District J 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505	State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505	OIL CONSERVATION ARTESIA DISTRICT MAR 0 1 2016 Submit 1 Copy to appro accordance RECEIVED	Form C-141 Revised August 8, 201
	Release Notification and Corrective A	ction	

NAB1606239294		OPERATOR	Initial Report	Final Report
Name of Company: BOPCO, L.P.	2LA0731	Contact: Bradley Blevins		
Address: 522 W. Mermod, Suite 704 Ca	rlsbad, N.M. 88220	Telephone No. 575-887-7329		
Facility Name: Poker Lake Unit 78 Tank	Battery	Facility Type: Exploration and I	Production	
Surface Owner: Federal	Mineral Owner	r: Federal	API No. 30-015-2	7536

LOCATION OF RELEASE								
Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
A	25	245	30E	660		660		Eddy

Latitude: 32.194170 Longitude: 103.827430

NATURE OF RELEASE

Type of Release: Crude oil and produced	water	Volume of Release: 65 barrels	Volume Recovered:
		PW and 54 barrels Oil	50 barrels oil and 50 barrels PW
Source of Release: Failed HT Gasket		Date and Hour of Occurrence:	Date and Hour of Discovery:
		2-27-16 @ 1:00pm	2-27-16 @ 1:30pm
Was Immediate Notice Given?		If YES, To Whom?	
⊠ Y	es 📋 No 🗌 Not Required	Mike Bratcher, Heather Patterson a	ind Jim Amos BLM
By Whom? Bradley Blevins via email		Date and Hour: 2-27-16 @ 2:42pm	
Was a Watercourse Reached?		If YES, Volume Impacting the Wat	
	Yes 🖾 No		
	P. D. +		
If a Watercourse was Impacted, Describe	Fully.*		
Describe Cause of Problem and Remedia	Action Taken *	· · · · · · · · · · · · · · · · · · ·	
Desenve Cause of Proven and Remedie	rection rucch.		
BOPCO EHS was notified of a release th	at occurred at the PLU 78 due to	o a failed heater treater gasket. A vacut	um truck was called to the location to
recover the fluid within the firewall,		5	
Describe Area Affected and Cleanup Act	ion Taken.*		
•			
The majority of the fluid was contained	vithin the earth berm with the ex	cception of a light overspray on the nor	them half of the location. A vacuum truck
was called to the location and recovered	50 barrels of oil and 50 barrels of	of produced water from the firewall.	
I hereby certify that the information give	n above is true and complete to	the best of my knowledge and understa	and that pursuant to NMOCD rules and
regulations all operators are required to r	eport and/or file certain release	notifications and perform corrective ac	tions for releases which may endanger
public health or the environment. The ac	ceptance of a C-141 report by th	he NMOCD marked as "Final Report"	does not relieve the operator of liability
should their operations have failed to add	quately investigate and remedia	te contamination that pose a threat to g	ground water, surface water, human health
or the environment. In addition, NMOC		does not relieve the operator of respons	stority for compliance with any other
federal, state, or local laws and/or regula		OIL CONSERV	VATION DIVISION)
		OIL CONSERV	VATION DIVISION
Signature: Thanky 5	, ,		
Signature. Chester of		Approved by Environmental Speciali	
Printed Name: Bradley Blevins		Approved by Environmental Speciali	stight for The
Title: Assistant Remediation Foreman		Approval Date: 32116	Expiration Date: NIA
The residual removation robular			
E-mail Address: bblevins@basspet.com		Conditions of Approval:	
	D _	mediation per O C D Bules	
Date: 3-1-16	Phone: 432-214-3704	mediation per O.C.D. Rules	NCAL NO
Attach Additional Sheets If Necessar	SU SU		
The second second second second	΄ LΑ΄	TER THAN: 4211	2RP-3576

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018

Page 2 of 166

Submit to appropriate OCD District office

)

Incident ID	nAB1606239294
District RP	
Facility ID	2RP-3576
Application ID	

Release Notification

Responsible Party

Responsible Party: XTO Energy, Inc	OGRID: 5380
Contact Name: Garrett Green	Contact Telephone: (575) 200-0729
Contact email: garrett.green@exxonmobil.com	Incident #: 2RP-3576
Contact mailing address: 3104 E. Greene Street, Carlsbad, New Mex	xico, 88220

Location of Release Source

Latitude 32.194170

Longitude -103.827430 (NAD 83 in decimal degrees to 5 decimal places)

Site Name Poker Lake Unit 78 Tank Battery	Site Type Exploration and Production
Date Release Discovered 2/27/2016	API# (if applicable) 30-015-27536

Unit Letter	Section	Township	Range	County
А	25	24S	30E	Eddy

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Crude Oil	Volume Released (bbls) 54	Volume Recovered (bbls) 50
Produced Water	Volume Released (bbls) 65	Volume Recovered (bbls) 50
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

A gasket failed on a heater-treater. The majority of the fluid was contained within the earthen process equipment berm, with a light overspray on the northern half of the location. A vacuum truck recovered 50 bbls of oil and 50 bbls of produced water from within the firewall.

Incident ID District RP Facility ID Application ID	2RP-3576
Application ID	?
	?
r this a major release?	?
	what means (phone, mos (BLM) on 2/27/2

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why: NA

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Garrett Green	Title: <u>SSHE Coordinator</u>
Signature: Satt Sum	Date: <u>6/28/2023</u>
email: <u>_garrett.green@exxonmobil.com</u>	Telephone: <u>575-200-0729</u>
OCD Only	
Received by:	Date:

Oil Conservation Division

	Page 4 of 10)0
Incident ID	nAB1606239294	
District RP	2RP-3576	
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data

Page 3

- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 6/28/2	023 3:01:36 PM State of New Mexico				Page 5 of 16
				Incident ID	nAB1606239294
Page 4	Oil Conservation Divisio	n		District RP	2RP-3576
				Facility ID	
				Application ID	
regulations all operators ar public health or the environ failed to adequately investi addition, OCD acceptance and/or regulations. Printed Name: <u>Ga</u> Signature: <u>garrett.gre</u>	Formation given above is true and complete to the required to report and/or file certain release remement. The acceptance of a C-141 report by the igate and remediate contamination that pose a the of a C-141 report does not relieve the operator of a C-141 report does not relieve the operator meters.	notifications and period does not threat to groundwar of responsibility Title:	perform co relieve the ater, surfa- for compl	prective actions for rele operator of liability sh ce water, human health iance with any other fe	eases which may endanger would their operations have a or the environment. In
OCD Only Received by: <u>Shelly Wa</u>	ells	Dat	e: <u>6/28/2</u>	023	

Page 6

Oil Conservation Division

Incident ID	nAB1606239294
District RP	2RP-3576
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following items	must be included in	n the closure report.					
A scaled site and sampling diagram as described in 19.15.29.11 N	A scaled site and sampling diagram as described in 19.15.29.11 NMAC						
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)							
Laboratory analyses of final sampling (Note: appropriate ODC Dis	strict office must be	notified 2 days prior to final sampling)					
Description of remediation activities							
I hereby certify that the information given above is true and complete to and regulations all operators are required to report and/or file certain rele may endanger public health or the environment. The acceptance of a C- should their operations have failed to adequately investigate and remedia human health or the environment. In addition, OCD acceptance of a C- compliance with any other federal, state, or local laws and/or regulations restore, reclaim, and re-vegetate the impacted surface area to the conditi accordance with 19.15.29.13 NMAC including notification to the OCD	ease notifications an 141 report by the O ate contamination th 141 report does not r s. The responsible p ons that existed prio	d perform corrective actions for releases which CD does not relieve the operator of liability at pose a threat to groundwater, surface water, relieve the operator of responsibility for party acknowledges they must substantially or to the release or their final land use in					
Printed Name: <u>Garrett Green</u>		SSHE Coordinator					
Signature:	Date: <u>6/28/2</u>	2023					
email:garrett.green@exxonmobil.com	Telephone:	_200-575-0729					
OCD Only	D						
Received by: <u>Shelly Wells</u>	Date: <u>6/28/202</u>	3					
Closure approval by the OCD does not relieve the responsible party of lia remediate contamination that poses a threat to groundwater, surface water party of compliance with any other federal, state, or local laws and/or re	r, human health, or t						
Closure Approved by:	Date:						
Printed Name:	Title:						

ENSOLUM

June 28, 2023

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Addendum Poker Lake Unit 78 Tank Battery Incident Number nAB1606239294 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared the following addendum to the original *Closure Request* dated November 15, 2019. This addendum provides an update to the depth to groundwater determination activities at the Poker Lake Unit 78 Tank Battery (Site) in response to the New Mexico Oil Conservation Division (NMOCD) denial of the November 15, 2019, *Closure Request*. In the denial, NMOCD indicated that the depth to groundwater assessment was not sufficient. Based on the additional depth to groundwater determination activities described below, XTO is submitting this *Closure Request Addendum* and requesting closure for Incident Number nAB1606239294.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit A, Section 25, Township 24 South, Range 30 East, in Eddy County, New Mexico (32.194170°, -103.827430°) and is associated with oil and gas exploration and production operations on Federal land managed by the Bureau of Land Management (BLM).

On February 27, 2016, a gasket failed on a heater-treater. As a result, approximately 54 barrels (bbls) of crude oil and 65 bbls of produced water were released. The majority of the release was contained within the earthen berm around process equipment. The northern half of the well pad was affected by a light overspray. A vacuum truck recovered approximately 50 bbls of crude oil and 50 bbls of produced water. The former operator reported the release to the NMOCD on a Release Notification and Corrective Action Form C-141 (Form C-141) on March 1, 2016. The release was assigned Remediation Permit (RP) Number 2RP-3576 and Incident Number nAB1606239294.

The release was included in the Compliance Agreement for Remediation for Historical Releases (Compliance Agreement) between XTO and the NMOCD effective November 13, 2018. The purpose of the Compliance Agreement was to ensure that reportable releases that occurred prior to August 14, 2018, where XTO is responsible for the corrective action, comply with Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC) as amended on August 14, 2018.

XTO Energy, Inc. Closure Request Addendum Poker Lake Unit 78 Tank Battery

BACKGROUND

The November 15, 2019, *Closure Request* detailed site characterization according to Table I, Closure Criteria for Soils Impacted by a Release, of 19.15.29 NMAC. Results from the site characterization are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1. Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) were applied:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- Total petroleum hydrocarbons (TPH): 2,500 mg/kg
- Chloride: 20,000 mg/kg

Between June 2019 and August 2019, delineation and excavation activities were conducted at the Site to address the impacted soil resulting from the February 27, 2016, crude oil and produced water release. Closure was requested on November 15, 2019, based on laboratory analytical results for the excavation and delineation soil samples indicating benzene, BTEX, GRO/DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria. Additional details regarding the delineation and excavation activities can be referenced in the original November 15, 2019, *Closure Request*.

On March 22, 2023, NMOCD denied the *Closure Request* for Incident Number nAB1606239294 for the following reason:

• The depth to groundwater has not been adequately determined. When nearby wells are used to determine depth to groundwater, the wells should be no further than ½ mile away from the site, and data should be no more than 25 years old, and well construction information should be provided in the submission. The responsible party may choose to remediate to the most stringent levels listed in Table 1 of 19.15.29 NMAC in lieu of drilling to determine the depth to groundwater.

ADDITIONAL DEPTH TO GROUNDWATER DETERMINATION

New depth to groundwater data became available since the submittal of the November 15, 2019, *Closure Request*. A borehole was drilled approximately 0.42 miles southwest of the Site during October 2020, for determination of regional groundwater depth. The borehole was permitted by the New Mexico Office of the State Engineer (NMOSE) as well C-04478. The location of the borehole is presented on Figure 1. The borehole was advanced to a depth of 110 feet below ground surface (bgs) and no groundwater was encountered. A field geologist logged and described soils continuously. The borehole lithologic/soil sampling log is included in Appendix A. The borehole was left open for over 72 hours to allow for potential slow infill of groundwater was greater than 110 feet bgs. The borehole was properly abandoned using drill cuttings and hydrated bentonite chips. All wells used for depth to groundwater determination are depicted on Figure 1 and the referenced well records are included in Appendix A.

Based on confirmed depth to groundwater greater than 100 feet bgs within 0.5 miles of the Site, the Table I Closure Criteria identified in the original *Closure Request* are applicable and appropriate for protection of groundwater at this Site.

XTO Energy, Inc. Closure Request Addendum Poker Lake Unit 78 Tank Battery

ADDITIONAL SOIL SAMPLING ACTIVITIES

Horizontal delineation of a release was not enforced, nor practiced, until it became more frequently required by NMOCD through denial language throughout 2021. Therefore, in order to ensure NMOCD approval of this *Closure Request Addendum*, horizontal delineation activities were completed at the Site. On June 6, 2023, Ensolum personnel collected assessment soil samples SS01 through SS03 from a depth of 0.5 feet bgs to the east, west, and south of the historical release extent. The 2019 delineation sample BH01@1' provided delineation of the release to the north. The location of assessment samples SS01 through SS03, collected in 2023 and BH01@1' collected in 2019 are presented on Figure 2.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following constituents of concern (COC): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for assessment samples SS01 through SS03 indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria and confirmed the horizontal extent of the release.

CLOSURE REQUEST

Site assessment and excavation activities were completed at the Site to address the impacted soil resulting from the February 27, 2016, release of crude oil and produced water. Based on the horizontal delineation activities and confirmed depth to groundwater greater than 100 feet bgs within 0.5 miles of the Site as presented in this addendum, and laboratory analytical results for the final excavation and delineation soil samples compliant with the Site Closure Criteria, as presented in the November 15, 2019, *Closure Request*, included as Appendix E, XTO respectfully requests no further action for Incident Number nAB1606239294.

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Sincerely, **Ensolum, LLC**

é Cole

Aimee Cole Senior Managing Scientist

cc: Garrett Green, XTO Shelby Pennington, XTO Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Soil Sample Locations (2023)

Table 1Soil Sample Analytical Results (2023)

Ashley L. Ager

Ashley Ager, P.G. Program Director

XTO Energy, Inc. Closure Request Addendum Poker Lake Unit 78 Tank Battery

Appendix A Referenced Well Records

Appendix B Photographic Log (2023)

Appendix C Laboratory Analytical Reports & Chain-of-Custody Documentation (2023)

Appendix D NMOCD Notifications

Appendix E November 15, 2019, Closure Request

.

FIGURES

Received by OCD: 6/28/2023 3:01:36 PM

Page 12 of 166

ENSOLUM Environmental, Engineering and Hydrogeologic Consultants

Delineation Soil Sample Locations XTO Energy, Inc Poker Lake Unit 78 Tank Battery Incident Number: NAB1606239294 Unit A, Section 25, T24S, R30E

Eddy County, New Mexico

TABLES

.

Released to Imaging: 6/30/2023 10:20:49 AM

E N S O L U M

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS (2023) Poker Lake Unit 78 Tank Battery XTO Energy, Inc. Eddy County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closure Criteria (NMAC 19.15.29)			10	50	NE	NE	NE	1,000	2,500	10,000
				Assess	ment Soil Samp	oles				
SS01	0.5'	6/6/2023	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	<49.8	185
SS02	0.5'	6/6/2023	<0.00200	<0.00401	<49.9	<49.9	<49.9	<49.9	<49.9	85.9
SS03	0.5'	6/6/2023	<0.00202	<0.00404	<50.0	<50.0	<50.0	<50.0	<50.0	51.9
BH01	1.0'	6/26/2019	<0.00201	<0.00201	<14.9	<14.9	<14.9	<14.9	<14.9	23.5

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation requirement where applicable.

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon NMAC: New Mexico Administrative Code

1 of 1

Received by OCD: 6/28/2023 3:01:36 PM

APPENDIX A

Referenced Well Records

New Mexico Office of the State Engineer **Point of Diversion Summary**

		(1	are 1=N		20 0.	,			
		(quarters a)	(NAD83 U	JTM in meters)	
Well Tag POD Number		Q64 Q	16 Q4	Sec	Tws	Rng	Х	Y	
NA	C 04478 POD1	3	3 2	25	24S	30E	610077	3562041	
Driller Lic	ense: 1249	Driller (Compai	ny:	AT	KINS E	NGINEERI	NG ASSOC. I	INC.
Driller Nai	me: ATKINS, JACKII	E D.UELEN	ER						
Drill Start	Date: 10/07/2020	Drill Fir	ish Da	te:	1	0/07/20	20 P	lug Date:	10/15/2020
		Drill Fir PCW Ro			1	0/07/20		lug Date: ource:	10/15/2020
Drill Start Log File D Pump Type	ate: 10/29/2020		v Date	:	_	0/07/20	S	8	10/15/2020 d:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/22/23 11:15 AM

POINT OF DIVERSION SUMMARY

•

TH SEAL			WELL R DFFICE OF T 7ww.ose.state.	HE STA							2020 OCT 29 Fil	
N	OSE POD NO POD1 (B)		WELL TAG ID NO).		OSE FILE NO(C-4478	S).			
OCATIO	WELL OWN	.,	.ittrell)	rell)				PHONE (OPTI	ONAL)		<u>ය</u>	
AND WELL LOCATION	WELL OWNI 6401 Holid							CITY Midland	state TX	79707	ZIP	
1. GENERAL AND	WELL LOCATIO (FROM GP DESCRIPTIO SW SE NE	S) LON	ITUDE IGITUDE G WELL LOCATION TO	grees 32° 103° street add	MINUTES 11' 49' RESS AND COMMO	56.	57" <u>N</u> 14" W	* DATUM REG	Y REQUIRED: ONE TEN QUIRED: WGS 84 WNSHJIP, RANGE) WI			
	LICENSE NO 124		NAME OF LICENSED		Jackie D. Atkin	s		<u></u> 11	NAME OF WELL DE Atkins En		MPANY Associates, I	nc.
	DRILLING S 10/07/		DRILLING ENDED 10/07/2020		OMPLETED WELL () orary well materi			le depth (ft) 110	DEPTH WATER FIR	IST ENCOU n/a	NTERED (FT)	
N	COMPLETE	O WELL IS:	ARTESIAN	ARTESIAN I DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COMP				MPLETED WE	LL (FT)			
RMATIO	DRILLING F		✓ AIR✓ ROTARY	MUD		VES – SPE TOOL		R – SPECIFY:	Auger			
RILLING & CASING INFORMATION	DEPTH FROM 0	DEPTH (feet bgl) BORE HOLE ROM TO DIAM (inches)		(include each casing string, and		ASING NECTION 'YPE ling diameter)	CASING INSIDE DIAM. (inches) 	THI	NG WALL CKNESS nches)	SLOT SIZE (inches		
2. DRILLIN												
RIAL	DEPTH (feet bgl) BORE HOLE FROM TO				LIST ANNULAR SEAL MATERIAL AND GRAVEL PACK SIZE-RANGE BY INTERVAL				AMOUNT (cubic feet)		METHO PLACEN	
3. ANNULAR MATERIAL								·····				
FILE	OSERVIER E NO	99-	18 20E-20					WR-2 TRN WELL TAG I		* LOG (30	<u>ک</u>	0/17)

<u>0-3</u>

•

	DEPTH (i	eet bgl)]	COLOR ANI	D TYPE OF MATE		ICOUN	FERED -		WA.	TER		IMATED
	FROM TO THICKNESS (feet) INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)										ING? / NO)	W BE	ELD FOR ATER- EARING IES (gpm)
	0 3 3 Sand, fine-grained, poorly-graded, Red-Brown									Y	√ N		
	3	5	2	Grav	vel, 20-30 mil, well	graded, 1	ittle clay	,		Y	√ N		
	5	13	8	Caliche	with some gravel (5	-20 mil.)	Tan/ Br	own		Y	√ N		
	13	24	9	Sand, fin	e-grained, well-grad	ed some	silt, Tan	/ Red		Y	√ N		
	24	34	10	Sand, Medi	um-grained, well-gr	aded son	ne silt, T	an/ Red		Y	√ N		
T	34	44	10	Sand, Large	-grained, well-grade	d some s	silt, Dark	Brown		Y	√ N		
VEL	44	110	66	Sand, fine-grained, well	-graded, some clay,	moist, c	aliche fr	agments Red/	Brown	Y	√ N		
4. HYDROGEOLOGIC LOG OF WELL										Y	N		
0Č										Y	N		
CL										Y	N		
0C										 Y	N	}	
EOI										Y	N	<u>ند.</u> ۲	
Sog										Y	N	\$ 4	
Į										Y	N'	2	
4. H										Y	N	امر) مە	10 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -
										Y	N	2	100
										Y	N	•	
	·										N (<u>)</u>	
										_		-	
										Y	N		
										Y	N		
:										Y	N		
		_		OF WATER-BEARING						L ESTIN	MATED D (gpm):		0.00
	PUM		IR LIFT	BAILER OT	HER - SPECIFY:						(BP.II.).		0.00
NO	WELL TES			ACH A COPY OF DAT ME, AND A TABLE SH									OD,
VISION	MISCELLA	NEOUS INF	FORMATION:	11 4. *	1		1		1.11		6		4. 4. 4
ER			fe	emporary well materia et below ground surfa	is removed and th ce, then hydrated l	e soil be	oring ba te chips	from ten fee	ng drill et below	cutting: groun	s from to d surface	tal dep to sur	face.
TEST; RIG SUPERV				ogs adapted from LTE			•			Ũ			
RIG													
ST;						DEDIM							OFNERD.
5. TI			KILL KIG SUPER	RVISOR(S) THAT PROV	VIDED ONSITE SU	PERVIS	SION OF	WELL CON	SIRUC	TION U	INEK IN		CENSEE:
	Shane Eldrid	lge											
	THE UNDE	RSIGNED H	IEREBY CERTI	FIES THAT, TO THE B	EST OF HIS OR HI	ER KNO	WLEDO	E AND BEL	JEF, TH	E FORE	EGOING I	SAT	RUE AND
IRE				DESCRIBED HOLE AN 30 DAYS AFTER COM				THIS WELL I	RECORI	O WITH	THE ST	ATE E	NGINEER
ATU	AND THE P		LDER WITHIN:	SUDATS AFTER COM	LETION OF WEL		ano.						
6. SIGNATURE	Jack &	Itkins		Jac	kie D. Atkins					10/2	6/2020		
6. S	/												
		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME						DATE		
FOF	R OSE INTERI	NAL USE						WR-20 WE	LL REC	ORD &	LOG (Ve	rsion 0	6/30/2017)
		JU	TN8		POD NO. 1			TRN NO.	φ	78	282	2	,
LO	CATION	QUIS	-30E	5-25	2-3-:	3	WELL	TAG ID NO.	N	A		PA	GE 2 OF 2

2020-10-26_C-4478POD1_OSE_Well Record and Log-89-forsign

Final Audit Report

2020-10-27

0%0

S

29

0

Created:	2020-10-27
Ву:	Lucas Middleton (lucas@atkinseng.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAAESGKFRG9AU3NcytvOCSRntC1Y-zTs43Y

"2020-10-26_C-4478POD1_OSE_Well Record and Log-89-forsig n" History

Ð	Document created by Lucas Middleton (lucas@atkinseng.com)
	2020-10-27 - 3:14:03 PM GMT- IP address: 69.21.248.123

×,	Document emailed to Jack Atkins (jack@atkinseng.com) for signature
	2020-10-27 - 3:14:17 PM GMT

- Email viewed by Jack Atkins (jack@atkinseng.com) 2020-10-27 - 3:21:12 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com)
 Signature Date: 2020-10-27 3:22:09 PM GMT Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2020-10-27 - 3:22:09 PM GMT

APPENDIX B

Photographic Log

APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 6/28/2023 3:01:36 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 6/14/2023 3:13:55 PM

JOB DESCRIPTION

Poker Lake Unit 78 Tank Battery SDG NUMBER 03C1558235

JOB NUMBER

890-4789-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/14/2023 3:13:55 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

SDG: 03C1558235

Laboratory Job ID: 890-4789-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	16
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
	23

	Definitions/Glossony		
	Definitions/Glossary	==	
Client: Ensolu		Job ID: 890-4789-1	
Ргојеси/зне. г	oker Lake Unit 78 Tank Battery	SDG: 03C1558235	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
*-	LCS and/or LCSD is outside acceptance limits, low biased.		
*+	LCS and/or LCSD is outside acceptance limits, high biased.		5
*1	LCS/LCSD RPD exceeds control limits.		
F1	MS and/or MSD recovery exceeds control limits.		6
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier	Qualifier Description		8
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		C
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		

MDA Minimum Detectable Activity (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin)

MPN Most Probable Number

Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

MCL

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Carlsbad

Job ID: 890-4789-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4789-1

Receipt

The samples were received on 6/6/2023 3:42 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-4789-1), SS02 (890-4789-2) and SS03 (890-4789-3).

