NV

October 11, 2022

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Third Quarter 2022 – SVE System Update OH Randel #5 San Juan County, New Mexico Hilcorp Energy Company NMOCD Incident Number: NVF1602039091 Ensolum Project No. 07A1988025

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Third Quarter* 2022 – SVE System Update report summarizing the soil vapor extraction (SVE) system performance at the OH Randel #5 natural gas production well (Site), located in Unit D of Section 10, Township 26 North, and Range 11 West in San Juan County, New Mexico (Figure 1). Specifically, this report summarizes Site activities performed in July, August, and September of 2022 to the New Mexico Oil Conservation Division (NMOCD).

SVE SYSTEM SPECIFICATIONS

The current operation at the Site consists of two SVE systems, each with a dedicated blower, knockout tank, and control panel. The original SVE system ("SVE Skid 1") was installed at the Site in 2016 by XTO Energy (the previous owner and operator of the Site) and subsequently upgraded by Hilcorp in 2019. This SVE system consists of a 2 horsepower Atlantic Blower AB-301 blower capable of producing 110 standard cubic feet per minute (scfm) of flow and 72 inches of water column (IWC) vacuum. A second SVE system ("SVE Skid 2") was installed at the Site and became operational on March 11, 2022 in order to more efficiently address residual soil impacts at the Site. Specifically, the new system was built with a 3.4 horsepower Republic Manufacturing HRC501 blower capable of producing 221 scfm of flow and 72 IWC vacuum. When operated concurrently, the two SVE systems are able to induce the necessary flow and vacuum on all SVE wells at the Site simultaneously with no need to rotate operating wells.

SVE wells are located and screened in the "Secondary" and "Tertiary" Source Zones, as identified in the WSP *Site Summary Report*, dated October 1, 2021. Once the new SVE Skid 2 was installed at the Site, new manifolds were constructed so that SVE Skid 1 operated wells located in the Secondary Source Zone (SVE-5 and SVE-8) and SVE Skid 2 operated wells located in the Tertiary Source Zone (SVE-7, SVE-10, SVE-12, SVE-13, SVE-14, SVE-15, SVE-16, SVE-17, SVE-18, SVE-19, SVE-20, SVE-21, and SVE-22). The SVE well locations are shown on Figure 2.

Hilcorp Energy Company Third Quarter 2022 – SVE System Update OH Randel #5 October 11, 2022

ENSOLUM

Page 2

THIRD QUARTER 2022 ACTIVITIES

During the third quarter of 2022, Ensolum and Hilcorp personnel performed bi-weekly operation and maintenance (O&M) visits to verify the system was operating as designed and to perform any required maintenance. Field notes taken during O&M visits are presented in Appendix A. During the third quarter of 2022, all SVE wells, except SVE-6 and SVE-11, were operated in order to induce flow in areas with remaining soil impacts. SVE wells SVE-6 and SVE-11 are screened at depths shallower than the remaining soil impacts at the Site and have been turned off in order for the SVE system to induce a higher flow and vacuum on the remaining open wells. Between June 17 and September 21, 2022, SVE Skid 1 operated for 2,288 hours with a runtime efficiency of 99 percent (%). Between June 17 and September 21, 2022, SVE Skid 2 operated for 2,302 hours with a runtime efficiency of 100%. Table 1 presents the SVE system operational hours and percent runtime. Appendix B presents photographs of the runtime meter for calculating the third quarter runtime efficiency.

Emissions samples were collected from sample ports located between the SVE piping manifold and the SVE blower using a high vacuum air sampler. Prior to collection, the emission samples were field screened with a photoionization detector (PID) for organic vapor monitoring (OVM). A third quarter 2022 emissions sample was collected from SVE Skid 2 on September 8, 2022. The emission sample was collected directly into two 1-Liter Tedlar[®] bags and analyzed by Pace Analytical for analysis of total volatile petroleum hydrocarbons (TVPH – also known as total petroleum hydrocarbons – gasoline range organics (TPH-GRO)) and volatile organic compounds (VOCs) following Environmental Protection Agency (EPA) Method TO-15, as well as fixed gas analysis of oxygen and carbon dioxide following American Society for Testing and Materials (ASTM) Method D-1946.

Of note, the emissions sample collected by Hilcorp from SVE Skid 2 during the third quarter 2022 sampling event was incidentally analyzed for TVPH and VOCs by EPA Method TO-15 instead of EPA Methods 8015D and 8260B, respectively. As presented in the document titled *A Comparison between EPA Compendium Method TO-15 and EPA Method 8260B for VOC Determination in Soil Gas* (Hayes, Benton, Grewal, and Khan, 2005), EPA Methods TO-15 and 8260B generate comparable results for the compounds studied. Additionally, the document concluded that EPA Method TO-15 analysis generally outperforms EPA Method 8260 analysis when comparing recovery rates, reporting limits, and calibration results. As such, the use of EPA Method TO-15 for analysis of TVPH and VOCs is acceptable for the purposes of assessing quarterly air concentrations and calculating emissions generated from the SVE system at the Site.

An emissions sample was not collected from SVE Skid 1 during the September 8, 2022 field visit. As such, Hilcorp collected a sample from SVE Skid 1 on September 22, 2022. The emission sample was collected directly into two 1-Liter Tedlar[®] bags and submitted to Hall Environmental Analysis Laboratory (Hall) in Albuquerque, New Mexico for analysis of TVPH following EPA Method 8015D, VOCs following EPA Method 8260B, and fixed gas analysis of oxygen and carbon dioxide following Gas Processors Association (GPA) Method 2261.

Table 2 presents a summary of analytical data collected during the sampling events and from historical sampling events, with the full laboratory analytical report included in Appendix C. Emission sample data and measured stack flow rates are used to estimate total mass recovered and total emissions generated by the SVE systems (Tables 3 and 4). Based on these estimates, a total of 702,507 pounds (351 tons) of TVPH have been removed by the systems to date.

Hilcorp Energy Company Third Quarter 2022 – SVE System Update OH Randel #5

RECOMMENDATIONS

Bi-weekly O&M visits will continue to be performed by Ensolum and/or Hilcorp personnel to verify the SVE systems are operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue operating the SVE systems until asymptotic emissions are observed. At that time, an evaluation of residual petroluem hydrocarbons will be assessed and further recommendations for remedial actions, if any, will be provided to NMOCD.

Additionally, the fourth quarter 2022 emissions samples will be collected from both systems during the same field visit and analyzed by EPA Methods 8015D and 8260B for TVPH and VOCs, respectively, in order to be consistent with historical sampling events.

We appreciate the opportunity to provide this report to the New Mexico Oil Conservation Division. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely, Ensolum, LLC

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com

Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

- Figure 1 Site Location Map
- Figure 2 SVE System Layout
- Table 1
 Soil Vapor Extraction System Runtime Calculations
- Table 2
 Soil Vapor Extraction System Emissions Analytical Results
- Table 3 Soil Vapor Extraction System Mass Removal and Emissions Skid 1
- Table 4
 Soil Vapor Extraction System Mass Removal and Emissions Skid 2
- Appendix A Field Notes
- Appendix B Project Photographs
- Appendix C Laboratory Analytical Reports

October 11, 2022

Page 3

FIGURES

Received by OCD: 10/12/2022 4:10:19 PM

Released to Imaging: 5/5/2023 1:32:10 PM

TABLES

TABLE 1

SOIL VAPOR EXTRACTION SYSTEM RUNTIME CALCULATIONS

Hilcorp Energy Company - OH Randel #5

San Juan County, New Mexico

Ensolum Project No. 07A1988025

SVE Skid 1 - Original System Runtime Operation

Date	Total Operational Hours	Delta Hours	Days	Percent Runtime
6/17/2022	34,457			
9/21/2022	36,745	2,288	96	99%

SVE Skid 2 - New System Runtime Operation

Date	Total Operational Hours	Delta Hours	Days	Percent Runtime
6/17/2022	2,351			
9/21/2022	4,653	2,302	96	100%

ENSOLUM

TABLE 2SOIL VAPOR EXTRACTION SYSTEM EMISSIONS ANALYTICAL RESULTSHilcorp Energy Company - OH Randel #5San Juan County, New Mexico

Ensolum Project No. 07A1988025

SVE Skid 1 - Original System Analytical Results

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH/GRO (μg/L)	Oxygen (%)	Carbon Dioxide (%)
8/11/2016	4,072	160	1,700	61	500	46,000		
8/17/2018	719	130	230	10	110	8,900		
6/28/2019	1,257	7,200	15,000	360	3,000	460,000		
12/16/2019	1,685	1,800	4,400	83	660	170,000		
3/10/2020	897	1,700	3,300	89	700	130,000		
4/30/2020	1,853	2,440	4,737	128	1,005	186,592		
6/24/2020 (1)								
11/10/2020	1,385	320	1,100	43	380	43,000	21.5%	0.35%
2/10/2021	865	360	950	35	250	32,000		
6/11/2021	400	170	390	11	110	18,000	22.1%	0.15%
9/29/2021	505	99	190	7.0	55	8,200		
12/15/2021	1,163	130	290	6.9	62	37,137	22.2%	0.092%
3/21/2022	274	6.5	23	0.98	11	550	22.4%	0.041%
6/17/2022	88	5.5	19	0.69	7.0	650	21.8%	0.060%
9/22/2022	55	9.0	42	1.9	20	670	21.8%	0.10%

SVE Skid 2 - Original System Analytical Results

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)	Oxygen (%)	Carbon Dioxide (%)
3/21/2022	1,354	310	510	13	120	35,000	21.8%	0.31%
6/17/2022	1,058	200	410	<10	66	33,000	21.3%	0.39%
9/8/2022	1,258	479	1,190	26	1,041	31,900	20.1%	0.50%

Notes:

(1) - blower not operational for sampling in May and June 2020

GRO: gasoline range organics

μg/L: microgram per liter

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

%: percent

--: not sampled

Ensolum

•

ENSOLUM

TABLE 3SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS - SKID 1Hilcorp Energy Company - OH Randel #5San Juan County, New Mexico

