District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page leof 174

Incident ID	nAPP2307235324
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Caza Operating, LLC	OGRID:	
Contact Name: Kevin Garrett	Contact Telephone: (432) 556-8508	
Contact email: kgarrett@cazapetro.com	Incident # (assigned by OCD): nAPP2307235324	
Contact mailing address: 200 N. Loraine, Suite 1550 Midland, TX 79701		

Location of Release Source

Latitude	32.556105	Longitude	-103.497985	
		(NAD 83 in decimal degrees to 5 decimal places)		
Site Name:	Igloo 19 CTB	Site Type: Production		
Date Relea	se Discovered: 11/10/2022	API# (if applicable)		

Unit Letter	Section	Township	Range	County
K	19	208	35E	Lea County

Surface Owner: State Federal Tribal Private (Name: S&S Inc.)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls): 8 bbls	Volume Recovered (bbls): 0 bbls
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Tyes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release: H2S	Corrosion of Pipeline	

Page 2

Oil Conservation Division

Incident ID	nAPP2307235324
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🖾 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kellan Smith Title: Staff Scientist	
Signature:	Date:3/13/2022
email:ksmith@ntglobal.com	Telephone:(580) 682-1889
OCD Only	
Received by: Jocelyn Harimon	Date:03/14/2023

Received by OCD: 4/17/2023 3:37:32 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 3 of 17
Incident ID	nAPP2307235324
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>Unkn</u> own (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

form C-141	(17/2023 3:37:32 PM State of New 1	Mexico	Incident ID	Page 4 of 1 nAPP2307235324
Page 4	Oil Conservation	Division	District RP	
			Facility ID	
			Application ID	
regulations all operate public health or the er failed to adequately in addition, OCD accept and/or regulations. Printed Name: Signature:	he information given above is true and co ors are required to report and/or file certa nvironment. The acceptance of a C-141 nvestigate and remediate contamination t tance of a C-141 report does not relieve t Kellan Smith	ain release notifications and perform report by the OCD does not relieve t hat pose a threat to groundwater, suc he operator of responsibility for com Title:Staff Scient Date:4/17/	corrective actions for rele he operator of liability she face water, human health apliance with any other fee ist	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
email:	ksmith@ntglobal.com	l'elephone:	(580) 682-1889	
OCD Only	ocelyn Harimon			

Received by OCD: 4/17/2023 3:37:32 PM Form C-141 State of New Mexico

Oil Conservation Division

_P	age	5	oj	f 1	74

Incident ID	nAPP2307235324
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

 \boxtimes Estimated volume of material to be remediated

Page 5

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

<u>Deferral Requests Only</u> : Each of the following items must be one of the following i	confirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around deconstruction.	l production equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human hea	alth, the environment, or groundwater.
rules and regulations all operators are required to report and/or fil which may endanger public health or the environment. The accept	
Printed Name:Kellan Smith	Title:Staff Scientist
Printed Name: Kellan Smith	Date:4/17/23
email:ksmith@ntglobal.com	Telephone: (580) 682-1889
OCD Only	
Received by: Jocelyn Harimon	Date:04/18/2023
Approved Approved with Attached Conditions	of Approval Denied Deferral Approved
Signature:	Date:

•

Page 6

Oil Conservation Division

Incident ID	nAPP2307235324
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rule and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.
Printed Name: Kotlan SmithTitle: Staff Scientist Signature: Date: 04/18/2023
Signature: / Date: Date: 04/18/2023
email:ksmith@ntglobal.comTelephone:(580) 682-1889
OCD Only
Received by: Jocelyn Harimon Date: 04/18/2023
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.
Closure Approved by: Date: Date:DATE:DATE:
Printed Name: Jennifer Nobui Title: Environmental Specialist A

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: CAZA OPERATING, LLC 200 N Loraine St Millered TX 20204	OGRID: 249099 Action Number: 100010
Midland, TX 79701	196913 Action Type: [C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jharimon	None	3/14/2023

Page & of 174

.

Action 196913

402 East Wood Avenue Carlsbad, New Mexico 88220 Tel. 432-701-2159 www.ntgenvironmental.com

April 14, 2023

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Site Characterization and Closure Request Report Igloo 19 CTB Unit G, S19, T20S, R35E Site Coordinates: 32.556105, -103.497985 Lea County, New Mexico Incident ID: nAPP2307235324

Mr. Bratcher:

1. Introduction

On behalf of Caza Operating, LLC (Caza), New Tech Global Environmental, LLC (NTGE) has prepared this Site Characterization and Closure Request Report for submittal to the New Mexico Oil Conservation Division (NMCOD) District 2 Office in Artesia, New Mexico to document site assessment, remedial action activities, and sample analysis results for the Igloo 19 CTB (Site). The Site is in Unit Letter G, Section 19, of Township 23 South and Range 28 East in Lea County, New Mexico. The GPS coordinates for the release site are 32.556105° N latitude and -103.497985° W longitude. The site location with respect to the nearest town is shown on Figure 1 and the topography of the area is shown on Figure 2.

2. Background

Based on the Release Notification C-141 Form, the release occurred on November 10, 2022, because of a corrosion of the pipeline. Approximately 8 barrels (bbls) of produced water were released, of which 0 bbls were recovered. Upon discovery, the pipeline was shut-in, and the area was secured. The release area is shown in Figure 3. The initial C-141 form is attached.

The release falls under the jurisdiction of the NMOCD District 2 Office in Artesia, New Mexico. The NMOCD assigned the release with Incident Number nAPP2307235324. The Release Notification and Corrective Action, Site Assessment/Characterization, and Closure portions of Form C-141 are attached to the front of this report. Mr. Mike Bratcher April 14, 2023 Page 2 of 3

3. Groundwater and Site Characterization

The Site is in a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, there is one known water sources within a ½-mile radius of the Site. The nearest identified ground water well is located 0.73 miles southwest of the Site in Sec 24 T20S R34S. The well was drilled in 1984 with a reported depth to groundwater of 698 ft below ground surface (bgs). A copy of the site characterization information and the associated USGS summary report is attached.

General Site Characterization and Groundwater:	
--	--

Site Characterization	Average Groundwater Depth (ft)
No receptors Identified within 0.5 mile of Site	

 Table 3.1 Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29.12 & 19.15.29.13)

Regulatory Standard	Chloride	ТРН	TPH	BTEX	Benzene
		(GRO+DRO+MRO	(GRO+MRO)		
19.15.29.13 Restoration,					
Reclamation and Re-	600 mg/kg	100 mg/kg		50 mg/kg	10 mg/kg
Vegetation (Impacted Area	0.0			00	
0-4 Feet)					
Notes:					
= not defined					

4. Initial Soil Delineation Assessment Summary and Findings

On November 15, 2022, NTGE conducted site assessment activities to assess the extent of impacts at the Site. A total of three vertical sample points (i.e., S-1 through S-3) and six horizontal sample points (i.e., H-1 through H-6) were installed within the release area to characterize the impacts. Soil samples were collected in 0.5 ft intervals from depths ranging from 0 - 5.5 ft below ground surface (bgs) with a geotechnical hand auger. The samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA method 8021B, total petroleum hydrocarbon (TPH) by method 8015B, and chloride by EPA method 300.0 by Eurofins Laboratories in Carlsbad, New Mexico.

The analytical results indicated that TPH and/or chloride concentrations exceeded the NMOCD regulatory limits in the areas of S-2 and S-3 and the vertical extent of impacts was undefined. Therefore, on January 13, 2023, NTGE conducted further site assessment activities to assess the vertical extent of impacts at the Site. A total of three test pits (i.e., TP-1 through TP-3) were installed within the release area to characterize the impacts. The test pits were advanced to depths of seven 7-8 ft bgs with a backhoe and soil samples were collected in 1 ft depth interval from 6 ft to the test pits terminus. The samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA method 8021B, total petroleum hydrocarbon (TPH) by method 8015B, and chloride by SM 4500 CL-B by Cardinal Laboratories in Hobbs, New Mexico. Analytical results (attached) indicated that concentrations within the area of TP-2 exceeded the NMOCD's regulatory thresholds for chloride.

Mr. Mike Bratcher April 14, 2023 Page 3 of 3

Analytical results from both sampling events are included in Table 1, attached. Soil boring and test pit locations are shown in Figure 3.

5. <u>Remedial Action Activities and Confirmation Sampling</u>

Upon receipt of the soil assessment data, Caza contract personnel proceeded with remedial action activities at the Site to include the excavation and disposal of impacted soils above the regulatory limits. The release area was excavated to depths ranging from 6 ft through 10 ft bgs within the release area. The excavation area is illustrated in Figure 4.

Upon excavation completion, a total of 27 confirmation samples were collected from the excavation base (i.e., CS-1 through CS-27) and 16 confirmation samples were collected from the excavation sidewalls (i.e., SW-1 through SW-16) to ensure impacted soils were successfully removed.

The confirmation samples were collected every 200 square feet and submitted to Cardinal Laboratories in Hobbs, New Mexico for chemical analysis. The samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA method 8021B, total petroleum hydrocarbon (TPH) by method 8015B, and chloride by SM 4500 CL-B.

Analytical results indicated the extent of impacted soil had been removed and no further excavation was required. The excavation was backfilled and returned to near-natural grade. The final excavation extent and confirmation sample locations are shown in Figure 4. Analytical results of the confirmation samples are included in Table 2.

6. nAPP2307235324 Closure Request

Based on the assessment and subsequent remedial action activities, the Site is compliant with NMOCD's regulatory limits, and no further actions are required at the site. A copy of the final C- 141 is attached, and Caza formally requests a no further action designation for the Site. If you have any questions regarding this report or need additional information, please contact us at 432-701-2159.

Sincerely, NTG Environmental

alus

Ethan Sessums Project Manager

Attachments:

Tables Figures Site Characterization Documentation Photographic Log Confirmation Sampling Notifications Laboratory Reports and Chain-of-Custody Documents

FIGURES

•

Released to Imaging: 5/16/2023 3:26:07 PM

Released to Imaging: 5/16/2023 3:26:07 PM

Released to Imaging: 5/16/2023 3:26:07 PM

Received by OCD: 4/17/2023 3:37:32 PM

Released to Imaging: 5/16/2023 3:26:07 PM

TABLES

•

Table 1 - Soil Delineation Samples - Remedial Action ActivitiesCaza Operating, L.L.C.Igloo 19 CTBLea County, New Mexico

Sample ID S-1 S-1	Date	Depth			ng/kg)		Benzene	Toluene	Ethlybenzene	Xylene		Chlorides
-		Depui	DRO	GRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX	(mg/kg)
C 1	11/15/2022	0-0.5'	<50.0	<50.0	<50.0	<50.0	< 0.00201	< 0.00201	< 0.00201	< 0.00402	< 0.00402	16.1
3-1	11/15/2022	1-1.5'	<49.9	<49.9	<49.9	<49.9	<0.00202	< 0.00202	<0.00202	< 0.00404	< 0.00404	13.3
S-1	11/15/2022	2-2.5'	<49.9	<49.9	<49.9	<49.9	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00398	59.9
S-1	11/15/2022	3-3.5'	<50.0	<50.0	<50.0	<50.0	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00398	17.4
S-1	11/15/2022	4-4.5'	<50.0	<50.0	<50.0	<50.0	< 0.00200	< 0.00200	<0.00200	< 0.00400	< 0.00400	35.3
S-2	11/15/2022	0-0.5'	247	<50.0	135	382	< 0.00202	< 0.00202	<0.00202	< 0.00403	< 0.00403	378
S-2	11/15/2022	1-1.5'	<49.9	<49.9	<49.9	<49.9	< 0.00200	< 0.00200	<0.00200	< 0.00399	< 0.00399	399
S-2	11/15/2022	2-2.5'	<50.0	<50.0	<50.0	<50.0	< 0.00201	< 0.00201	<0.00201	< 0.00402	< 0.00402	7030
S-2	11/15/2022	3-3.5'	<49.9	<49.9	<49.9	<49.9	< 0.00199	< 0.00199	<0.00199	<0.00398	< 0.00398	9970
S-2	11/15/2022	4-4.5'	<50.0	<50.0	<50.0	<50.0	< 0.00201	< 0.00201	<0.00201	< 0.00402	< 0.00402	8580
S-2	11/15/2022	5-5.5'	<49.9	<49.9	<49.9	<49.9	< 0.00202	< 0.00202	<0.00202	< 0.00403	< 0.00403	8520
S-3	11/15/2022	0-0.5'	<49.9	<49.9	<49.9	<49.9	< 0.00199	< 0.00199	<0.00199	<0.00398	<0.00494	5750
S-3	11/15/2022	1-1.5'	81.7	<49.9	<49.9	81.7	< 0.00200	< 0.00200	<0.00200	< 0.00399	< 0.00399	6550
S-3	11/15/2022	2-2.5'	<50.0	<50.0	<50.0	<50.0	< 0.00198	< 0.00198	<0.00198	< 0.00396	< 0.00502	8610
S-3	11/15/2022	3-3.5'	<50.0	<50.0	<50.0	<50.0	< 0.00202	< 0.00202	< 0.00202	< 0.00403	< 0.00403	6830
S-3	11/15/2022	4-4.5'	<49.9	<49.9	<49.9	<49.9	< 0.00199	< 0.00199	<0.00199	< 0.00398	< 0.00398	6950
S-3	11/15/2022	5-5.5'	<49.9	<49.9	<49.9	<49.9	< 0.00200	< 0.00200	<0.00200	< 0.00400	< 0.00400	7980
H-1	11/15/2022	n/a	<50.0	<50.0	<50.0	<50.0	< 0.00201	< 0.00201	<0.00201	< 0.00402	< 0.00402	34.5
H-2	11/15/2022	n/a	<49.8	<49.8	<49.8	<49.8	< 0.00400	< 0.00400	< 0.00400	<0.00800	<0.00800	13.2
H-3	11/15/2022	n/a	<50.0	<50.0	<50.0	<50.0	<0.00198	< 0.00198	<0.00198	< 0.00397	< 0.00397	17.8
H-4	11/15/2022	n/a	<49.9	<49.9	<49.9	<49.9	< 0.00201	< 0.00201	<0.00201	< 0.00402	< 0.00402	14.4
H-5	11/15/2022	n/a	<50.0	<50.0	<50.0	<50.0	<0.00201	< 0.00201	<0.00201	< 0.00402	< 0.00402	17.5
H-6	11/15/2022	n/a	<49.8	<49.8	<49.8	<49.8	<0.00199	< 0.00199	<0.00199	< 0.00398	<0.00398	17.7
TP-1	1/13/2023	6'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
TP-1	1/13/2023	7'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
TP-2	1/13/2023	6'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	848
TP-2	1/13/2023	7'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	160
TP-2	1/13/2023	8'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	1840
TP-2	1/13/2023	9'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	4080
TP-2	1/13/2023	10'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
TP-2	1/13/2023	11'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	160
TP-3	1/13/2023	6'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	32
TP-3	1/13/2023	7'	<10.0	<10.0	<10.0	<50.0	<0.050	<0.050	<0.050	<0.150	<0.300	32
Reg	ulatory Limits	A				100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
		ons										

- exceeds regulatory limits

Table 2 Summary of Soil Analytical Data - Confirmation Samples Igloo 19 CTB Caza Operating, LLC Lea County, New Mexico

										ТРН			
			Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO (C6	DRO (C10	GRO + DRO	MRO (C28-	Total	Chloride
Completion	Coursels Data	Depth						C-10)	C28)	GRO + DRO	C35)	GRO/DRO/MRO	
Sample ID	Sample Date	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
					Ta	able I Closure	e Criteria for S	oil 0-55 feet I	Depth to Grou	ndwater 19.15.2	9 NMAC		
			10 mg/kg				50 mg/kg					100 mg/kg	600 mg/kg
					•	Confirmat	ion Samples						
CS-1	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	144
CS-2	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	240
CS-3	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	112
CS-4	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80
CS-5	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	96
CS-6	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	128
CS-7	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	128
CS-8	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	128
CS-9	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	96
CS-10	3/20/2023	10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	112
CS-11	3/20/2023	6'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	112
CS-12	3/20/2023	6'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	368
CS-13	3/20/2023	6'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	352
CS-14	3/20/2023	6'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	160
CS-15	3/20/2023	6'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	192
CS-16	3/20/2023	6'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	240
CS-17	3/20/2023	6'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	144
CS-18	3/20/2023	6'	< 0.050	< 0.050	< 0.050	< 0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	192
CS-19	3/20/2023	6'	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	192
CS-20	3/20/2023	6'	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	144
CS-21	3/20/2023	6'	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	192
CS-22	3/20/2023	6'	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	208
CS-23	3/20/2023	6'	< 0.050	< 0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	144
CS-24 CS-25	3/20/2023 3/20/2023	6' 6'	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.150 <0.150	<0.300 <0.300	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	144 144
		6'	<0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	144
CS-26 CS-27	3/20/2023 3/20/2023	6'	< 0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	192
SW-1	3/20/2023	0-10'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80
SW-1 SW-2	3/20/2023	0-10	< 0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32
SW-2 SW-3	3/20/2023	0-10	<0.050	<0.050	<0.030	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	48
SW-3	3/20/2023	0-10	<0.050	<0.050	<0.050	<0.130	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80
SW-4	3/20/2023	0-10	<0.050	<0.050	<0.030	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80
SW-6	3/20/2023	0-10	<0.050	<0.050	<0.050	<0.130	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80
	3/20/2023	0-10'	<0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64
SW-8	3/20/2023	6-10'	< 0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64
SW-8	3/20/2023	6-10'	<0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80
SW-10	3/20/2023	0-6'	< 0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80
SW-10	3/20/2023	0-6'	< 0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64
SW-11	3/20/2023	0-6'	<0.050	<0.050	<0.050	<0.150	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32
511 12	5/20/2025		-0.000		-0.050	-0.130	\$0.500	10.0	10.0	10.0	10.0	10.0	52

.

Page 19 of 174

Table 2 Summary of Soil Analytical Data - Confirmation Samples Igloo 19 CTB Caza Operating, LLC Lea County, New Mexico

										ТРН			
			Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO (C6-	DRO (C10	GRO + DRO	MRO (C28	Total	Chloride
Converte ID	Course Date	Depth						C-10)	C28)		C35)	GRO/DRO/MRO	
Sample ID	Sample Date	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			Table I Closure Criteria for Soil 0-55 feet Depth to Groundwater 19.15.29 NMAC										
			10 mg/kg				50 mg/kg					100 mg/kg	600 mg/kg
SW-13	3/20/2023	0-6'	< 0.050	< 0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64
SW-14	3/20/2023	0-6'	< 0.050	< 0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64
SW-15	3/20/2023	0-6'	< 0.050	< 0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32
SW-16	3/20/2023	0-6'	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32

Notes:

Released to Imaging: 5/16/2023 3:26:07 PM

1. Values reported in mg/kg

2.< = Value Less Than Reporting Limit (RL)3. Bold indicates Analyte Detected

4. BTEX analyses by EPA Method SW 8021B

6. GRO/DRO/MRO - Gasoline/Diesel/Motor Oil

5. TPH analyses by EPA Method SW 8015 Mod.

7. Yellow shaded cells indicate analytical samples that exceed the NMAC 19.15.29.12 Table I Closure Criteria for the site.

8. Peach shaded cells indicate analytical samples that exceed the NMAC 19.15.29.13 Table I Closure Criteria for the site (Surface to 4 Feet Below Grade).

9. --- Not Analyzed

SITE CHARACTERIZATION DOCUMENTATION

Caza - Igloo 19 CTB Sec 19 T20S R35E Unit G 32.556105 -103.497985 Eddy County, New Mexico

Site Characterization -0 water features within specified distances of 1/2 mile radius

- Low Karst

-USGS Groundwater is 250' below surface, 2.24 miles North-northeast of the site, 1965 Drilled, Sec 22 T20S R34E -USGS Groundwater is 85' below surface, 1.53 miles South-southwest of the site, 1954 Drilled, Sec 31 T20S R35E -NMSEO Groundwater is 698' below surface, 0.73 miles West of the site, 1984 Drilled, Sec 24 T20S R34E -NMSEO Groundwater is 370' below surface, 1.47 miles South-southwest of the site, 2013 Drilled, Sec 25 T20S R34E

RRALs due to insufficient groundwater data -Chlorides 600 mg/kg -TPH GRO+DRO+MRO 100 mg/kg -BTEX 50 mg/kg -Benzene 10 mg/kg

- CASTURAL E

-

NMSEO 370ft 2013

USGS 85ft 1954 •

10

Legend^{Page 23} of 174

- 🍰 .50 mile radius
- 🍰 0.73 miles
- ab 1.47 miles
- 跪 1.53 mile
- 🍰 2.24 miles

2 mi

Igloo 9 CTB

Received by OCD: 4/17/2023 3:37:32 PM Igioo Karst Write a description for your map.

Igloo 9 CTB

Google Earth Released to Imaging: 5/16/2023 3:26:07 PM mage Landsat / Copernicus

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replace O=orphaned, C=the file is closed)	(· ·				2=NE 3	3=SW 4=SE gest) (N) AD83 UTM in me	eters)	(In feet)	
POD Number	POD Sub- Code basin	County		Q (16)		ec Tws	Rng	x	Y	Distance	-	Depth Water	Water Column
CP 00665	CP	LE		1	4 2	24 208	34E	639740	3603128* 🌍	1174	698	270	428
CP 01204 POD1	CP	LE	3	1	1 2	25 208	34E	638755	3602250 🌍	2346	370		
CP 00654 POD1	CP	LE		4	4 1	2 208	34E	640103	3605947* 🌍	2890	60		
CP 00800 POD1	CP	LE	2	2	2 2	22 208	34E	637007	3603994* 🌍	3991	220		
									Avera	ige Depth to	Water:	270	feet
										Minimum	Depth:	270	feet
										Maximum	Depth:	270	feet
Record Count: 4													
UTMNAD83 Radius Se	earch (in mete	ers):											

Easting (X): 640913.18

Northing (Y): 3603172.37

Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/18/22, 3:23 PM Released to Imaging: 5/16/2023 3:26:07 science for a changing work **National Water Information System: Web Interface USGS Water Resources** Click to hideNews Bulletins

- ALERT! USGS will be performing an upgrade to their network on Thursday, November 17, 2022, starting at 10:00pm EST. During the maintenance period, the Water Data for the Nation web portal and water services will be accessible; however, delivery of the most recent time-series data and WaterAlert notifications will be disrupted. The maintenance period is not expected to exceed 4 hours, after which the backlog of time-series data will be processed and delivered.
- Water Data for the Nation Blog

USGS 323436103302802 20S.34E.12.443

Available data for this site SUMMARY OF ALL AVAILABLE DATA V GO

Well Site

DESCRIPTION:

Latitude 32°34'36", Longitude 103°30'28" NAD27 Lea County, New Mexico , Hydrologic Unit 13060011 Well depth: not determined. Land surface altitude: 3,660 feet above NAVD88. Well completed in "Other aquifers" (N9999OTHER) national aquifer.

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1968-03-21	1968-03-21	1

Data Category:

Site Information

GO

USGS Home Contact USGS Search USGS

Geographic Area:

United States

Revisions

Unavailable (site:0) (timeseries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to New Mexico Water Science Center Water-Data Inquiries

Ouestions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Policies and Notices Privacy

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=323436103302802

Page Contact Information: New Mexico Water Data Support Team Page Last Modified: 2022-11-18 16:23:18 EST 0.27 0.27 caww01

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters) (quarter)				W 4=SE)	(NAD83 UI	M in meters)	
Well Tag	POD	Number	Q64 Q			e	<i>′</i>	X	Y	
0	CP 0	01204 POD1	3	1 1	25	20S	34E	638755	3602250 🌍	
x Driller Lic	ense:	1682	Driller C	ompa	ny:	HU	NGRY I	HORSE, LL	C.	
Driller Na	me:	NORRIS, JOHN	D.							
Drill Start	Date:	10/08/2013	Drill Fin	ish Da	te:	1	1/01/201	3 Plu	g Date:	
Log File D	ate:	12/12/2013	PCW Rc	v Date	:			Sou	irce:	Shallow
Ритр Тур	e:		Pipe Dise	charge	Size	:		Est	imated Yield:	
Casing Siz	æ:	8.00	Depth W	ell:		3′	70 feet	De	pth Water:	
X	Wate	er Bearing Strati	fications:	Тс	p B	ottom	Descr	iption		
				3	38	56	Sands	tone/Gravel/	Conglomerate	
				4	56	270	Shale/	/Mudstone/S	iltstone	
				27	70	293	Shale/	/Mudstone/S	iltstone	
				29	93	370	Shale	'Mudstone/S	iltstone	
X		Casing Per	forations:	Та	p B	ottom	1			
					0	370				

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

11/18/22 2:35 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters (quarters					(NAD83 U	TM in meters)	
Well Tag	POD	Number	Q64 Q 1	16 Q4	Sec	Tws	Rng	Χ	Y	
	CP (00665]	l 4	24	20S	34E	639740	3603128* 🔵	
Driller Lic	ense:	421	Driller C	ompa	ny:	GL	ENN'S V	VATER WI	ELL SERVICE	
Driller Nai	ne:	GLENN, CLARI	K A."CORKY	" (LD))					
Drill Start	Date:	05/25/1984	Drill Fin	ish Da	te:	0:	5/28/198	4 P I	ug Date:	
Log File D	ate:	06/11/1984	PCW Rc	v Date	e:			So	ource:	Shallow
Pump Type	e:		Pipe Disc	charge	e Size	:		Es	stimated Yield:	13 GPM
Casing Size	e:	6.63	Depth W	ell:		6	98 feet	D	epth Water:	270 feet
X	Wate	er Bearing Stratif	ications:	То	op E	ottom	Descr	iption		
				30	54	396	Sandst	tone/Grave	l/Conglomerate	
X		Casing Per	forations:	Т	op E	ottom	l			
				30	50	420)			

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/18/22 2:32 PM

POINT OF DIVERSION SUMMARY

Page 30 of 174 1/1

Science for a changing world				USGS Home Contact USGS Search USGS	
lational Water Information System: Web Interface					
SGS Water Resources	Data Category: Site Information	~	Geographic Area: United States	•	GO

Click to hideNews Bulletins

- ALERT! USGS will be performing an upgrade to their network on Thursday, November 17, 2022, starting at 10:00pm EST. During the maintenance period, the Water Data for the Nation web portal and water services will be accessible; however, delivery of the most recent time-series data and WaterAlert notifications will be disrupted. The maintenance period is not expected to exceed 4 hours, after which the backlog of time-series data will be processed and delivered.
- Water Data for the Nation Blog

USGS 323148103295801 20S.35E.31.12311

Available data for this site SUMMARY OF ALL AVAILABLE DATA V GO

Well Site

DESCRIPTION:

Latitude 32°32'06", Longitude 103°30'03" NAD27 Lea County, New Mexico , Hydrologic Unit 13070007 Well depth: 85 feet Land surface altitude: 3,729.00 feet above NGVD29. Well completed in "Other aquifers" (N9999OTHER) national aquifer. Well completed in "Ogallala Formation" (1210GLL) local aguifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1954-06-25	1996-02-02	10

https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=323148103295801

Received by OCD: 4/17/2023 3:37:32 PM

Revisions

Unavailable (site:0) (timeseries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to New Mexico Water Science Center Water-Data Inquiries

Ouestions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Policies and Notices Privacy

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=323148103295801

Page Contact Information: New Mexico Water Data Support Team Page Last Modified: 2022-11-18 16:26:31 EST 0.3 0.28 caww01

11/18/22, 3:24 PM Released to Imaging: 5/16/2023 3:26:07 PM science for a changing worl **National Water Information System: Web Interface USGS Water Resources** Click to hideNews Bulletins

- ALERT! USGS will be performing an upgrade to their network on Thursday, November 17, 2022, starting at 10:00pm EST. During the maintenance period, the Water Data for the Nation web portal and water services will be accessible; however, delivery of the most recent time-series data and WaterAlert notifications will be disrupted. The maintenance period is not expected to exceed 4 hours, after which the backlog of time-series data will be processed and delivered.
- Water Data for the Nation Blog

USGS 323336103322501 20S.34E.22.222333

Available data for this site SUMMARY OF ALL AVAILABLE DATA V GO

Well Site

DESCRIPTION:

Latitude 32°33'36", Longitude 103°32'25" NAD27 Lea County, New Mexico , Hydrologic Unit 13060011 Well depth: 250 feet Land surface altitude: 3,663 feet above NAVD88. Well completed in "Other aquifers" (N9999OTHER) national aquifer. Well completed in "Chinle Formation" (231CHNL) local aquifer

AVAILABLE DATA:

	Data Type	Begin Date	End Date	Count
Field groun	dwater-level measurements	1965-11-17	1981-02-26	6

https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=323336103322501

Data Category:		Geographic Area:		
Site Information	~	United States	~	GO

Contact USGS Search USGS

Received by OCD: 4/17/2023 3:37:32 PM

Revisions

Unavailable (site:0) (timeseries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to New Mexico Water Science Center Water-Data Inquiries

Ouestions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Policies and Notices Privacy

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=323336103322501

Page Contact Information: New Mexico Water Data Support Team Page Last Modified: 2022-11-18 16:24:27 EST 0.3 0.29 caww01

PHOTOGRAPHIC LOG

PHOTOGRAPHIC LOG Caza Operating, LLC

Igloo 19 CTB

Photograph No. 1

Facility: Igloo 19 CTB

County: Lea County, New Mexico

Description: Area of Final Excavation.

Photograph No. 2

Facility: Igloo 19 CTB

Lea County, New Mexico County:

Description:

Area of Final Excavation.

Photograph No. 3

Facility: Igloo 19 CTB

County: Lea County, New Mexico

Description: Area of Final Excavation.

PHOTOGRAPHIC LOG Caza Operating, LLC

Igloo 19 CTB

Photograph No. 4

Facility: Igloo 19 CTB

County: Lea County, New Mexico

Description: Area of Final Excavation.

Photograph No. 5

Facility: Igloo 19 CTB

County: Lea County, New Mexico

Description:

Area of Final Excavation.

Photograph No. 6

Facility: Igloo 19 CTB

County: Lea County, New Mexico

Description: Area of Final Excavation.

CONFIRMATION SAMPLING NOTIFICATIONS

Kellan Smith

From:	Ethan Sessums
Sent:	Tuesday, March 14, 2023 5:57 PM
То:	Enviro, OCD, EMNRD
Cc:	NTGE Carlsbad
Subject:	Sampling Notification

NTGE will be conducting confirmation sampling at the associated incident (nAPP2307235324) on behalf of Caza Petroleum next week March the 21st around 9 a.m. MDT and conclude these activities the following day March 22nd by the end of business.

Thanks,

Ethan Sessums Project Manager NTGE New Mexico 402 E Wood Ave, Carlsbad, NM 88220 M: (254)-266-5456 W: (432)-701-2159 Email: esessums@ntglobal.com

> Air Quality Compliance | EHS Management | Environmental Due Diligence & Audits | Midstream Compliance | Regulatory Compliance & Permitting | Site Assessment, **<u>Remediation & Site Closure</u>** | Water Quality & Natural Resources

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Received by OCD: 4/17/2023 3:37:32 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Gordon Banks NT Global 701 Tradewinds Blvd Midland, Texas 79706 Generated 11/28/2022 4:20:39 PM

JOB DESCRIPTION

Igloo 19 CTB SDG NUMBER Lea Co NM

JOB NUMBER

890-3486-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Received by OCD: 4/17/2023 3:37:32 PM

1

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 11/28/2022 4:20:39 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 43 of 174

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	26
QC Sample Results	28
QC Association Summary	38
Lab Chronicle	45
Certification Summary	52
Method Summary	53
Sample Summary	54
Chain of Custody	55
Receipt Checklists	58

Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

ofinitions/Classom

Client: NT Global Project/Site: Igloo 19 CTB Page 44 of 174

Definitions/Glossary					
bal loo 19 CTB	Job ID: 890-3486-1 SDG: Lea Co NM	2			
		3			
Qualifier Description		4			
MS and/or MSD recovery exceeds control limits.		_			
MS/MSD RPD exceeds control limits		5			
Surrogate recovery exceeds control limits, low biased.					

GC Semi VOA

Qualifiers GC VOA Qualifier

F1

F2 S1-

S1+

U

Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	8
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	Q
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Page 45 of 174

Job ID: 890-3486-1 SDG: Lea Co NM

Job ID: 890-3486-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3486-1

Receipt

The samples were received on 11/15/2022 4:45 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 13.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: S-1 (0-0.5) (890-3486-1), S-1 (1-1.5) (890-3486-2), S-1 (2-2.5) (890-3486-3), S-1 (3-3.5) (890-3486-4), S-1 (4-4.5) (890-3486-5), S-2 (0-0.5) (890-3486-6), S-2 (1-1.5) (890-3486-7), S-2 (2-2.5) (890-3486-8), S-2 (3-3.5) (890-3486-9), S-2 (4-4.5) (890-3486-10), S-2 (5-5.5) (890-3486-11), S-3 (0-0.5) (890-3486-12), S-3 (1-1.5) (890-3486-13), S-3 (2-2.5) (890-3486-14), S-3 (3-3.5) (890-3486-15), S-3 (4-4.5) (890-3486-16), S-3 (5-5.5) (890-3486-17), H-1 (890-3486-18), H-2 (890-3486-19), H-3 (890-3486-20), H-4 (890-3486-21), H-5 (890-3486-22) and H-6 (890-3486-23).

