Received-by OCD: 6/20/202.	3 4:24:21 Patate of New Mexico
Page 5	Oil Conservation Division

Incident ID	NAPP2206346222 Page 1 of 4
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be in	cluded in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(0 Proposed schedule for remediation (note if remediation plan timeling) 	
Deferral Requests Only: Each of the following items must be confirm	med as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around produce deconstruction.	
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health, th	e environment, or groundwater.
I hereby certify that the information given above is true and complete to rules and regulations all operators are required to report and/or file certa which may endanger public health or the environment. The acceptance liability should their operations have failed to adequately investigate an surface water, human health or the environment. In addition, OCD accor responsibility for compliance with any other federal, state, or local laws	ain release notifications and perform corrective actions for releases of a C-141 report by the OCD does not relieve the operator of d remediate contamination that pose a threat to groundwater, eptance of a C-141 report does not relieve the operator of
Printed Name: David Cain	Title:
	Date:
	Telephone:
OCD Only	
Received by: Shelly Wells	Date: <u>6/22/2023</u>
Approved Approved with Attached Conditions of App	proval Denied Deferral Approved
Signature: Da	te:

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2206346222
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Longfellow Energy, LP	OGRID 372210	
Contact Name David Cain	Contact Telephone 972-590-9918	
Contact email david.cain@longfellowenergy.com Incident # (assigned by OCD) nAPP2206346222		
Contact mailing address 8115 Preston Road, Suite 800, Dallas, TX 75225		

Location of Release Source

Latitude	32.8	343223	(NAD 83 in deci	imal de	Longitude	104.142399
Site Name ROE Water Transfer Line off Turkey Tract Rd Site Type						
Date Release Discovered 03/04/2022			API# (if applicable)			
Unit Letter	Section	Township	Range		County	
Р	11	17S	28E		Eddy	

Surface Owner: X State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)				
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)		
Produced Water	Volume Released (bbls) 700	Volume Recovered (bbls) 120		
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No		
Condensate	Volume Released (bbls)	Volume Recovered (bbls)		
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)		
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)		
Cause of Release				

Incident ID	NAPP2206346222
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? Release > 25 bbls	
🗙 Yes 🗌 No		
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?		

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \boxtimes The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

Oil Conservation Division

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: David Cain	Title: Engineering Technologist & Regulatory Specialist
Signature: De d	Date:6/20/2023
email:	Telephone:972-590-9918
OCD Only	
Received by:	Date:

Received by OCD: 6/20/2023 4:24:21 PM State of New Mexico

Oil Conservation Division

	Page 4 of 4
Incident ID	NAPP2206346222
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)	
Did this release impact groundwater or surface water?		
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🔀 No	
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No	
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No	
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No	
Did the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No	

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- X Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

	2023 4:24:21 PM tate of New Mexico			Incident ID	NAPP2206346222
Page 4	Oil Conservation Division			District RP	
				Facility ID	
				Application ID	
regulations all operators public health or the envir failed to adequately inve addition, OCD acceptance and/or regulations. Printed Name. ^{David Cain} Signature: email:	information given above is true and complete to the are required to report and/or file certain release nor ronment. The acceptance of a C-141 report by the estigate and remediate contamination that pose a thr ce of a C-141 report does not relieve the operator o	tifications OCD does eat to grou f responsib 	and perform co not relieve the indwater, surfa ility for compl	prrective actions for rel c operator of liability sh ce water, human health liance with any other fe echnologist & Regulatory	eases which may endanger nould their operations have n or the environment. In ederal, state, or local laws
OCD Only Received by: <u>Sheld</u>	ly Wells		Date: <u>6/22</u>	/2023	

Trinity Oilfield Services & Rentals, LLC

June 20th, 2023

Oil Conservation Division, District II 811 South First Street, Artesia, New Mexico 88210

Re: Request for Approval of Work Plan ROE Water Transfer Line Off Turkey Tract Rd Tracking #: NAPP2206346222

Trinity Oilfield Services (Trinity), on behalf of Longfellow Energy LP, hereby submits the following Work Plan in response to a release that occurred at the above referenced location, and further described below.

Site Information								
Incident ID	NAPP2206346222							
Site Name	ROE Water Transfer Line Off Turkey Tract Rd							
Company	Longfellow Energy LP							
County	Eddy							
ULSTR	P-11-17S-28E							
GPS Coordinates (NAD 83)	32.843223,-104.142399							
Landowner	State							

RELEASE BACKGROUND

On 03/04/2022, Longfellow Energy LP reported a release at the ROE Water Transfer Line Off Turkey Tract Rd. The release was caused by an equipment failure. Approximately 163,429 sqft. of the Pasture was found to be damp upon initial inspection.

Release Info	rmation
Date of Release	03/04/2022
Type of Release	Produced Water
Source of Release	Equipment Failure
Volume Released – Produced Water	700 bbls
Volume Recovered – Produced Water	120 bbls
Volume Released – Crude Oil	0 bbls
Volume Recovered – Crude Oil	0 bbls
Affected Area – Damp Soil	Pasture - Approximately 163,429 sqft.
Site Location Map	Attached

SITE CHARACTERIZATION AND CLOSURE CRITERIA

Data Source	Well Number	Data Date	Depth (ft.)
NM OSE	RA 12307 POD 1	10/07/2015	58
USGS	NA	NA	NA
Soil Bore	NA	NA	NA

Depth to Groundwater/Wellhead Protection:

A search of the groundwater well databases maintained by the New Mexico Office of the State Engineer (NMOSE) and the United States Geological Survey (USGS) was conducted to determine if any registered groundwater wells are located within a 1/2 mile of the release site. The search revealed that One (1) well occurred in the data bases that meets the NMOCD criteria for age of data, distance of the data point well from the release point and a data point well having a diagram of construction.

General Site Characterization:

Site Assess	sment
Karst Potential	Low
Distance to Watercourse	> 300 ft from Wetland
Within 100 yr Floodplain	No
Pasture Impact	Yes

A risk-based site assessment/characterization was performed in accordance with the New Mexico Oil Conservation Division (NMOCD) Rule (Title 19 Chapter 15 Part 29) for releases on oil and gas development and production in New Mexico (effective August 14, 2018). To summarize the site assessment/characterization evaluation, the affected area has Low potential for cave and karst, and no other receptors (residence, school, hospital, institution, church, mining, municipal or other ordinance boundaries) were located within the regulatorily promulgated distances from the site.

Closure Criteria:

Site & Pasture 4ft bgs Recommended	Remedial Action Levels (RRALs)
Chlorides	10,000 mg/kg
TPH (GRO and DRO and MRO)	2,500 mg/kg
TPH (GRO and DRO)	1,000 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

A reclamation standard of 600 mg/kg chloride and 100 mg/kg TPH will be applied to the top four feet of the pasture area if impacted by the release, per NMAC 19.15.29.13.D (1) for the top four feet of areas that will be reclaimed following remediation.

INITIAL ASSESMENT AND REMEDIATION ACTIVITES

Initial Sample Activities:

Delineation Summary									
Delineation Dates	04/12/2022 - 04/20/2022								
Depths Sampled	4' - 12'								
Delineation Map	Attached								
Laboratory Results	Table 1								

All soil samples were placed into laboratory supplied glassware, labeled, and maintained on ice until delivery to NMOCD-approved laboratory (Cardinal Laboratories of Hobbs, NM) for the analysis of chloride using Method SM4500 Cl-B, Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by EPA Method 8021 B and Total Petroleum Hydrocarbon (TPH) constituents the by EPA 8015M.