Ensolum Project No. 07A1988025

	Flow and Laboratory Analysis								
Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)			
8/11/2016	4,072	160	1,700	61	500	46,000			
8/17/2018	719	130	230	10	110	8,900			
12/16/2019	1,902	1,800	4,400	83	660	170,000			
3/10/2020	897	1,700	3,300	89	700	130,000			
4/30/2020	1,853	2,440	4,737	128	1,005	186,592			
6/24/2020			Blower Not O	perational (1)					
11/10/2021	1,385	320	1,100	43	380	43,000			
2/10/2021	865	360	950	35	250	32,000			
6/11/2021	400	170	390	11	110	18,000			
9/29/2021	505	99	190	7.0	55	8,200			
12/15/2021	1,163	130	290	6.9	62	37,137			
3/21/2022	274	6.5	23	1.0	11	550			
6/17/2022	88	6	19	0.7	7	650			
9/22/2022	55	9.0	42	1.9	20	670			
Average	1,091	564	1,336	37	298	52,438			

Vapor Extraction Summary

Date	Flow Rate (cfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (Ib/hr)	Toluene (Ib/hr)	Ethylbenzene (Ib/hr)	Total Xylenes (Ib/hr)	TVPH (lb/hr)
8/11/2016	105	31,500	31,500	0.063	0.67	0.024	0.20	18
8/17/2018	100	59,647,500	59,616,000	0.054	0.36	0.013	0.11	10
12/16/2019	110	109,635,900	49,988,400	0.40	0.95	0.019	0.16	37
3/10/2020	110	121,707,300	12,071,400	0.72	1.6	0.035	0.28	62
4/30/2020 (1)	105	130,917,900	9,210,600	0.81	1.6	0.043	0.33	62
6/24/2020 (1)				Blower Not	Operational			
11/10/2021	105	130,917,900	0	0	0	0	0	0
2/10/2021	92	143,580,780	12,662,880	0.12	0.35	0.013	0.11	13
6/11/2021	90	158,657,580	15,076,800	0.089	0.23	0.0077	0.061	8.4
9/29/2021	69	168,249,960	9,592,380	0.035	0.075	0.0023	0.021	3.4
12/15/2021	90	178,207,560	9,957,600	0.039	0.081	0.0023	0.020	7.6
3/16/2022	70	187,343,904	9,136,344	0.018	0.041	0.0010	0.010	4.9
6/17/2022	70	196,703,520	9,359,616	0.0016	0.0055	0.00022	0.0024	0.16
9/21/2022	65	205,627,890	8,924,370	0.0018	0.0074	0.00031	0.0033	0.16
			Average	0.18	0.46	0.012	0.10	17

Flow and Laboratory Analysis Ethylbenzene **Total SVE System** Benzene **Total Xylenes** TVPH TVPH Toluene **Delta Hours** Date (pounds) Hours (pounds) (pounds) (pounds) (pounds) (tons) 8/11/2016 0.31 3.3 0.12 1.0 90 0.045 5 5

8/17/2018	9,941	9,936	539	3,586	132	1,133	102,008	51		
12/16/2019	17,515	7,574	3,007	7,214	145	1,200	278,728	139		
3/10/2020	19,344	1,829	1,317	2,897	65	512	112,870	56		
4/30/2020 (1)	20,806	1,462	1,188	2,307	62	489	90,884	45		
6/24/2020 (1)		Blower Not Operational								
11/10/2021	20,806	0	0	0	0	0	0	0		
2/10/2021	23,100	2,294	268	809	31	249	29,600	15		
6/11/2021	25,892	2,792	249	630	22	169	23,495	12		
9/29/2021	28,209	2,317	80	173	5.4	49	7,833	3.9		
12/15/2021	30,053	1,844	71	149	4.3	36	14,070	7.0		
3/16/2022	32,228	2,175	39	89	2.2	21	10,732	5.4		
6/17/2022	34,457	2,228	3.5	12	0.49	5.3	350	0.18		
9/21/2022	36,745	2,288	4.0	17	0.72	7.5	367	0.18		
	Total Mas	ss Recovery to Date	6,767	17,887	469	3,872	671,029	336		

Notes:

(1) - blower not operational for sampling in May and June 2020

cf: cubic feet

cfm: cubic feet per minute

µg/L: micrograms per liter

lb/hr: pounds per hour

--: not sampled

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

Ensolum

.

ENSOLUM

 TABLE 4

 SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS - SKID 2

 Hilcorp Energy Company - OH Randel #5

 San Juan County, New Mexico

Ensolum Project No. 07A1988025

Flow and Laboratory Analysis

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)
3/21/2022	1,354	310	510	13	120	35,000
6/17/2022	1,058	200	410	10	66	33,000
9/8/2022	1,258	479	1,190	26	1,041	31,900
Average	1,223	330	703	16	409	33,300

Vapor Extraction Summary

Date	Flow Rate (cfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (Ib/hr)	Toluene (Ib/hr)	Ethylbenzene (Ib/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
3/16/2022	70	499,800	499,800	0.081	0.13	0.0034	0.031	9.2
6/17/2022	60	8,533,560	8,033,760	0.057	0.10	0.0026	0.021	7.6
9/8/2022	56	15,138,648	6,605,088	0.071	0.17	0.0038	0.116	6.8
			Average	0.070	0.135	0.003	0.056	7.9

Flow and Laboratory Analysis

Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
3/16/2022	119	119	10	16	0.41	3.7	1,090	0.55
6/17/2022	2,351	2,232	128	230	5.8	47	17,027	8.51
9/8/2022	4,316	1,966	140	329	7.4	228	13,361	6.68
	Total Mass Recovery to Date		277	576	14	278	31,478	16

Notes:

cf: cubic feet

cfm: cubic feet per minute

µg/L: micrograms per liter

lb/hr: pounds per hour

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

Ensolum

.

APPENDIX A

Field Notes

.

	01	I RANDEL #5 SVE SYSTEM BIWEEKLY O&M FORM		
DATE: TIME ONSITE:	7/5/22	O&M PERSONNEL: TIME OFFSITE:	Recce Hanson 1310	
	S	VE SYSTEM - MONTHLY O&M		
SVE ALARMS:	_	KO TANK HIGH LEVEL 🗕		
SVE SYSTEM	READING #2	TIME	1	
Blower Hours (take photo)	34889.6 2783.5	220	1	
Inlet Vacuum (IWC)	52 54]	
filet Thermal Anemometer Flow	70 58			
Exhaust Thermal Anemometer Flow			1	
(fpm)	110 0105		4	
Exhaust PID	199 3000		1	
K/O Tank Liquid Level	Empty -9		1	
K/O Liquid Drained (gallons)	NANA		J	
			Martin Martin Martin	2
	SVE S	SYSTEM - QUARTERLY SAMPLING		
SAMPLE ID:		SAMPLE TIME:		
Analytes:	TVPH (8015), VOCs (8260), Fix	ed Gas (CO/CO2/O2)		
OPERATING WELLS				
ZONES				
Change in Well Operation:	_			
LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS	
SVE-5	(11000)			
SVE-8				
Zono D. Tartiary Imposts				
LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS	
SVE-6				
SVE-7		1705		
SVE-10		5/8		
SVE-11 SVE-12		798		
SVE-13		335		
SVE-14		2440		
SVE-15		1070		
SVE-16		1875		
SVE-18		715		
SVE-19		3940		
SVE-20		265		
SVE-21		17224		
5VE-22		675		
COMMENTS/OTHER MAINTENA	NCE:	5 . /		
5VE-9		+117		
Check fille	on shall the z	- dry but lats of	rust powder	

A

y OCD: 10/12/2022 4:10:19 PM		N/ & Manual All	
		······································	
DAT TIME ONSIT	Е: <u>7-21</u> Е:	OH RANDEL #5 SVE SYSTEM BIWEEKLY O&M FORM O&M PERSONNEL: TIME OFFSITE:	
SVE ALARM	S:	SVE SYSTEM - MONTHLY O&M KO TANK HIGH LEVEL	
SVE SYSTEM Blower Hours (take phote Inlet Vacuum (IWC	Skid 1 o) 35279.02 C) 50	Skid 2 3172.9 54	
Inlet Flow from Rotameter (SCFN Exhaust Vacuum (IWC	$\frac{10}{-53}$	58	
Inlet PI Exhaust PI K/O Tank Liquid Leve K/O Liquid Drained (gallons	D 151.7 D 87.18	781.4 7109	
		SVE SVSTEM OUADTEDI V CANDY	
SAMPLE ID):	SAMPLE TIME:	

Analytes: TVPH (8015), VOCs (8260), Fixed Gas (CO/CO2/O2) OPERATING WELLS

ZONES

Change in Well Operation:

Zone A - Secondary Impacts

T

LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADILISTMENTS
SVE-5		2722	TESOSTIVENTS
SVE-8		4615	
SVE-9		412.8	

LOCATION VACUUM (IWC) PID HEADSPACE (PPM) ADJUSTMENTS SVE-6	Zone B - Tertiary Impacts			
SVE-6 Absolution SVE-7 ISS6 SVE-10 [67 SVE-11 - SVE-12 [73] SVE-13 I204 SVE-14 I271 SVE-15 34.2 SVE-16 I024 SVE-17 437.6 SVE-18 IS18 SVE-19 IS59 SVE-20 I127 SVE-20 99.46	LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADILISTMENTS
SVE-7 ISS6 SVE-10 [67 SVE-11	SVE-6		-	TEDJOSTIVILIAIS
SVE-10 167 SVE-11 173 SVE-12 173 SVE-13 1204 SVE-14 1271 SVE-15 334.2 SVE-16 1024 SVE-17 437.6 SVE-18 158 SVE-19 1559 SVE-20 127 SVE-21 99.46 SVE-22 919.46	SVE-7		1556	
SVE-11 Image: Svestime SVE-12 173 SVE-13 1204 SVE-14 1271 SVE-15 734.2 SVE-16 1024 SVE-17 437.6 SVE-18 1559 SVE-19 1559 SVE-20 127 SVE-21 99.46 SVE-22 919.46	SVE-10		167	
SVE-12 73 SVE-13 1204 SVE-14 1271 SVE-15 734.2 SVE-16 1024 SVE-16 1024 SVE-17 437.6 SVE-18 1518 SVE-19 1559 SVE-20 127 SVE-21 99.46 SVE-22 919.46	SVE-11		-	
SVE-13 IZOY SVE-14 IZOY SVE-15 IZOY SVE-16 IZOY SVE-16 IOZY SVE-17 Y37,6 SVE-18 ISIS SVE-19 ISS9 SVE-20 IIZOY SVE-21 99,46 SVE-22 919 4	SVE-12		1731	
SVE-14 I271 SVE-15 >34.2 SVE-16 I024 SVE-17 437.6 SVE-18 I518 SVE-19 I559 SVE-20 I127 SVE-21 99.46 SVE-22 919.46	SVE-13		1204	
SVE-15 > 3 Y. 2 SVE-16 102 Y SVE-17 437.6 SVE-18 15 18 SVE-19 15 59 SVE-20 1 12 7 SVE-21 919 76 SVE-22 919 76	SVE-14		1271	
SVE-16 102 Ч SVE-17 437,6 SVE-18 15 18 SVE-19 1559 SVE-20 127 SVE-21 99,46 SVE-22 919,46	SVE-15		2342	
SVE-17 437,6 SVE-18 IS18 SVE-19 IS59 SVE-20 I127 SVE-21 99,46 SVE-22 919	SVE-16	Service Providence States and a service	1074	
SVE-18 ISTS SVE-19 ISS9 SVE-20 I127 SVE-21 99.46 SVE-22 919.46	SVE-17		4376	
SVE-19 ISS9 SVE-20 I27 SVE-21 99.46 SVE-22 919.46	SVE-18		1518	
SVE-20 I 2 7 SVE-21 99.46 SVE-22 919.6	SVE-19	In the second	1550	
SVE-21 99.46 SVE-22 919.6	SVE-20		1177	and the second
SVE-22 919	SVE-21		00 41	
	SVE-22		919 2	