GC VOA

Method 8021B: The method blank for preparation batch 880-40316 and analytical batch 880-40265 contained o-Xylene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-40340 and analytical batch 880-40265 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-39931 and analytical batch 880-40032 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: S-1 (1-1.5) (890-3486-2), S-1 (2-2.5) (890-3486-3), S-1 (3-3.5) (890-3486-4) and S-1 (4-4.5) (890-3486-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: S-2 (1-1.5) (890-3486-7), S-2 (2-2.5) (890-3486-8), S-2 (3-3.5) (890-3486-9) and S-2 (4-4.5) (890-3486-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: S-2 (5-5.5) (890-3486-11), S-3 (0-0.5) (890-3486-12), S-3 (1-1.5) (890-3486-13), S-3 (2-2.5) (890-3486-14), S-3 (4-4.5) (890-3486-16), S-3 (5-5.5) (890-3486-17) and H-1 (890-3486-18). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-39931 and analytical batch 880-40032 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-39929 and analytical batch 880-40028 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-39831 and analytical batch 880-40150 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because

Case Narrative

Client: NT Global
Project/Site: Igloo 19 CTB

Job ID: 890-3486-1 SDG: Lea Co NM

Job ID: 890-3486-1 (Continued)

Laboratory: Eurofins Carlsbad (Continued)

the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4
5
8
9
13

Job ID: 890-3486-1 SDG: Lea Co NM

Client Sample ID: S-1 (0-0.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 0 - 0.5

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

o-Xylene

Xylenes, Total

Surrogate

Project/Site: Igloo 19 CTB

Client: NT Global

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201		0.00201		mg/Kg		11/22/22 17:58	11/24/22 16:35	
Toluene	<0.00201		0.00201		mg/Kg		11/22/22 17:58	11/24/22 16:35	
Ethylbenzene	<0.00201		0.00201		mg/Kg		11/22/22 17:58	11/24/22 16:35	
m-Xylene & p-Xylene	< 0.00402		0.00402		mg/Kg		11/22/22 17:58	11/24/22 16:35	
o-Xylene	< 0.00201		0.00201		mg/Kg		11/22/22 17:58	11/24/22 16:35	
Xylenes, Total	< 0.00201		0.00402		mg/Kg		11/22/22 17:58	11/24/22 16:35	
Aylenes, Iolai	~0.00402	01112	0.00402		ng/ng		11/22/22 17.30	11/24/22 10:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	182	S1+	70 - 130				11/22/22 17:58	11/24/22 16:35	
1,4-Difluorobenzene (Surr)	70		70 - 130				11/22/22 17:58	11/24/22 16:35	
- Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/28/22 15:38	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			11/22/22 10:35	
Method: SW846 8015B NM - Dies Analyte	• •	Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0		50.0		mg/Kg		11/18/22 14:32	11/21/22 11:55	
(GRO)-C6-C10	\$00.0	011	00.0		iiig/itg		11/10/22 14.02	11/21/22 11:00	
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 11:55	
C10-C28)					5. 5				
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 11:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	99		70 - 130				11/18/22 14:32	11/21/22 11:55	
o-Terphenyl	116		70 - 130				11/18/22 14:32	11/21/22 11:55	
Method: MCAWW 300.0 - Anions	Ion Chromato	oraphy - So	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte					malka			11/22/22 01:22	
Chloride	16.1		4.98		mg/Kg				
Chloride	16.1		4.98		ilig/Kg		Lab San		
Chloride Client Sample ID: S-1 (1-1.5)	16.1		4.98		iiig/Kg		Lab San	nple ID: 890-	3486-2
Chloride Client Sample ID: S-1 (1-1.5) Date Collected: 11/15/22 00:00	16.1		4.98		ilig/Kg		Lab San	nple ID: 890-	3486-2
Chloride Client Sample ID: S-1 (1-1.5) Pate Collected: 11/15/22 00:00 Pate Received: 11/15/22 16:45	16.1		4.98		ilig/Kg		Lab San	nple ID: 890-	3486-2
Chloride Client Sample ID: S-1 (1-1.5) Pate Collected: 11/15/22 00:00 Pate Received: 11/15/22 16:45	16.1		4.98		ing/Kg		Lab San	nple ID: 890-	3486-2
Chloride Client Sample ID: S-1 (1-1.5)	Organic Comp)		iiig/Kg		Lab San	nple ID: 890-	3486-2
Chloride Client Sample ID: S-1 (1-1.5) pate Collected: 11/15/22 00:00 pate Received: 11/15/22 16:45 pample Depth: 1 - 1.5 Method: SW846 8021B - Volatile	Organic Comp	Qualifier		MDL	Unit	D	Lab San	nple ID: 890-	3486-2 x: Solid
Chloride Client Sample ID: S-1 (1-1.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45 Dample Depth: 1 - 1.5 Method: SW846 8021B - Volatile	Organic Comp	Qualifier)	MDL		<u>D</u>		nple ID: 890- Matri	3486-2 x: Solic
Chloride Client Sample ID: S-1 (1-1.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45 Gample Depth: 1 - 1.5 Method: SW846 8021B - Volatile Analyte	Organic Comp	Qualifier U	RL	MDL	Unit	<u>D</u>	Prepared	nple ID: 890- Matri Analyzed	

0.00404

0.00202

0.00404

Limits

70 - 130

mg/Kg

mg/Kg

mg/Kg

<0.00404 U

<0.00202 U

<0.00404 U

%Recovery Qualifier

212 S1+

Eurofins Carlsbad

1

1

1

11/24/22 17:01

11/24/22 17:01

11/24/22 17:01

11/22/22 17:58

11/22/22 17:58

11/22/22 17:58

Prepared

11/22/22 17:58

Client Sample Results

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-2

Client Sample ID: S-1 (1-1.5)

Date Collected: 11/15/22 00:00

Date Received: 11/15/22 16:45

Project/Site: Igloo 19 CTB

Client: NT Global

Sample Depth: 1 - 1.5

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130				11/22/22 17:58	11/24/22 17:01	1
- Method: TAL SOP Total BTE>	C - Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			11/28/22 15:38	1
Method: SW846 8015 NM - Di	iesel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9		mg/Kg			11/22/22 10:35	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 12:58	1
<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 12:58	1
<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 12:58	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
111		70 - 130				11/18/22 14:32	11/21/22 12:58	1
134	S1+	70 - 130				11/18/22 14:32	11/21/22 12:58	1
	<49.9 <49.9 <u>%Recovery</u> 111	<49.9 U <49.9 U %Recovery Qualifier	<49.9 U 49.9 <49.9 U 49.9 <u>%Recovery</u> <u>Qualifier</u> <u>Limits</u> 70 - 130	<49.9	<49.9	<49.9	<49.9	<49.9

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Chloride	13.3	4.95	mg	/Kg		11/22/22 01:28	1

Client Sample ID: S-1 (2-2.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45 Sample Depth: 2 - 2.5

Total TPH

Lab Sample ID: 890-3486-3

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 17:27	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 17:27	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 17:27	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/24/22 17:27	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 17:27	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/24/22 17:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	203	S1+	70 - 130				11/22/22 17:58	11/24/22 17:27	1
1,4-Difluorobenzene (Surr)	76		70 - 130				11/22/22 17:58	11/24/22 17:27	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Methou. TAL SOF TOtal DILA		0	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	=						

Eurofins Carlsbad

11/22/22 10:35

Released to Imaging: 5/16/2023 3:26:07 PM

<49.9 U

49.9

mg/Kg

11/28/2022

1

Matrix: Solid

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-3

Lab Sample ID: 890-3486-4

Client Sample ID: S-1 (2-2.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 2 - 2.5

Project/Site: Igloo 19 CTB

Client: NT Global

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 13:19	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 13:19	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130				11/18/22 14:32	11/21/22 13:19	1
o-Terphenyl	150	S1+	70 - 130				11/18/22 14:32	11/21/22 13:19	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyt	e Res	ult Qualifier	RL	MDL Ur	nit D	Prepared	Analyzed	Dil Fac
Chlori	de 5	9.9	5.04	m	g/Kg		11/22/22 01:45	1

Client Sample ID: S-1 (3-3.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 3 - 3.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 17:54	
Toluene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 17:54	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 17:54	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/24/22 17:54	
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 17:54	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/24/22 17:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	217	S1+	70 - 130				11/22/22 17:58	11/24/22 17:54	
1,4-Difluorobenzene (Surr)	71		70 - 130				11/22/22 17:58	11/24/22 17:54	-
Analyte		Qualifier	RL 0.00398	MDL	Unit mg/Kg	D	Prepared	Analyzed	Dil Fa
Analyte Total BTEX		Qualifier U	0.00398	MDL	Unit mg/Kg	<u>D</u>	Prepared		Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	Result <0.00398	Qualifier U	0.00398			<u>D</u> 	Prepared		Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result <0.00398	Qualifier U ics (DRO) (f Qualifier	0.00398		mg/Kg			11/28/22 15:38	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	el Range Organ Result Strange Organ Result Strange	Qualifier U ics (DRO) (Qualifier U	0.00398 GC) RL 50.0		mg/Kg Unit			11/28/22 15:38	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese	el Range Organ Result Conception Result Conception Result Conception Result Conception Result Conception Result Conception Result	Qualifier U ics (DRO) (Qualifier U	0.00398 GC) RL 50.0	MDL	mg/Kg Unit			11/28/22 15:38	
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result Conception Result Conception Result Conception Result Conception Result Conception Result Conception Result	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	0.00398 GC) RL 50.0 (GC)	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/22/22 10:35	Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <50.0 sel Range Orga sel Range Orga Result	Qualifier U ics (DRO) (1 Qualifier U nics (DRO) Qualifier U	0.00398 GC) RL 50.0 (GC) RL	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared	11/28/22 15:38 Analyzed 11/22/22 10:35 Analyzed	Dil Fa

Matrix: Solid

5

Matrix: Solid

		Clier	nt Sample R	esults	;				
Client: NT Global								Job ID: 890)-3486-1
Project/Site: Igloo 19 CTB								SDG: Lea	a Co NM
Client Sample ID: S-1 (3-3.5)						Lab San	nple ID: 890-	3486-4
Date Collected: 11/15/22 00:00								Matri	ix: Solid
Date Received: 11/15/22 16:45									
Sample Depth: 3 - 3.5									
 Method: MCAWW 300.0 - Anion	s, Ion Chromato	graphy - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17.4		4.97		mg/Kg			11/22/22 01:51	1
Client Sample ID: S-1 (4-4.5)						Lab San	nple ID: 890-	3486-5
Date Collected: 11/15/22 00:00	,								ix: Solid
Date Received: 11/15/22 16:45									
Sample Depth: 4 - 4.5									
_									
Method: SW846 8021B - Volatile			•			_			
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200		0.00200		mg/Kg		11/22/22 17:58	11/24/22 18:20	1
Toluene	<0.00200		0.00200		mg/Kg		11/22/22 17:58	11/24/22 18:20	1
Ethylbenzene	<0.00200		0.00200		mg/Kg		11/22/22 17:58	11/24/22 18:20	
m-Xylene & p-Xylene	<0.00400		0.00400		mg/Kg		11/22/22 17:58	11/24/22 18:20	1
o-Xylene	<0.00200		0.00200		mg/Kg		11/22/22 17:58	11/24/22 18:20	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/22/22 17:58	11/24/22 18:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	205	S1+	70 - 130				11/22/22 17:58	11/24/22 18:20	1
1,4-Difluorobenzene (Surr)	70		70 - 130				11/22/22 17:58	11/24/22 18:20	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Calo	ulation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/28/22 15:38	1
 Method: SW846 8015 NM - Dies	al Banga Organ								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/22/22 10:35	1
—									
Method: SW846 8015B NM - Die									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 14:01	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 14:01	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 14:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120	_	70 - 130				11/18/22 14:32	11/21/22 14:01	1
o-Terphenyl	151	S1+	70 - 130				11/18/22 14:32	11/21/22 14:01	1
Method: MCAWW 300.0 - Anion	s. Ion Chromato	oraphy - S	oluble						
Method: MCAWW 300.0 - Anion Analyte		<mark>graphy - S</mark> Qualifier	oluble RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

RL

0.00202

MDL

Unit

mg/Kg

Job ID: 890-3486-1 SDG: Lea Co NM

Client Sample ID: S-2 (0-0.5)

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00202 U

378

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 0 - 0.5

Project/Site: Igloo 19 CTB

Client: NT Global

Analyte

Benzene

Lab Sample ID: 890-3486-6 Matrix: Solid

Analyzed

11/24/22 18:46

50110	
	5
Dil Fac	
1	
1	
1	
1	
1	0
1	0
Dil Fac	9
1 1	
Dil Fac	
1	

Toluene	<0.00202	U	0.00202		mg/Kg		11/22/22 17:58	11/24/22 18:46	1	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/22/22 17:58	11/24/22 18:46	1	
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/22/22 17:58	11/24/22 18:46	1	
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/22/22 17:58	11/24/22 18:46	1	8
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/22/22 17:58	11/24/22 18:46	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	9
4-Bromofluorobenzene (Surr)	230	S1+	70 - 130				11/22/22 17:58	11/24/22 18:46	1	
1,4-Difluorobenzene (Surr)	73		70 - 130				11/22/22 17:58	11/24/22 18:46	1	
Method: TAL SOP Total BTEX	- Total BTEX Calo	culation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/28/22 15:38	1	
	sel Range Organ	ics (DRO) (GC)							4.9
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	13
Total TPH	382		50.0		mg/Kg			11/22/22 10:35	1	
	esel Range Orga	nics (DRO)	(GC)							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	

D

Prepared

11/22/22 17:58

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 14:22	1
(GRO)-C6-C10									
Diesel Range Organics (Over	247		50.0		mg/Kg		11/18/22 14:32	11/21/22 14:22	1
C10-C28)									
Oll Range Organics (Over	135		50.0		mg/Kg		11/18/22 14:32	11/21/22 14:22	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				11/18/22 14:32	11/21/22 14:22	1
o-Terphenyl	116		70 - 130				11/18/22 14:32	11/21/22 14:22	1
Method: MCAWW 300.0 - Anior	s, Ion Chromato	ography - So	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

4.99

mg/Kg

Client Sample ID: S-2 (1-1.5)

			-
Date Co	llected:	11/15/22	00:00

Date Received: 11/15/22 16:45

Sample Depth: 1 - 1.5

Chloride

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/24/22 19:12	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/24/22 19:12	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/24/22 19:12	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/22/22 17:58	11/24/22 19:12	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/24/22 19:12	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/22/22 17:58	11/24/22 19:12	1

Eurofins Carlsbad

11/22/22 02:13

Lab Sample ID: 890-3486-7

1

Matrix: Solid

Released to Imaging: 5/16/2023 3:26:07 PM

Client Sample Results

Job ID: 890-3486-1 SDG: Lea Co NM

Matrix: Solid

5

Lab Sample ID: 890-3486-7

Client Sample ID: S-2 (1-1.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 1 - 1.5

Project/Site: Igloo 19 CTB

Client: NT Global

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	235	S1+	70 - 130				11/22/22 17:58	11/24/22 19:12	1
1,4-Difluorobenzene (Surr)	73		70 - 130				11/22/22 17:58	11/24/22 19:12	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/28/22 15:38	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/22/22 10:35	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 14:44	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 14:44	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 14:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				11/18/22 14:32	11/21/22 14:44	1
o-Terphenyl	146	S1+	70 - 130				11/18/22 14:32	11/21/22 14:44	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	399		4.98		mg/Kg			11/22/22 02:19	1
lient Sample ID: S-2 (2-2.5)							Lab San	nple ID: 890-	3486-8
ate Collected: 11/15/22 00:00								Matri	x: Solid
ate Received: 11/15/22 16:45									
ample Dopth: 2 - 2 5									

Sample Depth: 2 - 2.5

Total TPH

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/22/22 17:58	11/24/22 19:38	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/22/22 17:58	11/24/22 19:38	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/22/22 17:58	11/24/22 19:38	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/22/22 17:58	11/24/22 19:38	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/22/22 17:58	11/24/22 19:38	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/22/22 17:58	11/24/22 19:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	212	S1+	70 - 130				11/22/22 17:58	11/24/22 19:38	1
1,4-Difluorobenzene (Surr)	83		70 - 130				11/22/22 17:58	11/24/22 19:38	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/28/22 15:38	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

11/22/22 10:35

Released to Imaging: 5/16/2023 3:26:07 PM

50.0

mg/Kg

<50.0 U

Job ID: 890-3486-1 SDG: Lea Co NM

Matrix: Solid

Lab Sample ID: 890-3486-8

Lab Sample ID: 890-3486-9

Matrix: Solid

Client Sample ID: S-2 (2-2.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 2 - 2.5

Project/Site: Igloo 19 CTB

Client: NT Global

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 15:04	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 15:04	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 15:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	125		70 - 130				11/18/22 14:32	11/21/22 15:04	1
o-Terphenyl	152	S1+	70 - 130				11/18/22 14:32	11/21/22 15:04	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7030		50.0		mg/Kg			11/22/22 02:24	10

Client Sample ID: S-2 (3-3.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 3 - 3.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 20:05	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 20:05	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 20:05	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/24/22 20:05	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 20:05	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/24/22 20:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	245	S1+	70 - 130				11/22/22 17:58	11/24/22 20:05	1
1,4-Difluorobenzene (Surr)	80		70 - 130				11/22/22 17:58	11/24/22 20:05	1
Method: SW846 8015 NM - Diesel	l Range Organ	ics (DRO) (GC)						
Welliou. Swoto ou is NW - Diese	i nange Organ								
Analyte				MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies	Result <49.9	Qualifier U	RL 49.9			<u>D</u>	Prepared		1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <49.9	Qualifier U nics (DRO) Qualifier	RL 49.9		mg/Kg			11/22/22 10:35	1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	(GC)		mg/Kg Unit		Prepared	11/22/22 10:35	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 sel Range Orga Result <49.9	Qualifier U nics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared 11/18/22 14:32	Analyzed 11/21/22 15:25	Dil Fac Dil Fac 1 1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/18/22 14:32 11/18/22 14:32	Analyzed 11/22/22 10:35 Analyzed 11/21/22 15:25 11/21/22 15:25	1 Dil Fac

11/18/22 14:32 11/21/22 15:25

o-Terphenyl

70 - 130

153 S1+

		Clier	nt Sample R	esults	;				
Client: NT Global								Job ID: 890	-3486-1
Project/Site: Igloo 19 CTB								SDG: Lea	a Co NM
Client Sample ID: S-2 (3-3.5)							Lab San	nple ID: 890-	3486-9
Date Collected: 11/15/22 00:00								Matri	ix: Solid
Date Received: 11/15/22 16:45									
Sample Depth: 3 - 3.5									
_									
Method: MCAWW 300.0 - Anions,						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	9970		100		mg/Kg			11/22/22 02:30	20
Client Sample ID: S-2 (4-4.5)							Lab Sam	ple ID: 890-3	486-10
Date Collected: 11/15/22 00:00								Matri	ix: Solid
Date Received: 11/15/22 16:45									
Sample Depth: 4 - 4.5									
- Mathadi SW946 9024B - Valatila 6		aunda (CC	、						
Method: SW846 8021B - Volatile C Analyte		Qualifier) RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201		0.00201		mg/Kg	<u>-</u>	11/22/22 17:58	11/24/22 20:31	1
Toluene	< 0.00201		0.00201		mg/Kg		11/22/22 17:58	11/24/22 20:31	1
Ethylbenzene	<0.00201		0.00201		mg/Kg		11/22/22 17:58	11/24/22 20:31	1
m-Xylene & p-Xylene	<0.00201		0.00402		mg/Kg		11/22/22 17:58	11/24/22 20:31	' 1
o-Xylene	<0.00402		0.00402		mg/Kg		11/22/22 17:58	11/24/22 20:31	1
Xylenes, Total	<0.00201		0.00402		mg/Kg		11/22/22 17:58	11/24/22 20:31	1
Ayienes, rotar	\$0.00402	0	0.00402		ilig/itg		11/22/22 17:30	11/24/22 20.01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	244	S1+	70 _ 130				11/22/22 17:58	11/24/22 20:31	1
1,4-Difluorobenzene (Surr)	80		70 - 130				11/22/22 17:58	11/24/22 20:31	1
Method: TAL SOP Total BTEX - To			ы	MDI	11		Duomonod	Analyzad	
Analyte Total BTEX	<0.00402	Qualifier		MDL		D	Prepared	Analyzed 11/28/22 15:38	Dil Fac
	<0.00402	0	0.00402		mg/Kg			11/20/22 15:30	I
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/22/22 10:35	1
_									
Method: SW846 8015B NM - Diese									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 15:47	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 15:47	1
C10-C28)		-							
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 15:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane		quuillei	70 - 130				11/18/22 14:32	11/21/22 15:47	1
o-Terphenyl		S1+	70 - 130 70 - 130				11/18/22 14:32	11/21/22 15:47	1
Method: MCAWW 300.0 - Anions,	Ion Chromato	graphy - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8580		49.5		mg/Kg				

RL

0.00202

0.00202

0.00202

0.00403

0.00202

0.00403

Limits

70 - 130

70 - 130

RL

RL

49.9

0.00403

MDL

MDL Unit

MDL Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

D

Prepared

11/22/22 17:58

11/22/22 17:58

11/22/22 17:58

11/22/22 17:58

11/22/22 17:58

11/22/22 17:58

Prepared

11/22/22 17:58

11/22/22 17:58

Prepared

Prepared

Job ID: 890-3486-1 SDG: Lea Co NM

Client Sample ID: S-2 (5-5.5)

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

<0.00202 U

<0.00202 U

<0.00202 U

<0.00403 U

<0.00202 U

<0.00403 U

%Recovery Qualifier

220 S1+

70

<0.00403 U

Result Qualifier

Result Qualifier

<49.9 U

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 5 - 5.5

Project/Site: Igloo 19 CTB

Client: NT Global

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-3486-11 Matrix: Solid

Analyzed

11/24/22 22:18

11/24/22 22:18

11/24/22 22:18

11/24/22 22:18

11/24/22 22:18

11/24/22 22:18

Analyzed

11/24/22 22:18

11/24/22 22:18

Analyzed

11/28/22 15:38

Analyzed

11/22/22 10:35

Lab Sample ID: 890-3486-12

Matrix: Solid

11 12 13

Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 16:28	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 16:28	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				11/18/22 14:32	11/21/22 16:28	1
o-Terphenyl	132	S1+	70 - 130				11/18/22 14:32	11/21/22 16:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8520		50.1		mg/Kg			11/22/22 02:42	10

Client Sample ID: S-3 (0-0.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45 Sample Depth: 0 - 0.5

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 22:44	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 22:44	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/24/22 22:44	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/24/22 22:44	1
o-Xylene	0.00494		0.00199		mg/Kg		11/22/22 17:58	11/24/22 22:44	1
Xylenes, Total	0.00494		0.00398		mg/Kg		11/22/22 17:58	11/24/22 22:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	229	S1+	70 - 130				11/22/22 17:58	11/24/22 22:44	1

Client Sample Results

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-12

Lab Sample ID: 890-3486-13

Matrix: Solid

Client Sample ID: S-3 (0-0.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 0 - 0.5

Project/Site: Igloo 19 CTB

Client: NT Global

Mathadi CW04C 0004D	Valatila Organia Compounda (CC) (Continued)
Method: 50040 8021B	- Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	70		70 - 130				11/22/22 17:58	11/24/22 22:44	1
Method: TAL SOP Total BTE	X - Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00494		0.00398		mg/Kg			11/28/22 15:38	1
- Method: SW846 8015 NM - D	iesel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/22/22 10:35	1
	Diesel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Quaimer	RL	NIDL	Unit	U	Frepareu	Analyzeu	DIFAC
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 16:50	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 16:50	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 16:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				11/18/22 14:32	11/21/22 16:50	1

Method: MCAWW 300.0 - Anions, I	on Chromato	ography - So	luble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5750		49.9		mg/Kg			11/22/22 04:35	10

Client Sample ID: S-3 (1-1.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45 Sample Depth: 1 - 1.5

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/24/22 23:10	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/24/22 23:10	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/24/22 23:10	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/22/22 17:58	11/24/22 23:10	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/24/22 23:10	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/22/22 17:58	11/24/22 23:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	207	S1+	70 - 130				11/22/22 17:58	11/24/22 23:10	1
1,4-Difluorobenzene (Surr)	66	S1-	70 - 130				11/22/22 17:58	11/24/22 23:10	1
- Method: TAL SOP Total BTEX	- Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/28/22 15:38	1
- Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	81.7		50.0		mg/Kg			11/22/22 10:35	1

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-3486-1 SDG: Lea Co NM

Matrix: Solid

Lab Sample ID: 890-3486-13

Client Sample ID: S-3 (1-1.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 1 - 1.5

Project/Site: Igloo 19 CTB

Client: NT Global

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 17:10	1
Diesel Range Organics (Over C10-C28)	81.7		50.0		mg/Kg		11/18/22 14:32	11/21/22 17:10	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				11/18/22 14:32	11/21/22 17:10	1
o-Terphenyl	118		70 - 130				11/18/22 14:32	11/21/22 17:10	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6550	49.8	mg/Kg			11/22/22 04:40	10

Client Sample ID: S-3 (2-2.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sample Depth: 2 - 2.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/22/22 17:58	11/24/22 23:36	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/22/22 17:58	11/24/22 23:36	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/22/22 17:58	11/24/22 23:36	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/22/22 17:58	11/24/22 23:36	1
o-Xylene	0.00502		0.00198		mg/Kg		11/22/22 17:58	11/24/22 23:36	1
Xylenes, Total	0.00502		0.00396		mg/Kg		11/22/22 17:58	11/24/22 23:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	238	S1+	70 - 130				11/22/22 17:58	11/24/22 23:36	1
1,4-Difluorobenzene (Surr)	68	S1-	70 - 130				11/22/22 17:58	11/24/22 23:36	1
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte Total BTEX	Result 0.00502	Qualifier	0.00396	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result 0.00502 el Range Organ	Qualifier	0.00396	MDL		<u>D</u>	Prepared		Dil Fac 1 Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	Result 0.00502 el Range Organ	Qualifier ics (DRO) (Qualifier	0.00396		mg/Kg			11/28/22 15:38	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	el Range Organ Result Solution Solution	Qualifier ics (DRO) (Qualifier U	0.00396 GC) RL 50.0		mg/Kg Unit			11/28/22 15:38 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die	el Range Organ Result el Range Organ Sel Range Organ Sel Range Organ	Qualifier ics (DRO) (Qualifier U	0.00396 GC) RL 50.0	MDL	mg/Kg Unit			11/28/22 15:38 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	el Range Organ Result el Range Organ Sel Range Organ	Qualifier ics (DRO) (Qualifier U enics (DRO) Qualifier	0.00396 GC) RL 50.0 (GC)	MDL	mg/Kg Unit mg/Kg	D	Prepared	Analyzed 11/22/22 10:35	1 Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result 	Qualifier ics (DRO) (Qualifier U mics (DRO) Qualifier U	0.00396 GC) RL 50.0 (GC) RL	MDL	mg/Kg Unit mg/Kg Unit	D	Prepared	Analyzed 11/22/22 10:35 Analyzed	1 Dil Fac

		Clier	nt Sample R	esults	;				
Client: NT Global								Job ID: 890)-3486-1
Project/Site: Igloo 19 CTB								SDG: Lea	a Co NM
Client Sample ID: S-3 (2-2.	5)						Lab Sam	ple ID: 890-3	486-14
Date Collected: 11/15/22 00:00								Matri	ix: Solid
Date Received: 11/15/22 16:45									
Sample Depth: 2 - 2.5									
 Method: MCAWW 300.0 - Anior	ns. Ion Chromato	ography - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8610	F1	49.9		mg/Kg			11/22/22 04:46	10
Client Sample ID: S-3 (3-3.	5)						Lab Sam	ple ID: 890-3	486-15
Date Collected: 11/15/22 00:00								Matri	ix: Solid
Date Received: 11/15/22 16:45									
Sample Depth: 3 - 3.5									
- Mothod: SW946 9024B Volatil	o Organia Comp	oundo (CC	`						
Method: SW846 8021B - Volatil Analyte	-	Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202		0.00202		mg/Kg		11/22/22 17:58	11/25/22 00:02	1
Toluene	<0.00202		0.00202		mg/Kg		11/22/22 17:58	11/25/22 00:02	1
Ethylbenzene	<0.00202		0.00202		mg/Kg		11/22/22 17:58	11/25/22 00:02	1
m-Xylene & p-Xylene	<0.00202		0.00202		mg/Kg		11/22/22 17:58	11/25/22 00:02	· · · · · · · · 1
o-Xylene	<0.00403		0.00202		mg/Kg		11/22/22 17:58	11/25/22 00:02	1
-	<0.00202		0.00202				11/22/22 17:58	11/25/22 00:02	1
Xylenes, Total	<0.00403	0	0.00403		mg/Kg		11/22/22 17.30	11/25/22 00.02	I
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	242	S1+	70 - 130				11/22/22 17:58	11/25/22 00:02	1
1,4-Difluorobenzene (Surr)	75		70 - 130				11/22/22 17:58	11/25/22 00:02	1
− Method: TAL SOP Total BTEX ·	- Total BTEX Cald	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/28/22 15:38	1
 Method: SW846 8015 NM - Dies	ol Pango Organ								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg		··	11/22/22 10:35	1
_									
Method: SW846 8015B NM - Di									
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 17:52	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 17:52	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 17:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				11/18/22 14:32	11/21/22 17:52	1
o-Terphenyl	122		70 - 130				11/18/22 14:32	11/21/22 17:52	1
_ Method: MCAWW 300.0 - Anior	ns. Ion Chromato	ography - S	oluble						
Allo	is, isn shronato	graphy - O							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 890-3486-1 SDG: Lea Co NM

Client Sample ID: S-3 (4-4.5)

Project/Site: Igloo 19 CTB

Client: NT Global

Lab Sample ID: 890-3486-16 Madula

Asthody SW946 9024 B. Valatila	Organia Comp	oundo (CC)							
Method: SW846 8021B - Volatile (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199		0.00199		mg/Kg		11/22/22 17:58	11/25/22 00:29	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/25/22 00:29	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/25/22 00:29	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/25/22 00:29	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/22/22 17:58	11/25/22 00:29	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/22/22 17:58	11/25/22 00:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	224	S1+	70 - 130				11/22/22 17:58	11/25/22 00:29	1
1,4-Difluorobenzene (Surr)	77		70 - 130				11/22/22 17:58	11/25/22 00:29	1
Method: TAL SOP Total BTEX - To	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/28/22 15:38	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/22/22 10:35	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 18:13	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 18:13	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 18:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				11/18/22 14:32	11/21/22 18:13	1
o-Terphenyl	144	S1+	70 - 130				11/18/22 14:32	11/21/22 18:13	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6950		49.7		mg/Kg			11/22/22 05:09	10

Client Sample ID: S-3 (5-5.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45 Sample Depth: 5 - 5.5

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/25/22 00:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/25/22 00:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/25/22 00:56	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/22/22 17:58	11/25/22 00:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/22/22 17:58	11/25/22 00:56	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/22/22 17:58	11/25/22 00:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	233	S1+	70 - 130				11/22/22 17:58	11/25/22 00:56	1

Eurofins Carlsbad

Released to Imaging: 5/16/2023 3:26:07 PM

Client Sample Results

Job ID: 890-3486-1 SDG: Lea Co NM

Matrix: Solid

5

Lab Sample ID: 890-3486-17

Client Sample ID: S-3 (5-5.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Sa

