1	Unit mg/Kg Unit mg/Kg	D	101 Cli <u>%Rec</u> 110 Cli <u>%Rec</u> 114 Client \$	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID: Prep Analyz 12/30/22 e ID: Lab Co	0 e ID: S-1 Type: S e ID: S-1 Type: S e ID: S-1 Type: S <u>RPD</u> 4 Method Type: S <u>red</u> 12:39	20 (1'.5) oluble (1'.5) oluble RPD Limit 20 Blank oluble Dil Fac 1 ample
Chloride Lab Sample ID: 880-23046-2 MS Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: 880-23046-2 MSD Matrix: Solid Analysis Batch: 42808 Analyte Chloride Lab Sample ID: MB 880-42711/1-A Matrix: Solid Analysis Batch: 42899 Analyte Chloride Lab Sample ID: LCS 880-42711/2-A Matrix: Solid	Result 13.2 Sample Result 13.2	Qualifier F1 Sample Qualifier F1 MB MB esult Qualifier	250 Spike Added 251 Spike Added 251	252. Resul 288. MSI 299. 299. 299. LC:	MS Qualifier MSD t Qualifier F1 MDL Unit mg/K	Unit mg/Kg Unit mg/Kg	D	101 Cli %Rec 110 Cli %Rec 114 Client \$ Prepared	90 - 110 ient Sample Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110 Sample ID: Prep Analyz 12/30/22 e ID: Lab Co Prep	0 e ID: S-1 Type: S e ID: S-1 Type: S e ID: S-1 Type: S <u>RPD</u> 4 Method Type: S <u>red</u> 12:39	20 (1'.5) oluble (1'.5) oluble RPD Limit 20 Blank oluble Dil Fac 1 ample

Eurofins Midland

Job ID: 880-23046-1 SDG: Eddy Co, NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCSD 880-42 Matrix: Solid	711/3-A					Clier	nt Sam	ple ID:	Lab Contro		
									Prep	Type: S	oluble
Analysis Batch: 42899											
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	266.3		mg/Kg		107	90 - 110	1	20
 Lab Sample ID: 880-23046-18	MS							c	lient Samp	ole ID: S	-6 (2')
Matrix: Solid										Type: S	
Analysis Batch: 42899									iiop	1900.0	orabic
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	9.70	F1	251	289.5	F1	mg/Kg		111	90 _ 110		
 Lab Sample ID: 880-23046-18	MSD							c	lient Samp	ole ID: S	-6 (2')
Matrix: Solid										Type: S	
Analysis Batch: 42899											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	9.70	F1	251	290.6	F1	mg/Kg		112	90 - 110	0	20

Eurofins Midland

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23046-1 SDG: Eddy Co, NM

GC VOA

Prep Batch: 42813

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-23046-1	S-1 (0-1')	Total/NA	Solid	5035		
880-23046-2	S-1 (1'.5)	Total/NA	Solid	5035		5
880-23046-3	S-1 (2')	Total/NA	Solid	5035		
880-23046-4	S-2 (0-1')	Total/NA	Solid	5035		
880-23046-5	S-2 (1.5')	Total/NA	Solid	5035		
880-23046-6	S-2 (2')	Total/NA	Solid	5035		
880-23046-7	S-3 (0-1')	Total/NA	Solid	5035		-
880-23046-8	S-3 (1.5')	Total/NA	Solid	5035		8
880-23046-9	S-3 (2')	Total/NA	Solid	5035		
880-23046-10	S-4 (0-1')	Total/NA	Solid	5035		9
880-23046-11	S-4 (1.5')	Total/NA	Solid	5035		
880-23046-12	S-4 (2')	Total/NA	Solid	5035		
880-23046-13	S-5 (0-1')	Total/NA	Solid	5035		
880-23046-14	S-5 (1.5')	Total/NA	Solid	5035		
880-23046-15	S-5 (2')	Total/NA	Solid	5035		
880-23046-16	S-6 (0-1')	Total/NA	Solid	5035		
880-23046-17	S-6 (1.5')	Total/NA	Solid	5035		
880-23046-18	S-6 (2')	Total/NA	Solid	5035		
MB 880-42813/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-42813/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-42813/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-23046-1 MS	S-1 (0-1')	Total/NA	Solid	5035		
880-23046-1 MSD	S-1 (0-1')	Total/NA	Solid	5035		

Analysis Batch: 42923

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23046-1	S-1 (0-1')	Total/NA	Solid	8021B	42813
880-23046-2	S-1 (1'.5)	Total/NA	Solid	8021B	42813
880-23046-3	S-1 (2')	Total/NA	Solid	8021B	42813
880-23046-4	S-2 (0-1')	Total/NA	Solid	8021B	42813
880-23046-5	S-2 (1.5')	Total/NA	Solid	8021B	42813
880-23046-6	S-2 (2')	Total/NA	Solid	8021B	42813
880-23046-7	S-3 (0-1')	Total/NA	Solid	8021B	42813
880-23046-8	S-3 (1.5')	Total/NA	Solid	8021B	42813
880-23046-9	S-3 (2')	Total/NA	Solid	8021B	42813
880-23046-10	S-4 (0-1')	Total/NA	Solid	8021B	42813
880-23046-11	S-4 (1.5')	Total/NA	Solid	8021B	42813
880-23046-12	S-4 (2')	Total/NA	Solid	8021B	42813
880-23046-13	S-5 (0-1')	Total/NA	Solid	8021B	42813
880-23046-14	S-5 (1.5')	Total/NA	Solid	8021B	42813
880-23046-15	S-5 (2')	Total/NA	Solid	8021B	42813
880-23046-16	S-6 (0-1')	Total/NA	Solid	8021B	42813
880-23046-17	S-6 (1.5')	Total/NA	Solid	8021B	42813
880-23046-18	S-6 (2')	Total/NA	Solid	8021B	42813
MB 880-42813/5-A	Method Blank	Total/NA	Solid	8021B	42813
LCS 880-42813/1-A	Lab Control Sample	Total/NA	Solid	8021B	42813
LCSD 880-42813/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	42813
880-23046-1 MS	S-1 (0-1')	Total/NA	Solid	8021B	42813
880-23046-1 MSD	S-1 (0-1')	Total/NA	Solid	8021B	42813

Eurofins Midland

Page 60 of 141

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23046-1 SDG: Eddy Co, NM

GC VOA

Analysis Batch: 43009

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23046-1	S-1 (0-1')	Total/NA	Solid	Total BTEX	
880-23046-2	S-1 (1'.5)	Total/NA	Solid	Total BTEX	
880-23046-3	S-1 (2')	Total/NA	Solid	Total BTEX	
880-23046-4	S-2 (0-1')	Total/NA	Solid	Total BTEX	
880-23046-5	S-2 (1.5')	Total/NA	Solid	Total BTEX	
880-23046-6	S-2 (2')	Total/NA	Solid	Total BTEX	
880-23046-7	S-3 (0-1')	Total/NA	Solid	Total BTEX	
880-23046-8	S-3 (1.5')	Total/NA	Solid	Total BTEX	
880-23046-9	S-3 (2')	Total/NA	Solid	Total BTEX	
880-23046-10	S-4 (0-1')	Total/NA	Solid	Total BTEX	
880-23046-11	S-4 (1.5')	Total/NA	Solid	Total BTEX	
880-23046-12	S-4 (2')	Total/NA	Solid	Total BTEX	
880-23046-13	S-5 (0-1')	Total/NA	Solid	Total BTEX	
880-23046-14	S-5 (1.5')	Total/NA	Solid	Total BTEX	
880-23046-15	S-5 (2')	Total/NA	Solid	Total BTEX	
880-23046-16	S-6 (0-1')	Total/NA	Solid	Total BTEX	
880-23046-17	S-6 (1.5')	Total/NA	Solid	Total BTEX	
880-23046-18	S-6 (2')	Total/NA	Solid	Total BTEX	

Analysis Batch: 42773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-23046-1	S-1 (0-1')	Total/NA	Solid	8015B NM	42831
880-23046-2	S-1 (1'.5)	Total/NA	Solid	8015B NM	42831
880-23046-3	S-1 (2')	Total/NA	Solid	8015B NM	42831
880-23046-4	S-2 (0-1')	Total/NA	Solid	8015B NM	42831
880-23046-5	S-2 (1.5')	Total/NA	Solid	8015B NM	42831
880-23046-6	S-2 (2')	Total/NA	Solid	8015B NM	42831
880-23046-7	S-3 (0-1')	Total/NA	Solid	8015B NM	42831
880-23046-8	S-3 (1.5')	Total/NA	Solid	8015B NM	42831
880-23046-9	S-3 (2')	Total/NA	Solid	8015B NM	42831
MB 880-42831/1-A	Method Blank	Total/NA	Solid	8015B NM	42831
LCS 880-42831/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	42831
LCSD 880-42831/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	42831
880-23046-1 MS	S-1 (0-1')	Total/NA	Solid	8015B NM	42831
880-23046-1 MSD	S-1 (0-1')	Total/NA	Solid	8015B NM	42831

Prep Batch: 42831

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23046-1	S-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-23046-2	S-1 (1'.5)	Total/NA	Solid	8015NM Prep	
880-23046-3	S-1 (2')	Total/NA	Solid	8015NM Prep	
880-23046-4	S-2 (0-1')	Total/NA	Solid	8015NM Prep	
880-23046-5	S-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-23046-6	S-2 (2')	Total/NA	Solid	8015NM Prep	
880-23046-7	S-3 (0-1')	Total/NA	Solid	8015NM Prep	
880-23046-8	S-3 (1.5')	Total/NA	Solid	8015NM Prep	
880-23046-9	S-3 (2')	Total/NA	Solid	8015NM Prep	
MB 880-42831/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-42831/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 61 of 141

Released to Imaging: 5/2/2023 2:57:31 PM

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

GC Semi VOA (Continued)

Prep Batch: 42831 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCSD 880-42831/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-23046-1 MS	S-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-23046-1 MSD	S-1 (0-1')	Total/NA	Solid	8015NM Prep	

Prep Batch: 42834

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
880-23046-10	S-4 (0-1')	Total/NA	Solid	8015NM Prep		-
880-23046-11	S-4 (1.5')	Total/NA	Solid	8015NM Prep		8
880-23046-12	S-4 (2')	Total/NA	Solid	8015NM Prep		
880-23046-13	S-5 (0-1')	Total/NA	Solid	8015NM Prep		9
880-23046-14	S-5 (1.5')	Total/NA	Solid	8015NM Prep		
880-23046-15	S-5 (2')	Total/NA	Solid	8015NM Prep		
880-23046-16	S-6 (0-1')	Total/NA	Solid	8015NM Prep		
880-23046-17	S-6 (1.5')	Total/NA	Solid	8015NM Prep		
880-23046-18	S-6 (2')	Total/NA	Solid	8015NM Prep		
MB 880-42834/1-A	Method Blank	Total/NA	Solid	8015NM Prep		
LCS 880-42834/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-42834/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
880-23043-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep		
880-23043-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		

Analysis Batch: 42861

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-23046-10	S-4 (0-1')	Total/NA	Solid	8015B NM	42834
880-23046-11	S-4 (1.5')	Total/NA	Solid	8015B NM	42834
880-23046-12	S-4 (2')	Total/NA	Solid	8015B NM	42834
880-23046-13	S-5 (0-1')	Total/NA	Solid	8015B NM	42834
880-23046-14	S-5 (1.5')	Total/NA	Solid	8015B NM	42834
880-23046-15	S-5 (2')	Total/NA	Solid	8015B NM	42834
880-23046-16	S-6 (0-1')	Total/NA	Solid	8015B NM	42834
880-23046-17	S-6 (1.5')	Total/NA	Solid	8015B NM	42834
880-23046-18	S-6 (2')	Total/NA	Solid	8015B NM	42834
MB 880-42834/1-A	Method Blank	Total/NA	Solid	8015B NM	42834
LCS 880-42834/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	42834
LCSD 880-42834/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	42834
880-23043-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	42834
880-23043-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	42834