COMMENTS/OTHER MAINTENANCE:

		and all all all all all all all all all al		
DATE: TIME ONSITE:	8-2-22	OH RANDEL #5 SVE SYSTEM BIWEEKLY O&M FORM O&M PERSONNEL:	B Sinclair	
		SVE SYSTEM - MONTHLY O&M		
SVE ALARMS:		KO TANK HIGH LEVEL		
SVE SYSTEM	Skid 1	Skid 2		
Blower Hours (take photo) Inlet Vacuum (IWC)	35559.81	3453.37		
et Flow from Rotameter (SCFM)	68	56		
Exhaust Vacuum (IWC)	-42	-60		
Inlet PID	76.5	1170		
Lybourst DID				

and the second	SVE SYSTEM - OUARTERLY SAMPLING
SAMPLE ID:	CINITERET SAINT LING
Statin LE ID.	SAMPLE TIME:
Analytes: T	PH (8015), VOCs (8260), Fixed Gas (CO/CO2/O2)
OPERATING WELLS	

ZONES

Change in Well Operation:

Zone A - Secondary Impacts

LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS
SVE-5		37.9	
SVE-8		25	
SVE-9		987	

Zone B - Tertiary Impacts			
LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS
SVE-6			
SVE-7		863	STREET,
SVE-10		73.9	
SVE-11			
SVE-12		784	
SVE-13		1516	
SVE-14		1544	
SVE-15	and the second	932	
SVE-16		1309	
SVE-17			
SVE-18		1350	
SVE-19		876	
SVE-20		1347	
SVE-21		112	
SVE-22		353	

COMMENTS/OTHER MAINTENANCE: • Replaced SVE 12 well cap SVE 10

OH RANDEL #5 SVE SYSTEM BIWEEKLY O&M FORM

DATE:	8-1	1
TIME ONSITE		

B Sinclair

	5	SVE SYSTEM - MONTHLY O&M	
SVE ALARMS:		KO TANK HIGH LEVEL	
SVE SYSTEM Blower Hours (take photo) Inlet Vacuum (IWC)	Skid 1 35894,79 52	Skid 2 3788,6	
Inlet Flow from Rotameter (SCFM)	66	55	
Exhaust Vacuum (IWC) Inlet PID Exhaust PID K/O Tank Liquid Level	-27 78.3 89.6	-61 1228 1392	
K/O Liquid Drained (gallons)			

SVE STSTEM - QUARTERLY SAMPLING SAMPLE TIME: Analytes: TVPH (8015), VOCs (8260), Fixed Gas (CO/CO2/O2)	
Analytes: TVPH (8015), VOCs (8260) Fixed Gas (CO/CO2/O2)	
OPERATING WELLS	

ZONES

Change in Well Operation:

VACUUM (IWC)	PID HEADSPACE (PPM)	ADILISTATIST
		ADJUSTIVIENTS
	179	
	681	
	VACUUM (IWC)	VACUUM (IWC) PID HEADSPACE (PPM) 5.8 179 686

VACUUM (IWC)	PID HEADSPACE (PPM)	ADILISTMENTS
		TED JOSTIVILINIS
	1699	
	197	
	1386	
	1365	
	1010	
	1017	
	1509	
	828	
	1888	
	1482	
	487	
	174	
	776	
	VACUUM (IWC)	VACUUM (IWC) PID HEADSPACE (PPM)

COMMENTS/OTHER MAINTENANCE:

OH RANDEL #5 SVE SYSTEM BIWEEKLY O&M FORM

DATE: <u>9-7-22</u> TIME ONSITE:

O&M PERSONNEL: <u>B</u> Sinclair TIME OFFSITE:

And the second states of the second states of the		SVE SYSTEM - MONTHLY O&M	
SVE ALARMS:		KO TANK HIGH LEVEL	
SVE SYSTEM	Skid 1	Skid 2	and the second se
Blower Hours (take photo)	36408.71		and the second
Inlet Vacuum (IWC)	- 53	1216,7	
		30	and a second and a second as a second a
Inlet Flow from Rotameter (SCFM)	64	56	
Exhaust Vacuum (IWC)	- 66	-17	The second s
Inlet PID	34.1	1259	
Exhaust PID	66	1292	
K/O Tank Liquid Level		1303	
K/O Liquid Drained (gallons)			

	SVE SYSTEM - QUARTERLY SAMPLING	
SAMPLE ID:	SAMPLE TIME:	
Analytes:	TVPH (8015), VOCs (8260), Fixed Gas (CO/CO2/O2)	
OPERATING WELLS		
		and the second

ZONES

Change in Well Operation:

Zone A - Secondary Impacts

Γ	LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS
Γ	SVE-5	and a second and the second	6.4	The second second second
F	SVE-8		339	a start the start with the start
Γ	SVE-9		469	

LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMEN
SVE-6			B. Dargende alle der alle de
SVE-7	and an annual prover the set and the set	(320	1 . The same
SVE-10			
SVE-11	and the second se		
SVE-12	a harden and a start of the sta	15 45	
SVE-13	and the second	1/1/	A REAL PROPERTY OF THE PARTY OF
SVE-14	and the second and the second	1469	
SVE-15	particular all a the second	825	and a fail on the fail of the
SVE-16	the second s	745	
SVE-17		534	
SVE-18		1850	
SVE-19	the state of the state of the state	1940	
SVE-20		(534	
SVE-21		150	
SVE 22		772	

DAT-TT COMMENTS/OTHER MAINTENANCE: SVE-8 well cap Replaced **Released to Imaging: 5/5/2023 1:32:10 PM**

American		MART AND A		1 MAN
			and the second second	
Contraction of the			No. of Concession, Name	
L.	The second se	· · · · · · · · · · · · · · · · · · ·		
			a and the second of	

OH RANDEL #5 SVE SYSTEM BIWEEKLY O&M FORM

DATE: 9 - 21. TIME ONSITE:

O&M PERSONNEL: <u>B</u> Sinclair TIME OFFSITE:

.

		SVE SYSTEM - MONTHLY O&M						
SVE ALARMS: KO TANK HIGH LEVEL								
SVE SYSTEM	Skid 1	Skid 2	1					
Blower Hours (take photo)	36745.10	4652.8						
Inlet Vacuum (IWC)	54	57						
and the second		Danie i na viennie mana je						
Inlet Flow from Rotameter (SCFM)	65	50						
Exhaust Vacuum (IWC)	-57	- 62						
Inlet PID	55.4	1152	a la seconda de la se					
Exhaust PID	64	1285	a la company and a second	in the second				
K/O Tank Liquid Level		a contraction of the second	the second s					
K/O Liquid Drained (gallons)		and a first warmen a star warmen a						

	SVE SYSTEM - QUARTERLY SAMPLING
SAMPLE ID:	SAMPLE TIME:
Analytes:	TVPH (8015), VOCs (8260), Fixed Gas (CO/CO2/O2)
OPERATING WELLS	

ZONES

Change in Well Operation:

Zone A - Secondary Impacts

Received by O

Zone in December 1			
LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS
	and a second	481	
SVE-5		10:0	
SVE-8		526	and the second sec
SVE 0	a ser and the second	152	and the second second
SVE-9	the second se	10 0	

Cone B - Tertiary Impacts			
LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS
SVE-6		110	
SVE-7		669	
SVE-10		68.5	
SVE-11	N TRANSPORT	220/	
SVE-12		228	44
SVE-13		1370	
SVE-14		913	
SVE-15		724	
SVE-16		222	
SVE-17		538	
SVE-18		1209	
SVE-19		1507	
SVE-20		1251	1 200-10-10-10-10-10-10-10-10-10-10-10-10-1
SVE-21		97.9	
SVE-22		453	

COMMENTS/OTHER MAINTENANCE:

APPENDIX B

Project Photographs

Photograph 1 Runtime meter taken on June 17, 2022 from SVE Skid 1 (original SVE system) at 11:30 AM Hours = 34456.79	RADEL#5
Photograph 2 Runtime meter taken on June 17, 2022 from SVE Skid 2 (new SVE system) at 11:30 AM Hours = 2350.6	sve skib #2 Emi

36.50642°N 107.99704°W ACCURACY 5 m DATUM WGS84 Photograph 3 Runtime meter taken on September OH 21, 2022 from SVE Skid 1 (original RANDEL #5 SVE system) at 9:40 AM Hours = 36745.10GRASSLIN 36/45101 h 16 1 WZ 48-L 110-127V~ 60Hz ower Hours Skid #1 2022-09-21 09:40:12-06:00 0 H Randel #005 DIRECTION 135 deg(T) 36.50640°N 107.99703°W ACCURACY 4 m DATUM WGS84 Photograph 4 ETM 1 Runtime meter taken on September 21, 2022 from SVE Skid 2 (new SVE system) at 9:41 AM Hours = 4652.8 EM RTZ CHICP Blower Hours Skid #2 2022-09-21 09:41:23-06:00