Confirmation Activities:

Remediation Proposal										
Remediation Dates	Within 90 Days of Approval									
Liner Variance Request	None									
Deferral Request	None									
Proposed Depths Excavated	3" - 4'									
Proposed Area of 5-point Confirmation Samples – Floors and Walls	500 sqft.									
Estimated Total Volume of Excavated Soil	24,212 yards									
Proposed Remediation Map	Attached									

Impacted soil within the release margins will be excavated and temporarily stockpiled on-site on a 6-mil plastic sheeting, pending final disposition. Unless a Variance Request has been approved, all Floor and On-Site Walls of the excavated area will be advanced until laboratory analytical results from confirmation soil samples indicate Chloride, Benzene, BTEX, and TPH concentrations are below the RRAL NMOCD Closure Criteria listed in the Table above, and all Off-Site Walls will be advanced to meet reclamation standards. Confirmation soil samples (five-point composites representing no more than 500 sqft. of the excavated area) will be collected from the floor and sidewalls.

Upon receiving laboratory analytical data showing that confirmation soil samples from the excavated areas yield results below the selected NMOCD Table 1 Closure Criteria; the impacted soil will be transported under manifest to a NMOCD-approved disposal facility and the excavated area will be backfilled with locally sourced, non-impacted "like" material.

SITE RECLAMATION AND RESTORATION

Areas affected by the release and the associated remediation activities will be restored to a condition which existed prior to the release to the extent practicable. The affected area will be contoured and/or compacted to provide erosion control, stability, and preservation of surface water flow. Affected areas not on production pads and/or lease roads will be reseeded with a prescribed BLM, NMSLO, and/or Private Landowner requested seed mixture during the first favorable growing season following closure of the site in accordance with the applicable regulatory agency.

REQUEST FOR APPROVAL

Supporting Documentation									
C-141, pages 3-5	Signed and Attached								
Delineation Map	Attached								
Depth to Groundwater Maps and Source	Attached								
US NWI Map	Attached								
FEMA Flood Hazard Map	Attached								
USDA Soil Survey	Attached								
Laboratory Analytics with COCs	Attached								

The corrective actions will be completed within 90 days of receipt of approval of this proposal by the NMOCD. Upon completion of the proposed tasks, a "Remediation Summary & Closure Request" will be submitted, documenting remediation activities and results of confirmation soil samples.

Trinity Oilfield Services respectfully requests that the New Mexico Oil Conservation Division grant approval for the detailed Remediation Work Plan.

Sincerely,

Dan Dunkelberg

Dan Dunkelberg Project Manager

Cynthia Jordan

Cynthia Jordan Project Scientist

 TOTAL
 BEN

 C36
 TOTAL

 BTEX
 (mg/Kg)

 E
 50

 E
 50

 E
 50

Received by OCD: 6/20/2023 4:24:21 PM

TABLE 1 CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

TABLE 1 CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	VERTICAL/ HORIZONTAL	OFF-SITE/ ON-SITE	SAMPLE TYPE	SOIL STATUS	CHLORIDE (mg/Kg)	TPH C ₆ -C ₃₆ (mg/Kg)	GRO+ DRO (mg/kg)	GRO C ₆ -C ₁₀ (mg/Kg)	DRO C ₁₀ -C ₂₈ (mg/Kg)	MRO C ₂₈ -C ₃₆ (mg/Kg)	TOTAL BTEX (mg/Kg)	BENZENE (mg/Kg)
	NMOCD C	Closure Limits (On-Site, & Deeper th	an 4' Pasture			10,000	2,500	1,000	NE	NE	NE	50	10
NMOCD Closure Limits Pasture to 4'								100	NE	NE	NE	NE	50	10
SP-38 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	960	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 39 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	1490	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-40 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	1420	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-41 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	720	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 42 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	1520	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 43 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	672	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 44 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	704	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 45 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	672	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 46 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	1310	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 47 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	688	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 48 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	240	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-49 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	864	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 50 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	928	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-51 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	944	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 52 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	1140	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 53 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	1040	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 54 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	848	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 55 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1500	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 55 @ 12'	12'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	1010	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 56 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	1140	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-57 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	912	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-58 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	912	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 59 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	880	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-60 @ 4'	4'	3/23/2022	Vertical	Off-Site	Grab	In-Situ	944	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-61 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	800	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 62 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	864	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-63 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	896	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-64 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1010	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-65 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	928	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-66 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	832	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-67 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	912	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-68 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1060	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 69 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	896	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 70 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	912	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 71 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	864	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 72 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	944	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 73 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1310	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 74 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	2400	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 75 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	2920	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050

TABLE 1 CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	VERTICAL/ HORIZONTAL	OFF-SITE/ ON-SITE	SAMPLE TYPE	SOIL STATUS	CHLORIDE (mg/Kg)	TPH C ₆ -C ₃₆ (mg/Kg)	GRO+ DRO (mg/kg)	GRO C ₆ -C ₁₀ (mg/Kg)	DRO C ₁₀ -C ₂₈ (mg/Kg)	MRO C ₂₈ -C ₃₆ (mg/Kg)	TOTAL BTEX (mg/Kg)	BENZENE (mg/Kg)
	NMOCD (Closure Limits (On-Site, & Deeper th	an 4' Pasture			10,000	2,500	1,000	NE	NE	NE	50	10
		NMOCD Closu	re Limits Pasture to	o 4'			600	100	NE	NE	NE	NE	50	10
SP-76 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1380	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-77 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	3000	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-78 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1310	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-79 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1810	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-80 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	752	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-81 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	2520	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-82 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1330	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-83 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	1300	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-84 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	736	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-85 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	752	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-86 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	2640	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-86 @ 12'	12'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	1660	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP-87 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	48.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-88 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-89 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-90 @ 4'	4'	3/25/2022	Vertical	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-91 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	224	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-92 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	48.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-93 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	80.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-94 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	64.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-95 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	48.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-96 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	48.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-97 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	80.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-98 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-99 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-100 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-101 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-102 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 103 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-104 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-105 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-106 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-107 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	96.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-108 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-109 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	112	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP-110 @ 4'	4'	3/28/2022	Vertical	Off-Site	Grab	In-Situ	80.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
						Horizontal	Delineation							
SP - 1 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 1 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050

TABLE 1 CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	VERTICAL/ HORIZONTAL	OFF-SITE/ ON-SITE	SAMPLE TYPE	SOIL STATUS	CHLORIDE (mg/Kg)	TPH C ₆ -C ₃₆ (mg/Kg)	GRO+ DRO (mg/kg)	GRO C ₆ -C ₁₀ (mg/Kg)	DRO C ₁₀ -C ₂₈ (mg/Kg)	MRO C ₂₈ -C ₃₆ (mg/Kg)	TOTAL BTEX (mg/Kg)	BENZENE (mg/Kg)
	NMOCD C	losure Limits (On-Site, & Deeper th	an 4' Pasture		•	10,000	2,500	1,000	NE	NE	NE	50	10
NMOCD Closure Limits Pasture to 4'							600	100	NE	NE	NE	NE	50	10
SP - 1 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	48.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 2 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 2 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 3 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 3 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 4 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 4 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 5 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 5 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 6 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 6 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 6 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 7 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 10 SW @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 11 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 11 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 12 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 12 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 13 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 13 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 14 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 14 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 14 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 15 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 15 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 16 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 16 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 17 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 17 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 17 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 20 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 23 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 24 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 27 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 28 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 31 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	48.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 32 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 35 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 36 W @ 2	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050