Analysis Batch: 42903

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23046-1	S-1 (0-1')	Total/NA	Solid	8015 NM	
880-23046-2	S-1 (1'.5)	Total/NA	Solid	8015 NM	
880-23046-3	S-1 (2')	Total/NA	Solid	8015 NM	
880-23046-4	S-2 (0-1')	Total/NA	Solid	8015 NM	
880-23046-5	S-2 (1.5')	Total/NA	Solid	8015 NM	
880-23046-6	S-2 (2')	Total/NA	Solid	8015 NM	
880-23046-7	S-3 (0-1')	Total/NA	Solid	8015 NM	
880-23046-8	S-3 (1.5')	Total/NA	Solid	8015 NM	
880-23046-9	S-3 (2')	Total/NA	Solid	8015 NM	
880-23046-10	S-4 (0-1')	Total/NA	Solid	8015 NM	
880-23046-11	S-4 (1.5')	Total/NA	Solid	8015 NM	

Eurofins Midland

Page 62 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

GC Semi VOA (Continued)

Analysis Batch: 42903 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-23046-12	S-4 (2')	Total/NA	Solid	8015 NM	
880-23046-13	S-5 (0-1')	Total/NA	Solid	8015 NM	
880-23046-14	S-5 (1.5')	Total/NA	Solid	8015 NM	
880-23046-15	S-5 (2')	Total/NA	Solid	8015 NM	
880-23046-16	S-6 (0-1')	Total/NA	Solid	8015 NM	
880-23046-17	S-6 (1.5')	Total/NA	Solid	8015 NM	
880-23046-18	S-6 (2')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 42386

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-23046-12	S-4 (2')	Soluble	Solid	DI Leach		
880-23046-13	S-5 (0-1')	Soluble	Solid	DI Leach		
880-23046-14	S-5 (1.5')	Soluble	Solid	DI Leach		
880-23046-15	S-5 (2')	Soluble	Solid	DI Leach		
880-23046-16	S-6 (0-1')	Soluble	Solid	DI Leach		
880-23046-17	S-6 (1.5')	Soluble	Solid	DI Leach		
MB 880-42386/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-42386/2-A	Lab Control Sample	Soluble	Solid	DI Leach		-
LCSD 880-42386/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
880-22954-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach		
880-22954-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		

Analysis Batch: 42572

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23046-12	S-4 (2')	Soluble	Solid	300.0	42386
880-23046-13	S-5 (0-1')	Soluble	Solid	300.0	42386
880-23046-14	S-5 (1.5')	Soluble	Solid	300.0	42386
880-23046-15	S-5 (2')	Soluble	Solid	300.0	42386
880-23046-16	S-6 (0-1')	Soluble	Solid	300.0	42386
880-23046-17	S-6 (1.5')	Soluble	Solid	300.0	42386
MB 880-42386/1-A	Method Blank	Soluble	Solid	300.0	42386
LCS 880-42386/2-A	Lab Control Sample	Soluble	Solid	300.0	42386
LCSD 880-42386/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	42386
880-22954-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	42386
880-22954-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	42386

Leach Batch: 42710

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23046-1	S-1 (0-1')	Soluble	Solid	DI Leach	
880-23046-2	S-1 (1'.5)	Soluble	Solid	DI Leach	
880-23046-3	S-1 (2')	Soluble	Solid	DI Leach	
880-23046-4	S-2 (0-1')	Soluble	Solid	DI Leach	
880-23046-5	S-2 (1.5')	Soluble	Solid	DI Leach	
880-23046-6	S-2 (2')	Soluble	Solid	DI Leach	
880-23046-7	S-3 (0-1')	Soluble	Solid	DI Leach	
880-23046-8	S-3 (1.5')	Soluble	Solid	DI Leach	
880-23046-9	S-3 (2')	Soluble	Solid	DI Leach	
880-23046-10	S-4 (0-1')	Soluble	Solid	DI Leach	
880-23046-11	S-4 (1.5')	Soluble	Solid	DI Leach	

Eurofins Midland

Page 63 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

HPLC/IC (Continued)

Leach Batch: 42710 (Continued)

Lab Sample ID MB 880-42710/1-A	Client Sample ID Method Blank	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
LCS 880-42710/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-42710/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-23046-2 MS	S-1 (1'.5)	Soluble	Solid	DI Leach	
880-23046-2 MSD	S-1 (1'.5)	Soluble	Solid	DI Leach	

Leach Batch: 42711

						_
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
880-23046-18	S-6 (2')	Soluble	Solid	DI Leach		
MB 880-42711/1-A	Method Blank	Soluble	Solid	DI Leach		9
LCS 880-42711/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-42711/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
880-23046-18 MS	S-6 (2')	Soluble	Solid	DI Leach		
880-23046-18 MSD	S-6 (2')	Soluble	Solid	DI Leach		
Analysis Batch: 4280)8					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
880-23046-1	S-1 (0-1')	Soluble	Solid	300.0	42710	40
880-23046-2	S-1 (1'.5)	Soluble	Solid	300.0	42710	13
880-23046-3	S-1 (2')	Soluble	Solid	300.0	42710	
990 22046 4	S 2 (0 1')	Solublo	Solid	300.0	12710	

Analysis Batch: 42808

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-23046-1	S-1 (0-1')	Soluble	Solid	300.0	42710
880-23046-2	S-1 (1'.5)	Soluble	Solid	300.0	42710
880-23046-3	S-1 (2')	Soluble	Solid	300.0	42710
880-23046-4	S-2 (0-1')	Soluble	Solid	300.0	42710
880-23046-5	S-2 (1.5')	Soluble	Solid	300.0	42710
880-23046-6	S-2 (2')	Soluble	Solid	300.0	42710
880-23046-7	S-3 (0-1')	Soluble	Solid	300.0	42710
880-23046-8	S-3 (1.5')	Soluble	Solid	300.0	42710
880-23046-9	S-3 (2')	Soluble	Solid	300.0	42710
880-23046-10	S-4 (0-1')	Soluble	Solid	300.0	42710
880-23046-11	S-4 (1.5')	Soluble	Solid	300.0	42710
MB 880-42710/1-A	Method Blank	Soluble	Solid	300.0	42710
LCS 880-42710/2-A	Lab Control Sample	Soluble	Solid	300.0	42710
LCSD 880-42710/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	42710
880-23046-2 MS	S-1 (1'.5)	Soluble	Solid	300.0	42710
880-23046-2 MSD	S-1 (1'.5)	Soluble	Solid	300.0	42710

Analysis Batch: 42899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-23046-18	S-6 (2')	Soluble	Solid	300.0	42711
MB 880-42711/1-A	Method Blank	Soluble	Solid	300.0	42711
LCS 880-42711/2-A	Lab Control Sample	Soluble	Solid	300.0	42711
LCSD 880-42711/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	42711
880-23046-18 MS	S-6 (2')	Soluble	Solid	300.0	42711
880-23046-18 MSD	S-6 (2')	Soluble	Solid	300.0	42711

Job ID: 880-23046-1

SDG: Eddy Co, NM

Client Sample ID: S-1 (0-1') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 12:17	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/29/22 13:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	42831	12/28/22 17:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42773	12/29/22 04:09	AJ	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	42710	12/27/22 13:26	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42808	12/30/22 05:37	СН	EET MID

Client Sample ID: S-1 (1'.5) Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 12:38	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/29/22 13:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	42831	12/28/22 17:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42773	12/29/22 05:14	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	42710	12/27/22 13:26	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42808	12/30/22 05:45	СН	EET MID

Client Sample ID: S-1 (2') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 12:58	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/29/22 13:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	42831	12/28/22 17:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42773	12/29/22 05:36	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	42710	12/27/22 13:26	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42808	12/30/22 06:12	СН	EET MID

Client Sample ID: S-2 (0-1') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 13:19	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-1

Matrix: Solid

Lab Sample ID: 880-23046-2

Matrix: Solid

3

Lab Sample ID: 880-23046-3

Matrix: Solid

Lab Sample ID: 880-23046-4 Matrix: Solid

Client Sample ID: S-2 (0-1') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			42903	12/29/22 13:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	42831	12/28/22 17:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42773	12/29/22 05:58	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	42710	12/27/22 13:26	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42808	12/30/22 06:20	СН	EET MID

Client Sample ID: S-2 (1.5') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Туре Run Factor Analyst Lab 5035 Total/NA Prep 5.01 g 5 mL 42813 12/28/22 14:45 MNR EET MID Total/NA Analysis 8021B 5 mL 5 mL 42923 12/30/22 13:40 EET MID AJ 1 Total/NA Total BTEX Analysis 1 43009 12/31/22 10:35 AJ EET MID Total/NA Analysis 8015 NM 42903 12/29/22 13:59 EET MID AJ 1 Total/NA Prep 8015NM Prep 10.03 g 10 mL 42831 12/28/22 17:11 DM EET MID Total/NA Analysis 8015B NM 1 uL 42773 12/29/22 06:20 AJ EET MID 1 uL 1 Soluble Leach **DI Leach** 4.96 g 50 mL 42710 12/27/22 13:26 KS EET MID Soluble Analysis 300.0 1 50 mL 50 mL 42808 12/30/22 06:47 СН EET MID

Client Sample ID: S-2 (2')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 14:00	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/29/22 13:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	42831	12/28/22 17:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42773	12/29/22 06:41	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	42710	12/27/22 13:26	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42808	12/30/22 06:55	CH	EET MID

Client Sample ID: S-3 (0-1') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 14:21	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/29/22 13:59	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.03 g 1 uL	10 mL 1 uL	42831 42773	12/28/22 17:11 12/29/22 07:03	DM AJ	EET MID EET MID

Eurofins Midland

Matrix: Solid

Page 66 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-4 Matrix: Solid

Lab Sample ID: 880-23046-5

Lab Sample ID: 880-23046-6

Lab Sample ID: 880-23046-7

Matrix: Solid

Matrix: Solid

Client Sample ID: S-3 (0-1') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	42710	12/27/22 13:26	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42808	12/30/22 07:04	CH	EET MID

Client Sample ID: S-3 (1.5') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 14:41	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/29/22 13:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	42831	12/28/22 17:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42773	12/29/22 07:24	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	42710	12/27/22 13:26	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42808	12/30/22 07:13	CH	EET MID

Client Sample ID: S-3 (2') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 15:02	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/29/22 13:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	42831	12/28/22 17:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42773	12/29/22 07:43	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	42710	12/27/22 13:26	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42808	12/30/22 07:21	СН	EET MID

Client Sample ID: S-4 (0-1') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Batch Dil Initial Final Batch Batch Prepared Prep Type Method Factor Amount Amount Number or Analyzed Analyst Туре Run Lab 5035 Total/NA Prep 5.02 g 5 mL 42813 12/28/22 14:45 MNR EET MID Total/NA Analysis 8021B 1 5 mL 5 mL 42923 12/30/22 15:22 AJ EET MID Total/NA Total BTEX 12/31/22 10:35 Analysis 43009 AJ EET MID 1 Total/NA Analysis 8015 NM 1 42903 12/30/22 12:41 AJ EET MID 10.03 g 42834 Total/NA Prep 8015NM Prep 10 mL 12/29/22 08:29 DM EET MID Total/NA Analysis 8015B NM 1 1 uL 1 uL 42861 12/29/22 16:42 AJ EET MID Soluble 42710 50 ml 12/27/22 13:26 ĸs EET MID Leach DI Leach 4.97 g Soluble Analysis 300.0 1 50 mL 50 mL 42808 12/30/22 07:30 СН EET MID