Hilcorp Energy Company

APPENDIX C

Laboratory Analytical Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 07, 2022

Kate Kaufman HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX

OrderNo.: 2209C63

Dear Kate Kaufman:

RE: O H Randel 005

Hall Environmental Analysis Laboratory received 2 sample(s) on 9/23/2022 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued September 29, 2022.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209C63

Date Reported: 10/7/2022

CLIENT: HILCORDENERGY						
Project: O II Dandel 005		Calles			0000 10.15.00 DM	
Project: O H Randel 005		Conec	tion Date	: 9/22/2	022 12:15:00 PM	
Lab ID: 2209C63-001	Matrix: AIR	Rece	Received Date: 9/23/2022 7:10:00 AM			
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES					Analyst: CCM	
Benzene	9.0	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Toluene	42	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Ethylbenzene	1.9	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,2,4-Trimethylbenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,3,5-Trimethylbenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Naphthalene	ND	2.0	µg/L	10	9/26/2022 3:09:00 PM	
1-Methylnaphthalene	ND	4.0	µg/L	10	9/26/2022 3:09:00 PM	
2-Methylnaphthalene	ND	4.0	µg/L	10	9/26/2022 3:09:00 PM	
Acetone	ND	10	µg/L	10	9/26/2022 3:09:00 PM	
Bromobenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Bromodichloromethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Bromoform	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Bromomethane	ND	2.0	µg/L	10	9/26/2022 3:09:00 PM	
2-Butanone	ND	10	µg/L	10	9/26/2022 3:09:00 PM	
Carbon disulfide	ND	10	µg/L	10	9/26/2022 3:09:00 PM	
Carbon tetrachloride	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Chlorobenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Chloroethane	ND	2.0	µg/L	10	9/26/2022 3:09:00 PM	
Chloroform	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Chloromethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
2-Chlorotoluene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
4-Chlorotoluene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
cis-1,2-DCE	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
cis-1,3-Dichloropropene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	10	9/26/2022 3:09:00 PM	
Dibromochloromethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Dibromomethane	ND	2.0	µg/L	10	9/26/2022 3:09:00 PM	
1,2-Dichlorobenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,3-Dichlorobenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,4-Dichlorobenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
Dichlorodifluoromethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,1-Dichloroethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,1-Dichloroethene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,2-Dichloropropane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
1,3-Dichloropropane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM	
2,2-Dichloropropane	ND	1.0	µa/L	10	9/26/2022 3:09:00 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank в

Е Estimated value

J Analyte detected below quantitation limits

µg/L

Р Sample pH Not In Range

RL Reporting Limit Page 1 of 2

.

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209C63

Date Reported: 10/7/2022

CLIENT: HILCORP ENERGY		Clien	t Sample ID:	Skid 1	
Project: O H Randel 005		Col	lection Date:	9/22/2	022 12:15:00 PM
Lab ID: 2209C63-001	Matrix: AIR	Re	ceived Date:	9/23/2	022 7:10:00 AM
Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,1-Dichloropropene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
Hexachlorobutadiene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
2-Hexanone	ND	10	µg/L	10	9/26/2022 3:09:00 PM
Isopropylbenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
4-Isopropyltoluene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	10	9/26/2022 3:09:00 PM
Methylene chloride	ND	3.0	µg/L	10	9/26/2022 3:09:00 PM
n-Butylbenzene	ND	3.0	µg/L	10	9/26/2022 3:09:00 PM
n-Propylbenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
sec-Butylbenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
Styrene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
tert-Butylbenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	10	9/26/2022 3:09:00 PM
trans-1,2-DCE	ND	1.0	μg/L	10	9/26/2022 3:09:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	10	9/26/2022 3:09:00 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
1,1,1-Trichloroethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
Trichloroethene (TCE)	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
Trichlorofluoromethane	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	10	9/26/2022 3:09:00 PM
Vinyl chloride	ND	1.0	µg/L	10	9/26/2022 3:09:00 PM
Xylenes, Total	20	1.5	µg/L	10	9/26/2022 3:09:00 PM
Surr: Dibromofluoromethane	95.7	70-130	%Rec	10	9/26/2022 3:09:00 PM
Surr: 1,2-Dichloroethane-d4	88.8	70-130	%Rec	10	9/26/2022 3:09:00 PM
Surr: Toluene-d8	94.5	70-130	%Rec	10	9/26/2022 3:09:00 PM
Surr: 4-Bromofluorobenzene	94.6	70-130	%Rec	10	9/26/2022 3:09:00 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	670	50	µg/L	10	9/26/2022 3:09:00 PM
Surr: BFB	89.5	70-130	%Rec	10	9/26/2022 3:09:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

D н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

в Analyte detected in the associated Method Blank

Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 2 of 2

.

*

ANALYTICAL SUMMARY REPORT

September 28, 2022

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Quote ID: B15626 Work Order: B22092356

Project Name: Not Indicated

Energy Laboratories Inc Billings MT received the following 2 samples for Hall Environmental on 9/27/2022 for analysis.

Lab ID B22092356-001	Client Sample ID	Collect Date Re	eceive Date	Matrix	Test
B22092356-001	2209C63-001B, Skid 1	09/22/22 12:15	09/27/22	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60
B22092356-002	2209C63-002B, Skid 2	09/22/22 12:00	09/27/22	Air	Same As Abov

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By: William T Brown Director

Digitally signed by Bill Brown Date: 2022.09.28 16:40:31 -06:00

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B22092356-001Client Sample ID:2209C63-001B, Skid 1

Report Date: 09/28/22 Collection Date: 09/22/22 12:15 DateReceived: 09/27/22 Matrix: Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT						
Oxygen	21.84	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Nitrogen	78.06	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Carbon Dioxide	0.10	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Methane	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Ethane	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Propane	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Isobutane	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
n-Butane	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Isopentane	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
n-Pentane	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Hexanes plus	<0.01	Mol %		0.01		GPA 2261-95	09/28/22 14:34 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	09/28/22 14:34 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-95	09/28/22 14:34 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	09/28/22 14:34 / jrj
Isopentane	< 0.001	gpm		0.001		GPA 2261-95	09/28/22 14:34 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	09/28/22 14:34 / jrj
Hexanes plus	< 0.001	gpm		0.001		GPA 2261-95	09/28/22 14:34 / jrj
GPM Total	< 0.001	gpm		0.001		GPA 2261-95	09/28/22 14:34 / jrj
GPM Pentanes plus	< 0.001	gpm		0.001		GPA 2261-95	09/28/22 14:34 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	09/28/22 14:34 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	09/28/22 14:34 / jrj
Pseudo-critical Pressure, psia	545			1		GPA 2261-95	09/28/22 14:34 / jrj
Pseudo-critical Temperature, deg R	239			1		GPA 2261-95	09/28/22 14:34 / jrj
Specific Gravity @ 60/60F	0.998			0.001		D3588-81	09/28/22 14:34 / jrj
Air, % - The analysis was not corrected for air.	99.77			0.01		GPA 2261-95	09/28/22 14:34 / jrj

COMMENTS

-

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

- GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

- To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

- Standard conditions: 60 F & 14.73 psi on a drybasis.

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit 09/28/22 14:34 / jrj

Billings, MT 800.735.4489 • Casper, WY 888.233.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

Report Date: 09/28/22

QA/QC Summary Report

Prepared by Billings, MT Branch

Work Order: B22092356

Client:	Hall Environmental	
Onent.		

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R388695
Lab ID:	B22092354-001ADUP	12 Sar	nple Duplic	ate			Run: GCNG	A-B_220928A		09/28/	22 12:39
Oxygen			20.6	Mol %	0.01				0	20	
Nitrogen			78.2	Mol %	0.01				0.0	20	
Carbon Di	oxide		1.00	Mol %	0.01				0.0	20	
Hydrogen	Sulfide		<0.01	Mol %	0.01					20	
Methane			0.20	Mol %	0.01				4.9	20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane			<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentane	e		<0.01	Mol %	0.01					20	
n-Pentane			<0.01	Mol %	0.01					20	
Hexanes p	blus		<0.01	Mol %	0.01					20	
Lab ID:	LCS092822	11 Lat	oratory Co	ntrol Sample			Run: GCNG	A-B_220928A		09/28/	22 15:29
Oxygen			0.61	Mol %	0.01	122	70	130			
Nitrogen			6.08	Mol %	0.01	101	70	130			
Carbon Di	oxide		1.00	Mol %	0.01	101	70	130			
Methane			74.4	Mol %	0.01	100	70	130			
Ethane			6.04	Mol %	0.01	101	70	130			
Propane			5.07	Mol %	0.01	103	70	130			
Isobutane			1.99	Mol %	0.01	99	70	130			
n-Butane			1.98	Mol %	0.01	99	70	130			
Isopentane	e		1.00	Mol %	0.01	100	70	130			
n-Pentane			1.01	Mol %	0.01	101	70	130			
Hexanes p	blus		0.79	Mol %	0.01	99	70	130			

Qualifiers: RL - Analyte Reporting Limit

Trust our People. Trust our Data. www.energylab.com Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

B22092356

Page 29 of 51

Work Order Receipt Checklist

Hall Environmental

	Date	Received: 9/27/2022
	Re	ceived by: lsc
	Car	rier name: FedEx
Yes R	No £	Not Present £
Yes R	No £	Not Present £
Yes £	No £	Not Present R
Yes R	No £	
Yes R	No £	
Yes £	^N ⁰ R	Not Applicable ${f f}$
16.9°C No Ice		
Yes £	No £	No VOA vials submitted R
Yes £	^{No} £	Not Applicable R
	Yes R Yes £ Yes R Yes R Yes R Yes R Yes R Yes R Yes R Yes R Yes £ 16.9°C No Ice Yes £ Yes £	DateRel CarYesNo

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

None

ORD FMAR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TODY RECORD FMOR	0F. 1 Flatt Environmental Joinfran Laboratery 2001 Handhan ST Albuqueryne, NAI 67109 1212 - 505 345-4207 Rédoute: www.hallerytronmental.com	406) 869-6253 TAN (406) 252-6069 RMAIL	ANALYTICAL COMMENTS	Vatural Gasses, 02, CO2, **3 Day TAT** 1522 092350	Vatural Gasses, 02, CO2, **3 Day TAT**	
	HODY REC	ORD PAGE	PHONE AUTOCOM #	ACONTAINERS NOLLOFTH	22 12 15 00 FM 1	22 12 00 00 FM	