Project/Site: Igloo 19 CTB

Client: NT Global

Chloride Client Sample ID: H-1	7980		50.4		mg/Kg			11/22/22 05:26	10
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Method: MCAWW 300.0 - Anions		• • •			1114	-	Deserved	American	D ii C
o-Terphenyl	154	S1+	70 - 130				11/18/22 14:32	11/21/22 18:33	
1-Chlorooctane	127		70 - 130				11/18/22 14:32	11/21/22 18:33	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 18:33	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/18/22 14:32	11/21/22 18:33	
Gasoline Range Organics (GRO)-C6-C10	~49.9	0	49.9		mg/Kg		11/10/22 14.32	11/21/22 10.33	
Analyte	Result <49.9	Qualifier		MDL		D	Prepared 11/18/22 14:32	Analyzed	Dil Fa
Method: SW846 8015B NM - Dies			• •			-			
Total TPH	<49.9	U	49.9		mg/Kg			11/22/22 10:35	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (G	iC)						
Total BTEX	<0.00400		0.00400		mg/Kg			11/28/22 15:38	
Method: TAL SOP Total BTEX - T Analyte		culation Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	81		70 - 130				11/22/22 17:58	11/25/22 00:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/22/22 17:58	11/25/22 01:22	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/22/22 17:58	11/25/22 01:22	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/22/22 17:58	11/25/22 01:22	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/22/22 17:58	11/25/22 01:22	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/22/22 17:58	11/25/22 01:22	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/22/22 17:58	11/25/22 01:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	216	S1+	70 - 130				11/22/22 17:58	11/25/22 01:22	1
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130				11/22/22 17:58	11/25/22 01:22	1

Method: TAL SOP Total BTEX - To	tal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/28/22 15:38	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		ma/Ka			11/22/22 10:35	1

Eurofins Carlsbad

Released to Imaging: 5/16/2023 3:26:07 PM

Client Sample Results

Job ID: 890-3486-1 SDG: Lea Co NM

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3486-18

Client Sample ID: H-1 Date Collected: 11/15/22 00:00

Project/Site: Igloo 19 CTB

Client: NT Global

Date Received: 11/15/22 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 18:53	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 18:53	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 18:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130				11/18/22 14:32	11/21/22 18:53	1
o-Terphenyl	154	S1+	70 - 130				11/18/22 14:32	11/21/22 18:53	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			4.97		mg/Kg			11/22/22 05:31	

4.97 11/22/22 05:31 Chloride 34.5 mg/Kg Lab Sample ID: 890-3486-19

Client Sample ID: H-2

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0400	U	0.0400		mg/Kg		11/25/22 17:09	11/25/22 22:35	20
Toluene	<0.0400	U	0.0400		mg/Kg		11/25/22 17:09	11/25/22 22:35	20
Ethylbenzene	<0.0400	U	0.0400		mg/Kg		11/25/22 17:09	11/25/22 22:35	20
m-Xylene & p-Xylene	<0.0800	U	0.0800		mg/Kg		11/25/22 17:09	11/25/22 22:35	20
o-Xylene	<0.0400	U	0.0400		mg/Kg		11/25/22 17:09	11/25/22 22:35	20
Xylenes, Total	<0.0800	U	0.0800		mg/Kg		11/25/22 17:09	11/25/22 22:35	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130				11/25/22 17:09	11/25/22 22:35	20
1,4-Difluorobenzene (Surr)	84		70 - 130				11/25/22 17:09	11/25/22 22:35	20

	Method: TAL SOP Total BTEX - Total BTEX Calculation										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Total BTEX	<0.0800	U	0.0800		mg/Kg			11/28/22 15:04	1	
,	_										

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			11/22/22 10:35	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/18/22 14:32	11/21/22 19:14	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/18/22 14:32	11/21/22 19:14	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/18/22 14:32	11/21/22 19:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				11/18/22 14:32	11/21/22 19:14	1
o-Terphenyl	125		70 - 130				11/18/22 14:32	11/21/22 19:14	1

Client: NT Global		Clien	t Sample R	esuits				Job ID: 890)-3486-´
Project/Site: Igloo 19 CTB								SDG: Lea	a Co NN
Client Sample ID: H-2							Lab Sam	ple ID: 890-3	486-1
Date Collected: 11/15/22 00:00								Matri	ix: Solie
Date Received: 11/15/22 16:45									
Method: MCAWW 300.0 - Anions				MDI	11		Drenered	Analyzad	
Analyte Chloride		Qualifier		MDL	Unit ma/Ka	D	Prepared	Analyzed 11/22/22 05:37	Dil Fa
	13.2		5.00		mg/Kg			11/22/22 05.57	
Client Sample ID: H-3							Lab Sam	ple ID: 890-3	486-2
Date Collected: 11/15/22 00:00								Matri	ix: Soli
Date Received: 11/15/22 16:45									
Method: SW846 8021B - Volatile		Qualifier	RL	МП	Unit	D	Bronarod	Applyzod	Dil Fa
Analyte Benzene			0.00198	MDL	mg/Kg		Prepared 11/22/22 17:58	Analyzed 11/25/22 02:16	
Toluene	<0.00198		0.00198		mg/Kg		11/22/22 17:58	11/25/22 02:16	
Ethylbenzene	<0.00198		0.00198		mg/Kg		11/22/22 17:58	11/25/22 02:16	
m-Xylene & p-Xylene	<0.00198		0.00397		mg/Kg		11/22/22 17:58	11/25/22 02:16	
o-Xylene	<0.00397		0.00198		mg/Kg		11/22/22 17:58	11/25/22 02:16	
Xylenes, Total	<0.00190		0.00397		mg/Kg		11/22/22 17:58	11/25/22 02:16	
Aylenes, Total	<0.00337	0	0.00337		ilig/itg		11/22/22 17:50	11/20/22 02.10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	226	S1+	70 - 130				11/22/22 17:58	11/25/22 02:16	
1,4-Difluorobenzene (Surr)	79		70 - 130				11/22/22 17:58	11/25/22 02:16	
Method: TAL SOP Total BTEX - 1						_			
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00397	0	0.00397		mg/Kg			11/28/22 15:38	
	el Range Organ	ics (DRO) (O	SC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			11/22/22 10:35	
Method: SW846 8015B NM - Dies						_	- ·		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 19:34	
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 19:34	
C10-C28)					5 5				
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 14:32	11/21/22 19:34	
0	<i></i>	0	1 : :4-				D escriptions of	A	
Surrogate	% <i>Recovery</i> 108	Qualifier	<u>Limits</u> 70 - 130				Prepared 11/18/22 14:32	Analyzed 11/21/22 19:34	Dil Fa
1-Chlorooctane o-Terphenyl	108		70 - 130 70 - 130				11/18/22 14:32	11/21/22 19:34	
	129		70 - 750				11/10/22 14.32	11/21/22 19.34	
Method: MCAWW 300.0 - Anions	s, Ion Chromato	ography - So	luble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	17.8		4.98		mg/Kg			11/22/22 05:43	
Client Sample ID: H-4							Lah Sam	ple ID: 890-3	186-2
Date Collected: 11/15/22 00:00								•	
Date Collected: 11/15/22 00:00								watri	ix: Soli
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bonzono	<0.00201		0.00201		malka		11/23/22 14-51	11/2//22 10:11	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/23/22 14:51	11/24/22 10:11	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/23/22 14:51	11/24/22 10:11	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/23/22 14:51	11/24/22 10:11	1

Client Sample Results

Page 63 of 174

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-21

Client Sample ID: H-4 Date Collected: 11/15/22 00:00

Project/Site: Igloo 19 CTB

Client: NT Global

Date Received: 11/15/22 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
n-Xylene & p-Xylene	<0.00402	U F1	0.00402		mg/Kg		11/23/22 14:51	11/24/22 10:11	
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/23/22 14:51	11/24/22 10:11	
Kylenes, Total	<0.00402	U	0.00402		mg/Kg		11/23/22 14:51	11/24/22 10:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				11/23/22 14:51	11/24/22 10:11	
1,4-Difluorobenzene (Surr)	96		70 - 130				11/23/22 14:51	11/24/22 10:11	
Method: TAL SOP Total BTEX -	Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/28/22 16:23	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			11/22/22 10:43	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sasoline Range Organics	<49.9	U	49.9		mg/Kg		11/18/22 13:39	11/22/22 03:02	
GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/18/22 13:39	11/22/22 03:02	
C10-C28) DII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/18/22 13:39	11/22/22 03:02	
					0 0				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	118		70 - 130				11/18/22 13:39	11/22/22 03:02	
p-Terphenyl	102		70 - 130				11/18/22 13:39	11/22/22 03:02	
Method: MCAWW 300.0 - Anions						_	- ·		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloride	14.4		4.97		mg/Kg			11/22/22 05:48	
lient Sample ID: H-5							Lab Sam	ple ID: 890-3	
ate Collected: 11/15/22 00:00 ate Received: 11/15/22 16:45								Matri	ix: Soli
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		11/23/22 14:51	11/24/22 10:31	
Toluene	<0.00201	U	0.00201		mg/Kg		11/23/22 14:51	11/24/22 10:31	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/23/22 14:51	11/24/22 10:31	
n-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/23/22 14:51	11/24/22 10:31	
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/23/22 14:51	11/24/22 10:31	
Kylenes, Total	<0.00402	U	0.00402		mg/Kg		11/23/22 14:51	11/24/22 10:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		70 - 130				11/23/22 14:51	11/24/22 10:31	
1,4-Difluorobenzene (Surr)	108		70 - 130				11/23/22 14:51	11/24/22 10:31	

Welliou. TAL SOP TOtal DIEA - TOt	al DIEA Cal	Julation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/28/22 16:23	1

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-3486-1 SDG: Lea Co NM

Client Sample ID: H-5

Project/Site: Igloo 19 CTB

Client: NT Global

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			11/22/22 10:43	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/18/22 13:39	11/22/22 03:23	
(GRO)-C6-C10					0 0				
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/18/22 13:39	11/22/22 03:23	
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 13:39	11/22/22 03:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	89		70 - 130				11/18/22 13:39	11/22/22 03:23	
o-Terphenyl	85		70 - 130				11/18/22 13:39	11/22/22 03:23	
Method: MCAWW 300.0 - Anions,	Ion Chromato	oraphy - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	17.5		4.95		mg/Kg			11/22/22 05:54	
					5.5				
lient Sample ID: H-6							Lab Sam	ple ID: 890-3	486-2
ate Collected: 11/15/22 00:00								Matri	x: Soli
ate Received: 11/15/22 16:45									
Method: SW846 8021B - Volatile (Analyte		ounds (GC Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199	MDL			11/23/22 14:51	11/24/22 10:52	-
					mg/Kg				
	< 0.00199		0.00199		mg/Kg		11/23/22 14:51	11/24/22 10:52	
Ethylbenzene		U	0.00199		mg/Kg		11/23/22 14:51	11/24/22 10:52	
m-Xylene & p-Xylene		U	0.00398		mg/Kg		11/23/22 14:51	11/24/22 10:52	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/23/22 14:51	11/24/22 10:52	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/23/22 14:51	11/24/22 10:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	109		70 - 130				11/23/22 14:51	11/24/22 10:52	
1,4-Difluorobenzene (Surr)	110		70 - 130				11/23/22 14:51	11/24/22 10:52	
Method: TAL SOP Total BTEX - To	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/28/22 16:23	
Method: SW846 8015 NM - Diesel									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			11/22/22 10:43	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/18/22 13:39	11/22/22 03:45	
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		11/18/22 13:39	11/22/22 03:45	
C10-C28) Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/18/22 13:39	11/22/22 03:45	
` , ' ,									
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa

Lab Sample ID: 890-3486-22 Matrix: Solid

5

Client Sample Results

Job ID: 890-3486-1 SDG: Lea Co NM

Client Sample ID: H-6

Project/Site: Igloo 19 CTB

Client: NT Global

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Lab Sample ID: 890-3486-23 Matrix: Solid

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 103 70 - 130 11/18/22 13:39 11/22/22 03:45 o-Terphenyl 1 Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac mg/Kg Chloride 17.7 5.01 11/22/22 05:59 1

DFBZ1

(70-130)

70

85

74

67 S1-

76

BFB1

(70-130)

182 S1+

215 S1+

199 S1+

212 S1+

203 S1+

Client: NT Global Project/Site: Igloo 19 CTB

Lab Sample ID 890-3486-1

890-3486-1 MS

890-3486-2

890-3486-3

890-3486-1 MSD

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Client Sample ID

S-1 (0-0.5)

S-1 (0-0.5)

S-1 (0-0.5)

S-1 (1-1.5)

S-1 (2-2.5)

Lab Control Sample Dup

Lab Control Sample Dup

Lab Control Sample Dup

Method Blank

Method Blank

Method Blank

Method Blank

Method Blank

	(-)			
890-3486-4	S-1 (3-3.5)	217 S1+	71	
890-3486-5	S-1 (4-4.5)	205 S1+	70	
890-3486-6	S-2 (0-0.5)	230 S1+	73	
890-3486-7	S-2 (1-1.5)	235 S1+	73	
890-3486-8	S-2 (2-2.5)	212 S1+	83	
890-3486-9	S-2 (3-3.5)	245 S1+	80	
890-3486-10	S-2 (4-4.5)	244 S1+	80	
890-3486-11	S-2 (5-5.5)	220 S1+	70	
890-3486-12	S-3 (0-0.5)	229 S1+	70	
890-3486-13	S-3 (1-1.5)	207 S1+	66 S1-	
890-3486-14	S-3 (2-2.5)	238 S1+	68 S1-	
890-3486-15	S-3 (3-3.5)	242 S1+	75	
890-3486-16	S-3 (4-4.5)	224 S1+	77	
890-3486-17	S-3 (5-5.5)	233 S1+	81	
890-3486-18	H-1	216 S1+	67 S1-	
890-3486-19	H-2	127	84	
890-3486-20	H-3	226 S1+	79	
890-3486-21	H-4	84	96	
890-3486-21 MS	H-4	95	114	
890-3486-21 MSD	H-4	94	115	
890-3486-22	H-5	97	108	
890-3486-23	H-6	109	110	
890-3507-A-1-G MS	Matrix Spike	80	108	
890-3507-A-1-H MSD	Matrix Spike Duplicate	84	104	
LCS 880-40255/1-A	Lab Control Sample	180 S1+	72	
LCS 880-40340/1-A	Lab Control Sample	90	115	
LCS 880-40356/1-A	Lab Control Sample	78	107	

200 S1+

97

77

114

131 S1+

79

80

74

92

117

109

74

73

93

105

113

Surrogate Legend

LCSD 880-40255/2-A

LCSD 880-40340/2-A

LCSD 880-40356/2-A

MB 880-40225/5-A

MB 880-40255/5-A

MB 880-40316/5-A

MB 880-40340/5-A

MB 880-40356/5-A

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Job ID: 890-3486-1 SDG: Lea Co NM

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

Job ID: 890-3486-1 SDG: Lea Co NM

Prep Type: Total/NA

Project/Site: Igloo 19 CTB Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Client: NT Global

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
ab Sample ID.	Client Sample ID	(70-130)	(70-130)		
890-3472-A-1-C MS	Matrix Spike	94	83		
390-3472-A-1-D MSD	Matrix Spike Duplicate	112	84		
890-3486-1	S-1 (0-0.5)	99	116		
890-3486-1 MS	S-1 (0-0.5)	106	107		
390-3486-1 MSD	S-1 (0-0.5)	98	102		
390-3486-2	S-1 (1-1.5)	111	134 S1+		
390-3486-3	S-1 (2-2.5)	121	150 S1+		
390-3486-4	S-1 (3-3.5)	112	133 S1+		
390-3486-5	S-1 (4-4.5)	120	151 S1+		
890-3486-6	S-2 (0-0.5)	101	116		
390-3486-7	S-2 (1-1.5)	117	146 S1+		
390-3486-8	S-2 (2-2.5)	125	152 S1+		
390-3486-9	S-2 (3-3.5)	121	153 S1+		
390-3486-10	S-2 (4-4.5)	110	133 S1+		
390-3486-11	S-2 (5-5.5)	108	132 S1+		
390-3486-12	S-3 (0-0.5)	102	121		
390-3486-13	S-3 (1-1.5)	100	118		
390-3486-14	S-3 (2-2.5)	126	156 S1+		
390-3486-15	S-3 (3-3.5)	100	122		
90-3486-16	S-3 (4-4.5)	113	144 S1+		
90-3486-17	S-3 (5-5.5)	127	154 S1+		
90-3486-18	H-1	121	154 S1+		
390-3486-19	H-2	106	125		
390-3486-20	H-3	108	129		
90-3486-21	H-4	118	102		
390-3486-22	H-5	89	85		
390-3486-23	H-6	112	103		
_CS 880-39929/2-A	Lab Control Sample	119	108		
_CS 880-39931/2-A	Lab Control Sample	108	118		
CSD 880-39929/3-A	Lab Control Sample Dup	109	99		
_CSD 880-39931/3-A	Lab Control Sample Dup	100	113		
MB 880-39929/1-A	Method Blank	133 S1+	140 S1+		
MB 880-39931/1-A	Method Blank	135 S1+	162 S1+		
Surrogate Legend					

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8021B - Volatile Organic Compounds (GC)

Resu <0.0020 <0.0020 <0.0040 <0.0040 <0.0040 %Recover 11 7 %	0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	RL 0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 Limits 70 - 130 70 - 130 70 - 130 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	Prepared 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 Client Sa 22/22 17:58 22/22 17:58 22/22 17:58 22/22 17:58	Prep Type: Prep Batc 11/24/22 02:38 11/24/22 16:08 11/24/22 16:08	bi: 4022 Dil Fa Dil Fa Od Blan Total/N
Resul <0.0020 <0.0020 <0.0040 <0.0040 <0.0040 <i>%Recover</i> 11 7 <i>%Recover</i> 11 7 <i>%Recover</i> 11 7 <i>%Recover</i> 11 7 <i>%Recover</i> 0.0040 <0.0020 <0.0040 <0.0020	Qualifier U	0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	Analyzed 11/24/22 02:38 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	Dil Fa Dil Fa Od Blan Total/N. ch: 4025 Dil Fa
Resul <0.0020 <0.0020 <0.0040 <0.0040 <0.0040 <i>%Recover</i> 11 7 <i>%Recover</i> 11 7 <i>%Recover</i> 11 7 <i>%Recover</i> 11 7 <i>%Recover</i> 0.0040 <0.0020 <0.0040 <0.0020	Qualifier U	0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 11/24/22 02:38	Dil Fa od Blan Total/N. :h: 4025 Dil Fa
<0.0020 <0.0020 <0.0020 <0.0040 <0.0040 <0.0040 %Recover 11 7 %Recover 11 7 %Recover 0.0040 <0.0020 <0.0020 <0.0040 <0.0020	0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 1 Qualifier 1 Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 11/24/22 02:38	Dil Fa od Blan Total/N. :h: 4025 Dil Fa
<0.0020 <0.0020 <0.0040 <0.0020 <0.0040 <i>%Recover</i> 11 7 <i>%Recover</i> 11 7 <i>%Recover</i> 0.0020 <0.0020 <0.0020 <0.0020 <0.0020	0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	<u>Dil Fa</u> od Blan Total/N. :h: 4025 Dil Fa
<0.0020 <0.0040 <0.0020 <0.0040 <i>%Recover</i> 11 7 <i>%Recover</i> 11 7 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 01 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recover</i> 00 <i>%Recove</i>	0 U 0 U 0 U 0 U 0 U 0 U 0 U 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 11/24/22 10:08 11/24/22 10:08 11/24/22 10:08 11/24/22 10:08	<i>Dil Fa</i> od Blan Total/N ch: 4025 Dil Fa
<0.0040 <0.0020 <0.0040 <i>M</i> %Recover 11 7 7 <i>M</i> Resu <0.0020 <0.0020 <0.0020 <0.0020	0 U 0 U 0 U 8 MB 9 Qualifier 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 11/24/22 02:38 11/24/22 02:38 11/24/22 02:38 11/24/22 02:38 11/24/22 02:38 11/24/22 02:38 mple ID: Methy Prep Type: Prep Batc Analyzed 11/24/22 16:08 11/24/22 16:08	Dil Fa od Blan Total/N h: 4025 Dil Fa
<0.0020 <0.0040 <i>M</i> % <i>Recover</i> 11 7 7 <i>M</i> <i>Resu</i> <0.0020 <0.0020 <0.0020 <0.0040 <0.0020	0 U 0 U B MB y Qualifier 4 B MB It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U	0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 11/2 P 11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/	22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 22/22 15:04 Client Sa 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 11/24/22 02:38 <i>Analyzed</i> 11/24/22 02:38 11/24/22 02:38 mple ID: Methe Prep Type: Prep Batc Analyzed 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	Dil Fa od Blan Total/N h: 4025 Dil Fa
<0.0040 <i>M</i> %Recover 11 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 U B MB y Qualifier 4 B MB L Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 P 11/2 11/2 11/2 P 11/2 11/2 11/2 11/2	22/22 15:04 Prepared 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 Analyzed 11/24/22 02:38 11/24/22 02:38 Inple ID: Metho Prep Type: Prep Batc Analyzed 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	od Blan Total/N :h: 4025
M %Recover 11 7 % % % % % % % % % % % % % % % % %	B MB y Qualifier 4 B MB It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U	Limits 70 - 130 70 - 130 70 - 130 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	P 11/2 11/2 11/2 11/2 11/2 11/2	Prepared 22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	Analyzed 11/24/22 02:38 11/24/22 02:38 ample ID: Methy Prep Type: Prep Bato Analyzed 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	od Blan Total/N :h: 4025
%Recover 11 7 % % % % % % % % % % % % % % % % %	y Qualifier 4 MB It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 11/2 11/2 P 11/2 11/2 11/2	22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 11/24/22 02:38 Imple ID: Methy Prep Type: Prep Bato 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	od Blan Total/N :h: 4025
11 7 M Resu <0.0020 <0.0020 <0.0040 <0.0040 <0.0020	A 4	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 11/2 11/2 P 11/2 11/2 11/2	22/22 15:04 22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 11/24/22 02:38 Imple ID: Methy Prep Type: Prep Bato 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	od Blan Total/N :h: 4025
M Resu <0.0020 <0.0020 <0.0020 <0.0040 <0.0020	 4 B MB It Qualifier 0 0	70 - 130 RL 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	P 11/2 11/2 11/2 11/2 11/2	22/22 15:04 Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 02:38 mple ID: Methy Prep Type: Prep Bato Analyzed 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	Total/N h: 4025
M Resu <0.0020 <0.0020 <0.0020 <0.0040 <0.0020	B MB Qualifier U 0 U 0 U 0 U 0 U 0 U 0 U	RL 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	P 11/2 11/2 11/2 11/2	Client Sa Prepared 22/22 17:58 22/22 17:58 22/22 17:58	Ample ID: Methy Prep Type: Prep Bato 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	Total/N h: 4025 Dil Fa
Resu <0.0020 <0.0020 <0.0020 <0.0040 <0.0020	ItQualifier0U0U0U0U0U0U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	P 11/2 11/2 11/2 11/2	Prepared 22/22 17:58 22/22 17:58 22/22 17:58	Prep Type: Prep Batc 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	Total/N h: 4025
Resu <0.0020 <0.0020 <0.0020 <0.0040 <0.0020	ItQualifier0U0U0U0U0U0U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	D	P 11/2 11/2 11/2 11/2	Prepared 22/22 17:58 22/22 17:58 22/22 17:58	Prep Type: Prep Batc 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	Total/N h: 4025
Resu <0.0020 <0.0020 <0.0020 <0.0040 <0.0020	ItQualifier0U0U0U0U0U0U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	11/2 11/2 11/2 11/2	22/22 17:58 22/22 17:58 22/22 17:58	Prep Bato Analyzed 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	:h: 4025
Resu <0.0020 <0.0020 <0.0020 <0.0040 <0.0020	ItQualifier0U0U0U0U0U0U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 11/2 11/2 11/2	22/22 17:58 22/22 17:58 22/22 17:58	Analyzed 11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	
<0.0020 <0.0020 <0.0020 <0.0040 <0.0020	0 U 0 U 0 U 0 U 0 U 0 U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	11/2 11/2 11/2 11/2	22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	Dil Fa
<0.0020 <0.0020 <0.0020 <0.0040 <0.0020	0 U 0 U 0 U 0 U 0 U 0 U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200			mg/Kg mg/Kg mg/Kg mg/Kg		11/2 11/2 11/2 11/2	22/22 17:58 22/22 17:58 22/22 17:58	11/24/22 16:08 11/24/22 16:08 11/24/22 16:08	
<0.0020 <0.0040 <0.0020	0 U 0 U 0 U	0.00200 0.00400 0.00200			mg/Kg mg/Kg mg/Kg		11/2 11/2	2/22 17:58	11/24/22 16:08	
<0.0020 <0.0040 <0.0020	0 U 0 U 0 U	0.00200 0.00400 0.00200			mg/Kg mg/Kg		11/2 11/2	2/22 17:58	11/24/22 16:08	
<0.0040 <0.0020	0 U 0 U	0.00400 0.00200			mg/Kg		11/2			
<0.0020	0 U	0.00200								
							11/2	2/22 17:58	11/24/22 16:08	
-0.0010					mg/Kg			2/22 17:58	11/24/22 16:08	
	0 0				ing/itg		1.72	<i>L/LL</i> 11.00	11/2 1/22 10:00	
М	B MB									
%Recover	<u> </u>	Limits					P	Prepared	Analyzed	Dil Fa
13	1 S1+	70 - 130					11/2	22/22 17:58	11/24/22 16:08	
7	3	70 - 130					11/2	22/22 17:58	11/24/22 16:08	
						c	Client	t Sample I	ID: Lab Contro	l Sampl
									Prep Type:	
									Prep Bato	
		Spike	LCS	LCS					%Rec	
		Added	Result	Qual	lifier Unit		D	%Rec	Limits	
		0.100	0.09458		mg/K	g		95	70 - 130	
		0.100	0.1027		mg/K			103	70 - 130	
		0.100	0.09064		mg/K	-		91	70 - 130	
					-	-				
		0.100	0.00010		iiig/ii	9		50	10-100	
LCS LC	s									
		Limits								
180 S1	+	70 - 130								
72		70 - 130								
						Clien	t Sam	nple ID: La	ab Control San	nple Du
		Spike	LCSD	LCS	D				%Rec	RP
		Added	Result	Qual	lifier Unit		D	%Rec	Limits RP	D Lim
;-	overy 180 S1	LCS LCS overy Qualifier 180 S1+ 72	0.200 0.100 LCS LCS 20very Qualifier Limits 180 S1+ 70 - 130 72 70 - 130 Spike Added	0.200 0.2000 0.100 0.09615 LCS LCS rovery Qualifier Limits 180 S1+ 70 - 130 72 70 - 130 Spike LCSD Added Result	0.200 0.2000 0.100 0.09615 LCS LCS rovery Qualifier Limits 180 S1+ 70 - 130 72 70 - 130 Spike LCSD LCS Added Result Qua	0.200 0.2000 mg/K 0.100 0.09615 mg/K LCS LCS 20very Qualifier Limits 180 S1+ 70 - 130 72 70 - 130 Spike LCSD LCSD Added Result Qualifier Unit	0.200 0.2000 mg/Kg 0.100 0.09615 mg/Kg LCS LCS LCS Clien 180 S1+ 70 - 130 Clien 72 70 - 130 Clien Spike LCSD Added Result Qualifier Unit	0.200 0.2000 mg/Kg 0.100 0.09615 mg/Kg LCS LCS povery Qualifier Limits 180 S1+ 70 - 130 72 70 - 130 Client San Spike LCSD LCSD Added Result Qualifier Unit D	0.200 0.2000 mg/Kg 100 0.100 0.09615 mg/Kg 96 LCS LCS 180 S1+ 70 - 130 72 70 - 130 Client Sample ID: La Spike LCSD LCS Added Result Qualifier Unit D %Rec	0.200 0.2000 mg/Kg 100 70 - 130 0.100 0.09615 mg/Kg 96 70 - 130 LCS LCS 180 S1+ 70 - 130 72 70 - 130 Client Sample ID: Lab Control Sam Prep Type: Prep Type: Prep Bate %Rec Added Result Qualifier Unit D %Rec

 Page 68 of 174

 Job ID: 890-3486-1

 SDG: Lea Co NM

5

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-40 Matrix: Solid)255/2-A					Cli	ent S	Samp	le ID: L	ab Contro Prep T	l Sampl ype: To	
Analysis Batch: 40264											Batch:	
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added		Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.1208	quamor	mg/Kg			121 -	70 - 130	16	3
			0.100	0.1200					110	70 - 130 70 - 130	19	3
Ethylbenzene						mg/Kg						
m-Xylene & p-Xylene			0.200	0.2411		mg/Kg			121	70 - 130	19	3
o-Xylene			0.100	0.1159		mg/Kg			116	70 - 130	19	3
	LCSD	LCSD										
Surrogate	%Recovery		Limits									
4-Bromofluorobenzene (Surr)		<u>S1+</u>	70 - 130									
1,4-Difluorobenzene (Surr)	92	07.	70 <u>-</u> 130									
	52		10 - 100									
Lab Sample ID: 890-3486-1 N	AS								Clier	nt Sample	ID: S-1	0-0.5
Matrix: Solid									•		ype: To	-
Analysis Batch: 40264											Batch:	
Analysis Daten. 40204	Sample	Sample	Spike	MS	MS					%Rec	Daten.	4023
Analyte		Qualifier	Added		Qualifier	Unit		D	%Rec	Limits		
Benzene	<0.00201		0.101		Quaimer			<u> </u>		70 - 130		
				0.1282		mg/Kg			127			
Toluene	<0.00201		0.101	0.1206		mg/Kg			120	70 - 130		
Ethylbenzene	<0.00201		0.101	0.1019		mg/Kg			101	70 - 130		
m-Xylene & p-Xylene	<0.00402	U F1 F2	0.202	0.02416	F1	mg/Kg			11	70 - 130		
o-Xylene	<0.00201	U	0.101	0.1126		mg/Kg			112	70 - 130		
	MS	MS										
Surrogata	MS % Pocovory	MS Qualifier	Limite									
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	%Recovery 215		70 - 130									
	%Recovery	Qualifier										
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	%Recovery 215 85	Qualifier	70 - 130						Clier	nt Sample	ID: S-1 ((0-0 4
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N	%Recovery 215 85	Qualifier	70 - 130						Clier	nt Sample Pren T		
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid	%Recovery 215 85	Qualifier	70 - 130						Clier	Prep T	ype: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N	%Recovery 215 85	Qualifier S1+	70 - 130 70 - 130	Men	MSD				Clier	Prep T Prep		tal/N 4025
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264	// <i>%Recovery</i> 215 85 ASD Sample	Qualifier S1+ Sample	70 - 130 70 - 130 Spike		MSD	Unit				Prep T Prep %Rec	ype: To Batch:	tal/N 4025 RP
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte	//Recovery 215 85 /ISD Sample Result	Qualifier S1+ Sample Qualifier	70 - 130 70 - 130 Spike Added	Result	MSD Qualifier	Unit		D	%Rec	Prep T Prep %Rec Limits	ype: To Batch: 	tal/N 4025 RP Lim
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte Benzene	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U	70 - 130 70 - 130 Spike Added 0.0996	Result 0.1088		mg/Kg		D	%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 16	tal/N 4025 RP Lim
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996	Result 0.1088 0.1101		mg/Kg mg/Kg		<u>D</u>	%Rec 109 110	Prep T Prep %Rec Limits 70 - 130 70 - 130	ype: To Batch: RPD 16 9	tal/N 4025 RP Lim
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 0.0996	Result 0.1088 0.1101 0.09840	Qualifier	mg/Kg		<u>D</u>	%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 16	tal/N 4025 RP Lim
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996	Result 0.1088 0.1101	Qualifier	mg/Kg mg/Kg		<u>D</u>	%Rec 109 110	Prep T Prep %Rec Limits 70 - 130 70 - 130	ype: To Batch: RPD 16 9	tal/N 4025 RP Lim 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U U U F1 F2	70 - 130 70 - 130 Spike Added 0.0996 0.0996	Result 0.1088 0.1101 0.09840	Qualifier	mg/Kg mg/Kg mg/Kg		<u>D</u>	%Rec 109 110 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ype: To Batch: RPD 16 9 3	tal/N/ 4025 RPI Lim 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U U U F1 F2 U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996 0.199	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u>	%Rec 109 110 99 100	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: <u>RPD</u> 16 9 3 157	tal/N/ 4025 RPI Lim 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U U F1 F2 U MSD	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996 0.199 0.0996	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u>	%Rec 109 110 99 100	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: <u>RPD</u> 16 9 3 157	tal/N/
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	%Recovery 215 85 MSD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U F1 F2 U MSD Qualifier	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996 0.199 0.0996 Limits	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		D	%Rec 109 110 99 100	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: <u>RPD</u> 16 9 3 157	tal/N/ 4025 RPI Lim 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U U F1 F2 U MSD	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		D	%Rec 109 110 99 100	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: <u>RPD</u> 16 9 3 157	tal/N/ 4025 RPI Lim 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 215 85 MSD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U F1 F2 U MSD Qualifier	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996 0.199 0.0996 Limits	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		D	%Rec 109 110 99 100	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: <u>RPD</u> 16 9 3 157	tal/N 4025 RP Lim 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U F1 F2 U MSD Qualifier	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg			%Rec 109 110 99 100 101	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Pype: To Batch: RPD 16 9 3 157 11	tal/N. 4025 RP Lim 3 3 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4031	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U F1 F2 U MSD Qualifier	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg			%Rec 109 110 99 100 101	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: RPD 16 9 3 157 11 157 11	tal/N. 4025 RP Lim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4031 Matrix: Solid	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U F1 F2 U MSD Qualifier	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg			%Rec 109 110 99 100 101	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: RPD 16 9 3 157 11 Method ype: To	tal/N 4025 RP Lim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4031 Matrix: Solid	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U U U U U U U U U U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg			%Rec 109 110 99 100 101	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: RPD 16 9 3 157 11 157 11	tal/N 4025 RP Lim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U F1 F2 U MSD Qualifier	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	Result 0.1088 0.1101 0.09840 0.2007	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg			%Rec 109 110 99 100 101	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: RPD 16 9 3 157 11 Method ype: To	tal/N. 4025 RP 1im 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 N Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4031 Matrix: Solid	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U U U U U U U U U U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130	Result 0.1088 0.1101 0.09840 0.2007 0.1010	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		C	%Rec 109 110 99 100 101	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch: <u>RPD</u> 16 9 3 157 11 Method ype: To Batch:	tal/N. 4025 RP 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4031 Matrix: Solid Analysis Batch: 40265	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U U U U U U U U U U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 <i>Limits</i> 70 - 130 70 - 130	Result 0.1088 0.1101 0.09840 0.2007 0.1010	Qualifier F2	mg/Kg mg/Kg mg/Kg mg/Kg		C	%Rec 109 110 99 100 101	Prep T %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep T Prep T Prep	ype: To Batch: <u>RPD</u> 16 9 3 157 11 Method ype: To Batch: ed	tal/N. 4025 RP Lim 3 3 3 3 3 3 3 8 Blan tal/N.
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-3486-1 M Matrix: Solid Analysis Batch: 40264 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-4031 Matrix: Solid Analysis Batch: 40265 Analyte	%Recovery 215 85 ASD Sample Result <0.00201	Qualifier S1+ Sample Qualifier U U U U U U U U U U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 0.1088 0.1101 0.09840 0.2007 0.1010	Qualifier F2	mg/Kg mg/Kg mg/Kg mg/Kg		C Pre 11/23/3	%Rec 109 110 99 100 101	Prep T Prep %Rec Limits 70 - 130 70 - 130	Ype: To Batch: RPD 16 9 3 157 11 Method Ype: To Batch: ed 23:16	tal/N. 4025 RP Lim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Eurofins Carlsbad