Page 67 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-7

Lab Sample ID: 880-23046-8

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-23046-9 Matrix: Solid

Lab Sample ID: 880-23046-10

Matrix: Solid

Eurofins Midland

Client Sample ID: S-4 (1.5') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

thod Run 35 21B al BTEX	Factor	Amount 5.03 g 5 mL	Amount 5 mL 5 mL	Number 42813 42923	or Analyzed 12/28/22 14:45 12/30/22 17:37	Analyst MNR	EET MID
21B		Ū					EET MID
	1 1	5 mL	5 mL	42923	12/30/22 17:37		
al BTEX	1					AJ	EET MID
				43009	12/31/22 10:35	AJ	EET MID
15 NM	1			42903	12/30/22 12:41	AJ	EET MID
15NM Prep		10.05 g	10 mL	42834	12/29/22 08:29	DM	EET MID
15B NM	1	1 uL	1 uL	42861	12/29/22 17:04	AJ	EET MID
Leach		5.01 g	50 mL	42710	12/27/22 13:26	KS	EET MID
0.0	1	50 mL	50 mL	42808	12/30/22 07:39	СН	EET MID
			g	····· · · · · · · · · · · · · · · · ·		0 1 50 mL 50 mL 42808 12/30/22 07:39	

Lab Sample ID: 880-23046-12

Lab Sample ID: 880-23046-13

Lab Sample ID: 880-23046-14

Matrix: Solid

Matrix: Solid

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 17:57	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 17:25	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	42386	12/22/22 17:00	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42572	12/23/22 19:31	СН	EET MID

Client Sample ID: S-5 (0-1') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 18:18	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 17:46	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	42386	12/22/22 17:00	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42572	12/23/22 19:36	СН	EET MID

Client Sample ID: S-5 (1.5') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 18:38	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID

Matrix: Solid

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-11

Matrix: Solid

5 6

Client Sample ID: S-5 (1.5') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			42903	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 18:08	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	42386	12/22/22 17:00	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42572	12/23/22 19:41	СН	EET MID

Client Sample ID: S-5 (2') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 18:59	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 18:29	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	42386	12/22/22 17:00	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42572	12/23/22 19:46	CH	EET MID

Client Sample ID: S-6 (0-1')

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 19:19	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 19:13	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	42386	12/22/22 17:00	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42572	12/23/22 19:51	СН	EET MID

Client Sample ID: S-6 (1.5') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 19:40	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/30/22 12:41	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		4	10.01 g 1 uL	10 mL 1 uL	42834 42861	12/29/22 08:29 12/29/22 19:34	DM AJ	EET MID EET MID

Eurofins Midland

Job ID: 880-23046-1 SDG: Eddy Co, NM

Lab Sample ID: 880-23046-14

Lab Sample ID: 880-23046-15

Lab Sample ID: 880-23046-16

Lab Sample ID: 880-23046-17

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Project/Site: Bear Bryant 31 Federal Com #001

Job ID: 880-23046-1 SDG: Eddy Co, NM

Client Sample ID: S-6 (1.5') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	42386	12/22/22 17:00	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42572	12/23/22 19:56	СН	EET MID

Client Sample ID: S-6 (2') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Date Meceiveu.	12/22/22 10.0	•								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	42813	12/28/22 14:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42923	12/30/22 20:01	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			43009	12/31/22 10:35	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42903	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 19:56	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	42711	12/27/22 13:27	KS	EET MID
Soluble	Analysis	300.0		1			42899	12/30/22 12:53	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 880-23046-17

Lab Sample ID: 880-23046-18

Matrix: Solid

Matrix: Solid

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23046-1 SDG: Eddy Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	P	rogram	Identification Number	Expiration Date	
xas	N	IELAP	T104704400-22-25	06-30-23	
• •	•	out the laboratory is not certif	fied by the governing authority. This list ma	y include analytes for which	
the agency does not of	fer certification.				
Analysis Method	Prep Method	Matrix	Analyte		
300.0		Solid	Chloride		
8015 NM		Solid	Total TPH		
8015B NM	8015NM Prep	Solid	Diesel Range Organics (Over	C10-C28)	I
8015B NM	8015NM Prep	Solid	Gasoline Range Organics (GR	C)-C6-C10	
8015B NM	8015NM Prep	Solid	Oll Range Organics (Over C28	3-C36)	
8021B	5035	Solid	Benzene		
8021B	5035	Solid	Ethylbenzene		
8021B	5035	Solid	m-Xylene & p-Xylene		
8021B	5035	Solid	o-Xylene		
8021B	5035	Solid	Toluene		
8021B	5035	Solid	Xylenes, Total		
Total BTEX		Solid	Total BTEX		

Eurofins Midland

Released to Imaging: 5/2/2023 2:57:31 PM

Page 71 of 141

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Job ID: 880-23046-1 SDG: Eddy Co, NM

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	_
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	MCAWW	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Refe	rences:			8
ASTM = AS	STM International			
MCAWW =	"Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March	1983 And Subsequent Revisions.		
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition	n, November 1986 And Its Updates.		
TAL SOP =	· TestAmerica Laboratories, Standard Operating Procedure			

Protocol References:

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440
Sample Summary

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

ived		Matrix	Matrix	Client Sample ID	Sample ID
2 13:34	00	Solid	Solid	S-1 (0-1')	23046-1
2 13:34	00	Solid	Solid	S-1 (1'.5)	23046-2
2 13:34	00	Solid	Solid	S-1 (2')	23046-3
2 13:34	00	Solid	Solid	S-2 (0-1')	23046-4
2 13:34	00	Solid	Solid	S-2 (1.5')	23046-5
2 13:34	00	Solid	Solid	S-2 (2')	23046-6
2 13:34	00	Solid	Solid	S-3 (0-1')	23046-7
2 13:34	00	Solid	Solid	S-3 (1.5')	23046-8
2 13:34	00	Solid	Solid	S-3 (2')	23046-9
2 13:34	00	Solid	Solid	S-4 (0-1')	23046-10
2 13:34	00	Solid	Solid	S-4 (1.5')	23046-11
2 13:34	00	Solid	Solid	S-4 (2')	23046-12
2 13:34	00	Solid	Solid	S-5 (0-1')	23046-13
2 13:34	00	Solid	Solid	S-5 (1.5')	23046-14
2 13:34	00	Solid	Solid	S-5 (2')	23046-15
2 13:34	00	Solid	Solid	S-6 (0-1')	23046-16
2 13:34	00	Solid	Solid	S-6 (1.5')	23046-17
2 13:34	00	Solid	Solid	S-6 (2')	23046-18

Page 73 of 141

Job ID: 880-23046-1 SDG: Eddy Co, NM

Construction Construction Parameters Parameters BTEX 8021B DateTime BTEX 8021B DateTime Relinquished by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature)	Sont P 1 X X X 1 X X X 1 X X X 1 X X X 1 X X X 1 X X X 1 X X X 1 X X X 1 X X X X X X X X X X X X X X X X X X	comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	Please send results to	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	S-1 (2) S-2 (0-1) S-2 (15) S-2 (2) S-3 (0-1) S-3 (2) S-3 (2) S-3 (2) S-3 (2) S-4 (0-1) S-4 (0-1) S-4 (0-1) S-4 (0-1)
hed by (Signature) Received by (Signatu	Sont P 1 X X 1 X 1 X	comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	Please send results	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	
hed by (Signature) Received by (Signature)	Date/Time Product 1 X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X	comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	Please send results	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	
ona@carmonaresources.com	# of 1 X X X X X X X X X X X X X X X X X	comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	Please send results	╽║ ║║ ┃───┼──┼──┼──┼──┼──┼──┼──┼─	S-1 (2) S-2 (0-1) S-2 (15) S-2 (15) S-2 (2) S-3 (0-1) S-3 (15) S-3 (2) S-4 (0-1)
ona@carmonaresources.com	Trimonaresources.com a	Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	Vease send results		S-1 (2) S-2 (0-1) S-2 (15) S-2 (15) S-2 (2) S-3 (0-1) S-3 (15) S-3 (2) S-4 (0-1)
ona@carmonaresources.com	The of solution The solution 1 X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X 1 X X X X X X X X X X X X X X X X X X X	comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	Please send results		S-1 (- 5) S-2 (0-1) S-2 (15) S-2 (15) S-3 (0-1) S-3 (15) S-3 (2) S-4 (0-1)
ona@carmonaresources.com	The of sources.com a	Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	Please send results	╢┝─┼─┼─┼─┼─┼─┼─┼	S-1 (- 5) S-2 (0-1) S-2 (1 5) S-2 (1 5) S-3 (0-1) S-3 (1 5) S-3 (1 5) S-3 (2) S-4 (0-1)
BRO-23046 Chain HOLD	1 1	Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/			S-1 (2) S-2 (0-1) S-2 (15) S-2 (15) S-2 (2) S-3 (0-1) S-3 (15) S-3 (2) S-4 (0-1)
- -	x x x x x x x x x x x x x x x x x x x x	Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	× × × × × × × × × ×	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	S-1 (- 5) S-2 (0-1) S-2 (1 5) S-2 (1 5) S-3 (0-1) S-3 (1 5) S-3 (2) S-4 (0-1)
0 * Parameters ×	× ×	Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	× × × × × × × × ×	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	S-1 (- 5) S-2 (0-1) S-2 (1 5) S-2 (2) S-3 (0-1) S-3 (1 5) S-3 (2)
- - - - - - - - Parameters × <t< td=""><td>× × × × × × × × × × × × × × × ×</td><td>Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/</td><td>× × × × × × × ×</td><td>12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022</td><td>S-1 (2) S-2 (0-1) S-2 (1 5) S-2 (2) S-2 (2) S-3 (0-1) S-3 (1 5)</td></t<>	× × × × × × × × × × × × × × × ×	Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	× × × × × × × ×	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	S-1 (2) S-2 (0-1) S-2 (1 5) S-2 (2) S-2 (2) S-3 (0-1) S-3 (1 5)
O * Parameters O * Parameters O * Parameters O * Parameters O * Parameters O * Parameters O * Parameters O * Parameters O * Parameters Chloride 300 0 O	× × × × × × × × × × × × ×	Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	× × × × × × ×	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	S-1 (- 5) S-2 (0-1) S-2 (15) S-2 (15) S-2 (2) S-3 (0-1)
O * Parameters O * • Parameters × × × × × × BTEX 8021B × × × × × × TPH 8015M (GRO + DRO + 1) × × × × × × Chloride 300 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>× × × × × × × × × × ×</td> <td>Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/</td> <td>× × × × × ×</td> <td>12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022</td> <td>S-1 (1 5) S-2 (0-1) S-2 (1 5) S-2 (2) S-2 (2)</td>	× × × × × × × × × × ×	Comp Grab/ Grab/ Grab/ Grab/ Grab/ Grab/	× × × × × ×	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	S-1 (1 5) S-2 (0-1) S-2 (1 5) S-2 (2) S-2 (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	× × × × × × × × × × TP	Comp Grab/ Grab/ Grab/ Grab/ Grab/	× × × × ×	12/20/2022 12/20/2022 12/20/2022 12/20/2022 12/20/2022	S-1 (1-5) S-2 (0-1') S-2 (1-5)
O * Parameters O * Parameters × × × × BTEX 8021B × × × × FPH 8015M (GRO + DRO + 1) × × × × Chloride 300 0 Chloride 300 0	× × × × × ×	Comp Grab/ Grab/ Grab/ Grab/	× × × >	12/20/2022 12/20/2022 12/20/2022 12/20/2022	S-1 (2') S-2 (0-1')
- - - ○ 1 1 1 1 - - ○ ○ * Parameters × × × × BTEX 8021B × × × TPH 8015M (GRO + DRO + 1) × × × Chloride 300 0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	× × × × × TP	Comp Grab/ Grab/ Grab/	× × ×	12/20/2022 12/20/2022 12/20/2022	S-1 (1 5) S-1 (2')
	× × × × TP	Comp Grab/ Grab/	× >	12/20/2022	(U I) I-U
^O / ₂ ^A / ₂ ^O / ₂ ^A /	× TP	Comp Grab/	>		S-1 (1 5)
Image: Constraint of the second sec		Comp	×	12/20/2022	S-1 (0-1')
HOLD			Time Soil	Date	Sample Identification
HOLD	H 8				
HOLD H-SCO- HP HOLD H-SCO- HP HOLD H-SCO- HP) N	Corrected Temperature	\langle	
Parameters EX 8021B GRO + DRO + 1 oride 300 0 HOLD HOLD HANGO, HP POO, HP POO, HP POO, HP POO, HP	м (a,C	Temperature Reading	NO NA	s
латечется 8021В D + DRO + 1 2 300 0 	EX (1.20	Correction Factor	IO (NIA)	Seals.
H, PO., HP	802 [,] O +	SAT	Thermometer ID	(Yes No T	Received Intact.
H ₂ S0, H ₂	DRO	(Yes) No	(es No) Wet Ice	Jepp Blank.	SAMPLE RECEIPT
		lab if received by 4 30pm	lab if rec		P0 #
	RO)	e day received by the	TAT starts the	MM	Sampler's Name
			Due Date	Eddy Co, NM	Project Location
None	Code	Rush	マ Routine	1198	Project Number
ANALYSIS REQUEST Preservative Codes		Turn Around		Bear Bryant 31 Federal Com #001	Project Name Bear Br
laci.lug@coterra.com & ashton thielke@coterra.com Deliverables EDD ADaPT Other	om & ashton thielke@co	1	Email	5347	Phone [432-813-5347
P Midland, TX 79701 Reporting Level II Level III DST/UST DRRP Level IV	Midland, TX 79701	City, State ZIP		FX 79701	tate ZIP
600 N Marienfield St, Suite 600 State of Project:	600 N Marienfield S	Address		Wall Ste 415	Address 310 West Wall Ste
Cimarex Energy Program· UST/PST [Cimarex Energy	Company Name		Carmona Resources	Company Name. Carmona
nt) Laci Luig Work Order Comments	Laci Luig	Bill to (if different)		neike	Project Manager Asnton I nielke