GC VOA

Method 8021B: The CCV was biased low for some analytes. However, since the internal standard recoveries were acceptable the data was qualified and reported.(CCV 880-55090/33) and (CCV 880-55090/64)

Method 8021B: The LCS was biased low for m-p xylenes, however since the LCSD was acceptable the data was qualified and reported. (LCS 880-55142/1-A)

Method 8021B: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-55142 and analytical batch 880-55090 recovered outside control limits for the following analytes: Toluene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-55142 and analytical batch 880-55090 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8021B: The laboratory control sample duplicate (LCSD) for preparation batch 880-55037 and analytical batch 880-55385 recovered outside control limits for the following analytes: Benzene and Toluene. These analytes were biased high in the LCSD however, they were acceptable in the LCS and only one is required by method; therefore, the data have been reported.

Method 8021B: Surrogate recovery for the following sample was outside control limits: SS01 (890-4789-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-55158/2-A) and (LCSD 880-55158/3-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

Project/Site: Poker Lake Unit 78 Tank Battery

Job ID: 890-4789-1 SDG: 03C1558235

Matrix: Solid

5

Lab Sample ID: 890-4789-1

Client Sample ID: SS01

Date Collected: 06/06/23 13:45 Date Received: 06/06/23 15:42

Sample Depth: 0.5'

Client: Ensolum

ethod: SW846	8021B - Volati	le Organic Com	oounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U *+	0.00199	mg/Kg		06/08/23 13:04	06/13/23 21:51	1
Toluene	<0.00199	U *+	0.00199	mg/Kg		06/08/23 13:04	06/13/23 21:51	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/08/23 13:04	06/13/23 21:51	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/08/23 13:04	06/13/23 21:51	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/08/23 13:04	06/13/23 21:51	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/08/23 13:04	06/13/23 21:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130			06/08/23 13:04	06/13/23 21:51	1
1,4-Difluorobenzene (Surr)	178	S1+	70 - 130			06/08/23 13:04	06/13/23 21:51	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/14/23 09:58	1
Method: SW846 8015 NM - Diese	N Banga Orean							
INITIALITY CONTRACT FILTER INTERNET	a Kanoe uroan	ICS(DRO)U	GC)					
Analyte		Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed 06/13/23 12:05	
Analyte	Result <49.8	Qualifier U	RL 49.8		<u>D</u>	Prepared		Dil Fac
Analyte Total TPH	Result <49.8 sel Range Orga	Qualifier U	RL 49.8		<u>D</u> 	Prepared		1
Analyte Total TPH Method: SW846 8015B NM - Die	Result <49.8 sel Range Orga	Qualifier U nics (DRO) Qualifier	(GC)	mg/Kg		<u>.</u>	06/13/23 12:05	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.8 sel Range Orga Result	Qualifier U Qualifier U U	RL 49.8 (GC) RL	mg/Kg Unit		Prepared	06/13/23 12:05 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.8 sel Range Orga Result <49.8	Qualifier U Qualifier U U	RL 49.8 (GC) RL 49.8	mg/Kg Unit mg/Kg		Prepared 06/09/23 14:01	06/13/23 12:05 Analyzed 06/13/23 04:11	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.8	Qualifier U Qualifier U U U	RL 49.8 (GC) RL 49.8 49.8	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/09/23 14:01 06/09/23 14:01	06/13/23 12:05 Analyzed 06/13/23 04:11 06/13/23 04:11	
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.8	Qualifier U Qualifier U U U	RL 49.8 (GC) RL 49.8 49.8 49.8 49.8	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/09/23 14:01 06/09/23 14:01 06/09/23 14:01	O6/13/23 12:05 Analyzed 06/13/23 04:11 06/13/23 04:11 06/13/23 04:11	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	Result <49.8	Qualifier U Qualifier U U U	RL 49.8 (GC) RL 49.8 49.8 49.8 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/09/23 14:01 06/09/23 14:01 06/09/23 14:01 Prepared	06/13/23 12:05 Analyzed 06/13/23 04:11 06/13/23 04:11 06/13/23 04:11 Analyzed	Dil Fac 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.8	Qualifier U Qualifier U U U Qualifier	RL 49.8 (GC) RL 49.8 49.8 49.8 49.8 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/09/23 14:01 06/09/23 14:01 06/09/23 14:01 Prepared 06/09/23 14:01	O6/13/23 12:05 Analyzed 06/13/23 04:11 06/13/23 04:11 06/13/23 04:11 06/13/23 04:11 06/13/23 04:11 06/13/23 04:11 06/13/23 04:11	Dil Fac

Analyte	Result	Quanner		Unit	 riepaieu	Analyzeu	Dirrac
Chloride	185		5.01	mg/Kg		06/09/23 19:33	1
Client Sample ID: SS02					Lab Sa	mple ID: 890-	4789-2
Date Collected: 06/06/23 13:50						Matr	x: Solid

Date Collected: 06/06/23 13:50 Date Received: 06/06/23 15:42

Sample Depth: 0.5'

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/09/23 12:15	06/10/23 13:13	1
Toluene	<0.00200	U *1	0.00200	mg/Kg		06/09/23 12:15	06/10/23 13:13	1
Ethylbenzene	<0.00200	U *1	0.00200	mg/Kg		06/09/23 12:15	06/10/23 13:13	1
m-Xylene & p-Xylene	<0.00401	U *- *1	0.00401	mg/Kg		06/09/23 12:15	06/10/23 13:13	1
o-Xylene	<0.00200	U *1	0.00200	mg/Kg		06/09/23 12:15	06/10/23 13:13	1
Xylenes, Total	<0.00401	U *- *1	0.00401	mg/Kg		06/09/23 12:15	06/10/23 13:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			06/09/23 12:15	06/10/23 13:13	1

Eurofins Carlsbad

Client Sample Results

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Client Sample ID: SS02

Date Collected: 06/06/23 13:50

Date Received: 06/06/23 15:42

Sample Depth: 0.5'

Method: SW846 8021B - Volatile	Organic Compounds	(GC) (Continued)
	erganne eempeanae	(00) (00) (00)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	94		70 - 130			06/09/23 12:15	06/10/23 13:13	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			06/12/23 13:03	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			06/13/23 12:05	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		06/09/23 14:01	06/13/23 04:51	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/09/23 14:01	06/13/23 04:51	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	11	49.9	mg/Kg		06/09/23 14:01	06/13/23 04:51	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130	06/09/23 14:01	06/13/23 04:51	1
o-Terphenyl	111		70 - 130	06/09/23 14:01	06/13/23 04:51	1

Method: EPA 300.0 - Anions, Ion C	hromatography	- Soluble					
Analyte	Result Qu	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	85.9	4.96	mg/Kg			06/09/23 19:39	1

Client Sample ID: SS03

Date Collected: 06/06/23 13:55 Date Received: 06/06/23 15:42 Sample Depth: 0.5'

Method: SW846 8021B - Volatile C	Drganic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		06/09/23 12:15	06/10/23 13:33	1
Toluene	<0.00202	U *1	0.00202	mg/Kg		06/09/23 12:15	06/10/23 13:33	1
Ethylbenzene	<0.00202	U *1	0.00202	mg/Kg		06/09/23 12:15	06/10/23 13:33	1
m-Xylene & p-Xylene	<0.00404	U *- *1	0.00404	mg/Kg		06/09/23 12:15	06/10/23 13:33	1
o-Xylene	<0.00202	U *1	0.00202	mg/Kg		06/09/23 12:15	06/10/23 13:33	1
Xylenes, Total	<0.00404	U *- *1	0.00404	mg/Kg		06/09/23 12:15	06/10/23 13:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130			06/09/23 12:15	06/10/23 13:33	1
1,4-Difluorobenzene (Surr)	94		70 - 130			06/09/23 12:15	06/10/23 13:33	1
Method: TAL SOP Total BTEX - To	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			06/12/23 13:03	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			06/13/23 12:05	1

Eurofins Carlsbad

Page 30 of 166

Job ID: 890-4789-1 SDG: 03C1558235

Lab Sample ID: 890-4789-2

Lab Sample ID: 890-4789-3

Matrix: Solid

Matrix: Solid

5 6 7 Project/Site: Poker Lake Unit 78 Tank Battery

Job ID: 890-4789-1 SDG: 03C1558235

Matrix: Solid

5

Lab Sample ID: 890-4789-3

Client Sample ID: SS03

Date Collected: 06/06/23 13:55 Date Received: 06/06/23 15:42

Sample Depth: 0.5'

Client: Ensolum

Method: SW846 8015B NM - Dies			· · ·					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		06/09/23 14:01	06/13/23 05:11	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/09/23 14:01	06/13/23 05:11	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/09/23 14:01	06/13/23 05:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130			06/09/23 14:01	06/13/23 05:11	1
o-Terphenyl	116		70 - 130			06/09/23 14:01	06/13/23 05:11	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
		a		Unit	D	Bronorod	Analyzad	Dil Fac
Analyte	Result	Qualifier	RL	Unit	U	Prepared	Analyzed	Dirrac

Eurofins Carlsbad

Surrogate Summary

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		_
880-29010-A-5-B MS	Matrix Spike	109	101		
880-29010-A-5-C MSD	Matrix Spike Duplicate	105	102		
890-4781-A-1-F MS	Matrix Spike	93	92		- 7
890-4781-A-1-G MSD	Matrix Spike Duplicate	108	102		
890-4789-1	SS01	113	178 S1+		
890-4789-2	SS02	100	94		
890-4789-3	SS03	101	94		
LCS 880-55037/1-A	Lab Control Sample	97	105		
LCS 880-55142/1-A	Lab Control Sample	99	102		
LCSD 880-55037/2-A	Lab Control Sample Dup	96	102		
LCSD 880-55142/2-A	Lab Control Sample Dup	107	91		
MB 880-55037/5-A	Method Blank	90	111		
MB 880-55142/5-A	Method Blank	89	110		
MB 880-55143/5-A	Method Blank	92	108		
Surrogate Legend					
BFB = 4-Bromofluorobe	nzono (Surr)				- i
DFBZ = 1,4-Difluoroben	zene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-29311-A-121-C MS Matrix Spike 99 94 880-29311-A-121-D MSD Matrix Spike Duplicate 95 101 890-4789-1 SS01 109 97 SS02 890-4789-2 97 111 890-4789-3 SS03 108 116 LCS 880-55158/2-A Lab Control Sample 24 S1-20 S1-LCSD 880-55158/3-A Lab Control Sample Dup 24 S1-19 S1-MB 880-55158/1-A Method Blank 97 118

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-4789-1 SDG: 03C1558235

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-55037/5-A

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 55385							Prep Type: 1 Prep Batch	
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/08/23 13:04	06/13/23 14:24	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/08/23 13:04	06/13/23 14:24	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/08/23 13:04	06/13/23 14:24	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		06/08/23 13:04	06/13/23 14:24	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/08/23 13:04	06/13/23 14:24	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		06/08/23 13:04	06/13/23 14:24	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130			06/08/23 13:04	06/13/23 14:24	1
1,4-Difluorobenzene (Surr)	111		70 - 130			06/08/23 13:04	06/13/23 14:24	1

Lab Sample ID: LCS 880-55037/1-A Matrix: Solid

Analysis Batch: 55385

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1164		mg/Kg		116	70 - 130	
Toluene	0.100	0.1157		mg/Kg		116	70 - 130	
Ethylbenzene	0.100	0.1040		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	0.200	0.1933		mg/Kg		97	70 - 130	
o-Xylene	0.100	0.09140		mg/Kg		91	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: LCSD 880-55037/2-A

Matrix: Solid

Analysis Batch: 55385							Prep	Batch:	55037
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1440	*+	mg/Kg		144	70 - 130	21	35
Toluene	0.100	0.1378	*+	mg/Kg		138	70 - 130	17	35
Ethylbenzene	0.100	0.1158		mg/Kg		116	70 - 130	11	35
m-Xylene & p-Xylene	0.200	0.2210		mg/Kg		111	70 - 130	13	35
o-Xylene	0.100	0.1050		mg/Kg		105	70 - 130	14	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: 890-4781-A-1-F MS

Matrix: Solid Analysia Bataby 55295

Analysis Batch: 55385									Prep	Batch: 55037
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U *+	0.101	0.1061		mg/Kg		105	70 - 130	
Toluene	<0.00199	U *+	0.101	0.1028		mg/Kg		102	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Method Blank e: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 55037

Job ID: 890-4789-1 SDG: 03C1558235

Released to Imaging: 6/30/2023 10:20:49 AM

QC Sample Results

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

- -----....

Job ID: 890-4789-1 SDG: 03C1558235

Lab Sample ID: 890-4781-A-	-1-F MS							Client S	Sample ID: N	
Matrix: Solid										be: Total/N
Analysis Batch: 55385										atch: 5503
	Sample Sa	•	Spike	MS					%Rec	
Analyte	Result Qu	alifier	Added		Qualifier	Unit		D %Rec	Limits	
Ethylbenzene	<0.00199 U		0.101	0.07489		mg/Kg		74	70 - 130	
m-Xylene & p-Xylene	<0.00398 U		0.202	0.1372		mg/Kg		68	70 - 130	
o-Xylene	<0.00199 U	-1	0.101	0.06696	F1	mg/Kg		66	70 - 130	
	MS MS	;								
Surrogate	%Recovery Qu	alifier	Limits							
4-Bromofluorobenzene (Surr)	93		70 - 130							
1,4-Difluorobenzene (Surr)	92		70 - 130							
										
Lab Sample ID: 890-4781-A-	-1-G MSD						Clien	nt Sample ID:		
Matrix: Solid										be: Total/N
Analysis Batch: 55385	Sample Sa	mala	Spike	MSD	MSD				Ргер В %Rec	atch: 5503 RP
Analyta	Sample Sa Result Qu	•	Spike Added		Qualifier	Unit		D %Rec	%rec Limits	RPD Lim
Analyte Benzene	- <		0.100	0.1063	Quaimer	mg/Kg		<u>– /// 106</u> –	70 - 130	
Toluene	<0.00199 U		0.100	0.1059		mg/Kg		106	70 - 130 70 - 130	3 3
Ethylbenzene	<0.00199 U		0.100	0.08181		mg/Kg		82	70 - 130	9 3
m-Xylene & p-Xylene	<0.00199 U		0.200	0.1631		mg/Kg		81	70 - 130	17 3
o-Xylene	<0.00390 U		0.100	0.07958		mg/Kg		79	70 - 130 70 - 130	17 3
			0.100	0.01000					101100	
	MSD MS									
Surrogate	%Recovery Qu	alifier	Limits							
4-Bromofluorobenzene (Surr)	108		70 - 130							
1,4-Difluorobenzene (Surr)	102		70 - 130							
Lab Sample ID: MB 880-551	42/5-0							Client Sa	ample ID: Me	athod Blan
Matrix: Solid								onent of		be: Total/N
Analysis Batch: 55090										atch: 5514
	м	3 MB								
Analyte	Resu	t Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.0020		0.00200		mg/Kg	 g		06/09/23 12:15	06/10/23 11:	
Toluene	<0.0020		0.00200		mg/Kg			06/09/23 12:15	06/10/23 11:	
Ethylbenzene	<0.0020	U U	0.00200		mg/Kg	-		06/09/23 12:15	06/10/23 11:	
m-Xylene & p-Xylene	<0.0040		0.00400		mg/Kg			06/09/23 12:15	06/10/23 11:	
o-Xylene	<0.0020	U U	0.00200		mg/Kg			06/09/23 12:15	06/10/23 11:	
Xylenes, Total	<0.0040) U	0.00400		mg/Kg	-		06/09/23 12:15	06/10/23 11:	
Surrogato		3 MB y Qualifier	l imita					Prepared	Analyzed	
Surrogate 4-Bromofluorobenzene (Surr)	%Recover		Limits 70 - 130				-	06/09/23 12:15	06/10/23 11:	
1,4-Difluorobenzene (Surr)	11		70 - 130 70 - 130					06/09/23 12:15	06/10/23 11:	
	11		70 - 730					55/03/25 12.15	00/10/23 11.	02
Lab Sample ID: LCS 880-55	142/1-A						CI	ient Sample	ID: Lab Con	trol Sampl
Matrix: Solid								•		e: Total/N
Analysis Batch: 55090										atch: 5514
-			Spike	1.00	LCS				%Rec	

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09311		mg/Kg		93	70 - 130	
Toluene	0.100	0.08637		mg/Kg		86	70 - 130	
Ethylbenzene	0.100	0.07327		mg/Kg		73	70 - 130	
m-Xylene & p-Xylene	0.200	0.1329	*_	mg/Kg		66	70 - 130	

Eurofins Carlsbad

Lab Sample ID: LCS 880-55142/1-A

Matrix: Solid

Analyte

o-Xylene

Surrogate

Analysis Batch: 55090

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

QC Sample Results

LCS LCS

0.07204

Result Qualifier

Unit

mg/Kg

Spike

Added

0.100

Limits

70 - 130 70 - 130

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

LCS LCS

99

102

Qualifier

%Recovery

Prep Type: Total/NA

Prep Batch: 55142

5
7
8
9

Client Sample ID: Lab Control Sample Dup % Poo חסס

Prep Type: Total/	NA
Prep Batch: 551	42

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec

Limits

70 - 130

%Rec

72

D

Matrix: Solid
Analysis Batch: 55090

Lab Sample ID: LCSD 880-55142/2-A

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1184		mg/Kg		118	70 - 130	24	35
Toluene	0.100	0.1302	*1	mg/Kg		130	70 - 130	40	35
Ethylbenzene	0.100	0.1119	*1	mg/Kg		112	70 - 130	42	35
m-Xylene & p-Xylene	0.200	0.2148	*1	mg/Kg		107	70 - 130	47	35
o-Xylene	0.100	0.1043	*1	mg/Kg		104	70 - 130	37	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	91		70 - 130

Lab Sample ID: 880-29010-A-5-B MS Matrix: Solid

Analysis Batch: 55090 Prep Batch: 55142 Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added **Result Qualifier** %Rec Unit D Limits Benzene <0.00198 U 0.0994 0.09418 mg/Kg 95 70 - 130 0.0994 Toluene <0.00198 U*1 0.08482 mg/Kg 85 70 - 130 Ethylbenzene <0.00198 U*1 F1 0.0994 0.08154 mg/Kg 82 70 - 130 m-Xylene & p-Xylene <0.00396 U*-*1 F1 0.199 0.1366 F1 mg/Kg 68 70 - 130 o-Xylene 0.00558 *1 F1 0.0994 0.08231 mg/Kg 77 70 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-29010-A-5-C MSD Matrix: Solid

Analysis Batch: 55090									Prep	Batch:	55142
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00198	U	0.0996	0.09768		mg/Kg		98	70 - 130	4	35
Toluene	<0.00198	U *1	0.0996	0.08104		mg/Kg		81	70 - 130	5	35
Ethylbenzene	<0.00198	U *1 F1	0.0996	0.06698	F1	mg/Kg		67	70 - 130	20	35
m-Xylene & p-Xylene	<0.00396	U *- *1 F1	0.199	0.1094	F1	mg/Kg		54	70 - 130	22	35
o-Xylene	0.00558	*1 F1	0.0996	0.07416	F1	mg/Kg		69	70 - 130	10	35

Eurofins Carlsbad

Prep Type: Total/NA

QC Sample Results

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

4 5 6

7

Lab Sample ID: 880-29010-A-5-C	MSD				Clie	ent Sample ID:	Matrix Spike D	
Matrix: Solid							Prep Type: "	
Analysis Batch: 55090							Prep Batcl	h: 55142
	MSD M	SD						
Surrogate	%Recovery Q	ualifier	Limits					
-Bromofluorobenzene (Surr)	105		70 - 130					
,4-Difluorobenzene (Surr)	102		70 - 130					
_ab Sample ID: MB 880-55143/5-	Α					Client Sa	mple ID: Metho	d Blank
Matrix: Solid							Prep Type: *	
Analysis Batch: 55090							Prep Batcl	
-	м	в мв					-	
Analyte	Resu	lt Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
enzene	< 0.0020	0 U	0.00200	mg/Kg		06/09/23 12:24	06/09/23 23:26	
oluene	<0.0020	0 U	0.00200	mg/Kg		06/09/23 12:24	06/09/23 23:26	
thylbenzene	<0.0020	0 U	0.00200	mg/Kg		06/09/23 12:24	06/09/23 23:26	
n-Xylene & p-Xylene	<0.0040	0 U	0.00400	mg/Kg		06/09/23 12:24	06/09/23 23:26	
-Xylene	<0.0020	0 U	0.00200	mg/Kg		06/09/23 12:24	06/09/23 23:26	
(ylenes, Total	<0.0040	0 U	0.00400	mg/Kg		06/09/23 12:24	06/09/23 23:26	
	М							
Surrogate	%Recover	<u> </u>	Limits			Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	ç	2	70 - 130			06/09/23 12:24	06/09/23 23:26	
,4-Difluorobenzene (Surr)	10	8	70 - 130			06/09/23 12:24	06/09/23 23:26	
ethod: 8015B NM - Diesel F	Range Orga	anics (DF	RO) (GC)					
ab Comple ID: MD 000 FF4F0/4	•					Oliont Co	male ID: Metho	
.ab Sample ID: MB 880-55158/1- /atrix: Solid	~					Cheft Sa	mple ID: Metho	
							Prep Type:	
Analysis Batch: 55236	м	в мв					Prep Batcl	1. 3313
Analyte		It Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
-	_	0 U	50.0	mg/Kg		06/09/23 14:01	06/12/23 23:24	