11/23/22 23:16

11/23/22 12:33

m-Xylene & p-Xylene

0.00400

mg/Kg

<0.00400 U

oject/Site: Igloo 19 CTB

Lab Sample ID: MB 880-40316	/ 5-A								Client Sa	ample ID: Meth	od Blan
Matrix: Solid										Prep Type	
Analysis Batch: 40265										Prep Bat	
Analysis Baton: 40200	м	3 MB								Trop Due	
Analyte	Resul		RL		MDL	Unit	D	Р	repared	Analyzed	Dil Fa
o-Xylene	<0.0020		0.00200			mg/Kg			3/22 12:33	11/23/22 23:16	
Xylenes, Total	<0.0040		0.00400			mg/Kg			3/22 12:33	11/23/22 23:16	
	0.0010		0.00100			iiig/itg		11/2	.0/22 12.00	11/20/22 20:10	
	M	B <i>MB</i>									
Surrogate	%Recover	y Qualifier	Limits					Р	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	7	9	70 - 130					11/2	23/22 12:33	11/23/22 23:16	
1,4-Difluorobenzene (Surr)	9	3	70 - 130					11/2	23/22 12:33	11/23/22 23:16	
Lab Sample ID: MB 880-40340	/5-A								Client Sa	ample ID: Meth	
Matrix: Solid										Prep Type	
Analysis Batch: 40265										Prep Bat	ch: 4034
		3 MB					_	_			
Analyte		t Qualifier			MDL		D		repared	Analyzed	Dil Fa
Benzene	<0.0020		0.00200			mg/Kg			3/22 14:51	11/24/22 09:49	
Toluene	<0.0020		0.00200			mg/Kg			23/22 14:51	11/24/22 09:49	
Ethylbenzene	<0.0020		0.00200			mg/Kg			23/22 14:51	11/24/22 09:49	
m-Xylene & p-Xylene	<0.0040		0.00400		I	mg/Kg		11/2	23/22 14:51	11/24/22 09:49	
o-Xylene	<0.0020	0 U	0.00200		I	mg/Kg		11/2	3/22 14:51	11/24/22 09:49	
Xylenes, Total	<0.0040	0 U	0.00400		I	mg/Kg		11/2	3/22 14:51	11/24/22 09:49	
	М	3 <i>MB</i>									
Surrogate	%Recover	y Qualifier	Limits					Р	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	8	0	70 - 130					11/2	23/22 14:51	11/24/22 09:49	
1,4-Difluorobenzene (Surr)	10	5	70 - 130					11/2	23/22 14:51	11/24/22 09:49	
-											
Lab Sample ID: LCS 880-40340	0/1 -A						C	Client	t Sample	ID: Lab Contro	ol Sample
Matrix: Solid										Prep Type	: Total/N/
Analysis Batch: 40265										Prep Bat	ch: 4034
			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Quali	fier Unit		_ <u>D</u>	%Rec	Limits	
Benzene			0.100	0.1099		mg/K	9		110	70 - 130	
Toluene			0.100	0.09245		mg/K	9		92	70 - 130	
Ethylbenzene			0.100	0.08415		mg/K	9		84	70 - 130	
m-Xylene & p-Xylene			0.200	0.1680		mg/K	9		84	70 - 130	
o-Xylene			0.100	0.08555		mg/K	9		86	70 - 130	
	LCS LC	·c									
Surrogate		alifier	Limits								
4-Bromofluorobenzene (Surr)	<u>90</u>		70 - 130								
1,4-Difluorobenzene (Surr)	30 115		70 - 130 70 - 130								
	110		10-100								
Lab Sample ID: LCSD 880-403	40/2-A					(Client	t Sam	nple ID: L	ab Control Sa	mple Du
Matrix: Solid									· · · ·	Prep Type	
Analysis Batch: 40265										Prep Bat	
-			Spike	LCSD	LCSD	1				%Rec	RPI
Analyte			Added	Result	Qualit	fier Unit		D	%Rec	Limits R	PD Lim
			0.100	0.1085		mg/K	3		109	70 - 130	1 3
Benzene							-		~~	70 120	1 3
Benzene Toluene			0.100	0.09171		mg/K	g		92	70 - 130	1 3
			0.100 0.100	0.09171 0.08790		mg/Kg mg/Kg	-		92 88	70 - 130 70 - 130	4 3
Toluene							- 9				

Eurofins Carlsbad

Page 70 of 174

Client: NT Global Project/Site: Igloo 19 CTB

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	117		70 - 130

Lab Sample ID: 890-3486-21 MS

Matrix: Solid

Analysis	Batch: 40265
----------	--------------

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.101	0.1037		mg/Kg		103	70 - 130	
Toluene	<0.00201	U	0.101	0.08446		mg/Kg		83	70 - 130	
Ethylbenzene	<0.00201	U	0.101	0.07870		mg/Kg		78	70 - 130	
m-Xylene & p-Xylene	<0.00402	U F1	0.202	0.1560		mg/Kg		77	70 - 130	
o-Xylene	<0.00201	U	0.101	0.07896		mg/Kg		78	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	l imits							

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: 890-3486-21 MSD	
Matrix: Solid	
Analysis Batch: 40265	

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.0994	0.09297		mg/Kg		94	70 - 130	11	35
Toluene	<0.00201	U	0.0994	0.07654		mg/Kg		76	70 - 130	10	35
Ethylbenzene	<0.00201	U	0.0994	0.06992		mg/Kg		70	70 - 130	12	35
m-Xylene & p-Xylene	<0.00402	U F1	0.199	0.1377	F1	mg/Kg		69	70 - 130	12	35
o-Xylene	<0.00201	U	0.0994	0.07025		mg/Kg		70	70 - 130	12	35
	MSD	MSD									

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130
1,4-Difluorobenzene (Surr)	115		70 - 130

Lab Sample ID: MB 880-40356/5-A Matrix: Solid

Analysis Batch: 40358

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/25/22 17:09	11/25/22 21:25	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/25/22 17:09	11/25/22 21:25	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/25/22 17:09	11/25/22 21:25	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/25/22 17:09	11/25/22 21:25	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/25/22 17:09	11/25/22 21:25	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/25/22 17:09	11/25/22 21:25	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130				11/25/22 17:09	11/25/22 21:25	1
1,4-Difluorobenzene (Surr)	113		70 _ 130				11/25/22 17:09	11/25/22 21:25	1

Client Sample ID: H-4

Prep Type: Total/NA Prep Batch: 40340

7

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 40356

Lab Sample ID: LCS 880-40356/1-A

QC Sample Results

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Project/Site: Igloo 19 CTB

Analysis Batch: 40358

Method: 8021B - Volatile Organic Compounds (GC) (C

C) (Co	ntinued)						
				Client	Sample	e ID: Lab Control Sample Prep Type: Total/NA	
0	1.00					Prep Batch: 40356	5
Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.100	0.09317		mg/Kg		93	70 - 130	
0.100	0.09649		mg/Kg		96	70 - 130	_
0.100	0.09226		mg/Kg		92	70 - 130	7
0.200	0.1655		mg/Kg		83	70 - 130	
0.100	0.08055		mg/Kg		81	70 - 130	8

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	78		70 - 130
1,4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: LCSD 880-40356/2-A Matrix: Solid Analysis Batch: 40358

Analysis Batch: 40358							Prep Batch: 40356		
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09380		mg/Kg		94	70 - 130	1	35
Toluene	0.100	0.09688		mg/Kg		97	70 - 130	0	35
Ethylbenzene	0.100	0.09212		mg/Kg		92	70 - 130	0	35
m-Xylene & p-Xylene	0.200	0.1646		mg/Kg		82	70 - 130	1	35
o-Xylene	0.100	0.07997		mg/Kg		80	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	77		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: 890-3507-A-1-G MS Matrix: Solid Analysis Batch: 40358

Analysis Datch. 40550									Fieb D	atch. 40550
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	< 0.00202	U	0.101	0.08379		mg/Kg		83	70 - 130	
Toluene	<0.00202	U	0.101	0.08680		mg/Kg		86	70 - 130	
Ethylbenzene	<0.00202	U	0.101	0.08327		mg/Kg		83	70 - 130	
m-Xylene & p-Xylene	<0.00404	U	0.202	0.1504		mg/Kg		75	70 - 130	
o-Xylene	<0.00202	U	0.101	0.07248		mg/Kg		72	70 - 130	
	MS	MS								

	1/13 1/13		
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	80		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: 890-3507-A-1-H MSD Matrix: Solid

Analysis Batch: 40358 Prep Batch: 40356 MSD MSD RPD Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Limit Analyte Unit D %Rec Limits RPD Benzene <0.00202 U 0.0996 0.08333 84 70 - 130 1 35 mg/Kg Toluene <0.00202 U 0.0996 0.08814 mg/Kg 88 70 - 130 2 35 Ethylbenzene <0.00202 U 0.0996 0.08482 mg/Kg 85 70 - 130 2 35

Eurofins Carlsbad

Prep Type: Total/NA

Job ID: 890-3486-1

SDG: Lea Co NM

Client Sample ID: Matrix Spike Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample Dup

Prep Batch: 40356

Prep Type: Total/NA

Released to Imaging: 5/16/2023 3:26:07 PM
QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3507-A- Matrix: Solid	1-H MSD					CI	ient Sa	ample IE): Matrix Sp Prep 1	oike Dup Type: To	
Analysis Batch: 40358										Batch:	
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	<0.00404	U	0.199	0.1518		mg/Kg		76	70 - 130	1	35
o-Xylene	<0.00202	U	0.0996	0.07386		mg/Kg		74	70 - 130	2	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	84		70 - 130								
1,4-Difluorobenzene (Surr)	104		70 - 130								

Lab Sample ID: MB 880-39929/1-A Matrix: Solid Analysis Batch: 40028							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Fotal/NA	
Analysia		MB		MDI	11		Dremered	Analyzad	Dil Fac	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DIIFac	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/18/22 13:39	11/21/22 20:36	1	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/18/22 13:39	11/21/22 20:36	1	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/18/22 13:39	11/21/22 20:36	1	
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1-Chlorooctane	133	S1+	70 - 130				11/18/22 13:39	11/21/22 20:36	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	133	S1+	70 - 130	11/18/22 13:39	11/21/22 20:36	1
o-Terphenyl	140	S1+	70 - 130	11/18/22 13:39	11/21/22 20:36	1

Lab Sample ID: LCS 880-39929/2-A Matrix: Solid

Analysis Batch: 40028

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1006		mg/Kg		101	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	998.1		mg/Kg		100	70 - 130	
C10-C28)								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	119		70 - 130
o-Terphenyl	108		70 - 130

Lab Sample ID: LCSD 880-39929/3-A Matrix: Solid Analysis Batch: 40028				Clier	nt Sam	ple ID:		ol Sampl Type: To Batch:	tal/NA
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	976.6		mg/Kg		98	70 - 130	3	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	907.0		mg/Kg		91	70 - 130	10	20
C10-C28)									

5

7

Eurofins Carlsbad

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 39929

QC Sample Results

Job ID: 890-3486-1

SDG: Lea Co NM

Client: NT Global Project/Site: Igloo 19 CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D %Rec <50.0 U 999 996.2 996.2 mg/Kg 111 <50.0 U 999 1106 mg/Kg 111 MS MS MS %Recovery Qualifier Limits	Prep Batch at Sample ID: Matri Prep Type: T Prep Batch %Rec Limits 70 - 130 70 - 130	ix Spike Fotal/NA
%Recovery Qualifier Limits 109 70 - 130 99 70 - 130 2-A-1-C MS Clier Sample Sample Result Qualifier Added Qualifier Added V 999 99 999 99 999 99 999 999 999 999 996.2 mg/Kg 98 <50.0 U 999 999 1106 mg/Kg 111 MS MS %Recovery Qualifier Limits	Prep Type: T Prep Batch %Rec Limits 70 - 130	otal/NA
Image: Non-state Sample Spike MS MS Clier 2-A-1-C MS Clier Clier	Prep Type: T Prep Batch %Rec Limits 70 - 130	otal/NA
99 70-130 2-A-1-C MS Clien Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D %Rec <50.0 U 999 999 996.2 mg/Kg 111 MS MS MS MS MS MS MS <t< th=""><th>Prep Type: T Prep Batch %Rec Limits 70 - 130</th><th>otal/NA</th></t<>	Prep Type: T Prep Batch %Rec Limits 70 - 130	otal/NA
Sample Sample Spike MS MS	Prep Type: T Prep Batch %Rec Limits 70 - 130	otal/NA
Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D %Rec <50.0	Prep Type: T Prep Batch %Rec Limits 70 - 130	otal/NA
Result Qualifier Added Result Qualifier Unit D %Rec <50.0	Prep Batch %Rec Limits 70 - 130	
Result Qualifier Added Result Qualifier Unit D %Rec <50.0	%Rec Limits 70 - 130	1: 3992(
Result Qualifier Added Result Qualifier Unit D %Rec <50.0	Limits	
<50.0	70 - 130	
<50.0 U 999 1106 mg/Kg 111 MS MS <u>%Recovery</u> Qualifier Limits		
MS MS %Recovery Qualifier Limits	70 - 130	
%Recovery Qualifier Limits		
94 70_130		
83 70 - 130		
2-A-1-D MSD Client Sample	D: Matrix Spike Du	uplicate
	-	- C
Sample Sample Spike MSD MSD		RPI
	Limits RPD) Limi
<50.0 U 997 1056 mg/Kg 104	70 - 130 6	3 20
<50.0 U 997 1133 ma/Ka 114	70 - 130 2	2 20
MSD MSD		
112 70 - 130		
84 70 - 130		
39931/1-A Client		
	Prep Batch	i: 39931
MB MB		
Result Qualifier RL MDL Unit D Prepared	Analyzed	
Result Qualifier RL MDL Unit D Prepared	32 11/21/22 09:16	
ResultQualifierRLMDLUnitDPrepared<50.0	32 11/21/22 09:16 32 11/21/22 09:16	
Result Qualifier RL MDL Unit D Prepared <50.0	32 11/21/22 09:16 32 11/21/22 09:16 32 11/21/22 09:16 32 11/21/22 09:16	Dil Fac
Result Qualifier RL MDL Unit D Prepared <50.0	 32 11/21/22 09:16 32 11/21/22 09:16 32 11/21/22 09:16 33 11/21/22 09:16 Analyzed 	Dil Fac
Result Qualifier RL MDL Unit D Prepared <50.0	32 11/21/22 09:16 32 11/21/22 09:16 32 11/21/22 09:16 32 11/21/22 09:16 32 11/21/22 09:16 32 11/21/22 09:16	1
SampleSampleSpikeMSDMSDResultQualifierAddedResultQualifierUnitD<50.0	%Rec 104 114	104 70 - 130 6

Project/Site: Igloo 19 CTB

QC Sample Results

Job ID: 890-3486-1 SDG: Lea Co NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-399 Matrix: Solid							SHEIN	Jampie	ID: Lab Co Prep 1	Type: Tot	
Analysis Batch: 40032			Spike	1.09	LCS				%Rec	Batch:	2992
A			Spike			11	_	% Do o			
Analyte			Added		Qualifier	Unit	D	%Rec	Limits 70 - 130		
Gasoline Range Organics (GRO)-C6-C10			1000	1129		mg/Kg		113	70 - 130		
Diesel Range Organics (Over			1000	1253		mg/Kg		125	70 - 130		
C10-C28)			1000	.200				.20	10 - 100		
	LCS		,								
Surrogate 1-Chlorooctane		Qualifier									
	108 118		70 - 130 70 - 130								
p-Terphenyl	118		70 - 130								
Lab Sample ID: LCSD 880-3	9931/3-0					Clie	nt San		Lab Contro	I Sampl	0 Du
Matrix: Solid	5551/5-A					Oller	it Gan	ipie ib. i		Type: Tot	
Analysis Batch: 40032										Batch:	
			Spike	LCSD	LCSD				%Rec	Duton.	RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics				1060	quanter	mg/Kg		106	70 - 130	6	2
GRO)-C6-C10			1000	1000				100		0	2
Diesel Range Organics (Over			1000	1196		mg/Kg		120	70 - 130	5	2
C10-C28)											
	1.000	1000									
		LCSD	Lincita								
Surrogate 1-Chlorooctane	% <i>Recovery</i> 100	Quaimer	Limits								
			70 - 130 70 - 130								
	113		70 ₋ 130 70 - 130								
p-Terphenyl	113							Clie	nt Sample	ID: S-1 (0-0.5
o- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I	113							Clie	nt Sample Prep 1		
o- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid	113							Clie	Prep 1	Type: To	tal/N
^{5-Terphenyl} Lab Sample ID: 890-3486-1 I Matrix: Solid	113 MS	Sample		MS	MS			Clie	Prep 1		tal/N
o- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032	113 MS Sample	Sample Qualifier	70 - 130	MS Result		Unit	D	Clie %Rec	Prep 1 Prep	Type: To	tal/N
o- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte	113 MS Sample	Qualifier	70 <u>-</u> 130 Spike	Result	Qualifier	- Unit mg/Kg	<u>D</u>		Prep 1 Prep %Rec	Type: To	tal/N
o- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics	113 MS Sample Result	Qualifier	70 - 130 Spike Added		Qualifier		D	%Rec	Prep 1 Prep %Rec Limits	Type: To	tal/N
o- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics GRO)-C6-C10	113 MS Sample Result	Qualifier U F1	70 - 130 Spike Added	Result	Qualifier		<u>D</u>	%Rec	Prep 1 Prep %Rec Limits	Type: To	tal/N
o- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	113 MS <u>Sample</u> <u>Result</u> <50.0	Qualifier U F1	70 - 130 Spike Added 999	Result 1619	Qualifier	mg/Kg	<u> </u>	%Rec 162	Prep 7 Prep %Rec Limits 70 - 130	Type: To	tal/N
p- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	113 MS 	Qualifier U F1 U	70 - 130 Spike Added 999	Result 1619	Qualifier	mg/Kg	D	%Rec 162	Prep 7 Prep %Rec Limits 70 - 130	Type: To	tal/N
p- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	113 MS - <u>Result</u> <50.0 <50.0 MS	Qualifier U F1 U	70 - 130 Spike Added 999	Result 1619	Qualifier	mg/Kg	<u>D</u>	%Rec 162	Prep 7 Prep %Rec Limits 70 - 130	Type: To	tal/N
p- <i>Terphenyl</i> Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	113 MS <u>Sample</u> <u>Result</u> <50.0 <50.0 Sms <i>%Recovery</i>	Qualifier U F1 U	70 - 130 Spike Added 999 999	Result 1619	Qualifier	mg/Kg	<u> </u>	%Rec 162	Prep 7 Prep %Rec Limits 70 - 130	Type: To	tal/N
p-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	113 MS Sample Result <50.0 <50.0 <50.0 MS %Recovery 106	Qualifier U F1 U	70 - 130 Spike Added 999 999 999 <u>Limits</u> 70 - 130	Result 1619	Qualifier	mg/Kg	<u> </u>	%Rec 162	Prep 7 Prep %Rec Limits 70 - 130	Type: To	tal/N
p-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	113 MS <u>Sample</u> <u>Result</u> <50.0 <50.0 Sms <i>%Recovery</i>	Qualifier U F1 U	70 - 130 Spike Added 999 999	Result 1619	Qualifier	mg/Kg	<u> </u>	%Rec 162	Prep 7 Prep %Rec Limits 70 - 130	Type: To	tal/N
p-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107	Qualifier U F1 U	70 - 130 Spike Added 999 999 999 <u>Limits</u> 70 - 130	Result 1619	Qualifier	mg/Kg	<u>D</u>	%Rec 162 114	Prep %Rec Limits 70 - 130 70 - 130	Type: Tot Batch: :	tal/N 3993
o-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-3486-1 I	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107	Qualifier U F1 U	70 - 130 Spike Added 999 999 999 <u>Limits</u> 70 - 130	Result 1619	Qualifier	mg/Kg	<u>D</u>	%Rec 162 114	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot Batch: : 	tal/N, 3993
D-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107	Qualifier U F1 U	70 - 130 Spike Added 999 999 999 <u>Limits</u> 70 - 130	Result 1619	Qualifier	mg/Kg	<u>D</u>	%Rec 162 114	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130	ID: S-1 (Fype: Tot	(0-0.5 tal/N
2-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid	113 MS <u>Result</u> <50.0 <50.0 MS <u>%Recovery</u> 106 107 MSD	Qualifier U F1 U MS Qualifier	70 - 130 Spike Added 999 999 Limits 70 - 130 70 - 130	Result 1619 1135	Qualifier	mg/Kg	<u>D</u>	%Rec 162 114	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot Batch: : 	(0-0.5 tal/N, 3993
b-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane b-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107 MSD Sample	Qualifier U F1 U MS Qualifier	70 - 130 Spike Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 1619 1135 MSD	Qualifier F1	mg/Kg	<u>D</u>	%Rec 162 114	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130	ID: S-1 (Batch: 3	(0-0.5 tal/N, 3993 (0-0.5 tal/N, 3993 RP
D-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107 MSD Sample Result	Qualifier U F1 U MS Qualifier Sample Qualifier	70 - 130 Spike Added 999 999 999 Limits 70 - 130 70 - 130 70 - 130 Spike Added	Result 1619 1135 MSD Result	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg		%Rec 162 114 Clie	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 %Rec Limits	ID: S-1 (Fype: Tot Batch: 3 Pype: Tot Batch: 3 RPD	(0-0. tal/N tal/N 3993 RP Lim
D-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107 MSD Sample	Qualifier U F1 U MS Qualifier Sample Qualifier	70 - 130 Spike Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 1619 1135 MSD	Qualifier F1 MSD Qualifier	mg/Kg		%Rec 162 114	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ID: S-1 (Batch: 3	(0-0. tal/N tal/N 3993 RP Lim
De-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane De-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107 MSD Sample Result	Qualifier U F1 U MS Qualifier Qualifier U F1	70 - 130 Spike Added 999 999 999 Limits 70 - 130 70 - 130 70 - 130 Spike Added	Result 1619 1135 MSD Result	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg		%Rec 162 114 Clie	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 %Rec Limits	ID: S-1 (Fype: Tot Batch: 3 Pype: Tot Batch: 3 RPD	(0-0. tal/N tal/N 3993 RP Lim 2
De-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane De-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107 MSD Sample Result <50.0	Qualifier U F1 U MS Qualifier Qualifier U F1	70 - 130 Spike Added 999 999 999 999 97 Limits 70 - 130 70 - 130 70 - 130 999 999 999 999 999 999 999 999 999 999 999 999 997	Result 1619 1135 MSD Result 1593	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg <u>Unit</u> mg/Kg		%Rec 162 114 Clie %Rec 160	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 mt Sample Prep 1 Prep %Rec Limits 70 - 130	ID: S-1 (Fype: Tot Batch: 3 Part of the second	(0-0. tal/N tal/N 3993 RP Lim 2
De-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane De-Terphenyl Lab Sample ID: 890-3486-1 I Matrix: Solid Analysis Batch: 40032 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107 MSD Sample Result <50.0 <50.0 <50.0	Qualifier U F1 U MS Qualifier Qualifier U F1 U	70 - 130 Spike Added 999 999 999 999 97 Limits 70 - 130 70 - 130 70 - 130 999 999 999 999 999 999 999 999 999 999 999 999 997	Result 1619 1135 MSD Result 1593	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg <u>Unit</u> mg/Kg		%Rec 162 114 Clie %Rec 160	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 mt Sample Prep 1 Prep %Rec Limits 70 - 130	ID: S-1 (Fype: Tot Batch: 3 Part of the second	(0-0.5 tal/N. 5993 tal/N. 3993 RP Lim 2
Analyte Carbon Control	113 MS Sample Result <50.0 <50.0 MS %Recovery 106 107 MSD Sample Result <50.0 <50.0 <50.0	Qualifier U F1 U MS Qualifier Qualifier U F1	70 - 130 Spike Added 999 999 999 999 97 Limits 70 - 130 70 - 130 70 - 130 999 999 999 999 999 999 999 999 999 999 999 999 997	Result 1619 1135 MSD Result 1593	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg <u>Unit</u> mg/Kg		%Rec 162 114 Clie %Rec 160	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 mt Sample Prep 1 Prep %Rec Limits 70 - 130	ID: S-1 (Fype: Tot Batch: 3 Part of the second	(0-0.5 tal/N/

Eurofins Carlsbad

Project/Site: Igloo 19 CTB

QC Sample Results

Job ID: 890-3486-1 SDG: Lea Co NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3486-1 MSD									Clie	nt Sample		· · · · · ·
Matrix: Solid											ype: To	
Analysis Batch: 40032										Prep	Batch:	3993
	MSD	MSD										
Surrogate 9	6Recovery	Qualifier	Limits	_								
o-Terphenyl	102		70 - 130									
lethod: 300.0 - Anions, Ion C	hromat	ography										
Lab Sample ID: MB 880-39830/1-A								С	lient S	ample ID: I	Method	Blan
Matrix: Solid										Prep	Type: S	olubl
Analysis Batch: 40139												
		MB MB										
Analyte	R	esult Qualifier		RL	MDL Unit		D	Pre	pared	Analyz	ed	Dil Fa
Chloride	<	<5.00 U		5.00	mg/K	g				11/21/22 2	23:52	
Lab Sample ID: LCS 880-39830/2-	٨						Cliv	ant C	Sample	ID: Lab Co	ontrol S	ampl
Matrix: Solid	•						Cile	ent a	sample			
										Flep	Type: S	
Analysis Batch: 40139			Spike	1.09	LCS					%Rec		
Analyte			Added		Qualifier	Unit		D	%Rec	Limits		
Chloride			250	256.0	Quaimer	mg/Kg			102	90 - 110		
			200	200.0		mg/rtg			102	00-110		
Lab Sample ID: LCSD 880-39830/3	3-A					Cli	ent S	amp	le ID: I	Lab Contro	I Samp	le Du
Matrix: Solid											Type: S	
Analysis Batch: 40139												
			Spike	LCSD	LCSD					%Rec		RP
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride			250	256.0		mg/Kg			102	90 _ 110	0	2
			250	256.0		mg/Kg						
Lab Sample ID: 890-3486-2 MS			250	256.0		mg/Kg				nt Sample	ID: S-1	(1-1.5
Lab Sample ID: 890-3486-2 MS Matrix: Solid			250	256.0		mg/Kg				nt Sample		(1-1.5
Lab Sample ID: 890-3486-2 MS Matrix: Solid						mg/Kg				nt Sample Prep	ID: S-1	(1-1.5
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139	•	Sample	Spike	MS	MS				Clie	nt Sample Prep %Rec	ID: S-1	(1-1.5
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte	Result	Sample Qualifier	Spike Added	MS Result	MS Qualifier	Unit		D	Clie	nt Sample Prep %Rec Limits	ID: S-1	(1-1.5
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte	•	•	Spike	MS				D	Clie	nt Sample Prep %Rec	ID: S-1	(1-1.5
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride	Result	•	Spike Added	MS Result		Unit		D _	Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110	ID: S-1 Type: S	(1-1.5 Solubl
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD	Result	•	Spike Added	MS Result		Unit		<u>D</u>	Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample	ID: S-1 Type: S	(1-1.5 iolubli
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD Matrix: Solid	Result	•	Spike Added	MS Result		Unit		<u>D</u>	Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample	ID: S-1 Type: S	(1-1.5 iolubli
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD Matrix: Solid	Result 13.3	•	Spike Added	MS Result 277.9		Unit		<u>D</u>	Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample	ID: S-1 Type: S	(1-1.5 Soluble (1-1.5 Soluble
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD Matrix: Solid Analysis Batch: 40139	Result 13.3 Sample	Qualifier	Spike Added 248	MS Result 277.9 MSD	Qualifier	Unit			Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep	ID: S-1 Type: S	(1-1.5 ioluble (1-1.5 ioluble RPI
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD Matrix: Solid Analysis Batch: 40139 Analyte	Result 13.3 Sample	Qualifier	Spike Added 248 Spike	MS Result 277.9 MSD	Qualifier MSD	Unit mg/Kg			Clie %Rec 107 Clie	nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep %Rec	ID: S-1 Type: S ID: S-1 Type: S	(1-1.5 coluble (1-1.5 coluble RPI Limi
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD Matrix: Solid Analysis Batch: 40139 Analyte Chloride	Result 13.3 Sample Result 13.3	Qualifier	Spike Added 248 Spike Added	MS Result 277.9 MSD Result	Qualifier MSD	Unit mg/Kg Unit		<u>D</u>	Clie %Rec 107 Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110	ID: S-1 Type: S ID: S-1 Type: S <u>RPD</u> 0	(1-1.5 Solubi (1-1.5 Solubi RP <u>Lim</u> 2
Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: MB 880-39831/1-A	Result 13.3 Sample Result 13.3	Qualifier	Spike Added 248 Spike Added	MS Result 277.9 MSD Result	Qualifier MSD	Unit mg/Kg Unit		<u>D</u>	Clie %Rec 107 Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110	ID: S-1 Type: S ID: S-1 Type: S <u>RPD</u> 0	(1-1.5 coluble (1-1.5 coluble <u>Lim</u> 2 Blan
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: MB 880-39831/1-A Matrix: Solid	Result 13.3 Sample Result 13.3	Qualifier	Spike Added 248 Spike Added	MS Result 277.9 MSD Result	Qualifier MSD	Unit mg/Kg Unit		<u>D</u>	Clie %Rec 107 Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110	ID: S-1 Type: S ID: S-1 Type: S <u>RPD</u> 0	(1-1.5 coluble (1-1.5 coluble <u>Lim</u> 2 Blan
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: MB 880-39831/1-A Matrix: Solid	Result 13.3 Sample Result 13.3	Qualifier	Spike Added 248 Spike Added	MS Result 277.9 MSD Result	Qualifier MSD	Unit mg/Kg Unit		<u>D</u>	Clie %Rec 107 Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110	ID: S-1 Type: S ID: S-1 Type: S <u>RPD</u> 0	(1-1.5 Soluble (1-1.5 Soluble RPI Limi 20 Blan
Lab Sample ID: 890-3486-2 MS Matrix: Solid Analysis Batch: 40139 Analyte Chloride Lab Sample ID: 890-3486-2 MSD	Result 13.3 Sample Result 13.3	Qualifier	Spike Added 248 Spike Added	MS Result 277.9 MSD Result	Qualifier MSD	Unit mg/Kg Unit		<u>D</u>	Clie %Rec 107 Clie %Rec 107	nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110	ID: S-1 Type: S ID: S-1 Type: S <u>RPD</u> 0 Method Type: S	(1-1.5 Soluble RPI Limi 20 Blant

