District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Enterprise Field Services, LLC	OGRID: 241602
Contact Name: Thomas Long	Contact Telephone: 505-599-2286
Contact email:tjlong@eprod.com	Incident # (assigned by OCD) nAPP2304533224
Contact mailing address: 614 Reilly Ave, Farmington, NM 87401	

Location of Release Source

Latitude 36.622994

Longitude -107.728619

(NAD 83 in decimal degrees to 5 decimal places)

)

Site Name Schwerdtsferger LS #10A	Site Type Natural Gas Gathering Pipeline
Date Release Discovered: 02/03/2023	Serial Number (<i>if applicable</i>): N/A

Unit Letter	Section	Township	Range	County
D	31	28N	8W	San Juan

Surface Owner: State Federal Tribal Private (Name: BLM

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls): Estimated 10-15 BBLs	Volume Recovered (bbls): None
Natural Gas	Volume Released (Mcf): 0.146 MCF	Volume Recovered (Mcf): None
Other (describe)	Volume/Weight Released (provide units):	Volume/Weight Recovered (provide units)

Cause of Release On February 7, 2023, Enterprise had a release of natural gas and natural gas liquids from the Schwerdtsferger LS #10A pipeline. The pipeline was isolated, depressurized, locked and tagged out. No fire nor injuries occurred. No waterways were affected. Enterprise began repairs and remediation on February 14, 2023 and determine the release reportable per NMOCD regulation due the volume of impacted subsurface soil. Remediation and repairs were completed on February 23, 2023. The final excavation dimensions measured approximately 25 feet long by 15 feet wide by 21 feet deep. A total of 632 cubic yards of hydrocarbon impacted soil was excavated and transported to a New Mexico Oil Conservation Division (NMOCD) approved land farm. A third party closure report is included with this "Final" C-141.

Page 1 of 72

Page 2

Oil Conservation Division

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Title: Senior Environmental Scientist Printed Name: Thomas Long email: <u>tilong@eprod.com</u> Telephone: (505) 599-2286 **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Date: 05/23/2023 Closure Approved by: <u>Nelson Velez</u> Printed Name: Nelson Velez Title: Environmental Specialist – Adv Printed Name:

CLOSURE REPORT

Property:

Schwerdtsferger LS #10A (02/14/23) Unit Letter D, S31 T28N R8W San Juan County, New Mexico

New Mexico EMNRD OCD Incident ID No. NAPP2304533224

May 12, 2023

Ensolum Project No. 05A1226228

Prepared for:

Enterprise Field Services, LLC 614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

Chad D'Aponti Project Scientist

umm

Kyle Summers Senior Managing Geologist

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants

606 South Rio Grande, Suite A | Aztec, NM 87410 | ensolum.com

TABLE OF CONTENTS

1.0	INTRODUCTION 1 1.1 Site Description & Background 1.2 Project Objective	
2.0	CLOSURE CRITERIA 1	I
3.0	SOIL REMEDIATION ACTIVITIES	3
4.0	SOIL SAMPLING PROGRAM	3
5.0	SOIL LABORATORY ANALYTICAL METHODS	ŀ
6.0	SOIL DATA EVALUATION	ŀ
7.0	RECLAMATION AND REVEGETATION	ŀ
8.0	FINDINGS AND RECOMMENDATION	5
9.0	STANDARDS OF CARE, LIMITATIONS, AND RELIANCE. 9.1 9.1 Standard of Care. 9.2 Limitations. 9.3 Reliance.	5

LIST OF APPENDICES

Appendix A –	Figures
	Figure 1: Topographic Map
	Figure 2: Site Vicinity Map
	Figure 3: Site Map with Soil Analytical Results

Appendix B – Siting Figures and Documentation

Figure A: 1.0 Mile Radius Water Well/POD Location Map Figure B: Cathodic Protection Well Recorded Depth to Water Figure C: 300 Foot Radius Watercourse and Drainage Identification Figure D: 300 Foot Radius Occupied Structure Identification Figure E: Water Well and Natural Spring Location Figure F: Wetlands Figure G: Mines, Mills, and Quarries Figure H: 100-Year Flood Plain Map

- Appendix C Executed C-138 Solid Waste Acceptance Form
- Appendix D Photographic Documentation
- Appendix E Regulatory Correspondence
- Appendix F Table 1 Soil Analytical Summary
- Appendix G Laboratory Data Sheets & Chain of Custody Documentation

1.0 INTRODUCTION

1.1 Site Description & Background

Operator:	Enterprise Field Services, LLC / Enterprise Products Operating LLC (Enterprise)
Site Name:	Schwerdtsferger LS #10A (02/14/23) (Site)
NM EMNRD OCD Incident ID No.	NAPP2304533224
Location:	36.622994° North, 107.728619° West Unit Letter D, Section 31, Township 28 North, Range 8 West San Juan County, New Mexico
Property:	United States Bureau of Land Management (BLM)
Regulatory:	New Mexico (NM) Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)

On February 7, 2023, Enterprise discovered a release on the Schwerdtsferger LS #10A pipeline. Enterprise personnel subsequently isolated and locked the pipeline out of service. On February 9, 2023, Enterprise initiated activities to repair the pipeline and remediate potential petroleum hydrocarbon impact. On February 14, 2023, Enterprise determined the release was "reportable" due to the estimated volume of impacted soil. The NM EMNRD OCD was subsequently notified.

A **Topographic Map** depicting the location of the Site is included as **Figure 1**, and a **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

1.2 **Project Objective**

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-site soils to below the applicable NM EMNRD OCD closure criteria.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. Ensolum, LLC (Ensolum) referenced 19.15.29 New Mexico Administrative Code (NMAC), which establishes investigation and abatement action requirements for oil and gas release sites that are subject to reporting and/or corrective action, during the evaluation and remediation of the Site. The appropriate closure criteria for sites are determined using the siting requirements outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC. Ensolum utilized the general site characteristics and information available from NM state agency databases and federal agency geospatial databases to determine the appropriate closure criteria for the Site. Supporting figures and documentation associated with the following Siting bullets are provided in **Appendix B**.

- The NM Office of the State Engineer (OSE) tracks the usage and assignment of water rights and water well installations and records this information in the Water Rights Reporting System (WRRS) database. Water wells and other points of diversion (PODs) are each assigned POD numbers in the database (which is searchable and includes an interactive map). No PODs were identified in the same Public Land Survey System (PLSS) section as the Site or in the adjacent PLSS sections (Figure A, Appendix B).
- Two cathodic protection wells (CPWs) were identified in the NM EMNRD OCD imaging database in adjacent PLSS sections. No CPWs were identified in the same PLSS section as the Site. The CPWs are depicted on **Figure B** (**Appendix B**). Documentation for the cathodic

ENSOLUM

protection well located near the Phillips #2, #3, and #1A well locations indicates a depth to water between 160 feet to 180 feet below grade surface (bgs). This cathodic protection well is located approximately 1 mile southeast of the Site and is 840 feet lower in elevation than the Site. Documentation for the cathodic protection well located near the Phillips #4, #3E, and #800 well locations indicates dampness at approximately 100 feet bgs. This cathodic protection well is located approximately 1.3 miles southeast of the Site and is 499 feet lower in elevation than the Site.

- The Site is located within 300 feet of a NM EMNRD OCD-defined continuously flowing watercourse or significant watercourse (**Figure C**, **Appendix B**).
- The Site is not located within 200 feet of a lakebed, sinkhole, or playa lake.
- The Site is not located within 300 feet of a permanent residence, school, hospital, institution, or church (Figure D, Appendix B).
- No springs, or private domestic freshwater wells used by less than five households for domestic or stock watering purposes were identified within 500 feet of the Site (Figure E, Appendix B).
- No freshwater wells or springs were identified within 1,000 feet of the Site (Figure E, Appendix B).
- The Site is not located within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to New Mexico Statutes Annotated (NMSA) 1978, Section 3-27-3.
- Based on information identified in the U.S. Fish & Wildlife Service National Wetlands Inventory Wetlands Mapper, the Site is not within 300 feet of a wetland (**Figure F**, **Appendix B**).
- Based on information identified in the NM Mining and Minerals Division's Geographic Information System (GIS) Maps and Mine Data database, the Site is not within an area overlying a subsurface mine (**Figure G**, **Appendix B**).
- The Site is not located within an unstable area per Paragraph (6) of Subsection U of 19.15.2.7 NMAC.
- Based on information provided by the Federal Emergency Management Agency (FEMA) National Flood Hazard Layer (NFHL) geospatial database, the Site is not within a 100-year floodplain (**Figure H**, **Appendix B**).

Based on available information, the applicable closure criteria for soils remaining in place at the Site include:

Tier I Closure Criteria for Soils Impacted by a Release					
Constituent ¹	Method	Limit			
Chloride	EPA 300.0 or SM4500 CI B	600 mg/kg			
TPH (GRO+DRO+MRO) ²	EPA SW-846 Method 8015	100 mg/kg			
BTEX ³	EPA SW-846 Method 8021 or 8260	50 mg/kg			
Benzene	EPA SW-846 Method 8021 or 8260	10 mg/kg			

¹ – Constituent concentrations are in milligrams per kilogram (mg/kg).

² – Total Petroleum Hydrocarbons (TPH). Gasoline Range Organics (GRO). Diesel Range Organics (DRO). Motor Oil/Lube Oil Range Organics (MRO).

³ – Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX).

3.0 SOIL REMEDIATION ACTIVITIES

On February 9, 2023, Enterprise initiated activities to repair the pipeline and remediate petroleum hydrocarbon impact resulting from the release. During the remediation and corrective action activities, Sunland Construction, Inc, provided heavy equipment and labor support, while Ensolum provided environmental consulting support.

The final excavation measured approximately 25 feet long and 15 feet wide at the maximum extents. The maximum depth of the excavation measured approximately 21 feet bgs. The lithology encountered during the completion of remediation activities consisted primarily of silty sand.

Approximately 632 cubic yards (yd³) of petroleum hydrocarbon-affected soils were transported to the Envirotech, Inc., (Envirotech) landfarm near Hilltop, NM for disposal/remediation. The executed C-138 solid waste acceptance form is provided in **Appendix C**. The excavation was backfilled with imported fill and then contoured to the surrounding topography.

Figure 3 is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavation with respect to the pipeline (**Appendix A**). Photographic documentation of the field activities is included in **Appendix D**.

4.0 SOIL SAMPLING PROGRAM

Ensolum field screened the soil samples from the excavation utilizing a calibrated Dexsil PetroFLAG[®] hydrocarbon analyzer system and a photoionization detector (PID) fitted with a 10.6 eV lamp to guide excavation extents.

Ensolum's soil sampling program included the collection of 13 composite soil samples (TS-1 and S-1 through S-12) from the excavation for laboratory analysis. The composite samples were comprised of five aliquots each and represent an estimated 200 square foot (ft^2) sample area or less per guidelines outlined in Section D of 19.15.29.12 NMAC. The excavator bucket was utilized to obtain fresh aliquots from each area of the excavation. Regulatory correspondence is provided in **Appendix E**.

First Sampling Event

On February 16, 2023, sampling was performed at the Site. Composite soil sample TS-1 (8') was collected from the floor of the excavation to evaluate the concentrations of hydrocarbons at the Site. Subsequent soil analytical results identified benzene, total BTEX, and TPH concentrations that exceeded the NM EMNRD OCD closure criteria for the composite soil sample.

Second Sampling Event

In response to the exceedances of composite sample TS-1 during the first sampling event, the excavation was extended. The impacted soils were removed by excavation and transported to the landfarm for disposal/remediation. On February 23, 2023, a second sampling event was performed at the Site. The NM EMNRD OCD was notified of the sampling event although no representative was present during sampling activities. Composite soil samples S-1 (21') and S-2 (21') were collected from the floor of the excavation. Composite soil samples S-3 (0' to 21'), S-4 (0' to 21'), S-5 (0' to 21'), S-6 (0' to 21'), S-7 (0' to 21'), S-8 (0' to 21'), S-9 (0' to 21'), S-10 (0' to 21'), S-11 (0' to 21'), and S-12 (0' to 21') were collected from the walls of the excavation.

All soil samples were collected and placed in laboratory-prepared glassware. The containers were labeled and sealed using the laboratory-supplied labels and custody seals and were stored on ice

in a cooler. The samples were relinquished to the courier for Hall Environmental Analysis Laboratory of Albuquerque, NM, under proper chain-of-custody procedures.

5.0 SOIL LABORATORY ANALYTICAL METHODS

The composite soil samples were analyzed for BTEX using Environmental Protection Agency (EPA) SW-846 Method 8021; TPH GRO/DRO/MRO using EPA SW-846 Method 8015; and chlorides using EPA Method 300.0.