COMPANY

Energy Labs -Billings 1120 South 27th Street

ENVIRONMENTAL

HALL

LABORATORY ANALYSIS

Billings, MT 59107

TTT, STATE, 20-

ADDRESS

CLIENT SAMPLE ID

SAMPLE

TTEM

2209C63-0028 Skid 2 2209C63-0018 Skid 1

÷4

ed by OGRL10/12/2022 4:10:19 PM ENVIRONMENTAL ANALYSIS LABORATORY		Hall Environme TEL: 505-345-3 Website: www	ntal Analysis Labo 4901 Hawk Albuquerque, NM 3975 FAX: 505-34. w.hallenvironment	oratory ins NE 87109 Sar 5-4107 al.com	Page Sample Log-In Check List			
Client Name: HILC	ORP ENERGY	Work Order Num	ber: 2209C63		RcptNo:	1		
Received By: Che	yenne Cason	9/23/2022 7:10:00	АМ	Chul				
Completed By: Che	yenne Cason	9/23/2022 7:57:43	АМ	Chul				
Reviewed By: JN	9/23/22							
Chain of Custody								
1. Is Chain of Custody	complete?		Yes 🗸	No 🗌	Not Present			
2. How was the sampl	e delivered?		Courier					
Log In 3. Was an attempt ma	de to cool the sample	\$?	Yes 🗌	No 🗌	NA 🗹			
4. Were all samples re	ceived at a temperatu	re of >0° C to 6.0°C	Yes	No 🗌	NA 🗹			
5. Sample(s) in proper	container(s)?		Yes 🔽	No 🗌				
6. Sufficient sample vo	ume for indicated test	:(s)?	Yes 🗹	No 🗌				
7. Are samples (except	VOA and ONG) prop	erly preserved?	Yes 🖌	No 🗌				
8. Was preservative ad	ded to bottles?		Yes 🗌	No 🗹	NA 🗌			
9. Received at least 1 v	ial with headspace <1	/4" for AQ VOA?	Yes	No 🗌	NA 🗹			
10. Were any sample co	ontainers received bro	ken?	Yes	No 🔽		/		
11. Does paperwork mat	ch bottle labels?		Yes 🔽	No 🗌	bottles checked for pH:	12 uplace pated)		
12 Are matrices correct	v identified on Chain of	of Custody?	Yes V	No 🗌	Adjusted?	rz unless noted)		
13 Is it clear what analy	ses were requested?	or outloay.	Yes 🗸					
14. Were all holding time (If no, notify custome	es able to be met? or for authorization.)		Yes 🗹	No 🗌	Checked by: 📈	Pag-23.		
Special Handling (i	f applicable)							
15. Was client notified c	f all discrepancies wit	h this order?	Yes 🗌	No 🗌	NA 🔽			
Person Notifie	d:	Date	:	mental data and a second second				
By Whom:		Via:	eMail	Phone 🗌 Fax	In Person			
Regarding:								
Client Instructi	ons:							
16. Additional remarks:								
17. <u>Cooler Information</u> Cooler No Ter	np °C Condition	Seal Intact Seal No	Seal Date	Signed By				
1 NA	Good N	lot Present						

•

Page 1 of 1

<i>Received by OCD: 10/12/2022</i>	4:10:19 PM									Pag	e 32 of 51
R R F											
<u>E</u> o											ort.
	300270 50 Maxin	\downarrow			-						cal rep
M 012	000 00 000 paria		\geq	\geq							nalytic
	Hans Sius	$\frac{1}{2}$	\geq								the a
LA LA. ue, Nue, Nue, Nue, Nue, Nue, Nue, Nue, N	otal Coliform (Present/Absent)	ч									ated or
S I S Lerq	(AOV-im92) 0728	28									ly not
SI SI buqu Ibuqu Sis	(AOV) 0928	28	\geq	>							e clear
L L E allen 5 - Al	CI' E' B ^L ' NO ³ ' NO ³ ' EO ⁴ ' 20 ⁴	Э									will b
NLI IAI w.ha w.ha NE 3975	SCRA 8 Metals	Я									d data
HANN WW WW WW WW WANT	20 01 8310 or 8270SIMS	Ч									Itracte
Haw 105-3	(1.402 bodt9M) 803	E									ub-cor
001 I	3081 Pesticides/8082 PCB's	8									Any si
	ГРН:8015D(GRO / DRO / MRO)	T								nark	bility.
	atex / MTBE / TMB's (8021)	8								Ren	is bossi
										te la	of this
	N 2	2								Time /	ez1
N 00		Ce								8	les as
10 2	A NN ND II	5	_	2						Date Date	3/2 lis ser
	A A A	j,	8	8						6	12. TF
Rus	ative										pratori
e:		Ð								<u> </u>	ad labo
	Pres	l yp	0	×						ei Via	Co.
and Jame	Aana emp	# 5	5	ar							her ac
P-Arc Stan	ect N A A A A A A A A A A A A A A A A A A A		ed	60						of by	d to of
Proj	Proje	i ype)	1						eceiv	itracte
		\uparrow		1.		+		-		<u> </u>	
्र	ation										ay be s
	Cor /alid										
Sec			_	2	5						Nonmer
Y	e N		<u>v</u> _	-							LEnvir
p	ance ance mpl	<u> </u>	V	E.						V	to Hal
	Sal I I I Sal		S	S						by by by	Titted
<u>ଁ</u> ପ୍	ix Co	⊾ \							de la	uishe	
jo &	Matr A	IVIAL	01	0							ample
ress.	age: (#		S	00							C) Sary,
H Adding	Time		17	120						Time:	187
	e Stan	. (4	22				\top	\top	2	242
Pho Cli			1-4-	1						Date: Date:	16
Released to Imaging: 5/5/2023	1:32:10 PM										

September 19, 2022

Kate Kaufman Hilcorp Energy PO Box 61529 Houston, TX 77208-1529 TEL: (337) 276-7676 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: OH Randel 005

OrderNo.: 2209430

Dear Kate Kaufman:

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/9/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Received by OCD: 10/12/2022 4:10:19 PM

Page 34 of 51

September 16, 2022

Hall Environmental Analysis Laboratory

Sample Delivery Group:

Samples Received: Project Number:

L1534913 09/13/2022

Description:

Report To:

Andy Freeman 4901 Hawkins NE Albuquerque, NM 87109

Ср Тс Ss Cn Śr ʹQc Gl A Sc

Entire Report Reviewed By: John V Hautins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 5//5/2023 1:32:10 PM Hall Environmental Analysis Laboratory

PROJECT:

SDG: L1534913

DATE/TIME: 09/16/22 13:25

PAGE: 1 of 15

TABLE OF CONTENTS

Page	25 0	f 51
I uge .	55 0	51
0		

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2209430-001A SVE-1 L1534913-01	5
Qc: Quality Control Summary	7
Volatile Organic Compounds (MS) by Method TO-15	7
Organic Compounds (GC) by Method D1946	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Released to Imaging: 3/5/2023 1:32:10 PM Hall Environmental Analysis Laboratory PROJECT:

SDG: L1534913 DATE/TIME: 09/16/22 13:25

IME: 13:25 PAGE: 2 of 15

SAMPLE SUMMARY

Page 36 of 51

			Collected by	Collected date/time	Received date/time		
2209430-001A SVE-1 L1534913-01 Air				09/08/22 13:00	09/13/22 09:	:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Volatile Organic Compounds (MS) by Method TO-15	WG1925454	100	09/14/22 01:26	09/14/22 01:26	CEP	Mt. Juliet, TN	
Volatile Organic Compounds (MS) by Method TO-15	WG1927061	10000	09/15/22 17:51	09/15/22 17:51	SDS	Mt. Juliet, TN	
Organic Compounds (GC) by Method D1946	WG1926699	1	09/15/22 14:24	09/15/22 14:24	JAP	Mt. Juliet, TN	

Ср

Тс

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John V Howkins

John Hawkins Project Manager

Sample Delivery Group (SDG) Narrative

Sample received in tedlar bag.

Lab Sample ID L1534913-01 Project Sample ID 2209430-001A SVE-1 **Method** TO-15, D1946 Page 37 of 51