TABLE 1 CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	VERTICAL/ HORIZONTAL	OFF-SITE/ ON-SITE	SAMPLE TYPE	SOIL STATUS	CHLORIDE (mg/Kg)	TPH C ₆ -C ₃₆ (mg/Kg)	GRO+ DRO (mg/kg)	GRO C ₆ -C ₁₀ (mg/Kg)	DRO C ₁₀ -C ₂₈ (mg/Kg)	MRO C ₂₈ -C ₃₆ (mg/Kg)	TOTAL BTEX (mg/Kg)	BENZENE (mg/Kg)
	NMOCD (Closure Limits (On-Site, & Deeper th	an 4' Pasture			10,000	2,500	1,000	NE	NE	NE	50	10
		NMOCD Closu	ure Limits Pasture to	o 4'			600	100	NE	NE	NE	NE	50	10
SP - 39 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 40 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 43 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 44 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 44 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	48.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 48 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 49 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 54 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	32.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 54 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 55 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 61 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 62 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 67 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 68 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 73 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 74 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 74 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 75 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 76 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 77 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 78 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 79 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 80 N @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 80 S @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 81 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 81 E @, 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 82 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 83 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 83 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 84 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 84 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 85 E @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 85 W @ 2'	2'	3/28/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	< 0.050
SP - 86 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 86 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 87 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 87 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 88 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050
SP - 88 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050

TABLE 1 CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	VERTICAL/ HORIZONTAL	OFF-SITE/ ON-SITE	SAMPLE TYPE	SOIL STATUS	CHLORIDE (mg/Kg)	TPH C ₆ -C ₃₆ (mg/Kg)	GRO+ DRO (mg/kg)	GRO C ₆ -C ₁₀ (mg/Kg)	DRO C ₁₀ -C ₂₈ (mg/Kg)	MRO C ₂₈ -C ₃₆ (mg/Kg)	TOTAL BTEX (mg/Kg)	BENZENE (mg/Kg)
	NMOCD O	Closure Limits (On-Site, & Deeper th	an 4' Pasture			10,000	2,500	1,000	NE	NE	NE	50	10
		NMOCD Closu	ire Limits Pasture to	o 4'			600	100	NE	NE	NE	NE	50	10
SP - 89 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 89 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 89 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 90 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 90 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 91 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 92 S @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 93 S @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 93 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 94 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 95 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 97 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 97 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 98 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 99 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 100 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 100 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 102 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 102 S @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 103 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 104 S @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 104 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 105 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 105 S @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	48.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 106 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 107 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 107 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 107 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 108 S @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 108 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 109 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 109 S @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 110 E @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 110 W @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	<0.300	<0.050
SP - 110 N @ 2'	2'	3/29/2022	Horizontal	Off-Site	Grab	In-Situ	<16.0	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.300	<0.050

<u>egend:</u>

DelineationRelease Area

Figure 2.0 Initial Delineation Map Longfellow Energy, LP ROE Water Transfer Line off Turkey Tract Rd Eddy County, New Mexico NMOCD Reference # NAPP2206346222

Released to Imaging: 6/23/2023 7:53:20 AM

SPUDW SPUD SPUD SPUD SPUD SPUD SPUD SPUD SPUD
SP-1003 SP-102 N SP-107 N SP-1003 SP-102 N SP-107 N SP-102 S SP-105 S SP-107 N SP-102 S SP-103 S SP-107 N SP-103 S SP-100 F SP-100 F SP-103 S SP-104 S SP-97 S SP-93 S SP-94 S SP-97 F SP-93 S SP-93 S SP-94 S SP-93 S SP-93 S SP-93 S SP-93 S SP-93 S SP-93 S SP-90 N SP-93 S SP-93 S SP-90 N SP-93 S SP-93 S SP-93 S SP-93 S SP-93 S SP-93 N SP-93 S SP-93 S SP-93 N SP-93 S
SP-103 S SP-104 S SP-102 S SP-102 S SP-102 S SP-102 S SP-102 S SP-103 S SP-100 S SP-97 S
SP-102 S SP-103 W SP-101 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-97 E SP-97 E SP-97 W SP-97 E SP-97 W SP-97 E SP-97 E SP-97 E SP-93 S SP-94 E SP-93 S SP-94 E SP-90 E SP-90 W SP-90 E SP-88 W SP-88 W SP-88 S SP-88 W SP-88 S SP-88 W SP-88 S SP-88 S SP-8
SP-102 S SP-103 W SP-101 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-100 SP-97 E SP-97 E SP-97 W SP-97 E SP-97 W SP-97 E SP-97 E SP-97 E SP-93 S SP-94 E SP-93 S SP-94 E SP-90 E SP-90 W SP-90 E SP-88 W SP-88 W SP-88 S SP-88 W SP-88 S SP-88 W SP-88 S SP-88 S SP-8
SP-103 W SP-101 SP-103 SP-203 W SP-99 SP-100 N SP-93 W SP-94 SP-97 N SP-93 W SP-95 SP-97 E SP-93 W SP-93 S SP-94 E SP-93 W SP-93 S SP-92 S SP-93 S SP-92 S SP-91 E SP-93 W SP-92 S SP-91 E SP-93 W SP-92 S SP-90 S SP-93 W SP-92 S SP-91 E SP-90 W SP-90 S SP-90 S SP-93 W SP-92 S SP-90 S SP-93 S SP-92 S SP-91 E SP-93 W SP-90 S SP-90 S SP-90 W SP-90 S SP-90 S
SP-98 SP-98 SP-97 N SP-95 SP-97 SP-94 SP-94 SP-93 SP-92 SP-94 SP-94 SP-93 SP-92 SP-94 SP-9
SP-98 W SP-96 SP-97 N SP-97 E SP-95 SP-95 SP-97 E SP-98 W SP-95 SP-94 E SP-93 S SP-92 S SP-91 E SP-90 W SP-90 E SP-88 W SP-88 W SP
SP-96 SP-97 N SP-95 SP-97 E SP-98 W SP-93 S SP-94 E SP-98 W SP-93 S SP-92 S SP-91 E SP-90 W SP-90 E SP-98 W SP-98 W
SP-95 W SP-95 SP-94 E SP-93 W SP-93 SP-92 SP-94 E SP-93 S SP-92 S SP-91 E SP-93 S SP-92 S SP-91 E SP-90 W SP-90 E SP-80 W SP-90 E SP-88 W SP-88 SP-88 E
SP-93 W SP-93 W SP-93 S SP-92 S SP-91 E SP-90 W SP-90 E SP-88 W SP-88 SP-88 E SP-87 W SP-87 W SP-88 W SP-88 W SP-88 SP-88 W SP-87 W
SP-93 SP-92 S SP-91 E SP-93 S SP-92 S SP-91 E SP-90 W SP-90 E SP-90 W SP-90 E SP-88 W SP-88 E SP-88 W SP-88 E
SP-90 W SP-90 E SP-88 W SP-88 E SP-87 W SP-88
SP-88 W SP-88 W SP-88 W SP-88 E SP-87 W SP-87 W
SP-88 W SP-88 W SP-88 W SP-88 E SP-87 W SP-87 W
SP-87 W SP-87
SP-87 W SP-87
SP-87 W SP-87
SP-87 E
Maxar, Microsoft SP-86 W SP-86
Legend: Figure 2.1
• DelineationLongfellow Energy, LP015306090120Release AreaROE Water Transfer Line off
Turkey Tract Rd Eddy County, New Mexico NMOCD Reference # NAPP2206346222