Page 43 of 45

Received by OCD: 1/24/2023 4:31:26 PM

k

Work Order No: 23646

5 6 13

			0								
											5
			1: 34 2	57	1-2-					the	How &
(Signature) Date/Time	Received by (Sig	Relinquished by (Signature)		Date/Time	Ψ	e)	d by (Signature)	Received by		(Signature)	Relinquished by
										111	
	ources.com	r rease serior results to childenting@carmonaresources.com and mcarmona@carmonaresources.com	rces.com and	onaresou	J@carm		Sunsai nua	r lease s			
						o omoohuin	and possilies t	Diogeos			
,											
-			×	×	1b/	Grab/	×		12/20/2022	(2')	S-6 ()
			×	×	1b/ 1	Grab/	×		12/20/2022	(1 5')	S-6 (1
- 23046			×	×	1b/	Grab/	×		12/20/2022	-1')	S-6 (0-1')
			×	×	1b/ 1	Grab/	×		12/20/2022	2')	S-5 (2')
			×	×	1b/ 1	Grab/	×		12/20/2022	5')	S-5 (1 5')
			×	×	1b/	Grab/	×		12/20/2022	-1')	S-5 (0-1')
			××	×	1b/ 1	Grab/	×		12/20/2022	2')	S-4 (2')
			×	×	1b/ 1	Grab/	×		12/20/2022	5')	S-4 (1 5)
Sample Comments			TP	<u></u>	hp Cont	Water Comp	Soil	Time	Date	ntification	Sample Identification
NaOH+Ascorbic Acid SAPC			H 80	<u> </u>			Corrected Lemperature				
Zn Acetate+NaOH Zn	· · · · ·			1			I emperature Keading	1 emperati		, all	Total Containana
			l (Gl	зтех	 P		Factor.	Correction Factor		Voc 1es	Cooler Custody Seals
NaHSO4 NABIS					ara		ster ID	Thermometer ID	No		Received Intact:
U	*****					Yes No	Wet Ice	Yes No	Blank.	\downarrow	SAMPLE RECEIPT
			D + N		1	ved by 4 30pm	lab, if recei				PO #
HCL HC HNO, HN			1RO)		he	TAT starts the day received by the	TAT starts the		MM		Sampler's Name
							Due Date		Eddy Co, NM	Ed	Project Location
None NO DI Water H-O				¥ .	Pres. Code	Rush	 ✓ Routine 		1198		Project Number
Preservative Codes	ST	ANALYSIS REQUEST			7	Turn Around	Turn	m #001	Bear Bryant 31 Federal Com #001	Bear Bryant	Project Name
ADaPT C Other	Deliverables EDD		laci.luig@coterra.com & ashton thielke@coterra.com	<u>ו & ashton</u>	erra.con	laci.luig@cot	Email			432-813-5347	Phone
	Reporting Level II Level III PST/UST	Rep	Midland, TX 79701	Midlan		City, State ZIP)701	Midland, TX 79701	City, State ZIP
	State of Project:		600 N Marienfield St, Suite 600	600 N		Address.			Ste 415	310 West Wall Ste	Address
βrownfields ☐RRC ☐uperfund [Program: UST/PST PRP Brownfields RRC	Pro	Cimarex Energy	Cimare	ю	Company Name				Carmona Resources	Company Name.
Work Order Comments	Work On		jg	Lacı Luig	đ	Bill to (if different)				Asnton I nielke	Project Manager
rage _ 2 _ of _ 2											

Received by OCD: 1/24/2023 4:31:26 PM

12/31/2022

Work Order No:

ρ

Page 75 of 141

Job Number: 880-23046-1 SDG Number: Eddy Co, NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 23046 List Number: 1

<6mm (1/4").

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	oominon
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 1/24/2023 4:31:26 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701 Generated 12/30/2022 3:14:53 PM

JOB DESCRIPTION

Bear Bryant 31 Federal Com #001 SDG NUMBER Eddy Co,NM

JOB NUMBER

880-23043-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Received by OCD: 1/24/2023 4:31:26 PM

Eurofins Midland

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 12/30/2022 3:14:53 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440 1

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 79 of 141

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
	21
	22
· · · · · · · · · · · · · · · · · · ·	

Indicates the analyte was analyzed for but not detected.

Page 80 of 141

	Deminions/Glossary		
	nona Resources Bear Bryant 31 Federal Com #001	Job ID: 880-23043-1 SDG: Eddy Co,NM	2
Qualifiers	i		3
GC VOA Qualifier	Qualifier Description		Δ
*+	LCS and/or LCSD is outside acceptance limits, high biased.		
F1	MS and/or MSD recovery exceeds control limits.		5
S1+	Surrogate recovery exceeds control limits, high biased.		

GC Semi VOA

U

Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	_
S1+	Surrogate recovery exceeds control limits, high biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
U	Indicates the analyte was analyzed for but not detected.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Midland

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Job ID: 880-23043-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-23043-1

Receipt

The samples were received on 12/22/2022 1:34 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.5°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-23043-1), H-2 (0-0.5') (880-23043-2), H-3 (0-0.5') (880-23043-3) and H-4 (0-0.5') (880-23043-4).

GC VOA

Method 8021B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 880-42758 and analytical batch 880-42900 recovered outside control limits for the following analytes: m-Xylene & p-Xylene and o-Xylene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-42709 and analytical batch 880-42810 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 81 of 141

Job ID: 880-23043-1 SDG: Eddy Co,NM

Client Sample Results

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Client Sample ID: H-1 (0-0.5') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
lenzene	< 0.00199	U	0.00199		mg/Kg		12/27/22 16:46	12/30/22 01:28	
oluene	<0.00199	U	0.00199		mg/Kg		12/27/22 16:46	12/30/22 01:28	
thylbenzene	<0.00199	U *+	0.00199		mg/Kg		12/27/22 16:46	12/30/22 01:28	
n-Xylene & p-Xylene	<0.00398	U *+	0.00398		mg/Kg		12/27/22 16:46	12/30/22 01:28	
o-Xylene	<0.00199	U *+	0.00199		mg/Kg		12/27/22 16:46	12/30/22 01:28	
Kylenes, Total	<0.00398	U *+	0.00398		mg/Kg		12/27/22 16:46	12/30/22 01:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
l-Bromofluorobenzene (Surr)	165	S1+	70 - 130				12/27/22 16:46	12/30/22 01:28	1
,4-Difluorobenzene (Surr)	71		70 - 130				12/27/22 16:46	12/30/22 01:28	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal BTEX	<0.00398	U	0.00398		mg/Kg			12/30/22 12:53	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<49.9	U	49.9		mg/Kg			12/30/22 12:41	1
Aethod: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 14:37	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 14:37	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 14:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane		S1+	70 - 130				12/29/22 08:29	12/29/22 14:37	
p-Terphenyl	125		70 - 130				12/29/22 08:29	12/29/22 14:37	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14.2	F1 F2	5.03		mg/Kg			12/30/22 03:32	1
lient Sample ID: H-2 (0-0.5	')						Lab Sam	ple ID: 880-2	3043-2
ate Collected: 12/20/22 00:00								Matri	x: Solic
te Received: 12/22/22 13:34									
Nethod: SW846 8021B - Volatile		ounds (GC Qualifier) RL	мы	Unit	D	Prepared	Analyzed	Dil Fa
lenzene	<0.00199		0.00199		mg/Kg		12/27/22 16:46	12/30/22 01:54	
	-0.00133								
oluene	<0.00100	11	0 00100					12/30/22 01:6/	
	<0.00199		0.00199		mg/Kg mg/Kg		12/27/22 16:46	12/30/22 01:54 12/30/22 01:54	
Ethylbenzene	<0.00199	U *+	0.00199		mg/Kg		12/27/22 16:46	12/30/22 01:54	
Toluene Ethylbenzene n-Xylene & p-Xylene p-Xylene		U *+ U *+							· · · · · · · · · · · · · · · · · · ·

Xylenes, Total <0.00398 U*+ 0.00398 12/27/22 16:46 12/30/22 01:54 mg/Kg 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 4-Bromofluorobenzene (Surr) 194 S1+ 70 - 130 12/27/22 16:46 12/30/22 01:54 1 1,4-Difluorobenzene (Surr) 80 70 - 130 12/27/22 16:46 12/30/22 01:54 1

Eurofins Midland

Page 82 of 141

Job ID: 880-23043-1 SDG: Eddy Co,NM

Lab Sample ID: 880-23043-1

Matrix: Solid

Job ID: 880-23043-1 SDG: Eddy Co,NM

Client Sample ID: H-2 (0-0.5')

Project/Site: Bear Bryant 31 Federal Com #001

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Client: Carmona Resources

8MDI 9	mg/Kg Unit mg/Kg	D	Prepared	12/30/22 12:53 Analyzed 12/30/22 12:41	1 Dil Fac
9		<u>D</u>	Prepared		Dil Fac
9		<u> </u>	Prepared		Dil Fac
	mg/Kg			12/30/22 12:41	
L MDI					1
L MDI					
	. Unit	D	Prepared	Analyzed	Dil Fac
9	mg/Kg		12/29/22 08:29	12/29/22 15:41	1
9	mg/Kg		12/29/22 08:29	12/29/22 15:41	1
9	mg/Kg		12/29/22 08:29	12/29/22 15:41	1
			Prepared	Analyzed	Dil Fac
			12/29/22 08:29	12/29/22 15:41	1
			12/29/22 08:29	12/29/22 15:41	1
L MDL	. Unit	D	Prepared	Analyzed	Dil Fac
0	mg/Kg			12/30/22 03:46	1
	9 LMDL	9 mg/Kg L <u>MDL</u> <u>Unit</u>	9 mg/Kg L <u>MDL</u> <u>Unit D</u>	9 mg/Kg 12/29/22 08:29 Prepared 12/29/22 08:29 12/29/22 08:29 12/29/22 08:29 L MDL Unit D Prepared	9 mg/Kg 12/29/22 08:29 12/29/22 15:41 Prepared Analyzed 12/29/22 08:29 12/29/22 15:41 12/29/22 08:29 12/29/22 15:41 12/29/22 08:29 12/29/22 15:41 L MDL Unit D Prepared Analyzed

Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Method: SIMPAG 2024B - Valatila Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/27/22 16:46	12/30/22 02:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/27/22 16:46	12/30/22 02:20	1
Ethylbenzene	<0.00200	U *+	0.00200		mg/Kg		12/27/22 16:46	12/30/22 02:20	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		12/27/22 16:46	12/30/22 02:20	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		12/27/22 16:46	12/30/22 02:20	1
Xylenes, Total	<0.00399	U *+	0.00399		mg/Kg		12/27/22 16:46	12/30/22 02:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	199	S1+	70 - 130				12/27/22 16:46	12/30/22 02:20	1
1,4-Difluorobenzene (Surr)	75		70 - 130				12/27/22 16:46	12/30/22 02:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/30/22 12:53	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/30/22 12:41	1
- Method: SW846 8015B NM - D	iesel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
							10/00/00 00 00	10/00/00 10:01	
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 16:01	1

Eurofins Midland

12/29/22 16:01

Matrix: Solid

5

Lab Sample ID: 880-23043-2

Diesel Range Organics (Over

C10-C28)

49.9

mg/Kg

12/29/22 08:29

<49.9 U

Project/Site: Bear Bryant 31 Federal Com #001

Job ID: 880-23043-1 SDG: Eddy Co,NM

Lab Sample ID: 880-23043-3

Client Sample ID: H-3 (0-0.5')

Date Collected: 12/20/22 00:00

Client: Carmona Resources

Date Received: 12/22/22 13:34									
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC) (Continue	d)					
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/22 08:29	12/29/22 16:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	111		70 - 130				12/29/22 08:29	12/29/22 16:01	
o-Terphenyl	105		70 - 130				12/29/22 08:29	12/29/22 16:01	
Method: MCAWW 300.0 - Anior	ns, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	5.79		4.97		mg/Kg			12/30/22 03:50	
lient Sample ID: H-4 (0-0	.5')						Lab Sam	ple ID: 880-2	3043-
ate Collected: 12/20/22 00:00								Matri	ix: Soli
Date Received: 12/22/22 13:34									
Martha da 010/040 0004D - Madatti									
Method: SW846 8021B - Volatil Analyte	· · ·	Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	<0.00201	U	0.00201		mg/Kg		12/27/22 16:46	12/30/22 02:46	
Toluene	< 0.00201	U	0.00201		mg/Kg		12/27/22 16:46	12/30/22 02:46	
Ethylbenzene	< 0.00201		0.00201		mg/Kg		12/27/22 16:46	12/30/22 02:46	
m-Xylene & p-Xylene	< 0.00402		0.00402		mg/Kg		12/27/22 16:46	12/30/22 02:46	
o-Xylene	< 0.00201		0.00201		mg/Kg		12/27/22 16:46	12/30/22 02:46	
Xylenes, Total	<0.00201		0.00402		mg/Kg		12/27/22 16:46	12/30/22 02:46	
	0.00102	0	0.00102		mgring				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	195	S1+	70 - 130				12/27/22 16:46	12/30/22 02:46	
1,4-Difluorobenzene (Surr)	78		70 - 130				12/27/22 16:46	12/30/22 02:46	
Method: TAL SOP Total BTEX	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00402	U	0.00402		mg/Kg			12/30/22 12:53	
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	<49.8	U	49.8		mg/Kg			12/30/22 12:41	
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics	<49.8		49.8		mg/Kg		12/29/22 08:29	12/29/22 16:21	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		12/29/22 08:29	12/29/22 16:21	

0								-
1-Chlorooctane	129		70 - 130				12/29/22 08:29	12/29/22 16:21
o-Terphenyl	120		70 - 130				12/29/22 08:29	12/29/22 16:21
Method: MCAWW 300.0 - Anions, I	on Chromato	graphy - So	luble					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Chloride	<5.05	U	5.05		mg/Kg			12/30/22 03:55

<49.8 U

%Recovery Qualifier

Eurofins Midland

Matrix: Solid 5

Released to Imaging: 5/2/2023 2:57:31 PM

C10-C28)

Surrogate

Oll Range Organics (Over C28-C36)

49.8

Limits

mg/Kg

12/29/22 08:29

Prepared

12/29/22 16:21

Analyzed

1

1

1

1

Dil Fac

Dil Fac

Surrogate Summary

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-23043-1	H-1 (0-0.5')	165 S1+	71	
880-23043-2	H-2 (0-0.5')	194 S1+	80	
880-23043-3	H-3 (0-0.5')	199 S1+	75	
880-23043-4	H-4 (0-0.5')	195 S1+	78	
890-3687-A-1-C MS	Matrix Spike	198 S1+	79	
890-3687-A-1-D MSD	Matrix Spike Duplicate	182 S1+	74	
LCS 880-42758/1-A	Lab Control Sample	189 S1+	86	
LCSD 880-42758/2-A	Lab Control Sample Dup	197 S1+	80	
MB 880-42758/5-A	Method Blank	124	72	

Surrogate Legend BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

_					12
		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-23043-1	H-1 (0-0.5')	<u> </u>	125	·	
880-23043-1 MS	H-1 (0-0.5')	60 S1-	53 S1-		
880-23043-1 MSD	H-1 (0-0.5')	62 S1-	46 S1-		
880-23043-2	H-2 (0-0.5')	135 S1+	125		
880-23043-3	H-3 (0-0.5')	111	105		
880-23043-4	H-4 (0-0.5')	129	120		
LCS 880-42834/2-A	Lab Control Sample	102	115		
LCSD 880-42834/3-A	Lab Control Sample Dup	110	122		
MB 880-42834/1-A	Method Blank	113	113		
Surrogate Legend					

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Page 85 of 141

5 6

Job ID: 880-23043-1 SDG: Eddy Co,NM

Prep Type: Total/NA

Lab Sample ID: MB 880-42758/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 42900								Prep Type: 1 Prep Batch	
· · · · · · · · · · · · · · · · · · ·	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/27/22 16:46	12/29/22 17:39	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/27/22 16:46	12/29/22 17:39	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/27/22 16:46	12/29/22 17:39	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/27/22 16:46	12/29/22 17:39	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/27/22 16:46	12/29/22 17:39	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/27/22 16:46	12/29/22 17:39	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				12/27/22 16:46	12/29/22 17:39	1
1,4-Difluorobenzene (Surr)	72		70 - 130				12/27/22 16:46	12/29/22 17:39	1

Lab Sample ID: LCS 880-42758/1-A Matrix: Solid

Analysis Batch: 42900

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1142		mg/Kg		114	70 - 130	
Toluene	0.100	0.1112		mg/Kg		111	70 - 130	
Ethylbenzene	0.100	0.1288		mg/Kg		129	70 - 130	
m-Xylene & p-Xylene	0.200	0.2632	*+	mg/Kg		132	70 - 130	
o-Xylene	0.100	0.1327	*+	mg/Kg		133	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	189	S1+	70 - 130
1,4-Difluorobenzene (Surr)	86		70 - 130

Lab Sample ID: LCSD 880-42758/2-A

Matrix: Solid

Analysis Batch: 42900							Prep	Batch:	42758
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1196		mg/Kg		120	70 - 130	5	35
Toluene	0.100	0.1153		mg/Kg		115	70 - 130	4	35
Ethylbenzene	0.100	0.1402	*+	mg/Kg		140	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.2850	*+	mg/Kg		142	70 - 130	8	35
o-Xylene	0.100	0.1412	*+	mg/Kg		141	70 - 130	6	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	197	S1+	70 - 130
1,4-Difluorobenzene (Surr)	80		70 - 130

Lab Sample ID: 890-3687-A-1-C MS

Matrix: Solid

Analysis Batch: 42900									Prep	o Batch: 42758
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.100	0.1138		mg/Kg		113	70 - 130	
Toluene	<0.00202	U	0.100	0.1086		mg/Kg		108	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 42758

Job ID: 880-23043-1

SDG: Eddy Co,NM

QC Sample Results

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23043-1 SDG: Eddy Co,NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3687-A Matrix: Solid											ype: To	tal/NA
Analysis Batch: 42900	Comula	Comula	Calka	ме	MS					Prep %Rec	Batch:	42758
Analyte	Sample	Sample Qualifier	Spike Added		Qualifier	Unit	D		Rec	%Rec		
Ethylbenzene		U *+	0.100	0.1300	Quaimer	mg/Kg			129	70 - 130		
m-Xylene & p-Xylene				0.1300	F 4					70 - 130 70 - 130		
o-Xylene	<0.00403 <0.00202		0.201 0.100	0.2035	ΓI	mg/Kg mg/Kg			131 128	70 - 130 70 - 130		
э-хуюне	<0.00202	0 +	0.100	0.1201		mg/rtg			120	70 - 150		
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	198	S1+	70 - 130									
1,4-Difluorobenzene (Surr)	79		70 - 130									
Lab Sample ID: 890-3687-A	-1-D MSD					CI	ient s	Sam	ple ID	: Matrix Sp	oike Dur	olicate
Matrix: Solid											ype: To	
Analysis Batch: 42900											Batch:	
,,	Sample	Sample	Spike	MSD	MSD					%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D) %	Rec	Limits	RPD	Limi
Benzene	<0.00202	U	0.0990	0.1047		mg/Kg			106	70 - 130	8	35
Toluene	<0.00202	U	0.0990	0.1008		mg/Kg			102	70 - 130	8	35
Ethylbenzene	<0.00202	U *+	0.0990	0.1192		mg/Kg			120	70 - 130	9	35
m-Xylene & p-Xylene	<0.00403	U *+ F1	0.198	0.2400		mg/Kg			121	70 - 130	9	35
	<0.00202	U *+	0.0990	0.1186		mg/Kg			120	70 - 130	8	35
o-Xylene												
o-Xylene	MSD	MSD										
o-Xylene Surrogate	MSD %Recovery		Limits									
Surrogate	%Recovery		Limits									
	%Recovery	Qualifier										
Surrogate 4-Bromofluorobenzene (Surr)		Qualifier S1+	70 - 130 70 - 130									

Matrix: Solid Analysis Batch: 42861

o-Terphenyl

Analysis Batch: 42861								Prep Batch	n: 42834
	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 13:34	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 13:34	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/29/22 08:29	12/29/22 13:34	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				12/29/22 08:29	12/29/22 13:34	1

70 - 130

113

Lab Sample ID: LCS 880-42834/2-A Matrix: Solid alucic Ratch: 42964

Analysis Batch: 42861							Prep	Batch: 42834
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	918.0		mg/Kg		92	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1002		mg/Kg		100	70 - 130	
C10-C28)								

Eurofins Midland

Prep Type: Total/NA

12/29/22 08:29 12/29/22 13:34

Client Sample ID: Lab Control Sample

QC Sample Results

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-428	34/2-A						Client	t Sample	ID: Lab Co	ontrol Sa	ampl
Matrix: Solid									Prep T	ype: To	tal/N/
Analysis Batch: 42861									Prep	Batch:	4283
	LCS	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	102		70 - 130								
o-Terphenyl	115		70 - 130								
Lab Sample ID: LCSD 880-42	2834/3-A					Clier	nt San	nole ID:	Lab Contro	l Sampl	e Du
Matrix: Solid							le our			ype: To	
Analysis Batch: 42861										Batch:	
			Spike	LCSD	LCSD				%Rec	Datom	RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	824.8		mg/Kg		82	70 - 130	11	2
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)			1000	1088		mg/Kg		109	70 - 130	8	2
,	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane	110		70 - 130								
o-Terphenyl	122		70 - 130								
Analysis Batch: 42861 Analyte	-	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec Limits	Batch:	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	898.0		mg/Kg		85	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.9	U	999	1122		mg/Kg		112	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	60	S1-	70 - 130								
o-Terphenyl	53	S1-	70 - 130								
Lab Sample ID: 880-23043-1	MSD							Clien	t Sample II	D: H-1 (0-0.5
Matrix: Solid									Prep T	ype: To	tal/N
Analysis Batch: 42861									Prep	Batch:	4283
	Sample	Sample	Spike	MSD	MSD				%Rec		RF
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Gasoline Range Organics GRO)-C6-C10	<49.9	U	999	1005		mg/Kg	_	96	70 - 130	11	:
Diesel Range Organics (Over	<49.9	U	999	946.9		mg/Kg		95	70 - 130	17	:
C10-C28)											
C10-C28)		MSD									
Surrogate	%Recovery	Qualifier	Limits								
	62		Limits 70 - 130 70 - 130								