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		06/09/23 14:01	06/12/23 23:24	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/09/23 14:01	06/12/23 23:24	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/09/23 14:01	06/12/23 23:24	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130			06/09/23 14:01	06/12/23 23:24	1
o-Terphenyl	118		70 - 130			06/09/23 14:01	06/12/23 23:24	1

Lab Sample ID: LCS 880-55158/2-A Matrix: Solid -----

Analysis Batch: 55236						Prep	Batch: 55158
	Spi	ke LCS	LCS			%Rec	
Analyte	Add	ed Result	Qualifier	Unit D	%Rec	Limits	
Gasoline Range Organics	10	905.0		mg/Kg	90	70 - 130	
(GRO)-C6-C10							
Diesel Range Organics (Over	10	982.0	1	mg/Kg	98	70 - 130	
C10-C28)							

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	24	S1-	70 - 130
o-Terphenyl	20	S1-	70 - 130

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Eurofins Carlsbad
QC Sample Results

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: LCSD 880-55	158/3-A					Clier	nt San	nple ID:	Lab Contro		
Matrix: Solid										Туре: То	
Analysis Batch: 55236									Prep	Batch:	55158
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	890.2		mg/Kg		89	70 - 130	2	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	970.1		mg/Kg		97	70 - 130	1	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	24	S1-	70 - 130								
o-Terphenyl	19	S1-	70 - 130								
_											
Lab Sample ID: 880-29311-A-	121-C MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										Type: To	
Analysis Batch: 55236										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U	997	1017		mg/Kg		99	70 - 130		
(GRO)-C6-C10						0 0					
Diesel Range Organics (Over	<49.9	U	997	1088		mg/Kg		107	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	99	Quanner	70 - 130								
o-Terphenyl	94		70 - 130								
	54		70 - 700								
Lab Sample ID: 880-29311-A-	121-D MSD					CI	ient S	amnle IF): Matrix Sp	nike Dur	licate
Matrix: Solid										Type: To	
Analysis Batch: 55236										Batch:	
Analysis Datch. 55250	Sample	Sample	Spike	MSD	MSD				%Rec	Daten.	RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9			1035		mg/Kg		100	70 - 130	2	20
(GRO)-C6-C10	\$43.5	0	333	1000		mg/ixg		100	70 - 100	2	20
Diesel Range Organics (Over	<49.9	U	999	1101		mg/Kg		108	70 - 130	1	20
C10-C28)	.5.0	-								•	
,											
	MSD	MSD									

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-55020/1-A Matrix: Solid Analysis Batch: 55162						Client Sa	ample ID: Metho Prep Type:	
-	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			06/09/23 17:00	1

Job ID: 890-4789-1 SDG: 03C1558235

Page 37 of 166

5 7

Eurofins Carlsbad

QC Sample Results

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-55020 Matrix: Solid	0/2-A						Client	Sample	ID: Lab Co Prep	ontrol Sa Type: So	
Analysis Batch: 55162											
-			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	252.4		mg/Kg		101	90 - 110		
Lab Sample ID: LCSD 880-550	20/3-A					Clie	nt Sam	ple ID: I	Lab Contro		
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 55162											
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	254.4		mg/Kg		102	90 _ 110	1	20
Г											
Lab Sample ID: 880-29276-A-5	-B MS							Client	Sample ID		
Matrix: Solid	-B MS							Client		: Matrix Type: So	
	-B MS							Client			
Matrix: Solid		Sample	Spike	MS	MS			Client			
Matrix: Solid	Sample	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	Client %Rec	Prep		
Matrix: Solid Analysis Batch: 55162	Sample	•	-			- Unit mg/Kg	D		Prep %Rec		
Matrix: Solid Analysis Batch: 55162 Analyte Chloride	Sample Result 91.2	•	Added	Result		mg/Kg		% Rec	Prep %Rec Limits 90 - 110	Type: So	oluble
Matrix: Solid Analysis Batch: 55162 Analyte Chloride Lab Sample ID: 880-29276-A-5	Sample Result 91.2	•	Added	Result		mg/Kg		% Rec	Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: So	licate
Matrix: Solid Analysis Batch: 55162 Analyte Chloride Lab Sample ID: 880-29276-A-5 Matrix: Solid	Sample Result 91.2	•	Added	Result		mg/Kg		% Rec	Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: So	licate
Matrix: Solid Analysis Batch: 55162 Analyte Chloride Lab Sample ID: 880-29276-A-5	Sample Result 91.2	Qualifier	Added	Result 349.5	Qualifier	mg/Kg		% Rec	Prep %Rec Limits 90 - 110 D: Matrix Sp Prep	Type: So	licate
Matrix: Solid Analysis Batch: 55162 Analyte Chloride Lab Sample ID: 880-29276-A-5 Matrix: Solid	Sample Result 91.2	•	Added	Result		mg/Kg		% Rec	Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: So	licate
Matrix: Solid Analysis Batch: 55162 Analyte Chloride Lab Sample ID: 880-29276-A-5 Matrix: Solid	Sample Result 91.2 G-C MSD Sample	Qualifier	Added	Result 349.5 MSD	Qualifier	mg/Kg		% Rec	Prep %Rec Limits 90 - 110 D: Matrix Sp Prep	Type: So	licate

Job ID: 890-4789-1

SDG: 03C1558235

QC Association Summary

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Job ID: 890-4789-1 SDG: 03C1558235

GC VOA

Prep Batch: 55037

rep Batch: 55037					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4789-1	SS01	Total/NA	Solid	5035	
MB 880-55037/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-55037/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-55037/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4781-A-1-F MS	Matrix Spike	Total/NA	Solid	5035	
890-4781-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 55090					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-4789-2	SS02	Total/NA	Solid	8021B	55142
390-4789-3	SS03	Total/NA	Solid	8021B	5514
MB 880-55142/5-A	Method Blank	Total/NA	Solid	8021B	55142
MB 880-55143/5-A	Method Blank	Total/NA	Solid	8021B	55143
LCS 880-55142/1-A	Lab Control Sample	Total/NA	Solid	8021B	55142
LCSD 880-55142/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	55142
880-29010-A-5-B MS	Matrix Spike	Total/NA	Solid	8021B	5514
880-29010-A-5-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	55142
ep Batch: 55142	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
390-4789-2		Total/NA	Solid	5035	- <u>- · ·</u>
390-4789-3	SS03	Total/NA	Solid	5035	
MB 880-55142/5-A	Method Blank	Total/NA	Solid	5035	
_CS 880-55142/1-A	Lab Control Sample	Total/NA	Solid	5035	
_CSD 880-55142/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
380-29010-A-5-B MS	Matrix Spike	Total/NA	Solid	5035	
880-29010-A-5-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
rep Batch: 55143					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
MB 880-55143/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 55266					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
890-4789-1	SS01	Total/NA	Solid	Total BTEX	
890-4789-2	SS02	Total/NA	Solid	Total BTEX	
890-4789-3	SS03	Total/NA	Solid	Total BTEX	
nalysis Batch: 55385					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-4789-1	SS01	Total/NA	Solid	8021B	5503
MB 880-55037/5-A	Method Blank	Total/NA	Solid	8021B	55037
LCS 880-55037/1-A	Lab Control Sample	Total/NA	Solid	8021B	55037

Eurofins Carlsbad

Lab Control Sample Dup

Matrix Spike Duplicate

Matrix Spike

LCSD 880-55037/2-A

890-4781-A-1-F MS

890-4781-A-1-G MSD

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

8021B

8021B

8021B

55037

55037

55037

QC Association Summary

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

GC Semi VOA

Prep Batch: 55158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4789-1	SS01	Total/NA	Solid	8015NM Prep	
890-4789-2	SS02	Total/NA	Solid	8015NM Prep	
890-4789-3	SS03	Total/NA	Solid	8015NM Prep	
MB 880-55158/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-55158/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-55158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-29311-A-121-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-29311-A-121-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 55236

880-29311-A-121-C MS	Matrix Spike	Iotal/NA	Solid	8015NM Prep		
880-29311-A-121-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		8
Analysis Batch: 55236						9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-4789-1	SS01	Total/NA	Solid	8015B NM	55158	10
890-4789-2	SS02	Total/NA	Solid	8015B NM	55158	
890-4789-3	SS03	Total/NA	Solid	8015B NM	55158	11
MB 880-55158/1-A	Method Blank	Total/NA	Solid	8015B NM	55158	
LCS 880-55158/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	55158	40
LCSD 880-55158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	55158	12
880-29311-A-121-C MS	Matrix Spike	Total/NA	Solid	8015B NM	55158	40
880-29311-A-121-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	55158	13
Analysis Batch: 55416						14

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4789-1	SS01	Total/NA	Solid	8015 NM	
890-4789-2	SS02	Total/NA	Solid	8015 NM	
890-4789-3	SS03	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 55020

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4789-1	SS01	Soluble	Solid	DI Leach	
890-4789-2	SS02	Soluble	Solid	DI Leach	
890-4789-3	SS03	Soluble	Solid	DI Leach	
MB 880-55020/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-55020/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-55020/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-29276-A-5-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-29276-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 55162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4789-1	SS01	Soluble	Solid	300.0	55020
890-4789-2	SS02	Soluble	Solid	300.0	55020
890-4789-3	SS03	Soluble	Solid	300.0	55020
MB 880-55020/1-A	Method Blank	Soluble	Solid	300.0	55020
LCS 880-55020/2-A	Lab Control Sample	Soluble	Solid	300.0	55020
LCSD 880-55020/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	55020
880-29276-A-5-B MS	Matrix Spike	Soluble	Solid	300.0	55020
880-29276-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	55020

5

Job ID: 890-4789-1

SDG: 03C1558235

Project/Site: Poker Lake Unit 78 Tank Battery

5

9

Job ID: 890-4789-1 SDG: 03C1558235

Lab Sample ID: 890-4789-1 Matrix: Solid

Lab Sample ID: 890-4789-2

Lab Sample ID: 890-4789-3

Matrix: Solid

Matrix: Solid

Client Sample ID: SS01 Date Collected: 06/06/23 13:45 Date Received: 06/06/23 15:42

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	55037	06/08/23 13:04	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55385	06/13/23 21:51	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55266	06/14/23 09:58	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55416	06/13/23 12:05	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	55158	06/09/23 14:01	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55236	06/13/23 04:11	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	55020	06/08/23 09:43	KS	EET MID
Soluble	Analysis	300.0		1			55162	06/09/23 19:33	СН	EET MID

Client Sample ID: SS02

Date Collected: 06/06/23 13:50

Date Received: 06/06/23 15:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	55142	06/09/23 12:15	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55090	06/10/23 13:13	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55266	06/12/23 13:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55416	06/13/23 12:05	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	55158	06/09/23 14:01	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55236	06/13/23 04:51	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	55020	06/08/23 09:43	KS	EET MID
Soluble	Analysis	300.0		1			55162	06/09/23 19:39	СН	EET MID

Client Sample ID: SS03

Date Collected: 06/06/23 13:55 Date Received: 06/06/23 15:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	55142	06/09/23 12:15	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55090	06/10/23 13:33	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55266	06/12/23 13:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55416	06/13/23 12:05	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55158	06/09/23 14:01	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55236	06/13/23 05:11	AJ	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	55020	06/08/23 09:43	KS	EET MID
Soluble	Analysis	300.0		1			55162	06/09/23 19:44	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Released to Imaging: 6/30/2023 10:20:49 AM

Accreditation/Certification Summary

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		ogram	Identification Number	Expiration Date
xas	NE	ELAP	T104704400-22-25	06-30-23
The following analytes	are included in this report, but	it the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes fo
the agency does not o Analysis Method		Matrix	Analyte	
the agency does not o Analysis Method 8015 NM	ffer certification. Prep Method	Matrix	Analyte Total TPH	

Job ID: 890-4789-1

SDG: 03C1558235

Page 42 of 166

10

Eurofins Carlsbad

Project/Site: Poker Lake Unit 78 Tank Battery

Client: Ensolum

Page 43 of 166

Job ID: 890-4789-1 SDG: 03C1558235

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 = '	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed	ition, November 1986 And Its Updates.	
TAL SOP =	TestAmerica Laboratories, Standard Operating Procedure		

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 6/30/2023 10:20:49 AM

Job ID: 890-4789-1 SDG: 03C1558235

Client: Ensolum Project/Site: Poker Lake Unit 78 Tank Battery

Depth	Received	Collected	Matrix	Client Sample ID	Lab Sample ID
 0.5'	06/06/23 15:42	06/06/23 13:45	Solid	SS01	890-4789-1
0.5'	06/06/23 15:42	06/06/23 13:50	Solid	SS02	890-4789-2
0.5'	06/06/23 15:42	06/06/23 13:55	Solid	SS03	890-4789-3

Project Manager:	Tacoma Morrissey		Hobbs, NM Bill to: (if different)	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 fferent) Garret Green		
	Tacoma Morrissey		Bill to: (if different)	Garret Green		
	Ensolum		Company Name:	XTO Energy		
	3122 National Parks Hwy		Address:	3104 E. Green St	St.	
e ZIP:	Carlsbad, NM 88220		City, State ZIP:	Carlsbad, NM 88220	8220	
	303-887-2946	Email:	Email: Garret.Green@ExxonMobil.com	nMobil.com		
Name:	Poker Lake Unit 78 Tank Battery		Turn Around			ANALYSIS REQUEST
5	03C1558235	I Rou	Rush Code			
Project Location:	32.194170, -103.827430	430 Due Date:	5 days			
Sampler's Name:	Mariaha O'Dell		TAT starts the day received by			
PO#		the lab, if rec				
SAMPLE RECEIPT	EIPT Teppa Blank: 11Yes	es No Wet Ice:	Kes No	0.0)		
Samples Received Intact:	Kes No	Thermometer ID:	The totarar	300		
Cooler Custody Seals:	Yes No (MA)	Correction Factor:	P. C.	PA:		
Sample Custody Seals:	Yes No WA	Temperature Reading:	20		•	890-4789 Chain of Custoury
Total Containers:	Co	Corrected Temperature:	2.00	015)	002	-
Sample Identification	Matrix	Date Time Sampled Sampled	Depth Comp Cont	CHLOF TPH (8 BTEX (DIEX	
SS01	s	13:45	0.5' G 1	× × ×	×	
SS02	S	13:50		×	×	
SSO3	S	13:55	0.5' G 1	× ×	×	
					1	
					11	
Total 200.7 / 6010	6010 200.8 / 6020:	8RCRA 13PPM	PM Texas 11 A	Sb As Ba Be	8	
Circle Method(s) and	Circle Method(s) and Metal(s) to be analyzed	TCLP / S	PLP 6010: 8RCRA	Sb As Ba Be	U I O	TCLP/SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag II U
Notice: Signature of this do of service. Eurofins Xenco	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any response or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any response or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Eurofins Xenco will be enforced unless previously neoplated.	amples constitutes a valid p samples and shall not assu	urchase order from clien me any responsibility for	company to Eurofins	1 0 0 1	Xenco, its affiliates and subci es incurred by the client if suc
		ò				Deline inhod but
	() () () () () () () () () () () () () (1	
3 . Chille	an an	Contraction of the second	a hur	CI 574	A	\$
					6	

eurofins

Chain of Custody

13

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4789 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 4789 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Ja

Job Number: 890-4789-1 SDG Number: 03C1558235

List Source: Eurofins Midland List Creation: 06/08/23 10:12 AM

14

Eurofins Carlsbad Released to Imaging: 6/30/2023 10:20:49 AM

APPENDIX D

NMOCD Notifications

Released to Imaging: 6/30/2023 10:20:49 AM

From:	Collins, Melanie
То:	ocd.enviro (ocd.enviro@emnrd.nm.gov); Hamlet, Robert, EMNRD (Robert.Hamlet@emnrd.nm.gov); Bratcher, Michael, EMNRD (mike.bratcher@emnrd.nm.gov); Harimon, Jocelyn, EMNRD (Jocelyn.Harimon@emnrd.nm.gov)
Cc:	Green, Garrett J; DelawareSpills /SM; Tacoma Morrissey
Subject:	XTO - Sampling Notification (Week of 5/29/23 - 6/2/23)
Date:	Thursday, May 25, 2023 3:59:35 PM
Attachments:	image001.png

[**EXTERNAL EMAIL**]

All,

XTO plans to complete final sampling activities at the sites listed below for the week of May 29, 2023.

Tuesday

- PLU BS 15H / NAB1821157574
- JRU 17 Battery / nJMW1314127699 & nAB1506430295

Wednesday

- Poker Lake Unit 78 / nAB1606239294
- PLU-CVX-JV-BS #016H / nAB1521535958

Friday

- PLU 25 BD CTB / nAPP2310045769
- JRU 17 Battery / nJMW1314127699 & nAB1506430295

Thank you,

Melaníe Collíns

Environmental Technician melanie.collins@exxonmobil.com 432-556-3756

APPENDIX E

November 15, 2019, Closure Request

Released to Imaging: 6/30/2023 10:20:49 AM

LT Environmental, Inc.

3300 North "A" Street Building 1, Unit 103 Midland, Texas 79705 432.704.5178

Advancing Opportunity

November 15, 2019

Mr. Bradford Billings New Mexico Oil Conservation Division 1220 South St. Francis Drive, #3 Santa Fe, New Mexico 87505

RE: Closure Request Poker Lake Unit 78 Tank Battery Remediation Permit Number 2RP-3576 Eddy County, New Mexico

Dear Mr. Billings:

LT Environmental, Inc. (LTE), on behalf of XTO Energy, Inc. (XTO), presents the following Closure Request report detailing site assessment, soil sampling, and excavation activities at the Poker Lake Unit 78 Tank Battery (Site) in Unit A, Section 25, Township 24 South, Range 30 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment, soil sampling, and excavation activities was to address impacts to soil after a release of crude oil and produced water at the Site.

The release is included in the Compliance Agreement for Remediation for Historical Releases (Compliance Agreement) between XTO and the New Mexico Oil Conservation Division (NMOCD) effective November 13, 2018. The purpose of the Compliance Agreement is to ensure reportable releases that occurred prior to August 14, 2018, where XTO is responsible for the corrective action, comply with Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC) as amended on August 14, 2018. The release is categorized as a Tier IV site in the Compliance Agreement, meaning the release occurred prior to August 14, 2018, the effective date of 19.15.29 NMAC; however, remediation was ongoing.

RELEASE BACKGROUND

On February 27, 2016, a gasket failed on a heater-treater. As a result, approximately 54 barrels (bbls) of crude oil and 65 bbls of produced water were released. The majority of the release was contained within the earthen berm around process equipment. The northern half of the well pad was affected by a light overspray. A vacuum truck recovered approximately 50 bbls of crude oil and 50 bbls of produced water. The former operator reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 on March 1, 2016, and was assigned Remediation Permit (RP) Number 2RP-3576 (Attachment 1).

Although the release occurred while the facility was operated by the previous operator, XTO is the current operator and is committed to addressing any releases that remain unresolved. Based

on the site assessment activities and results of the soil sampling events, XTO is requesting no further action for this release event.

SITE CHARACTERIZATION

LTE characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of 19.15.29.12 of the NMAC. Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest water well data. The nearest permitted water well with depth to water data is NM OSE Well C02110, located approximately 8,180 feet northeast of the Site. The water well has a depth to groundwater of 400 feet and a total depth of 600 feet. Ground surface elevation at the water well location is 3,410 feet above mean sea level (AMSL), which is approximately 40 feet lower in elevation than the Site. The closest continuously flowing water or significant watercourse to the Site is an unnamed dry wash located approximately 10,600 feet northwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is located in a low-potential karst area.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg);
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg;
- TPH-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg;
- Total petroleum hydrocarbons (TPH): 2,500 mg/kg; and
- Chloride: 20,000 mg/kg.

SITE ASSESSMENT, EXCAVATION, AND DELINEATION SOIL SAMPLING ACTIVITIES

During June and August 2019, LTE personnel was at the Site to oversee site assessment activities to delineate impacted soil. Boreholes and potholes were advanced via hand auger or backhoe at eight locations on the well pad, within and around the release extent. Boreholes BH01 through BH06 and potholes PH01 and PH02 were advanced to a depth of 4 feet bgs. Two delineation soil samples were collected from each borehole and pothole from depths of 1 foot and 4 feet bgs. Soil from the boreholes and potholes was field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photoionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. Field screening results and observations for the boreholes and potholes were

logged on lithologic/soil sampling logs, which are included in Attachment 2. The delineation soil sample locations are depicted on Figure 2.

On August 27, 2019, LTE personnel was at the Site to oversee excavation of impacted soil as indicated by potholing activities, visual observations, and field screening results. To direct excavation activities, LTE screened soil for volatile aromatic hydrocarbons and chloride utilizing a PID and Hach[®] chloride QuanTab[®] test strips, respectively. Impacted soil was excavated to a depth of 2 feet bgs. Following removal of impacted soil, LTE collected 5-point composite soil samples every 200 square feet from the sidewalls and floor of the excavation. The 5-point composite samples were collected by depositing five aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples SW01 through SW04 were collected from the sidewalls of the excavation from depths ranging from the surface to 2 feet bgs. Composite soil samples FS01 and FS02 were collected from the floor of the excavation soil sample locations are depicted on Figure 3.

The delineation and excavation soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were shipped at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Xenco Laboratories (Xenco) in Midland, Texas, for analysis of BTEX following United States Environmental Protection Agency (USEPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following USEPA Method 8015M/D; and chloride following USEPA Method 300.0.

The excavation measured approximately 360 square feet in area with a depth of 2 feet bgs. A total of approximately 30 cubic yards of impacted soil were removed from the excavation. The impacted soil was transported and properly disposed of at the R360 Landfill located in Hobbs, New Mexico.

ANALYTICAL RESULTS

Laboratory analytical results for the delineation soil samples collected from boreholes BH01 through BH04, BH06, and potholes PH01 and PH02, indicated that BTEX, GRO/DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Laboratory analytical results for delineation soil sample BH05, collected at a depth of 1 foot indicated that GRO/DRO and TPH concentrations exceeded the Closure Criteria. Subsequent delineation soil sample BH05A collected at a depth of 4 feet bgs was compliant with the Closure Criteria. Based on the laboratory analytical results, impacted soil was excavated from the area around borehole BH05.

Laboratory analytical results for excavation soil samples SW01 through SW04, FS01, and FS02, collected from the final excavation extent, indicated that BTEX, GRO/DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Laboratory analytical results are

summarized in Table 1 and the complete laboratory analytical reports are included as Attachment 4.