	S	P-90 W SP-90 SP-90 E
the start of	SI	o-88 ₩, SP-88 SP-88 E
	SP	-87 W SP-87 SP-87 E
	SP- SP-85 V	-86 W SP-86 SP-86 E
	SP-89 N SP-89 W SP-89 W SP-89 E	SP-85 E
SP-78 N	SP-82 W SP-83 W SP-83	oSP-84 E SP-83 E
SP-78 SP-77 N SP-77 N SP-76 N SP-76 N SP-76 N	SP-81 W SP-81 W SP-75 N ^{SP-74 N} SP-75 N ^{SP-74 N}	A 4 5
SP-70 SP-71	SP-75 SP-74 SP-74 E	
SP-65 SP-64 SP-57	SP-73 SP-73 E 53 SP-62	· · · ·
SP-58 SP-59	₀SP-62 E ₀SP-60	
SP-52 SP-44 SP-45	SP-61 E SP-50 SP-49	
SP-43 SP-43 SP-42	-47 SP-48	6 1 2.
SP-41	SP-48 E	Maxar, Microsoft
Delineation Release Area	Figure 2.2 Initial Delineation Map Longfellow Energy, LP ROE Water Transfer Line off Turkey Tract Rd Eddy County, New Mexico NMOCD Reference #	Feet 0 15 30 60 90 120
	NAPP2206346222	TRUTTELD SERVICES

XX X X		y •	-	10.0	10	2.0		 1.0		_
Keleasea	10	Imaging:	0/	23	$\overline{2}$	23	5 /	 5.	:ZU	

SP-35		SP-39	100			
SP-34	ł	SP-39	9 E			
	oSP-33	Altheory of the second	25 1 1			
SP-28			4 2 3			
		SP-32 SP-32 E		Sec.		(1) · · · ·
SP-29		and the second	and the second			
	SP-30	and the second	100			
oSP-27	SD-3	1		1		
SP-26	o ^{SP-3}	¹ SP-31 E		1.2.	2.00	
SF	-25	STREET CLASS		1/20100	20.0	1 1 1
0		CONTRACTOR .			1 9	
CD 21	SP-24	SP-24 E		- and the	1	- 20.0
•SP-21	-	0				
SP-22		and the set				
	SP-23	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
SP-8 SP-7	•	SP-23 E	31.3	Contes		10
0 0		SP-6 N		100		
		SP-6 E	100 C			1000
SP-7 So	P-18		CAR CONT			
		SP-5 N SP-4 N SP-5 SP-6 S	67 9 M			
CI CI	P-17	SP-5 SP-6 S ⁹ SP-4		SP-2 N	sp-1 N	
	-1/	SP-5 S	SP-3	SP-2	SP-1	oSP-1 E
SP-17 W	SP-17	• SP-4 S			SP-1 S	
			• SP-3 S	°SB-52S	0, 10	
		4 10				
• SP-17 S	Sec.12	1 1 2 1	アクガー	Barth S.	1000	1148
01-1/ 5	1000	1000				
	ALL PAGE	State and				D.02 00
		Real and a			Miax	ar, Microsoft
and the second sec	1000	1.00		Contraction of the	24 24	100
Legend:		r! 0 /	2			
		Figure 2.3 Initial Delineati				Feet
 Delineation 		Longfellow Ene		0 15 30	60 90	120
Release Area		ROE Water Transf	er Line off			
		Turkey Trac				N
		Eddy County, Nev NMOCD Refere				4
		NAPP220634		TRINIT	TY	N
				ULTIELD SFR	VICES	ب اب

o^{SP-42} oSP-41 C. C. SP-40 SP-40 E SP-36 W SP-36

SP-43 W SP-49 SP-43 W SP-43 SP-46 SP-47 SP-49 E SP-48 E SP-48

SP-44 W SP-44 SP-50 SP-50 SP-50 SP-61 E 100

SP-56 SP-57 SP-57 SP-58 SP-54 SP-63 SP-62 SP-62 SP-58 SP-59 SP-60 oSP-62 E SP-54 SP-53

SP-73

SP-73 E

Received by OCD: 6/20/2023 4:24:21 PM

SP-35 W

SP-65

and the second second	6 2.88 · ·	¥1
" uto	1. 19 1 1	- martine
1 . 7 . 41	A	4 6 8
28. 6	2 3 1 4	m's harder lat
- 27 F F	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	CARLS SEARCH
1		CD-90 N
11.8	the second second	SP-89 N SP-84 W
SP-80 N	125. 1.1	SP-89 W SP-89 SP-84
11 11 11 11 11 11 11 11 11 11 11 11 11	Contraction of the second	• SP-89 E
SP-80 S	P-79 N SP-78 N	SP-82 W SP-83 W SP-83
SP-80 S		SP-82 W SP-83 W SP-83 W SP-83
oSP-	79 SP-78 SP-77 N	
SP-68 W		SP-81 W SP-81
SP-68	SP-77	N SP-75 N SP-74 N SP-81 E
114 2 1	SP-76 SP-69	05F-73 IN
SP-67 W SP-67	SP-70	SP-75 SP-74
0	SP-71	SP-74 E
SP-55 W	SP-65	SP-73
SP-55	SP-64	
0	SP-57	SP-62
	SP-58	SP-62 E
SP-54 W SP-54	SP-59	o
	o ^{SP-53}	SP-60
SP-54 S	SP-52	
SP-44 W	SP-44	0
	SP-45	SP-50
SP-44 S •		SP-49
SP-43 W	SP-46 S	P-47
	SP-43	SP-48
*	oSP-42	SP-48 E
	o ^{SP-41}	AND V BA
SP-36 W		SP-40 SP-40 E
S 5872 - 1.184	SP-37	0
SP-35 W	oSP-38	A
Contract of the	SP-35 SP-34	39 CD 20 E
Sand , My par	SP-34 SP-33	SP-39 E
SP-28 W	8	100 4 1 24 4
0	SP-29 SP-32	SP-32 E Maxar, Microsoft
and the second second	SP-30	Bar 16 april
<u>Legend:</u>	Figure 2.4	
Delineation	Initial Delineation Map Longfellow Energy, LP	Feet Feet 0 15 30 60 90 120
Release Area	ROE Water Transfer Line off	
	Turkey Tract Rd Eddy County, New Mexico	
	NMOCD Reference # NAPP2206346222	
		TOLFIELD SERVICES.
		·