Released to Imaging: 5/16/2023 3:26:07 PM

Project/Site: Igloo 19 CTB

Job ID: 890-3486-1 SDG: Lea Co NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-3983	31/2-A						Client	Sample	D: Lab C		
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 40150											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	255.5		mg/Kg		102	90 - 110		
- Lab Sample ID: LCSD 880-39	831/3-A					Clier	nt Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 40150											
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	256.9		mg/Kg		103	90 - 110	1	20
_ Lab Sample ID: 890-3486-14 I	NS							Clie	nt Sample	ID: S-3 ((2-2.5)
Matrix: Solid										Type: S	
Analysis Batch: 40150										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	8610	F1	2500	10810	F1	mg/Kg		88	90 _ 110		
- Lab Sample ID: 890-3486-14 I	MSD							Clie	nt Sample	ID: S-3 ((2-2.5)
Matrix: Solid										Type: S	
Analysis Batch: 40150										~ •	
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	8610	F1	2500	10830	F1	mg/Kg		89	90 - 110	0	20

Released to Imaging: 5/16/2023 3:26:07 PM

Client: NT Global Project/Site: Igloo 19 CTB

Job ID: 890-3486-1 SDG: Lea Co NM

GC VOA

Prep Batch: 40225

rep Batch: 40225					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-40225/5-A	Method Blank	Total/NA	Solid	5035	
rep Batch: 40255					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3486-1	S-1 (0-0.5)	Total/NA	Solid	5035	
890-3486-2	S-1 (1-1.5)	Total/NA	Solid	5035	
890-3486-3	S-1 (2-2.5)	Total/NA	Solid	5035	
890-3486-4	S-1 (3-3.5)	Total/NA	Solid	5035	
890-3486-5	S-1 (4-4.5)	Total/NA	Solid	5035	
890-3486-6	S-2 (0-0.5)	Total/NA	Solid	5035	
890-3486-7	S-2 (1-1.5)	Total/NA	Solid	5035	
390-3486-8	S-2 (2-2.5)	Total/NA	Solid	5035	
890-3486-9	S-2 (3-3.5)	Total/NA	Solid	5035	
890-3486-10	S-2 (4-4.5)	Total/NA	Solid	5035	
890-3486-11	S-2 (5-5.5)	Total/NA	Solid	5035	
890-3486-12	S-3 (0-0.5)	Total/NA	Solid	5035	
890-3486-13	S-3 (1-1.5)	Total/NA	Solid	5035	
890-3486-14	S-3 (2-2.5)	Total/NA	Solid	5035	
890-3486-15	S-3 (3-3.5)	Total/NA	Solid	5035	
890-3486-16	S-3 (4-4.5)	Total/NA	Solid	5035	
390-3486-17	S-3 (5-5.5)	Total/NA	Solid	5035	
890-3486-18	H-1	Total/NA	Solid	5035	
890-3486-20	Н-3	Total/NA	Solid	5035	
MB 880-40255/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-40255/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-40255/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3486-1 MS	S-1 (0-0.5)	Total/NA	Solid	5035	
890-3486-1 MSD	S-1 (0-0.5)	Total/NA	Solid	5035	

Analysis Batch: 40264

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-1	S-1 (0-0.5)	Total/NA	Solid	8021B	40255
890-3486-2	S-1 (1-1.5)	Total/NA	Solid	8021B	40255
890-3486-3	S-1 (2-2.5)	Total/NA	Solid	8021B	40255
890-3486-4	S-1 (3-3.5)	Total/NA	Solid	8021B	40255
890-3486-5	S-1 (4-4.5)	Total/NA	Solid	8021B	40255
890-3486-6	S-2 (0-0.5)	Total/NA	Solid	8021B	40255
890-3486-7	S-2 (1-1.5)	Total/NA	Solid	8021B	40255
890-3486-8	S-2 (2-2.5)	Total/NA	Solid	8021B	40255
890-3486-9	S-2 (3-3.5)	Total/NA	Solid	8021B	40255
890-3486-10	S-2 (4-4.5)	Total/NA	Solid	8021B	40255
890-3486-11	S-2 (5-5.5)	Total/NA	Solid	8021B	40255
890-3486-12	S-3 (0-0.5)	Total/NA	Solid	8021B	40255
890-3486-13	S-3 (1-1.5)	Total/NA	Solid	8021B	40255
890-3486-14	S-3 (2-2.5)	Total/NA	Solid	8021B	40255
890-3486-15	S-3 (3-3.5)	Total/NA	Solid	8021B	40255
890-3486-16	S-3 (4-4.5)	Total/NA	Solid	8021B	40255
890-3486-17	S-3 (5-5.5)	Total/NA	Solid	8021B	40255
890-3486-18	H-1	Total/NA	Solid	8021B	40255
890-3486-20	H-3	Total/NA	Solid	8021B	40255
MB 880-40225/5-A	Method Blank	Total/NA	Solid	8021B	40225

Eurofins Carlsbad

Page 78 of 174

Client: NT Global Project/Site: Igloo 19 CTB

GC VOA (Continued)

Analysis Batch: 40264 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-40255/5-A	Method Blank	Total/NA	Solid	8021B	40255
LCS 880-40255/1-A	Lab Control Sample	Total/NA	Solid	8021B	40255
LCSD 880-40255/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	40255
890-3486-1 MS	S-1 (0-0.5)	Total/NA	Solid	8021B	40255
890-3486-1 MSD	S-1 (0-0.5)	Total/NA	Solid	8021B	40255

Analysis Batch: 40265

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
890-3486-21	H-4	Total/NA	Solid	8021B	40340	
890-3486-22	H-5	Total/NA	Solid	8021B	40340	9
890-3486-23	H-6	Total/NA	Solid	8021B	40340	
MB 880-40316/5-A	Method Blank	Total/NA	Solid	8021B	40316	
MB 880-40340/5-A	Method Blank	Total/NA	Solid	8021B	40340	
LCS 880-40340/1-A	Lab Control Sample	Total/NA	Solid	8021B	40340	
LCSD 880-40340/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	40340	
890-3486-21 MS	H-4	Total/NA	Solid	8021B	40340	
890-3486-21 MSD	H-4	Total/NA	Solid	8021B	40340	
rep Batch: 40316						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	

Prep Batch: 40316

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-40316/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 40340

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-21	H-4	Total/NA	Solid	5035	
890-3486-22	H-5	Total/NA	Solid	5035	
890-3486-23	H-6	Total/NA	Solid	5035	
MB 880-40340/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-40340/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-40340/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3486-21 MS	H-4	Total/NA	Solid	5035	
890-3486-21 MSD	H-4	Total/NA	Solid	5035	

Prep Batch: 40356

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3486-19	H-2	Total/NA	Solid	5035	
MB 880-40356/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-40356/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-40356/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3507-A-1-G MS	Matrix Spike	Total/NA	Solid	5035	
890-3507-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 40358

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3486-19	H-2	Total/NA	Solid	8021B	40356
MB 880-40356/5-A	Method Blank	Total/NA	Solid	8021B	40356
LCS 880-40356/1-A	Lab Control Sample	Total/NA	Solid	8021B	40356
LCSD 880-40356/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	40356
890-3507-A-1-G MS	Matrix Spike	Total/NA	Solid	8021B	40356
890-3507-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	40356

Eurofins Carlsbad

Page 79 of 174

Job ID: 890-3486-1 SDG: Lea Co NM

5

Client: NT Global Project/Site: Igloo 19 CTB

Job ID: 890-3486-1 SDG: Lea Co NM

GC VOA

Analysis Batch: 40478

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-3486-1	S-1 (0-0.5)	Total/NA	Solid	Total BTEX	
90-3486-2	S-1 (1-1.5)	Total/NA	Solid	Total BTEX	
90-3486-3	S-1 (2-2.5)	Total/NA	Solid	Total BTEX	
390-3486-4	S-1 (3-3.5)	Total/NA	Solid	Total BTEX	
390-3486-5	S-1 (4-4.5)	Total/NA	Solid	Total BTEX	
390-3486-6	S-2 (0-0.5)	Total/NA	Solid	Total BTEX	
390-3486-7	S-2 (1-1.5)	Total/NA	Solid	Total BTEX	
390-3486-8	S-2 (2-2.5)	Total/NA	Solid	Total BTEX	
390-3486-9	S-2 (3-3.5)	Total/NA	Solid	Total BTEX	
390-3486-10	S-2 (4-4.5)	Total/NA	Solid	Total BTEX	
390-3486-11	S-2 (5-5.5)	Total/NA	Solid	Total BTEX	
390-3486-12	S-3 (0-0.5)	Total/NA	Solid	Total BTEX	
390-3486-13	S-3 (1-1.5)	Total/NA	Solid	Total BTEX	
390-3486-14	S-3 (2-2.5)	Total/NA	Solid	Total BTEX	
390-3486-15	S-3 (3-3.5)	Total/NA	Solid	Total BTEX	
390-3486-16	S-3 (4-4.5)	Total/NA	Solid	Total BTEX	
390-3486-17	S-3 (5-5.5)	Total/NA	Solid	Total BTEX	
390-3486-18	H-1	Total/NA	Solid	Total BTEX	
390-3486-19	H-2	Total/NA	Solid	Total BTEX	
890-3486-20	H-3	Total/NA	Solid	Total BTEX	
390-3486-21	H-4	Total/NA	Solid	Total BTEX	
390-3486-22	H-5	Total/NA	Solid	Total BTEX	
890-3486-23	H-6	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 39929

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3486-21	H-4	Total/NA	Solid	8015NM Prep	
890-3486-22	H-5	Total/NA	Solid	8015NM Prep	
890-3486-23	H-6	Total/NA	Solid	8015NM Prep	
MB 880-39929/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-39929/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-39929/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3472-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3472-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 39931

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3486-1	S-1 (0-0.5)	Total/NA	Solid	8015NM Prep	
890-3486-2	S-1 (1-1.5)	Total/NA	Solid	8015NM Prep	
890-3486-3	S-1 (2-2.5)	Total/NA	Solid	8015NM Prep	
890-3486-4	S-1 (3-3.5)	Total/NA	Solid	8015NM Prep	
890-3486-5	S-1 (4-4.5)	Total/NA	Solid	8015NM Prep	
890-3486-6	S-2 (0-0.5)	Total/NA	Solid	8015NM Prep	
890-3486-7	S-2 (1-1.5)	Total/NA	Solid	8015NM Prep	
890-3486-8	S-2 (2-2.5)	Total/NA	Solid	8015NM Prep	
890-3486-9	S-2 (3-3.5)	Total/NA	Solid	8015NM Prep	
890-3486-10	S-2 (4-4.5)	Total/NA	Solid	8015NM Prep	
890-3486-11	S-2 (5-5.5)	Total/NA	Solid	8015NM Prep	
890-3486-12	S-3 (0-0.5)	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Released to Imaging: 5/16/2023 3:26:07 PM

Client: NT Global Project/Site: Igloo 19 CTB

GC Semi VOA (Continued)

Prep Batch: 39931 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-13	S-3 (1-1.5)	Total/NA	Solid	8015NM Prep	
890-3486-14	S-3 (2-2.5)	Total/NA	Solid	8015NM Prep	
890-3486-15	S-3 (3-3.5)	Total/NA	Solid	8015NM Prep	
890-3486-16	S-3 (4-4.5)	Total/NA	Solid	8015NM Prep	
890-3486-17	S-3 (5-5.5)	Total/NA	Solid	8015NM Prep	
890-3486-18	H-1	Total/NA	Solid	8015NM Prep	
890-3486-19	H-2	Total/NA	Solid	8015NM Prep	
890-3486-20	Н-3	Total/NA	Solid	8015NM Prep	
MB 880-39931/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-39931/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-39931/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3486-1 MS	S-1 (0-0.5)	Total/NA	Solid	8015NM Prep	
890-3486-1 MSD	S-1 (0-0.5)	Total/NA	Solid	8015NM Prep	

Analysis Batch: 40028

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-21	H-4	Total/NA	Solid	8015B NM	39929
890-3486-22	H-5	Total/NA	Solid	8015B NM	39929
890-3486-23	H-6	Total/NA	Solid	8015B NM	39929
MB 880-39929/1-A	Method Blank	Total/NA	Solid	8015B NM	39929
LCS 880-39929/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	39929
LCSD 880-39929/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	39929
890-3472-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	39929
890-3472-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	39929

Analysis Batch: 40032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-1	S-1 (0-0.5)	Total/NA	Solid	8015B NM	39931
890-3486-2	S-1 (1-1.5)	Total/NA	Solid	8015B NM	39931
890-3486-3	S-1 (2-2.5)	Total/NA	Solid	8015B NM	39931
890-3486-4	S-1 (3-3.5)	Total/NA	Solid	8015B NM	39931
890-3486-5	S-1 (4-4.5)	Total/NA	Solid	8015B NM	39931
890-3486-6	S-2 (0-0.5)	Total/NA	Solid	8015B NM	39931
890-3486-7	S-2 (1-1.5)	Total/NA	Solid	8015B NM	39931
890-3486-8	S-2 (2-2.5)	Total/NA	Solid	8015B NM	39931
890-3486-9	S-2 (3-3.5)	Total/NA	Solid	8015B NM	39931
890-3486-10	S-2 (4-4.5)	Total/NA	Solid	8015B NM	39931
890-3486-11	S-2 (5-5.5)	Total/NA	Solid	8015B NM	39931
890-3486-12	S-3 (0-0.5)	Total/NA	Solid	8015B NM	39931
890-3486-13	S-3 (1-1.5)	Total/NA	Solid	8015B NM	39931
890-3486-14	S-3 (2-2.5)	Total/NA	Solid	8015B NM	39931
890-3486-15	S-3 (3-3.5)	Total/NA	Solid	8015B NM	39931
890-3486-16	S-3 (4-4.5)	Total/NA	Solid	8015B NM	39931
890-3486-17	S-3 (5-5.5)	Total/NA	Solid	8015B NM	39931
890-3486-18	H-1	Total/NA	Solid	8015B NM	39931
890-3486-19	H-2	Total/NA	Solid	8015B NM	39931
890-3486-20	H-3	Total/NA	Solid	8015B NM	39931
MB 880-39931/1-A	Method Blank	Total/NA	Solid	8015B NM	39931
LCS 880-39931/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	39931
LCSD 880-39931/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	39931
890-3486-1 MS	S-1 (0-0.5)	Total/NA	Solid	8015B NM	39931

Eurofins Carlsbad

Page 81 of 174

Job ID: 890-3486-1 SDG: Lea Co NM

Client: NT Global Project/Site: Igloo 19 CTB

GC Semi VOA (Continued)

Analysis Batch: 40032 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-3486-1 MSD	S-1 (0-0.5)	Total/NA	Solid	8015B NM	39931	
Analysis Batch	: 40186					

Analysis Batch: 40186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-3486-1 MSD	S-1 (0-0.5)	Total/NA	Solid	8015B NM	39931
nalysis Batch: 4018	36				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-1	S-1 (0-0.5)	Total/NA	Solid	8015 NM	
890-3486-2	S-1 (1-1.5)	Total/NA	Solid	8015 NM	
890-3486-3	S-1 (2-2.5)	Total/NA	Solid	8015 NM	
890-3486-4	S-1 (3-3.5)	Total/NA	Solid	8015 NM	
890-3486-5	S-1 (4-4.5)	Total/NA	Solid	8015 NM	
890-3486-6	S-2 (0-0.5)	Total/NA	Solid	8015 NM	
890-3486-7	S-2 (1-1.5)	Total/NA	Solid	8015 NM	
890-3486-8	S-2 (2-2.5)	Total/NA	Solid	8015 NM	
890-3486-9	S-2 (3-3.5)	Total/NA	Solid	8015 NM	
890-3486-10	S-2 (4-4.5)	Total/NA	Solid	8015 NM	
890-3486-11	S-2 (5-5.5)	Total/NA	Solid	8015 NM	
890-3486-12	S-3 (0-0.5)	Total/NA	Solid	8015 NM	
890-3486-13	S-3 (1-1.5)	Total/NA	Solid	8015 NM	
890-3486-14	S-3 (2-2.5)	Total/NA	Solid	8015 NM	
890-3486-15	S-3 (3-3.5)	Total/NA	Solid	8015 NM	
890-3486-16	S-3 (4-4.5)	Total/NA	Solid	8015 NM	
890-3486-17	S-3 (5-5.5)	Total/NA	Solid	8015 NM	
890-3486-18	H-1	Total/NA	Solid	8015 NM	
890-3486-19	H-2	Total/NA	Solid	8015 NM	
890-3486-20	H-3	Total/NA	Solid	8015 NM	
890-3486-21	H-4	Total/NA	Solid	8015 NM	
890-3486-22	H-5	Total/NA	Solid	8015 NM	
890-3486-23	H-6	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 39830

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-1	S-1 (0-0.5)	Soluble	Solid	DI Leach	
890-3486-2	S-1 (1-1.5)	Soluble	Solid	DI Leach	
890-3486-3	S-1 (2-2.5)	Soluble	Solid	DI Leach	
890-3486-4	S-1 (3-3.5)	Soluble	Solid	DI Leach	
890-3486-5	S-1 (4-4.5)	Soluble	Solid	DI Leach	
890-3486-6	S-2 (0-0.5)	Soluble	Solid	DI Leach	
890-3486-7	S-2 (1-1.5)	Soluble	Solid	DI Leach	
890-3486-8	S-2 (2-2.5)	Soluble	Solid	DI Leach	
890-3486-9	S-2 (3-3.5)	Soluble	Solid	DI Leach	
890-3486-10	S-2 (4-4.5)	Soluble	Solid	DI Leach	
890-3486-11	S-2 (5-5.5)	Soluble	Solid	DI Leach	
MB 880-39830/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-39830/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-39830/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3486-2 MS	S-1 (1-1.5)	Soluble	Solid	DI Leach	
890-3486-2 MSD	S-1 (1-1.5)	Soluble	Solid	DI Leach	

Job ID: 890-3486-1

SDG: Lea Co NM

Client: NT Global Project/Site: Igloo 19 CTB Job ID: 890-3486-1 SDG: Lea Co NM

HPLC/IC

Leach Batch: 39831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-12	S-3 (0-0.5)	Soluble	Solid	DI Leach	
890-3486-13	S-3 (1-1.5)	Soluble	Solid	DI Leach	
890-3486-14	S-3 (2-2.5)	Soluble	Solid	DI Leach	
890-3486-15	S-3 (3-3.5)	Soluble	Solid	DI Leach	
890-3486-16	S-3 (4-4.5)	Soluble	Solid	DI Leach	
890-3486-17	S-3 (5-5.5)	Soluble	Solid	DI Leach	
890-3486-18	H-1	Soluble	Solid	DI Leach	
390-3486-19	H-2	Soluble	Solid	DI Leach	
890-3486-20	Н-3	Soluble	Solid	DI Leach	
390-3486-21	H-4	Soluble	Solid	DI Leach	
390-3486-22	H-5	Soluble	Solid	DI Leach	
890-3486-23	H-6	Soluble	Solid	DI Leach	
MB 880-39831/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-39831/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CSD 880-39831/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-3486-14 MS	S-3 (2-2.5)	Soluble	Solid	DI Leach	
390-3486-14 MSD	S-3 (2-2.5)	Soluble	Solid	DI Leach	

Analysis Batch: 40139

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3486-1	S-1 (0-0.5)	Soluble	Solid	300.0	39830
890-3486-2	S-1 (1-1.5)	Soluble	Solid	300.0	39830
890-3486-3	S-1 (2-2.5)	Soluble	Solid	300.0	39830
890-3486-4	S-1 (3-3.5)	Soluble	Solid	300.0	39830
890-3486-5	S-1 (4-4.5)	Soluble	Solid	300.0	39830
890-3486-6	S-2 (0-0.5)	Soluble	Solid	300.0	39830
890-3486-7	S-2 (1-1.5)	Soluble	Solid	300.0	39830
890-3486-8	S-2 (2-2.5)	Soluble	Solid	300.0	39830
890-3486-9	S-2 (3-3.5)	Soluble	Solid	300.0	39830
890-3486-10	S-2 (4-4.5)	Soluble	Solid	300.0	39830
890-3486-11	S-2 (5-5.5)	Soluble	Solid	300.0	39830
MB 880-39830/1-A	Method Blank	Soluble	Solid	300.0	39830
LCS 880-39830/2-A	Lab Control Sample	Soluble	Solid	300.0	39830
LCSD 880-39830/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	39830
890-3486-2 MS	S-1 (1-1.5)	Soluble	Solid	300.0	39830
890-3486-2 MSD	S-1 (1-1.5)	Soluble	Solid	300.0	39830

Analysis Batch: 40150

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3486-12	S-3 (0-0.5)	Soluble	Solid	300.0	39831
890-3486-13	S-3 (1-1.5)	Soluble	Solid	300.0	39831
890-3486-14	S-3 (2-2.5)	Soluble	Solid	300.0	39831
890-3486-15	S-3 (3-3.5)	Soluble	Solid	300.0	39831
890-3486-16	S-3 (4-4.5)	Soluble	Solid	300.0	39831
890-3486-17	S-3 (5-5.5)	Soluble	Solid	300.0	39831
890-3486-18	H-1	Soluble	Solid	300.0	39831
890-3486-19	H-2	Soluble	Solid	300.0	39831
890-3486-20	H-3	Soluble	Solid	300.0	39831
890-3486-21	H-4	Soluble	Solid	300.0	39831
890-3486-22	H-5	Soluble	Solid	300.0	39831
890-3486-23	H-6	Soluble	Solid	300.0	39831

Eurofins Carlsbad

5 6 7

Client: NT Global Project/Site: Igloo 19 CTB Job ID: 890-3486-1 SDG: Lea Co NM

HPLC/IC (Continued)

Analysis Batch: 40150 (Continued)

alysis Batch: 40150	(Continued)				
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
B 880-39831/1-A	Method Blank	Soluble	Solid	300.0	39831
CS 880-39831/2-A	Lab Control Sample	Soluble	Solid	300.0	39831
CSD 880-39831/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	39831
90-3486-14 MS	S-3 (2-2.5)	Soluble	Solid	300.0	39831
0-3486-14 MSD	S-3 (2-2.5)	Soluble	Solid	300.0	39831

Page 84 of 174

5 6

9

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-1 Matrix: Solid

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Client Sample ID: S-1 (0-0.5)

Project/Site: Igloo 19 CTB

Client: NT Global

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 16:35	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 11:55	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40139	11/22/22 01:22	СН	EET MID

Lab Sample ID: 890-3486-2

Matrix: Solid

Client Sample ID: S-1 (1-1.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 17:01	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 12:58	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40139	11/22/22 01:28	СН	EET MID

Client Sample ID: S-1 (2-2.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 17:27	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 13:19	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40139	11/22/22 01:45	СН	EET MID

Client Sample ID: S-1 (3-3.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 17:54	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID

Eurofins Carlsbad

Lab Sample ID: 890-3486-4

Lab Sample ID: 890-3486-3

Matrix: Solid

Released to Imaging: 5/16/2023 3:26:07 PM

Matrix: Solid

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-4 Matrix: Solid

Lab Sample ID: 890-3486-5

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Client Sample ID: S-1 (3-3.5)

Project/Site: Igloo 19 CTB

Client: NT Global

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 13:41	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40139	11/22/22 01:51	СН	EET MID

Client Sample ID: S-1 (4-4.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 18:20	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 14:01	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40139	11/22/22 02:08	СН	EET MID

Client Sample ID: S-2 (0-0.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 18:46	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 14:22	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40139	11/22/22 02:13	СН	EET MID

Client Sample ID: S-2 (1-1.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 19:12	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 14:44	SM	EET MID

Eurofins Carlsbad

Lab Sample ID: 890-3486-6

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3486-7 Matrix: Solid

Lab Chronicle

Client: NT Global Project/Site: Igloo 19 CTB

Client Sample ID: S-2 (1-1.5) Date Collected: 11/15/22 00:00

Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40139	11/22/22 02:19	CH	EET MID

Client Sample ID: S-2 (2-2.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 19:38	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 15:04	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	40139	11/22/22 02:24	CH	EET MID

Client Sample ID: S-2 (3-3.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 20:05	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 15:25	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	40139	11/22/22 02:30	СН	EET MID

Client Sample ID: S-2 (4-4.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Lab Sample ID: 890-3486-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 20:31	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 15:47	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	39830	11/17/22 14:36	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	40139	11/22/22 02:36	СН	EET MID

Eurofins Carlsbad

Job ID: 890-3486-1 SDG: Lea Co NM

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3486-7 Matrix: Solid

Lab Sample ID: 890-3486-8

9

Client Sample ID: S-2 (5-5.5)

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Date Collected: 11/15/22 00:00

Date Received: 11/15/22 16:45

Client: NT Global

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Project/Site: Igloo 19 CTB

Initial

Amount

4.96 g

5 mL

10.02 g

1 uL

4.99 g

50 mL

Dil

1

1

1

1

10

Factor

Run

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-11

Analyst

EL

EL

SM

SM

DM

SM

СН

СН

Lab Sample ID: 890-3486-12

Lab Sample ID: 890-3486-13

Lab Sample ID: 890-3486-14

Prepared

or Analyzed

11/22/22 17:58

11/24/22 22:18

11/28/22 15:38

11/22/22 10:35

11/18/22 14:32

11/21/22 16:28

11/17/22 14:36

11/22/22 02:42

Matrix: Solid

Lab

EET MID

Matrix: Solid

Matrix: Solid

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

40255

40264

40478

40186

39931

40032

39830

40139

Number

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Client Sample ID: S-3 (0-0.5)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 22:44	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 16:50	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	40150	11/22/22 04:35	СН	EET MID

Client Sample ID: S-3 (1-1.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 23:10	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 17:10	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	40150	11/22/22 04:40	СН	EET MID

Client Sample ID: S-3 (2-2.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/24/22 23:36	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-14 Matrix: Solid

Lab Sample ID: 890-3486-15

Lab Sample ID: 890-3486-16

Lab Sample ID: 890-3486-17

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Client Sample ID: S-3 (2-2.5)

Project/Site: Igloo 19 CTB

Client: NT Global

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 17:31	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	40150	11/22/22 04:46	СН	EET MID

Client Sample ID: S-3 (3-3.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/25/22 00:02	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 17:52	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	40150	11/22/22 05:03	СН	EET MID

Client Sample ID: S-3 (4-4.5)

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/25/22 00:29	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 18:13	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	40150	11/22/22 05:09	CH	EET MID

Client Sample ID: S-3 (5-5.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/25/22 00:56	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 18:33	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-17

Lab Sample ID: 890-3486-18

Client Sample ID: S-3 (5-5.5) Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

Client: NT Global

Project/Site: Igloo 19 CTB

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	40150	11/22/22 05:26	СН	EET MID

Client Sample ID: H-1

Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/25/22 01:22	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 18:53	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40150	11/22/22 05:31	CH	EET MID

Client Sample ID: H-2 Date Collected: 11/15/22 00:00

Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	40356	11/25/22 17:09	EL	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	40358	11/25/22 22:35	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:04	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 19:14	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40150	11/22/22 05:37	СН	EET MID

Client Sample ID: H-3 Date Collected: 11/15/22 00:00 Date Received: 11/15/22 16:45

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	40255	11/22/22 17:58	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40264	11/25/22 02:16	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 15:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39931	11/18/22 14:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40032	11/21/22 19:34	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40150	11/22/22 05:43	СН	EET MID

Eurofins Carlsbad

Page 90 of 174

Matrix: Solid

Matrix: Solid

9

Lab Sample ID: 890-3486-19 Matrix: Solid

Lab Sample ID: 890-3486-20 Matrix: Solid

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Project/Site: Igloo 19 CTB

Client Sample ID: H-4

Date Collected: 11/15/22 00:00

Date Received: 11/15/22 16:45

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Initial

Amount

4.98 g

5 mL

10.02 g

1 uL

5.03 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

40340

40265

40478

40186

39929

40028

39831

40150

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID: 890-3486-21

Analyst

EL

EL

SM

SM

DM

SM

СН

СН

Lab Sample ID: 890-3486-23

Prepared

or Analyzed

11/23/22 14:51

11/24/22 10:11

11/28/22 16:23

11/22/22 10:43

11/18/22 13:39

11/22/22 03:02

11/17/22 14:43

11/22/22 05:48

Matrix: Solid

Lab

EET MID

Lab Sample ID: 890-3486-22 Matrix: Solid

Matrix: Solid

Client Sample ID: H-5 Date Collected: 11/15/22 00:00

Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	40340	11/23/22 14:51	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40265	11/24/22 10:31	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 16:23	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:43	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39929	11/18/22 13:39	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40028	11/22/22 03:23	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40150	11/22/22 05:54	СН	EET MID

Client Sample ID: H-6 Date Collected: 11/15/22 00:00

Date Received: 11/15/22 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	40340	11/23/22 14:51	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	40265	11/24/22 10:52	EL	EET MID
Total/NA	Analysis	Total BTEX		1			40478	11/28/22 16:23	SM	EET MID
Total/NA	Analysis	8015 NM		1			40186	11/22/22 10:43	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	39929	11/18/22 13:39	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	40028	11/22/22 03:45	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	39831	11/17/22 14:43	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	40150	11/22/22 05:59	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-3486-1 SDG: Lea Co NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	P	rogram	Identification Number	Expiration Date
xas	N	IELAP	T104704400-22-24	06-30-23
The following analytes the agency does not o		out the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for wh
0,		Matrix	Analyte	
Analysis Method	Prep Method	Matrix	Analyte	
0,		Matrix Solid Solid	Analyte Total TPH Total BTEX	

Eurofins Carlsbad

Page 92 of 174

10

Method Summary

Client: NT Global Project/Site: Igloo 19 CTB Job ID: 890-3486-1 SDG: Lea Co NM

lethod	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
00.0	Anions, Ion Chromatography	MCAWW	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
I Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

DG: Lea Co NM

	8
	9
1	1
	3

Eurofins Carlsbad

Sample Summary

Client: NT Global Project/Site: Igloo 19 CTB

	Page	94	of	174
--	------	-----------	----	-----

Job ID: 890-3486-1 SDG: Lea Co NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
390-3486-1	S-1 (0-0.5)	Solid	11/15/22 00:00	11/15/22 16:45	0 - 0.5
390-3486-2	S-1 (1-1.5)	Solid	11/15/22 00:00	11/15/22 16:45	1 - 1.5
390-3486-3	S-1 (2-2.5)	Solid	11/15/22 00:00	11/15/22 16:45	2 - 2.5
390-3486-4	S-1 (3-3.5)	Solid	11/15/22 00:00	11/15/22 16:45	3 - 3.5
390-3486-5	S-1 (4-4.5)	Solid	11/15/22 00:00	11/15/22 16:45	4 - 4.5
390-3486-6	S-2 (0-0.5)	Solid	11/15/22 00:00	11/15/22 16:45	0 - 0.5
390-3486-7	S-2 (1-1.5)	Solid	11/15/22 00:00	11/15/22 16:45	1 - 1.5
390-3486-8	S-2 (2-2.5)	Solid	11/15/22 00:00	11/15/22 16:45	2 - 2.5
390-3486-9	S-2 (3-3.5)	Solid	11/15/22 00:00	11/15/22 16:45	3 - 3.5
390-3486-10	S-2 (4-4.5)	Solid	11/15/22 00:00	11/15/22 16:45	4 - 4.5
390-3486-11	S-2 (5-5.5)	Solid	11/15/22 00:00	11/15/22 16:45	5 - 5.5
390-3486-12	S-3 (0-0.5)	Solid	11/15/22 00:00	11/15/22 16:45	0 - 0.5
390-3486-13	S-3 (1-1.5)	Solid	11/15/22 00:00	11/15/22 16:45	1 - 1.5
390-3486-14	S-3 (2-2.5)	Solid	11/15/22 00:00	11/15/22 16:45	2 - 2.5
390-3486-15	S-3 (3-3.5)	Solid	11/15/22 00:00	11/15/22 16:45	3 - 3.5
390-3486-16	S-3 (4-4.5)	Solid	11/15/22 00:00	11/15/22 16:45	4 - 4.5
390-3486-17	S-3 (5-5.5)	Solid	11/15/22 00:00	11/15/22 16:45	5 - 5.5
390-3486-18	H-1	Solid	11/15/22 00:00	11/15/22 16:45	
390-3486-19	H-2	Solid	11/15/22 00:00	11/15/22 16:45	
390-3486-20	H-3	Solid	11/15/22 00:00	11/15/22 16:45	
390-3486-21	H-4	Solid	11/15/22 00:00	11/15/22 16:45	
390-3486-22	H-5	Solid	11/15/22 00:00	11/15/22 16:45	
390-3486-23	H-6	Solid	11/15/22 00:00	11/15/22 16:45	

.