The laboratory analytical results are summarized in **Table 1** (**Appendix F**). The laboratory data sheets and executed chain-of-custody forms are provided in **Appendix G**.

6.0 SOIL DATA EVALUATION

Ensolum compared the benzene, BTEX, TPH, and chloride laboratory analytical results or laboratory practical quantitation limits (PQLs) / reporting limits (RLs) associated with the composite soil samples (S-1 through S-12) to the applicable NM EMNRD OCD closure criteria. The soil associated with composite soil sample TS-1 was removed from the Site, and therefore, the results for TS-1 are not included in the following discussion. The laboratory analytical results are summarized in **Table 1** (**Appendix F**).

- The laboratory analytical results for composite soil samples S-1, S-6, S-10, and S-11 indicate benzene concentrations ranging from 0.018 mg/kg (S-1) to 0.020 mg/kg (S-10 and S-11), which are less than the New Mexico EMNRD OCD closure criteria of 10 mg/kg. The laboratory analytical results for all other composite soil samples collected from soils remaining at the Site indicate benzene is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the NM EMNRD OCD closure criteria of 10 mg/kg.
- The laboratory analytical results for all composite soil samples collected from soils remaining at the Site indicate combined BTEX concentrations ranging from 0.16 mg/kg (S-3) to 0.61 mg/kg (S-10), which are less than the New Mexico EMNRD OCD closure criteria of 50 mg/kg.
- The laboratory analytical results for all composite soil samples collected from soils remaining at the Site indicate combined TPH GRO/DRO/MRO is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the New Mexico EMNRD OCD closure criteria of 100 mg/kg.
- The laboratory analytical results for all composite soil samples collected from soils remaining at the Site indicate chloride is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the New Mexico EMNRD OCD closure criteria of 600 mg/kg.

7.0 RECLAMATION AND REVEGETATION

The excavation was backfilled with imported fill and then contoured to the surrounding topography. Enterprise will re-seed the Site with an approved seeding mixture.

8.0 FINDINGS AND RECOMMENDATION

- Thirteen composite soil samples were collected from the Site. Based on laboratory analytical results, no benzene, BTEX, chloride, or combined TPH GRO/DRO/MRO exceedances were identified in the soils remaining at the Site.
- Approximately 632 yd³ of petroleum hydrocarbon-affected soil cuttings were transported to the Envirotech landfarm for disposal/remediation. The excavation was backfilled with imported fill and then contoured to the surrounding topography.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

9.0 STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

9.1 Standard of Care

Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g., laboratories, regulatory agencies, or other third parties).

9.2 Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work, and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings and recommendation are based solely upon data available to Ensolum at the time of these services.

9.3 Reliance

This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Enterprise and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in the Closure Report and Ensolum's Master Services Agreement. The limitation of liability defined in the agreement is the aggregate limit of Ensolum's liability to the client.

APPENDIX A

Figures

Released to Imaging: 5/23/2023 1:01:21 PM

Site Vicinity Map

Enterprise Field Services, LLC Schwerdtsferger LS #10A (02/14/2023) Project Number: 05A1226228 Unit Letter D, S31 T28N R8W, San Juan County, New Mexico 36.622994, -107.728619

FIGURE

2

Project Number: 05A1226228

APPENDIX B

Siting Figures and Documentation

Released to Imaging: 5/23/2023 1:01:21 PM

Cathodic Protection Well Recorded Depth to Water Enterprise Field Services, LLC Schwerdtsferger LS #10A (02/14/2023)

Schwerdtsferger LS #10A (02/14/2023) Project Number: 05A1226228 Unit Letter D, S31 T28N R8W, San Juan County, New Mexico 36.622994, -107.728619 FIGURE

Released to Imaging: 5/23/2023 1:01:21 PM

Received by OCD: 5/22/2023 1:14:20 PM

Received by OCD: 5/22/2023 1:14:20 PM

Received by OCD: 5/22/2023 1:14:20 PM

Received by OCD: 5/22/2023 1:14:20 PM

Received by OCD: 5/22/2023 1:14:20 PM

Unit Letter D, S31 T28N R8W, San Juan County, New Mexico 36.622994, -107.728619

Released to Imaging: 5/23/2023 1:01:21 PM

No records found.

PLSS Search:

Section(s): 31, 30, 29, 32 Township: 28N

Range: 08W

No records found.

PLSS Search:

Section(s): 6, 5

Township: 27N

Range: 08W

No records found.

PLSS Search:

Section(s): 1

Township: 27N

Range: 09W

No records found.

PLSS Search:

Section(s): 25, 36

Township: 28N

Range: 09W

	$\frac{1:14:20}{7} \frac{PM}{7} = 30$	-045-0701L	0	Page 27 of 72
		-045-2082		
	#1A = 30	-045-2648	37	
I		EP GROUND BED C ORTHWESTERN NEW 3 copies to OCE	MEXICO	TION WELLS
Operator_	MERIDIAN OIL	Loca	tion: Unit <u>NW</u> S	ec. <u>32 Twp 28 Rng 8</u>
Name of We	ell/Wells or Pipe	line Serviced	PHILLIPS #2, #3,	#1A
			- <u></u>	cps 646w
Elevation_	<u>6739'</u> Completion Da	ate <u>10/5/73</u> Tot	al Depth <u>700'</u>	Land Type*_N/A
Casing, S:	izes, Types & Dept	ths <u>N/A</u>		
<u></u>			···	
If Casing	is cemented, show	a amounte s tur		
	,	« amounts a cyp	es used <u>N/A</u>	·······
If Cement	or Bentonite Plug			ths & amounts used
N/A	or Bentonite Plug	gs have been pl	aced, show dept	ths & amounts used ater when possible:
N/A Depths & t	or Bentonite Plug	gs have been pl r zones with de	aced, show dept scription of wa	
<u>N/A</u> Depths & t	or Bentonite Plug	gs have been pl r zones with de	aced, show dept scription of wa	
N/A Depths & t Fresh, Cle	or Bentonite Plug	gs have been pl r zones with de ır, Etc. <u>N/A</u>	aced, show dept scription of wa	
N/A Depths & t Fresh, Cle Depths gas	or Bentonite Plug thickness of water ear, Salty, Sulphu	gs have been pl r zones with de ur, Etc. <u>N/A</u> N/A	aced, show dept scription of wa	
N/A Depths & t Fresh, Cla Depths gas Type & amo	or Bentonite Plug thickness of water ear, Salty, Sulphu s encountered:	gs have been pl r zones with de ur, Etc. <u>N/A</u> <u>N/A</u> ze used: <u>9000</u>	aced, show dept scription of wa lbs.	ater when possible:
N/A Depths & t Fresh, Cla Depths gas Type & amo Depths and	or Bentonite Plug thickness of water ear, Salty, Sulphu s encountered: ount of coke breez	gs have been pl r zones with de ur, Etc. <u>N/A</u> <u>N/A</u> ze used: <u>9000</u> <u>515'.495'.485'</u>	aced, show dept scription of wa lbs.	ater when possible:
N/A Depths & t Fresh, Cla Depths gas Type & amo Depths and Depths ver	or Bentonite Plug thickness of water ear, Salty, Sulphu s encountered: ount of coke breez odes placed:525',	gs have been pl c zones with de ur, Etc. <u>N/A</u> <u>N/A</u> ze used: <u>9000</u> 515', 495', 485' <u>N/A</u>	aced, show dept scription of wa lbs. . 440', 430', 420	ater when possible: ', 355', 335' IVED
N/A Depths & t Fresh, Cla Depths gas Type & amo Depths and Depths ver	or Bentonite Plug thickness of water ear, Salty, Sulphu s encountered: ount of coke breez odes placed:525', at pipes placed: perforations:	gs have been pl c zones with de ur, Etc. <u>N/A</u> <u>N/A</u> ze used: <u>9000</u> 515', 495', 485' <u>N/A</u>	aced, show dept scription of wa lbs. , 440', 430', 420 DECE MAY 31	ater when possible: ', 355', 335' IVED

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Received by OCD: 5/2	. .	Fi Pos	t Office	DIL INC. n Region : Box 4239 Mexico		¥	Page 28 of 72 Deneral
: Oniting Log (المانيند Herr		·	(505) 32	27-0251	• •	mpletion [)ate 11-11-87
• -	Well Name, Line or Plant:	. ·	DAILY LC)Ģ ()	Static:		las, Unico Ches
	Phillips #	1-4					
646-00	Phillips +	13		- <u></u>			
Location D 32 - 28 -8	Anode Size:	Anotie Ty	•		Size Bic: "	 ,	
Depth Dailed	Oneth Lorend	Drilling Rig Tan	<u>uriron</u>	nd Lin. Color Used	Loss Cieculario	n Mat's Used	No. Socha Mad Lind
540 Anode Depth	530						
# 1 380 # 2 3 Anode Output (Amps)		·		1 · · · ·	1	· · · · · ·	19 200 10 10 190
# 1 3.6 # 2 3	3.8 = 3 4 8	* 4 8	= 5 3.9	#6 3.1	1 3.3	1= 8 3.4	1= 9 3.9 = 10 3.2
# 11 # 12	▶ 13	π 14	# 15	* 16	# 17	# 18	# 19 # 20
Anode Output (Amps)	Never of the superior of the super-	# 14	i # 15	i# 16	u 17	w 18	# 19 a 20
Total Circuit Resistan Volts 12.05	Amps (5.2	Ohma	.79	No. 8 C.P. 20	ible Used		No. 2 C.P. Cable Used
	<u></u>	•		<u></u>			
	4	4	1	24 A A		· •	<u>EN 160 - 180</u>
NOT EN	POUGH FOI	<u>s SAmp</u>	<u>16. Tr</u>	STALLE	<u>53 (1</u>	5 ot	PNC VENT
-PIPE j j	PERFORATE	<u>5 46</u>	<u>o</u>			<u> </u>	ter and the second s
		· · · · · · · · · · · · · · · · · · ·		•	· · ·		
	· · · · · · · · · · · · · · · · · · ·				· ·	· · · · · · · · · · · · · · · · · · ·	
			·	· ·	· · ·	• ••-	
Rectifier Size:	<u> v </u>	_A	· · ·	· · · · ·	-		
Addn'l Depth Depth Credit:		· · · ·		**. *. *	•	All Const	nuction Completed
Extra Cable: Ditch & 1 Cable:	<u>, '0)</u> 260,			-	Y	1Su) llin
Ditch & 2 Cabl	e:	·				R	Signatures
25' Heter Pole 20' Heter Pole				D CATOUR SA	Lien .		
10' Stub Pole:				· · ·			
Junction Box:		<u> </u>					
	(. A	,		0	rew RowsD	• • .	
4399.00					BED		
292.50							151
182.00 -	\backslash					/	Phillips
269.90		o					±3
5145.40		۔ میں			L	HÁ-	-)
257.27	× , -0	Gran Be			P	hillips = 1-A	
5402 (7)	-11	· #1		· · ·			· · ·

No. Released to Imaging: 5/23/2023 A. (11:21 PM

OLD LADOND BED 22

0

12

MERIDIAN OIL

5. Street.

P. O. BOX 4289-Phone 327-0251

FARMINGTON, NM Date 11-11-87

Page 2

DEEP WELL GROUNDBED LOG AN 0,1

Company		M_{ϵ}	RI	D1/
	.11.04	I-A		•

.