DATE/TIME: 09/16/22 13:25

SAMPLE RESULTS - 01

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				2
Acetone	67-64-1	58.10	125	297	3800	9030		100	WG1925454	Tc
Allyl chloride	107-05-1	76.53	20.0	62.6	ND	ND		100	WG1925454	
Benzene	71-43-2	78.10	2000	6390	150000	479000	Q	10000	WG1927061	3
Benzyl Chloride	100-44-7	127	20.0	104	ND	ND	_	100	WG1925454	55
Bromodichloromethane	75-27-4	164	20.0	134	ND	ND		100	WG1925454	
Bromoform	75-25-2	253	60.0	621	ND	ND		100	WG1925454	^⁴ Cn
Bromomethane	74-83-9	94.90	20.0	77.6	ND	ND		100	WG1925454	
1,3-Butadiene	106-99-0	54.10	200	443	ND	ND		100	WG1925454	5
Carbon disulfide	75-15-0	76.10	20.0	62.2	ND	ND		100	WG1925454	Sr
Carbon tetrachloride	56-23-5	154	20.0	126	ND	ND		100	WG1925454	C
Chlorobenzene	108-90-7	113	20.0	92.4	ND	ND		100	WG1925454	ŮQc
Chloroethane	75-00-3	64.50	20.0	52.8	ND	ND		100	WG1925454	
Chloroform	67-66-3	119	20.0	97.3	ND	ND		100	WG1925454	7
Chloromethane	74-87-3	50.50	20.0	41.3	ND	ND		100	WG1925454	G
2-Chlorotoluene	95-49-8	126	20.0	103	ND	ND		100	WG1925454	
Cvclohexane	110-82-7	84.20	2000	6890	664000	2290000	Q	10000	WG1927061	⁸ Al
Dibromochloromethane	124-48-1	208	20.0	170	ND	ND	-	100	WG1925454	
1.2-Dibromoethane	106-93-4	188	20.0	154	ND	ND		100	WG1925454	9
12-Dichlorohenzene	95-50-1	147	20.0	120	ND	ND		100	WG1925454	Sc
13-Dichlorobenzene	541-73-1	147	20.0	120	ND	ND		100	WG1925454	
14-Dichlorobenzene	106-46-7	147	20.0	120	ND	ND		100	WG1925454	
12-Dichloroothano	107-06-2	99	20.0	81.0	ND	ND		100	WG1925454	
11 Dichloroothano	75 24 2	99	20.0	01.0 90.2	ND	ND		100	WC1025454	
11 Dichloroothono	75-34-3	90	20.0	00.2 70.2	ND	ND		100	WC1025454	
r, i-Dicilioi detilerie	156 E0 2	90.90	20.0	79.3	ND	ND		100	WG1925454	
trans 1.2 Dichloroothono	150-59-2 156 60 5	90.90	20.0	79.3	ND			100	WG1925454	
1.2 Dishlaranranana	70.07.5	90.90	20.0	79.3	ND	ND		100	WG1925454	
	10001 01 5	113	20.0	92.4	ND	ND		100	WG1925454	
tis-1,3-Dichlerenrenene	10061-01-5	111	20.0	90.8	ND	ND		100	WG1925454	
14 Diavana	10061-02-6	00.10	20.0	90.8	ND	ND		100	WG1925454	
I,4-DIOXarie	123-91-1	88.10	20.0	72.1	ND 1580	2000		100	WG1925454	
Ethdioi	04-17-5	46.10	125	230	080	2980		100	WG1925454	
Ethylbenzene 4 Ethylbenzene	100-41-4	106	20.0	80.7	6000	26000		100	WG1925454	
4-Ethyltoluene	622-96-8	120	20.0	98.2	1280	6280 ND		100	WG1925454	
Tricniorofiuorometnane	75-69-4	137.40	20.0	112	ND	ND		100	WG1925454	
Dichlorodifluoromethane	75-71-8	120.92	20.0	98.9	ND	ND		100	WG1925454	
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	20.0	153	ND	ND		100	WG1925454	
1,2-Dichlorotetrafluoroethane	/6-14-2	1/1	20.0	140	ND	ND	-	100	WG1925454	
Heptane	142-82-5	100	2000	8180	461000	1890000	Q	10000	WG1927061	
Hexachloro-1,3-butadiene	87-68-3	261	63.0	6/3	ND	ND	-	100	WG1925454	
n-Hexane	110-54-3	86.20	6300	22200	810000	2860000	Q	10000	WG1927061	
Isopropylbenzene	98-82-8	120.20	20.0	98.3	4//	2350		100	WG1925454	
Methylene Chloride	/5-09-2	84.90	20.0	69.4	ND	ND		100	WG1925454	
Methyl Butyl Ketone	591-78-6	100	125	511	ND	ND		100	WG1925454	
2-Butanone (MEK)	/8-93-3	72.10	125	369	933	2750		100	WG1925454	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	125	512	ND	ND		100	WG1925454	
Methyl methacrylate	80-62-6	100.12	20.0	81.9	ND	ND		100	WG1925454	
MTBE	1634-04-4	88.10	20.0	72.1	ND	ND		100	WG1925454	
Naphthalene	91-20-3	128	63.0	330	ND	ND		100	WG1925454	
2-Propanol	67-63-0	60.10	125	307	10300	25300	E	100	WG1925454	
Propene	115-07-1	42.10	125	215	ND	ND		100	WG1925454	
Styrene	100-42-5	104	20.0	85.1	ND	ND		100	WG1925454	
1,1,2,2-Tetrachloroethane	79-34-5	168	20.0	137	ND	ND		100	WG1925454	
Tetrachloroethylene	127-18-4	166	20.0	136	ND	ND		100	WG1925454	
Tetrahydrofuran	109-99-9	72.10	20.0	59.0	ND	ND		100	WG1925454	
Toluene	108-88-3	92.10	5000	18800	315000	1190000	Q	10000	WG1927061	

Released to Imaging: 3/3/2023 1:32:10 PM Hall Environmental Analysis Laboratory

PROJECT:

SDG: L1534913 DATE/TIME:

PAGE: 5 of 15

SAMPLE RESULTS - 01

Page 39 of 51

Volatile Organic Compounds (MS) by Method TO-15

•										1
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	Ср
Analyte			ppbv	ug/m3	ppbv	ug/m3				
1,1,1-Trichloroethane	71-55-6	133	20.0	109	ND	ND		100	WG1925454	
1,1,2-Trichloroethane	79-00-5	133	20.0	109	ND	ND		100	WG1925454	10
Trichloroethylene	79-01-6	131	20.0	107	ND	ND		100	WG1925454	3
1,2,4-Trimethylbenzene	95-63-6	120	20.0	98.2	769	3770		100	WG1925454	Ss
1,3,5-Trimethylbenzene	108-67-8	120	20.0	98.2	828	4060		100	WG1925454	
2,2,4-Trimethylpentane	540-84-1	114.22	20.0	93.4	ND	ND		100	WG1925454	⁴ Cn
Vinyl chloride	75-01-4	62.50	20.0	51.1	ND	ND		100	WG1925454	CIT
Vinyl Bromide	593-60-2	106.95	20.0	87.5	ND	ND		100	WG1925454	5
Vinyl acetate	108-05-4	86.10	20.0	70.4	ND	ND		100	WG1925454	Sr
m&p-Xylene	1330-20-7	106	4000	17300	234000	1010000	Q	10000	WG1927061	
o-Xylene	95-47-6	106	20.0	86.7	7250	31400		100	WG1925454	ိုဂ္ဂ
TPH (GC/MS) Low Fraction	8006-61-9	101	2000000	8260000	7720000	31900000	Q	10000	WG1927061	QC
1,1-Difluoroethane	75-37-6	66.05	100	270	ND	ND		100	WG1925454	7
1,2,3-Trimethylbenzene	526-73-8	120.10	20.0	98.2	111	545		100	WG1925454	GI
Chlorodifluoromethane	75-45-6	86.50	20.0	70.8	ND	ND		100	WG1925454	
Ethyl acetate	141-78-6	88	20.0	72.0	ND	ND		100	WG1925454	8
Methyl Cyclohexane	108-87-2	98.1860	20.0	80.3	8370	33600		100	WG1925454	
Tert-Amyl Ethyl Ether	919-94-8	116.20	20.0	95.1	ND	ND		100	WG1925454	9
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		141		<u>J1</u>		WG1925454	Sc
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		100				WG1927061	

Sample Narrative:

L1534913-01 WG1925454: Surrogate failure due to matrix interference

Organic Compounds (GC) by Method D1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Oxygen	7782-44-7	32	5.00	20.1	<u>T8</u>	1	<u>WG1926699</u>
Carbon Monoxide	630-08-0	28	2.00	ND	<u>T8</u>	1	WG1926699
Carbon Dioxide	124-38-9	44.01	0.500	ND	<u>T8</u>	1	WG1926699
Methane	74-82-8	16	0.400	ND	<u>T8</u>	1	WG1926699

QUALITY CONTROL SUMMARY L1534913-01

(MB) R3837020-3 09/13/	/22 09:59				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.584	1.25	
Allyl Chloride	U		0.114	0.200	
Benzyl Chloride	U		0.0598	0.200	
Bromodichloromethane	U		0.0702	0.200	
Bromoform	U		0.0732	0.600	
Bromomethane	U		0.0982	0.200	
1,3-Butadiene	U		0.104	2.00	
Carbon disulfide	U		0.102	0.200	
Carbon tetrachloride	U		0.0732	0.200	
Chlorobenzene	U		0.0832	0.200	
Chloroethane	U		0.0996	0.200	
Chloroform	U		0.0717	0.200	
Chloromethane	U		0.103	0.200	
2-Chlorotoluene	U		0.0828	0.200	
Dibromochloromethane	U		0.0727	0.200	
1,2-Dibromoethane	U		0.0721	0.200	
1,2-Dichlorobenzene	U		0.128	0.200	
1,3-Dichlorobenzene	U		0.182	0.200	
1,4-Dichlorobenzene	U		0.0557	0.200	
1,2-Dichloroethane	U		0.0700	0.200	
1,1-Dichloroethane	U		0.0723	0.200	
1,1-Dichloroethene	U		0.0762	0.200	
cis-1,2-Dichloroethene	U		0.0784	0.200	
trans-1,2-Dichloroethene	U		0.0673	0.200	
1,2-Dichloropropane	U		0.0760	0.200	
cis-1,3-Dichloropropene	U		0.0689	0.200	
trans-1,3-Dichloropropene	U		0.0728	0.200	
1,4-Dioxane	U		0.0833	0.200	
Ethanol	U		0.265	1.25	
Ethylbenzene	U		0.0835	0.200	
4-Ethyltoluene	U		0.0783	0.200	

_	¹ Cp
	² Tc
	³ Ss
	⁴ Cn
	⁵ Sr
	⁶ Qc
	⁷ Gl
	⁸ Al
	⁹ Sc

Page 40 of 51

U

U

U

U

U

U

U

U

U

Trichlorofluoromethane Dichlorodifluoromethane

1,1,2-Trichlorotrifluoroethane

1,2-Dichlorotetrafluoroethane

Hexachloro-1,3-butadiene

Isopropylbenzene

Methylene Chloride

Methyl Butyl Ketone

2-Butanone (MEK)

0.200

0.200

0.200

0.200

0.630

0.200

0.200

1.25

1.25

0.0819

0.137

0.0793

0.0890

0.105

0.0777

0.0979

0.133

0.0814

SDG: L1534913

DATE/TIME: 09/16/22 13:25

PAGE: 7 of 15

QUALITY CONTROL SUMMARY

Page 41 of 51

Method Blank (MB)