Well Tag POD Number RA 12307 POD	(quarters are 1=N (quarters are sm Q64 Q16 Q4 1 4 2 2	allest to Sec	largest)	·	TM in meters) Y 3633981		
Driller License: 1058	Driller Compa	ny:	KEY'S D	RILLING & P	UMP SERVIO	CE	_
Driller Name: CLINTON	KEY						
Drill Start Date: 09/28/201	5 Drill Finish Da	nte:	09/30/2	015 Plu	ıg Date:		
Log File Date: 10/07/201	5 PCW Rev Date	e:		Sou	urce:	Shallow	
Pump Type:	Pipe Discharge	e Size:		Est	imated Yield	: 30 GPM	
Casing Size: 4.50	Depth Well:		140 fee	t Dej	pth Water:	58 feet	
water Bearing S	Stratifications: To	op Bo	ottom Des	cription			_
	8	80	100 Sha	le/Mudstone/S	iltstone		
	11	10	120 San	dstone/Gravel/	Conglomerate	;	
	12	20	140 Oth	er/Unknown			

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/21/22 2:57 PM

POINT OF DIVERSION SUMMARY

WELL OWNER NAME(S) KEY LIVESTOCK, LLC

1012 E 2ND ST

WELL

LOCATION

(FROM GPS)

WELL OWNER MAILING ADDRESS

LATITUDE

LONGITUDE

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm

32

104

te.nm.us	IATE ENG	INLLK		715 601 -7			
				OSE FILE NUMBER(S RA 12307))		
	-			PHONE (OPTIONAL)			
	· · · · · · · · · · · · · · · · · · ·			СІТҮ		ATE	ZIP
DEGREES	MINUTES	SECONDS		ROSWELL	NM		88201
32	50	27.38	N	* ACCURACY REQUI	RED: ONE TENTH ()F A SECOND	
104	08	23.53	W	* DATUM REQUIRED	D: WGS 84		
			<u> </u>				

DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS - PLSS (SECTION, TOWNSHIIP, RANGE) WHERE AVAILABLE

	LICENSE NUMBER	NAME OF LICENSE	DDRILLER		NAME OF WELL DRILLING COMPANY
	WD-1058	CLINTON KEY			KEYS DRILLING & PUMP SERVICE INC.
	DRILLING STARTED 09-28-15	DRILLING ENDED 09-30-15	DEPTH OF COMPLETED WELL (FT) 140	BORE HOLE DEPTH (FT) 140'	DEPTH WATER FIRST ENCOUNTERED (FT) 80'
NOI	COMPLETED WELL IS:	ARTESIAN	DRY HOLE Z SHALLOW (UN	I (CONFINED)	STATIC WATER LEVEL IN COMPLETED WELL (FT) 58'
ATIO	DRILLING FLUID:	AIR	ADDITIVES – S	SPECIFY:	

DRN	DRILLING N	METHOD:	ROTARY	HAMMER CABLE TOOL	OTHER – SPECIFY:			
CASING INFORM	DEPTH FROM	(fcet bgl) TO	BORE HOLE DIAM (inches)	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen)	CASING CONNECTION TYPE	CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)
S S	· 0	20	14"	STEEL		10-3/4"	1/4"	
	0	120	12-3/4	PVC	SPLINE	4-1/2"	SCH40	
DRILLING	120	140	12-3/4"	PVC	SPLINE	4-1/2"	SCH40	.030
2. DR								
Ц		(feet bgl)	BORE HOLE DIAM. (inches)	LIST ANNULAR SEAL M. GRAVEL PACK SIZE-RANG		AMOUNT (cubic feet)	METHO PLACEN	
MATERIAL	FROM	то				(000101010)		
ЭĽ	0	20	14"	CEMENT			HAN	
	20	140	12-3/4"	VEALMORE PEA G	RAVEL		HAN	D
AR.	-				· · · · · · · · · · · · · · · · · · ·			
ANNULAR								····
ૡ						· · · · · · · · · · · · · · · · · · ·		
			- · · ·					

FOR OSE INTERNAL USE		WR-20 WELL R	ECORD & LOG (Version 06/08/2012)
FILE NUMBER RA-12307	POD NUMBER	TRN NUMBER	574454
LOCATION 175,288.14.2.2	•4		FOCK PAGE 1 OF 2

Released to Imaging: 6/23/2023 7:53:20 AM

	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIA R-BEARING CAVITIE plemental sheets to full	S OR FRACT	URE ZONES	BEA	ATER RING? S / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	20	20		TOP SOIL			□ Y	🔳 N	
	20	60	40	RED	SAND STONE W/RED	SANDY CLAY		ΠY	🔳 N	
- and the second	60	80	20	RED	SAND STONE W/COU	JRSE SAND		🗆 Y	🔳 N	
all a	80	100	20		GREY SHELL			🔳 Y	ΠN	
	100	110	10		RED CLAY			ΠY	🔳 N	
Ţ,	110	120	10		RED SANDY CL	λY		🔳 Y	□ N	
WEL	120	140	20		GYPSON			🔳 Y	ПN	
OF								□ Y	ПN	
90								🗆 Y	ΠN	
- IC								□ Y	🗆 N	
ToC								□ Y	□ N	
GEO								🗆 Y	🗌 N	
RO								□ Y	🗆 N	
4. HYDROGEOLOGIC LOG OF WELL								🗆 Y	🗆 N	
4					-			□ Y	🗆 N	
								□ Y	ΠN	
								□ Y	<u>п</u>	
								□ Y	N 🗌	
								□ Y	🗆 N	
								🗆 Y	N 🗌	
-0 -0 h								□ Y	ΠN	
ar, 1917	METHOD U			OF WATER-BEARING] OTHER – SPECIFY:	G STRATA:	PUMP		TOTAL EST WELL YIEI		30+
NO	WELL TES			ACH A COPY OF DAT ME, AND A TABLE SH						
TEST; RIG SUPERVISION	MISCELLA	NEOUS IN	FORMATION:							
TES	PRINT NA	ME(S) OF D	RILL RIG SUPE	RVISOR(S) THAT PRO	VIDED ONSITE SUPE	RVISION OF	WELL CON	STRUCTION	OTHER TH	IAN LICENSEE:
5.7	CLINTON K	ΞY								
SIGNATURE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUCORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE EN AND THE PERMIT HOLDER WITHIN 20 DAYS AFTER COMPLETION OF WELL DRILLING:					S A TRUE AND TE ENGINEER				
6. SI($-\lambda$	/		GARY K	\L I		10-	07-2015		
	SIGNATURE OF DRILLER / PRINT SIGNEE NAME DATE									
FOI	R OSE INTER	NAL USE				THE REPORT OF	WR-20 WE	LRECORD	& I OG (V-	reion 06/08/2012)
	E NUMBER	RA-	- 1230	<u>л</u>	POD NUMBER		TRN NUMB		144.	rsion 06/08/2012)
-	CATION	7 <u>\$</u> _	28E.1	4.2.2.4	F		, v	5+OC	Č,	PAGE 2 OF 2

NAPP2206346222 | ROE WATER TRANSFER LINE OFF TURKEY TRACT RD

5/17/2022, 7:50:12 AM GIS WATERS PODs

• Active

OSE District Boundary

SiteBoundaries

Esri, HERE, Garmin, (c) OpenStreetMap contributors, Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community, Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, U.S. Department of Energy Office of Legacy Management

Worsham II, Jerry

From:	Griffin, Rusty <rusty_griffin@fws.gov></rusty_griffin@fws.gov>
Sent:	Wednesday, June 14, 2023 8:36 AM
То:	Worsham II, Jerry; michael.haynes@riatacg.com
Cc:	dan@trinityoilfieldservices.com
Subject:	Correction of Information Request
Attachments:	Correction of Information.pdf
To: Cc: Subject:	Wednesday, June 14, 2023 8:36 AM Worsham II, Jerry; michael.haynes@riatacg.com dan@trinityoilfieldservices.com Correction of Information Request

[External Message]

Jerry,

Page 27 of 44

Thank you for submitting your *Correction of Information Request* dated 6/1/2023. I have reviewed the wetland determination and examined the wetland polygon in question and am pleased to inform you that your request has been approved.