Received by OCD: 5/22/2023 1:14:20 PM

- 949 - 1

Released to

	.Co Wi	nii I iie	No.	<u>er</u>	.11	دم	¥ -	A	Lo	cation	~	Ś	3	1-:	28	-8					Voi	hs A	\ool	ied -		12.	کە	- 1.1 	A	7			5
	٩F	T				÷.						7	1	T		T				ī		T	1	T	T	T	0	3		-			316
	5	┥	-		·					230 235		4	-+	-	╼┨		-	- 455 - 460	•	è				╉		· F		2	2		<u> </u>		
		-	-	_						240		4	╡	1				465				╉	+	╈	1 . ~			37.			7		
	5	-†				_				245		6	-	-	-			470		4				╧		r	a. 1			5			
	10 15	-				-				250	1:	0				-		475		3		T	1	1	~ `	· · /	3	1	9	3			
	ľ				Π					255		ğ				-		480		4			-+-	-1-	T			4	1				
· · · ·	2	-1								260	7.	2						485		5		+		1		- 14 T	5			Ĩ			
	35 40	-			•					265	7	7						490		5		T	ľ	╈	T		8	. 7	Δ	3			512
•											1.	6						495		5		T				- 1		20	0	2		M	2 4
	60									275	1.	7			_	1		500		5				Ē.	.			9	200 20	5	2.16 4 4		
	5					÷,	÷			280		8	÷			1.1	· • •	505		7	e		•		1.0	30	*1.4*	en ange Maria	濟				
· · · · · ·				2.0	s :	¥* (n s			285		8			45		•	510	1.	0	eger -					35	2	1					
• • • •	65					┢╴				290	1.	0						515	1.			1				40			1 ²		19		18 F
	70			ŀ		-				295		8						520		9		┓		T	- T	/45			<u>,</u>			2	<u>)</u>
	75					Ť.		Ţ.		300		9						525		8		1		╈	-	50	- 5	14					-88 i
	1			┢──	\square		┢			305	١.	9	, in the second se					530		g	1	D	SÞ	d	-	-55		1.11					
	60					Í.	ţ.			310	۲Ť.	8		·			÷.,	535		:					-	60		i.L.					2. a
	65			İ		T	┢	t		315 :		8						540		-		1	十			65	÷	1.		ينغ ر	58		新 1
	90 93			1	t	†	<u>†-</u> -	T		320	<u> </u>	9						545	1			1		\top	1,	770 ·					ng se li d King		
	57 00	_		\vdash	1			1		-325		8						550					1	<u> </u>		75					2.5		
•			<u> </u>	┢╴		Ť	†			330		8						555			\square	1	1		7	780					-	- -	
	05	_			1	┢╴	1.	T		335	1.	0	-	•				560	F	1		1		T	-1	785						~。	
••	10			Ť	\mathbf{T}	┢	1			340	Γ.	7.				Γ		565			\square	·			1,	790				i dan		s.). :	<u>j</u> e.
	15 20	H		┢	1-	\mathbf{T}	┮	Γ		345	1					1		570		T					1,	795							19 A.
	25	_	┢╴	┢	1-	ŀ	╈	T	\mathbf{T}	350	2							575							٦.	100:							
	1	-	Ì		+	T	┢╌	┢		355	z	+		ŀ		1÷		580			\square	·		.		605						<	
	30	-		1-	1-	T	1	T	\mathbf{t}	355	17	9.			1	F	ſ	585		Ĺ	$\uparrow \uparrow$				Π.	810		1				Τ	T
	35	-	1		1-		╀╴	\uparrow		365	Z	+			†—		1	590		Γ						815							
	40		t	Ť	+	T	1	T	\top	370	7	8				T		595								820	Ţ.	Γ		•		÷	
	45 50	_	1	t	1-	\top	1	╀		375	1.	K			\mathbf{T}			600	Γ	Γ	Π					25					·		
	55		T.	t	1-	1	\top	T	1	380	1.	5				1		605		Γ].	830							
	8		1-	T	1-	Γ	T	ŀ		385		6					T	610		Ī					- i	835		2					9.3
	65		T	†.	1	Г	Τ		Τ	390	Γ.	5		Γ	I			615	·]	840						[•
	70		Γ	T	\top	T	Τ		Τ	395	Γ.	14						620					- 11			B45							
	75		1	T	1	T	T	T	T	400		7	Γ				T	625				ì				650							
	180	1.	0		Т		·	Τ		405		5				T		630								855	L						
	85	1.	2				T	T	1	410	Г	4	Γ			Γ		635			ŀ					860							
	90	1.	17	_	1-	T	T		T	415		A	T	Γ	Τ	Γ	Τ	640								865				ŀ			
	195	Ĵ	_		1	\uparrow	1-	T	1	420		.4		Τ	1	Τ	T	645				•				670			ŀ			ŀ	
	00	7	18	_	+	1	\top	Τ	Τ	425	Γ.	6	1	Γ		Τ	Τ	650							٦ı	675							
	İ	17		T	\uparrow	T	1	T	1-	430		٦٢	\uparrow	Τ	Τ	1	Τ	655								680		Ι					
	205	Ľ	8		+-	\uparrow	+			435		15	1	┢	1	1	Τ	660								885							
	210	F	ť		╋	\uparrow	╈	╈	1	400		.6		ϯ	Τ	Τ		665	ŀ							890		Τ					\prod
	ns	H	+	-	╈	1	╈	\dagger	+-	445		.0	T	1	T	1	T	670	Γ	T	Τ					895		Ι					\Box
o Ima	20 gin		5/2	<u> </u>	023	1:0	0]:2	211	PM	450		3	t	1	Τ	1	T	675	Γ	Т	1.					900	Γ		Γ	Γ	Γ		
- 7	20)	-	1, 1			1	1		1.00					-		•					-												

OCD: 5/22/2023 1:14:20 PM	Pa
1414 4- 30-045-2092	4 (C. -
38-30-045-26	485
1414 4- 30-045-2092 3E-30-045-26 800-30-045-27	19D
DATA SHEET FOR DEEP GROUND	BED CATHODIC PROTECTION WELLS
	to OCD Aztec Office)
Operator MERIDIAN OIL INC.	Location: UnitNSec.32_Twp_28_
Name of Well/Wells or Pipeline Serv	iced PHILLIPS #4, #3E, #800
	cps 2160
Elevation 6398' Completion Date 7/5/89	Total DepthLand Type*
Casing, Sizes, Types & Depths	N/A
If Casing is cemented, show amounts	27.4
If Cement or Bentonite Plugs have b	een placed, show depths & amount
N/A	
N/A Depths & thickness of water zones w	ith description of water when po
N/A	ith description of water when po
N/A Depths & thickness of water zones w Fresh, Clear, Salty, Sulphur, Etc	ith description of water when po
N/A Depths & thickness of water zones w Fresh, Clear, Salty, Sulphur, Etc Depths gas encountered:N/A	ith description of water when po 100'
N/A Depths & thickness of water zones w Fresh, Clear, Salty, Sulphur, Etc	ith description of water when po
N/A Depths & thickness of water zones w Fresh, Clear, Salty, Sulphur, Etc Depths gas encountered:N/A	ith description of water when por 100'
N/A Depths & thickness of water zones w Fresh, Clear, Salty, Sulphur, Etc Depths gas encountered:N/A Type & amount of coke breeze used: Depths anodes placed: <u>189', 173', 165',</u>	ith description of water when po 100'
N/A Depths & thickness of water zones w Fresh, Clear, Salty, Sulphur, Etc Depths gas encountered:N/A Type & amount of coke breeze used: Depths anodes placed: <u>189', 173', 165',</u> Depths vent pipes placed:N/A	ith description of water when por 100'
N/A Depths & thickness of water zones w Fresh, Clear, Salty, Sulphur, Etc Depths gas encountered:N/A Type & amount of coke breeze used:	ith description of water when por 100'