(MB) R3837020-3	09/13/22 09:59
	MD Decult

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
4-Methyl-2-pentanone (MIBK)	U		0.0765	1.25
Methyl Methacrylate	U		0.0876	0.200
MTBE	U		0.0647	0.200
Naphthalene	U		0.350	0.630
2-Propanol	U		0.264	1.25
Propene	0.144	J	0.0932	1.25
Styrene	U		0.0788	0.200
1,1,2,2-Tetrachloroethane	U		0.0743	0.200
Tetrachloroethylene	U		0.0814	0.200
Tetrahydrofuran	U		0.0734	0.200
1,2,4-Trichlorobenzene	U		0.148	0.630
1,1,1-Trichloroethane	U		0.0736	0.200
1,1,2-Trichloroethane	U		0.0775	0.200
Trichloroethylene	U		0.0680	0.200
1,2,4-Trimethylbenzene	U		0.0764	0.200
1,3,5-Trimethylbenzene	U		0.0779	0.200
2,2,4-Trimethylpentane	U		0.133	0.200
Vinyl chloride	U		0.0949	0.200
Vinyl Bromide	U		0.0852	0.200
Vinyl acetate	U		0.116	0.200
o-Xylene	U		0.0828	0.200
1,1-Difluoroethane	0.342	J	0.129	1.00
1,2,3-Trimethylbenzene	U		0.0805	0.200
Chlorodifluoromethane	U		0.131	0.200
Ethyl acetate	U		0.100	0.200
Methyl Cyclohexane	U		0.0813	0.200
Tert-Amyl Ethyl Ether	U		0.0778	0.200
(S) 1,4-Bromofluorobenzene	94.3			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3837020-1 09/13/22 08:40 • (LCSD) R3837020-2 09/13/22 09:20											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Acetone	3.75	3.40	3.45	90.7	92.0	70.0-130			1.46	25	
Allyl Chloride	3.75	3.72	3.41	99.2	90.9	70.0-130			8.70	25	
Benzyl Chloride	3.75	4.05	4.05	108	108	70.0-152			0.000	25	
Bromodichloromethane	3.75	3.79	3.90	101	104	70.0-130			2.86	25	
Bromoform	3.75	4.00	4.12	107	110	70.0-130			2.96	25	

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3837020-1 09/13/22 08:40 • (LCSD) R3837020-2 09/13/22 09:20

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Bromomethane	3.75	3.78	3.75	101	100	70.0-130			0.797	25
1,3-Butadiene	3.75	3.14	3.15	83.7	84.0	70.0-130			0.318	25
Carbon disulfide	3.75	4.03	4.11	107	110	70.0-130			1.97	25
Carbon tetrachloride	3.75	3.84	3.93	102	105	70.0-130			2.32	25
Chlorobenzene	3.75	3.85	3.97	103	106	70.0-130			3.07	25
Chloroethane	3.75	3.57	3.62	95.2	96.5	70.0-130			1.39	25
Chloroform	3.75	3.87	3.95	103	105	70.0-130			2.05	25
Chloromethane	3.75	3.33	3.40	88.8	90.7	70.0-130			2.08	25
2-Chlorotoluene	3.75	3.91	4.01	104	107	70.0-130			2.53	25
Dibromochloromethane	3.75	3.84	3.97	102	106	70.0-130			3.33	25
1,2-Dibromoethane	3.75	3.90	4.05	104	108	70.0-130			3.77	25
1,2-Dichlorobenzene	3.75	3.98	4.10	106	109	70.0-130			2.97	25
1,3-Dichlorobenzene	3.75	3.94	4.05	105	108	70.0-130			2.75	25
1,4-Dichlorobenzene	3.75	3.93	4.00	105	107	70.0-130			1.77	25
1,2-Dichloroethane	3.75	3.58	3.69	95.5	98.4	70.0-130			3.03	25
1,1-Dichloroethane	3.75	3.82	3.88	102	103	70.0-130			1.56	25
1,1-Dichloroethene	3.75	3.79	3.86	101	103	70.0-130			1.83	25
cis-1,2-Dichloroethene	3.75	3.74	3.85	99.7	103	70.0-130			2.90	25
trans-1,2-Dichloroethene	3.75	3.79	3.87	101	103	70.0-130			2.09	25
1,2-Dichloropropane	3.75	3.70	3.87	98.7	103	70.0-130			4.49	25
cis-1,3-Dichloropropene	3.75	3.95	4.05	105	108	70.0-130			2.50	25
trans-1,3-Dichloropropene	3.75	3.91	4.02	104	107	70.0-130			2.77	25
1,4-Dioxane	3.75	4.04	4.11	108	110	70.0-140			1.72	25
Ethanol	3.75	3.40	3.45	90.7	92.0	55.0-148			1.46	25
Ethylbenzene	3.75	4.00	4.04	107	108	70.0-130			0.995	25
4-Ethyltoluene	3.75	4.01	4.14	107	110	70.0-130			3.19	25
Trichlorofluoromethane	3.75	3.60	3.70	96.0	98.7	70.0-130			2.74	25
Dichlorodifluoromethane	3.75	3.82	3.86	102	103	64.0-139			1.04	25
1,1,2-Trichlorotrifluoroethane	3.75	3.98	4.03	106	107	70.0-130			1.25	25
1,2-Dichlorotetrafluoroethane	3.75	3.81	3.91	102	104	70.0-130			2.59	25
Hexachloro-1,3-butadiene	3.75	3.84	3.95	102	105	70.0-151			2.82	25
Isopropylbenzene	3.75	4.02	4.15	107	111	70.0-130			3.18	25
Methylene Chloride	3.75	3.33	3.41	88.8	90.9	70.0-130			2.37	25
Methyl Butyl Ketone	3.75	3.56	3.64	94.9	97.1	70.0-149			2.22	25
Methyl Ethyl Ketone	3.75	3.97	4.05	106	108	70.0-130			2.00	25
4-Methyl-2-pentanone (MIBK)	3.75	3.42	3.54	91.2	94.4	70.0-139			3.45	25
Methyl Methacrylate	3.75	3.94	4.07	105	109	70.0-130			3.25	25
MTBE	3.75	4.04	4.15	108	111	70.0-130			2.69	25
Naphthalene	3.75	3.70	3.71	98.7	98.9	70.0-159			0.270	25
2-Propanol	3.75	3.52	3.60	93.9	96.0	70.0-139			2.25	25

Released to Imaging 3/9/2023 1:32:10 PM Hall Environmental Analysis Laboratory SDG: L1534913 DATE/TIME: 09/16/22 13:25

PAGE: 9 of 15

Page 42 of 51

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3837020-1 09/13	3/22 08:40 • (LCS	SD) R3837020	0-2 09/13/22 09	9:20							- I Ch
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	2
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	Tc
Propene	3.75	3.39	3.50	90.4	93.3	64.0-144			3.19	25	
Styrene	3.75	4.08	4.20	109	112	70.0-130			2.90	25	³ Ss
1,1,2,2-Tetrachloroethane	3.75	3.89	3.96	104	106	70.0-130			1.78	25	00
Tetrachloroethylene	3.75	3.92	4.05	105	108	70.0-130			3.26	25	4
Tetrahydrofuran	3.75	3.38	3.47	90.1	92.5	70.0-137			2.63	25	Cn
1,2,4-Trichlorobenzene	3.75	3.56	3.59	94.9	95.7	70.0-160			0.839	25	
1,1,1-Trichloroethane	3.75	3.85	3.91	103	104	70.0-130			1.55	25	⁵ Sr
1,1,2-Trichloroethane	3.75	3.82	3.97	102	106	70.0-130			3.85	25	01
Trichloroethylene	3.75	3.86	3.94	103	105	70.0-130			2.05	25	6
1,2,4-Trimethylbenzene	3.75	4.04	4.12	108	110	70.0-130			1.96	25	Qc
1,3,5-Trimethylbenzene	3.75	4.00	4.07	107	109	70.0-130			1.73	25	
2,2,4-Trimethylpentane	3.75	3.77	3.83	101	102	70.0-130			1.58	25	⁷ Gl
Vinyl chloride	3.75	3.68	3.69	98.1	98.4	70.0-130			0.271	25	
Vinyl Bromide	3.75	3.78	3.81	101	102	70.0-130			0.791	25	8
Vinyl acetate	3.75	3.60	3.58	96.0	95.5	70.0-130			0.557	25	AI
o-Xylene	3.75	4.03	4.10	107	109	70.0-130			1.72	25	
1,1-Difluoroethane	3.75	3.62	3.74	96.5	99.7	70.0-130			3.26	25	⁹ Sc
1,2,3-Trimethylbenzene	3.75	4.03	4.11	107	110	70.0-130			1.97	25	00
Chlorodifluoromethane	3.75	3.61	3.82	96.3	102	70.0-130			5.65	25	
Ethyl acetate	3.75	3.44	3.46	91.7	92.3	70.0-130			0.580	25	
Methyl Cyclohexane	3.75	3.98	4.05	106	108	70.0-130			1.74	25	
Tert-Amyl Ethyl Ether	3.75	3.94	4.16	105	111	70.0-130			5.43	25	
(S) 1,4-Bromofluorobenzen	ie			100	99.5	60.0-140					

SDG: L1534913 DATE/TIME: 09/16/22 13:25 PAGE: 10 of 15

Page 43 of 51

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3837925-3 09/15/22	2 13:38	
	MB Result	MB Qualifier
Analyte	ppbv	
Benzene	U	

Benzene	U		0.0715	0.200
Cyclohexane	U		0.0753	0.200
Heptane	U		0.104	0.200
n-Hexane	U		0.206	0.630
Toluene	U		0.0870	0.500
m&p-Xylene	U		0.135	0.400
TPH (GC/MS) Low Fraction	61.6	<u>J</u>	39.7	200
(S) 1,4-Bromofluorobenzene	96.1			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

MB MDL

ppbv

MB RDL

ppbv

(LCS) R3837925-1 09/15/22 12:39 • (LCSD) R3837925-2 09/15/22 13:09											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Benzene	3.75	3.88	3.86	103	103	70.0-130			0.517	25	
Cyclohexane	3.75	3.98	3.93	106	105	70.0-130			1.26	25	
Heptane	3.75	4.16	4.16	111	111	70.0-130			0.000	25	
n-Hexane	3.75	4.24	4.27	113	114	70.0-130			0.705	25	
Toluene	3.75	4.02	4.00	107	107	70.0-130			0.499	25	
m&p-Xylene	7.50	9.13	9.10	122	121	70.0-130			0.329	25	
TPH (GC/MS) Low Fraction	203	256	254	126	125	70.0-130			0.784	25	
(S) 1,4-Bromofluorobenzene				102	101	60.0-140					

DATE/TIME: 09/16/22 13:25 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc

> GI AI Sc

Organic Compounds (GC) by Method D1946

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3837669-3 09/15/22 13:51

(INID) K2027009-2 09/	13/22 13.31					
	MB Result	MB Qualifier	MB MDL	MB RDL		,
Analyte	%		%	%		T
Oxygen	0.286		0.225	5.00		
Carbon Monoxide	U		0.665	2.00	3	S
Carbon Dioxide	U		0.121	0.500		
Methane	U		0.0584	0.400	4	+

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3837669-1 09/15/22 13:45 • (LCSD) R3837669-2 09/15/22 13:48												
	Spike Amount	Spike Amount LCS Result		LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	%	%	%	%	%	%			%	%		
Oxygen	20.0	19.3	19.2	96.5	96.0	70.0-130			0.519	20		
Carbon Monoxide	2.50	2.55	2.52	102	101	70.0-130			1.18	20		
Carbon Dioxide	2.50	2.63	2.61	105	104	70.0-130			0.763	20		
Methane	2.00	2.20	2.20	110	110	70.0-130			0.000	20		

DATE/TIME: 09/16/22 13:25

³Ss ⁴Cn ⁵Sr

[°]Qc

GI

Â

Sc

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.
Т8	Sample(s) received past/too close to holding time expiration.