ENV										Page 1 of 3
Project Manager: G	Gordon Banks			Bill to: (if different)					Work Order	Work Order Comments
	NTG Environmental			Company Name:	œ.			Pr	Program: UST/PST PRP Brownfields RRC	wnfields RRC uperfund
	911 Regional Park Dr	Ŭ,		Address:				St	State of Project:	
te ZIP:	Houston, TX 77060			City, State ZIP:				Re	Reporting:Level II Level III PST/UST	
	281-682-7998		En	Email:				De	Deliverables: EDD ADa	ADaPT D Other:
Name:	laloo 19 CTB	СТВ	-	Turn Around	-			ANALYSIS REQUEST	ST	Preservative Codes
Project Number:	8959EE	8.	マ Routine	P Rush	Pres. Code					None: NO DI Water: H ₂ O
Project Location	Lea Co, NM	, NM	Due Date:							Cool: Cool MeOH: Me
Sampler's Name:	Kellan Smith	Smith	TAT starts	the day received by th	8	IRO				HCL: HC HNO3: HN
PO #			lab, if i	lab, if received by 4:30pm		+ N				H ₂ S0 ₄ : H ₂ NaOH: Na
SAMPLE RECEIPT	T Temp Blank:	9	Yes No Wet Ice:	· Per No	nete					H ₃ PO ₄ : HP
Received Intact:	(Yes	No Tł	Thermometer ID:	Tem and	aran	802	de 4		OLD	NaHSO4: NABIS
Cooler Custody Seals:	Yes No	Ľ	Correction Factor:	10.2	P	-	_			
Sample Custody Seals:	Yes		Temperature Reading:		1				ADA DO DO DO ANA	
Sample Identification		Date	Time Soil	Water Comp	p # of	трн				Sample Comments
S-1 (0-0.5)		15-Nov	×	comp	ір 1	×××	×			
S-1 (1-1.5)		15-Nov	×	comp	p 1	x x	×			
S-1 (2-2.5)		15-Nov	×	comp	1 I	× ×	×			
S-1 (3-3.5)		15-Nov	×	comp	p 1	× ×	×			
S-1 (4-4.5)		15-Nov	×	cdmp	ip 1	× ×	x x			
S-2 (0-0.5)		15-Nov	×	comp	p 1	× ×	< ×			
S-2 (1-1.5)		15-Nov	×	comp	p 1	××	×			
S-2 (2-2 5)		15 Nov	*	comp	-	XX	×			
S-2 (3-3.5)		15-Nov	×	comp	p 1	× ×	×			
S-2 (4-4.5)		15-Nov	×	comp	IP 1	x x	(X			
Addition	Additional Comments:									
Notice: Signature of this doc of service. Xenco will be llal of Xenco. A minimum charg	gnature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractor Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be	ent of samples amples and sh ed to each proj	constitutes a valid pur all not assume any res ect and a charge of \$5	chase order from client ponsibility for any losse for each sample submit	n client company to Xenco, its affiliate ny losses or expenses incurred by the submitted to Xenco, but not analyzed.	enco, its aff incurred by but not analy	illates and su / the client if s yzed. These to	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ms and conditions beyond the control ly negotiated.	
Relinquished by: (by: (Signature)	R	Received by: (Sign	(Signature)	_	Date/Time		Relinquished by: (Signature)) Received by: (Signature)	ture) Date/Time
Mam	_	1 Tore	CMD		11-15	15.221	6452			

Received by OCD: 4/17/2023 3:37:32 PM

13

Chain of Custody

Project Location Les Co. NM Due Date Total Containers Due No Tatasts the day received by 4:30pm BOD# Temp Blank: Yes No Tatasts the day received by 4:30pm Received Intact: Yes No Temp Blank: Yes No Temp Blank: Yes No Sample Custody Seals: Yes No Temporature Reading: Yes No Parameters Sample Custody Seals: Yes N/A Corrected Temperature Reading: Parameters Parameters S-3 (0-0.5) 15-Nov X comportion Educe: comp Cont Parameters S-3 (2-5.5) 15-Nov X comp ont 1 X X comp S-3 (3-5.5) 15-Nov X comp ont 1 X X comp Cont BTEX 80218 TPH 8015M (GRO + DRO + MRO) Khioride 45000 Khioride 45000 Khioride 45000 Khioride 45000 Khioride 45000 K Khioride 45000 Khioride 45000 Khioride 45000 Khioride 45000 K Khioride 45000	Depice Location Lee Co, NM Due Date Sampler S Name: Kellan Smith Tatas the day reserved by 4300m SAMPLE RECEIPT Temp Blank: Yes No Temp Blank: Yes No Coder Custody Seals: Yes No Tempogetup0: Parameters Beceived Inter: Parameters Coder Custody Seals: Yes No Tempogetup0: Parameters Beceived Inter: Parameters Coder Custody Seals: Yes No Tempogetup0: Parameters Beceived Inter: Parameters Sample Custody Seals: Yes No Tempogetup0: Parameters Beter Gomp Cont Sample Custody Seals: Yes No Tempogetup0: Comp Cont Parameters Sample Custody Seals: Yes No Tempogetup0: Comp Cont Parameters Sa (1-1.5) 15-Nov X comp 1 X X X X X X X X X X X X	Project Location Les Co. NM Due Date: Namper's Name Keilan Smith Tat aus the day received by A30pm SAMPLE RECEIPT Temp Blank: Yes No Yes No Revived Intac: Yes No Temp Blank: Yes No Cooler Custody Seals: Yes No Temperature Reading: Parameters Sample Identification Date Time Soil Wate (c) Parameters S3 (0-0.5) 15-Nov X comperature Reading: Soil Wate (c) Parameters S-3 (0-0.5) 15-Nov X comperature Reading: comperature Reading: Parameters S-3 (0-0.5) 15-Nov X comp of the Nov X comp of the Nov X X S-3 (3-3.5) 15-Nov X x comp of the Nov X x X <t< th=""></t<>
Date Time Soil Water Grab 15-Nov X Soin Soin Parame 15-Nov X Soinp 1 Parame X Soinp 1 X Soinp 15-Nov X Soinp 1 Parame X Soinp 1 X Soinp 15-Nov X Soinp 1 X X Soinp 1 <td< th=""><th>Simp Blank: Tres No Thermonetics 23 Correction Factor: 15-Nov 23 23 Correction Factor: 23 Correction Factor: 23 Correction Factor: Vertice: 15-Nov 15-Nov X comp Cont 15-Nov X comp Cont 15-Nov X comp 1 X 15-Nov X comp 1 X X 15-Nov X comp 1 X X X 15-Nov X comp 1 X X X X X 15-Nov X comp 1 X<th>Simp Blankt: Tess Number Solit Tess Number Solit Tess Number Solit Paramatic 23 Correction Eddled: 23 Correction Eddled: Paramatic Paramatic 23 Correction Eddled: Temperature Reading: Paramatic Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 15-Nov X Comp Comp Cont Solit Paramatic 15-Nov X Comp Comp 1 X X Solit 15-Nov X Comp 1 X X X Somp 1 X X X 15-Nov X Comp 1 X X X X X X X X X X X X X X X X X X</th></th></td<>	Simp Blank: Tres No Thermonetics 23 Correction Factor: 15-Nov 23 23 Correction Factor: 23 Correction Factor: 23 Correction Factor: Vertice: 15-Nov 15-Nov X comp Cont 15-Nov X comp Cont 15-Nov X comp 1 X 15-Nov X comp 1 X X 15-Nov X comp 1 X X X 15-Nov X comp 1 X X X X X 15-Nov X comp 1 X <th>Simp Blankt: Tess Number Solit Tess Number Solit Tess Number Solit Paramatic 23 Correction Eddled: 23 Correction Eddled: Paramatic Paramatic 23 Correction Eddled: Temperature Reading: Paramatic Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 15-Nov X Comp Comp Cont Solit Paramatic 15-Nov X Comp Comp 1 X X Solit 15-Nov X Comp 1 X X X Somp 1 X X X 15-Nov X Comp 1 X X X X X X X X X X X X X X X X X X</th>	Simp Blankt: Tess Number Solit Tess Number Solit Tess Number Solit Paramatic 23 Correction Eddled: 23 Correction Eddled: Paramatic Paramatic 23 Correction Eddled: Temperature Reading: Paramatic Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 23 Correction Eddled: X Comperature: Paramatic Paramatic 15-Nov X Comp Comp Cont Solit Paramatic 15-Nov X Comp Comp 1 X X Solit 15-Nov X Comp 1 X X X Somp 1 X X X 15-Nov X Comp 1 X X X X X X X X X X X X X X X X X X
Date Time Soil Water Grap Comp # of Cont # of F 15-Nov X X comp Cont * X X 15-Nov X X comp 1 X X X 15-Nov X X odmp 1 X X X 15-Nov X X	on Date Time Soil Water Grab Comp # of Comp P 15-Nov X comp 1 X X X 15-Nov X X X X X X 15-Nov X X X X <	on Date Time Soil Water Graph Low # of P 15-Nov X comp Comp Comp Comp Comp Comp 15-Nov X comp 11 X X X 15-Nov X comp 1 X X X 1 X X
15-Nov x comp 1 x x 15-Nov x x x x x x 15-Nov x x x x x x </td <td>15-Nov x comp 1 x x 15-Nov x comp 1 x x x 15-Nov x x x x x x 15-Nov x x x x x<</td> <td>15-Nov x comp 1 x x x 15-Nov x x <td< td=""></td<></td>	15-Nov x comp 1 x x 15-Nov x comp 1 x x x 15-Nov x x x x x x 15-Nov x x x x x<	15-Nov x comp 1 x x x 15-Nov x x <td< td=""></td<>
15-Nov x comp 1 x x 15-Nov x x comp 1 x x x 15-Nov x x comp 1 x x x 15-Nov x x comp 1 x x x	15-Nov x comp 1 x x 15-Nov x x comp 1 x x 15-Nov x x x x x	15-Nov x comp 1 x x x 15-Nov x x comp 1 x x x 15-Nov x <td< td=""></td<>
Comments: Comments:	Image: Control Image: Control Image: Control Image: Control Image: Control Image: Control Include Include Include Include Include Include Include Incl	Interview
15-Nov x comp 1 x x) 15-Nov x comp 1 x x x 15-Nov x comp 1 x x x x 15-Nov x x comp 1 x x x x 15-Nov x x comp 1 x x x x 15-Nov x x comp 1 x x x x 15-Nov x x comp 1 x x x x x x 15-Nov x x comp 1 x	Interview Inter
15-Nov x cdmp 1 x x 15-Nov x comp 1 x x 15-Nov x comp 1 x x 15-Nov x comp 1 x x) 15-Nov x cdmp 1 x x x) 15-Nov x cdmp 1 x x x 15-Nov x cdmp 1 x x x x 15-Nov x cdmp 1 x x x 15-Nov x comp 1 x x x 15-Nov x comp 1 x x x 15-Nov x x comp 1 x x x 16-Nov x constitutes avait comp 1 x x </td <td>Interview Interview Inter</td>	Interview Inter
15-Nov x cdmp 1 x x 15-Nov x comp 1 x x	I Comments: comp 1 x x Innent and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractcle is only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is only in the applied to ach project and a charge of \$5 to; each sample submitted to Xenco, but not analyzed. These terms will be applied to the client if such losse	Instruction Image: Second studies Image: Second studies
15-Nov x comp 1 x x 15-Nov x comp 1 x x	15-Nov x comp 1 x x 15-Nov x comp 1 x x x I Comments: I Comments: I Comment and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractories to samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is or expenses incurred by the client if such losse is of any losses or expenses incurred by the client if such losse is of any losses or expenses incurred by the client if such losse is of a charge of \$5 to; each sample submitted to Xenco, but not analyzed. These terms will be only included to Xenco.	15-Nov x comp 1 x x x Comments: Comments: Interview of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors conty for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses or systems in company to Xenco, but not analyzed. These terms will be of \$55.00 will be applied to each project and a charge of \$5 to: each sample submitted to Xenco, but not analyzed. These terms will be of \$55.00 will be applied to each project and a charge of \$5 to: each sample submitted to Xenco, but not analyzed. These terms will be of \$55.00 will be applied to each project and a charge of \$5 to: each sample submitted to Xenco, but not analyzed. These terms will be of \$55.00 will be applied to each project and a charge of \$5 to: each sample submitted to Xenco, but not analyzed. These terms will be applied to each project and a charge of \$5 to: each sample submitted to Xenco. Date/Time Relinque
	I Comments: I ment and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractic is only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losse is of 85.00 will be applied to each project and a charge of \$5 to: each sample submitted to Xenco, but not analyzed. These terms will b	Comments:
	ment and relinquishment of samples constitutes a valid purchase order from client company to Xenco. Its affiliates and subcontract te only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losse of \$85.00 will be applied to each project and a charge of \$5 to: each sample submitted to Xenco, but not analyzed. These terms will b	ment and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontracts a only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses of \$85.00 will be applied to each project and a charge of \$5 to: each sample submitted to Xenco, but not analyzed. These terms will b ionature) Received by: (Sign ature) Date/Time Received by:

Received by OCD: 4/17/2023 3:37:32 PM

11/28/2022

Released to Imaging: 5/16/2023 3:26:07 PM

Page 96 of 174

13

Chain of Custody

Page 3 Instruction Comparent Values and Dr. Comparent Values 000 Enable 1 10 CT Turn Anound 1 10 CT Comparent Turn Anound 1 10 CT Comparent Turn Anound 1 10 CT Comparent Turn A	Page 3 Work Order Comments ritions Preservative Preservative Preservative Preservative Preservative Preservative Preservative None: NO DI Cool: Cool Mathematical Society (Signature) Sample Com NaSO ₃ : NaSO ₃ Zn Accetate+NaOH: - Na NaOH + Ascorbic Acia NaOH + Ascorbic Acia Sample Com Date							171					
Page 3 Work Order Comments T/PST DPRP Brownfields PRC ect: Preservati Preservati ADaPT D Other: Preservati H3PO4; H2 Preservati H43PO4; H2 Nancetate+NaOF Nancetate+NaOF Sample Cc NaOH+Ascorbic A Sample Cc Norrol D Peceived by: (Signature) D	Page 3 Work Order Comments EDD Brownfleids RRC Preservati ADaPT Other: Preservati Preservati Hone: No None: No Sample Cool: Cool: NaHSO4: H2 NaHSO4: NaBIS NaOH+ Ascorbic A Sample Co Notrol D			4				1			~		
Page 3 Work Order Comments T/PST □PRP □srownfields □RRC ect: rei II □ Level III □ PsT/UST □ Preservativ ADaPT □ Other: Preservativ Preservativ H ₂ S0 ₄ : H ₂ H ₃ PO ₄ : HP NaAlSO ₄ : NABIS NaAlSO ₄ : NABIS NaOH+Ascorbic A Sample Cc Sample Cc Sample Cc Norrol D	Page3			2	2	ि घेग		(AL)	(we (MM .		
Page3 Work Order Comments ect: rel II Level III D ADaPT ADaPT Other: Brownfields Preservati Preservati H3P04: H2 H3P04: H2 </td <td>Page 3 Work Order Comments TIPST PRP Brownfleids RRC ect: Preservati ADaPT Other: EDD ADaPT Other: Mone: NO Cool: Cool Cool: Cool Manson Manson Manson Manson Manson Manson Manson Manson Manson Manson Manson</td> <td></td> <td>ure) Received by: (Signa</td> <td>Relinquished by: (Signate</td> <td>me</td> <td>Date/Ti</td> <td>e)</td> <td>veived by: (Signatur</td> <td>NI. Re</td> <td>y: (Signature)</td> <td>Relinquished b</td>	Page 3 Work Order Comments TIPST PRP Brownfleids RRC ect: Preservati ADaPT Other: EDD ADaPT Other: Mone: NO Cool: Cool Cool: Cool Manson Manson Manson Manson Manson Manson Manson Manson Manson Manson Manson		ure) Received by: (Signa	Relinquished by: (Signate	me	Date/Ti	e)	veived by: (Signatur	NI. Re	y: (Signature)	Relinquished b		
Page 3 Program: UST/PST PRP Brownfields PRC State of Project: Reporting:Level III Level III PST/UST PRP Deliverables: EDD ADaPT Other: Other: MALYSIS REQUEST Preservati None: NO Cool: Cool HayDo,: H2 H3PO,: H2 H3PO,: H2 H3PO,: H2 Name: NO Sample Co Sample Co Sample Co	Page3 Work Order Comments Program: UST/PST Project: Reporting:Level III Deliverables: EDD ADaPT Other: NMALYSIS REQUEST Preservati Hayboard Image: State of Project: Reporting:Level III Deliverables: EDD ADAPT Other: Preservati Hypoy: Hp Hypoy: Hp Hypoy: Hp Hypoy: Hp Nane: NO Cool: Cool Cool: Cool Hypoy: Hp Hypoy: Hp Hypoy: Hp Hypoy: Hp NaHSO; NABIS NaOH+Ascorbic A Sample Co Sample Co Hassigns standard terms and conditions		ces beyond the control ously negotiated.	t if such losses are due to circumstan se terms will be enforced unless previ	d by the clien nalyzed. The	xpenses incurre Xenco, but not a	bility for any losses or e ch sample submitted to	not assume any responsi t and a charge of \$5 for ea	of samples and shall pplied to each project	e liable only for the cost harge of \$85.00 will be a	service. Xenco will b Xenco. A minimum c		
Manager TOG Environmental montanes Bills to Latensent Montanes	Margar Control Flank Bill to (uninversity) Margar Control Flank Bill to (uninversity) Margar Monto Commental		terms and conditions	d subcontractors. It assigns standard	affiliates and	any to Xenco, its	order from client comp	onstitutes a valid purchase	shment of samples co	document and relinqui	vtice: Signature of thi		
Marager Ordon Banks Billio, if afferential Billio, if afferential Billio, if afferential Monto of the parameters Page 3 sez.PP Houstion, TX 77000 Enalt Company Name Foregan: USTPS Dep Ibownfladis Def Comments Foregan: USTPS Dep Ibownfladis Def Comments Def Com	Page 3 Page 3 Name Work Order Comments es 11 Regroup Part Dr. Work Order Comments es 11 Regroup Part Dr. Work Order Comments es Page 3 mmm Control Banks Work Order Comments as rep Housen TX/T080 Control Martens Martens Work Order Comments Nummer Colspan="2">Colspan="2">Work Order Comments Nummer Colspan="2">Note of Page Page 3 Nummer Colspan="2">Work Order Comments Nummer Colspan="2">Martens Martens Martens Martens Page 3 Nummer Colspan="2">Colspan="2" Work Order Comments Nummer Colspan="2" Martens Martens LE RECENT Num Normer Colspan="2" Martens <th <="" colspan="2" t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>onal Comments:</td><td>Addit</td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>onal Comments:</td> <td>Addit</td>										onal Comments:	Addit
Manager Cordon Banks Billic, if different Billic, if different Monto Company Name Monto Company Name </td <td>Page 3. Page 3. Name: Not Constants Constants</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[</td> <td></td> <td></td>	Page 3. Page 3. Name: Not Constants								[
Manager Cordon Banks Billtz (Literen) Manager Company Name Monthet Mont	Manager Option Banks Bill IC: (I allward) Monager Work Order Commental Work Order Commental sv Name HT Regional Park Dr. Gommen Kames Monager												
Marager Cordon Banks Bill to (urdewer) Some in the second purpher is the second purpher in the second purpher is the second purpher in the second purpher is the second	The Corror Banks Integration mental Corror Banks Work Order Comments winnger OUTON Banks Entition (untername) Montegration (untername) Work Order Comments server P11 Regional Park Dr. Company Name Company Name Montegration (untername) Work Order Comments server P11 Regional Park Dr. Company Name Company Name Company Name Parameters server P11 Regional Park Dr. Company Name Company Name Montegration (untername) Montegration (untername) Work Order Comments server P21 Regional Park Dr. Converted (untername) Entition (untername) Montegration (untername) Montegration (untername) Montegration (untername) Number P22 State of Park Dr. Numarity Name Parameters Many Vision (untername) Montegration (untername) Ves. Non Numerication (untername) Date of Tampelank: Ves. Non Numerication (untername) Parameters Anna Vision (untername) Montegration (untername) Costado Saas Ves. No No Numerication (untername) Ves. No No No No No <th h<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>											
Namager: Cordon Banks Billity () different Billity () different Manager Manager Montential Work Other Comments se ZIP Houston, TX 77060 Ennalt Circle ZIP Manager Manager Manager Manager Manager Montential Montenial Montential	Page 3 Page 3 Namage: Cortion Banks Introduction of the commental				+	-			Т				
Manager: Control Banks Bill ID: (Laffaren) Vanue. Mit G Environmental Work Order Commental ser: 911 Regional Pan Dr. Company Name: Company Name: More Series Program: USTNST ParP Drownholds ParP sar: P Houston, TX 77080 Email: Tum Around Regional Pan Dr. Email: Program: USTNST ParP Drownholds ParP Nume: 'Lea Co. NM Due Date: Call regramed by the lab. Tum Around Call regramed by the lab. Call regram by the lab. Call regramed by the lab	Page 3 Page 3 Page 10 To Recent Park Dr. 1 <th< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>Т</td><td></td><td></td></th<>				+				Т				
Managen: Cordon Banks Billo, (raineen) Second Banks Mok Order Comments ny Name VTG Environmental Company Name. Company Name. Second Banks Mok Order Comments se 911 Regional Park Dr. Address: Second Banks Mok Order Comments set 2IP: Houston, TX 77060 Email: City, Stale ZIP: Second Project: Second Project: <td< td=""><td>Manage: Corton Banks Bill (z) (reference) Manage: Corton Banks Manage: Corton Fanks Mind (z) (reference) Manage: Manage: Corton Fanks Manage: Corton Fanks Mind (z) (reference) Mind (z) (ref</td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>1</td><td></td><td></td></td<>	Manage: Corton Banks Bill (z) (reference) Manage: Corton Banks Manage: Corton Fanks Mind (z) (reference) Manage: Manage: Corton Fanks Manage: Corton Fanks Mind (z) (reference) Mind (z) (ref				+				1				
Manager: Cordon Banks Bill to: (II different) Imager: Second Panks Manager: Company Name: Imager: Monther:	Page 3 Page 3 Manager Cordon TBniks Billio (reference) Manager Company Name Manager Mont Cercomments Mont Cercomments state ZIP: Houston TX 77060 Email Company Name Page 3 Mont Cercomments Page 3 state ZIP: Houston TX 77060 City, Sala ZIP: City, Sala ZIP: Mont Cercomments Page 3 Number: 291-692.7998 Email Email Turn Acund Page 3 Mont Cercomments Sala Program: USTRT [PRP] Mont Cercomments Sala Program: USTRT [PRP] Mont Cercomments Mont Cercom Mont Cercomments					-	comp	×	15-Nov	6	Ţ		
Manager: Gordon Banks Bill 0; (Lafferent) With C With C <td>Nanage: Cordon Banks Bitto; ((diferent) Image: None: <</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>comp</td> <td>×</td> <td>15-Nov</td> <td>5</td> <td>Ŧ</td>	Nanage: Cordon Banks Bitto; ((diferent) Image: None: <				-	-	comp	×	15-Nov	5	Ŧ		
Marager: Corron Banks Bill to: (I different) Ware Work Order Comments ny Name: MTG Environmental Company Name: Company Name: Work Order Comments s: 911 Regional Park Dr. Address: Company Name: State 2IP: Program: UST/PST [PRP] Program: UST/PST [PRP] <td>marage: Cortion Bank: Bill to: (different) Page 3 Namage: Cortion Bank: Bill to: (different) Bill to: (different)<!--</td--><td></td><td></td><td></td><td>-</td><td></td><td>comp</td><td>×</td><td>15-Nov</td><td>4</td><td>Ŧ</td></td>	marage: Cortion Bank: Bill to: (different) Page 3 Namage: Cortion Bank: Bill to: (different) Bill to: (different) </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>comp</td> <td>×</td> <td>15-Nov</td> <td>4</td> <td>Ŧ</td>				-		comp	×	15-Nov	4	Ŧ		
Marager: Gordon Banks Bill to: (It different) Frage 3 ny Name: NTG Environmental Company Name: Company Name: Work Order Comments sy Name: 911 Regional Park Dr. Address: Company Name: Program: USTPST [PRP]: prownfields [PRC site ZIP: Houston, TX 77060 Email: Image: Cliny, State ZIP: Image: Program: USTPST [PRP]: prownfields [PRC Name: igloo 19 CTB Turn Around Frage State of Project: Reporting: Level III [: DST/UST [:]PRP]: other: Deliverables: EDD [:: Dom: NO Due Date: None: NO Location Lea Co, NM Due Date: Reside by the lab. firreewide by 4300m Frage Marce None: NO Location Lea Co, NM Due Date: Ves. No Context by the day resided by the lab. firreewide by 4300m State of Project: Preservatit None: NO Location Lea Co, NM Due Date: No Context by the day reside by 4300m State if Page/(Page	Nanager: Cordon Banks Bill ID: (Lallween) Nanager: Condon Banks Bill ID: (Lallween) Nanager: Status	Sample Comment			TP	# of Cont	Comp			ntification	Sample Ide		
Manager: Cordon Banks Bill to: (I different) Work Order Comments sy Name: VITG Environmental Company Name: Vork Order Comments sy Name: 911 Regional Park Dr. Address: Program: UST/PST [PRP] Program: US	marage:: GOrdon Banks Bill to: (if afferent) Page3 Marage:: Gordon Banks Bill to: (if afferent) Image:: Company Name: Mont Company Name:	NaOH+Ascorbic Acid: SAH			H 80			ected Temperature:			tal Containers:		
Manager: Gordon Banks Bill to: (I diffeent) Bill to: (I diffeent) Work Order Comments Ny Name: NTG Environmental Company Name: Company Name: Work Order Comments s: 911 Regional Park Dr. Address: Address: Program: UST/PST [PRP] ate ZIP: Houston, TX 77060 Email: Imager: City, State ZIP: Imager: State of Project: Reporting:Level II [Level III] Pstrust [PRP] Name: Igloo 19 CTB Tun Around Free Free Address: Pres Reporting:Level II [Level III] Delverables: EDD] ADaPT] Other: Number: 226,56,37 Ikuth Cade Imager: ANALYSIS REQUEST Preservatin Number: Kellan Smith TAT starts the day received by the lab, if received by 430pm End Imager: None: NO Location Lea Co, NM Die Date: Ves No No enterto: Yes No No enterto: Ves No None: NO Location Lea Co, MM Die Date: Colori Cool Holi,	Page 3 Manager: Cordon Banks Bill to: (Lidiferent) Name: Work Order Comments sy Name: NTG Environmental Company Name: Second Seco	Zn Acetate+NaOH: Zn			_	в		perature Reading:	NIA	Yes	ample Custody Se		
Manager: Gordon Banks Bill to: (# different) Work Order: Comments ny Name: NTG Environmental Company Name: Company Name: Program: UST/PST Duer: Name: Name: No Name: No Name: No Name: No Name: No None: NO None: NO Cool: Cool Ho,PO,: HP Ho,PO,: HP Ho,PO,: HP Ho,PO,: MBIS H	Page 3 Page 3 Manager: Cordon Banks Billio: (if different) Work Order Comments Namager: Cordon Banks Billio: (if different) Work Order Comments sy Name: NTG Environmental Company Name: Work Order Comments sy Name: 911 Regional Park Dr. Address: Program: USTIPST [PRP] Program: USTIPST [PRP] Program: USTIPST [PRP] sate of Project: Program: USTIPST [PRP] Jorownfields RRC sate of Project: Program: USTIPST [PRP] Jorownfields RRC vame: Lea Co. NM Due Date: Preservatin Lea Co. NM Due Date: Preservatin LEa CEIPT Kellan Smith Ture day received by 4:30m Pres. No Analtysis REQUEST Preservatin LE RECEIPT Temp Blank: Yes. No Warther: Yes. No Maneter's No No valuate: Yes. No Warther: Yes. No No No No No Bank: Yes. No Warther: Yes. No No No No No <th< td=""><td></td><td>H</td><td></td><td>-</td><td></td><td></td><td>ection Factor</td><td>NIA</td><td>Yes</td><td>oler Custody Sea</td></th<>		H		-			ection Factor	NIA	Yes	oler Custody Sea		
Manager: Gordon Banks Bill to: (If diffeent) Work Order Comments ny Name: NTG Environmental Company Name: Company Name: Program: UST/PST □PRP Brownfields □RRC s: 911 Regional Park Dr. Address: Frogram: UST/PST □PRP Brownfields □RRC s: 911 Regional Park Dr. City, State ZIP: Image: Program: UST/PST □PRP Brownfields □RRC ate ZIP: Houston, TX 77060 Email: Image: Image: Image: Program: UST/PST □PRP Brownfields □RRC Name: Igloo 19 CTB Tum Around Free Nath Adpress: Deliverables: EDD □ Adpress: Number: 292, 568 Routine Rush Code Pres. None: NO Lea Co, NM Due Date: Program: ust, frecelved by the lab, frecelved by th	Page 3 Manager: Cordon Banks Bill to: (raffeent) Work Order Comments ny Name: NTG Environmental Company Name: Address: Program: UST/PST PRP Program: UST/PST PRP Provintields Program: UST/PST Program: US	_				_		mometer ID:	1	Yes.	eceived Intact:		
Manager: Gordon Banks Bill to: (if different) Image: Gordon Banks Work Order Comments ny Name: NTG Environmental Company Name: Company Name: Program: UST/PST Program:	Page 3 Manager: Gordon Banks Bill to: (f different) Name NTG Environmental Norder Comments ny Name: NTG Environmental Company Name: Company Name: Address: Program: USTPST PRP Informental Frogram: USTPST PRP Informental Frogram: USTPST PRP Informental Program: USTPST PRP Informental Reporting:Level III [Level III [Le							<u>v</u>			AMPLE RECE		
Manager: Gordon Banks Bill to: (if different) With different) Work Order Comments ny Name: NTG Environmental Company Name: Company Name: Program: UST/PST \PRP \Brownfleids \RRC s: 911 Regional Park Dr. Address: Address: Program: UST/PST \PRP \Brownfleids \RRC s: 911 Regional Park Dr. City. State ZIP: City. State ZIP: Program: UST/PST \PRP \Brownfleids \RRC ate ZIP: Houston, TX 77060 Email: Tum Around Program: UST/UST \PRP \Brownfleids \RRC Name: Igloo 19 CTB Tum Around Program: Quine ANALYSIS REQUEST Preservativ Number: 222, 568 Routine Rush Code Mone: NO Location Lea Co, NM Due Date: Q Image Image Q Image Image None: NO State State day received by the Image	Manager. Cordon Banks Bill to: (if different) Name: NTG Environmental Work Order Comments sr. 911 Regional Park Dr. Address: Houston, TX 77060 Company Name: Program: UST/PST [PRP]srownfields [PRC]state of Project: ate ZIP: Houston, TX 77060 City, State ZIP: State of Project: Reporting:Level II [Level III] Evel IIII] Evel IIII] Evel IIII] Evel III] Evel IIII] Evel III] Evel) + N	rs	ed by 4:30pm	lab, if receiv			0 #		
Manager: Gordon Banks Bill to: (if different) Work Order Comments ny Name: NTG Environmental Company Name: Mork Order Comments s: 911 Regional Park Dr. Address: Program: UST/PST □PRP Isrownfields □RRC s: 911 Regional Park Dr. Address: Program: UST/PST □PRP Isrownfields □RRC state ZIP: Houston, TX 77060 Email: Image: Reporting: Level II □ Level III □ Lev	Manager: Cordon Banks Manager: Cordon Banks NTG Environmental Company Name: 911 Regional Park Dr. Address: 911 Regional Park Dr. Address: 1000 19 CTB Email: 1000 19 CTB Turn Around 1000 19 CTB Code 1000 19 CTB Code 100 10 CDB Code 100 10 CDB Code 100 10 COI Code				IRO		ay received by the	TAT starts the d	an Smith	Kelia	ampler's Name:		
Manager: Gordon Banks Bill to: (if different) Bill to: (if different) Work Order Comments ny Name: NTG Environmental Company Name: Company Name: Marager: Work Order Comments s: 911 Regional Park Dr. Address: Address: Frogram: UST/PST PRP Brownfleids RRC state of Project: City, State ZIP: Houston, TX 77060 Email: City, State ZIP: Reporting: Level III Level III PST/UST PRP AdaPT Other: State of Project: Ture Around Manager: Other: Preservativ Preservativ None: NO Number: 2% 5 6 % Routine Rush Pres. ANALYSIS REQUEST Preservativ	Manager: Gordon Banks Bill to: (if different) Name: Name: Name: Manager: Mork Order Comments Nume: NTG Environmental Company Name: Company Name: Address: Mork Order Comments Program: UST/PST PRP Jarownfields RRC s: 911 Regional Park Dr. Address: Address: Image: Image: State of Project: State of Project: State of Project: Reporting:Level III Level III Deliverables: EDD ADaPT Other: Name: Igloo 19 CTB Turn Around Email: Preservatin ANALYSIS REQUEST Preservatin Number: 226, 56, 9 Image: Image)			Due Date:	Co, NM	Lea	oject Location		
Manager: Gordon Banks Gordon Banks Bill to: (if different) Work Order Comments ny Name: NTG Environmental Company Name: Gompany Name: Program: UST/PST PRP brownfields RRC s: 911 Regional Park Dr. Address: Address: Program: UST/PST PRP brownfields RRC stet ziP: Houston, TX 77060 City, State ZiP: City, State ZiP: Reporting:Level II Level III PST/UST PRP 281-682-7998 Email: Email: Program: UST/PSI PRP Program: UST/PSI PRP Name: Igloo 19 CTB Turn Around ANALYSIS REQUEST Preservati	Page 3 Manager: Gordon Banks Bill to: (if different) Work Order Comments ny Name: NTG Environmental Company Name: Company Name: Program: UST/PST [PRP]srownfields [RRC s: 911 Regional Park Dr. Address: Address: Program: UST/PST [PRP]srownfields [RRC s: 914 Regional Park Dr. Address: City, State ZIP: Icity, State ZIP: Program: UST/PST [PRP]srownfields [RRC s: 281-682-7998 Email: City, State ZIP: Deliverables: EDD [ADaPT] Other: Preservati Name: Igloo 19 CTB Turn Around Manager] ANALYSIS REQUEST Preservati					Code		マ Routine	68	5 %c	roject Number:		
Manager: Gordon Banks Bill to: (if different) Work Order Comments ny Name: NTG Environmental Company Name: Company Name: Program: UST/PST PRP srownfleids RRC s: 911 Regional Park Dr. Address: Address: State of Project: ate ZIP: Houston, TX 77060 City, State ZIP: City, State ZIP: Reporting:Level III Level III PST/UST RRP 281-682-7998 Email: Email	Page 3 Sign 1 Manager: Gordon Banks Bill to: (if different) Work Order Comments Ny Name: NTG Environmental Company Name: Company Name: Program: UST/PST PRP Brownfields RRC s: 911 Regional Park Dr. Address: Address: City, State ZIP: Deliverables: EDD AdaPT Cother: 281-682-7998 Email: Email: <td>Preservative Code</td> <td>UEST</td> <td>ANALYSIS REC</td> <td></td> <td></td> <td></td> <td>Turn</td> <td>19 CTB</td> <td>lgloo</td> <td>oject Name:</td>	Preservative Code	UEST	ANALYSIS REC				Turn	19 CTB	lgloo	oject Name:		
Page_3 Gordon Banks Bill to: (if different) Work Order Comments NTG Environmental Company Name: Program: UST/PST \PRP \Brownfields \RRC 911 Regional Park Dr. Address: State of Project: Houston, TX 77060 City, State ZIP: City, State ZIP: Reporting:Level III \Level II \Level II \Level III \Lev	Page 3 Fage 3 Gordon Banks Bill to: (if different) Work Order Comments NTG Environmental Company Name: Work Order S: Program: UST/PST PRP brownfields RRC 911 Regional Park Dr. Address: Address: State of Project: Houston, TX 77060 City, State ZIP: City, State ZIP: Reporting:Level II Level III PST/UST PRP							Email:		281-682-7998	hone:		
Page_3 Gordon Banks Bill to: (if different) Work Order Comments NTG Environmental Company Name: Program: UST/PST \PRP \Brownfields \RRC 911 Regional Park Dr. Address: State of Project:	Page_3 Gordon Banks Bill to: (if different) NTG Environmental Company Name: 911 Regional Park Dr. Address:						City, State ZIP:		60	Houston, TX 770	ity, State ZIP:		
Gordon Banks Bill to: (if different) Work Order Comments NTG Environmental Company Name: Program: UST/PSTPRPBrownfieldsRRC	ENVIRONMENTAL Page 3 Gordon Banks Bill to: (if different) NTG Environmental Company Name:]	State of Project:			-	Address:		rk Dr.	911 Regional Pa	ddress:		
Gordon Banks Bill to: (if different) Work Order Comments	Page 3 of Work Order Comments	RRC	PRP			-	Company Name:		ntal	NTG Environmer	ompany Name:		
Page 3 of	Page 3 of	r Comments	Work Orde				Bill to: (if different)			Gordon Banks	roject Manager:		
	ENVIRONMENTAL	30f									(