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Page 31 of 72

WELL CASING CATHODI ROTECTION CONSTRUCTION REPORT DAILY LOG

Drilling Log (Attach Hereto) 🕔 🔀

Completion Date 7-5-89

comp

4-14

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			[]							-	mpreșion D				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CE:/								_	and the second second second second second second second second second second second second second second second		Ins. Union Check	Ins. Union Check		
$ \frac{1}{2} \left[\frac{1}{2} $					<u>S</u>		=/c					🖾 Good	🗖 Bed		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2160rw			<u> </u>			<u>i</u> S/								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Annale Set	+ ;	500336	¢/	4/4	<u>- 44390</u>	11 Size #			51			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 · · ·	1				•			3426 04	. 3/0	,, 1				
$\frac{500}{246} \frac{240}{240} \frac{240}{4} \frac{41}{4} \frac{1}{107 \text{ kele}} \frac{21}{250} \frac{21}{105} $	Depth Drilled	/ Depth	lannud	Drillio	e Rie Time	VEOL	Total	Use, Geke Used				No. Sacks Mud Us	ed ·		
Ande Derpit is 2/75' is 1/7' is 1/4' is 1/64 is 2/20 hole is 1/8' is 1/73' is 1/65' is 10 158 Ande Output (Aver) a 1/65' is 2/76' is 1/7' is 1/6' is 1/57' is 1/57' is 1/6' is 1/6' is 10 158 Ande Output (Aver) a 1/6' is 2/76' is 1/7'	500'/	24n'	240		• • • • • • • • • • • • • • • • • • • •										
And a cliper large 1 3 A = 2 A = 1 3 2 = 4 7.2 = 5 G = 6 2.5 = 7 A 3 = 8 4.9 = 8 5.2 = 10 3.2 And Deph 2 12 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 And Control (Apen = 13 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 10 = 10 = 10 = 10 = 10 = 10 = 10	Anode Depth		,	 		- 15Th	ole	zvohole		->	1		1		
And a cliper large 1 3 A = 2 A = 1 3 2 = 4 7.2 = 5 G = 6 2.5 = 7 A 3 = 8 4.9 = 8 5.2 = 10 3.2 And Deph 2 12 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 And Control (Apen = 13 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 Total Circuit Failance = 13 = 10 = 10 = 10 = 10 = 10 = 10 = 10	#1/85 #	178	#3/71	#4/	64' ;=	515	2 [•]	# 6 189'	# 7	7181	#8 173	#9 165	# 10 158		
Acceleration of the second se	Anode Output (Amp	\$)			1			1	-		1 1 0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 4.9	#3 7.2	# 4	7.2 *	5 6.4	1	#6 2.5	# 7	14.3	1= 8 4.7	#9 5.2	# 10 3.2		
Ander Output (here) a 11 a 12 a 13 a 14 a 15 a 16 a 17 a 18 a 13 a 20 a 11 a 12 a 13 a 14 a 15 a 16 a 17 a 18 a 19 a 20 No. 1 C.P. Cashe Used Volta 12.17 Ange 13.5 d han . 901 No. 5 C.P. Coole Used No. 1 C.P. Cashe Used No. 1 C		•	1		i Im				1 	17	1	1 1 m 10	i In 20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	the second second second second second second second second second second second second second second second se		# 13	2 14	#	15		# 16	-	17	# 18	- 	# 20		
Total Creating Amps 13.5 phms . 901 No. 8 C.P. Cable Used No. 8 C			1 12	1 _N 1.4	ا بوا	15		ו א וב	ا ایرا	17	1 ¹ # 18	1 1 21 19	1 .# 20		
Remarks: DRILLED 500' Hole CAUED IN AT 225' PUT 5 ANODES IN 15T hole THEN MOVED OVER & DRILLED ZND Hole 240' 4 INSTALLED REMAINING S ANODES. DRILLER 5910 DAMP AT 100'. TNSTALLED 245' of 1" PVC NENT PIPE PER BARTET BOTTOM 260' K BUI/CL POLLER (METER DROP) Rectifier Size: 60V 30 A All Construction Completed Depth Cedit: 220' 5.75 BY Neter Pole: 10' 5.75 BY Net			1# 13	<u> </u>		1.5					1* .0				
Remarks: DRILLED 500' Hole CAUED IN AT 225' PUT 5 ANODES IN 15T hole THEN MOVED OVER & DRILLED ZND Hole 240' 4 INSTALLED REMAINING S ANODES. DRILLER 5910 DAMP AT 100'. TNSTALLED 245' of 1" PVC NENT PIPE PER BARTET BOTTOM 260' K BUI/CL POLLER (METER DROP) Rectifier Size: 60V 30 A All Construction Completed Depth Cedit: 220' 5.75 BY Neter Pole: 10' 5.75 BY Net			ps / 3.5	0	hma , 9	01									
15T hole THEN MOVED OVER & DRILLED 2ND hole 240' + INSTALLED REMAINING 5 ANODES. DRILLER SAID DAMP AT 100'. JOSTALLED 245' of 1" PVC VENT PIPE PERFORMATET BOTTOM 260' * Baila Poet Construction Completed Depth Cedit: 2160' 3.75 Dich & I Cable: 1220' 70 30' Meter Pole: 10' State Pole: 1								,							
15T hole THEN MOVED OVER & DRILLED 2ND hole 240' + INSTALLED REMAINING 5 ANODES. DRILLER SAID DAMP AT 100'. JOSTALLED 245' of 1" PVC VENT PIPE PERFORMATET BOTTOM 260' * Baila Poet Construction Completed Depth Cedit: 2160' 3.75 Dich & I Cable: 1220' 70 30' Meter Pole: 10' State Pole: 1	Remarks:	RILLE	500		Hole	CAUE	ΞD	IN AT	 	225'	put 3	5 ANODO	ES IN		
$\frac{4 \text{ INSTALLED REMIGINING 5 ANODES. DRILLER 5910 DAMP}{AT 100'. TOSTALLED 245' of 1" PVC VENT PIPE Performate BOTTOM 260' \frac{4 \text{ Bailed Power Pipe Performate Bottom 260' \frac{4 \text{ Bailed Power Pipe Performate Bottom 260' \frac{4 \text{ Bailed Power Pipe Performate Bottom 260' \frac{4 \text{ Bailed Power Pipe Performate Bottom 260' \frac{1 \text{ Tenfs}}{1 \text{ Tenfs}} 1$											•				
AT 100'. JUSTALLED 245' of 1" PVC VENT PIPE Performation BOTTOM 260' # Build Power (Meter DRop) Rectifier Size: 60 V 30 A Addril Depth Depth Cedit: 240' 3.75 Extra Cable: 380' -20 Ditch & I Cable: 1220' 70 Ditch & I Cable: 1200' 70 Ditch & I Cable: 1200' 70 Ditch & I Cable: 120	137 ho	1/= 7	HEN N	100	IED_	000	ER	4D	RI	LLEL	2 220	hore	240		
AT 100'. JUSTALLED 245' of 1" PVC VENT PIPE Performation BOTTOM 260' # Build Power (Meter DRop) Rectifier Size: 60 V 30 A Addril Depth Depth Cedit: 240' 3.75 Extra Cable: 380' -20 Ditch & I Cable: 1220' .70 Ditch &	+ 105-	ALLE	D REM	a .	2426	5	1 4 1	~~~~	,	Dain	LETZ S	ALD N	Amo		
Bottom 260' K Build Power (Meter Drop) Retifier Size: 60° V 30° A Addn'I Depth Depth Codit: 240° 3.75 Error Cable: 380° 20° Dich & I Cable: 1220° 70° Dich & I Cable: 1220° 70° Dich & I Cable: 1220° 70° Dich Bi Cable: 1220° 70° Dich Bi Cable: 120°								-				•	•		
Bottom 260' K Build Power (Meter Drop) Retifier Size: 60° V 30° A Addn'I Depth Depth Codit: $260' 3.75'$ Error Cable: $380' 200'$ Dich & I Cable: $1220' 70'$ Dich & I Cable: $120' 70'$ Dich & I Cable: $100'$ Dich & I	AT 10	ο΄.	JUSTAN	LE	· n a	45'	' or	FI"Pu	IC.	VENT	- DIDE	= perfo	MATEL		
$\frac{\text{K Build Power (Meter Drop)}{\text{Retifier Size: 60 V 30 A}}$ Retifier Size: 60 V 30 A Addn'l Depth Depth Cold: 2160' 3.74 Ertra Cable: 3280' 300 Dich & 1 Cable: 1220' 70 S' #44 FUN'S To GROUND BED LAYOUT SKETCH (Signature) (Signatu															
Rectifier Size: $60 \text{ V} = 30 \text{ A}$ Addn'l Depth Depth Credit: $2(e0' = 3.75')$ Extra Cable: $380' = 20$ Dich & 1 Cable: $1220' = 70'$ D' ± 44 T' GROUND BED LAYOUT SKETCH 10' Stub Pole: $1220' = 70'$ D' ± 44 T' GROUND BED LAYOUT SKETCH 10' $\pm 800'$ BS70.00 - 789.00 - 789.00 - 76.00 - 854.00 - 312.50 - 25163.50 - 258.18 5421.68 eVA2 400'	BOTTO	<u>m 2</u>	60'		<u> </u>										
Rectifier Size: $60 \text{ V} 30 \text{ A}$ Addn'l Depth Depth Cedit: $2(0^{\circ} 3.75)$ Extra Cable: $380' 30'$ Dich & 1 Cable: $1220' 70'$ D' ±44 D' $\pm44'$ D' $\pm44'$ D' $\pm4800'$ D' $\pm800'$ D' ±8	X	2, `	10	1	/ ₂		2	1 00 -	-7	nn	\sim				
Adda'l Depth 24.0° 3.75 Depth Credit: 24.0° 3.75 Extra Cable: $380' \cdot 20$ Dich & l Cable: $1220' \cdot 70$ Dich & l Cable: $120' \cdot 70$ Dich & l Cable: $100' \cdot 70$ Dic	<u> </u>				ow	<u> </u>	<u> </u>	(///e72	R	DKO	ρ/		·		
$\begin{array}{c} \text{Addit 1 Depth Credit: } & 2(e0' 3.74') \\ \text{Extra Cable: } & 380' & 200 \\ \text{Dich & 1 Cable: } & 1220' & .70 \\ \text{Dich & 1 Cable: } & 1220' & .70 \\ \text{Dich & 1 Cable: } & 1220' & .70 \\ \text{Dich & 1 Cable: } & 1220' & .70 \\ \text{Dich & 1 Cable: } & 1220' & .70 \\ \text{Dich & 1 Cable: } & 1220' & .70 \\ \text{Dich & 1 Cable: } & 1220' & .70 \\ \text{Dich & 1 Cable: } & 120' & .70 \\ Dich & 100' & .70 \\ \text{Dich & 1$		60	<u> </u>	A	-					•			,		
Extra Cable: $380' \cdot 30$ Ditch & 1 Cable: $1220' \cdot 70$ Ditch & 1 Cable: $120' \cdot 70$ Ditch & 1 Cable: $100' \cdot 70$ Ditch & 100' \cdot 70 Ditch & 100' \cdot 70 Ditch & 100' \cdot 7				-	A .		. D				All Constru	cuon Complete	·a		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_ .		18	nt.			200	$O\gamma$	$\gamma \gamma$	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	Ŧ	14-11	ظن			//£	Du.	ll_	\sim		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				- `	ידי #4	1. I			-		(Si	gnature)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					GRO	UND B	ED L	AYOUT SKET	гсн						
$\frac{3870.00}{789.00}$ $\frac{1}{289.00}$ $\frac{1}{260}$ $\frac{1}{260}$ $\frac{1}{260}$ $\frac{1}{260}$ $\frac{1}{260}$ $\frac{1}{200}$ $\frac{100}{100}$	10' Stub Pole:			_ /					<u>.</u>	# 800			r <u>-</u>		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Junction Box	:	1 /	_ /		ł			Ξ'				. 1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3870.00 -			- 1		1			T١	1			157		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1		Ŧ			-	1		(Jhole		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$				' (e	80'										
$\frac{854.00}{312.50}$ $\frac{312.50}{237.00}$ $\frac{100'}{100'}$	- 915,001	1		1						. An'			く 月		
$\frac{854.00}{312.50}$ $\frac{312.50}{237.00}$ $\frac{100'}{100'}$	76.00			Ż						1 500		/	2		
$\frac{312.50}{237.00}$ $\frac{100'}{100'}$	854.00 1	←								۱,		/	V. N		
$\frac{237.00}{5163.50}$ $\frac{100}{258.18}$ $\frac{100}{5421.680}$ $\frac{100}{400'}$ $\frac{100}{400'}$ $\frac{100}{400'}$	2,1 =	. •	/							١			2moholoj		
$\frac{5163.50}{25.8.18}$ $\frac{5163.50}{5421.680}$ $\frac{400'}{635'}$	JL. JUP		_/					\ <u> </u>		<u> </u>	/				
$\frac{5163.50}{25.8.18}$ $\frac{5163.50}{5421.680}$ $\frac{400'}{635'}$	237.00		$\langle \rangle$		100			-+ H()-#3)-E	<i>_</i>	7				
258.18 5421.68 0Kg2 6396								' <i>'</i> //\	/		/'		,		
258.18 5421.68 0Kg2 6396	5163.50					-		- /	/		/				
5421.68 019-	750 18	/	;		-		-	21							
5421.68 019-	AD 9. 10	$ \sqrt{\Delta} $	X.				*		100	0			Y		
(e^{5})	542110	OKY.	d		_/		١		TOC	-			t		
	7721.00	. I		ι.	29.8										
used to Imaging: 5/23/2023 1:01:21 PM	asad to Imaging	5/22/202	2 1.01.71 DM	U	<u> </u>										

Released to Imaging: 5/23/2023 1:01:21 PM

Page 32 of 72

Received by OCD: 5/22/2023 1:14:20 PM

. . ى دىنى بورسى بارد تە تىمىرد سار مەن الدىن الىس بە ا ما اور به این ایر آن با مراد با به این استاره که از از سایه می این این میشود که

> D. CrASS _ DRILLING CO. V

Drill No. 3

5 . . .

DRILLER'S WELL LOG S. P. No. Phillips # 800 Date 6 - 30 - 89 Client Meridian Oil Co. Prospect County SAN JUAN State New Mex.

If hole is a redrill or if moved from original staked position show distance

FROM	TO	FORMATION - COLOR - HARDNESS
0	150	SAUdstones
8.4		Shale
185	210	SANdy Shale
210	270	SANdstone
	1	SANdy Shale
795	3/5	shale
15	440	SANdstona
140	460	Shale,
60	500	SANdstone
ud		BronLime
ocka Bit N	umber	Make
		1 @ 100'
emarks: .	<u>- may</u>	

and the second

ł

Page	33	of	72
	00	<i>vj</i>	· ·

.

D. CIASS DRILLING CO. L GÓ 2 Drill No. <u>3</u> Kea DRILLER'S WELL LOG 900 Date 7 - 5 - 89 S. P. No. 5 No. Client eridian Prospe New Mex County_ State.

ч.^с. .

If hole is a redrill or if moved from original staked position show distance

FROM	то	FORMATION - COLOR - HARDNESS
		SANdstone
100	110	Shale
110	130	SANdstone
130	140	SANdy Shale
160	195	Shale
195	205	SANdstones
		Shale
215	240	SANdstone
íud		Bran Lime
ock Bit I	Number	Make
emarks:	DAMY	0 @ 100'

Driller CONNIC Drown

APPENDIX C

Executed C-138 Solid Waste Acceptance Form

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-138 Revised 08/01/11

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection. 97057-1(25 PT SOLID WASTE

REQUEST FOR APPROVAL	TO ACCEPT SOLID WASTE
1. Generator Name and Address: Enterprise Field Services, LLC, 614 Reilly Ave, Farmington NM 874	101
2. Originating Site:	Contraction of the second second second second second second second second second second second second second s
Schwerdtsferger LS #10A	AFE: N64745 PM: ME Eddleman
Senwerdisterger ES with	Pay Key: AM14058
	ray Rey. AM14038
2. Location of Material (Street Address, City, State or ULSTR):	
UL D Section 31 T28N R8W; 36.622994, -107.728619	Feb 2023
A Common and Description of Wester	res and
4. Source and Description of Waste: Source: Hydrocarbon contaminated soil associated with remediation Description: Hydrocarbon contaminated soil associated with remedia Estimated Volume <u>50</u> yd ³ / bbls Known Volume (to be entered by th	ition activities from a natural gas pipeline release.
5. GENERATOR CERTIFICATION STA	TEMENT OF WASTE STATUS
I, Thomas Long , representative or authorized agent for Enterpri Generator Signature certify that according to the Resource Conservation and Recovery Act (Re regulatory determination, the above described waste is: (Check the approp	CRA) and the US Environmental Protection Agency's July 1988
RCRA Exempt: Oil field wastes generated from oil and gas explexempt waste. Operator Use Only: Waste Acceptance Frequence	
RCRA Non-Exempt: Oil field waste which is non-hazardous tha characteristics established in RCRA regulations, 40 CFR 261.21-261 subpart D, as amended. The following documentation is attached to the appropriate items)	.24, or listed hazardous waste as defined in 40 CFR, part 261,
□ MSDS Information □ RCRA Hazardous Waste Analysis □ Pro	cess Knowledge 🛛 Other (Provide description in Box 4)
GENERATOR 19.15.36.15 WASTE TESTING CERTIFIC	CATION STATEMENT FOR LANDFARMS
I, Thomas Long 2-8-2023, representative for Enterprise Product	
Generator Signature	is Operating authorize to complete
the required testing/sign the Generator Waste Testing Certification.	
I, <u><i>CWeq (wab frze,</i> representative for <u>Envir</u> representative samples of the oil field waste have been subjected to the pa have been found to conform to the specific requirements applicable to lan of the representative samples are attached to demonstrate the above-descr 19.15.36 NMAC.</u>	dfarms pursuant to Section 15 of 19.15.36 NMAC. The results
5. Transporter: TBD	
OCD Permitted Surface Waste Management Facility	
Name and Facility Permit #: Envirotech, Inc. Soil Remediation Facility * Permit #: N Address of Facility: Hill Top, NM Method of Treatment and/or Disposal:	
Evaporation Injection Treating Plant Waste Acceptance Status:	🛛 Landfarm 🔲 Landfill 🔲 Other
APPROVED	DENIED (Must Be Maintained As Permanent Recor
PRINT NAME: Gry Crabban TITLE:	Enutro MANAGEN DATE: 2/13/23
SIGNATURE:	ELEPHONE NO.: 505-632-0615

APPENDIX D

Photographic Documentation

Released to Imaging: 5/23/2023 1:01:21 PM
SITE PHOTOGRAPHS

Closure Report Enterprise Field Services, LLC Schwerdtsferger LS #10A (02/14/23) Ensolum Project No. 05A1226228

SITE PHOTOGRAPHS

Closure Report Enterprise Field Services, LLC Schwerdtsferger LS #10A (02/14/23) Ensolum Project No. 05A1226228

APPENDIX E

Regulatory Correspondence

Released to Imaging: 5/23/2023 1:01:21 PM

From:	Kyle Summers
To:	Chad D"Aponti
Cc:	Ranee Deechilly
Subject:	FW: [EXTERNAL] Schwerdtsferger LS #10A - UL D Section 31 T28N R8W; 36.622994, -107.728619 - Incident # nAPP2304533224
Date:	Wednesday, February 22, 2023 7:55:01 AM
Attachments:	image004.png
	image005.png image006.png

Kyle Summers Principal 903-821-5603 Ensolum, LLC in f

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Sent: Wednesday, February 22, 2023 7:30 AM
To: Long, Thomas <tjlong@eprod.com>; slandon@blm.gov
Cc: Stone, Brian <bmstone@eprod.com>; Kyle Summers <ksummers@ensolum.com>
Subject: RE: [EXTERNAL] Schwerdtsferger LS #10A - UL D Section 31 T28N R8W; 36.622994, -107.728619 - Incident # nAPP2304533224

[**EXTERNAL EMAIL**]

Tom,

Thank you for the notice. Your variance request specifically addressing 19.15.29.12D (1a) NMAC is approved.