CLOSURE REQUEST

Impacted soil was excavated from the release area to address the February 27, 2016, release of crude oil and produced water at the Site. Laboratory analytical results for the excavation soil samples collected from the final excavation extent indicated that BTEX, GRO/DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Delineation soil sampling was completed in and around the release extent. Laboratory analytical results for the final delineation soil samples indicated that BTEX, GRO/DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Based on the excavation and delineation soil sample analytical results, no further remediation was required.

Initial response efforts, natural attenuation, and excavation of impacted soil have mitigated impacts at this Site. XTO requests no further action for RP Number 2RP-3576. XTO will backfill the excavation with material purchased locally and recontour the Site to match pre-existing site conditions. An updated NMOCD Form C-141 is included in Attachment 1.

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

Sincerely,

LT ENVIRONMENTAL, INC.

Sinée Cole

Aimee Cole Project Environmental Scientist

Ashley L. ager

Ashley L. Ager, P.G. Senior Geologist

cc: Kyle Littrell, XTO Bureau of Land Management Mike Bratcher, NMOCD

Attachments:

- Figure 1 Site Location Map
- Figure 2 Preliminary Soil Sample Locations
- Figure 3 Delineation Soil Sample Locations

- Figure 4Excavation Soil Sample LocationsTable 1Soil Analytical ResultsAttachment 1Initial/Final NMOCD Form C-141 (2RP-3576)Attachment 2Lithologic / Soil Sample Logs
- Attachment 3 Photographic Log
- Attachment 4 Laboratory Analytical Reports

FIGURES

Released to Imaging: 6/30/2023 10:20:49 AM

P:\XTO Energy\GIS\MXD\012918131_POKER LAKE UNIT #78 SWD\012918131_FIG01_SL_2018_4825.mxd

		SAMPLE ID@DEPTH BELOW GROUND SURFACE	(FEET)
E	3H01@1'	NMOCD TABLE 1 CLOSURE CRITERIA (NMAC 19.1	15.29.12)
	06/26/2019	B = 10 mg/kg BTEX = 50 mg/kg	
	3: <0.00201 3TEX: <0.00201	GRP+DRO = 1,000 mg/kg	
	GRO+DRO: <14.9	TPH = 2,500 mg/kg CI = 20,000 mg/kg	
	ГРН: <14.9 Cl: 23.5	ALL RESULTS IN MILLIGRAMS PER KILOGRAM (m	iq/kq)
the second se	BH01A@4'	<: INDICATES RESULT IS LESS THAN THE	3 3/
PH02@1' 08/27/2019	08/06/2019	LABORATORY REPORTING LIMIT BOLD: INDICATES RESULT EXCEEDS THE	
B: <0.00198	B: <0.00200	APPLICABLE REGULATORY CLOSURE CRITERIA	A
BTEX: <0.00198	BTEX: <0.00200 GRO+DRO: 346	and the second s	
GRO+DRO: <25.0 TPH: <25.0	TPH: 407		100
Cl: 85.3	Cl: 24.3		1000
PH02A@4'	The second	BH06@1' BH06A@4'	The second
08/27/2019 B: <0.00199		08/06/2019 08/06/2019	
BTEX: <0.00199	100	B: <0.00199 B: <0.00198 BTEX: <0.00199 BTEX: <0.00198	
GRO+DRO: <25.0		GRO+DRO: 281 GRO+DRO: <15.0	
TPH: <25.0 Cl: 143	11	TPH: 431 TPH: <15.0 Cl: 84.1 Cl: 34.9	
BH05@1' BH05A@4'	A LODGER		
08/06/2019 08/06/2019 D: -0.00100 D: -0.00200		BH02@1' BH02A@4'	
B: <0.00199 B: <0.00200 BTEX: <0.00199 BTEX: <0.00200	and and	06/26/2019 08/06/2019	
GRO+DRO: 2,740 GRO+DRO: 24.9		B: <0.00198 B: <0.00199	
TPH: 3,250 TPH: 24.9 Cl: 101 Cl: 27.2	1	BTEX: <0.00198 BTEX: <0.0019 GRO+DRO: 427 GRO+DRO: <	
01. 101 01. 21.2		TPH: 529 TPH: <14.9	1.00
PH01@1' PH01A@4'		Cl: 34.9 Cl: 36.3	-
08/27/2019 08/27/2019			20
B: <0.00201 B: <0.00201			R. 1
BTEX: <0.00201 BTEX: <0.00201 GRO+DRO: <24.9 GRO+DRO: <25.0			Se 31. 1
TPH: <24.9 TPH: <25.0			0.0.0
Cl: 153 Cl: 202	4	BH03@1' BH03A@4'	14,80
		06/26/2019 08/06/2019 B: <0.00199 B: <0.00199	225
the summer or and the		BTEX: <0.00199 BTEX: <0.00199	187
NAME OF TAXABLE PARTY OF TAXABLE ADDRESS.		GRO+DRO: 571 GRO+DRO: 492	88.2
THE OWNER AND THE		TPH: 644 Cl: 28.8 Cl: 13.3	1.22
BH04@1' BH04A@4' 06/26/2019 08/06/2019			1. 1. 1
B: <0.00200 B: <0.00199			31.22
BTEX: <0.00200 BTEX: <0.00199 GRO+DRO: 151 GRO+DRO: <15.0			1000
TPH: 193 TPH: <15.0			AST.
Cl: <5.03 Cl: 11.2			691
and the second s			611
LEGEND			100
			500
DELINEATION SOIL SAMPLE IN COMPLIANCE WITH APPLICABLE CLOSURE CRITERIA			10 M
FLARE LINE		IMAGE COURTE	ESY OF ESRI
SURFACE GAS LINE	0	50 100	N ▲
B: BENZENE RTEX: TOTAL RENZENE TOLLIENE ETHYLBENZENE		Feet	\bowtie
BTEX: TOTAL BENZENE, TOLUENE, ETHYLBENZENE, AND TOTAL XYLENES			· ·
GRO: GASOLINE RANGE ORGANICS	_	FIGURE 2	
DRO: DIESEL RANGE ORGANICS TPH: TOTAL PETROLEUM HYDROCARBONS			
CI: CHLORIDE		AKE UNIT 78 TANK BATTERY	Z
NMAC: NEW MEXICO ADMINISTRATIVE CODE NMOCD: NEW MEXICO OIL CONSERVATION DIVISION		Y COUNTY, NEW MEXICO	
NOTE: REMEDIATION PERMIT NUMBER 2RP-3576		XTO ENERGY, INC.	
	-	P:\XTO Energy\GIS\MXD\012918131_POKER LAKE UNIT #78 SWD\012918131_FIG02_D	

Released to Imaging: 6/30/2023 10:20:49 AM

•

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS

POKER LAKE UNIT 78 TANK BATTERY REMEDIATION PERMIT NUMBER 2RP-3576 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
BH01	1	06/26/2019	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<14.9	<14.9	<14.9	<14.9	<14.9	23.5
BH01A	4	08/06/2019	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<15.0	346	61.4	346	407	24.3
BH02	1	06/26/2019	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<15.0	427	102	427	529	34.9
BH02A	4	08/06/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<14.9	<14.9	<14.9	<14.9	<14.9	36.3
BH03	1	06/26/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	571	72.5	571	644	28.8
BH03A	4	08/06/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	492	74.4	492	566	13.3
BH04	1	06/26/2019	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<15.0	151	42.3	151	193	<5.03
BH04A	4	08/06/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	11.2
BH05	1	08/06/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	2,740	510	2,740	3,250	101
BH05A	4	08/06/2019	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<15.0	24.9	<15.0	24.9	24.9	27.2
BH06	1	08/06/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	281	150	281	431	84.1
BH06A	4	08/06/2019	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<15.0	<15.0	<15.0	<15.0	<15.0	34.9
PH01	1	08/27/2019	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<24.9	<24.9	<24.9	<24.9	<24.9	153
PH01A	4	08/27/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<25.0	<25.0	<25.0	<25.0	<25.0	202
PH02	1	08/27/2019	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<25.0	<25.0	<25.0	<25.0	<25.0	85.3
PH02A	4	08/27/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<25.0	<25.0	<25.0	<25.0	<25.0	143
FS01	2	08/27/2019	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<50.0	875	163	875	1,040	225
FS02	2	08/27/2019	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<25.0	160	32.9	160	193	144
SW01	0 - 2	08/27/2019	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<24.9	389	85.3	389	474	10.3
SW02	0 - 2	08/27/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<25.0	<25.0	<25.0	<25.0	<25.0	139
SW03	0 - 2	08/27/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<25.0	<25.0	<25.0	<25.0	<25.0	28.0
SW04	0 - 2	08/27/2019	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<24.9	704	149	704	853	195
NMOCD Table 1	Closure Criter	ia	10	NE	NE	NE	50	NE	NE	NE	1,000	2,500	20,000

Notes:

bgs - below ground surface

BTEX - benzene, toluene, ethylbenzene, and total xylenes DRO - diesel range organics GRO - gasoline range organics

mg/kg - milligrams per kilogram

ORO - motor oil range organics NMAC - New Mexico Administrative Code NMOCD - New Mexico Oil Conservation Division NE - not established TPH - total petroleum hydrocarbons $\ensuremath{\textbf{Bold}}\xspace$ - indicates result exceeds the applicable regulatory standard

< - indicates result is below laboratory reporting limits

Table 1 - closure criteria for soils impacted by a release per NMAC 19.15.29 August 2018

ATTACHMENT 1: INITIAL/FINAL NMOCD FORM C-141 (2RP-3576)

Released to Imaging: 6/30/2023 10:20:49 AM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505	State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505	OIL CONSERVATION ARTESIA DISTRICT Form C-141 Revised August 8, 2011 MAR 0 1 2016 Submit Copy to appropriate District Office in accordance with 19.15.29 NMAC. RECEIVED
	Release Notification and Corrective A	ction

NAB1606239294		OPERATOR	Initial Report	Final Report
Name of Company: BOPCO, L.P.	140731	Contact: Bradley Blevins		
Address: 522 W. Mermod, Suite 704 Carlsba	ad, N.M. 88220	Telephone No. 575-887-7329		
Facility Name: Poker Lake Unit 78 Tank Ba	ttery	Facility Type: Exploration and	Production	
Surface Owner: Federal	Mineral Owne	r: Federal	API No. 30-015-2	7536

LOCATION O	F RELEASE
------------	-----------

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
Α	25	245	30E	660		660		Eddy

Latitude: 32.194170 Longitude: 103.827430

NATURE OF RELEASE Type of Release: Crude oil and produced water Volume of Release: 65 barrels Volume Recovered: PW and 54 barrels Oil 50 barrels oil and 50 barrels PW Source of Release: Failed HT Gasket Date and Hour of Occurrence: Date and Hour of Discovery: 2-27-16 @ 1:00pm 2-27-16 @ 1:30pm Was Immediate Notice Given? If YES, To Whom? Yes 🗋 No 🗌 Not Required Mike Bratcher, Heather Patterson and Jim Amos BLM By Whom? Bradley Blevins via email Date and Hour: 2-27-16 @ 2:42pm Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. 🗌 Yes 🖾 No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* BOPCO EHS was notified of a release that occurred at the PLU 78 due to a failed heater treater gasket. A vacuum truck was called to the location to recover the fluid within the firewall, Describe Area Affected and Cleanup Action Taken.* The majority of the fluid was contained within the earth berm with the exception of a light overspray on the northern half of the location. A vacuum truck was called to the location and recovered 50 barrels of oil and 50 barrels of produced water from the firewall. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Thanky Ba Approved by Environmental Specialist: Printed Name: Bradley Blevins 212111

	Title: Assistant Remediation Foreman	Approval Date: JLIL Expiration Date:	ate: NIH
	E-mail Address: bblevins@basspet.com Date: 3-1-16 Phone: 432-214-3704	Conditions of Approval:	tig to hed
•	Attach Additional Sheets If Necessary	SUBMIT REMEDIATION PROPOSAL NO	2RP-3576

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	2RP-3576
Application ID	

Release Notification

Responsible Party

Responsible Party: XTO Energy, Inc	OGRID: 5380		
Contact Name: Kyle Littrell	Contact Telephone: (432)-221-7331		
Contact email: Kyle_Littrell@xtoenergy.com	Incident #: 2RP-3576		
Contact mailing address: 522 W. Mermod, Suite 704 Carlsbad, NM 88220			

Location of Release Source

Latitude <u>32.194170</u>

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Poker Lake Unit 78 Tank Battery	Site Type Exploration and Production
Date Release Discovered 2/27/2016	API# (if applicable) 30-015-27536

Unit Letter	Section	Township	Range	County
А	25	24S	30E	Eddy

Surface Owner: State Federal Tribal Private (Name: _____

Nature and Volume of Release

Crude Oil	rial(s) Released (Select all that apply and attach calculations or specific Volume Released (bbls) 54	Volume Recovered (bbls) 50
Produced Water	Volume Released (bbls) 65	Volume Recovered (bbls) 50
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	TYes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

A gasket failed on a heater-treater. The majority of the fluid was contained within the earthen process equipment berm, with a light overspray on the northern half of the location. A vacuum truck recovered 50 bbls of oil and 50 bbls of produced water from within the firewall.

Received	by	OCD :	6/28/2023	3:01:36	PM of	New Mexi	~~
Form C-	441				State of	New Mexi	co

Incident ID	
District RP	2RP-3576
Facility ID	
Application ID	

Page 65 of 166

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release? Release volume was greater than 25 bbls.
19.15.29.7(A) NMAC?	Kelease volume was greater than 25 0015.
Yes 🗌 No	
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
By Bradley Blevins via en	mail to Mike Bratcher/Heather Patterson (NMOCD) and Jim Amos (BLM) on 2/27/2016 at 2:42 pm.

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have \underline{not} been undertaken, explain why: NA

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Kyle Littrell	Title: <u>SH&E Supervisor</u>
Signature:	Date: <u>11/15/2019</u>
email: <u>Kyle Littrell@xtoenergy.com</u> Te	lephone: 432-221-7331
OCD Only	
Received by:	Date:

Received by OCD: 6/28/2023 3:01:36 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

Incident ID	
District RP	2RP-3576
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 6/28/20	23 3:01:36 PM State of New Mexico			Page 67 of 166
			Incident ID	
Page 4	Oil Conservation Division		District RP	2RP-3576
			Facility ID	
			Application ID	
regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: <u>Ky</u> Signature:	bormation given above is true and complete to the e required to report and/or file certain release noti ument. The acceptance of a C-141 report by the C gate and remediate contamination that pose a three of a C-141 report does not relieve the operator of le Littrell	ifications and perform c DCD does not relieve th eat to groundwater, surfa responsibility for comp Title: <u>SH8</u> Date: <u>_11/15/20</u>	orrective actions for rele e operator of liability sh ace water, human health liance with any other fe <u>E Supervisor</u>	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:		Date:		
Received by:		Date:		

Oil Conservation Division

Incident ID	
District RP	2RP-3576
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following item	ns must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11	NMAC
Photographs of the remediated site prior to backfill or photos of must be notified 2 days prior to liner inspection)	the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC D	District office must be notified 2 days prior to final sampling)
Description of remediation activities	
I hereby certify that the information given above is true and complete and regulations all operators are required to report and/or file certain remay endanger public health or the environment. The acceptance of a C should their operations have failed to adequately investigate and remeate human health or the environment. In addition, OCD acceptance of a C compliance with any other federal, state, or local laws and/or regulation restore, reclaim, and re-vegetate the impacted surface area to the condition accordance with 19.15.29.13 NMAC including notification to the OCI.	C-141 report by the OCD does not relieve the operator of liability diate contamination that pose a threat to groundwater, surface water, C-141 report does not relieve the operator of responsibility for ns. The responsible party acknowledges they must substantially itions that existed prior to the release or their final land use in
Printed Name:Kyle Littrell	Title:SH&E Supervisor
Signature:	Date:11/15/2019
email:Kyle_Littrell@xtoenergy.com	Telephone: <u>432-221-7331</u>
OCD Only	
Received by:	Date:
	liability should their operations have failed to adequately investigate and ter, human health, or the environment nor does not relieve the responsible regulations.
Closure Approved by:	Date:
Printed Name:	Title:

J Environmental, Inc.	508 We Carlsbad,	ironmental, Inc. st Stevens Street New Mexico 88220 Engineering · Remed		Identifier. BHD 1 Project Name: PLV 78	Date: 8 /6 /19 RP Number: 2RP - 3576
LITH at/Long: Comment Comment	OLOGIC / SO	L SAMPLING L		Logged By: BB Hole Diameter: 3, 5	Method: Hund Auger Total Depth: 4
Moisture Content Chloride (ppm) Vapor	(tpput) Staining Sample #	Depth Sample (ft. bgs.) Depth		Lithology	/Remarks
M (32802 M 14=<175 1.0	2 N Biol.		(SP-SM) 57 91	Hy SAM, moist, aded, f., no od or (HScne AsAbou) (12 (E0	125)

LT Environmental, Inc. 508 West Stevens Street Carlsbad, New Mexico 88220 Compliance · Engineering · Remediation						Identifier: SHDZ Project Name: PLU 78	Date: 8/6/19 RP Number. 2RP-3576			
Lat/Long		LITHO	LOGIC		SAMPI		DG DRIDES, PI	D.	Logged By: B.B. Hole Diameter:	Method: Hend Auger Total Depth:
Commen			_	-					Hole Diameter: 3 , 5 "	4
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Litholo	gy/Remarks
					0 1	1	6w-63 Fili)	6 rav grad	al w/ said, dry, ed, fill, 12 of	, It bran-brand, well
					1 -	-	(P-5M)	silt	y SAND, moist, ded, fm.,	, It bran-bran, well lor. brown-red, poorly. 20 odor.
					2	-				
					3					
M	<32.00.	1,3	N	BILOZA	4	4'	(sp-sm)	5Av	floume As Above) (14:25)
					5	- - -				
					6	+- + +-		Ì		
					7	+				
					8	-				
					9					
					10	-				
					11	-				
					12	-				

Party (Carlsbad, New Mexico 88220 Compliance · Engineering · Remediation							Identifier: ISHD 3 Project Name: PLV 78	Date: 8 /6 /19 RP Number: 2RP - 3576			
LITHOLOGIC / SOIL SAMPLING LOG									Logged By: B.B. Method. Hand I have			
at/Long:				_	Field Screen	ning: CHLO	ORIDES, P	D.	Hole Diameter: 3, 5"	Total Depth: 41		
Comment	ts:		-			_	_					
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithology	/Remarks		
					0 1	-	Gw-55 fin)	Grand	of Sand, dry, H bri d, fill, trace p	etro obr.		
					1	-	69-5m)	silt	y SAMD, moist,	brown - red, poorly a petro odor.		
					2	-		grane	, , The	2 perto odor,		
					-	-						
					3	-						
M	23280.4 14=<12	6.3	N	BHOJA	4	11	sp-sm	SAN	(Same As A born)	(14:40)		
					5	-			Home As A bone X	BQY		
					6	-						
					-	-						
						-						
					8	-						
					9							
					10							
					12							
	nental, Inc.		Ca	508 Wes Insbad, I	ronment st Stevens New Mexic Engineering	Street		Identifier BHOY Project Name: PLU 78 BLU 76 BLU 76 BLU 76 BLU 78 BLU 76 BLU 77 BLU 77				
---------------------	----------------------	----------------	----------	----------------------	---	---	-------------------	---				
Lat/Long:		LITHO	LOGI	C / SOI	Field Scree	N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	OG ORIDES, PI	PID. Hole Diameter: 3,5" Method: [trad Augur Total Depth: 4'				
Comment	-				-							
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Lithology/Remarks				
					0]		Ewis	Grand W/ Sand, dry, It brown, well graded, fill, no.odor.				
					1	-	(sp-sm)	Silty SAMD, mast, brown - redy postly grand, m-P, mild petro odor.				
				н	2	-						
					3	-						
M	132 Q0.4 xy = 128	52.3	N	BHOIA	4	4'	(P-sm)	SAA (Sume for Hom) (5:00)				
					5	-		EOBCY'				
					6	-						
					7	-						
					8	-						
					9							
					10							
					11							
					12							

LT Environ	Dertinit		Ca	508 Wes rlsbad, N	ronmenta t Stevens lew Mexic ingineering	Street			Identifier: BH Project Name: PW 7	05 8	Date 8 /6 /19 RP Number: ERP-3576
-		LITHO	LOGIC	c / son	SAMP	N 1777 511 13			Logged By: BB		Method Hand Auger
Lat/Long					Field Scree	ning: CHLO	ORIDES, PI	D,	Hole Diameter:	3,5"	Total Depth: 4'
Commen		•				-					
Moisture Content	Content (ppm) (ppm					Lithology/Remarks					
					0]	-	Gw-65) F.N	Grand fill	I w/ sand, no odo	dry, It !	brown, well graded,
M	K32@0,6 8956129	12.3	N	Butos	1	í í	(SP-5A)	5,7.	ty 5 Avill	hoist,	; brown-red, poorly - (15:20)
	•				2			1	11,	1.0 0401	- (13. 20)
					3						
M	<72 €0.0 M = <{128	2.6	N	Bto5A	4	4'0	(SKSM)	SA	Alson 1	Ar Abour)	(15:25) B @4'
					5					Eo.	Bey
					6	+					
					7						
					8						
					9	+					
					10	-					
					11 -	-					
					12	-					

pig	a Cartona		Ca	508 Wes arlsbad, N	Vew Mexi	s Street co 88220			Identifier ISHD 6 Project Name: PLV 78	Date: 8/6/19 RP Number. 2RP-3576
$M = \begin{cases} 3261.2 \\ x_{1/2}^{3} < 2.7 \\ x_{1/2}^{$									Logged By: BB	Method: Hud Ager
Lat/Long	Ę.				Field Scree	ening: CHL	ORIDES, P	ID.	Hole Diameter: 3.5"	Total Depth: 4
Commer	nt 🧲	not kn								
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #			Soil/Rock Type		Litholo	ogy/Remarks
					0 1	-	Gw-65 Fill)	Grand A.U.	W/sand, dry, lt no star.	brown, wells aded,
M	K3201.2	2,7	N	8476	1				-	
	4936108							grad	ed, m.f. n	; brown - red, poorly sodor, (15:35)
					2	-				•
					1	-				
					3 _					
	177.004					-				1(15:45)
M	#/=<128	1.0	N	BHO6A	4	4' (sr-sm)	54A	(Sume As Abo	a) (15:45)
						-			1-	8 @4'
					5	-			(to	5 64
					-	-				
					6					
					-					
					7					
					_					
					8					
					9					
					10					
					-					
					11 1					
					+					
			1.1		12					

25 Sol Carisbad,				508 Wes arlsbad, I	i ronmental, Inc. st Stevens Street New Mexico 88220				Identifier: PH01 Project Name: PLU 78 SWD	Date 8127/2019 RP Number			
		LETU	_						PLU TO SWIP				
Lat/Long	g	LITHO	DLOGI	C / SOI			OG ORIDES, P	ID	Logged By: BB Hole Diameter	Method Buckhoe			
Commer	nt All Chle	oride test i	nclude a	60% error		_			NA Your Depuis H				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Litholog	y/Remarks			
					0	-	1000	CALL	LITE, Ary, ten, po	arly cash, mero x			
D	(32.01.4 ((128)	0.5	N	PHOI	1	ľ	5P	fil SAN F.	D, dry, brown -	red, purily small			
					2			,	10 0 A07. (C.)				
					3	-							
M	3616	0.0	N	PHOLA	4	4'	SP	SAA	(Sam As Above))(12.40)			
					5				(Eo	PQU			
					6				10				
					7	+	\sim						
						1		1					
					8 .	ţ							
					9	+							
					10	-							
					11	+							
					12	+							

LT Engine	5		Ca	508 Wes arisbad, I	ronmenta st Stevens New Mexic Engineering	Street co 88220			Identifier: PH02 Project Name: PLU 78 SWP	Date: 8127/2019 RP Number: 2RP- 373576
		LITHO			LSAMP				Logged By: BB	Method Backhoe
Lat/Long Commen	a All Chie	oride test i	nclude a	60% error f	Field Scree	ning CHLC	ORIDES, P	ID,	Hole Diameter: NA-	Total Depth: 4
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)		Soil/Rock Type		Lithology	/Remarks
					0]	-	Calche, fill	CALICO Fill,	ne oder	consolidated, more xtn,
M	E1.0 (712.2)	01	Ŋ	PHOS	1	1'	SP	SAND	(moist, brown - re @12:55 No od	id, poorly graded, f
M	01.4 (128)	60	N	PHO2	3	4'	se	SAND @13a	, marst, brown-red, (> No odar	scorty gradel, f.
					5	+			Eore	4'
					6					
					7	ŧ				
					8	-				
					9					
					10	-				
					11					
					12	+				

for LT Environmental, Inc.