I have attached a map depicting the edited wetland polygon reflecting the on-site information you provided. This correction has been made in our local database. The public facing data seen on the Wetlands Mapper is updated biannually with the next update scheduled for October 1, 2023. On or about that date the edits to this particular wetland will be visible and active on the public mapper. If you need the actual data, I can provide a shapefile or geodatabase. Just let me know.

Please let me know if you need anything else from me or my office. I appreciate your patience with this process. Mapping wetlands from aerial imagery has inherent limitations, so it is always helpful to get better information from on the ground sources.

Thank you,

Rusty

Rusty Griffin, PWS

U.S. Fish and Wildlife Service, National Wetlands Inventory | 505 Science Drive, Suite A, Madison, WI 53711 | 608-238-9333 x31005 http://www.fws.gov/wetlands/index.html

Released to Imaging: 6/23/2023 7:53:20 AM

Dage 28 of 44

Request for Correction of Information

This document is required by the Department of the Interior, U.S. Fish and Wildlife Service Information Quality Guidelines.

Requesting a Correction of Information: Any affected person or organization may request a correction of information from the Service pursuant to the Information Quality Guidelines. The Branch of Geospatial Mapping and Technical Services will consider requests for corrections of information for the National Wetlands Geospatial Data Layer if such a request is submitted in compliance with <u>DOI/Service Information Quality</u> <u>Guidelines</u>. Requests must be routed through the appropriate Service Region for technical evaluation. Regional requests for entry of corrected map data will be made by submitting a completed "Request for Correction of Information" form to the Branch's Geodatabase Manager. This form is part of the MGD Technical Attachments of Forms and Documentation. It certifies the corrected information submitted has been approved by all appropriate technical quality control personnel and meets all data standards and requirements as outlined on the <u>Contributed Data webpage</u>. This complies with the requirements of Section 515 of the Treasury and General Government Appropriations Act of 2001 (Public Law 106-554) that requires Federal agencies to provide administrative mechanisms allowing the public to seek and obtain correction of information maintained and disseminated by the agency.

Requester Contact Information:

Requestor Name:	Date:	Email Address:
Jerry D. Worsham II	6/1/2023	jworsham@clarkhill.com
Address:	Phone Number:	Organization(if any):
3200 N. Central Ave., Ste. 1600, Phx, AZ 85012	602-440-4808	Clark Hill/Longfellow Energy, LP
Description of Requested Area for Corre	ction(location/coord	inates/attribute):
The polygon is currently defined as a PEM1A	(Palustrine Emergent)	vetland
Approximate latitude 32.848478 deg. N, -104.1	41243 deg. W., Eddy Co	ounty, New Mexico
Approximate latitude 32.848478 deg. N, -104.1 Effect of the Alleged Error:	41243 deg. W., Eddy Co	bunty, New Mexico

FWS Evaluation Information:

FWS Personnel: Rusty Griffin	Approved or Denied: Approved	Date: 6/13/2023
Justification for Correction Approval/Denial:		
Wetland determination data submitted a determined the wetland polygon bound	and a re-examination of high ary to be larger than the wet	er resolution imagery land was on the ground.
and the second	Participation and a second	

An updated metadata file is attached that reflects this revised information. Metadata update is not necessary for such a small revision.

Released to Imaging: 6/23/2023 7:53:20 AM

Received by OCD: 6/20/2023 4:24:21,PM National Flood Hazard Layer FIRMette

Legend

Page 30 of 44

Releasea to Imaging: 6/23/2023 993:20 AM 1,500 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Received by OCD: 6/20/2023 4:24:21 PM Karst Potential Map

NAPP2206346222 ROE WATER TRANSFER LINE OFF TURKEY TRACT RD P-11-17S-28E 32.843223,-104.142399

1 mi

32.843223,-104.142399

209

209

Released to Imaging: 6/23/2023 7:53:20 AM

Web Soil Survey National Cooperative Soil Survey

Soil Map—Eddy Area, New Mexico (NAPP2206346222 | ROE WATER TRANSFER LINE OFF TURKEY TRACT RD)

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
LN	Largo-Stony land complex, 0 to 25 percent slopes	111.2	51.6%
PD	Pajarito-Dune land complex, 0 to 3 percent slopes	22.9	10.6%
SG	Simona gravelly fine sandy loam, 0 to 3 percent slopes	81.4	37.8%
Totals for Area of Interest		215.5	100.0%

Established Series Rev. CLC/LWH/WWJ 10/2006

LARGO SERIES

The Largo series consists of very deep, well drained soils that formed in loamy calcareous alluvium derived from redbed formations of Jurassic, Triassic, Permian and Pennsylvanian age. These soils are on channeled valley bottom terraces, alluvial fans and piedmont slopes. They have moderate to moderately slow permeability. Their slopes range from 0 to 5 percent. Average annual precipitation is about 8 to 12 inches. Average annual air temperature 59 to 65 degrees F.

TAXONOMIC CLASS: Fine-silty, mixed, superactive, calcareous, thermic Typic Torriorthents

TYPICAL PEDON: Largo silt loam --(All colors are for moist soil unless otherwise stated.)

A--0 to 4 inches; reddish brown (5YR 5/3) silt loam, dark reddish brown (5YR 3/3) moist; weak medium platy structure in the surface 1 inch and weak medium fine subangular blocky structure below; soft, friable, slightly sticky, and slightly plastic; common fine roots; many very fine and fine pores; strongly effervescent; common faint mycelia and few soft bodies of calcium carbonate; moderately alkaline; clear smooth boundary. (3 to 6 inches thick)

AC--4 to 20 inches; reddish brown (5YR 5/3) silt loam, reddish brown (5YR 4/3) moist; weak coarse prismatic structure parting to weak medium subangular blocky; slightly hard, friable, moderately sticky and moderately plastic; many fine roots; many very fine and fine pores; few widely spaced clusters of very fine insect casts; strongly effervescent with common faint mycelia and few soft bodies of calcium carbonate; few fine limestone pebbles; moderately alkaline; gradual boundary. (4 to 20 inches thick)

C1--20 to 47 inches; reddish brown (5YR 5/4) silt loam, reddish brown (5YR 4/4) moist; weak coarse subangular blocky structure; hard, friable, moderately sticky and moderately plastic; few fine roots; many very fine and fine pores; common faint mycelia and concretions of calcium carbonate; few fine limestone pebbles; strongly effervescent; moderately alkaline; abrupt wavy boundary. (20 to several feet thick)

C2--47 to 65 inches; reddish brown (5YR 5/4) loam, reddish brown (5YR 4/4) moist; massive; hard, friable, moderately sticky and moderately plastic; about 5 percent pebbles; strongly effervescent with calcium carbonate disseminated and as coatings on pebbles and as few fine concretions; moderately alkaline.