If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | <u>nelson.velez@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Long, Thomas <tilong@eprod.com>
Sent: Wednesday, February 22, 2023 7:28 AM
To: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>; slandon@blm.gov
Cc: Stone, Brian <<u>bmstone@eprod.com</u>>; Kyle Summers <<u>ksummers@ensolum.com</u>>
Subject: [EXTERNAL] Schwerdtsferger LS #10A - UL D Section 31 T28N R8W; 36.622994, -107.728619
- Incident # nAPP2304533224

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson/Sherrie,

This email is a sample notification and variance request. Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect closure samples tomorrow February 23, 2023 at 10:00 a.m. at the Schwerdtsferger LS #10A excavation. Please acknowledge acceptance of this variance request. If you have any questions, please call or email.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com

This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

APPENDIX F

Table 1 – Soil Analytical Summary

Released to Imaging: 5/23/2023 1:01:21 PM

ENSOLUM

					S	TAB Schwerdtsferger SOIL ANALYT							
Sample I.D.	Date	Sample Type C- Composite G - Grab	Sample Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX ¹ (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total Combined TPH (GRO/DRO/MRO) ¹ (mg/kg)	Chloride (mg/kg)
		Natural Resource On Closure Criter	ces Department ia (Tier I)	10	NE	NE	NE	50	NE	NE	NE	100	600
	-		Comp	oosite Soil Sam	ples Removed I	by Excavation and	d Transported	to the Landfarm f	or Diposal/Rem	ediation			
TS-1	2.16.23	С	8	110	450	62	470	1,100	19,000	320	<47	19,000	570
		-			-	Excavation Comp	osite Soil San	nples					
S-1	2.23.23	С	21	0.018	0.080	<0.036	0.15	0.25	<3.6	<9.8	<49	ND	<60
S-2	2.23.23	С	21	<0.019	0.047	<0.038	0.12	0.17	<3.8	<9.9	<49	ND	<60
S-3	2.23.23	С	0 to 21	<0.017	0.041	<0.033	0.12	0.16	<3.3	<9.1	<45	ND	<60
S-4	2.23.23	С	0 to 21	<0.022	0.046	<0.045	0.12	0.17	<4.5	<9.1	<46	ND	<59
S-5	2.23.23	С	0 to 21	<0.019	0.075	<0.038	0.28	0.36	<3.8	<9.7	<48	ND	<60
S-6	2.23.23	С	0 to 21	0.019	0.099	<0.036	0.33	0.45	<3.6	<9.5	<47	ND	<60
S-7	2.23.23	С	0 to 21	<0.017	0.052	<0.035	0.19	0.24	<3.5	<9.7	<48	ND	<60
S-8	2.23.23	С	0 to 21	<0.019	0.094	<0.038	0.42	0.51	<3.8	<9.2	<46	ND	<60
S-9	2.23.23	С	0 to 21	<0.020	0.094	<0.040	0.37	0.46	<4.0	<9.3	<47	ND	<60
S-10	2.23.23	С	0 to 21	0.020	0.11	0.039	0.44	0.61	<3.6	<9.7	<48	ND	<60
S-11	2.23.23	С	0 to 21	0.020	0.089	<0.038	0.31	0.42	<3.8	<9.3	<46	ND	<60
S-12	2.23.23	С	0 to 21	<0.019	0.078	<0.037	0.29	0.37	<3.7	<9.2	<46	ND	<60

Note: Concentrations in **bold** and yellow exceed the applicable NM EMNRD Closure Criteria

¹ = Total combined concentrations are rounded to two (2) significant figures to match the laboratory resolution of the individual constituents.

ND = Not Detected above the Practical Quantitation Limits (PQLs) or Reporting Limits (RLs)

NE = Not established

mg/kg = milligram per kilogram

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbon

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil/Lube Oil Range Organics

APPENDIX G

Laboratory Data Sheets & Chain of Custody Documentation

Released to Imaging: 5/23/2023 1:01:21 PM

February 20, 2023

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX

RE: Schwerdtsferger LS 10A

OrderNo.: 2302774

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 1 sample(s) on 2/17/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302774

Date Reported: 2/20/2023

CLIENT: ENSOLUM		Client Sample ID: TS-1 Collection Date: 2/16/2023 2:00:00 PM								
Project:Schwerdtsferger LS 10ALab ID:2302774-001	Matrix: SOIL					7/2023 6:50:00 AM				
Analyses	Result	RL	Qua	l Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS						Analyst	: NAI			
Chloride	570	60		mg/Kg	20	2/17/2023 11:04:18 AM	73239			
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS					Analyst	DGH			
Diesel Range Organics (DRO)	320	9.4		mg/Kg	1	2/17/2023 10:00:57 AM	73232			
Motor Oil Range Organics (MRO)	ND	47		mg/Kg	1	2/17/2023 10:00:57 AM	73232			
Surr: DNOP	100	69-147		%Rec	1	2/17/2023 10:00:57 AM	73232			
EPA METHOD 8015D: GASOLINE RAN	IGE					Analyst	CCM			
Gasoline Range Organics (GRO)	19000	1800		mg/Kg	500) 2/17/2023 12:25:00 PM	GS9468			
Surr: BFB	141	37.7-212		%Rec	500) 2/17/2023 12:25:00 PM	GS9468			
EPA METHOD 8021B: VOLATILES						Analyst	CCM			
Benzene	110	0.92		mg/Kg	50	2/17/2023 11:07:00 AM	BS9468			
Toluene	450	18		mg/Kg	500) 2/17/2023 12:25:00 PM	BS9468			
Ethylbenzene	62	1.8		mg/Kg	50	2/17/2023 11:07:00 AM	BS9468			
Xylenes, Total	470	37		mg/Kg	500) 2/17/2023 12:25:00 PM	BS9468			
Surr: 4-Bromofluorobenzene	211	70-130	S	%Rec	50	2/17/2023 11:07:00 AM	BS9468			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р Reporting Limit

RL

Page 1 of 5

Client: Project:		DLUM erdtsferger LS	10A								
Sample ID: Client ID:		SampT	ype: ME			tCode: El		300.0: Anion	s		
Prep Date:	2/17/2023	Analysis D				SeqNo: 3		Units: mg/K	g		
Analyte Chloride		Result ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID: Client ID:		SampT				tCode: El		300.0: Anion	S		
Prep Date:	2/17/2023	Analysis D	ate: 2/	17/2023	S	SeqNo: 34	423574	Units: mg/K	•		
Analyte Chloride		Result 14	PQL 1.5	SPK value 15.00	SPK Ref Val 0	%REC 96.6	LowLimit 90	HighLimit 110	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2302774

20-Feb-23

WO#:

QC SUMMARY REPORT Η

Page	48	of	72
------	-----------	----	----

	WO#:	2302774
Hall Environmental Analysis Laboratory, Inc.		20-Feb-23

Client: ENSOL Project: Schwerd	UM ltsferger LS 1(0 4								
	0									
Sample ID: 2302774-001AMS	SampType	e: MS	5	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: TS-1	Batch ID): 73 2	232	F	RunNo: 9	4691				
Prep Date: 2/17/2023	Analysis Date	e: 2/ ′	17/2023	S	SeqNo: 3	423166	Units: mg/K	g		
Analyte	Result F	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	300	9.4	47.04	320.7	-52.4	54.2	135			S
Surr: DNOP	4.7		4.704		100	69	147			
Sample ID: 2302774-001AMS	SD SampType	e: MS	D	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: TS-1	Batch ID	D: 732	232	F	RunNo: 9	4691				
Prep Date: 2/17/2023	Analysis Date	e: 2/ ′	17/2023	S	SeqNo: 3	423167	Units: mg/K	íg		
Analyte	Result F	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	260	9.5	47.26	320.7	-126	54.2	135	12.5	29.2	S
Surr: DNOP	4.5		4.726		95.9	69	147	0	0	
Sample ID: LCS-73232	SampType	e: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch ID	D: 732	232	F	RunNo: 9	4691				
Prep Date: 2/17/2023	Analysis Date	e: 2/ ′	17/2023	S	SeqNo: 3	423170	Units: mg/K	íg		
Analyte	Result F	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	43	10	50.00	0	87.0	61.9	130			
Surr: DNOP	4.5		5.000		90.8	69	147			
Sample ID: MB-73232	SampType	e: MB	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID	D: 732	232	F	RunNo: 9	4691				
Prep Date: 2/17/2023	Analysis Date	e: 2/ ′	17/2023	S	SeqNo: 3	423171	Units: mg/K	g		
Analyte	Result F	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.5		10.00		85.3	69	147			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Released to Imaging: 5/23/2023 1:01:21 PM

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	NSOLUM hwerdtsferger I	.S 10A								
Sample ID: 2.5ug gro	lcs Sam	pType: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Ва	tch ID: G	594683	F	RunNo: 9	4683				
Prep Date:	Analysis	Date: 2/	/17/2023	S	SeqNo: 3	422956	Units: mg/#	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	iRO) 29	5.0	25.00	0	115	72.3	137			
Surr: BFB	1300		1000		131	37.7	212			
Sample ID: mb	Sam	рТуре: М І	BLK	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e	
Client ID: PBS	Ва	tch ID: G	S94683	F	RunNo: 9	4683				
Prep Date:	Analysis	Date: 2/	/17/2023	S	SeqNo: 3	422957	Units: mg/k	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	iRO) ND	5.0								
Surr: BFB	1100		1000		109	37.7	212			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 5

WO#: 2302774 20-Feb-23

ENSOLUM

Schwerdtsferger LS

Client:

Project:

Sample ID: mb

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc

REPORT Analysis Laborator	ry, Inc.	WO#:	2302774 20-Feb-23		
erger LS 10A					
SampType: MBLK	TestCode: EPA Method 8021B: Volatiles				
Potob ID: PC04692	PupMo: 04693				

Client ID: PBS	Batcl	h ID: BS	94683	F	unNo: 94	4683				
Prep Date:	Analysis D	Date: 2/ *	17/2023	S	eqNo: 34	422965	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	1.0		1.000		103	70	130			
Sample ID: 100ng btex Ics	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Sample ID: 100ng btex Ics Client ID: LCSS	•	「ype: LC h ID: BS			tCode: Ef		8021B: Volat	iles		
	•	h ID: BS	94683	F		4683	8021B: Volat			
Client ID: LCSS	Batcl	h ID: BS	94683 17/2023	F	unNo: 94	4683			RPDLimit	Qual
Client ID: LCSS Prep Date:	Batcl Analysis D	h ID: BS Date: 2/	94683 17/2023	ਜ 2	tunNo: 94 SeqNo: 34	4683 423273	Units: mg/K	g	RPDLimit	Qual
Client ID: LCSS Prep Date: Analyte	Batcl Analysis D Result	h ID: BS Date: 2/ PQL	94683 17/2023 SPK value	F S SPK Ref Val	2unNo: 94 SeqNo: 34 %REC	4683 423273 LowLimit	Units: mg/K HighLimit	g	RPDLimit	Qual
Client ID: LCSS Prep Date: Analyte Benzene	Batcl Analysis D Result 0.96	h ID: BS Date: 2/ PQL 0.025	94683 17/2023 SPK value 1.000	F S SPK Ref Val 0	2unNo: 94 SeqNo: 34 %REC 96.2	4683 423273 LowLimit 80	Units: mg/K HighLimit 120	g	RPDLimit	Qual
Client ID: LCSS Prep Date: Analyte Benzene Toluene	Batcl Analysis D Result 0.96 0.97	h ID: BS Date: 2/ PQL 0.025 0.050	94683 17/2023 SPK value 1.000 1.000	F S SPK Ref Val 0 0	RunNo: 9 4 GeqNo: 3 4 <u>%REC</u> 96.2 97.2	4683 423273 LowLimit 80 80	Units: mg/K HighLimit 120 120	g	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 5

.