Project Manager: Ashley Ager

PLU 78 (2RP-3576)

0129181131

09-JUL-19

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-29), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-19-19), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-20) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483)

09-JUL-19

Project Manager: Ashley Ager LT Environmental, Inc. 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 629539 PLU 78 (2RP-3576) Project Address: Delaware Basin

Ashley Ager:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 629539. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 629539 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer **Project Assistant**

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 2 of 20

Sample Cross Reference 629539

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
PLU 78 BH01	S	06-26-19 14:10	1 ft	629539-001
PLU 78 BH02	S	06-26-19 14:45	1 ft	629539-002
PLU 78 BH03	S	06-26-19 15:15	1 ft	629539-003
PLU 78 BH04	S	06-26-19 16:40	1 ft	629539-004

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: PLU 78 (2RP-3576)

 Project ID:
 0129181131

 Work Order Number(s):
 629539

TORIES

Report Date: 09-JUL-19 Date Received: 06/28/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3094810 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:0129181131Contact:Ashley AgerProject Location:Delaware Basin

Certificate of Analysis Summary 629539

LT Environmental, Inc., Arvada, CO Project Name: PLU 78 (2RP-3576) Page 84 of 166

Date Received in Lab: Fri Jun-28-19 04:25 pm Report Date: 09-JUL-19 Project Manager: Jessica Kramer

	Lab Id:	629539-0	001	629539-0	002	629539-0	003	629539-	004		
Analysis Requested	Field Id:	PLU 78 B	H01	PLU 78 B	H02	PLU 78 B	H03	PLU 78 B	H04		
Anuiysis Kequesieu	Depth:	1- ft		1- ft		1- ft		1- ft			
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Jun-26-19 1	14:10	Jun-26-19	14:45	Jun-26-19	15:15	Jun-26-19	16:40		
BTEX by EPA 8021B	Extracted:	Jul-08-19 1	1:45	Jul-08-19 1	1:45	Jul-08-19	11:45	Jul-08-19	11:45		
SUB: T104704400-18-16	Analyzed:	Jul-09-19 (01:24	Jul-09-19 0	01:46	Jul-09-19 (02:08	Jul-09-19	03:42		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00201	0.00201	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00200	0.00200		
Toluene		< 0.00201	0.00201	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00200	0.00200		
Ethylbenzene		< 0.00201	0.00201	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00200	0.00200		
m,p-Xylenes		< 0.00402	0.00402	< 0.00397	0.00397	< 0.00398	0.00398	< 0.00400	0.00400		
o-Xylene		< 0.00201	0.00201	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00200	0.00200		
Total Xylenes		< 0.00201	0.00201	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00200	0.00200		
Total BTEX		< 0.00201	0.00201	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	Jul-01-19 1	16:00	Jul-01-19 1	6:00	Jul-01-19	16:00	Jul-01-19	16:00		
SUB: T104704400-18-16	Analyzed:	Jul-01-19 2	22:06	Jul-01-19 2	2:11	Jul-01-19 2	22:26	Jul-01-19	22:31		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		23.5	5.05	34.9	5.01	28.8	4.98	<5.03	5.03		
TPH by SW8015 Mod	Extracted:	Jul-04-19 1	10:00	Jul-04-19 1	0:00	Jul-04-19	10:00	Jul-04-19	10:00		
SUB: T104704400-18-16	Analyzed:	Jul-04-19 2	23:55	Jul-05-19 0	0:20	Jul-05-19 (00:45	Jul-05-19	01:10		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0		
Diesel Range Organics (DRO)		<14.9	14.9	427	15.0	571	15.0	151	15.0		
Motor Oil Range Hydrocarbons (MRO)		<14.9	14.9	102	15.0	72.5	15.0	42.3	15.0		
Total TPH		<14.9	14.9	529	15.0	644	15.0	193	15.0		
Total GRO-DRO		<14.9	14.9	427	15.0	571	15.0	151	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kramer

Jessica Kramer Project Assistant

Page 5 of 20

Chloride

Certificate of Analytical Results 629539

1

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id: PLU 78 BH01 Lab Sample Id: 629539-001		Matrix: Date Collec	Soil ted: 06.26.19 14.10	Date Received:06.28.19 16.25 Sample Depth: 1 ft					
Analytical Method: Chloride by EPA 3	300]	Prep Method: E30	OP			
Tech: CHE					% Moisture:				
Analyst: CHE		Date Prep:	07.01.19 16.00]	Basis: Wet	Weight			
Seq Number: 3094160				:	SUB: T104704400	-18-16			
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil		

5.05

mg/kg

07.01.19 22.06

23.5

16887-00-6

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P DVM % Moisture: Tech: ARM Analyst: 07.04.19 10.00 Basis: Wet Weight Date Prep: Seq Number: 3094461 SUB: T104704400-18-16 Result Cas Number RL Parameter Units **Analysis Date** Flag Dil Gasoline Range Hydrocarbons (GRO) PHC610 <14.9 07.04.19 23.55 U 14.9 mg/kg 1 C10C28DRO Diesel Range Organics (DRO) <14.9 14.9 mg/kg 07.04.19 23.55 U 1 Motor Oil Range Hydrocarbons (MRO) PHCG2835 <14.9 14.9 07.04.19 23.55 U mg/kg 1 Total TPH PHC635 <14.9 14.9 mg/kg 07.04.19 23.55 U 1 Total GRO-DRO PHC628 <14.9 14.9 07.04.19 23.55 U mg/kg 1 % Cas Number Units Surrogate Limits **Analysis Date** Flag Recovery 1-Chlorooctane 111-85-3 70-135 07.04.19 23.55 122 % 07.04.19 23.55 o-Terphenyl 84-15-1 84 % 70-135

LT Environmental, Inc., Arvada, CO

Sample Id:	PLU 78 BH01		Matrix:	Soil		Date Received	:06.28.19 16.2	5
Lab Sample Id	d: 629539-001		Date Collecte	d: 06.26.19 14.10		Sample Depth:	1 ft	
Analytical Me	ethod: BTEX by EPA 802	21B				Prep Method:	SW5030B	
Tech:	DVM					% Moisture:		
Analyst:	FOV		Date Prep:	07.08.19 11.45		Basis:	Wet Weight	
Seq Number:	3094810					SUB: T104704	4400-18-16	
Parameter		Cas Number	Result F	L	Units	Analysis Da	ite Flag	Dil

r al allietel	Cas Number	i Kesuit	KL		Units	Analysis Date	Flag	Dii
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	07.09.19 01.24	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	07.09.19 01.24	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	07.09.19 01.24	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	07.09.19 01.24	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	07.09.19 01.24	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	07.09.19 01.24	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	07.09.19 01.24	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	106	%	70-130	07.09.19 01.24		
1,4-Difluorobenzene		540-36-3	99	%	70-130	07.09.19 01.24		

LT Environmental, Inc., Arvada, CO

Sample Id: PLU 78 BH02 Lab Sample Id: 629539-002		Matrix: Date Colle	Soil cted: 06.26.19 14.45		Date Received:06.2 Sample Depth: 1 ft		5
Analytical Method: Chloride by EP.	A 300				Prep Method: E30	00P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	07.01.19 16.00		Basis: We	t Weight	
Seq Number: 3094160		-			SUB: T104704400	-18-16	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	34.9	5.01	mg/kg	07.01.19 22.11		1

Analytical Method:TPH by SW80Tech:DVMAnalyst:ARMSeq Number:3094461	Dif Mod Date Prep: 07.04.19 10			19 10.00	F % E S			
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	07.05.19 00.20	U	1
Diesel Range Organics (DRO)	C10C28DRO	427	15.0		mg/kg	07.05.19 00.20		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	102	15.0		mg/kg	07.05.19 00.20		1
Total TPH	PHC635	529	15.0		mg/kg	07.05.19 00.20		1
Total GRO-DRO	PHC628	427	15.0		mg/kg	07.05.19 00.20		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	102	%	70-135	07.05.19 00.20		
o-Terphenyl		84-15-1	84	%	70-135	07.05.19 00.20		

LT Environmental, Inc., Arvada, CO

Sample Id: PLU 78 BH02		Matrix:	Soil	Date Received:06.28.19 16.25				
Lab Sample Id: 629539-002		Date Collecte	ed: 06.26.19 14.45	:	ft			
Analytical Method: BTEX by	EPA 8021B]	Prep Method: S	W5030B		
Tech: DVM					% Moisture:			
Analyst: FOV		Date Prep:	07.08.19 11.45]	Basis: W	/et Weight		
Seq Number: 3094810				1	SUB: T1047044	00-18-16		
Parameter	Cas Number	Result I	8L	Units	Analysis Date	Flag	Dil	

rarameter	Cas Number	r Kesult	KL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	07.09.19 01.46	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	07.09.19 01.46	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	07.09.19 01.46	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	07.09.19 01.46	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	07.09.19 01.46	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	07.09.19 01.46	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	07.09.19 01.46	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	105	%	70-130	07.09.19 01.46		
1,4-Difluorobenzene		540-36-3	100	%	70-130	07.09.19 01.46		

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id:PLU 78 BH03Lab Sample Id:629539-003		Matrix: Date Colle	Soil cted: 06.26.19 15.15		Date Received:06.28.19 16.2. Sample Depth: 1 ft				
Analytical Method: Chloride by EPA 3	00				Prep Method: E30)0P			
Tech: CHE					% Moisture:				
Analyst: CHE		Date Prep:	07.01.19 16.00		Basis: We	t Weight			
Seq Number: 3094160					SUB: T104704400	-18-16			
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil		
Chloride	16887-00-6	28.8	4.98	mg/kg	07.01.19 22.26		1		

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P DVM % Moisture: Tech: ARM Analyst: 07.04.19 10.00 Basis: Wet Weight Date Prep: Seq Number: 3094461 SUB: T104704400-18-16 Result Cas Number RL Parameter Units **Analysis Date** Flag Dil Gasoline Range Hydrocarbons (GRO) PHC610 15.0 07.05.19 00.45 U <15.0 mg/kg 1 C10C28DRO **Diesel Range Organics (DRO)** 571 15.0 mg/kg 07.05.19 00.45 1 Motor Oil Range Hydrocarbons (MRO) PHCG2835 72.5 15.0 07.05.19 00.45 mg/kg 1 **Total TPH** PHC635 644 15.0 mg/kg 07.05.19 00.45 1 Total GRO-DRO PHC628 07.05.19 00.45 571 15.0 mg/kg 1 % Cas Number Units Flag Surrogate Limits **Analysis Date** Recovery 1-Chlorooctane 111-85-3 108 70-135 07.05.19 00.45 % o-Terphenyl 84-15-1 85 % 70-135 07.05.19 00.45

LT Environmental, Inc., Arvada, CO

Sample Id:	PLU 78 BH03		Matrix:	Soil		Date Received	:06.28.19 16.2	5
Lab Sample I	d: 629539-003		Date Collecte	d: 06.26.19 15.15		1 ft		
Analytical M	ethod: BTEX by EPA 80	21B				Prep Method:	SW5030B	
Tech:	DVM					% Moisture:		
Analyst:	FOV		Date Prep:	07.08.19 11.45		Basis:	Wet Weight	
Seq Number:	3094810					SUB: T104704	400-18-16	
Parameter		Cas Number	Result R	L	Units	Analysis Da	te Flag	Dil

Cas Number	r Kesuit	KL		Units	Analysis Date	Flag	Dil
71-43-2	< 0.00199	0.00199		mg/kg	07.09.19 02.08	U	1
108-88-3	< 0.00199	0.00199		mg/kg	07.09.19 02.08	U	1
100-41-4	< 0.00199	0.00199		mg/kg	07.09.19 02.08	U	1
179601-23-1	< 0.00398	0.00398		mg/kg	07.09.19 02.08	U	1
95-47-6	< 0.00199	0.00199		mg/kg	07.09.19 02.08	U	1
1330-20-7	< 0.00199	0.00199		mg/kg	07.09.19 02.08	U	1
	< 0.00199	0.00199		mg/kg	07.09.19 02.08	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	540-36-3	92	%	70-130	07.09.19 02.08		
	460-00-4	111	%	70-130	07.09.19 02.08		
-	71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	71-43-2 <0.00199	71-43-2 <0.00199	71-43-2 <0.00199	71-43-2 <0.00199	71-43-2 <0.00199	71-43-2 <0.00199 0.00199 mg/kg 07.09.19 0.00 108-88-3 <0.00199

Analytical Method: TPH by SW8015 Mod

DVM

ARM

Seq Number: 3094461

Tech:

Analyst:

Certificate of Analytical Results 629539

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id:PLU 78 BH04Lab Sample Id:629539-004		Matrix: Date Colle	Soil ected: 06.26.19 16.40		5		
Analytical Method: Chloride by EPA	300				Prep Method: E30	00P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	07.01.19 16.00		Basis: We	t Weight	
Seq Number: 3094160					SUB: T104704400	-18-16	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	<5.03	5.03	mg/kg	07.01.19 22.31	U	1

Date Prep:

07.04.19 10.00

07.01.19 22.31 mg/kg

> Prep Method: TX1005P % Moisture:

Basis: Wet Weight SUB: T104704400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	07.05.19 01.10	U	1
Diesel Range Organics (DRO)	C10C28DRO	151	15.0		mg/kg	07.05.19 01.10		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	42.3	15.0		mg/kg	07.05.19 01.10		1
Total TPH	PHC635	193	15.0		mg/kg	07.05.19 01.10		1
Total GRO-DRO	PHC628	151	15.0		mg/kg	07.05.19 01.10		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	103	%	70-135	07.05.19 01.10		
o-Terphenyl		84-15-1	78	%	70-135	07.05.19 01.10		

LT Environmental, Inc., Arvada, CO

Sample Id:	PLU 78 BH04		Matrix:	Soil	I	Date Received:06	5.28.19 16.25	5
Lab Sample I	d: 629539-004		Date Collecte	d: 06.26.19 16.40	S	ft		
Analytical Me	ethod: BTEX by EPA 802	21B			I	Prep Method: SV	W5030B	
Tech:	DVM				ç	% Moisture:		
Analyst:	FOV		Date Prep:	07.08.19 11.45	I	Basis: W	et Weight	
Seq Number:	3094810				S	SUB: T10470440	00-18-16	
Parameter		Cas Number	Result R	RL .	Units	Analysis Date	Flag	Dil

r al allietel	Cas Nulliber	Kesuit	KL		Units	Analysis Date	riag	DII
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.09.19 03.42	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	07.09.19 03.42	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.09.19 03.42	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.09.19 03.42	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.09.19 03.42	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.09.19 03.42	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	07.09.19 03.42	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	92	%	70-130	07.09.19 03.42		
4-Bromofluorobenzene		460-00-4	97	%	70-130	07.09.19 03.42		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Cli	ent Sample	BLK	Method Blank				
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate			
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate			

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 629539

LT Environmental, Inc. PLU 78 (2RP-3576)

Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3 3094160 7681162-1-BLK	Matrix: Solid					Prep Metl Date P LCSD Samp	Prep: 07.0)1.19		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD RPD Lin		Analysis Date	Flag
Chloride	<0.858	250	250	100	251	100	90-110	0 20	mg/kg	07.01.19 21:32	
										0.0	
Analytical Method: Seq Number:	Chloride by EPA 3 3094160	00		Matrix:	Soil			Prep Metl Date P		0P)1.19	
Parent Sample Id:	629503-013				629503-0	13 S		MSD Samp			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Lin	mit Units	Analysis Date	Flag
Chloride	107	248	368	105	367	105	90-110	0 20	mg/kg	07.01.19 21:47	
Analytical Method: Seq Number: Parent Sample Id: Parameter	Chloride by EPA 3 3094160 629609-003 Parent	00 Spike	MS Sar MS	MS	Soil 629609-0 MSD	03 S MSD	Limits	Prep Meth Date P MSD Samp %RPD RPD Lin	Prep: 07.0 le Id: 629)1.19 609-003 SD Analysis	Flag
Chloride	Result 451	Amount 250	Result 690	%Rec 96	Result 686	%Rec 94	90-110	1 20	mg/kg	Date 07.01.19 22:55	8
Analytical Method: Seq Number: MB Sample Id: Parameter Gasoline Range Hydrocarbo Diesel Range Organics (3094461 7681387-1-BLK MB Result ons (GRO) <8.00	Spike Amount 1000 1000		Matrix: nple Id: LCS %Rec 118 119	Solid 7681387- LCSD Result 1100 1150	1-BKS LCSD %Rec 110 115	Limits 70-135 70-135	Prep Metl Date P LCSD Samp %RPD RPD Lin 7 20 3 20	Prep: 07.0 le Id: 768	1005P 14.19 1387-1-BSD Analysis Date 07.04.19 21:09 07.04.19 21:09	Flag
Surrogate	MB %Rec	MB Flag	L	CS Rec	LCS Flag	LCSI %Re	D LCS c Fla	D Limits	Units	Analysis Date	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

1-Chlorooctane

o-Terphenyl

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) |[D] = 100 * (C) / [B]Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

109

83

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

103

97

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

.

07.04.19 21:09

07.04.19 21:09

111

110

70-135

70-135

%

%

QC Summary 629539

LT Environmental, Inc.

PLU 78 (2RP-3576)

Analytical Method:	nalytical Method: TPH by SW8015 Mod									Prep Method: TX1005P				
Seq Number:	3094461			Matrix: Soil					Date Prep: 07.04.19					
Parent Sample Id:	nple Id: 629498-001				MS Sample Id: 629498-001 S			MSD Sample Id: 629498-001 SD						
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Gasoline Range Hydrocarb	ons (GRO)	9.21	997	1180	117	1190	118	70-135	1	20	mg/kg	07.04.19 22:20		
Diesel Range Organics	(DRO)	13.6	997	1080	107	1050	104	70-135	3	20	mg/kg	07.04.19 22:20		
Surrogate					AS Rec	MS Flag	MSD %Re			limits	Units	Analysis Date		
1-Chlorooctane				1	03		102		7	0-135	%	07.04.19 22:20		
o-Terphenyl					79		76		7	0-135	%	07.04.19 22:20		

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3094810 7681533-1-BLK	1B	LCS San	Matrix: nple Id:	Solid 7681533-	1-BKS			Prep Metho Date Pre SD Sample	p: 07.0	5030B 8.19 1533-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI) RPD Limit	t Units	Analysis Date	Flag
Benzene	< 0.00200	0.0998	0.0919	92	0.0879	88	70-130	4	35	mg/kg	07.08.19 08:34	
Toluene	< 0.00200	0.0998	0.0899	90	0.0873	88	70-130	3	35	mg/kg	07.08.19 08:34	
Ethylbenzene	< 0.00200	0.0998	0.101	101	0.0952	96	70-130	6	35	mg/kg	07.08.19 08:34	
m,p-Xylenes	< 0.00399	0.200	0.201	101	0.191	96	70-130	5	35	mg/kg	07.08.19 08:34	
o-Xylene	< 0.00200	0.0998	0.0960	96	0.0914	92	70-130	5	35	mg/kg	07.08.19 08:34	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSD %Rec			Limits	Units	Analysis Date	
1,4-Difluorobenzene	91		9	93		93		,	70-130	%	07.08.19 08:34	
4-Bromofluorobenzene	95		1	06		103			70-130	%	07.08.19 08:34	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3094810 629496-023	1B	MS San	Matrix: nple Id:	Soil 629496-02	23 S		Prep Method: SW5030B Date Prep: 07.08.19 MSD Sample Id: 629496-023				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPI	D RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.0823	83	0.0834	83	70-130	1	35	mg/kg	07.08.19 09:18	
Toluene	< 0.00199	0.0996	0.0820	82	0.0796	80	70-130	3	35	mg/kg	07.08.19 09:18	
Ethylbenzene	< 0.00199	0.0996	0.0912	92	0.0897	90	70-130	2	35	mg/kg	07.08.19 09:18	
m,p-Xylenes	< 0.00398	0.199	0.181	91	0.180	90	70-130	1	35	mg/kg	07.08.19 09:18	
o-Xylene	< 0.00199	0.0996	0.0872	88	0.0884	88	70-130	1	35	mg/kg	07.08.19 09:18	
Surrogate				IS Rec	MS Flag	MSD %Ree			Limits	Units	Analysis Date	
1,4-Difluorobenzene			9	98		101			70-130	%	07.08.19 09:18	
4-Bromofluorobenzene			1	19		120			70-130	%	07.08.19 09:18	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control SampleA = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

.