QC Sample Results

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23043-1 SDG: Eddy Co,NM

Method: 300.0 - Anions, Ion Chromatography

_ Lab Sample ID: MB 880-42709/1-A											C	lient S	ample ID:	Method	Blank
Matrix: Solid														Type: S	
Analysis Batch: 42810															
-		MB I	МВ												
Analyte	R	esult (Qualifier		RL		MDL	Unit		D	Pre	pared	Analy	/zed	Dil Fac
Chloride	<	<5.00 (U		5.00			mg/Kg	l				12/30/22	2 03:17	1
										Clie	nt S	Sample	D: Lab C	Control S	ample
Matrix: Solid													Prep	o Type: S	oluble
Analysis Batch: 42810															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit	[D	%Rec	Limits		
Chloride				250		250.4			mg/Kg			100	90 - 110		
- Lab Sample ID: LCSD 880-42709/3	-A								Cli	ent Sa	amp	le ID:	Lab Contr	ol Samp	le Dup
Matrix: Solid													Prep	o Type: S	oluble
Analysis Batch: 42810															
				Spike		LCSD	LCSI	C					%Rec		RPD
Analyte				Added		Result	Qual	ifier	Unit	[D	%Rec	Limits	RPD	Limit
Chloride				250		252.2			mg/Kg			101	90 - 110	1	20
												Clien	t Sample	ID: H-1 ((0-0.5')
Matrix: Solid													Prep	o Type: S	oluble
Analysis Batch: 42810															
	Sample	Samp	le	Spike		MS	MS						%Rec		
Analyte	Result	Qualif	fier	Added		Result	Qual	ifier	Unit	[D	%Rec	Limits		
Chloride	14.2	F1 F2		252		213.5	F1		mg/Kg			79	90 - 110		
- Lab Sample ID: 880-23043-1 MSD												Clien	t Sample	ID: H-1 ((0-0.5')
Matrix: Solid														o Type: S	
Analysis Batch: 42810															
	Sample	Samp	le	Spike		MSD	MSD						%Rec		RPD
Analyte	Result	Qualif	fier	Added		Result	Qual	ifier	Unit	[D	%Rec	Limits	RPD	Limit

Eurofins Midland

Released to Imaging: 5/2/2023 2:57:31 PM

QC Association Summary

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

8 9

Job ID: 880-23043-1 SDG: Eddy Co,NM

GC VOA

Prep Batch: 42758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-23043-1	H-1 (0-0.5')	Total/NA	Solid	5035	
880-23043-2	H-2 (0-0.5')	Total/NA	Solid	5035	
880-23043-3	H-3 (0-0.5')	Total/NA	Solid	5035	
880-23043-4	H-4 (0-0.5')	Total/NA	Solid	5035	
MB 880-42758/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-42758/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-42758/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3687-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
890-3687-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 42900

Analysis Batch: 42900						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	10
880-23043-1	H-1 (0-0.5')	Total/NA	Solid	8021B	42758	
880-23043-2	H-2 (0-0.5')	Total/NA	Solid	8021B	42758	44
880-23043-3	H-3 (0-0.5')	Total/NA	Solid	8021B	42758	
880-23043-4	H-4 (0-0.5')	Total/NA	Solid	8021B	42758	
MB 880-42758/5-A	Method Blank	Total/NA	Solid	8021B	42758	
LCS 880-42758/1-A	Lab Control Sample	Total/NA	Solid	8021B	42758	40
LCSD 880-42758/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	42758	13
890-3687-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	42758	
890-3687-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	42758	14

Analysis Batch: 42965

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23043-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-23043-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-23043-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-23043-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 42834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-23043-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-23043-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-23043-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-23043-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-42834/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-42834/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-42834/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-23043-1 MS	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-23043-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 42861

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23043-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	42834
880-23043-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	42834
880-23043-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	42834
880-23043-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	42834
MB 880-42834/1-A	Method Blank	Total/NA	Solid	8015B NM	42834
LCS 880-42834/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	42834

Eurofins Midland

Released to Imaging: 5/2/2023 2:57:31 PM

QC Association Summary

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

GC Semi VOA (Continued)

Analysis Batch: 42861 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCSD 880-42834/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	42834
880-23043-1 MS	H-1 (0-0.5')	Total/NA	Solid	8015B NM	42834
880-23043-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8015B NM	42834
Analysis Batch: 42955					

Analysis Batch: 42955

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23043-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-23043-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-23043-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-23043-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 42709

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-23043-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-23043-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-23043-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-23043-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-42709/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-42709/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-42709/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-23043-1 MS	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-23043-1 MSD	H-1 (0-0.5')	Soluble	Solid	DI Leach	

Analysis Batch: 42810

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-23043-1	H-1 (0-0.5')	Soluble	Solid	300.0	42709
880-23043-2	H-2 (0-0.5')	Soluble	Solid	300.0	42709
880-23043-3	H-3 (0-0.5')	Soluble	Solid	300.0	42709
880-23043-4	H-4 (0-0.5')	Soluble	Solid	300.0	42709
MB 880-42709/1-A	Method Blank	Soluble	Solid	300.0	42709
LCS 880-42709/2-A	Lab Control Sample	Soluble	Solid	300.0	42709
LCSD 880-42709/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	42709
880-23043-1 MS	H-1 (0-0.5')	Soluble	Solid	300.0	42709
880-23043-1 MSD	H-1 (0-0.5')	Soluble	Solid	300.0	42709

Page 91 of 141

Job ID: 880-23043-1 SDG: Eddy Co,NM

Client Sample ID: H-1 (0-0.5') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	42758	12/27/22 16:46	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42900	12/30/22 01:28	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			42965	12/30/22 12:53	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42955	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 14:37	AJ	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	42709	12/27/22 13:25	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42810	12/30/22 03:32	СН	EET MID

Client Sample ID: H-2 (0-0.5') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	42758	12/27/22 16:46	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42900	12/30/22 01:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			42965	12/30/22 12:53	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42955	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 15:41	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	42709	12/27/22 13:25	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42810	12/30/22 03:46	СН	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 12/20/22 00:00

Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	42758	12/27/22 16:46	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42900	12/30/22 02:20	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			42965	12/30/22 12:53	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42955	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 16:01	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	42709	12/27/22 13:25	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42810	12/30/22 03:50	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	42758	12/27/22 16:46	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42900	12/30/22 02:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			42965	12/30/22 12:53	AJ	EET MID

Eurofins Midland

Lab Sample ID: 880-23043-4

Job ID: 880-23043-1 SDG: Eddy Co,NM

Lab Sample ID: 880-23043-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Client Sample ID: H-4 (0-0.5') Date Collected: 12/20/22 00:00 Date Received: 12/22/22 13:34

Date Received: 12/22/22 13:3	4	
Batch	Batch	Dil

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			42955	12/30/22 12:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	42834	12/29/22 08:29	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42861	12/29/22 16:21	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	42709	12/27/22 13:25	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42810	12/30/22 03:55	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-23043-1

Page 93 of 141

Job ID: 880-23043-1 SDG: Eddy Co,NM

Lab Sample ID: 880-23043-4

Matrix: Solid

Eurofins Midland

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23043-1 SDG: Eddy Co,NM

Page 94 of 141

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	Pr	ogram	Identification Number	Expiration Date	
xas	N	ELAP	T104704400-22-25	06-30-23	
The following analytes	are included in this report, b	ut the laboratory is not certif	fied by the governing authority. This list ma	y include analytes for which	
the agency does not off					
Analysis Method	Prep Method	Matrix	Analyte		
300.0		Solid	Chloride		
8015 NM		Solid	Total TPH		
8015B NM	8015NM Prep	Solid	Diesel Range Organics (Over	C10-C28)	
8015B NM	8015NM Prep	Solid	Gasoline Range Organics (GR	C)-C6-C10	
8015B NM	8015NM Prep	Solid	Oll Range Organics (Over C28	3-C36)	
8021B	5035	Solid	Benzene		
8021B	5035	Solid	Ethylbenzene		
8021B	5035	Solid	m-Xylene & p-Xylene		
8021B	5035	Solid	o-Xylene		
8021B	5035	Solid	Toluene		
8021B	5035	Solid	Xylenes, Total		
Total BTEX		Solid	Total BTEX		

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001

Job ID: 880-23043-1 SDG: Eddy Co,NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
SW846 =	= "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, Ma "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed = TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R			
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Client: Carmona Resources Project/Site: Bear Bryant 31 Federal Com #001 Job ID: 880-23043-1 SDG: Eddy Co,NM

ab Sample ID	Client Sample ID	Matrix	Collected	Received
80-23043-1	H-1 (0-0.5')	Solid	12/20/22 00:00	12/22/22 13:34
80-23043-2	H-2 (0-0.5')	Solid	12/20/22 00:00	12/22/22 13:34
80-23043-3	H-3 (0-0.5')	Solid	12/20/22 00:00	12/22/22 13:34
80-23043-4	H-4 (0-0.5')	Solid	12/20/22 00:00	12/22/22 13:34

Revised Date 05012020 Rev 2020.1											
			6								5
			34		171		R			A fla	3 Uluna
Date/Time	Received by (Signature)	Relinquished by (Signature)		Date/Time		re	Received by (Signature	Rec	iture)	ned by (Signature)	Relinquished by
	Irces.com	1 mcarmona@carmonaresources.com	es.com anc	aresourc)carmor	to cmoehring@	Please send results to cmoehring@carmonaresources.com and mcarm	Plea			
								-			
	880-23043 Chain of Custody										
			×	x	2	Grab/	×	Ň	12/20/2022	H-4 (0-0 5')	-
			××	x X		Grab/	×	Ň	12/20/2022	H-3 (0-0 5')	
			××	< ×	1	Grab/	×	Ň	12/20/2022	H-2 (0-0 5')	-
おらい			×	X X	-1	Grab/	×	Ň	12/20/2022	H-1 (0-0 5')	-
Sample Comments	, Sar			т	# of Cont	Water Comp	ne Soil	Time	n Date	Sample Identification	Samp
				<u> </u>							
				015	L	N	Corrected Temperature	Corre			Total Containers
Hacua			-			E O	Temperature Reading	/ Tem	8 S	ty Seals.	Sample Custody Seals
NaSO,	HOL Na.S.O. NaSO.		oride	EX 8	Pa	j, B	Correction Factor	Corre	σľ	/ Seals	Cooler Custody Seals
					ram	100	₿T	Then	(res) No		Received Intact
U	H,PO, HP			B	ete	(Yes) NO	(No Wet Ice	Yes No	Temp Blank.	ECEIPT	SAMPLE RECEIPT
	H ₂ S04. H ₂			+ M	rs	lab if received by 4 30pm	lab if recei				PO #
	HCL. HC			RO		lay received by the	TAT starts the		MM	ĕ	Sampler's Name
	Cool Cool						Due Date		Eddy Co, NM	5	Project Location
DI Water: H ₂ O	None NO				Pres. Code	Rush	✓ Routine		1198		Project Number
Preservative Codes	Pre	ANALYSIS REQUEST				Turn Around		Com #0	Bear Bryant 31 Federal Com #001	Bear	Project Name
Other:		ra.com Deliverables	iielke@coter	ashton.th	a.com &	Email laci luig@coterra.com & ashton.thielke@coterra.com	Email		3-5347	432-813-5347	Phone
	Reporting Level II Level III PST/UST	Report	TX 79701	Midland, TX 79701		City, State ZIP			Midland, TX 79701	Midland	City, State ZIP
	State of Project:		600 N Marienfield St, Suite 600	600 N Ma		Address			310 West Wall Ste 415	310 We	Address
RRC uperfund	Program: UST/PST PRP Brownfields RRC	Progra	Energy	Cimarex Energy		Company Name:			Carmona Resources		Company Name
Ś	Work Order Comments			Laci Luig		Bill to. (if different)			Ashton Thielke		Project Manager
10f1	Page										
	I										