	HALL
	ENVIRONMENTAL
۰,	ANALYSIS
	LABORATORY

Page 51 of 72

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

	Work Order Number:	2302774		RcptNo	o: 1
Received By: Juan Rojas 2	2/17/2023 6:50:00 AM		Heansay		
· ·	2/17/2023 6:59:09 AM		Guana g		
			10		
d/1-	123				
hain of Custody			_	_	
Is Chain of Custody complete?		Yes 🗌	No 🗹	Not Present	
How was the sample delivered?		<u>Courier</u>			
Log In			No 🗌	NA 🗌	
. Was an attempt made to cool the samples?		Yes 🗹			
. Were all samples received at a temperature of	>0° C to 6.0°C	Yes 🗹	No 🗌	na 🗆	
. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
5. Sufficient sample volume for indicated test(s)?		Yes 🗹	No 🗌		
Are samples (except VOA and ONG) properly p		Yes 🗹	No 🗌		
. Was preservative added to bottles?		Yes 🗌	No 🗹	NA	
). Received at least 1 vial with headspace <1/4" fo	or AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
). Were any sample containers received broken?		Yes 🗌	No 🗹	# of preserved	
1. Does paperwork match bottle labels?		Yes 🔽	No 🗌	bottles checked for pH:	
(Note discrepancies on chain of custody)				(<2 c	or >12 unless noted)
2. Are matrices correctly identified on Chain of Cu	,	Yes 🗹	No 🗌	Adjusted?	
Is it clear what analyses were requested?		Yes 🗹	No 🗌	Çhecked by:	Ju 2/17
. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	/	0-2117
pecial Handling (if applicable)					
5. Was client notified of all discrepancies with this	order?	Yes 🗌	No 🗌		
Person Notified:	Date				
By Whom:	Via:] eMail 🛛	Phone Fax	In Person	
Regarding:					
Client Instructions:					
6. Additional remarks:					
Client missing phone number and email a	address on COC. JR 2/	1 7/23			
7. Cooler Information	Intact Seal No Se	al Data	Signed Du		
Cooler No Temp °C Condition Seal		eal Date	Signed By		

personal de la constante de la
0
_
\sim
100
N.
And in case of the local division of the loc
-
_
\sim
22
0
~
21
<u> </u>
0
1.1
2
100
<u> </u>
\Box
-
0
\sim
6
-
-
<u> </u>
0
~
100
0
- 5
6
0.0

eceived by OCD: 5/22/2023 1:14:20 PM	: 5/22/20	023 1	1:14:20 PM			1		r											Pa_{g}	ge 52	Page 52 of 72
Chain	of-CL	sn	Chain-of-Custody Record	Turn-Around Time:	Time:	2001	67				H		U.	2		C	2	L.	HALL ENVIRONMENTAL		
Client:	nsolum.	5	. 270	Standard	∰ Rush	h2-17	5-33			חו	4	Z	×	IS		A B	0	5	ANALYSIS LABORATORY	R S	
				Project Name:							ş	www.hallenvironmental.com	llenv	ironr	nenta	al.co	E				
Mailing Address:	606	10	S Riv Brande	Schwer	dtsferge	1	LS #104		490	1 Ha	4901 Hawkins NE	Щ	- Alk	onbro	srque	NN,	Albuquerque, NM 87109	60			
Suit A		874/10	10	Project #:					Tel	. 505	Tel. 505-345-3975	3975		⁻ ax	505-(345-4	Fax 505-345-4107				
Phone #:													Analy	/sis	Analysis Request	lest					
email or Fax#:				Project Manager	ger:			(1	(0)			_	[†] 05			(jue	1		-		
QA/QC Package:		C	I evel 4 (Full Validation)	K	s S	5		208) s	AM \ C	PCB's	51415	SMIS	3 '*OJ			esdA\t					
Accreditation:	□ Az Co	Comp	Az Compliance	Sampler:	O DAPOr	11		8141	אם /			2170	105		(uəsə.	1		_		
		er		On Ice:	E Yes	D No		. /:	05						(AC	-Ы)					
🗆 EDD (Type)	1.0			# of Coolers:	ļ	n	norty	38.	(Gł				-		οΛ-!	w	5	-	_		
				Cooler Temp(Including CF):	(Including CF).	U. 140.1	-20. Z (°C)	LW .	asr		-		_	_	ເພລຣ	olifo					
			:	Container	Preservative		HEAL No.	/ X∃1)8:Hc		v) 80	CRA) 097	s) 027) leto		2	-0		
Date Time	Matrix	1	Sample Name	Type and #	Type	2200	Etto	8	11		_		~		28	2			2	_	
2/16 1400	5		1-5-1	1402 /	Carl.	51	20111	7	\overline{A}	-+			7				+			-	
2/10	ł	+	E.S	D	that			4	1	+	+	-	L		1	1	K	1			
3/0		$\left \right $			1 8						-		1		\triangleright	1		-	13	-	Γ
116	~		26		1001			4	4	\parallel		4	4		₹	Y		-	╉	+	Ţ
3/10	×	+	1-5-4-5		hoel				N		+		Y		Y	1	3	-		-	
21.1	5	\parallel	2-1		11				1			_	X		7	,		1			
110		+	~ ~		1 0M 1						-					1			1	-	
		+									-	-				Γ	T		+		Ţ
		-								+	-				100					_	
																			140		
		-													No. of the						
		-									-					1					
						- 21															
Date: Time: 16/3 IS34 Date: Time:	Relinquished by: Relinquished by:	ished	ey: Politica by:	Received by: Received by:	Via: Via:	Date 2//	e Time راکز کرار e Time	Rer	narks み ら た	Remarks: Tom Pars run Arr H		Amiyos Nourus	1240		6		김 태왕	50	2 al	Å	
2/14/23/1752	5	Im	the Way	X	- CUUNIO	213	136-50	- 17		,											
eleased to Imagi	r, samples st mg: 5/23/	submit 3/202	If necessary samples submitted to Hall Environmental may be subconfracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	contracted to other	accredited laborat	ories. This se	erves as notice of th	soq sir	ibility.	Any sut	-contra	cted da	a will t	oe clea	ly nota	ited on	the an	alytical	report.		•

March 02, 2023

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX:

RE: Schwerdtsferger LS 10A

OrderNo.: 2302A63

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 12 sample(s) on 2/24/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT:	ENSOLUM	0	lient Sample ID: S-1
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:00:00 AM
Lab ID:	2302A63-001	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 11:47:56 AM	73370
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst	: DGH
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	2/24/2023 11:17:39 AM	73365
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	2/24/2023 11:17:39 AM	73365
Surr: DNOP	97.2	69-147	%Rec	1	2/24/2023 11:17:39 AM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	3.6	mg/Kg	1	2/24/2023 11:11:03 AM	GS94858
Surr: BFB	101	37.7-212	%Rec	1	2/24/2023 11:11:03 AM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	0.018	0.018	mg/Kg	1	2/24/2023 11:11:03 AM	R94858
Toluene	0.080	0.036	mg/Kg	1	2/24/2023 11:11:03 AM	R94858
Ethylbenzene	ND	0.036	mg/Kg	1	2/24/2023 11:11:03 AM	R94858
Xylenes, Total	0.15	0.073	mg/Kg	1	2/24/2023 11:11:03 AM	R94858
Surr: 4-Bromofluorobenzene	93.4	70-130	%Rec	1	2/24/2023 11:11:03 AM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Page 1 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT	ENSOLUM	0	Client Sample ID: S-2
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:05:00 AM
Lab ID:	2302A63-002	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 12:00:18 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OR	RGANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	2/24/2023 11:31:09 AM	73365
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	2/24/2023 11:31:09 AM	73365
Surr: DNOP	96.1	69-147	%Rec	1	2/24/2023 11:31:09 AM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	2/24/2023 11:34:53 AM	GS94858
Surr: BFB	102	37.7-212	%Rec	1	2/24/2023 11:34:53 AM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	ND	0.019	mg/Kg	1	2/24/2023 11:34:53 AM	R94858
Toluene	0.047	0.038	mg/Kg	1	2/24/2023 11:34:53 AM	R94858
Ethylbenzene	ND	0.038	mg/Kg	1	2/24/2023 11:34:53 AM	R94858
Xylenes, Total	0.12	0.075	mg/Kg	1	2/24/2023 11:34:53 AM	R94858
Surr: 4-Bromofluorobenzene	97.0	70-130	%Rec	1	2/24/2023 11:34:53 AM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT	ENSOLUM	0	lient Sample ID: S-3
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:10:00 AM
Lab ID:	2302A63-003	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 12:12:39 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst	: DGH
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	2/24/2023 11:44:44 AM	73365
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	2/24/2023 11:44:44 AM	73365
Surr: DNOP	91.1	69-147	%Rec	1	2/24/2023 11:44:44 AM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	3.3	mg/Kg	1	2/24/2023 11:58:42 AM	GS94858
Surr: BFB	105	37.7-212	%Rec	1	2/24/2023 11:58:42 AM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	ND	0.017	mg/Kg	1	2/24/2023 11:58:42 AM	R94858
Toluene	0.041	0.033	mg/Kg	1	2/24/2023 11:58:42 AM	R94858
Ethylbenzene	ND	0.033	mg/Kg	1	2/24/2023 11:58:42 AM	R94858
Xylenes, Total	0.12	0.066	mg/Kg	1	2/24/2023 11:58:42 AM	R94858
Surr: 4-Bromofluorobenzene	95.9	70-130	%Rec	1	2/24/2023 11:58:42 AM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT:	ENSOLUM	C	lient Sample ID: S-4
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:15:00 AM
Lab ID:	2302A63-004	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	59	mg/Kg	20	2/24/2023 12:25:00 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	2/24/2023 11:58:08 AM	73365
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/24/2023 11:58:08 AM	73365
Surr: DNOP	94.3	69-147	%Rec	1	2/24/2023 11:58:08 AM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	4.5	mg/Kg	1	2/24/2023 12:22:37 PM	GS94858
Surr: BFB	104	37.7-212	%Rec	1	2/24/2023 12:22:37 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	ND	0.022	mg/Kg	1	2/24/2023 12:22:37 PM	R94858
Toluene	0.046	0.045	mg/Kg	1	2/24/2023 12:22:37 PM	R94858
Ethylbenzene	ND	0.045	mg/Kg	1	2/24/2023 12:22:37 PM	R94858
Xylenes, Total	0.12	0.089	mg/Kg	1	2/24/2023 12:22:37 PM	R94858
Surr: 4-Bromofluorobenzene	97.6	70-130	%Rec	1	2/24/2023 12:22:37 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit

Page 4 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT	ENSOLUM	Cl	lient Sample ID: S-5
Project:	Schwerdtsferger LS 10A	(Collection Date: 2/23/2023 10:20:00 AM
Lab ID:	2302A63-005	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 12:37:21 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	2/24/2023 12:12:03 PM	73365
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	2/24/2023 12:12:03 PM	73365
Surr: DNOP	93.6	69-147	%Rec	1	2/24/2023 12:12:03 PM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	2/24/2023 12:46:35 PM	GS94858
Surr: BFB	108	37.7-212	%Rec	1	2/24/2023 12:46:35 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	ND	0.019	mg/Kg	1	2/24/2023 12:46:35 PM	R94858
Toluene	0.075	0.038	mg/Kg	1	2/24/2023 12:46:35 PM	R94858
Ethylbenzene	ND	0.038	mg/Kg	1	2/24/2023 12:46:35 PM	R94858
Xylenes, Total	0.28	0.076	mg/Kg	1	2/24/2023 12:46:35 PM	R94858
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	2/24/2023 12:46:35 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Page 5 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT:	ENSOLUM	Cl	lient Sample ID: S-6
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:25:00 AM
Lab ID:	2302A63-006	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 12:49:42 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	: DGH
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	2/24/2023 12:25:44 PM	73365
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/24/2023 12:25:44 PM	73365
Surr: DNOP	93.8	69-147	%Rec	1	2/24/2023 12:25:44 PM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	3.6	mg/Kg	1	2/24/2023 1:10:45 PM	GS94858
Surr: BFB	108	37.7-212	%Rec	1	2/24/2023 1:10:45 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	0.019	0.018	mg/Kg	1	2/24/2023 1:10:45 PM	R94858
Toluene	0.099	0.036	mg/Kg	1	2/24/2023 1:10:45 PM	R94858
Ethylbenzene	ND	0.036	mg/Kg	1	2/24/2023 1:10:45 PM	R94858
Xylenes, Total	0.33	0.073	mg/Kg	1	2/24/2023 1:10:45 PM	R94858
Surr: 4-Bromofluorobenzene	97.7	70-130	%Rec	1	2/24/2023 1:10:45 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit

Page 6 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT: ENSOLUM		Client Sample ID: S-7			
Project:	Schwerdtsferger LS 10A	Collection Date: 2/23/2023 10:30:00 AM			
Lab ID:	2302A63-007	Matrix: MEOH (SOIL) Received Date: 2/24/2023 7:20:00 AM			

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 1:26:45 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	: DGH
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	2/24/2023 12:39:24 PM	73365
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	2/24/2023 12:39:24 PM	73365
Surr: DNOP	94.2	69-147	%Rec	1	2/24/2023 12:39:24 PM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	3.5	mg/Kg	1	2/24/2023 1:34:25 PM	GS94858
Surr: BFB	106	37.7-212	%Rec	1	2/24/2023 1:34:25 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	ND	0.017	mg/Kg	1	2/24/2023 1:34:25 PM	R94858
Toluene	0.052	0.035	mg/Kg	1	2/24/2023 1:34:25 PM	R94858
Ethylbenzene	ND	0.035	mg/Kg	1	2/24/2023 1:34:25 PM	R94858
Xylenes, Total	0.19	0.070	mg/Kg	1	2/24/2023 1:34:25 PM	R94858
Surr: 4-Bromofluorobenzene	98.4	70-130	%Rec	1	2/24/2023 1:34:25 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT:	ENSOLUM	0	lient Sample ID: S-8
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:35:00 AM
Lab ID:	2302A63-008	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 1:39:06 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	2/24/2023 12:52:51 PM	73365
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/24/2023 12:52:51 PM	73365
Surr: DNOP	96.3	69-147	%Rec	1	2/24/2023 12:52:51 PM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	2/24/2023 1:57:47 PM	GS94858
Surr: BFB	107	37.7-212	%Rec	1	2/24/2023 1:57:47 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	ND	0.019	mg/Kg	1	2/24/2023 1:57:47 PM	R94858
Toluene	0.094	0.038	mg/Kg	1	2/24/2023 1:57:47 PM	R94858
Ethylbenzene	ND	0.038	mg/Kg	1	2/24/2023 1:57:47 PM	R94858
Xylenes, Total	0.42	0.076	mg/Kg	1	2/24/2023 1:57:47 PM	R94858
Surr: 4-Bromofluorobenzene	96.7	70-130	%Rec	1	2/24/2023 1:57:47 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit

Page 8 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT:	ENSOLUM	C	lient Sample ID: S-9
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:40:00 AM
Lab ID:	2302A63-009	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 1:51:27 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OR	RGANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	2/24/2023 1:06:35 PM	73365
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/24/2023 1:06:35 PM	73365
Surr: DNOP	97.5	69-147	%Rec	1	2/24/2023 1:06:35 PM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	4.0	mg/Kg	1	2/24/2023 2:21:17 PM	GS94858
Surr: BFB	107	37.7-212	%Rec	1	2/24/2023 2:21:17 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	ND	0.020	mg/Kg	1	2/24/2023 2:21:17 PM	R94858
Toluene	0.094	0.040	mg/Kg	1	2/24/2023 2:21:17 PM	R94858
Ethylbenzene	ND	0.040	mg/Kg	1	2/24/2023 2:21:17 PM	R94858
Xylenes, Total	0.37	0.079	mg/Kg	1	2/24/2023 2:21:17 PM	R94858
Surr: 4-Bromofluorobenzene	97.9	70-130	%Rec	1	2/24/2023 2:21:17 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 9 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT: ENSOLUM		Client Sample ID: S-10			
Project:	Schwerdtsferger LS 10A	(Collection Date: 2/23/2023 10:45:00 AM		
Lab ID:	2302A63-010	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM		

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 2:03:47 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	2/24/2023 1:20:22 PM	73365
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	2/24/2023 1:20:22 PM	73365
Surr: DNOP	97.0	69-147	%Rec	1	2/24/2023 1:20:22 PM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: JJP
Gasoline Range Organics (GRO)	ND	3.6	mg/Kg	1	2/24/2023 2:44:57 PM	GS94858
Surr: BFB	102	37.7-212	%Rec	1	2/24/2023 2:44:57 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analys	t: JJP
Benzene	0.020	0.018	mg/Kg	1	2/24/2023 2:44:57 PM	R94858
Toluene	0.11	0.036	mg/Kg	1	2/24/2023 2:44:57 PM	R94858
Ethylbenzene	0.039	0.036	mg/Kg	1	2/24/2023 2:44:57 PM	R94858
Xylenes, Total	0.44	0.073	mg/Kg	1	2/24/2023 2:44:57 PM	R94858
Surr: 4-Bromofluorobenzene	92.0	70-130	%Rec	1	2/24/2023 2:44:57 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 10 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT: ENSOLUM		Client Sample ID: S-11			
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:50:00 AM		
Lab ID:	2302A63-011	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM		

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 2:16:08 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	2/24/2023 1:34:05 PM	73365
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/24/2023 1:34:05 PM	73365
Surr: DNOP	97.5	69-147	%Rec	1	2/24/2023 1:34:05 PM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: JJP
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	2/24/2023 3:32:04 PM	GS94858
Surr: BFB	105	37.7-212	%Rec	1	2/24/2023 3:32:04 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analys	t: JJP
Benzene	0.020	0.019	mg/Kg	1	2/24/2023 3:32:04 PM	R94858
Toluene	0.089	0.038	mg/Kg	1	2/24/2023 3:32:04 PM	R94858
Ethylbenzene	ND	0.038	mg/Kg	1	2/24/2023 3:32:04 PM	R94858
Xylenes, Total	0.31	0.076	mg/Kg	1	2/24/2023 3:32:04 PM	R94858
Surr: 4-Bromofluorobenzene	96.8	70-130	%Rec	1	2/24/2023 3:32:04 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Page 11 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2302A63

Date Reported: 3/2/2023

CLIENT:	ENSOLUM	0	Client Sample ID: S-12
Project:	Schwerdtsferger LS 10A		Collection Date: 2/23/2023 10:55:00 AM
Lab ID:	2302A63-012	Matrix: MEOH (SOIL)	Received Date: 2/24/2023 7:20:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	2/24/2023 2:28:29 PM	73370
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst	: DGH
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	2/24/2023 2:30:16 PM	73365
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/24/2023 2:30:16 PM	73365
Surr: DNOP	97.8	69-147	%Rec	1	2/24/2023 2:30:16 PM	73365
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	2/24/2023 3:55:34 PM	GS94858
Surr: BFB	103	37.7-212	%Rec	1	2/24/2023 3:55:34 PM	GS94858
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Benzene	ND	0.019	mg/Kg	1	2/24/2023 3:55:34 PM	R94858
Toluene	0.078	0.037	mg/Kg	1	2/24/2023 3:55:34 PM	R94858
Ethylbenzene	ND	0.037	mg/Kg	1	2/24/2023 3:55:34 PM	R94858
Xylenes, Total	0.29	0.075	mg/Kg	1	2/24/2023 3:55:34 PM	R94858
Surr: 4-Bromofluorobenzene	96.6	70-130	%Rec	1	2/24/2023 3:55:34 PM	R94858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 16

Client: Project:		OLUM rerdtsferger LS 10A									
Sample ID: N	ИВ-73370	SampType: MI	BLK	Tes							
Client ID: P	PBS	Batch ID: 73	370	F	RunNo: 94862						
Prep Date:	Date: 2/24/2023 Analysis Date: 2/24/2023			SeqNo: 3428892 Units				Units: mg/Kg			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC Low	vLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND 1.5									
Sample ID: L	_CS-73370	SampType: LC	s	Tes	tCode: EPA Me	ethod 3	00.0: Anions				
Client ID: L	CSS	Batch ID: 73	370	RunNo: 94862							
Prep Date:	2/24/2023	Analysis Date: 2	24/2023	S	SeqNo: 342889	93	Units: mg/K	g			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC Low	vLimit	HighLimit	%RPD	RPDLimit	Qual	

 Result
 PQL
 SPK value
 SPK Ref Val
 %REC
 LowLimit
 HighLimit
 %

 15
 1.5
 15.00
 0
 96.9
 90
 110

Qualifiers:

Chloride

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 16

2302A63

02-Mar-23

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Page 67 of 72	Page	6 7	of	72
---------------	------	------------	----	----

WO#:	2302A63

02-Mar-23

Client:	ENSOLUI	М										
Project:	Schwerdts	sferger LS	10A									
Sample ID:	LCS-73365	SampT	ype: LC	S	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID:	LCSS	Batch	ID: 733	365	RunNo: 94859							
Prep Date:	2/24/2023	Analysis D	ate: 2/2	24/2023	5	SeqNo: 34	128495	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range C	rganics (DRO)	40	10	50.00	0	79.4	61.9	130				
Surr: DNOP		4.5		5.000		90.4	69	147				
Sample ID:	2302A63-012AMS	SampT	ype: MS	6	Tes	tCode: EF	PA Method	I 8015M/D: Diesel Range Organics				
Client ID:	S-12	Batch	ID: 733	365	RunNo: 94859							
Prep Date:	2/24/2023	Analysis D	ate: 2/2	24/2023	SeqNo: 3430104			Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range C	Organics (DRO)	49	10	49.95	0	97.7	54.2	135				
Surr: DNOP		5.0		4.995		100	69	147				
Sample ID:	2302A63-012AMSD	SampT	уре: МS	SD	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	Organics		
Client ID:	S-12	Batch	ID: 733	365	RunNo: 94859							
Prep Date:	2/24/2023	Analysis D	ate: 2/ 2	24/2023	SeqNo: 3430105 Units: mg/Kg				g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range C	rganics (DRO)	42	9.2	46.00	0	91.3	54.2	135	15.0	29.2		
Surr: DNOP		4.5		4.600		97.6	69	147	0	0		
Sample ID:	MB-73365	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	Organics		
Client ID:	PBS	Batch	ID: 733	365	F	RunNo: 9 4	1844					
Prep Date:	2/24/2023	Analysis D	ate: 2/2	24/2023	5	SeqNo: 34	130288	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range C	organics (DRO)	ND	10									
Notor Oil Range	e Organics (MRO)	ND	50									
Surr: DNOP		9.9		10.00		98.7	69	147				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 16

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Page	<u>68</u>	of	72
------	-----------	----	----

WO#:	2302A63

02-Mar-23

Client: Project:	ENSOLU. Schwerdts		10A								
Sample ID:	2.5ug gro lcs	SampT	ype: LC	s	Tes	TestCode: EPA Method 8015D: Gasoline Range					
Client ID:	LCSS	Batch	ID: GS	94858	F	RunNo: 94858					
Prep Date:		Analysis D	ate: 2/2	24/2023	S	SeqNo: 3	428451	Units: mg/#	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	25	5.0	25.00	0	99.8	72.3	137			
Surr: BFB		2000		1000		195	37.7	212			
Sample ID:	mb	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8015D: Gasoline Range					
Client ID:	PBS	Batch	ID: GS	94858	RunNo: 94858						
Prep Date:		Analysis D	ate: 2/2	24/2023	S	SeqNo: 3	428453	Units: mg/k	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	e Organics (GRO)	ND	5.0								
Surr: BFB		1000		1000		103	37.7	212			
Sample ID:	2302a63-001ams	SampT	ype: MS	;	TestCode: EPA Method 8015D: Gasoline Range						
Client ID:	S-1	Batch	ID: GS	94858	RunNo: 94858						
Prep Date:		Analysis D	ate: 2/2	24/2023	SeqNo: 3429322			Units: mg/Kg			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	19	3.6	18.18	1.498	98.2	70	130			
Surr: BFB		1400		727.3		197	37.7	212			
Sample ID:	2302a63-001amsd	SampT	уре: МS	D	Tes	tCode: El	PA Method	8015D: Gaso	line Range		
Client ID:	S-1	Batch	ID: GS	94858	F	RunNo: 9	4858				
Prep Date:		Analysis D	ate: 2/2	24/2023	S	SeqNo: 3	429323	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	e Organics (GRO)	19	3.6	18.18	1.498	97.8	70	130	0.301	20	
Surr: BFB		1400		727.3		198	37.7	212	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 16

.