Page 16 of 20

Company Name: Current of the second state s	AI Sb As Ba Sb As Ba Be Sb As Ba Be Sb As Ba Be AI Sh As Ba Ba AI Sh As Ba An AI Sh As Ba AI Sh As Ba An AI Sh As Ba AI Sh As An AI Sh As Ba AI Sh As An AI Sh As Ba AI Sh As An AI Sh As An AI Sh As An AI AN	Green Green Green Green Green State of Project: NVM , BG-2.2c Paporting:Level II Deliverables: EDD ADPT Other: Deliverables: EDD ADPT Other: Preservative Codes ANALYSIS REQUEST MeOH: Me MeOH: Me Nome: NO MeOH: Me MeOH: Me Nome: NO HO3: HN HO3: HN HC1: HL HO3: HN HACH: HL HC2: H2 HC2: H2 HC2: H2 HC3: H2 HC3: H2 HC3: H2 HC3: H2 HC3: H2 HC3: H2 HC3: H2 HC4: H2 HC3: H2 HC4: H2 HC3: H2 HC4: H2 HC4: H2 HC4: H2 HC4: H2 H2 H2 H2 H2 H2 H2 </th
LT Environmentalithe	20	Pr
North	3/04 8	Street
1	Cortsberd	an 28
36.30	Slole	1110-C
78/7.60-35	rn Around	ANALYSIS REQUEST
012918131	X	
1	Rush:	
Yes	Bbl:	
Temperature (°C):	ntaine	
Yes W N/A	f Cor (E f	
(N) NIA	nber of PH	
ALL LADIES	N	
N 2 61 L61		
717 5	X X I I I	
5 6/14	1' 1 X X	
	Jer Star	
200.8 / 6020: d Metal(s) to be analyzed	TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd (Cr Co Cu Pb Mn Mo Ni Se Ag TI
It and relinquishment of samples constitu- ity for the cost of samples and shall not a	a valid purchase order from client company to Xenco, its affiliates a me any responsibility for any losses or expenses incurred by the cli area of 55 for each sample submitted to Xenco, but not analyzed. The	and subcontractors. It assigns standard terms and litent if such losses are due to circumstances beyond These terms will be enforced unless previously negot
ature) Receive	by: (Signature) Date/Time	Relinquished by: (Signature)
1	61/88/01	
		N
	9	A N

Inter-Office Shipment

Page 1 of 1

IOS Number 42588

Lab# From: Carlsbad

Lab# To: Midland

Date/Time: 06/28/19 17:36

Created by: Elizabeth Mcclellan

Air Bill No.:

Please send report to: Jessica Kramer

Delivery Priority:

Address: 1089 N Canal Street

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
629539-001	S	PLU 78 BH01	06/26/19 14:10	SW8015MOD_NM	TPH by SW8015 Mod	07/05/19	07/10/19	JKR	GRO-DRO PHCC10C28 PI	
629539-001	S	PLU 78 BH01	06/26/19 14:10	SW8021B	BTEX by EPA 8021B	07/05/19	07/10/19	JKR	BR4FBZ BZ BZME EBZ X	
629539-001	S	PLU 78 BH01	06/26/19 14:10	E300_CL	Chloride by EPA 300	07/05/19	12/23/19	JKR	CL	
629539-002	S	PLU 78 BH02	06/26/19 14:45	SW8021B	BTEX by EPA 8021B	07/05/19	07/10/19	JKR	BR4FBZ BZ BZME EBZ X	
629539-002	S	PLU 78 BH02	06/26/19 14:45	SW8015MOD_NM	TPH by SW8015 Mod	07/05/19	07/10/19	JKR	GRO-DRO PHCC10C28 PI	
629539-002	S	PLU 78 BH02	06/26/19 14:45	E300_CL	Chloride by EPA 300	07/05/19	12/23/19	JKR	CL	
629539-003	S	PLU 78 BH03	06/26/19 15:15	SW8021B	BTEX by EPA 8021B	07/05/19	07/10/19	JKR	BR4FBZ BZ BZME EBZ X	
629539-003	S	PLU 78 BH03	06/26/19 15:15	SW8015MOD_NM	TPH by SW8015 Mod	07/05/19	07/10/19	JKR	GRO-DRO PHCC10C28 PI	
629539-003	S	PLU 78 BH03	06/26/19 15:15	E300_CL	Chloride by EPA 300	07/05/19	12/23/19	JKR	CL	
629539-004	S	PLU 78 BH04	06/26/19 16:40	SW8021B	BTEX by EPA 8021B	07/05/19	07/10/19	JKR	BR4FBZ BZ BZME EBZ X	
629539-004	S	PLU 78 BH04	06/26/19 16:40	E300_CL	Chloride by EPA 300	07/05/19	12/23/19	JKR	CL	
629539-004	S	PLU 78 BH04	06/26/19 16:40	SW8015MOD_NM	TPH by SW8015 Mod	07/05/19	07/10/19	JKR	GRO-DRO PHCC10C28 PI	

Inter Office Shipment or Sample Comments:

Relinquished By:

Elizabeth McClellan

Date Relinquished: 06/28/2019

Received By:

Brianna Teel

Date Received: 07/01/2019 07:26

Cooler Temperature: 0.6

ABORATORIES

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Midland IOS #: 42588

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : R8

Sent By:	Elizabeth McClellan	Date Sent:	06/28/2019 05:36 PM
Received By:	Brianna Teel	Date Received:	07/01/2019 07:26 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	.6
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 *Custody Seals Signed and dated for Containers/coolers	N/A
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by: Ballo Ta

Brianna Teel

Date: 07/01/2019

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.

Work Order #: 629539

Date/ Time Received: 06/28/2019 04:25:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used : T-NM-007

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	13	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	Chilling in progress.
#4 *Custody Seals intact on shipping container/ cooler?	No	
#5 Custody Seals intact on sample bottles?	No	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	Yes	Subbed to Xenco Midland.
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan Checklist reviewed by: fession Weamer

Date: 06/28/2019

Jessica Kramer

Date: 07/02/2019

for LT Environmental, Inc.

Project Manager: Dan Moir

PLU 78 (2RP-3576)

012919131

13-AUG-19

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-29), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142), North Carolina (681)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-19-19), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-20) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483)

13-AUG-19

Project Manager: Dan Moir LT Environmental, Inc. 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 633342 PLU 78 (2RP-3576) **Project Address:**

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 633342. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 633342 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Veramer

Jessica Kramer **Project Assistant**

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 633342

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH01A	S	08-06-19 14:15	4 ft	633342-001
BH02A	S	08-06-19 14:25	4 ft	633342-002
BH03A	S	08-06-19 14:40	4 ft	633342-003
BH04A	S	08-06-19 15:00	4 ft	633342-004
BH05	S	08-06-19 15:20	1 ft	633342-005
BH05A	S	08-06-19 15:25	4 ft	633342-006
BH06	S	08-06-19 15:35	1 ft	633342-007
BH06A	S	08-06-19 15:45	4 ft	633342-008

Released to Imaging: 6/30/2023 10:20:49 AM

.

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: PLU 78 (2RP-3576)

 Project ID:
 012919131

 Work Order Number(s):
 633342

Report Date: 13-AUG-19 Date Received: 08/07/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3098397 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Lab Sample ID 633342-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). m,p-Xylenes recovered below QC limits in the Matrix Spike. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 633342-001, -002, -003, -004, -005, -006, -007, -008. The Laboratory Control Sample for m,p-Xylenes is within laboratory Control Limits, therefore the data was accepted.

Project Id:012919131Contact:Dan Moir

Project Location:

Certificate of Analysis Summary 633342

LT Environmental, Inc., Arvada, CO Project Name: PLU 78 (2RP-3576) Page 104 of 166

Date Received in Lab:Wed Aug-07-19 01:45 pmReport Date:13-AUG-19Project Manager:Jessica Kramer

	Lab Id:	633342-0	001	633342-	002	633342-0	003	633342-0	004	633342-	005	633342-	006
An alusia Doguostad	Field Id:	BH01/	4	BH02.	4	BH03/	4	BH044	4	BH05	5	BH05.	A
Analysis Requested	Depth:	4- ft		4- ft		4- ft		4- ft		1- ft		4- ft	
	Matrix:	SOIL	,	SOIL		SOIL		SOIL	,	SOIL	,	SOIL	
	Sampled:	Aug-06-19	14:15	Aug-06-19	14:25	Aug-06-19	14:40	Aug-06-19	15:00	Aug-06-19	15:20	Aug-06-19	15:25
BTEX by EPA 8021B	Extracted:	Aug-10-19	11:30	Aug-10-19	11:30	Aug-10-19	11:30	Aug-10-19	11:30	Aug-10-19	11:30	Aug-10-19	11:30
SUB: T104704400-18-16	Analyzed:	Aug-13-19	00:47	Aug-13-19	01:07	Aug-13-19	01:27	Aug-13-19	01:47	Aug-13-19	02:07	Aug-13-19	02:27
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200
Toluene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200
Ethylbenzene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200
m,p-Xylenes		< 0.00400	0.00400	< 0.00398	0.00398	<0.00398	0.00398	< 0.00398	0.00398	< 0.00398	0.00398	< 0.00399	0.00399
o-Xylene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200
Total Xylenes		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200
Total BTEX		< 0.00200	0.00200	< 0.00199	0.00199	0199 <0.00199 0.00199		< 0.00199	0.00199	<0.00199 0.00199		< 0.00200	0.00200
Chloride by EPA 300	Extracted:	Aug-08-19	15:00	Aug-08-19 15:00 Aug-08-19 19:59		Aug-08-19 15:00 Aug-08-19 20:05		Aug-08-19 15:00 Aug-08-19 20:12		Aug-08-19	15:00	Aug-08-19	15:00
SUB: T104704400-18-16	Analyzed:	Aug-08-19	19:40							Aug-08-19 20:18		Aug-08-19 20:24	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		24.3	5.02	36.3	5.04	13.3	5.01	11.2	4.98	101	4.99	27.2	5.00
TPH by SW8015 Mod	Extracted:	Aug-12-19	12:00	Aug-12-19	12:00	Aug-12-19	12:00	Aug-09-19	15:00	Aug-09-19	15:00	Aug-09-19	15:00
SUB: T104704400-18-16	Analyzed:	Aug-13-19	05:52	Aug-13-19	06:11	Aug-13-19	06:29	Aug-11-19	08:21	Aug-11-19	08:41	Aug-11-19	08:59
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		346	15.0	<14.9	14.9	492	15.0	<15.0	15.0	2740	15.0	24.9	15.0
Motor Oil Range Hydrocarbons (MRO)		61.4	15.0	<14.9	14.9	74.4	15.0	<15.0	15.0	510	15.0	<15.0	15.0
Total TPH		407	15.0	<14.9	14.9	566	15.0	<15.0	15.0	3250	15.0	24.9	15.0
Total GRO-DRO		346	15.0	<14.9	14.9	492	15.0	<15.0	15.0	2740	15.0	24.9	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kramer

Jessica Kramer Project Assistant

Page 5 of 31

 Project Id:
 012919131

 Contact:
 Dan Moir

Project Location:

Certificate of Analysis Summary 633342

LT Environmental, Inc., Arvada, CO Project Name: PLU 78 (2RP-3576)

Date Received in Lab:Wed Aug-07-19 01:45 pmReport Date:13-AUG-19Project Manager:Jessica Kramer

	Lab Id:	633342-0	007	633342-	008		
Aran Lucia Domenato d	Field Id:	BH06		BH06.	A		
Analysis Requested	Depth:	1- ft		4- ft			
	Matrix:	SOIL		SOIL	,		
	Sampled:	Aug-06-19	15:35	Aug-06-19	15:45		
BTEX by EPA 8021B	Extracted:	Aug-10-19	11:30	Aug-10-19	11:30		
SUB: T104704400-18-16	Analyzed:	Aug-13-19	02:48	Aug-13-19	03:08		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00199	0.00199	< 0.00198	0.00198		
Toluene		< 0.00199	0.00199	< 0.00198	0.00198		
Ethylbenzene		< 0.00199	0.00199	< 0.00198	0.00198		
m,p-Xylenes		< 0.00398	0.00398	< 0.00396	0.00396		
o-Xylene		< 0.00199	0.00199	< 0.00198	0.00198		
Total Xylenes		< 0.00199	0.00199	< 0.00198	0.00198		
Total BTEX		< 0.00199	0.00199	< 0.00198	0.00198		
Chloride by EPA 300	Extracted:	Aug-08-19	15:00	Aug-08-19	15:40		
SUB: T104704400-18-16	Analyzed:	Aug-08-19	20:31	Aug-09-19	09:30		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		84.1	5.00	34.9	4.99		
TPH by SW8015 Mod	Extracted:	Aug-09-19	15:00	Aug-09-19	15:00		
SUB: T104704400-18-16	Analyzed:	Aug-11-19	09:18	Aug-11-19	09:37		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)	· · · · · · · · · · · · · · · · · · ·	<15.0	15.0	<15.0	15.0		
Diesel Range Organics (DRO)		281	15.0	<15.0	15.0		
Motor Oil Range Hydrocarbons (MRO)		150	15.0	<15.0	15.0		
Total TPH		431	15.0	<15.0	15.0		
Total GRO-DRO		281	15.0	<15.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kramer

Jessica Kramer Project Assistant

Page 6 of 31

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id:BH01ALab Sample Id:633342-001		Matrix: Date Collec	Soil cted: 08.06.19 14.15		Date Received:0 Sample Depth: 4		5
Analytical Method: Chloride by EPA 3	00				Prep Method: E	300P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.08.19 15.00		Basis: W	/et Weight	
Seq Number: 3097992					SUB: T1047044	00-18-16	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	24.3	5.02	mg/kg	08.08.19 19.40		1

Analytical Method: TPH by SW801Tech:DVMAnalyst:ARMSeq Number:3098276	5 Mod	Date Prep	o: 08.12.3	19 12.00	F % E S			
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	08.13.19 05.52	U	1
Diesel Range Organics (DRO)	C10C28DRO	346	15.0		mg/kg	08.13.19 05.52		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	61.4	15.0		mg/kg	08.13.19 05.52		1
Total TPH	PHC635	407	15.0		mg/kg	08.13.19 05.52		1
Total GRO-DRO	PHC628	346	15.0		mg/kg	08.13.19 05.52		1
Surrogate 1-Chlorooctane o-Terphenyl		Cas Number 111-85-3 84-15-1	% Recovery 98 94	Units % %	Limits 70-135 70-135	Analysis Date 08.13.19 05.52 08.13.19 05.52	Flag	

.

LT Environmental, Inc., Arvada, CO

Sample Id:	BH01A d: 633342-001		Matrix:	Soil		Date Received:0		5
			Date Collecte	d: 08.06.19 14.15		Sample Depth: 4		
Analytical Me	ethod: BTEX by EPA 802			1	Prep Method: S	W5030B		
Tech:	KTL					% Moisture:		
Analyst:	ALG		Date Prep:	08.10.19 11.30	1	Basis: V	Vet Weight	
Seq Number:	3098397				:	SUB: T1047044	00-18-16	
Parameter		Cas Number	Result R	er.	Units	Analysis Date	Flag	Dil

Farameter	Cas Nulliber	Kesun	KL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.13.19 00.47	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.13.19 00.47	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.13.19 00.47	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	08.13.19 00.47	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.13.19 00.47	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.13.19 00.47	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.13.19 00.47	U	1
Surrogate		Cas Number	% Recoverv	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	106	%	70-130	08.13.19 00.47		
4-Bromofluorobenzene		460-00-4	111	%	70-130	08.13.19 00.47		

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id:BH02ALab Sample Id:633342-002		Matrix: Date Colle	Soil ected: 08.06.19 14.25	Date Received:08.07.19 13.45 Sample Depth: 4 ft				
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E30	00P	
Tech:	CHE					% Moisture:		
Analyst:	CHE		Date Prep:	08.08.19 15.00		Basis: We	t Weight	
Seq Number:	3097992					SUB: T104704400	-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	36.3	5.04	mg/kg	08.08.19 19.59		1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P DVM % Moisture: Tech: ARM Analyst: Basis: Wet Weight Date Prep: 08.12.19 12.00 Seq Number: 3098276 SUB: T104704400-18-16 Result Cas Number RL Parameter Units **Analysis Date** Flag Dil Gasoline Range Hydrocarbons (GRO) PHC610 <14.9 14.9 08.13.19 06.11 U mg/kg 1 C10C28DRO Diesel Range Organics (DRO) <14.9 14.9 mg/kg 08.13.19 06.11 U 1 Motor Oil Range Hydrocarbons (MRO) PHCG2835 <14.9 14.9 08.13.19 06.11 U mg/kg 1 Total TPH PHC635 <14.9 14.9 mg/kg 08.13.19 06.11 U 1 Total GRO-DRO PHC628 <14.9 14.9 08.13.19 06.11 U mg/kg 1 % Cas Number Units Surrogate Limits **Analysis Date** Flag Recovery 1-Chlorooctane 111-85-3 70-135 08.13.19 06.11 % 96 o-Terphenyl 84-15-1 96 % 70-135 08.13.19 06.11

LT Environmental, Inc., Arvada, CO

Sample Id: BH02A		Matrix:	Soil		Date Received:	8.07.19 13.4	5
Lab Sample Id: 633342-002		Date Collecte	d: 08.06.19 14.25		Sample Depth: 4	ft	
Analytical Method: BTEX by EPA 8	021B				Prep Method: S	SW5030B	
Tech: KTL					% Moisture:		
Analyst: ALG		Date Prep:	08.10.19 11.30		Basis: V	Vet Weight	
Seq Number: 3098397					SUB: T1047044	00-18-16	
Parameter	Cas Number	Result R	Ł	Units	Analysis Date	e Flag	Dil

I al alletel	Cas Nulliber	Kesun	KL		Units	Analysis Date	riag	DII
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.13.19 01.07	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.13.19 01.07	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.13.19 01.07	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.13.19 01.07	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.13.19 01.07	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.13.19 01.07	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.13.19 01.07	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	108	%	70-130	08.13.19 01.07		
1,4-Difluorobenzene		540-36-3	104	%	70-130	08.13.19 01.07		

LT Environmental, Inc., Arvada, CO

Sample Id:BH03ALab Sample Id:633342-003		Matrix: Date Collec	Soil cted: 08.06.19 14.40		Date Received:08 Sample Depth: 4		5
Analytical Method: Chloride by EPA	300				Prep Method: E	300P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.08.19 15.00		Basis: W	et Weight	
Seq Number: 3097992					SUB: T10470440	00-18-16	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	13.3	5.01	mg/kg	08.08.19 20.05		1

Analytical Method: TPH by SW801 Tech: DVM	15 Mod					Prep Method: TX 6 Moisture:	1005P	
Analyst: ARM		Date Prep:	08.12.	19 12.00	E	Basis: We	t Weight	
Seq Number: 3098276		Ĩ			S	SUB: T104704400	-18-16	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	08.13.19 06.29	U	1
Diesel Range Organics (DRO)	C10C28DRO	492	15.0		mg/kg	08.13.19 06.29		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	74.4	15.0		mg/kg	08.13.19 06.29		1
Total TPH	PHC635	566	15.0		mg/kg	08.13.19 06.29		1
Total GRO-DRO	PHC628	492	15.0		mg/kg	08.13.19 06.29		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	96	%	70-135	08.13.19 06.29		
o-Terphenyl		84-15-1	97	%	70-135	08.13.19 06.29		

LT Environmental, Inc., Arvada, CO

Sample Id: BH03A Lab Sample Id: 633342-003		Matrix: Soil Date Collected: 08.06.19 14.40			Date Received:08.07.19 13.45 Sample Depth: 4 ft				
Analytical Method: BTEX by EPA	8021B				Prep Method: S	W5030B			
Tech: KTL					% Moisture:				
Analyst: ALG		Date Prep:	08.10.19 11.30		Basis: W	et Weight			
Seq Number: 3098397					SUB: T10470440	00-18-16			
Parameter	Cas Number	Result I	RL	Units	Analysis Date	Flag	Dil		

1 ai aincici	Cas Number	Ktsuit	KL		Units	Analysis Date	riag	DII
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.13.19 01.27	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.13.19 01.27	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.13.19 01.27	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.13.19 01.27	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.13.19 01.27	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.13.19 01.27	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.13.19 01.27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	108	%	70-130	08.13.19 01.27		
4-Bromofluorobenzene		460-00-4	100	%	70-130	08.13.19 01.27		

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id:BH04ALab Sample Id:633342-004		Matrix: Date Colle	Soil cted: 08.06.19 15.00		Date Received:08. Sample Depth: 4 ft		5
Analytical Method: Chloride by EPA	300				Prep Method: E30)0P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.08.19 15.00		Basis: We	t Weight	
Seq Number: 3097992					SUB: T104704400	-18-16	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	11.2	4.98	mg/kg	08.08.19 20.12		1

 Chloride
 16887-00-6
 11.2
 4.98
 mg/kg
 08.08.19 20.12

Analytical Method: TPH by SW801 Tech: DVM Analyst: ARM Seq Number: 3098133	5 Mod	Date Pre	p: 08.09.	19 15.00	9 E	Prep Method: TX 6 Moisture: 3asis: We 5UB: T104704400	t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	08.11.19 08.21	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	08.11.19 08.21	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	08.11.19 08.21	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	08.11.19 08.21	U	1
Total GRO-DRO	PHC628	<15.0	15.0		mg/kg	08.11.19 08.21	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	95	%	70-135	08.11.19 08.21		
o-Terphenyl		84-15-1	95	%	70-135	08.11.19 08.21		

LT Environmental, Inc., Arvada, CO

Sample Id: BH04A Lab Sample Id: 633342-004		Matrix: Date Collecte	Soil d: 08.06.19 15.00	-	Date Received:0 Sample Depth:4		5
Analytical Method: BTEX by EPA 8 Tech: KTL	021B				Prep Method: S % Moisture:	W5030B	
Analyst: ALG		Date Prep:	08.10.19 11.30			/et Weight	
Seq Number: 3098397 Parameter	Cas Number	Result R	L	Units	SUB: T1047044 Analysis Date		Dil

1 al aniciel	Cas Number	Ktsuit	NL		Omts	Analysis Date	riag	DII
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.13.19 01.47	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.13.19 01.47	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.13.19 01.47	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.13.19 01.47	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.13.19 01.47	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.13.19 01.47	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.13.19 01.47	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	112	%	70-130	08.13.19 01.47		
1,4-Difluorobenzene		540-36-3	80	%	70-130	08.13.19 01.47		

LT Environmental, Inc., Arvada, CO

Sample Id:BH05Lab Sample Id:633342-005		Matrix: Date Collec	Soil sted: 08.06.19 15.20		Date Received:08 Sample Depth: 1 f		5
Analytical Method: Chloride by EPA 3	00				Prep Method: E3	00P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.08.19 15.00		Basis: We	et Weight	
Seq Number: 3097992		-			SUB: T10470440	0-18-16	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	101	4.99	mg/kg	08.08.19 20.18		1

Analytical Method: TPH by SW801 Tech: DVM	5 Mod					Prep Method: TX 6 Moisture:	1005P	
Analyst: ARM		Date Prep	: 08.09.	19 15.00	E	Basis: We	t Weight	
Seq Number: 3098133					S	SUB: T104704400	-18-16	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	08.11.19 08.41	U	1
Diesel Range Organics (DRO)	C10C28DRO	2740	15.0		mg/kg	08.11.19 08.41		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	510	15.0		mg/kg	08.11.19 08.41		1
Total TPH	PHC635	3250	15.0		mg/kg	08.11.19 08.41		1
Total GRO-DRO	PHC628	2740	15.0		mg/kg	08.11.19 08.41		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	92	%	70-135	08.11.19 08.41		
o-Terphenyl		84-15-1	114	%	70-135	08.11.19 08.41		