Received by OCD: 4/17/2023 3:37:32 PM

Page 97 of 174

5

l

Chain of Custody

13

Login Sample Receipt Checklist

Client: NT Global

Login Number: 3486 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3486-1 SDG Number: Lea Co NM

List Source: Eurofins Carlsbad

Eurofins Carlsbad
Released to Imaging: 5/16/2023 3:26:07 PM

Job Number: 890-3486-1 SDG Number: Lea Co NM

List Source: Eurofins Midland

List Creation: 11/17/22 02:07 PM

Login Sample Receipt Checklist

Client: NT Global

Login Number: 3486 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

January 18, 2023

ETHAN SESSUMS NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND, TX 79706

RE: IGLOO 1A CTB

Enclosed are the results of analyses for samples received by the laboratory on 01/13/23 14:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For: NTG ENVIRONMENTAL

		ETHAN SESSUMS 701 TRADEWINDS BLVD. SU	JITE C	
		MIDLAND TX, 79706 Fax To:		
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 1 (6') (H230205-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	121	% 71.5-13	24						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/16/2023	ND	206	103	200	3.27	
DRO >C10-C28*	<10.0	10.0	01/16/2023	ND	227	114	200	0.813	
EXT DRO >C28-C36	<10.0	10.0	01/16/2023	ND					
Surrogate: 1-Chlorooctane	96.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.9	% 49.1-14	18						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 1 (7') (H230205-02)

BTEX 8021B	mg,	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	92.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 2 (6') (H230205-03)

BTEX 8021B	mg/kg		Analyze	Analyzed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	848	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	85.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 2 (7') (H230205-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	98.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 2 (8') (H230205-05)

BTEX 8021B	mg/kg		Analyze	Analyzed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1840	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 2 (9') (H230205-06)

BTEX 8021B	mg/kg		Analyze	Analyzed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4080	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	83.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 2 (10') (H230205-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	120 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	94.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 2 (11') (H230205-08)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	116 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	126	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 3 (6') (H230205-09)

BTEX 8021B	mg	/kg	Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	87.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		NTG ENVIRONMENTAL ETHAN SESSUMS 701 TRADEWINDS BLVD. S MIDLAND TX, 79706 Fax To:	UITE C	
Received:	01/13/2023		Sampling Date:	01/13/2023
Reported:	01/18/2023		Sampling Type:	Soil
Project Name:	IGLOO 1A CTB		Sampling Condition:	** (See Notes)
Project Number:	226568		Sample Received By:	Shalyn Rodriguez
Project Location:	LEA CO., NM			

Sample ID: TP - 3 (7') (H230205-10)

BTEX 8021B	mg,	/kg	Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2023	ND	2.00	100	2.00	12.4	
Toluene*	<0.050	0.050	01/18/2023	ND	2.03	101	2.00	12.7	
Ethylbenzene*	<0.050	0.050	01/18/2023	ND	1.98	98.8	2.00	13.7	
Total Xylenes*	<0.150	0.150	01/18/2023	ND	6.12	102	6.00	13.4	
Total BTEX	<0.300	0.300	01/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/16/2023	ND	400	100	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2023	ND	191	95.5	200	0.0560	
DRO >C10-C28*	<10.0	10.0	01/17/2023	ND	179	89.4	200	1.63	
EXT DRO >C28-C36	<10.0	10.0	01/17/2023	ND					
Surrogate: 1-Chlorooctane	90.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

	Revised Date 05012020 Rev. 2020 1		σ ·			(0	
Image: Ends Control for the control f			4 2	1440	1-132	7	Jerohve	Shod	\backslash	2 Bral 1	
	Date/Time	Received by: (Signature)	Relinquished by: (Signature)	ate/Time	Da	re)	Received by: (Signatu		y: (Signature)	Relinquished by	
Nonzer Tenne Nonzer Tenne Nonzer Nonzer <td>-</td> <td>d conditions id the control jotiated.</td> <td>subcontractors. It assigns standard terms an If such losses are due to circumstances beyon a terms will be enforced unless previously neg</td> <td>nco, its affiliates and a ncurred by the client int not analyzed. These</td> <td>mpany to Xen or expenses in I to Xenco, bu</td> <td>se order from client co sibility for any losses i ach sample submitted</td> <td>is constitutes a valid purcha shall not assume any respon oject and a charge of \$5 for i</td> <td>uishment of sample st of samples and s applied to each pr</td> <td>document and reling liable only for the co arge of \$85.00 will be</td> <td>Notice: Signature of this of service. Xenco will be of Xenco. A minimum cl</td>	-	d conditions id the control jotiated.	subcontractors. It assigns standard terms an If such losses are due to circumstances beyon a terms will be enforced unless previously neg	nco, its affiliates and a ncurred by the client int not analyzed. These	mpany to Xen or expenses in I to Xenco, bu	se order from client co sibility for any losses i ach sample submitted	is constitutes a valid purcha shall not assume any respon oject and a charge of \$5 for i	uishment of sample st of samples and s applied to each pr	document and reling liable only for the co arge of \$85.00 will be	Notice: Signature of this of service. Xenco will be of Xenco. A minimum cl	
Nume Tenho Bostime Inter or developing Inter or developing Nume Nume Inter or developing Nume Inter or developing Nume Inter or developing Nume Inter or developing Nume Nume Inter or developing Nume Nume Inter or developing Nume Nume Nume Nume Nume Inter or developing Nume								n	inal Comments	Addito	
Numage: Team Sessions Bar LP Cardinal Num Nation Data for a function of the functio				1 1 1			-	-	7'		
NUMBER Tens lessure Bit // deem Mark Numer Numer <td></td> <td>29</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6'</td> <td>1</td>		29							6'	1	
$\label{eq:product} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		X							11'	1	
Numaer Ethan Sessums Bits (r dimension) Company (Name) Manager Manager Ethan Sessums Company (Name) Manager Manager Ethan Sessums Company (Name) Manager Manager Manager Ethan Sessums Company (Name) Manager Manager Ethan Sessums Company (Name) Company (Name) Manager Manager Manager Ethan Sessums Company (Name) Manager Manager Manager Ethan Sessums Mont Oder Commental Mont Oder Commental Manager Manager Manager Manager Manager Manager Manager Manager Ethan Sessums Mont Oder Commental Mont Ode		27							10'	'	
$ \begin{array}{ $		0							9'	1	
Numage: Enral Dessums Balts: if adventily Balts: if adventily Nume: Num		S							8'		
Numeger: Enan Sessums Ball br. or allevent Monoger: Nume Num									2.	71-2	
NUTGE Nork Order No: Mage Image: Ettan Sestims Company Name: Company Name: Nork Order Company Name: Image: Cardistial, New Mexico 88220 Company Name: State of Project: Program: USTPST [PRP [Stowmfields [RR: state Ning List: Program: USTPST [PRP [Stowmfields [RR: state Ning List:									6	72-2	
Nonger: Tenno Sessum Bit for (r deliver) Monger: Work Order No: Mager: ware: HTG Environmental Company Name: Company Name: Program: USTPST PRP Program: USTPST PRP Program: USTPST PRP Program: USTPST PRP State of Project: Program: USTPST PRP State of Project: Reproduct value Due Date: Program: USTPST PRP Non/ Control Comments Program: USTPST PRP Benormates State of Project: Reproduct value Due Date: Program: USTPST PRP None: NO Nume: Topological Tom Date Tor stats the dry newood by new Program: USTPST PRP None: NO Nume: Topological Vec (No) Not for eaching: Due Date: Program: USTPST PRP None: NO Location Compony Name: Thermometer ID Vec (No) None: NO None: NO Location Control (Fallor: Tom program: USTPST PRP None: NO None: NO Location Concelled Tomperature: Dialogical None: NO None: NO None: NO Location Vec (No) No Thermometer ID Concelled No None: NO Nooo: NO Nooo: NO		R							(1)	78-1	
Number Topological Carisbad, New Mexico 88220 Email NCI & alling Uam Page Monger Topological Non Monitor Page Non Monitor Non Monitor <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>1-13-23</td> <td>(6.)</td> <td>-</td>						-	-	1-13-23	(6.)	-	
Numeger: Ethan Sessums Bill b: (I efficient) Company Name: Work Order Comments sy Name: NTG Environmental Company Name: Address: Page Image: Nork Order Comments sy Name: NTG Environmental Company Name: Address: Page Image: Nork Order Comments sy Name: 402 East Wood Avenue. Address: Image: Image: Nork Order Comments sa ZIP: Carlsbad, New Mexico 88220 Email: NTG Mailing List Image: Image: Image: Image: Page Image: Page Image: Page Image: Image: Page Image: Image: Image: Image: Image: Image: Image: Image: Page Image:	ample Comments	0		тр	# of Cont	0		Date	tification	Sample Ider	
NTRONMENTAL Manager. Ethan Sessums Bill to (r) different) Imager. Ethan Sessums Manager. Manager. Ethan Sessums Manager. Manager. Manager. Ethan Sessums Manager. Manager. Manager. Ethan Sessums Manager. Manager. Ethan Sessums Bill to (r) different) Company. Name. Manager. Manager. Ethan Sessums Manager. Manager. Manager. Manager. Ethan Sessums Manager.	PASCOLDIC ACIO, SAF C	NdOHT		H 80		20.20	orrected Temperature:	0	_	Total Containers:	
Warnager: Ethan Sessums Image: Image: <th <="" colspa="2" t<="" td=""><td>According Anid: CADC</td><td></td><td></td><td>15N</td><td></td><td>20.82</td><td>emperature Reading:</td><td>NIA</td><td>Yes</td><td>Sample Custody Sea</td></th>	<td>According Anid: CADC</td> <td></td> <td></td> <td>15N</td> <td></td> <td>20.82</td> <td>emperature Reading:</td> <td>NIA</td> <td>Yes</td> <td>Sample Custody Sea</td>	According Anid: CADC			15N		20.82	emperature Reading:	NIA	Yes	Sample Custody Sea
Warager: Ethan Sessums Marager: Ethan Sessums Name: NTG Environmental Company Name: Company Name: Company Name: Company Name: NTG Environmental Name: NTG Environmental Name: NTG Environmental Numer Company Name: Compa	Ja. INAJUA			(G	_	-0.02	orrection Factor:	NA	Yes	Cooler Custody Seal	
Work Order No: Work Order Comments Manager: Ethan Sessums Bill to: (f effinent) Manager: Company Name: Monte Nt G Environmental None Nt G Environmental	A: NABIS	_		RO -		115	hermometer ID:	No	CD I	Received Intact:	
Marager: Ethan Sessums Bill to: (r affreen) Page Marager: Ethan Sessums Bill to: (r affreen) Image: Company Name: Image: Company Name: Compa	HP	_		+ DR		1-				SAMPLE RECEI	
Manager: Ethan Sessums Bill to: (f different) Image: NTG Environmental Company Name: NTG Environmental Company Name: NTG Environmental Nork Order Comments s: 402 East Wood Avenue. Address: Company Name: Company Name: Project: Project: Project: Project: Project: Page I Nork Order Commental Project:		112004-		-	ers	indre't fa nar				PO #	
Namager: Ethan Sessums Bill to: (# different) Page 1 Manager: Ethan Sessums Bill to: (# different) Image: Company Name: NIG Environmental Session S: 402 East Wood Avenue. Address: Company Name: Company Name: Session Ses		H-SO-		MR		tay received by the	TAT starts the	Yr:nX	Fulan	Sampler's Name:	
Manager: Ethan Sessums Bill to: (# different) Page		Cool: C		0)			Due Date:	1	Kento	Project Location	
Manager: Ethan Sessums Bill to: (f different) Page Manager: NTG Environmental Company Name: Company Name: Mark Order Comments s:: 402 East Wood Avenue. Address: State of Project: Program: UST/PST □PRP Brownfields □RRP ate ZIP: Carlsbad, New Mexico 88220 Email: NTG Mailing List City, State ZIP: State of Project: 432-701-2159 Email: NTG Mailing List Email: NTG Mailing List Project: Reporting:Level II □ Level III □ ST/UST □ RRP Name: Togloo If CTB Tum Around AMALYSIS REQUEST Preservati		None: h			Code	Rush	Routine	568	226	Project Number:	
Manager: Ethan Sessums Bill to: (if different) Page Page Manager s:: 402 East Wood Avenue. Gompany Name: Company Name: Maria EziP: Address: Program: UST/PST □PRP Program: UST/PST □PRP Program: UST/PST □PRP State of Project: ate ZIP: Carlsbad, New Mexico 88220 City, State ZIP: City, State ZIP: Page Image: Image	ervati	PI	ANALYSIS REQUEST		D	Around	/ Turn	CT	_	Project Name:	
NTG Environmental Bill to: (# different) Image Mork Order Commental 402 East Wood Avenue. Address: Address: Mork Order Commental 402 East Wood Avenue. Address: State of Project: Peporting:Level II Curvel III Pst/UST Program: UST/PST Reporting:Level III Pst/UST Program: UST/UST	Ouler.		Delivera			NTG Mailing List	Email:		432-701-2159	Phone:	
Image:		LPSI/USI	Reportin			City, State ZIP:		Mexico 88220	Carlsbad, New I	City, State ZIP:	
NTG Environmental Bill to: (If different) Work Order No: 10300 NTG Environmental Company Name: Program: UST/PST □PRP \$rownfields □Rrc		her let	State of			Address:		Avenue.	402 East Wood	Address:	
Ethan Sessums Bill to: (If different) Work Order Comments	1.0	PRP	Program			Company Name:		intal	NTG Environme	Company Name:	
Work Order No: 4303		Work Order Comme				Bill to: (if different)			Ethan Sessums	Project Manager:	
Work Order No: Hy30	F	Pa								(
Work Order No: H230									VIRONMENTA		
Ima	SUQUS	0							TG		
	0000	Ika	100	and the second	11000	0			1		

Received by OCD: 4/17/2023 3:37:32 PM

Page 112 of 174

March 23, 2023

ETHAN SESSUMS NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND, TX 79706

RE: IGLOO 19 CTB

Enclosed are the results of analyses for samples received by the laboratory on 03/20/23 15:34.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	IGLOO 19 CTB 226568 ETHAN SESSUMS	Reported: 23-Mar-23 18:34
--	-----------------	---	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
CS - 1 (10')	H231251-01	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 2 (10')	H231251-02	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 3 (10')	H231251-03	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 4 (10')	H231251-04	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 5 (10')	H231251-05	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 6 (10')	H231251-06	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 7 (10')	H231251-07	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 8 (10')	H231251-08	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 9 (10')	H231251-09	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 10 (10')	H231251-10	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 11 (6')	H231251-11	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 12 (6')	H231251-12	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 13 (6')	H231251-13	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 14 (6')	H231251-14	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 15 (6')	H231251-15	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 16 (6')	H231251-16	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 17 (6')	H231251-17	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 18 (6')	H231251-18	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 19 (6')	H231251-19	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 20 (6')	H231251-20	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 21 (6')	H231251-21	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 22 (6')	H231251-22	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 23 (6')	H231251-23	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 24 (6')	H231251-24	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 25 (6')	H231251-25	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 26 (6')	H231251-26	Soil	20-Mar-23 00:00	20-Mar-23 15:34
CS - 27 (6')	H231251-27	Soil	20-Mar-23 00:00	20-Mar-23 15:34

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706		Project: Project Number: Project Manager: Fax To:		Reported: 23-Mar-23 18:34
SW - 1 (0-10')	H231251-28	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 2 (0-10')	H231251-29	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 3 (0-10')	H231251-30	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 4 (0-10')	H231251-31	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 5 (0-10')	H231251-32	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 6 (0-10')	H231251-33	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 7 (0-10')	H231251-34	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 8 (6-10')	H231251-35	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 9 (6-10')	H231251-36	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 10 (0-6')	H231251-37	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 11 (0-6')	H231251-38	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 12 (0-6')	H231251-39	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 13 (0-6')	H231251-40	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 14 (0-6')	H231251-41	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 15 (0-6')	H231251-42	Soil	20-Mar-23 00:00	20-Mar-23 15:34
SW - 16 (0-6')	H231251-43	Soil	20-Mar-23 00:00	20-Mar-23 15:34

03/23/23 - A typo was made on the project name at login. This is the revised report and will replace the one sent earlier today 03/23/23.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUIT MIDLAND TX, 79706		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:				2	Reported: 23-Mar-23 18:34			
				- 1 (10' 251-01 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	144		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			108 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			97.9 %	48.2	-134	3032127	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			102 %	49.1	-148	3032127	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C	Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 2 (10') 251-02 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	240		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	PID)		106 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			93.8 %	48.2	-134	3032127	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			96.3 %	49.1	-148	3032127	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 3 (10' 251-03 (Se	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	112		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P.	ID)		106 %	71.5	-134	3032135	JH/	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			88.9 %	48.2	-134	3032127	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			90.2 %	49.1	-148	3032127	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 4 (10') 251-04 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds Chloride	80.0		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound		8021	10.0		·	0002221		22 1114 20	1000 01 2		
Benzene*	<0.050	0021	0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	ID)		107 %	71.5	-134	3032135	JH/	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032127	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			88.4 %	48.2	-134	3032127	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			90.8 %	49.1	-148	3032127	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project Num Project Mana	ber: 226				Reported: 23-Mar-23 18:34		
				- 5 (10') 251-05 (Se						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	96.0		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (PA	ID)		109 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			87.4 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 6 (10') 251-06 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	128		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P.	PID)		107 %	71.5	-134	3032135	JH/	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctane			80.3 %	48.2	-134	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			105 %	49.1	-148	3032130	MS	21-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C	Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 7 (10') 251-07 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
<u>Inorganic Compounds</u> Chloride	128		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Ph	ID)		104 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			89.1 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			112 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

701 TRADEWINDS BLVD. SUITE C Project Number: 226568 23- MIDLAND TX, 79706 Project Manager: ETHAN SESSUMS Fax To:							Reported: 23-Mar-23 18:	34		
				- 8 (10') 251-08 (Se						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	128		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	PID)		106 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			96.8 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			128 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C	Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 9 (10') 251-09 (Se						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	96.0		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		108 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			83.0 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 10 (10 251-10 (Se	,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	112		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P.	PID)		110 %	71.5	-134	3032135	JH/	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctane			93.3 %	48.2	-134	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			120 %	49.1	-148	3032130	MS	21-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. 5 MIDLAND TX, 79706	SUITE C	Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 11 (6') 251-11 (80						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	112		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		107 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			83.8 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 12 (6') 251-12 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	368		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (PI	D)		105 %	71.5	-134	3032135	JH/	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctane			98.1 %	48.2	-134	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			127 %	49.1	-148	3032130	MS	21-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project Num Project Mana	ber: 226				Reported: 23-Mar-23 18:34		
				- 13 (6' 251-13 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	352		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		109 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			92.4 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			122 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C	Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 14 (6' 251-14 (80						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds Chloride	160		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		105 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			93.0 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			121 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project Num Project Mana	ber: 226				Reported: 23-Mar-23 18:34		
				- 15 (6') 251-15 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	192		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	(D)		108 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			92.3 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			119 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project Num Project Mana	ber: 226				Reported: 23-Mar-23 18:34		
				- 16 (6' 251-16 (Se	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	240		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		107 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			91.7 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			119 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. 5 MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 17 (6) 251-17 (80							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	144		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (PL	D)		107 %	71.5	-134	3032135	JH/	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctane			93.3 %	48.2	-134	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			120 %	49.1	-148	3032130	MS	21-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 18 (6') 251-18 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	192		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	ls by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		110 %	71.5	-134	3032135	JH/	22-Mar-23	8021B		
Petroleum Hydrocarbons by	y GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctane			85.5 %	48.2	-134	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	3032130	MS	21-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. S MIDLAND TX, 79706	SUITE C		Project Num Project Mana Fax	ber: 226	ian sessui			2	Reported: 3-Mar-23 18:	34
				251-19 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds Chloride	192		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (PIL))		110 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			88.7 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			114 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project Num Project Mana	ber: 226				Reported: 23-Mar-23 18:34		
				- 20 (6') 251-20 (Se	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	144		16.0	mg/kg	4	3032224	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032135	JH/	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		107 %	71.5	-134	3032135	JH/	22-Mar-23	8021B	
<u>Petroleum Hydrocarbons by</u>	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctane			88.0 %	48.2	-134	3032130	MS	21-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3032130	MS	21-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 21 (6' 251-21 (80							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	192		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	QM-07	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЈН	22-Mar-23	8021B	QM-07	
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		109 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctane			72.2 %	48.2	-134	3032130	MS	21-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			92.9 %	49.1	-148	3032130	MS	21-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 22 (6') 251-22 (80							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	208		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		107 %	71.5	-134	3032141	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			82.9 %	48.2	-134	3032130	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			112 %	49.1	-148	3032130	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 23 (6') 251-23 (80							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	144		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЈН	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (PI	D)		108 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			79.5 %	48.2	-134	3032130	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			104 %	49.1	-148	3032130	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 24 (6') 251-24 (Se	, ,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	144		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЈН	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (PA	ID)		108 %	71.5	-134	3032141	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032130	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			77.0 %	48.2	-134	3032130	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			101 %	49.1	-148	3032130	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 25 (6' 251-25 (80	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	144		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	ID)		107 %	71.5	-134	3032141	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			91.8 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			107 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:					Reported: 23-Mar-23 18:34			
				- 26 (6' 251-26 (80						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	192		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	PID)		109 %	71.5	-134	3032141	JH	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			96.0 %	48.2	-134	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			110 %	49.1	-148	3032131	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SU MIDLAND TX, 79706	JITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To: CS - 27 (6')					Reported: 23-Mar-23 18:34		
			H2312	251-27 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	176		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compounds b	y EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID)	Surrogate: 4-Bromofluorobenzene (PID)		108 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			92.4 %	48.2	-134	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			108 %	49.1	-148	3032131	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:					Reported: 23-Mar-23 18:34			
				- 1 (0-1(251-28 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	80.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЈН	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	PID)		108 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			92.0 %	48.2	-134	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			107 %	49.1	-148	3032131	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				2 (0-10 251-29 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	32.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	Surrogate: 4-Bromofluorobenzene (PID)		109 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane	Surrogate: 1-Chlorooctane			48.2-134		3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			114 %	49.1	-148	3032131	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				3 (0-10 251-30 (So	,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds Chloride	48.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	ID)		108 %	71.5	-134	3032141	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			102 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			119 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project Num Project Mana		Reported: 23-Mar-23 18:34					
				- 4 (0-10 251-31 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	80.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		107 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			122 %	49.1	-148	3032131	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 5 (0-10 251-32 (Se	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	80.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	D)		109 %	71.5	-134	3032141	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			98.4 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			115 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project Num Project Mana		Reported: 23-Mar-23 18:34					
				- 6 (0-1(251-33 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	80.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	JH	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		108 %	71.5	-134	3032141	ЈН	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			91.9 %	48.2	-134	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			107 %	49.1	-148	3032131	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 7 (0-10 251-34 (So	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds Chloride	64.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		108 %	71.5	-134	3032141	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			85.8 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			99.8 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				· 8 (6-1(251-35 (8e	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	64.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	ID)		108 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			88.7 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			103 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				· 9 (6-10 251-36 (So	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	80.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P.	ID)		107 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			93.1 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				· 10 (0-6 251-37 (Se	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds Chloride	80.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
			10.0	iiig/kg	4	5052225	AC	22-Wai-23	4300-СІ-В		
Volatile Organic Compound		8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЈН	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		108 %	71.5	-134	3032141	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	y GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			86.4 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			101 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 11 (0-6 251-38 (86	<i>,</i>						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	64.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	ID)		108 %	71.5	-134	3032141	ЛН	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			97.3 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				· 12 (0-6 251-39 (Se	<i>,</i>						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	32.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032141	JH	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032141	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		108 %	71.5	-134	3032141	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			88.6 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			103 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				- 13 (0-6 251-40 (Se	,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds Chloride	64.0		16.0	mg/kg	4	3032225	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	ls by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032213	JH/	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032213	JH/	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032213	JH/	22-Mar-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032213	JH/	22-Mar-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3032213	JH/	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		104 %	71.5	-134	3032213	JH/	22-Mar-23	8021B		
Petroleum Hydrocarbons by	y GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			99.5 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			116 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	. SUITE C		Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						Reported: 23-Mar-23 18:34		
				· 14 (0-6 251-41 (86	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds Chloride	64.0		16.0	mg/kg	4	3032226	AC	22-Mar-23	4500-Cl-B		
Volatile Organic Compound	is by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3032142	JH	22-Mar-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3032142	JH	22-Mar-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032142	JH	22-Mar-23	8021B	QM-07	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032142	ЛН	22-Mar-23	8021B	QM-07	
Total BTEX	< 0.300		0.300	mg/kg	50	3032142	ЛН	22-Mar-23	8021B		
Surrogate: 4-Bromofluorobenzene (F	PID)		110 %	71.5	-134	3032142	JH	22-Mar-23	8021B		
Petroleum Hydrocarbons by	y GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctane			95.4 %	48.2	-134	3032131	MS	22-Mar-23	8015B		
Surrogate: 1-Chlorooctadecane			111 %	49.1	-148	3032131	MS	22-Mar-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	LVD. SUITE C Project Number: 226568						Reported: 23-Mar-23 18:34			
				- 15 (0-6 251-42 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds Chloride	32.0		16.0	mg/kg	4	3032226	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compounds		8021	1010	00						
Benzene*	< 0.050		0.050	mg/kg	50	3032142	ЛН	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032142	ЛН	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032142	ЈН	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032142	ЛН	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032142	JH	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		122 %	71.5	-134	3032142	ЛН	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			97.2 %	48.2	-134	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			114 %	49.1	-148	3032131	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C	Project: IGLOO 19 CTB E C Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:						2	Reported: 23-Mar-23 18:	34
				· 16 (0-6 251-43 (Se	<i>`</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3032226	AC	22-Mar-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3032142	ЛН	22-Mar-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3032142	JH	22-Mar-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3032142	JH	22-Mar-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3032142	JH	22-Mar-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3032142	ЛН	22-Mar-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	ID)		112 %	71.5	-134	3032142	JH	22-Mar-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctane			93.6 %	48.2	-134	3032131	MS	22-Mar-23	8015B	
Surrogate: 1-Chlorooctadecane			108 %	49.1	-148	3032131	MS	22-Mar-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	IGLOO 19 CTB 226568 ETHAN SESSUMS	Reported: 23-Mar-23 18:34
--	-----------------	---	------------------------------

Inorganic Compounds - Quality Control

		Cardir	1al Lab	oratories						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3032224 - 1:4 DI Water										
Blank (3032224-BLK1)				Prepared &	Analyzed:	22-Mar-23				
Chloride	ND	16.0	mg/kg							
LCS (3032224-BS1)				Prepared &	Analyzed:	22-Mar-23				
Chloride	448	16.0	mg/kg	400		112	80-120			
LCS Dup (3032224-BSD1)				Prepared &	Analyzed:	22-Mar-23				
Chloride	448	16.0	mg/kg	400		112	80-120	0.00	20	
Batch 3032225 - 1:4 DI Water										
Blank (3032225-BLK1)				Prepared &	Analyzed:	22-Mar-23				
Chloride	ND	16.0	mg/kg							
LCS (3032225-BS1)				Prepared &	Analyzed:	22-Mar-23				
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (3032225-BSD1)				Prepared &	Analyzed:	22-Mar-23				
Chloride	448	16.0	mg/kg	400	•	112	80-120	3.64	20	
Batch 3032226 - 1:4 DI Water										
Blank (3032226-BLK1)				Prepared &	Analyzed:	22-Mar-23				
Dialik (5052220-DEIKI)										
Chloride	ND	16.0	mg/kg							
	ND	16.0	mg/kg	Prepared &	Analyzed:	22-Mar-23				

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project: IGLOO 19 CTB Project Number: 226568 Project Manager: ETHAN SESSUMS Fax To:	Reported: 23-Mar-23 18:34
	Inorganic Compounds - Quality Contro Cardinal Laboratories	ol