TYPE LOCATION: Eddy County, New Mexico; 1730 feet north and 75 feet west of the southeast corner of Sec. 29, T. 16 S., R. 28 E.; Latitude 32 degrees 53 minutes 24 seconds and Longitude 104 degrees 11 minutes 22 seconds.

RANGE IN CHARACTERISTICS:

Soil depth - greater than 60 inches.

Soil moisture - soil moisture control section is usually dry in all parts more than three fourth of the time (cumulative) that the soil temperature exceeds 41 degrees F. The driest period is from October through May. Typic aridic moisture regime.

Reaction - slightly to moderately alkaline.

Particle size control section ranges from 18 to 35 percent clay and less than 15 percent fine and coarser sand.

Calcium carbonate equivalent ranges from 0 to 15 percent Depth to free carbonates - 0 to 20 inches

A horizon Hue: 2.5YR through 5YR. Value: 4 or 5 dry and 3 or 4 moist. Chroma: 3 or 4.

Released to Imaging: 6/23/2023 7:53:20 AM

Value: 5 or 6 dry and 3 through 5 moist. Chroma: 3 to 4.

C horizon Hue: 2.5YR through 7.5YR. Value: 5 or 6 dry and 3 through 5 moist. Chroma: 3 to 4. Texture: very fine sandy loam, silt loam, clay loam, or silty clay loam.

COMPETING SERIES: The <u>Tome</u> (NM) soils. The Tome soils have a hue of 10YR.

GEOGRAPHIC SETTING: The Largo soils are on valley bottoms, terraces, alluvial fans, and piedmont slopes. Slopes range from 0 to 5 percent. They formed in loamy calcareous alluvium derived from redbed formations of Jurassic, Triassic, Permian and Pennsylvanian age. Elevations range from 4000 to 5500 feet. The average annual precipitation ranges from 8 to 12 inches, much of which falls in summer in heavy thunderstorms of short duration. The average annual air temperature is about 59 to 65 degrees F. The frost free period is 180 to 210 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the <u>Arno</u>, <u>Berino</u>, <u>Jal</u>, <u>Palomas</u> and <u>Tome</u> soils. The Arno soils have more than 35 percent clay in the series control section and irregular distribution of organic matter throughout. Berino and Palomas soils have argillic horizons than contain more than 15 percent fine and coarser sand. The Jal soils have calcic horizons within 20 inches of the surface.

DRAINAGE AND PERMEABILITY: Well drained. Runoff is medium and permeability is moderate to moderately slow.

USE AND VEGETATION: Primarily used for livestock grazing but where water is available the soil is used for irrigated cropland. Native vegetation is black grama, blue grama, sideoats grama, bush muhly, tobosa grass, vine mesquite, mesquite, and creosotebush.

DISTRIBUTION AND EXTENT: Southern New Mexico. This soil occurs in LRR-D, MLRA 42. The soil is of moderate extent

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Phoenix, Arizona

SERIES ESTABLISHED: Quay County, New Mexico, Eastern New Mexico reconnaissance survey, 1939

REMARKS: Diagnostic horizons and features recognized in this pedon are:

Ochric epipedon - The zone from the surface of the soil to a depth of 10 cm. (A horizon)

Entisol feature - lack of diagnostic horizon

Classified according to Soil Taxonomy Second Edition, 1999.

National Cooperative Soil Survey U.S.A.

Sample ID (SP)	Latitude	Longitude
1	32.84295492	-104.1409161
2	32.84295205	-104.1410853
3	32.84295524	-104.1412251
4	32.84297714	-104.1413727
5	32.84298958	-104.1415009
6	32.84307222	-104.1414412
7	32.84312043	-104.1417437
8	32.84312796	-104.1418909
9	32.84302232	-104.141951
10	32.84305234	-104.1420453
11	32.84294591	-104.1421024
12	32.84293301	-104.1422323
13	32.84288414	-104.142311
14	32.84277792	-104.1423051
15	32.84313017	-104.1421725
16	32.84321189	-104.1421356
17	32.84297057	-104.1416608
18	32.84305287	-104.1416545
19	32.84315136	-104.1420015
20	32.84327273	-104.1419573
21	32.84323597	-104.14184
22	32.84319422	-104.1417165
23	32.84315702	-104.1416292
24	32.84325214	-104.1416002
25	32.84330328	-104.1416672
26	32.84333383	-104.1417949
27	32.84338176	-104.1419012
28	32.84348553	-104.1418888
29	32.84344761	-104.141755
30	32.84341608	-104.1416283
31	32.8433612	-104.1415466
32	32.84346071	-104.1415051
33	32.8435284	-104.1415688
34	32.84355748	-104.1416987
35	32.84358549	-104.1418305
36	32.8437036	-104.141792
38	32.84362837	-104.141534
37	32.8436631	-104.1416508
39	32.84358191	-104.1414598
40	32.84370279	-104.1414122
41	32.84374526	-104.1414942
42	32.84378392	-104.1416235

43	32.8438339	-104.1417492
44	32.84396855	-104.1418161
45	32.84392994	-104.1416768
46	32.84387182	-104.1415585
47	32.84385632	-104.1414395
48	32.84381179	-104.141375
49	32.84392137	-104.1413364
50	32.84396132	-104.1414001
51	32.84398631	-104.1415311
52	32.84402189	-104.1416655
53	32.84408336	-104.1417923
53	32.844101	-104.1419156
55	32.84423177	-104.1420015
56	32.84420936	-104.141886
57	32.84417737	-104.1417452
58	32.84413982	-104.1416352
59	32.8441052	-104.1414908
60	32.84406242	-104.1413615
61	32.84400242	-104.1413013
62	32.84401392	-104.1413112
63	32.84418098	-104.1413281
64	32.84421200	-104.1414321
65	32.84428696	-104.1415738
66	32.84428090	-104.1417037
67	32.84435538	-104.1418288
68	32.84446374	-104.1419423
69	32.84440374	-104.1419237
70	32.84442201	-104.141808
71	32.84435905	-104.1415359
72	32.84430402	-104.1413333
72	32.84432858	-104.1414079
74 75	32.84438361	-104.1412322
75	<u>32.84440166</u> 32.8444293	-104.141362
77	32.8444295	-104.1415043 -104.1416288
77		
	32.8445309	-104.1417535
79	32.84455804	-104.1418797
80	32.84462037	-104.1419959
81	32.84449568	-104.1411501
82	32.84458826	-104.1411708
89	32.84470812	-104.1411513
83	32.84459579	-104.1410614
84	32.84470467	-104.1410044
85	32.84479669	-104.1409249