LT Environmental, Inc., Arvada, CO

Sample Id: BH05 Lab Sample Id: 633342-005		Matrix: Date Collecte	Date Received:08.07.19 13.45 Sample Depth: 1 ft				
Analytical Method: BTEX by EPA 80 Tech: KTL	021B				Prep Method: S % Moisture:	W5030B	
Analyst: ALG		Date Prep:	08.10.19 11.30	1		/et Weight	
Seq Number: 3098397 Parameter	Cas Number	Result R	L	Units	Analysis Date		Dil

	Cas Number	Kesun	KL		Units	Analysis Date	riag	DII
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.13.19 02.07	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.13.19 02.07	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.13.19 02.07	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.13.19 02.07	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.13.19 02.07	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.13.19 02.07	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.13.19 02.07	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	110	%	70-130	08.13.19 02.07		
1,4-Difluorobenzene		540-36-3	104	%	70-130	08.13.19 02.07		

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id:BH05ALab Sample Id:633342-006		Matrix: Date Collec	Soil cted: 08.06.19 15.25	5.25Date Received:08.07.195.25Sample Depth: 4 ft			
Analytical Method: Chloride by EPA 300					Prep Method: I	E300P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.08.19 15.00		Basis:	Wet Weight	
Seq Number: 3097992		•			SUB: T1047044	400-18-16	
Parameter C	as Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride 168	887-00-6	27.2	5.00	mg/kg	08.08.19 20.24	4	1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P DVM % Moisture: Tech: ARM Analyst: Basis: Wet Weight Date Prep: 08.09.19 15.00 Seq Number: 3098133 SUB: T104704400-18-16 Result Cas Number RL Parameter Units **Analysis Date** Flag Dil PHC610 <15.0 08.11.19 08.59 U Gasoline Range Hydrocarbons (GRO) 15.0 mg/kg 1 C10C28DRO **Diesel Range Organics (DRO)** 24.9 15.0 mg/kg 08.11.19 08.59 1 Motor Oil Range Hydrocarbons (MRO) PHCG2835 <15.0 15.0 08.11.19 08.59 U mg/kg 1 **Total TPH** PHC635 24.9 15.0 mg/kg 08.11.19 08.59 1 Total GRO-DRO PHC628 24.9 15.0 08.11.19 08.59 mg/kg 1 % Cas Number Units Flag Surrogate Limits **Analysis Date** Recovery 1-Chlorooctane 111-85-3 70-135 08.11.19 08.59 92 % o-Terphenyl 84-15-1 92 % 70-135 08.11.19 08.59

LT Environmental, Inc., Arvada, CO

Sample Id: BH05A Lab Sample Id: 633342-006		Matrix: Date Collecte	Soil d: 08.06.19 15.25		eceived:08.07.19 13 Depth:4 ft	3.45
Analytical Method: BTEX by EPA Tech: KTL	8021B			Prep M % Moi	ethod: SW5030B	
Analyst: ALG		Date Prep:	08.10.19 11.30	Basis:	Wet Weigh	t
Seq Number: 3098397				SUB: 1	104704400-18-16	
Parameter	Cas Number	Result D	T	Unite And	lycic Doto Flog	Dil

Parameter	Cas Number	r Kesult	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.13.19 02.27	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.13.19 02.27	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.13.19 02.27	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.13.19 02.27	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.13.19 02.27	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.13.19 02.27	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.13.19 02.27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	115	%	70-130	08.13.19 02.27		
1,4-Difluorobenzene		540-36-3	102	%	70-130	08.13.19 02.27		

LT Environmental, Inc., Arvada, CO

PLU 78 (2RP-3576)

Sample Id:BH06Lab Sample Id:633342-007		Matrix: Date Collected	Soil : 08.06.19 15.35				
Analytical Method: Chloride by EPA 300					Prep Method:	E300P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.08.19 15.00		Basis:	Wet Weight	
Seq Number: 3097992					SUB: T104704	400-18-16	
Parameter C	as Number R	esult RI	_	Units	Analysis Da	te Flag	Dil
Chloride 168	87-00-6	84.1	5.00	mg/kg	08.08.19 20.3	31	1

Analytical Method: TPH by SW8015 Mod Prep Method: TX1005P DVM % Moisture: Tech: ARM Analyst: Basis: Wet Weight Date Prep: 08.09.19 15.00 Seq Number: 3098133 SUB: T104704400-18-16 Result Cas Number RL Parameter Units **Analysis Date** Flag Dil Gasoline Range Hydrocarbons (GRO) PHC610 15.0 08.11.19 09.18 U <15.0 mg/kg 1 **Diesel Range Organics (DRO)** C10C28DRO 281 15.0 mg/kg 08.11.19 09.18 1 Motor Oil Range Hydrocarbons (MRO) PHCG2835 150 15.0 08.11.19 09.18 mg/kg 1 **Total TPH** PHC635 431 15.0 mg/kg 08.11.19 09.18 1 Total GRO-DRO PHC628 08.11.19 09.18 281 15.0 mg/kg 1 % Cas Number Units Flag Surrogate Limits **Analysis Date** Recovery 1-Chlorooctane 111-85-3 100 70-135 08.11.19 09.18 % 101 o-Terphenyl 84-15-1 % 70-135 08.11.19 09.18

LT Environmental, Inc., Arvada, CO

Sample Id: BH06 Lab Sample Id: 633342-007		Matrix:	Soil d: 08.06.19 15.35		Date Received:0		5
Analytical Method: BTEX by EPA 80	11D	Date Conecte	d: 08.00.19 15.55		Sample Depth: 1 Prep Method: S		
Tech: KTL	210				% Moisture:	W 3030B	
Analyst: ALG		Date Prep:	08.10.19 11.30		Basis: V	Vet Weight	
Seq Number: 3098397					SUB: T1047044	00-18-16	
Parameter	Cas Number	Result R	L	Units	Analysis Date	Flag	Dil

	ous i tumot	1000000	NL		Onus	Thay sis Dute	Thes	DI
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.13.19 02.48	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.13.19 02.48	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.13.19 02.48	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.13.19 02.48	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.13.19 02.48	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.13.19 02.48	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.13.19 02.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	116	%	70-130	08.13.19 02.48		
1,4-Difluorobenzene		540-36-3	86	%	70-130	08.13.19 02.48		

LT Environmental, Inc., Arvada, CO

Sample Id:BH06ALab Sample Id:633342-008		Matrix: Date Collec	Soil cted: 08.06.19 15.45		Date Received:08 Sample Depth:4 f		5
Analytical Method: Chloride by EPA	300				Prep Method: E3	00P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.08.19 15.40		Basis: We	et Weight	
Seq Number: 3098041					SUB: T10470440	0-18-16	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	34.9	4.99	mg/kg	08.09.19 09.30		1

Analytical Method: TPH by SW8015 Tech: DVM Analyst: ARM Seq Number: 3098133	5 Mod	Date Pre	p: 08.09.19	9 15.00	9 E	Prep Method: TX 6 Moisture: Basis: We 5UB: T104704400	t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	08.11.19 09.37	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	08.11.19 09.37	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	08.11.19 09.37	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	08.11.19 09.37	U	1
Total GRO-DRO	PHC628	<15.0	15.0		mg/kg	08.11.19 09.37	U	1
Surrogate 1-Chlorooctane o-Terphenyl		Cas Number 111-85-3 84-15-1	% Recovery 103 103	Units % %	Limits 70-135 70-135	Analysis Date 08.11.19 09.37 08.11.19 09.37	Flag	

LT Environmental, Inc., Arvada, CO

Sample Id: BH06A Lab Sample Id: 633342-008		Matrix: Date Collecte	Date Received:08.07.19 13.45 Sample Depth: 4 ft				
Analytical Method: BTEX by EPA 80 Tech: KTL	021B				Prep Method: S % Moisture:	W5030B	
Analyst: ALG Seq Number: 3098397		Date Prep:	08.10.19 11.30	1		Vet Weight	
Parameter	Cas Number	Result R	L	Units	Analysis Date		Dil

T at affecter	Cas Number	Ktsuit	KL		Units	Analysis Date	riag	Dii
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	08.13.19 03.08	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	08.13.19 03.08	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	08.13.19 03.08	U	1
m,p-Xylenes	179601-23-1	< 0.00396	0.00396		mg/kg	08.13.19 03.08	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	08.13.19 03.08	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	08.13.19 03.08	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	08.13.19 03.08	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	117	%	70-130	08.13.19 03.08		
1,4-Difluorobenzene		540-36-3	103	%	70-130	08.13.19 03.08		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Cli	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 633342

LT Environmental, Inc.

PLU 78 (2RP-3576)

Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3 3097992 7683833-1-BLK	00		Matrix: nple Id:	Solid 7683833-	1-BKS		Prep Method: E300P Date Prep: 08.08.19 LCSD Sample Id: 7683833-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD RPD Limit Units Analysis Date	Flag
Chloride	<5.00	250	252	101	251	100	90-110	0 20 mg/kg 08.08.19 17:	34
Analytical Method:	Chloride by EPA 3	00						Prep Method: E300P	
Seq Number:	3098041	00		Matrix:	Solid			Date Prep: 08.08.19	
MB Sample Id:	7683837-1-BLK		LCS Sat	nple Id:	7683837-	1-BKS		LCSD Sample Id: 7683837-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD RPD Limit Units Analysis Date	Flag
Chloride	<5.00	250	248	99	249	100	90-110	0 20 mg/kg 08.09.19 05:	45
Analytical Method: Seq Number: Parent Sample Id: Parameter Chloride	Chloride by EPA 3 3097992 633270-002 Parent Result 140	00 Spike Amount 252		Matrix: nple Id: MS %Rec 101	Soil 633270-0 MSD Result 395	02 S MSD %Rec 101	Limits 90-110	Prep Method: E300P Date Prep: 08.08.19 MSD Sample Id: 633270-002 SD %RPD RPD Limit Units Analysis Date 0 20 mg/kg 08.08.19 17:	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter	Chloride by EPA 3 3097992 633270-012 Parent Result	00 Spike Amount		Matrix: nple Id: MS %Rec	Soil 633270-0 MSD Result	12 S MSD %Rec	Limits	Prep Method: E300P Date Prep: 08.08.19 MSD Sample Id: 633270-012 SD %RPD RPD Limit Units Analysis Date	Flag
Chloride	145	249	404	104	403	104	90-110	0 20 mg/kg 08.08.19 19:	21
Analytical Method: Seq Number: Parent Sample Id: Parameter	Chloride by EPA 3 3098041 633355-025 Parent Result	00 Spike Amount		Matrix: nple Id: MS %Rec	Soil 633355-0 MSD Result	25 S MSD %Rec	Limits	Prep Method: E300P Date Prep: 08.08.19 MSD Sample Id: 633355-025 SD %RPD RPD Limit Units Analysis Date	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

Chloride

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) |[D] = 100 * (C) / [B]Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

1450

88

1450

88 90-110

1230

250

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

0

20

mg/kg

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

08.09.19 06:03

Х

.

Page 24 of 31

QC Summary 633342

LT Environmental, Inc. PLU 78 (2RP-3576)

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	d: E300)P	
Seq Number:	3098041			Matrix:	Soil				Date Pre	p: 08.0	8.19	
Parent Sample Id:	633355-035		MS Sar	nple Id:	633355-03	35 S		MSI	O Sample	Id: 6333	355-035 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD]	RPD Limi	t Units	Analysis Date	Flag
Chloride	176	253	437	103	432	101	90-110	1	20	mg/kg	08.09.19 07:27	

Analytical Method: Seq Number:	3098133		od		Matrix:		1 DVG			Prep Method Date Prep	p: 08.0		
MB Sample Id:	7683942-1	-BLK		LCS Sar	nple la:	7683942-	I-BK2		LCS	SD Sample	Id: 768.	3942-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<8.00	1000	1100	110	1130	113	70-135	3	20	mg/kg	08.11.19 02:06	
Diesel Range Organics	(DRO)	<8.13	1000	993	99	1030	103	70-135	4	20	mg/kg	08.11.19 02:06	
Surrogate		MB %Rec	MB Flag			LCS Flag	LCSI %Re	-	_	<i>limits</i>	Units	Analysis Date	
1-Chlorooctane		90		1	20		124		7	0-135	%	08.11.19 02:06	
o-Terphenyl		91		ç	98		107		7	0-135	%	08.11.19 02:06	

Analytical Method: Seq Number: MB Sample Id:	TPH by S 3098276 7684045-1		od	LCS Sar	Matrix: nple Id:		1-BKS			Prep Method Date Prep SD Sample I	o: 08.	1005P 12.19 4045-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<8.00	1000	1070	107	1080	108	70-135	1	20	mg/kg	08.12.19 23:36	
Diesel Range Organics ((DRO)	<8.13	1000	964	96	972	97	70-135	1	20	mg/kg	08.12.19 23:36	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Ree		_	limits	Units	Analysis Date	
1-Chlorooctane		98		1	19		118		7	0-135	%	08.12.19 23:36	
o-Terphenyl		98		1	02		103		7	0-135	%	08.12.19 23:36	

Analytical Method: Seq Number: Parent Sample Id:	TPH by S 3098133 633251-00		lod	MS Sar	Matrix: nple Id:)1 S			Prep Metho Date Pro SD Sample	ep: 08.0	1005P 19.19 251-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<7.98	997	1190	119	1150	115	70-135	3	20	mg/kg	08.11.19 03:02	
Diesel Range Organics	(DRO)	<8.10	997	1150	115	1170	117	70-135	2	20	mg/kg	08.11.19 03:02	
Surrogate					AS Rec	MS Flag	MSD %Re			Limits	Units	Analysis Date	
1-Chlorooctane				1	27		126		7	0-135	%	08.11.19 03:02	
o-Terphenyl				1	16		118		7	0-135	%	08.11.19 03:02	
MS/MSD Baraant Bacava	*** 7	[D] = 100*(C					Ţ	CS – Labora	tom Con	rol Sampla	MS – N	Astrix Spika	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

$$\label{eq:D} \begin{split} & [D] = 100^*(\text{C-A}) \, / \, B \\ & \text{RPD} = 200^* \mid (\text{C-E}) \, / \, (\text{C+E}) \mid \end{split}$$
[D] = 100 * (C) / [B]Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Received by OCD: 6/28/2023 3:01:36 PM

QC Summary 633342

LT Environmental, Inc.

PLU 78 (2RP-3576)

Analytical Method:	TPH by S	W8015 M	lod]	Prep Metho	d: TX1	005P	
Seq Number:	3098276				Matrix:	Soil				Date Prep	p: 08.1	2.19	
Parent Sample Id:	633267-00	1		MS Sar	nple Id:	633267-00	01 S		M	SD Sample	Id: 6332	267-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPI) RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<7.99	999	1080	108	1080	108	70-135	0	20	mg/kg	08.13.19 00:32	
Diesel Range Organics ((DRO)	<8.12	999	979	98	987	99	70-135	1	20	mg/kg	08.13.19 00:32	
Surrogate					1S Rec	MS Flag	MSD %Re		-	Limits	Units	Analysis Date	
1-Chlorooctane				1	15		115		-	70-135	%	08.13.19 00:32	
o-Terphenyl				9	99		101			70-135	%	08.13.19 00:32	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3098397 7684033-1-BLK	1B	LCS Sar	Matrix: nple Id:	Solid 7684033-	1-BKS			Prep Metho Date Pre SD Sample	p: 08.1	5030B 0.19 4033-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPE	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.000385	0.100	0.101	101	0.0874	87	70-130	14	35	mg/kg	08.12.19 18:05	
Toluene	0.000680	0.100	0.0908	91	0.0804	80	70-130	12	35	mg/kg	08.12.19 18:05	
Ethylbenzene	< 0.00200	0.100	0.0911	91	0.0805	81	70-130	12	35	mg/kg	08.12.19 18:05	
m,p-Xylenes	< 0.00101	0.200	0.181	91	0.162	81	70-130	11	35	mg/kg	08.12.19 18:05	
o-Xylene	< 0.000344	0.100	0.0942	94	0.0851	85	70-130	10	35	mg/kg	08.12.19 18:05	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Ree			Limits	Units	Analysis Date	
1,4-Difluorobenzene	103		1	05		103		7	70-130	%	08.12.19 18:05	
4-Bromofluorobenzene	103		1	06		105		7	70-130	%	08.12.19 18:05	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3098397 633342-001	1B	MS San	Matrix: nple Id:		01 S			Prep Metho Date Pre ISD Sample	p: 08.1	5030B 0.19 342-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RP	D RPD Limit	t Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0886	89	0.0963	96	70-130	8	35	mg/kg	08.12.19 19:08	
Toluene	< 0.000456	0.100	0.0764	76	0.0827	83	70-130	8	35	mg/kg	08.12.19 19:08	
Ethylbenzene	< 0.00200	0.100	0.0696	70	0.0749	75	70-130	7	35	mg/kg	08.12.19 19:08	
m,p-Xylenes	< 0.00101	0.200	0.137	69	0.147	74	70-130	7	35	mg/kg	08.12.19 19:08	Х
o-Xylene	< 0.00200	0.100	0.0701	70	0.0757	76	70-130	8	35	mg/kg	08.12.19 19:08	
Surrogate				1S Rec	MS Flag	MSD %Ree			Limits	Units	Analysis Date	
1,4-Difluorobenzene			1	05		104			70-130	%	08.12.19 19:08	
4-Bromofluorobenzene			1	05		109			70-130	%	08.12.19 19:08	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

House 126	ston, TX (281) 240-4200 lland, TX (432-704-544)	louston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, T) Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX	Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296	WOIN OLDEL NO.	1 8 1
	392-7550) Phoenix,AZ	(480-355-0900) Atlanta		-2000) www.xenco.com	Page of
Project Manager: Dan Moir	Bill to: (if different)	Kyle Littrell			
Company Name: LT Environmental, Inc., Permian office	Company Name:	XTO Energy		Program: UST/PST PRP Brownfields	
	Address:	3104 E Green Street			
City, State ZIP: Midland, TX 79705	City. State ZIP:	Carlsbad. NM 88220		Reporting:Level III PST/UST	
	Email: bbelill@ltenv.com			Deliverables: EDD ADaPT	Other:
Project Name: PLU 78(261-3576)	Turn Around		ANALYSIS REQUEST		×.
Project Number: 0121(8131 Rot	Routine				
Sampler's Name: Benjamin Belill Due	Due Date:				
SAMPLE RECEIPT Temp Blank: Res No Wet Ice:	e: Yes No				
): 4.10 The					
Cooler Custody Seals: XAS No NIA Correction Eactor	O OT	8021)			
: Yes No NIA	8	PA 0			TAT starts the day received by the lab, if received by 4:30pm
Sample Identification Matrix Date Time Sampled Sampled	Depth	TPH (E BTEX (I Chlorid			Sample Comments
SHOLA 5 8/6/19 14:15	4'				
	4	XXV			
	4	XKX			
oz:si Sehis		K K W			
Szist Again	4'	1 2 4			
SEISI STAR	1, 1	XDX			
SHOPA V V (SHS	4. 1	11.4			
Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010:	kas 11 8RCR/	N Sb As Ba Be Sb As Ba Be (Cd Ca Cr Co Cu Fe Cr Co Cu Pb Mn Md	Vi K Se Ag SiO2	Na Sr Ti Sn U V Zn 1631/245.1/7470 /7471 : Hg
vice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions a service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously neootiated.	urchase order from clie esponsibility for any los 5 for each sample subm	it company to Xenco, its a ses or expenses incurred itted to Xenco, but not an	fflliates and subcontractors. It assigns sta by the client if such losses are due to circu alyzed. These terms will be enforced unless	-	
Relinquisbed by: (Signature)	ure)	Date/Time	Relinquished by: (Signature)	Received by: (Signature)	Date/Time
MMM MMM	18	7/19/ 13.45	2		
(-	4		
ecer	-		6		
Re					Revised Date 051418 Rev. 2018.1

Inter-Office Shipment

Page 1 of 2

IOS Number 45791

Date/Time: 08/07/19 15:03

Created by: Elizabeth Mcclellan

Please send report to: Jessica Kramer

Lab# From: Carlsbad

Lab# To: Midland

Air Bill No.: 7759305855567

Delivery Priority:

Address: 1089 N Canal Street

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
633342-001	S	BH01A	08/06/19 14:15	SW8015MOD_NM	TPH by SW8015 Mod	08/13/19	08/20/19	JKR	GRO-DRO PHCC10C28 PI	
633342-001	S	BH01A	08/06/19 14:15	E300_CL	Chloride by EPA 300	08/13/19	02/02/20	JKR	CL	
633342-001	S	BH01A	08/06/19 14:15	SW8021B	BTEX by EPA 8021B	08/13/19	08/20/19	JKR	BR4FBZ BZ BZME EBZ X	
633342-002	S	BH02A	08/06/19 14:25	SW8015MOD_NM	TPH by SW8015 Mod	08/13/19	08/20/19	JKR	GRO-DRO PHCC10C28 PH	
633342-002	S	BH02A	08/06/19 14:25	SW8021B	BTEX by EPA 8021B	08/13/19	08/20/19	JKR	BR4FBZ BZ BZME EBZ X	
633342-002	S	BH02A	08/06/19 14:25	E300_CL	Chloride by EPA 300	08/13/19	02/02/20	JKR	CL	
633342-003	S	BH03A	08/06/19 14:40	SW8021B	BTEX by EPA 8021B	08/13/19	08/20/19	JKR	BR4FBZ BZ BZME EBZ X	
633342-003	S	BH03A	08/06/19 14:40	SW8015MOD_NM	TPH by SW8015 Mod	08/13/19	08/20/19	JKR	GRO-DRO PHCC10C28 PI	
633342-003	S	BH03A	08/06/19 14:40	E300_CL	Chloride by EPA 300	08/13/19	02/02/20	JKR	CL	
633342-004	S	BH04A	08/06/19 15:00	SW8021B	BTEX by EPA 8021B	08/13/19	08/20/19	JKR	BR4FBZ BZ BZME EBZ X	
633342-004	S	BH04A	08/06/19 15:00	SW8015MOD_NM	TPH by SW8015 Mod	08/13/19	08/20/19	JKR	GRO-DRO PHCC10C28 PI	
633342-004	S	BH04A	08/06/19 15:00	E300_CL	Chloride by EPA 300	08/13/19	02/02/20	JKR	CL	
633342-005	S	BH05	08/06/19 15:20	SW8021B	BTEX by EPA 8021B	08/13/19	08/20/19	JKR	BR4FBZ BZ BZME EBZ X	
633342-005	S	BH05	08/06/19 15:20	SW8015MOD_NM	TPH by SW8015 Mod	08/13/19	08/20/19	JKR	GRO-DRO PHCC10C28 PI	
633342-005	S	BH05	08/06/19 15:20	E300_CL	Chloride by EPA 300	08/13/19	02/02/20	JKR	CL	
633342-006	S	BH05A	08/06/19 15:25	SW8015MOD_NM	TPH by SW8015 Mod	08/13/19	08/20/19	JKR	GRO-DRO PHCC10C28 PH	
633342-006	S	BH05A	08/06/19 15:25	SW8021B	BTEX by EPA 8021B	08/13/19	08/20/19	JKR	BR4FBZ BZ BZME EBZ X	
633342-006	S	BH05A	08/06/19 15:25	E300_CL	Chloride by EPA 300	08/13/19	02/02/20	JKR	CL	
633342-007	S	BH06	08/06/19 15:35	E300_CL	Chloride by EPA 300	08/13/19	02/02/20	JKR	CL	
633342-007	S	BH06	08/06/19 15:35	SW8021B	BTEX by EPA 8021B	08/13/19	08/20/19	JKR	BR4FBZ BZ BZME EBZ X	
633342-007	S	BH06	08/06/19 15:35	SW8015MOD_NM	TPH by SW8015 Mod	08/13/19	08/20/19	JKR	GRO-DRO PHCC10C28 PH	
633342-008	S	BH06A	08/06/19 15:45	SW8021B	BTEX by EPA 8021B	08/13/19	08/20/19	JKR	BR4FBZ BZ BZME EBZ X	
633342-008	S	BH06A	08/06/19 15:45	E300_CL	Chloride by EPA 300	08/13/19	02/02/20	JKR	CL	
633342-008	S	BH06A	08/06/19 15:45	SW8015MOD_NM	TPH by SW8015 Mod	08/13/19	08/20/19	JKR	GRO-DRO PHCC10C28 PH	

Inter-Office Shipment

Page 2 of 2

IOS Number 45791

Date/Time: 08/07/19 15:03

Lab# From: Carlsbad

Lab# To: Midland

Created by: Elizabeth Mcclellan Delivery Priority: Air Bill No.: 7759305855567

Inter Office Shipment or Sample Comments:

Relinquished By:

Elizabeth McClellan

Date Relinquished: 08/07/2019

Please send report to: Jessica Kramer Address: 1089 N Canal Street E-Mail: jessica.kramer@xenco.com

Received By:

Brianna Teel

Date Received: 08/08/2019 11:05

Cooler Temperature: 0.5

ABORATORIES

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Midland IOS #: 45791

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : R8

Sent By:	Elizabeth McClellan	Date Sent:	08/07/2019 03:03 PM
Received By:	Brianna Teel	Date Received:	08/08/2019 11:05 AM

Sample Receipt Checklist

Comments

· · ·	
#1 *Temperature of cooler(s)?	.5
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 *Custody Seals Signed and dated for Containers/coolers	Yes
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by: Ballo Ta Brianna Teel

Date: 08/08/2019

Received by OCD: 6/28/2023 3:01:36 PM

Client: LT Environmental, Inc.