SDG: L1534913

Received by OCD: 10/12/2022 4:10:19 PACCREDITATIONS & LOCATIONS

Page 4	47	of	51
--------	----	----	----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1534913 DATE/TIME: 09/16/22 13:25

HALL ENVIRONMENTAL	CHAIN OF CUSTO	DY RECORD 1 OF: 1	Page 48 Hall Environmental Analysis Laboratory 4901 Hawkins NE
LABORATORY		M222	Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com
SUB CONTRATOR Pace TN COMPAN	NY: PACE TN	PHONE: (800) 767-5859	FAX: (615) 758-5859
SUB CONTRATOR Pace TN COMPAN ADDRESS: 12065 Lebanon Rd	NY: PACE TN	PHONE: (800) 767-5859 ACCOUNT #:	FAX: (615) 758-5859 EMAIL

CITY,	STATE, ZIP: Mt. Ju	liet, TN 37122					
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS ANALYTICAL COMME	534913 NTS
1	2209430-001A	SVE-1	TEDLAR	Air	9/8/2022 1:00:00 PM	2 TO-15 . VOC. TPH. + O2 + CO2 D1946	-0

Sample Receipt Checklist COC Seal Fresent/Intact:N If Applicable COC Signed/Accurate:N VOA Zero Headspace:N Bottles arrive intact:N Fres.Correct/Check:Y_N Sufficient volume sent:N	TEK 5755 8093 3271 (TEMP) N/H	
SPECIAL INSTRUCTIONS / COMMENTS:	(Bottles Received] 2	

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

	M			REPORT TRANSMITTAL DESIRED:					
Time:	Received By:	Date:	Time:	HARDCOPY (extra cost) FAX EMAIL ONLINE					
				FOR LAB USE ONLY					
Time:	Received By Hava NWECHWA	Date: 10 13	Time: 09:00						
RUSI	H Next BD 2nd BD	3rd BI		Temp of samplesC Attempt to Cool ?					
2				Comments:					
	Time: Time: RUSI	Time: Received By: Time: Received By Have NWCCHWA RUSH Next BD 2nd BD	Time: Received By: Date: Time: Received By: Haw NWCHWA Date: RUSH Next BD 2nd BD 3rd Bl	Time: Received By: Date: Time. Time: Received By: HAM NWECHWA Date: 10 13 Time: RUSH Next BD 2nd BD 3rd BD 3rd BD					

Released to Imaging: 5/5/2023 1:32:10 PM-

	0/12/2022 4: RONMENTA LYSIS DRATORY	10:19 PM AL	Hall Environm TEL: 505-345- Website: ww	ental Analysis Labor 4901 Hawkin Albuquerque, NM 8 3975 FAX: 505-345- w.hallenvironmenta	atory ns NE 37109 Sar 4107 1.com	Pag Sample Log-In Check List							
Client Name:	Hilcorp Ene	ergy	Work Order Nun	nber: 2209430		RcptNo: 1							
Received By: Completed By: Reviewed By:	Sean Livir Tracy Cas	ngston arrubias 3 10 つ	9/9/2022 7:30:00 / 9/9/2022 8:08:07 /	AM AM	5-6								
Chain of Cu	stody	(ICC											
1. Is Chain of (Custody compl	ete?		Yes 🗸	No 🗌	Not Present							
2. How was the	e sample delive	ered?		Courier									
Log In 3. Was an atte	mpt made to c	ool the samples	?	Yes 🔽	No 🗌	NA 🗌							
4. Were all sam	ples received	at a temperatur	e of >0° C to 6.0°C	Yes 🔽	No 🗌	NA 🗌							
5. Sample(s) in	proper contai	ner(s)?		Yes 🔽	No 🗌								
6. Sufficient sar	mple volume fo	or indicated test	(s)?	Yes 🗸	No 🗌								
7. Are samples	(except VOA a	and ONG) prope	rly preserved?	Yes 🗹	No 🗌								
8. Was preserve	ative added to	bottles?		Yes	No 🔽	NA 🗌							
9. Received at I	east 1 vial with	headspace <1/	4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹							
10. Were any sa	mple containe	rs received brok	en?	Yes	No 🔽	# of preserved	/						
11. Does paperw (Note discrep	ork match bott ancies on cha	le labels? in of custody)		Yes 🔽	No 🗌	bottles checked for pH: (<2 or ~1)	2 unless noted)						
12. Are matrices	correctly ident	ified on Chain o	f Custody?	Yes 🔽	No 🗌	Adjusted?							
13. Is it clear what	at analyses we	re requested?		Yes 🗹	No 🗌								
(If no, notify c	ing times able sustomer for au	to be met? ithorization.)		Yes 🔽	No 🗌	Checked by:	KPG 7.09						
Special Hand	ling (if appl	licable)											
15. Was client no	otified of all dis	crepancies with	this order?	Yes	No 🗌	NA 🔽							
Person	Notified:		Date										
By Whe	om: 🛛 🗍		Via:	🗌 eMail 🗌 P	hone 🗌 Fax	In Person							
Regard Client I	ling:												
16. Additional re	marks:			d for a maximizer of									
17. <u>Cooler Infor</u>	mation	Condition											
		Condition S	Seal Intact Seal No	Seal Date	Signed By								

.

Page 1 of 1

Receiv	ed by	<u>0CI</u>	D: 10	/12/2	2022	4:10	0:19	PM	[2.				P	age 5	0 of :	51
	Å	2								_				_				-		- f		the second	£		_	-			
	Ēß							91	LI	1	-	200	8	2												-			port.
		ζ	b	2		-	K	5	20 F	v H	1	5	1-0						55							-			tical re
	Σ		8710	20	5	_	G		5	0	1	5	1-0	1	$\langle \rangle$			-							<u> </u>	-			analy
			MN	5-41	st	()11	260		1262		، 			-	>			<u> </u>				-			<u> </u>	-		:	on the
	<u>x</u> <			5-34	anba	(+u	034	A\ta	1030.					7											<u> </u>	-			otated
	۲ ۲) 4		x 50	s Re					VC	-//(S) 020	20		_										-			arly no
	Z		Alburg	Ea)	alysi	to	0 '70		105	12			1 ' ' '	80		_									-				be cle
				. 10	Ana		5 (-01	S				U R										 -		××			ata will
	A A		N N S	-397		-	SW	1150	17.8	JO	018	À 87										_							cted di
			wkin	-345		-	011		(L.f	[,] 09	ро	jerpi	N) 80	III									-						contra
			1 Ha	. 505		-	s,8;	ЪС	2808	3/56	əpic	oitea	918	28	_		N.					_						-	-dus yr
			490	Tel		(0	AM.	/ 08	I DE	02	(ei	190	08:Hc	ш							_		_			arks:			lity. Ar
						(1	208) s,{	TME	/ 3	38.	LM	/ XJ	.8				-						 		Sema		÷	IIQISSO
					defension of							ΰ				_													f this p
1												•)	<u>.</u>	0		a										me 172	me	K	otice o
÷.			22										ALN	57	10	-										μ γ			es as n
2			50	2					cla	0			Η̈́	60	ŏ											Date	Date	12/2	s serve
			0#	:				5	5			よう		22												9/6	7	1	s. In
1	lush							W B				T	Itive																ratorie
			0					t	don	es		ig CF).	serva	0												. 1		No.	ed labo
Time			10			ger:		Sac	10V	3	-	includir	Pres	Type												V0.	Via	101	credite
pund	dard	lame	2			lana			B		ers:	emp	Ļ	# 1	lar											i v	×		ther ac
1-Arc	Stan	ect N	.1	ect #		ect N	-	4	pler	ce:	Cool	ler T	taine	e and	Ted											ved b	ved b	5	ed to a
Turr	D	Proj	C	Proj		Proj	-	Ze	Sam	u o	to #	Coo	Cont	Type	2											Recei	Recei		Intraction
						. COM		(u																					Subco
p						0.vos	6	datio			Ī																	R	nay be
8						h;l		Vali						e											4			M	ental
Re						61)	(Full					-	Van	_											\mathbb{N}	-	2	VILOUL
						c / a		/el 4	ee				-	ole r	10	8										i'n			Hall En
ţ						H.S		Le	olian					am	SV											in T	- č	tal	ed to r
Sus						1			Com	e			(ν N		_				_			-	 		shed	shéd I		nimdus
ų L	0					200			Az (đ				atrix	1	ă -										linqui	linqui	-	uples s
P P	10	-3	ss:			bra	e:					0		Σ	8							-	_			Re	A Re	1	Iry, sar
lail	1:10		ddre			-ax#	Ickag	ard	tion:		Type			ime	300											me: NJC	me:	10	ecesse
Ċ	iii iii		ng A		1e #:	l or F	IC Pa	tand	edita	ELA		5			>		-			1			_			F _	<u>≒</u> 5		ЦШ
	Clier		Maili		Phon	emai	QAVQ	□ SI	Accr	z				Date	8-9											Date:	Pate:	121	
	5. 6 .			•		1				1	L			-1										 		- 0-			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 150542

CONDITIONS			
Operator:	OGRID:		
HILCORP ENERGY COMPANY	372171		
1111 Travis Street	Action Number:		
Houston, TX 77002	150542		
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)		

CONDITIONS

Created	Condition	Condition
By		Date
nvelez	Accepted for the record. See app ID 175955 for most updated status.	2/28/2023