Received by OCD: 1/24/2023 4:31:26 PM

आहेत. नुवद्य

÷

J409 R

Work Order No: 23643

Page 97 of 141

5 6

13

Released to Imaging: 5/2/2023 2:57:31 PM

Job Number: 880-23043-1 SDG Number: Eddy Co,NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 23043 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Bear Bryant 31 Federal #001

Test Trench Data

Sample ID	Sample Date	Depth (BGS)	BTEX mg/kg	Benzene mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Total TPH mg/kg	Cl mg/kg
NMOCD Tabl	le 1 Closure Crit NMAC	teria 19.15.29	50 mg/kg	10 mg/kg		100 mg/kg		100 mg/kg	600 mg/kg
		0-1'	ND	ND	ND	ND	ND	0	64
Π-1	10/12/2022	2'	ND	ND	ND	ND	ND	0	64
11-1	10/12/2022	3'	ND	ND	ND	ND	ND	0	96
		4'	ND	ND	ND	ND	ND	0	32
		0-1'	ND	ND	ND	ND	ND	0	288
TT-2	10/12/2022	2'	ND	ND	ND	ND	ND	0	176
11-2	10/12/2022	3'	ND	ND	ND	ND	ND	0	48
		4'	ND	ND	ND	ND	ND	0	96
		0-1'	ND	ND	ND	ND	ND	0	304
	10/12/2022	2'	ND	ND	ND	ND	ND	0	176
11-3	TT-3 10/12/2022	3'	ND	ND	ND	ND	ND	0	144
		4'	ND	ND	ND	ND	ND	0	48
		0-1'	ND	ND	ND	ND	ND	0	80
TT-4	10/12/2022	2'	ND	ND	ND	ND	ND	0	80
11-4	10/12/2022	3'	ND	ND	ND	ND	ND	0	64
		4'	ND	ND	ND	ND	ND	0	16
		0-1'	ND	ND	ND	ND	ND	0	976
TT 40	10/12/2022	2'	ND	ND	ND	ND	ND	0	80
TT-1B	10/12/2022	3'	ND	ND	ND	ND	ND	0	96
		4'	ND	ND	ND	ND	ND	0	32
		0-1'	ND	ND	ND	ND	ND	0	288
TT 3D	10/12/2022	2'	ND	ND	ND	ND	ND	0	80
TT-2B	10/12/2022	3'	ND	ND	ND	ND	ND	0	48
		4'	ND	ND	ND	ND	ND	0	32
		0-1'	ND	ND	ND	ND	ND	0	112
TT 3D	10/12/2022	2'	ND	ND	ND	ND	ND	0	64
TT-3B	10/12/2022	3'	ND	ND	ND	ND	ND	0	112
		4'	ND	ND	ND	ND	ND	0	48
			ND = A	nalyte Not Det	ected TT- Test	Trench			

November 04, 2022

MICHAEL COLLIER

H & R ENTERPRISES

1010 GAMBLIN ROAD

HOBBS, NM 88240

RE: BEAR BRYANT 31 FED #001 (BEAR BRYANT)

Enclosed are the results of analyses for samples received by the laboratory on 10/27/22 15:08.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/27/2022	Sampling Date:	10/26/2022
Reported:	11/04/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	EDDY COUNTY, NM	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: NE 0-1' (H225084-01)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	11/03/2022	ND	1.88	93.8	2.00	3.51	
Toluene*	<0.050	0.050	11/03/2022	ND	2.10	105	2.00	3.06	
Ethylbenzene*	<0.050	0.050	11/03/2022	ND	1.99	99.5	2.00	3.02	
Total Xylenes*	<0.150	0.150	11/03/2022	ND	5.98	99.7	6.00	2.74	
Total BTEX	<0.300	0.300	11/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	11/01/2022	ND	416	104	400	0.00	QM-07
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/01/2022	ND	186	93.2	200	1.18	
DRO >C10-C28*	<10.0	10.0	11/01/2022	ND	182	91.2	200	1.64	
EXT DRO >C28-C36	<10.0	10.0	11/01/2022	ND					
Surrogate: 1-Chlorooctane 103 % 45		% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	105	% 46.3-17	0						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/27/2022	Sampling Date:	10/26/2022
Reported:	11/04/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	EDDY COUNTY, NM	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: NW 0-1' (H225084-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/03/2022	ND	1.88	93.8	2.00	3.51	
Toluene*	<0.050	0.050	11/03/2022	ND	2.10	105	2.00	3.06	
Ethylbenzene*	<0.050	0.050	11/03/2022	ND	1.99	99.5	2.00	3.02	
Total Xylenes*	<0.150	0.150	11/03/2022	ND	5.98	99.7	6.00	2.74	
Total BTEX	<0.300	0.300	11/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	11/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/01/2022	ND	186	93.2	200	1.18	
DRO >C10-C28*	<10.0	10.0	11/01/2022	ND	182	91.2	200	1.64	
EXT DRO >C28-C36	<10.0	10.0	11/01/2022	ND					
Surrogate: 1-Chlorooctane	93.8	% 45.3-16	1						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/27/2022	Sampling Date:	10/26/2022
Reported:	11/04/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	EDDY COUNTY, NM	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: SE 0-1' (H225084-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/04/2022	ND	1.88	93.8	2.00	3.51	
Toluene*	<0.050	0.050	11/04/2022	ND	2.10	105	2.00	3.06	
Ethylbenzene*	<0.050	0.050	11/04/2022	ND	1.99	99.5	2.00	3.02	
Total Xylenes*	<0.150	0.150	11/04/2022	ND	5.98	99.7	6.00	2.74	
Total BTEX	<0.300	0.300	11/04/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	11/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/01/2022	ND	186	93.2	200	1.18	
DRO >C10-C28*	<10.0	10.0	11/01/2022	ND	182	91.2	200	1.64	
EXT DRO >C28-C36	<10.0	10.0	11/01/2022	ND					
Surrogate: 1-Chlorooctane	96.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	100	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/27/2022	Sampling Date:	10/26/2022
Reported:	11/04/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	EDDY COUNTY, NM	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: SW 0-1' (H225084-04)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/04/2022	ND	1.88	93.8	2.00	3.51	
Toluene*	<0.050	0.050	11/04/2022	ND	2.10	105	2.00	3.06	
Ethylbenzene*	<0.050	0.050	11/04/2022	ND	1.99	99.5	2.00	3.02	
Total Xylenes*	<0.150	0.150	11/04/2022	ND	5.98	99.7	6.00	2.74	
Total BTEX	<0.300	0.300	11/04/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	11/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/01/2022	ND	186	93.2	200	1.18	
DRO >C10-C28*	<10.0	10.0	11/01/2022	ND	182	91.2	200	1.64	
EXT DRO >C28-C36	<10.0	10.0	11/01/2022	ND					
Surrogate: 1-Chlorooctane	95.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

whe Sigh

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Z	
5	0
bd	PI
ora	õ
to	5
)TIE	N
S	-

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: H&R Enterprises	orises	BILL TO	ANAL	ANALYSIS REQUEST
Project Manager: Michael Collier		P.O. #:		
Address:		Company: The McDaniels Co.		
City:	State: Zip:	Attn:		
Phone #:	Fax #:	Address:		
Project #:	Project Owner: Cimarex Energy	City:		
Project Name: Bear Bryant 31 Fed #001 (Bear)	101 (Bear)	State: Zip:		
Project Location: Eddy County, NM		Phone #:		
Sampler Name: Roy Bell		Fax #:		
OR USE OILY	MATRIX	PRESERV. SAMPLING		
Lab I.D. 1477 5.054	(G)RAB OR (C)OMP. CONTAINERS CONTAINERS COUNDWATER WASTEWATER SOIL DIL	ACID/BASE:	BTEX TPH Chlorides	
NE 0-1'	1 X	ztht/cl X	X X X	
2 NW 0-1'				
SE 0-1'				
4 SW 0-1'				
litates or successors arising pat of or reased to the perioritia		AAA /Verbal	Result: 17es 1 No	Add'I Phone #:
Relinquished By:	Time: SS Received By:	A MARKE REMARKS:	emailed. Pic	all addrees:
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Observed Temp. "C 2/2 Sample Condition Connected Temp. "C 2/2 Cool Liteact Trim Print I wo wo	tion CHECKED BY: (Initials)	Standard A Bacheria (Cool Indiact Observed Temp. * ID #113 ction -0.5°C	c c

FORM-005 R 3.2 10/07/21

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

October 14, 2022

MICHAEL COLLIER

H & R ENTERPRISES

1010 GAMBLIN ROAD

HOBBS, NM 88240

RE: BEAR BRYANT 31 FED #001 (BEAR BRYANT)

Enclosed are the results of analyses for samples received by the laboratory on 10/13/22 12:14.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 1 0-1' (H224833-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/13/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/13/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/13/2022	ND					
Surrogate: 1-Chlorooctane	102 9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	102 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 1 2' (H224833-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/13/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/13/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/13/2022	ND					
Surrogate: 1-Chlorooctane	108	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	104	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 1 3' (H224833-03)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	89.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/13/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/13/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/13/2022	ND					
Surrogate: 1-Chlorooctane	108	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	108	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 1 4' (H224833-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/13/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/13/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/13/2022	ND					
Surrogate: 1-Chlorooctane	104	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	106	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 2 0-1' (H224833-05)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/13/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/13/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/13/2022	ND					
Surrogate: 1-Chlorooctane	101 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	100 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 2 2' (H224833-06)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.4	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/13/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/13/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/13/2022	ND					
Surrogate: 1-Chlorooctane	101	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	<i>99.3</i>	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 2 3' (H224833-07)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.4	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	104	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	105	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 2 4' (H224833-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	98.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	98.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 3 0-1' (H224833-09)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.9 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	100 9	45.3-16	1						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 3 2' (H224833-10)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	101	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	105	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 3 3' (H224833-11)

BTEX 8021B	mg/kg		Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	95.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	96.4	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 3 4' (H224833-12)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	94.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	96.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 4 0-1' (H224833-13)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	96.6	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 4 2' (H224833-14)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	98.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 4 3' (H224833-15)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.1	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	106	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	109	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 4 4' (H224833-16)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.1	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	101	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	103	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 1B 0-1' (H224833-17)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	976	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	93.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 1B 2' (H224833-18)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	101 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	103 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 1B 3' (H224833-19)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/13/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	94.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	99.2	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 1B 4' (H224833-20)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2022	ND	2.14	107	2.00	0.225	
Toluene*	<0.050	0.050	10/14/2022	ND	2.08	104	2.00	0.572	
Ethylbenzene*	<0.050	0.050	10/14/2022	ND	2.03	101	2.00	0.0255	
Total Xylenes*	<0.150	0.150	10/14/2022	ND	6.17	103	6.00	0.269	
Total BTEX	<0.300	0.300	10/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	211	106	200	3.26	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	218	109	200	4.32	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	103 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	106 9	46.3-17							

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 2B 0-1' (H224833-21)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	1.91	QM-07
Toluene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	0.694	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	1.98	98.8	2.00	0.187	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.05	101	6.00	0.128	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	229	114	200	11.6	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	247	123	200	26.5	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	104 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	124 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 2B 2' (H224833-22)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	1.91	
Toluene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	0.694	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	1.98	98.8	2.00	0.187	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.05	101	6.00	0.128	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	229	114	200	11.6	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	247	123	200	26.5	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	91.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	110 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 2B 3' (H224833-23)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	1.91	
Toluene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	0.694	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	1.98	98.8	2.00	0.187	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.05	101	6.00	0.128	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	229	114	200	11.6	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	247	123	200	26.5	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	95.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	116 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 2B 4' (H224833-24)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	1.91	
Toluene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	0.694	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	1.98	98.8	2.00	0.187	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.05	101	6.00	0.128	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	229	114	200	11.6	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	247	123	200	26.5	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	90.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	109	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY.	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 3B 0-1' (H224833-25)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Analyte Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	1.91	
Toluene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	0.694	
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	1.98	98.8	2.00	0.187	
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.05	101	6.00	0.128	
Total BTEX	<0.300	0.300	10/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112 16.0		10/14/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	229	114	200	11.6	
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	247	123	200	26.5	
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND					
Surrogate: 1-Chlorooctane	86.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	103	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 3B 2' (H224833-26)