ENSOLUM

Client:

Project:

Client ID:

Sample ID: 100ng btex lcs

LCSS

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Schwerdtsferger LS 10A

SampType: LCS

Batch ID: R94858

с.	 02-Mar-23
TestCode: EPA Method 8021B: Volatiles	

Prep Date:	Analysis I	Date: 2/2	24/2023	SeqNo: 3428461			Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.91	0.025	1.000	0	90.9	80	120			
Toluene	0.94	0.050	1.000	0	94.5	80	120			
Ethylbenzene	0.94	0.050	1.000	0	94.1	80	120			
Xylenes, Total	2.8	0.10	3.000	0	94.1	80	120			
Surr: 4-Bromofluorobenzene	0.95		1.000		95.5	70	130			
Sample ID: mb	Samp	Туре: МВ	LK	Tes	stCode: EF	les				
Client ID: PBS	Batc	h ID: R9 4	4858	F	RunNo: 9 4	858				
Prep Date:	Analysis I	Date: 2/2	24/2023	S	SeqNo: 3 4	28462	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.95		1.000		95.4	70	130			
Sample ID: 2302a63-002ams	Samp	Type: MS	;	TestCode: EPA Method 8021B: Volatiles						
Client ID: S-2				RunNo: 94858						
0.00111D. 3-2	Batc	h ID: R9 4	4858	F	RunNo: 9 4	858				
Prep Date:	Batc Analysis I				RunNo: 9 4 SeqNo: 3 4		Units: mg/K	g		
-				S			Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
Prep Date:	Analysis I	Date: 2/2	24/2023	S	SeqNo: 3 4	29329	_	-	RPDLimit	Qual
Prep Date: Analyte	Analysis I Result	Date: 2/2 PQL	2 4/2023 SPK value	SPK Ref Val	SeqNo: 3 4 %REC	129329 LowLimit	HighLimit	-	RPDLimit	Qual
Prep Date: Analyte Benzene	Analysis I Result 0.70	Date: 2/2 PQL 0.019	2 4/2023 SPK value 0.7502	SPK Ref Val 0.01560	SeqNo: 3 4 %REC 91.2	LowLimit 68.8	HighLimit 120	-	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene	Analysis I Result 0.70 0.77	Date: 2/2 PQL 0.019 0.038	24/2023 SPK value 0.7502 0.7502	SPK Ref Val 0.01560 0.04696	SeqNo: 34 %REC 91.2 96.0	LowLimit 68.8 73.6	HighLimit 120 124	-	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene	Analysis I Result 0.70 0.77 0.73	Date: 2/2 PQL 0.019 0.038 0.038	24/2023 SPK value 0.7502 0.7502 0.7502	SPK Ref Val 0.01560 0.04696 0.01838	SeqNo: 34 %REC 91.2 96.0 95.4	LowLimit 68.8 73.6 72.7	HighLimit 120 124 129	-	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Analysis I Result 0.70 0.77 0.73 2.3 0.72	Date: 2/2 PQL 0.019 0.038 0.038	24/2023 SPK value 0.7502 0.7502 0.7502 2.251 0.7502	SPK Ref Val 0.01560 0.04696 0.01838 0.1195	SeqNo: 34 %REC 91.2 96.0 95.4 95.6 96.2	LowLimit 68.8 73.6 72.7 75.7 70	HighLimit 120 124 129 126	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene	Analysis I Result 0.70 0.77 0.73 2.3 0.72 I Samp	Date: 2/2 PQL 0.019 0.038 0.038 0.075	24/2023 SPK value 0.7502 0.7502 0.7502 2.251 0.7502	SPK Ref Val 0.01560 0.04696 0.01838 0.1195 Tes	SeqNo: 34 %REC 91.2 96.0 95.4 95.6 96.2	LowLimit 68.8 73.6 72.7 75.7 70 PA Method	HighLimit 120 124 129 126 130	%RPD	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Sample ID: 2302a63-002amsc	Analysis I Result 0.70 0.77 0.73 2.3 0.72 I Samp	Date: 2/2 PQL 0.019 0.038 0.038 0.075 Type: MS h ID: R9 4	24/2023 SPK value 0.7502 0.7502 0.7502 2.251 0.7502 5D 4858	SPK Ref Val 0.01560 0.04696 0.01838 0.1195 Tes F	SeqNo: 34 %REC 91.2 96.0 95.4 95.6 96.2 ttCode: EF	LowLimit 68.8 73.6 72.7 75.7 70 PA Method 8858	HighLimit 120 124 129 126 130	%RPD	RPDLimit	Qual

RunNo: 94858

Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	
0.69	0.019	0.7502	0.01560	90.6	68.8	120	0.721	20	
0.76	0.038	0.7502	0.04696	94.8	73.6	124	1.18	20	
0.72	0.038	0.7502	0.01838	93.4	72.7	129	2.07	20	
2.3	0.075	2.251	0.1195	95.3	75.7	126	0.248	20	
0.73		0.7502		97.1	70	130	0	0	
	0.69 0.76 0.72 2.3	0.69 0.019 0.76 0.038 0.72 0.038 2.3 0.075	0.69 0.019 0.7502 0.76 0.038 0.7502 0.72 0.038 0.7502 2.3 0.075 2.251	0.69 0.019 0.7502 0.01560 0.76 0.038 0.7502 0.04696 0.72 0.038 0.7502 0.01838 2.3 0.075 2.251 0.1195	0.69 0.019 0.7502 0.01560 90.6 0.76 0.038 0.7502 0.04696 94.8 0.72 0.038 0.7502 0.01838 93.4 2.3 0.075 2.251 0.1195 95.3	0.69 0.019 0.7502 0.01560 90.6 68.8 0.76 0.038 0.7502 0.04696 94.8 73.6 0.72 0.038 0.7502 0.01838 93.4 72.7 2.3 0.075 2.251 0.1195 95.3 75.7	0.69 0.019 0.7502 0.01560 90.6 68.8 120 0.76 0.038 0.7502 0.04696 94.8 73.6 124 0.72 0.038 0.7502 0.01838 93.4 72.7 129 2.3 0.075 2.251 0.1195 95.3 75.7 126	0.69 0.019 0.7502 0.01560 90.6 68.8 120 0.721 0.76 0.038 0.7502 0.04696 94.8 73.6 124 1.18 0.72 0.038 0.7502 0.01838 93.4 72.7 129 2.07 2.3 0.075 2.251 0.1195 95.3 75.7 126 0.248	0.69 0.019 0.7502 0.01560 90.6 68.8 120 0.721 20 0.76 0.038 0.7502 0.04696 94.8 73.6 124 1.18 20 0.72 0.038 0.7502 0.01838 93.4 72.7 129 2.07 20 2.3 0.075 2.251 0.1195 95.3 75.7 126 0.248 20

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 16

WO#: 2302A63

HALL ENVIRON ANALYS LABORA	TEL:	Environmenta Ali 505-345-397 ebsite: www.k	4901 I buquerque 5 FAX: 50	Hawkins NE . NM 87109)5-345-4107	Sa	Sample Log-In Check List									
Client Name: E	NSOLUM		Work C	order Numbe	r: 2302A	.63		RcptNo: 1							
Received By:	Fracy Casa	rrubias	2/24/2023	3 7:20:00 AI	N										
Completed By:	Fracy Casa	rrubias	2/24/2023	3 7:38:56 Al	N										
Reviewed By: 发	r zli	24/23													
<u>Chain of Custo</u>	dy					_		-	Not Present						
1. Is Chain of Cust	ody comple	te?			Yes		No 🛛								
2. How was the sa	mple delive	red?			<u>Courie</u>	<u>er</u>									
Log In 3. Was an attempt	made to co	ol the sample	s?		Yes [No [ב	na 🗆						
4. Were all sample	s received a	at a temperatu	re of ≥0°C to	o 6.0°C	Yes	\checkmark	No [NA 🗌						
5. Sample(s) in pro	oper contain	er(s)?			Yes		No [
6. Sufficient sampl	e volume fo	r indicated tes	st(s)?		Yes		No [
7. Are samples (ex	cept VOA a	nd ONG) prop	perly preserve	d?	Yes		No [_						
8. Was preservativ	e added to	bottles?			Yes [No 🛛		NA 🗌						
9. Received at leas	st 1 vial with	headspace <	1/4" for AQ V	OA?	Yes [No [NA 🗹						
10. Were any samp	e containe	rs received br	oken?		Yes		No		# of preserved						
11. Does paperwork (Note discrepan					Yes		No [>12 untess noted)					
12. Are matrices co	rrectly ident	ified on Chain	of Custody?		Yes		No [_	Adjusted?						
13. Is it clear what a			•		Yes				Checked by:	In 2/24/2					
14. Were all holding (If no, notify cus					Yes		NoL		Chiecked by.	<u></u>					
<u>Special Handlir</u>			ille de la cardina		Yes		No	П							
15. Was client noti	tied of all dis	screpancies w	htn this order :		105		140	-		_					
Person N				Date:	/			F							
By Whon				Via:	🗌 eMa		ne 🗌	гах	In Person						
Regardin Client Ins	g: structions:														
16. Additional rem															
17. <u>Cooler Inforn</u>	nation								ł						
Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Da	ate Si	gned E	3y							
1	1.6	Good	Yes	Morty					J						

•

Released to Imaging: 5/23/2023 1:01:21 PM

Page 70 of 72

of 72												100	6										T.	1	1	
Page 71 of 72 HALL ENVIRONMENTAL ANALYSIS LABORATORY																									/0	A
Page ENVIRONMENTAL YSIS LABORATOR		ŝ																	10			1000		Sec. 1		5000
ME		Albuquerque, NM 87109	07					_														lan a]	
ABC NO	www.hallenvironmental.com	NM,	505-345-4107	est	(JL	Jəsq	łA∖tr	uəsə	ч <u>ч</u>)	orm	tiloD	lotal	_						$\left \right $		-					
LIR L	nenta	erque	505-3	Analysis Request					_	-		0728													7	
NN	viron	nbnq	Fax	ysis								9260			1.1	2.5									85011	6
Ľ ۳	allen	ı	1	Anal	*0	S. '7.	0 d	40 ⁵	_	_				7	1	-	17	7		1	2	7)	7	14	- InL
HALL	h.ww	4901 Hawkins NE	505-345-3975		-	SIA		1/78				RCR4						-						-	AC	64
ΗĀ	8	wkin	5-345		-	5,					_	EDB				. 3									1	8
	E	01 Hø	I. 505			s,g	ЬС					1808			-										K.Y.	р П
		49(Tel.							_	_	з:нат	1		1	1	7		7	7	/		\ \	1	Remarks: Pay	ALIC
		6	e		()	1208	3) s ,	8MT	/3	811	AJ /)	X I T E X	1	9	7	2	2	7	7	1	1	>	7	>	Ren	
Turn-Around Time: 100名 Sam Deg	١	Schweidtsterger LS "10A	Project #:		Project Manager:	, ,	K Sumers	00:	On Ice: Of Yes DNo WOLA	A OL COOLERS: Contraction of the state of th		Type and # Type 3307 700	Coul	Chal	2001 m3		10/	Ecc/ 6010	Ceu/ 007	A .	ligh wg	1 10 010	10 110	noc/ 012	Repeived by: Via: Date Time	Received by: Via: COULANER Date Time AFE & N 64 745 SN
Client: Ensolver 22/2013 1:14:20 M	2	bole S Kie Clanke	24 + H 87410		email or Fax#:	QA/QC Package:	Standard	on: 🗆 Az Compliance				Time Matrix Sample Name	100 S S-1	1005 5 5-2	1010 5 5-3	1015 S S-4	7-5-5 5 0001	1025 5 5-6	1030 5 5-7	1035	10110 5	10415 > 5-10	1050 5 5-11	2201	Time: Relinquished by:	
Client:	Mailin		γ	Phone #	email	QA/Q(□ Sto	Accre				Date	22 Creation	600	3/33	Ec/2	Ete	ec/e	Sell	Le .	no.	3/03	e le	5C/E	Date:	Date:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:					
Enterprise Field Services, LLC	241602					
PO Box 4324	Action Number:					
Houston, TX 77210	219309					
	Action Type:					
	[C-141] Release Corrective Action (C-141)					

CONDITIONS

Created By		Condition Date
nvelez	None	5/23/2023

CONDITIONS

Page 72 of 72

Action 219309