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3032226 - 1:4 DI Water										
LCS Dup (3032226-BSD1)				Prepared &	z Analyzed:	22-Mar-23				
Chloride	432	16.0	mg/kg	400		108	80-120	0.00	20	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	IGLOO 19 CTB 226568 ETHAN SESSUMS	Reported: 23-Mar-23 18:34
--	-----------------	---	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3032135 - Volatiles										
Blank (3032135-BLK1)				Prepared: 2	1-Mar-23 A	Analyzed: 2	2-Mar-23			
Benzene	ND	0.050	mg/kg	1		2				
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0509		mg/kg	0.0500		102	71.5-134			
LCS (3032135-BS1)				Prepared: 2	21-Mar-23 A	Analyzed: 2	2-Mar-23			
Benzene	2.05	0.050	mg/kg	2.00		102	81.4-118			
Toluene	2.09	0.050	mg/kg	2.00		104	88.7-121			
Ethylbenzene	2.12	0.050	mg/kg	2.00		106	86.1-120			
m,p-Xylene	4.34	0.100	mg/kg	4.00		109	88.2-124			
o-Xylene	2.07	0.050	mg/kg	2.00		104	84.9-118			
Total Xylenes	6.41	0.150	mg/kg	6.00		107	87.3-122			
Surrogate: 4-Bromofluorobenzene (PID)	0.0507		mg/kg	0.0500		101	71.5-134			
LCS Dup (3032135-BSD1)				Prepared: 2	21-Mar-23 A	Analyzed: 2	2-Mar-23			
Benzene	1.96	0.050	mg/kg	2.00		97.9	81.4-118	4.55	15.8	
Toluene	2.07	0.050	mg/kg	2.00		104	88.7-121	0.877	15.9	
Ethylbenzene	2.05	0.050	mg/kg	2.00		102	86.1-120	3.46	16	
m,p-Xylene	4.15	0.100	mg/kg	4.00		104	88.2-124	4.45	16.2	
o-Xylene	1.96	0.050	mg/kg	2.00		97.9	84.9-118	5.61	16.7	
Total Xylenes	6.11	0.150	mg/kg	6.00		102	87.3-122	4.82	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0482		mg/kg	0.0500		96.5	71.5-134			

Batch 3032141 - Volatiles

Blank (3032141-BLK1)			Prepared: 21-Mar-23 Analyzed: 22-Mar-23
Benzene	ND	0.050	mg/kg
Toluene	ND	0.050	mg/kg
Ethylbenzene	ND	0.050	mg/kg
Total Xylenes	ND	0.150	mg/kg

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

٦

Analytical Results For:

NTG ENVIRONMENTALProject:IGLOO 19 CTB701 TRADEWINDS BLVD. SUITE CProject Number:226568MIDLAND TX, 79706Project Manager:ETHAN SESSUMSFax To:Fax To:Fax To:	Reported: 23-Mar-23 18:34
---	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Carumai Laboratories	Cardinal	l Laboratori	es
----------------------	----------	--------------	----

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3032141 - Volatiles										
Blank (3032141-BLK1)				Prepared: 2	21-Mar-23 /	Analyzed: 2	22-Mar-23			
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0541		mg/kg	0.0500		108	71.5-134			
LCS (3032141-BS1)				Prepared: 2	21-Mar-23 A	Analyzed: 2	22-Mar-23			
Benzene	2.11	0.050	mg/kg	2.00		106	81.4-118			
Toluene	2.13	0.050	mg/kg	2.00		106	88.7-121			
Ethylbenzene	2.22	0.050	mg/kg	2.00		111	86.1-120			
m,p-Xylene	4.59	0.100	mg/kg	4.00		115	88.2-124			
o-Xylene	2.23	0.050	mg/kg	2.00		112	84.9-118			
Total Xylenes	6.82	0.150	mg/kg	6.00		114	87.3-122			
Surrogate: 4-Bromofluorobenzene (PID)	0.0517		mg/kg	0.0500		103	71.5-134			
LCS Dup (3032141-BSD1)				Prepared: 2	21-Mar-23 /	Analyzed: 2	22-Mar-23			
Benzene	2.08	0.050	mg/kg	2.00		104	81.4-118	1.40	15.8	
Toluene	2.11	0.050	mg/kg	2.00		105	88.7-121	1.09	15.9	
Ethylbenzene	2.20	0.050	mg/kg	2.00		110	86.1-120	1.04	16	
m,p-Xylene	4.56	0.100	mg/kg	4.00		114	88.2-124	0.696	16.2	
p-Xylene	2.17	0.050	mg/kg	2.00		109	84.9-118	2.73	16.7	
Total Xylenes	6.73	0.150	mg/kg	6.00		112	87.3-122	1.36	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0520		mg/kg	0.0500		104	71.5-134			
Batch 3032142 - Volatiles										
Blank (3032142-BLK1)				Prepared: 2	21-Mar-23 A	Analyzed: 2	22-Mar-23			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0618		mg/kg	0.0500		124	71.5-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	IGLOO 19 CTB 226568 ETHAN SESSUMS	Reported: 23-Mar-23 18:34
--	-----------------	---	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3032142 - Volatiles										
LCS (3032142-BS1)				Prepared: 2	21-Mar-23 /	Analyzed: 2	23-Mar-23			
Benzene	2.22	0.050	mg/kg	2.00		111	81.4-118			
Toluene	2.32	0.050	mg/kg	2.00		116	88.7-121			
Ethylbenzene	2.45	0.050	mg/kg	2.00		122	86.1-120			BS-
m,p-Xylene	5.10	0.100	mg/kg	4.00		127	88.2-124			BS-
o-Xylene	2.53	0.050	mg/kg	2.00		127	84.9-118			BS-
Total Xylenes	7.63	0.150	mg/kg	6.00		127	87.3-122			BS-
Surrogate: 4-Bromofluorobenzene (PID)	0.0549		mg/kg	0.0500		110	71.5-134			
LCS Dup (3032142-BSD1)				Prepared: 2	21-Mar-23 A	Analyzed: 2	22-Mar-23			
Benzene	2.18	0.050	mg/kg	2.00		109	81.4-118	1.78	15.8	
Toluene	2.31	0.050	mg/kg	2.00		116	88.7-121	0.470	15.9	
Ethylbenzene	2.48	0.050	mg/kg	2.00		124	86.1-120	1.52	16	BS-
m,p-Xylene	5.14	0.100	mg/kg	4.00		129	88.2-124	0.968	16.2	BS-
o-Xylene	2.58	0.050	mg/kg	2.00		129	84.9-118	1.66	16.7	BS-
Total Xylenes	7.72	0.150	mg/kg	6.00		129	87.3-122	1.20	16.3	BS-
Surrogate: 4-Bromofluorobenzene (PID)	0.0610		mg/kg	0.0500		122	71.5-134			

Blank (3032213-BLK1)				Prepared & Analyz	zed: 22-Mar-23	3	
Benzene	ND	0.050	mg/kg				
Toluene	ND	0.050	mg/kg				
Ethylbenzene	ND	0.050	mg/kg				
Total Xylenes	ND	0.150	mg/kg				
Total BTEX	ND	0.300	mg/kg				
Surrogate: 4-Bromofluorobenzene (PID)	0.0530		mg/kg	0.0500	106	71.5-134	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	IGLOO 19 CTB 226568 ETHAN SESSUMS	Reported: 23-Mar-23 18:34
--	-----------------	---	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3032213 - Volatiles										
LCS (3032213-BS1)				Prepared &	Analyzed:	22-Mar-23	;			
Benzene	2.08	0.050	mg/kg	2.00		104	81.4-118			
Toluene	2.13	0.050	mg/kg	2.00		107	88.7-121			
Ethylbenzene	2.14	0.050	mg/kg	2.00		107	86.1-120			
m,p-Xylene	4.35	0.100	mg/kg	4.00		109	88.2-124			
o-Xylene	2.03	0.050	mg/kg	2.00		101	84.9-118			
Total Xylenes	6.38	0.150	mg/kg	6.00		106	87.3-122			
Surrogate: 4-Bromofluorobenzene (PID)	0.0514		mg/kg	0.0500		103	71.5-134			
LCS Dup (3032213-BSD1)				Prepared &	Analyzed:	22-Mar-23	;			
Benzene	1.97	0.050	mg/kg	2.00		98.7	81.4-118	5.36	15.8	
Toluene	2.06	0.050	mg/kg	2.00		103	88.7-121	3.51	15.9	
Ethylbenzene	2.04	0.050	mg/kg	2.00		102	86.1-120	4.63	16	
m,p-Xylene	4.21	0.100	mg/kg	4.00		105	88.2-124	3.37	16.2	
o-Xylene	2.02	0.050	mg/kg	2.00		101	84.9-118	0.487	16.7	
Total Xylenes	6.23	0.150	mg/kg	6.00		104	87.3-122	2.44	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0496		mg/kg	0.0500		99.2	71.5-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	IGLOO 19 CTB 226568 ETHAN SESSUMS	Reported: 23-Mar-23 18:34
--	-----------------	---	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal	Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3032127 - General Prep - Organics										
Blank (3032127-BLK1)				Prepared &	& Analyzed:	21-Mar-23	3			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	55.9		mg/kg	50.0		112	48.2-134			
Surrogate: 1-Chlorooctadecane	60.4		mg/kg	50.0		121	49.1-148			
LCS (3032127-BS1)				Prepared &	& Analyzed:	21-Mar-23	3			
GRO C6-C10	156	10.0	mg/kg	200		78.2	78.5-124			BS-3
DRO >C10-C28	158	10.0	mg/kg	200		79.0	72.5-126			
Total TPH C6-C28	314	10.0	mg/kg	400		78.6	77.6-123			
Surrogate: 1-Chlorooctane	48.7		mg/kg	50.0		97.5	48.2-134			
Surrogate: 1-Chlorooctadecane	54.0		mg/kg	50.0		108	49.1-148			
LCS Dup (3032127-BSD1)				Prepared &	& Analyzed:	21-Mar-23	3			
GRO C6-C10	177	10.0	mg/kg	200		88.4	78.5-124	12.3	17.7	
DRO >C10-C28	187	10.0	mg/kg	200		93.3	72.5-126	16.7	21	
Total TPH C6-C28	363	10.0	mg/kg	400		90.9	77.6-123	14.5	18.5	
Surrogate: 1-Chlorooctane	53.5		mg/kg	50.0		107	48.2-134			
Surrogate: 1-Chlorooctadecane	62.5		mg/kg	50.0		125	49.1-148			
Batch 3032130 - General Prep - Organics										
DLL (2022) 20 DI 1/1)				D 10	A 1 1.	21.24				

Blank (3032130-BLK1)	Prepared & Analyzed: 21-Mar-23							
GRO C6-C10	ND	10.0	mg/kg					
DRO >C10-C28	ND	10.0	mg/kg					
EXT DRO >C28-C36	ND	10.0	mg/kg					
Surrogate: 1-Chlorooctane	47.5		mg/kg	50.0	95.1	48.2-134		
Surrogate: 1-Chlorooctadecane	62.5		mg/kg	50.0	125	49.1-148		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	IGLOO 19 CTB 226568 ETHAN SESSUMS	Reported: 23-Mar-23 18:34
--	-----------------	---	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Carumai Laboratories	Cardinal	Laboratories
----------------------	----------	--------------

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3032130 - General Prep - Organics										
LCS (3032130-BS1)				Prepared &	Analyzed:	21-Mar-23	3			
GRO C6-C10	166	10.0	mg/kg	200		83.2	78.5-124			
DRO >C10-C28	195	10.0	mg/kg	200		97.4	72.5-126			
Total TPH C6-C28	361	10.0	mg/kg	400		90.3	77.6-123			
Surrogate: 1-Chlorooctane	48.8		mg/kg	50.0		97.6	48.2-134			
Surrogate: 1-Chlorooctadecane	63.1		mg/kg	50.0		126	49.1-148			
LCS Dup (3032130-BSD1)				Prepared &	Analyzed:	21-Mar-23	3			
GRO C6-C10	165	10.0	mg/kg	200		82.3	78.5-124	1.09	17.7	
DRO >C10-C28	184	10.0	mg/kg	200		91.9	72.5-126	5.83	21	
Total TPH C6-C28	348	10.0	mg/kg	400		87.1	77.6-123	3.62	18.5	
Surrogate: 1-Chlorooctane	46.2		mg/kg	50.0		92.4	48.2-134			
Surrogate: 1-Chlorooctadecane	58.8		mg/kg	50.0		118	49.1-148			
Batch 3032131 - General Prep - Organics										
Blank (3032131-BLK1)				Prepared: 2	21-Mar-23 A	Analyzed: 2	22-Mar-23			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	59.2		mg/kg	50.0		118	48.2-134			
Surrogate: 1-Chlorooctadecane	70.2		mg/kg	50.0		140	49.1-148			
Surroguie. I Chiorobeluueeune				Prepared: 2	21-Mar-23 A	Analyzed: 2	23-Mar-23			
LCS (3032131-BS1)						04.0	78.5-124			
	170	10.0	mg/kg	200		84.9	/0.3-124			
LCS (3032131-BS1)	170 184	10.0 10.0	mg/kg mg/kg	200 200		84.9 92.1	72.5-126			
LCS (3032131-BS1) GRO C6-C10			00							
LCS (3032131-BS1) GRO C6-C10 DRO >C10-C28	184	10.0	mg/kg	200		92.1	72.5-126			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	IGLOO 19 CTB 226568 ETHAN SESSUMS	Reported: 23-Mar-23 18:34
--	-----------------	---	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3032131 - General Prep - Organics										
LCS Dup (3032131-BSD1)				Prepared: 2	21-Mar-23 A	Analyzed: 2	2-Mar-23			
GRO C6-C10	157	10.0	mg/kg	200		78.7	78.5-124	7.62	17.7	
DRO >C10-C28	164	10.0	mg/kg	200		81.8	72.5-126	11.9	21	
Total TPH C6-C28	321	10.0	mg/kg	400		80.3	77.6-123	9.81	18.5	
Surrogate: 1-Chlorooctane	49.2		mg/kg	50.0		98.5	48.2-134			
Surrogate: 1-Chlorooctadecane	60.3		mg/kg	50.0		121	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Bittle MITG Environmental Company Name: Provide State		Ethan Sessums			Bill to: (if different)	entj	-									Mork O	de	r Cor
402 E Wood Ave Address: Vest Carisbad, MM 8820 Same of Proj Reporting Le Same of Proj Re<		an Sessums G Environmental			Bill to: (if differe Company Na	ent)							7	rogram:	UST/F	TSL	Vork Or	ST PRP bownfields
Instruction Carlsback NM 88220 Email:		E Wood Ave			Address:								S	tate of P	ojec	Ħ		
Iame: Igloo 19 CTB Turn Around Mark Islow Annal Mark Annal Mark Annal Mark Annal Calle of the state Calle of the state Annal Calle of the state Annal Mark Mark Annal Mark Annal	e ZIP:	Isbad, NM 88220			City, State ZI	P:							70	eporting:	eve			III DLevel III DST/UST
anne Igloo 16 CTB Turn Around Pressure		-266-5456		Ema										eliverable	ŝ	EDD [EDD ADaPT
Jumber: 226568 Image: Paulie	Project Name:	Igloo 19 CT	œ	Tu	rn Around						AN	LYSIS	REQUE	EST				
ocation Lee Co. NM Due Date: This status Due Date: This status the day vacued by the bit received by 430pm This status the day vacued by the status in the day vacue in the day vacue in the status in the day vacue in the day vacue in the day vacue in the status in the day vacue in the day vacue in the day vacue in the status in the day vacue in the vacu	Project Number:	226568		Routine	Rush	Co	de .											None: NO
s Name: Kellan Smith TAT starts the day received by 4:30m In BRECEIPT Temperature Consolid (Saga) Yes No. (MA) Temperature Consolid (Saga) Parameters usingly seals: Yes No. (MA) Temperature Solid Water Graph #of custody Seals: Yes No. (MA) Temperature: Solid Water Graph #of Parameters Custody Seals: Yes No. (MA) Temperature: Solid Water Graph #of Parameters CS-1 (10) 3/20/2023 X Comp 11 X X X Image: Solid #of BTEX.8021B CS-2 (10) 3/20/2023 X Comp 11 X	Project Location	Lea Co, NI	A	Due Date:)						-				Cool: Cool
LE RECEIPT Temp Blank: Yes work Wet Ice: (res) No Thermometer ID: d Intact: Yes No (WA) Correction Factor: //3 //3 Parameter ID: custody Seals: Yes No (WA) Correction Factor: //3 Parameter ID: //3 custody Seals: Yes No (WA) Temperature Reading: S. 8 Parameters Parameters custody Seals: Yes No (WA) Temperature Reading: S. 8 Parameters Parameters cs:1(10) 3/20/2023 X Comp Comp 1 X X X I cs:2(10') 3/20/2023 X Comp Comp 1 X X X I cs:4(10') 3/20/2023 X Comp Comp 1 X X X I I cs:5(10) 3/20/2023 X Comp Comp 1 X X I I cs:6(10') 3/20/2023 X Comp 1 X X I I I X X I I I	Sampler's Name:	Kellan Smi	4	TAT starts th lab. if rec	e day received by beived by 4:30pm			MRO						-		_		HCL: HC
Intract: (en) Diam Thermometer ID: (fig) Parameter custody Seals: Ves No Temperature Reading: 2.5.8 Parameter Parameter custody Seals: Ves No Temperature Reading: 2.5.8 Parameter Parameter cs: 1 Temperature Reading: 2.5.8 Parameter Grave Feb cs: 1010 3/20/2023 X Comp Feb Comp Feb cs: 1010 3/20/2023 X Comp Comp 1 X		1	~)			-	0		_							112004-112
under visit of the solution function under under partial solution pa	SAMPLE RECEIPT	Temp Blank:	Yes	No Wet Ice:	Yes No				450								_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Received Intact:	D	1	nometer ID:	01	Para		_	ride									HO NAHSOA: NABIS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample Cristody Seals:		1	erature Reading:	20	1		-	Chlo		_					-	_	Zn Acetate+NaOH: Zn
Sample Identification Date Time Soil Water Graph \mathcal{C} ont \mathcal{E} CS-1(10) 3/20/2023 X Comp 1 X X X I I I I I I I I I X X Comp 1 X X X I I I I X X I I I X X X I I I X X I I I X X X I I I X X I I I X X I I I X X I I I I X X I I I I X X I<	Total Containers:			cted Temperature	52			8015	-		-			_		_		NaOH+Ascorbic Acid: SAPC
CS-1 (10) 3/20/2023 x Comp 1 x x x i i x x i i x x i i x x i i x	Sample Identifica			ie Soil	Water		of	ТРН			_			-				
CS-2 (10) 3/20/2023 x Comp 1 x	CS-1 (10')	3/20/2	023	×	0													
CS-3 (10) 3/20/2023 × Comp 1 ×	CS-2 (10')	3/20/2	023	×	0		-	-	-					-				
CS-4 (10) 3/20/2023 × Comp 1 × × i i × × i i × × i i × × i i × × i i ×	CS-3 (10')	3/20/2	023	×	0		-	-	-									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CS-4 (10')	3/20/2	023	×	C			-								_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CS-5 (10')	3/20/2	023	×	C		_	-	-						-	_		
CS-7 (10') 3/20/2023 x Comp 1 x x x i i i i x x i i i x x x i i i x x x x i i i x x x x i i i x x x i i i x x x i i i x x x i i i i x x x i i i i x x i i i i x x x i i i x x i i i i x x x i i i i x x x i i i i i x x x i i i i i i x x x i i i i i i i i i i	CS-6 (10')	3/20/2	023	×	C		_	-	×						-	_		
CS-8 (10') 3/20/2023 x Comp 1 x x x i i i i x x i i i x x i i i x x x i i i x x x i i i x x x i i i x x x i i i x x i i i x x i i i x x i i i i x x i i i x x i i i x x i i i x x i i i i i x x i	CS-7 (10')	3/20/2	023	×	C									\vdash				
CS-9 (10') 3/20/2023 x Comp 1 x x x i i i i x x i i i x x i i i x x x i i i x x x i i i x x i i i x x i i i x x i i i x x i i i i x x i i i x x i i i i x x i i i i x x i i i i i x x i	CS-8 (10')	3/20/2	023	×	0		-	-						-				
CS-10 (10') 3/20/2023 x Comp 1 x x x Additional Comments:	CS-9 (10')	3/20/2	023	×	C				×									
Additional Comments: pnature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control A minimum charge of \$85,00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. rquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Yull WAR 3-30-33 153-4 2	CS-10 (10')		023	×	0				×		-			\vdash	\vdash			
prature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It ass Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforce rquished by: (Signature) Received by: (Signature) Date/Time Relinquis	Additional	Comments:																
nquished by: (Signature) Received by: (Signature) Date/Time Relinquis	Notice: Signature of this docum of service. Xenco will be liable of Xenco. A minimum charge o	nent and relinquishment of ; only for the cost of sample of \$85.00 will be applied to e	amples const and shall not ach project an	tutes a valid purchase assume any responsi d a charge of \$5 for e	e order from client ibility for any losse ach sample submit	company to) is or expense ited to Xenco.	Xenco, its s incurre , but not a	affiliates d by the c analyzed.	and sub client if su These te		s. It assigns are due to c enforced u	standard ircumstan	terms and es beyon ously neg	d condition d the contr otiated.	<u> </u>			
3 1534	Relinquished by: (Si	ignature)		eived by: (Signa)	lure)					uch losse trms will t		hu ISi			71	Receive	Received by: (Sig	
	142		Rec	and a sound			Dat	e/Time		uch losse: trms will t	inquished	10y.100	aunature	-				Received by: (Signature)

Page 169 of 174

nω	- 76	D	Notice: of servic		20	2		7	0	1		V4-				Total C	Sample	Cooler	Receiv	SAMI	PO #:	Sample	Project	Project	Project	Phone:	City, S	Address:	Compa	Project	
		slinguished h	Signature of this ce. Xenco will be o. A minimum ch	Additi	CS-20 (6')	CS-19 (6')	CS-18 (6')	CS-17 (6')	CS-16 (6')	CS-15 (6')	CS-14 (6')	CS-13 (6')	CS-12 (6')	CS-11 (6')	Sample Identification	Fotal Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT		Sampler's Name:	Project Location	Project Number:	Project Name:		City, State ZIP:	SS:	Company Name:	Project Manager:	
	by: (Signature)	v. (Signature)	document and rel liable only for the large of \$85.00 wil	Additional Comments:) (6')) (6')	3 (6')	7 (6')	6')	6')	(6')	3 (6')	2 (6')	(6')	ntification	-	als: Yes									254-266-5456	Carlsbad, NM 88220	402 E Wood Ave	NTG Environmental	Ethan Sessums	ENVIRONMENTA
(1	1	inquishment of san cost of samples a be applied to each	ents:	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	Date		as No NIA	No	Yes No	Temp Blank:		Kellan Smith	Lea Co, NM	226568	Igloo 19 CTB	56	M 88220	Ave	nmental	sur	VIAL
	Keceived by	Receiv	nples constitute nd shall not ass n project and a		3	3	ω	3	ω	3	3	3	3	3	Time	Correcte	Tempera	Correction Factor:	Thermometer ID:	Yes No											
	tambufuct for na	ed hv: (Signa	s a valid purchasi ume any respons charge of \$5 for e		×	×	×	×	×	×	×	×	×	x	Soil	Corrected Temperature:	Temperature Reading:	in Factor;	neter ID:	Wet Ice:	lab, if rec	TAT starts th	Due Date:	 Routine 	Tu	Email:					
2	Main	hire	e order from cliv ibility for any lou ach sample sub												Water	S	5	-0-	1/3	Xes No	ceived by 4:30	TAT starts the day received by the		Rush	Turn Around	1E	City, State ZIP:	Address:	Company Name	Bill to: (if different)	
		_	ent company sses or expe mitted to Xe		Comp	Grab/ Comp	+	20.0	h	u	No	pm	t by the					ZIP:		Name:	Terent)										
	3.20-	<u>ה</u>	r to Xenco, inses incun nco, but no		-	-	-	1	-	-	-	-	-	1	# of Cont			P	ara	nete	ers			Code							
	22	Date/Time	its affiliate red by the it analyzed		×	×	×	×××	××	× ×	×××	××	××	× ×	т	PH 80	-	BTE)	-		0+1	IRO	0								
	1534	D	s and subc client if su d. These ter		×	×	×	×	×	×	×	×	×	×		1100	-	hlor					,								
4	2	Relin	ontractors. ch losses ar ms will be e															_	_												
	miquistien by: (oignamie)	auished by: (Sian	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.														_	_				_			ANALYSIS REQUEST						
	iature)	afure)	rms and cond s beyond the isly negotiated																		_	_			EQUEST	Delive	Report	State	Progra]
	INC		fitions control d.															_			_	_	_			Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST PRP		
	Neverver by. (orgination)	eived by															_	_	_	_]	ST PRI	Wo	
	- IniAira	e (Signat				-	-	\vdash	-		-				-		-	н	OLD	-		-	_			ADal				rk Order	
	(uia)	ure)					T								0	NaOH	Zn Ace	Na ₂ S ₂ C	NaHSC	H ₃ PO ₄ : HP	H2S04: H2	HCL: HC	Cool: Cool	None: NO	7	ADaPT L			ownfields	Work Order Comments	Pa
T															ample (Ascorbic	Zn Acetate+NaOH: Zn	Na2S2O3: NaSO3	NaHSO4: NABIS	Ŧ	H ₂	C	lool	NO	reserva	Other:	LIRP		RC	onts	Page 2
	Date/ 111	Date/Time													Sample Comments	NaOH+Ascorbic Acid: SAPC	DH: Zn	ω			NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Preservative Codes		Level IV]	SDerfund		

3724	Relinquished by:	20 Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro of service. Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.		SW-3 (0-10')	SW-2 (0-10')	SW-1 (0-10')	CS-27 (6')	CS-26 (6')	CS-25 (6')	CS-24 (6')	CS-23 (6')	CS-22 (6')	CS-21 (6')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #:	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	Company Name:	Project Manager:	(
P	y: (Signature)	document and relinquis liable only for the cost arge of \$85.00 will be a	Additional Comments:	0-10')	0-10')	0-10')	(6')	(6')	(6')	(6')	(6')	(6')	(6')	ntification	_	Yes	Yes	Nes			Ke	Le		Iglo	254-266-5456	Carlsbad, NM 88220	402 E Wood Ave	NTG Environmental	Ethan Sessums	ENVIRONMENTA
Mil	1	shment of sample of samples and s pplied to each pro		3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	3/20/2023	Date	/	NO NIA	NO NIA	No	Temp Blank:		Kellan Smith	Lea Co, NM	226568	Igloo 19 CTB		8220	œ	ntal		
and	Received	s constitutes hall not assur ject and a ch												Time	Corrected	Temperatu	Correction Factor.	Thermometer ID:	Yes No											
ANN A	Received by: (Signature)	a valid purchase ne any responsib arge of \$5 for eac		×	×	×	×	×	×	×	×	×	×	Soil	Corrected Temperature:	Temperature Reading:	Factor:	ter ID:	Wet Ice:	lab, if rece	TAT starts the day received by the	Due Date:	 Routine 	Tun	Email:					
Mar and	/ (aur	order from clier ility for any loss ch sample subm			0	-		-	0				0	Water	Sid	5.8	-0.6	EIL I	Xes No	eived by 4:30pi	day received		Rush	Turn Around		City, State ZIP	Address:	Company Name	Bill to: (if different)	
Cu		nt company ses or experint nitted to Xer		Comp	Comp	Comp	Comp	Comp	Comp	Comp	Comp	Comp	Comp	Grab/ Comp		6	60		No	З	by the					ZIP:		lame:	erent)	
3.20-23	Da	to Xenco, it nses incurre nco, but not		-	-	-	-	1	-	1	1	-	1	# of Cont					nete	rs			Code							
23	Date/Time	s affiliates ad by the c analyzed.		×	x x	××	x x	××	× ×	x x	x x	x x	x x	тр	H 80	100	(GF	-) + N	ARO)	-							
HESI		and subco lient if suc! These term		×	×	×	×	×	×	×	×	×	×			C	hlori	ide 4	500		_									
	Relino	ibcontractors. such losses are terms will be er											_	-						_		_	-							
	linquished by: (Signature)	s. It assigns standard terms and conditions are due to circumstances beyond the control enforced unless previously negotiated.									-				-					-	-			ANA						
	by: (Sigi	tandard te cumstance ess previou																						ANALYSIS REQUEST						
	nature)	rms and co s beyond the sly negotia		-					_	-	-	_	-	-	-						_		-	EQUES	Deli	Rep	Stat	Pro		1
		nditions te control ted.															_				_				Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST PRP		
	Receive														_	_		_			_				EDD	vel II	ect:	ST/PST		
	ed by: (S			$\left - \right $							-			-		-	-	-	-							Level III		RP	Work	
	Received by: (Signature)														17	N			-	Ŧ	T	0	-		ADaPT	LST/UST	1	[]ownfields	Orde" Co	
	-													San	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na2S2O3: NaSO3	NaHSO4: NABIS	H ₃ PO ₄ : HP	H2S04: H2	HCL: HC	Cool: Cool	None: NO	Pre					Work Order Comments	Page
	Da													Sample Comments	corbic A	e+NaOH	NaSO3	NABIS	U					Preservative Codes	Other:	DRP [2.	RC S	co.	ω
	Date/Time	1												mm	cid:	Zn				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	e C		evel IV		SDerfund		역

Page 171 of 174

	2								Page 4 of5
Project Manager: Ethan	Ethan Sessums		Bill to: (if different)					Work Order Comments	ments
	NTG Environmental		Company Name:					Program: UST/PST PRP ownfields	s RC SDerfund
	402 E Wood Ave		Address:						
a ZIP:	Carlsbad, NM 88220		City, State ZIP:					Reporting:Level II Level III ST/UST	
	254-266-5456	Email:	_					Deliverables: EDD ADaPT	Other:
Project Name:	Igloo 19 CTB	Tun	Turn Around				ANALYSIS REQUEST	QUEST	Preservative Codes
Project Number:	226568	Routine	Rush	Pres. Code				Non	None: NO DI Water: H ₂ O
Project Location	Lea Co, NM	Due Date:			,	, 		Coo	Cool: Cool MeOH: Me
Sampler's Name:	Kellan Smith	TAT starts the	TAT starts the day received by the		MRO			HCL	HCL: HC HNO3: HN
PO 弗			eived by 4.30pm	ers	0+	_		H ₂ Si	H ₂ SO ₄ : H ₂ NaOH: Na
SAMPLE RECEIPT	Temp Blank:	Yes No Wet Ice:	Yes No	nete					H ₃ PO ₄ : HP
Received Intact:	Yes No	Thermometer ID:	113	arar				OLD NaH	NaHSO4: NABIS
Cooler Custody Seals:	No	Correction Factor:	-0.100	F	BTE	hlor			Na ₂ S ₂ O ₃ : NaSO ₃
Total Containers	UNAL DAI COL	Corrected Temperature	50.0		015	_		NaO	NaOH+Ascorbic Acid: SAPC
Sample Identification	ion Date	Time Soil	Water Grab/ Comp	# of Cont	трн				Sample Comments
SW-4 (0-10')	3/20/2023	×	Comp		×	×			
SW-5 (0-10')	3/20/2023	×	Comp	1	××	×			
SW-6 (0-10')	3/20/2023	x	Comp	1	× ×	×			
SW-7 (0-10')	3/20/2023	×	Comp	1	××	×			
SW-8 (6-10')	3/20/2023	×	Comp	1	××	×			
5 SW-9 (6-10')	3/20/2023	×	Comp	1	× ×	×			
SW-10 (0-6')	3/20/2023	×	Comp	1	××	×			
SW-11 (0-6')	3/20/2023	×	Comp	1	××	×			
SW-12 (0-6')	3/20/2023	x	Comp	1	× ×	×			
10 SW-13 (0-6')	3/20/2023	×	Comp	1	× ×	×			
Additional Comments:	comments:								
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigner the service. Xence will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to a service. Xenco. A minimum charge of \$55,00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced of Xenco. A minimum charge of \$55,00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced of Xenco. A minimum charge of \$55,00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed.	nt and relinquishment of sample nly for the cost of samples and s i85.00 will be applied to each pro	s constitutes a valid purchase hall not assume any responsib oject and a charge of \$5 for ea	order from client compa bility for any losses or ev ch sample submitted to	any to Xenco, xpenses incur Xenco, but no	its affiliate red by the of analyzed	s and subco client if suc! . These term	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$5.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	t and conditions typond the control negotiated.	
Relinquished by: (Signature)	nature)	Received by: (Signature)	ure) /	D	Date/Time		Relinquished by: (Signature)	ure) Received by: (Signature)	Date/Time
11	11	1111411111	110 AV	2 -1	v	2	~		
1 Sect	AU	March Wall	UN SIN	D.A.	2	1554			

Chain of Custody

	 5/16/2023		
		1.1	

Page 61 of 61

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CAZA OPERATING, LLC	249099
200 N Loraine St	Action Number:
Midland, TX 79701	208507
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved.	5/16/2023