86	32.84490017	-104.1408476
87	32.84500724	-104.1408038
88	32.84513313	-104.1407982
90	32.84525318	-104.1408347
91	32.84537138	-104.1408984
92	32.8454419	-104.1409741
93	32.84543917	-104.1410741
95	32.84556545	-104.1410418
94	32.84552484	-104.1409518
97	32.84560962	-104.1409165
96	32.84566286	-104.1410193
98	32.84570215	-104.1411213
100	32.84578251	-104.1409932
99	32.84581946	-104.1411203
101	32.84586009	-104.1411938
102	32.84598076	-104.1411983
106	32.845859	-104.140961
103	32.84594309	-104.1410939
107	32.84598042	-104.14087
105	32.84601521	-104.141048
104	32.84605368	-104.1412899
108	32.84611992	-104.1414137
110	32.84627465	-104.141506
109	32.84615047	-104.1415633
1 N	32.84299426	-104.1409065
1 E	32.84295686	-104.1407878
1 S	32.84291109	-104.1409182
2 S	32.84290408	-104.1410771
2 N	32.84299161	-104.1410722
3 N	32.84299619	-104.1412046
3 S	32.84291012	-104.1412258
4 N	32.84301993	-104.141338
4 S	32.84292757	-104.1413744
5 N	32.84302687	-104.1414694
5 S	32.84294979	-104.1415058
6 N	32.84310396	-104.1414182
6 S	32.84302896	-104.1414149
6 E	32.84306021	-104.1413653
7 S	32.84304701	-104.141762
10 SW	32.84302062	-104.1421422
11 W	32.84298312	-104.1421662
11 E	32.84290604	-104.1420587
12 W	32.84300674	-104.1423406
12 E	32.84296368	-104.1422398

13 W	32.84287826	-104.1423794
13 K	32.84285951	-104.1422522
13 L	32.8427616	-104.1422322
14 W	32.84276924	-104.1423745
14 W 14 S	32.84270324	-104.1423743
14 S	32.84316785	-104.1422728
15 W	32.84308312	-104.1422728
15 S	32.84309312	-104.142180
16 W	32.84324701	-104.1421110
10 W	32.84524701	-104.1422431 -104.1417612
17 W 17 S		
17 S 17 E	32.84283104	-104.1417521
	32.84292271	-104.1415835
20 W	32.84331507	-104.1420042
23 E	32.84313868	-104.1414917
24 E	32.84324632	-104.1414496
27 W	32.84337548	-104.1419596
28 W	32.84350951	-104.1419761
31 E	32.84335118	-104.1414058
32 E	32.84346367	-104.141371
35 W	32.84361992	-104.1419067
36 W	32.84371437	-104.1418579
39 E	32.84355673	-104.1413066
40 E	32.84368381	-104.1412884
43 W	32.84384839	-104.1418587
44 S	32.84391297	-104.1418504
44 W	32.84397572	-104.1418759
48 E	32.843772	-104.1412198
49 E	32.84388589	-104.1411909
54 S	32.84403623	-104.1419667
54 W	32.84412053	-104.1420059
55 W	32.84426505	-104.1420678
61 E	32.84400255	-104.1411983
62 E	32.8441338	-104.1411818
67 W	32.84436921	-104.1420125
68 W	32.84448379	-104.1420191
73 E	32.84425047	-104.1411305
74 N	32.84446018	-104.1412801
74 E	32.84435602	-104.1410809
75 N	32.84444213	-104.1413752
76 N	32.84446018	-104.1414917
77 N	32.84453171	-104.1416066
78 N	32.84461435	-104.1417108
79 N	32.84461504	-104.1418571
80 N	32.84470046	-104.1420058

80 S	32.84459421	-104.1420215
81 W	32.84451921	-104.1412446
81 E	32.84446088	-104.1410322
82 W	32.84460462	-104.1412413
83 E	32.84456088	-104.1409793
83 W	32.84461296	-104.1410958
84 W	32.84472684	-104.1410545
84 E	32.84466782	-104.1409098
85 W	32.84481295	-104.1409569
85 E	32.84476573	-104.1408313
86 W	32.84490878	-104.1409057
86 E	32.84486573	-104.1407511
87 E	32.84498795	-104.1406528
87 W	32.8450185	-104.1409032
88 W	32.84514072	-104.1408983
88 E	32.84512128	-104.1407148
89 N	32.84476295	-104.1411429
89 E	32.84468796	-104.1410999
89 W	32.84470254	-104.1412173
90 E	32.84525183	-104.140771
90 W	32.84525322	-104.14089
91 E	32.84537057	-104.140842
92 S	32.84537891	-104.1409892
93 S	32.84537057	-104.1411297
93 W	32.84546849	-104.1411801
94 E	32.84549696	-104.1408288
95 W	32.84556293	-104.1411429
97 N	32.84566709	-104.1408429
97 E	32.84558307	-104.1407867
98 W	32.84569209	-104.1411851
100 E	32.84573652	-104.1409058
102 N	32.84606291	-104.1411479
102 S	32.84592958	-104.1412454
104 S	32.84602055	-104.141314
104 N	32.84609207	-104.1412768
105 N	32.84603374	-104.1410057
105 K	32.84598374	-104.1410206
106 N	32.84589347	-104.1409388
100 N	32.84607541	-104.1407842
107 E	32.845965	-104.1408181
107 E	32.84608235	-104.1414182
100 S	32.84614763	-104.1413942
109 W	32.84616275	-104.1416928
109 S	32.84609485	-104.1415802

110 E	32.8462879	-104.1414735
110 W	32.84630067	-104.1415507
110 N	32.84640664	-104.1415025
100 N	32.84582322	-104.1408758
103 W	32.84584929	-104.1412441
99 N	32.84593891	-104.1410228
107 W	32.84601013	-104.1408867

Received-by OCD:	6/20/2023 4:24:21 P Mate of New Mexico
Page 5	Oil Conservation Division

Incident ID	NAPP2206346222 43 of 4
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.			
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 			
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.			
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.			
Extents of contamination must be fully delineated.			
Contamination does not cause an imminent risk to human health, the environment, or groundwater.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			
Printed Name: David Cain Title: Engineering Technologist & Regulatory Specialist			
Signature: Deid Lin Date: 6/20/2023			
email: Telephone: Telephone:			
OCD Only			
Received by: Shelly Wells Date: 6/22/2023			
Approved X Approved with Attached Conditions of Approval Denied Deferral Approved			
Signature: Robert Hamlet Date: 6/23/2023			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
LONGFELLOW ENERGY, LP	372210
8115 Preston Road	Action Number:
Dallas, TX 75225	230884
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	
Created By Condition	Condition

		Date
rhamlet	The Remediation Plan is Conditionally Approved. Longfellow has petitioned the USFWS/FGDC and had the Wetland boundaries redefined for the mapped Wetland adjacent to this release. The release is no longer in the set back area. At this time, the OCD Approves the Site Assessment recommendation of 51'-100' depth to groundwater. All off pad areas must meet reclamation standards for the upper four feet of soil as set forth in 19.15.29 NMAC. For contamination that may exist on, under, or directly adjacent to Turkey Tract Road, OCD requests Longfellow communicate with Eddy County Road Department to ascertain any requirements for excavation near this county road. Obtain a written statement from the County and include it in the report. Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. A Variance has been approved for 500 ft2 confirmation sample size.	

CONDITIONS

Page 44 of 44

Action 230884