BTEX 8021B	mg	/kg	Analyze	d By: JH/						
Analyte	Analyte Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	1.91		
Toluene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	0.694		
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	1.98	98.8	2.00	0.187		
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.05	101	6.00	0.128		
Total BTEX	<0.300	0.300	10/13/2022	ND						
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0							
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	64.0 16.0		10/14/2022	ND	432	108	400	0.00		
TPH 8015M	mg	/kg	Analyze	d By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	229	114	200	11.6		
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	247	123	200	26.5		
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND						
Surrogate: 1-Chlorooctane	73.5	% 45.3-16	1							
Surrogate: 1-Chlorooctadecane	92.6	% 46.3-17	8							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 3B 3' (H224833-27)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/						
Analyte	Analyte Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	1.91		
Toluene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	0.694		
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	1.98	98.8	2.00	0.187		
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.05	101	6.00	0.128		
Total BTEX	<0.300	0.300	10/13/2022	ND						
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 69.9-14	0							
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	112 16.0		10/14/2022	ND	432	108	400	0.00		
TPH 8015M	mg/	/kg	Analyze	d By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	229	114	200	11.6		
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	247	123	200	26.5		
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND						
Surrogate: 1-Chlorooctane	89.3	% 45.3-16	1							
Surrogate: 1-Chlorooctadecane										

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	10/13/2022	Sampling Date:	10/12/2022
Reported:	10/14/2022	Sampling Type:	Soil
Project Name:	BEAR BRYANT 31 FED #001 (BEAR BRY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX- EDDY CO NM		

Sample ID: TT - 3B 4' (H224833-28)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/						
Analyte	Analyte Result Rep		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	1.91		
Toluene*	<0.050	0.050	10/13/2022	ND	2.00	100	2.00	0.694		
Ethylbenzene*	<0.050	0.050	10/13/2022	ND	1.98	98.8	2.00	0.187		
Total Xylenes*	<0.150	0.150	10/13/2022	ND	6.05	101	6.00	0.128		
Total BTEX	<0.300	0.300	10/13/2022	ND						
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0							
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	48.0	16.0	10/14/2022	ND	432	108	400	0.00		
TPH 8015M	mg/	′kg	Analyze	d By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10*	<10.0	10.0	10/14/2022	ND	229	114	200	11.6		
DRO >C10-C28*	<10.0	10.0	10/14/2022	ND	247	123	200	26.5		
EXT DRO >C28-C36	<10.0	10.0	10/14/2022	ND						
Surrogate: 1-Chlorooctane	82.6	% 45.3-16	1							
Surrogate: 1-Chlorooctadecane	99.0	% 46.3-17	8							

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: H&R Enterprises	orises	BILL TO		
cilipani y		P.O. #:		
Project Manager: Michael Coilier		Company: Cimarex Energy		
Address:		Attn: Laci Luig		
City:	State	Address:		
Phone #:	Fax #:	City:		
Project #:	Project Owner, Onnarea Circier	State: Zip:		
Project Name: Bear Bryant 31 Fed #001 (Bear Bryant)	(Bear Bryant)	•		
Project Location: Eddy County, NM		Phone #:		
Lolect Foranoit much community		Fax #:		
Sampler Name: Roy Bell	MATRIX	PRESERV. SAMPLING	G	
Lab I.D.	2			
		HER : ID/BASE: E / COOL HER :	STEX FPH Chlorides	
アンガサイト	# (GF W/ SC		-	
1 TT-1 0-1'	G I X	X 10/12	-	
2 TT-1 2'				
3 TT-1 3'				
U TT-1 4'				
ATT-2 0-1'				
6 TT-2 2'				
7 TT-2 3'				
8 TT-2 4				
9 TT-3 0-1'				unified and received by Cateforni v
10 TT-3 2' In EASE NOTE: Liability and Cherrington, Cardinal's side	chaise namedy for any claim utility studies based in contract or test, shall be finited to the a chaise namedy for any claim utility studies based in contract or test, shall be finited to the	1	including these for negligence and any other caude wheleverw she	
event shall Cardinal be fieldle for incomma or consequence nummer affiliates or successors arising out of or related to the performance	everd shall Cardinal be hate for incomma or consequence		Verbal Result: Verbal Result:	Add'I Phone #: il address:
Relinquished By:	Time 13.00 Slool (0)	res.	() REQUES are enamed.	
Beimquished By:	Date: Received By:	(
	emp. "C) 1 &	Q	Standard	gee Condition
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	3.02	(Initials)	Correction Factor - 0, 0 C	No No Consolid Temp. "C
FORM-005 R 3.2 10/07/21	† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com	changes. Please email chang	to celey,keene@cardinallabsnm.co	m Da 101 3

ion of the applicable service. In no

Page 31 of 33

Deutofred By: (Circle One) Sampler - UPS - Bus - Other:	Relinquished By:	Relinquished By:		- L	10	171	16 1	15 T		-	12 T		4687045	Lab I.D.	Sampler Name: Roy Bell	Project Location: Eddy County, NM	oject Name: Bear E	Project #:	Phone #:	City:	Address:	Project Manager: Michael Collier	Company Name: H&R Enterprises		
One) - Other:	11		3 2 F	TT-1B 4'	TT-1B 3'	TT-1R 2'	TT-4 4	TT-4 3'	TT-4 2'	TT-4 0-1'	TT-3 4'	TT-3 3'			Sell	ly County, NM	Project Name: Bear Bryant 31 Fed #001 (Bear Bryani)					ael Collier	Enterprises	(575) 393-23	101 East Marl
Observed Temp. "C 3-002 Corrected Temp. "C 3-02	Time: 10/14	10-1327	ine exclusive remody for any claim which whether mages, including without limitation, business sence of services hensunder by Cardinis, regard														Bear bryany	Pioject Own	Fax #:	State:				(575) 393-2326 FAX (575) 393-2476	101 East Marland, Hobbs, NM 88240
3.0%	Receiv	Receive		11				-				G 1	#	B)RAB OR (C)OMP. CONTAINERS ROUNDWATER	-			di. Cumuron	Protocol Company Energy	cib:	1			476	1240
Sample Condition Cool Intact	ad By:	By:	such claim is based up				-	-				X	W SI	VASTEWATER OIL	MATRIX				enerov						
No station	AN		lysed in contrast or sin, we use of profile incurred by client, its subsidiarise, interruptions, loss of use, or loss of profile incurred by client, its subsidiarise, or othe dees of whether such clien is based upon any of the above studied reasons or othe dees of whether such clien in based upon any of the above studied reasons or othe dees of whether such clien in based upon any of the above studied reasons or othe dees of whether such client is based upon any of the above studied reasons or othe dees of whether such client in the subsidiary of the above studied reasons or othe dees of whether such client in the subsidiary of the above studied reasons or othe dees of whether such client is a subsidiary of the above studied reasons or othe dees of whether such client is a subsidiary of the above studied reasons or othe dees of the subsidiary of the above studied reasons of the dees of the subsidiary of the above studied reasons of the dees of the subsidiary of the subsidiary of the dees of the subsidiary of the subsidiary of the deep of the subsidiary of the subsidiary of the deep of the deep of the subsidiary of the deep	the amount paid by the cl								X	0 4	DTHER : ACID/BASE: CE / COOL	PRESERV.	Fax #:	Phone #:	State:	City:	Address:	Attn: Laci Luig	Company:	P.O. #:	-	
(Initials)	9	2	and reasons or otherwise	client for the amplyseek. All claims							+	72/21/01	K	DATE	H			Zip:			Luig	Company: Cimarex Energy		BILL TO	N MITT
Turnamand Tax. Reals I	REMARKS	All Results		dams including those for	+	1				1	1		Т	TIME	SAMPLING							Ϋ́Ρ.			
Standard Cod Intact #113	REMARKS: 72 HR RUSH	All Results are emailed. Please prov		tor magiliance and any other							-	+	XX	BTEX TPH	_		_				_		_		
Classroad Temp. 'C		lease provide		other callee whetsoe	-	+	-	-	F		-	-	X			_		_				_		ANA	
ly) Sample Crodin		vide Email address:	Add'l Ph	ver shall be deemed w		+	+	+	+										_		_	_	_	ANALYSIS RE	
00 04 0 04 0			one #:	gived unless made in				+	+							_			_		_	_		REQUEST	
Connected Temp. *C				might but but provides of					-											_					
				A reason and the second	u Cardinal within 30 da					+		+				_				_					
			Ц	10000	ave after completix			1	1	T	1	1	1		_	-			_	_		-		-	

Released to Imaging: 5/2/2023 2:57:31 PM

10 10

bo
OT Z
ies.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: H&R Enterprises	P.O. #:	BILL IO		
Project Manager: Michael Collier	Company:	P.U. #: Company: Cimarex Energy		
Address:	Tin	Luig		
City:	Address:			
1 m/ 11-	Project Owner: Cimarex Energy City:			
Project #:	CLOWING: China on an	Zip:		
Project Name: Bear Bryant 31 Fed #001 (Bear Bryant)				
Project Location: Eddy County, NM				
	Fax #:			
Sampler Name: Roy Bell	MATRIX PRESERV.	W. SAMPLING		
Lab I.D.	R			
	RAB OR (C)O CONTAINERS OUNDWATER MATEWATER ML L UDGE THER : CID/BASE: E / COOL		TPH Chlorides	
CCRA77H		X 22/01/01	XX	
	-			
-				
24 11-20 T				
_				
21 TT-3B 3'				
2		-		
A deverse the second seco	be any clubin articing selective based in contract or from data be limited to this porceal padd by the dis- traction of the selective based in contract or from data be limited to this porceal padd by climit. Its	sue in the analyses. All claims including those for nugligance and any other to subclaims.	moe and any other cause whatsoever	unal be deemad weived unless made to writing and received by Cardinal
event shall Cardinal be liable for incidental or consequences affliable or successors arising out of or related to the performance of services has a fillable or successors arising out of or related to the performance of services has	Averal shall Cradinal be liable for incodential or consequences an announce of services in transform by Cardinal, ingatites of exploiter such claim is based upon any a na work announce of services in transform by Cardinal, ingatites of exploiter such claim is based upon any a na work announce of services in transformation of the portion of the porti		Verbal Result: D Yes No Add'I Phone #:	Add'I Phone #: mail address:
Relinquished By:	Time: hut www.hut Min MI	All Results are em	tailed, Flease provine	
Reportuished By:	Date: Received By:	REMARKS: 72 HK HUSH		a
Delivered By: (Circle One) Sampler - UPS - Bus - Other: Correc	Connected Temp. "C 3 6 c Cool Intact Connected Temp. "C 3 6 c Cool Intact 3 6 c 2 j vol 1 va 3 6 c 1 vol 1 va	CHECKED BY: Transmed The Standard (Initials) new P Cool into Correction Factor 47.5°C	Standard D nacesservity	□ Yes □ Yes □ bo □ Consciled Tamp *C

ition of the applicable

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CIMAREX ENERGY CO. OF COLORADO	162683
600 N. Marienfeld Street	Action Number:
Midland, TX 79701	179230
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By Condition

We have received your closure report and final C-141 for Incident #NMLB1116755122 BEAR BRYANT 31 FEDERAL #001, thank you. This closure is approved. 5/2/2023 rhamlet

CONDITIONS

Action 179230

Condition Date