Work Order #: 633342

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Date/ Time Received: 08/07/2019 01:45:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used : T-NM-007

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	4.6	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	No	
#5 Custody Seals intact on sample bottles?	No	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	Yes	Subbed to Xenco Midland.
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan Checklist reviewed by: Jession Vramer

Date: 08/07/2019

Jessica Kramer

Date: 08/09/2019

for LT Environmental, Inc.

Project Manager: Dan Moir

PLU 78 SWD (2RP-3576)

012918131

08-NOV-19

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483) Received by OCD: 6/28/2023 3:01:36 PM

08-NOV-19

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 635303 PLU 78 SWD (2RP-3576) Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 635303. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 635303 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id PH01 PH02 PH02A FS01 FS02 SW01 SW02 SW02 SW03 SW04

Sample Cross Reference 635303

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	08-27-19 12:30	1 ft	635303-001
S	08-27-19 12:40	4 ft	635303-002
S	08-27-19 12:55	1 ft	635303-003
S	08-27-19 13:00	4 ft	635303-004
S	08-27-19 16:15	2 ft	635303-005
S	08-27-19 16:20	2 ft	635303-006
S	08-27-19 16:25	0 - 2 ft	635303-007
S	08-27-19 16:30	0 - 2 ft	635303-008
S	08-27-19 16:35	0 - 2 ft	635303-009
S	08-27-19 16:40	0 - 2 ft	635303-010

Version: 1.%

.

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: PLU 78 SWD (2RP-3576)

 Project ID:
 012918131

 Work Order Number(s):
 635303

TORIES

Report Date:08-NOV-19Date Received:08/28/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3100245 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:012918131Contact:Dan Moir

Project Location:

Certificate of Analysis Summary 635303

LT Environmental, Inc., Arvada, CO Project Name: PLU 78 SWD (2RP-3576)

Date Received in Lab:Wed Aug-28-19 08:45 amReport Date:08-NOV-19Project Manager:Jessica Kramer

	Lab Id:	635303-0	001	635303-	002	635303-0	003	635303-	004	635303-	005	635303-	006
An alusia Doguostad	Field Id:	PH01		PH01/	4	PH02		PH02.	A	FS01		FS02	
Analysis Requested	Depth:	1- ft		4- ft		1- ft		4- ft		2- ft		2- ft	
	Matrix:	SOIL	,	SOIL	,	SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-27-19	ug-27-19 12:30 Au		12:40	Aug-27-19	12:55	Aug-27-19	13:00	Aug-27-19 16:15		Aug-27-19 16:20	
BTEX by EPA 8021B	Extracted:	Aug-29-19	15:00	Aug-29-19	15:00	Aug-29-19	15:00	Aug-29-19	15:00	Aug-29-19	15:00	Aug-29-19	15:00
SUB: T104704400-19-19	Analyzed:	Aug-30-19	10:47	Aug-30-19	11:07	Aug-30-19	11:27	Aug-30-19	11:47	Aug-30-19	12:08	Aug-30-19	12:28
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200
Toluene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200
Ethylbenzene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200
m,p-Xylenes		< 0.00402	0.00402	<0.00398	0.00398	< 0.00396	0.00396	< 0.00398	0.00398	< 0.00402	0.00402	< 0.00399	0.00399
o-Xylene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200
Total Xylenes		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200
Total BTEX		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200
Chloride by EPA 300	Extracted:	Aug-30-19	10:30	Aug-30-19	10:30	Aug-30-19	10:30	Aug-30-19	10:30	Aug-30-19	10:30	Aug-30-19	10:30
SUB: T104704400-19-19	Analyzed:	Aug-30-19	11:53	Aug-30-19	11:58	Aug-30-19	12:04	Aug-30-19	12:09	Aug-30-19	12:15	Aug-30-19	12:31
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		153	5.05	202	4.98	85.3	4.95	143	5.02	225	5.00	144	5.04
TPH by SW8015 Mod	Extracted:	Aug-29-19	14:00	Aug-29-19	14:00	Aug-29-19	14:00	Aug-29-19	14:00	Aug-29-19	14:00	Aug-29-19	14:00
SUB: T104704400-19-19	Analyzed:	Aug-29-19	17:25	Aug-29-19	18:23	Aug-29-19	18:42	Aug-29-19	19:01	Sep-06-19	00:03	Aug-29-19	19:40
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<24.9	24.9	<25.0	25.0	<25.0	25.0	<25.0	25.0	<50.0	50.0	<25.0	25.0
Diesel Range Organics (DRO)		<24.9	24.9	<25.0	25.0	<25.0	25.0	<25.0	25.0	875	50.0	160	25.0
Motor Oil Range Hydrocarbons (MRO)		<24.9	24.9	<25.0	25.0	<25.0	25.0	<25.0	25.0	163	50.0	32.9	25.0
Total GRO-DRO		<24.9	24.9	<25.0	25.0	<25.0	25.0	<25.0	25.0	875	50.0	160	25.0
Total TPH		<24.9	24.9	<25.0	25.0	<25.0	25.0	<25.0	25.0	1040	50.0	193	25.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kenner

Jessica Kramer Project Assistant

Page 5 of 34

Final 1.001

Project Id: 012918131

Dan Moir

Contact: Project Location: Certificate of Analysis Summary 635303

LT Environmental, Inc., Arvada, CO Project Name: PLU 78 SWD (2RP-3576) Page 136 of 166

Date Received in Lab:Wed Aug-28-19 08:45 amReport Date:08-NOV-19Project Manager:Jessica Kramer

	Lab Id:	635303-0	007	635303-0	008	635303-0	009	635303-	010		
An alusia Doguostad	Field Id:	SW01		SW02		SW03		SW04	4		
Analysis Requested	Depth:	0-2 ft		0-2 ft		0-2 ft		0-2 ft	t		
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Aug-27-19	16:25	Aug-27-19	16:30	Aug-27-19	16:35	Aug-27-19	16:40		
BTEX by EPA 8021B	Extracted:	Aug-29-19	15:00	Aug-29-19	15:00	Aug-29-19	15:00	Aug-29-19	15:00		
SUB: T104704400-19-19	Analyzed:	Aug-30-19	12:48	Aug-30-19	13:08	Aug-30-19	13:28	Aug-30-19	13:48		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00202	0.00202	< 0.00199	0.00199	<0.00199	0.00199	< 0.00201	0.00201		
Toluene		< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00201	0.00201		
Ethylbenzene		< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00201	0.00201		
m,p-Xylenes		< 0.00404	0.00404	< 0.00398	0.00398	< 0.00398	0.00398	< 0.00402	0.00402		
o-Xylene		< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00201	0.00201		
Total Xylenes		< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00201	0.00201		
Total BTEX		< 0.00202	0.00202	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00201	0.00201		
Chloride by EPA 300	Extracted:	Aug-30-19	10:30	Aug-30-19	10:30	Aug-30-19	10:30	Aug-30-19	10:30		
SUB: T104704400-19-19	Analyzed:	Aug-30-19	12:37	Aug-30-19	12:53	Aug-30-19	12:58	Aug-30-19	13:04		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		10.3	4.96	139	5.00	28.0	4.99	195	4.97		
TPH by SW8015 Mod	Extracted:	Aug-29-19	14:00	Aug-29-19	14:00	Aug-29-19	14:00	Aug-29-19	14:00		
SUB: T104704400-19-19	Analyzed:	Aug-29-19	19:59	Aug-29-19	20:18	Aug-29-19	20:37	Aug-29-19	20:57		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<24.9	24.9	<25.0	25.0	<25.0	25.0	<24.9	24.9		
Diesel Range Organics (DRO)		389	24.9	<25.0	25.0	<25.0	25.0	704	24.9		
Motor Oil Range Hydrocarbons (MRO)		85.3	24.9	<25.0	25.0	<25.0	25.0	149	24.9		
Total GRO-DRO		389	24.9	<25.0	25.0	<25.0	25.0	704	24.9		
Total TPH		474	24.9	<25.0	25.0	<25.0	25.0	853	24.9		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kenner

Jessica Kramer Project Assistant

Page 6 of 34

Chloride

Certificate of Analytical Results 635303

1

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

mg/kg

08.30.19 11.53

Sample Id: PH01 Lab Sample Id: 635303-001		Matrix: Soil Date Collected: 08.2		Date Received:08.28.19 08.45 Sample Depth: 1 ft			
Analytical Method: Chloride by EPA	. 300			Prep Method: E30	0P		
Tech: CHE				% Moisture:			
Analyst: CHE		Date Prep: 08.3	30.19 10.30	Basis: Wet	Weight		
Seq Number: 3100248				SUB: T104704400	-19-19		
Parameter	Cas Number	Result RL	Unit	ts Analysis Date	Flag Dil		

16887-00-6 **153** 5.05

Analytical Method: TPH by SW8015 Mod Prep Method: SW8015P DVM % Moisture: Tech: ARM Analyst: Basis: Wet Weight Date Prep: 08.29.19 14.00 Seq Number: 3100186 SUB: T104704400-19-19 Result Cas Number RL Parameter Units **Analysis Date** Flag Dil Gasoline Range Hydrocarbons (GRO) PHC610 <24.9 08.29.19 17.25 U 24.9 mg/kg 1 C10C28DRO Diesel Range Organics (DRO) <24.9 24.9 mg/kg 08.29.19 17.25 U 1 Motor Oil Range Hydrocarbons (MRO) PHCG2835 <24.9 24.9 08.29.19 17.25 U mg/kg 1 Total GRO-DRO PHC628 <24.9 24.9 mg/kg 08.29.19 17.25 U 1 Total TPH PHC635 24.9 08.29.19 17.25 U <24.9 mg/kg 1 % Cas Number Units Surrogate Limits **Analysis Date** Flag Recovery 1-Chlorooctane 111-85-3 70-135 08.29.19 17.25 90 % o-Terphenyl 84-15-1 86 % 70-135 08.29.19 17.25

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	3100245				5	SUB: T104704400)-19-19	
Analyst:	KTL		Date Prep:	08.29.19 15.00	I	Basis: We	t Weight	
Tech:	KTL				9	6 Moisture:		
Analytical Me	ethod: BTEX by EPA	8021B			F	Prep Method: SW	5030B	
Lab Sample I	ab Sample Id: 635303-001			ed: 08.27.19 12.30	Sample Depth: 1 ft			
Sample Id:	PH01		Matrix:	Soil	Ι	Date Received:08.2	28.19 08.4	5

						•	U	
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	08.30.19 10.47	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	08.30.19 10.47	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	08.30.19 10.47	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	08.30.19 10.47	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	08.30.19 10.47	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	08.30.19 10.47	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	08.30.19 10.47	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	97	%	70-130	08.30.19 10.47		
4-Bromofluorobenzene		460-00-4	108	%	70-130	08.30.19 10.47		

Chloride

Certificate of Analytical Results 635303

1

.

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: Lab Sample Ic	Imple Id: PH01A b Sample Id: 635303-002			Soil eted: 08.27.19 12.40	Date Received:08.28.19 08.45 Sample Depth: 4 ft			
Analytical Me	ethod: Chloride by EPA 3	800				Prep Method: E30)0P	
Tech:	CHE					% Moisture:		
Analyst:	CHE		Date Prep:	08.30.19 10.30		Basis: We	t Weight	
Seq Number:	3100248					SUB: T104704400	-19-19	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil

4.98

mg/kg

08.30.19 11.58

16887-00-6 **202**

Analytical Method: TPH by SW8015 Mod Prep Method: SW8015P

					-			
Tech: DVM				(% Moisture:			
Analyst: ARM		Date Prep:	08.29.19 14.00]	Basis: W	et Weight		
Seq Number: 3100186		-		SUB: T104704400-19-19				
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (GRO)	PHC610	<25.0	25.0	mg/kg	08.29.19 18.23	U	1	
Diesel Range Organics (DRO)	C10C28DRO	<25.0	25.0	mg/kg	08.29.19 18.23	U	1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<25.0	25.0	mg/kg	08.29.19 18.23	U	1	
Total GRO-DRO	PHC628	<25.0	25.0	mg/kg	08.29.19 18.23	U	1	
Total TPH	PHC635	<25.0	25.0	mg/kg	08.29.19 18.23	U	1	
			%					

Surrogate	Cas Number	Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	92	%	70-135	08.29.19 18.23	
o-Terphenyl	84-15-1	91	%	70-135	08.29.19 18.23	

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id:PH01ALab Sample Id:635303-002	Matrix: Date Collecte	Soil d: 08.27.19 12.40	Date Received:08.28.19 08.45 Sample Depth: 4 ft				
Analytical Method: BTEX by EPA Tech: KTL	A 8021B				Prep Method: S % Moisture:	W5030B	
Analyst: KTL		Date Prep:	08.29.19 15.00		Basis: V	Vet Weight	
Seq Number: 3100245					SUB: T1047044	00-19-19	
Parameter	Cas Number	Result R	Ľ	Units	Analysis Date	Flag	Dil

	ous i tunisti		NL		Onits	Thatysis Date	Thes	DI
Benzene	71-43-2	<0.00199	0.00199		mg/kg	08.30.19 11.07	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.30.19 11.07	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.30.19 11.07	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.30.19 11.07	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.30.19 11.07	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.30.19 11.07	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.30.19 11.07	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	102	%	70-130	08.30.19 11.07		
1,4-Difluorobenzene		540-36-3	101	%	70-130	08.30.19 11.07		

Chloride

Certificate of Analytical Results 635303

Page 141 of 166

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: PH02 Lab Sample Id: 635303-003		Matrix: Soil Date Collected: 08.27.19 12.55		Date Received:08.28.19 08.45 Sample Depth: 1 ft			
Analytical Method: Chloride by EPA 3 Tech: CHE	300				Prep Method: E3 % Moisture:	00P	
Analyst: CHE		Date Prep:	08.30.19 10.30		Basis: We	et Weight	
Seq Number: 3100248					SUB: T10470440	0-19-19	
Parameter	Cas Number	Result F	RL	Units	Analysis Date	Flag	Dil

16887-00-6 **85.3** 4.95

mg/kg

1

08.30.19 12.04

Analytical Method: TPH by SW801Tech:DVMAnalyst:ARMSeq Number:3100186	15 Mod Date Prep: 08.29.19 14.00				Prep Method: SW8015P % Moisture:) Basis: Wet Weight SUB: T104704400-19-19				
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (GRO)	PHC610	<25.0	25.0		mg/kg	08.29.19 18.42	U	1	
Diesel Range Organics (DRO)	C10C28DRO	<25.0	25.0		mg/kg	08.29.19 18.42	U	1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<25.0	25.0		mg/kg	08.29.19 18.42	U	1	
Total GRO-DRO	PHC628	<25.0	25.0		mg/kg	08.29.19 18.42	U	1	
Total TPH	PHC635	<25.0	25.0		mg/kg	08.29.19 18.42	U	1	
Surrogate 1-Chlorooctane		Cas Number 111-85-3	% Recovery 101	Units %	Limits 70-135	Analysis Date 08.29.19 18.42	Flag		
o-Terphenyl		84-15-1	96	70 %	70-135	08.29.19 18.42			

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: PH02		Matrix:	Soil		Date Received:0	8.28.19 08.4	5	
Lab Sample Id: 635303-003		Date Collected: 08.27.19 12.55			Sample Depth: 1 ft			
Analytical Method: BTEX by EPA 8	021B				Prep Method: S	W5030B		
Tech: KTL					% Moisture:			
Analyst: KTL		Date Prep:	08.29.19 15.00		Basis: V	Vet Weight		
Seq Number: 3100245				i i	SUB: T1047044	00-19-19		
Parameter	Cas Number	Result F	RL	Units	Analysis Date	e Flag	Dil	

1 ar ameter	Cas Number	Ktsuit	NL		Omts	Analysis Date	riag	Dii
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	08.30.19 11.27	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	08.30.19 11.27	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	08.30.19 11.27	U	1
m,p-Xylenes	179601-23-1	< 0.00396	0.00396		mg/kg	08.30.19 11.27	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	08.30.19 11.27	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	08.30.19 11.27	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	08.30.19 11.27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	100	%	70-130	08.30.19 11.27		
1,4-Difluorobenzene		540-36-3	99	%	70-130	08.30.19 11.27		

Chloride

Certificate of Analytical Results 635303

1

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

mg/kg

08.30.19 12.09

Sample Id: Lab Sample Id:	PH02A 635303-004	Matrix: Soil Date Collected: 08.27.19 13.00		Date Received:08.28.19 08.45 Sample Depth: 4 ft				
Analytical Met	hod: Chloride by EPA 3	00				Prep Method: E30	OP	
Tech:	CHE					% Moisture:		
Analyst:	CHE		Date Prep:	08.30.19 10.30		Basis: We	Weight	
Seq Number:	3100248					SUB: T104704400	-19-19	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil

16887-00-6 **143** 5.02

Analytical Method: TPH by SW8015 Mod Prep Method: SW8015P DVM % Moisture: Tech: ARM Analyst: Basis: Wet Weight Date Prep: 08.29.19 14.00 Seq Number: 3100186 SUB: T104704400-19-19 Result Cas Number RL Parameter Units **Analysis Date** Flag Dil Gasoline Range Hydrocarbons (GRO) PHC610 <25.0 25.0 08.29.19 19.01 U mg/kg 1 C10C28DRO Diesel Range Organics (DRO) <25.0 25.0 mg/kg 08.29.19 19.01 U 1 Motor Oil Range Hydrocarbons (MRO) PHCG2835 <25.0 25.0 08.29.19 19.01 U mg/kg 1 Total GRO-DRO PHC628 <25.0 25.0 mg/kg 08.29.19 19.01 U 1 Total TPH PHC635 25.0 08.29.19 19.01 U <25.0 mg/kg 1 % Cas Number Units Surrogate Limits **Analysis Date** Flag Recovery 1-Chlorooctane 111-85-3 70-135 08.29.19 19.01 98 % o-Terphenyl 84-15-1 96 % 70-135 08.29.19 19.01

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: PH02A Lab Sample Id: 635303-004		Matrix: Date Collect	Soil ed: 08.27.19 13.00	Date Received:08.28.19 08.45 Sample Depth: 4 ft				
Analytical Method: BTEX	X by EPA 8021B			F	Prep Method: SW	5030B		
Tech: KTL				9	6 Moisture:			
Analyst: KTL		Date Prep:	08.29.19 15.00	F	Basis: We	t Weight		
Seq Number: 3100245				S	SUB: T104704400	-19-19		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	

	cus i (unise	11000110	KL		Onto	Thatysis Date	Thes	DI
Benzene	71-43-2	<0.00199	0.00199		mg/kg	08.30.19 11.47	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.30.19 11.47	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.30.19 11.47	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.30.19 11.47	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.30.19 11.47	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.30.19 11.47	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.30.19 11.47	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	100	%	70-130	08.30.19 11.47		
4-Bromofluorobenzene		460-00-4	103	%	70-130	08.30.19 11.47		

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: FS01 Lab Sample Id: 635303-005		Matrix: Date Collec	Soil cted: 08.27.19 16.15		Date Received:08.2 Sample Depth: 2 ft		5
Analytical Method: Chloride by EPA	300				Prep Method: E30	00P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.30.19 10.30		Basis: We	t Weight	
Seq Number: 3100248		-			SUB: T104704400	-19-19	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	225	5.00	mg/kg	08.30.19 12.15		1

Analytical Method:TPH by SW801Tech:DVMAnalyst:ARMSeq Number:3100186	5 Mod	Date Prep	o: 08.29.1	9 14.00	9 E	Prep Method: SW 6 Moisture: Basis: We 5UB: T104704400	t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	09.06.19 00.03	U	1
Diesel Range Organics (DRO)	C10C28DRO	875	50.0		mg/kg	09.06.19 00.03		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	163	50.0		mg/kg	09.06.19 00.03		1
Total GRO-DRO	PHC628	875	50.0		mg/kg	09.06.19 00.03		1
Total TPH	PHC635	1040	50.0		mg/kg	09.06.19 00.03		1
Surrogate 1-Chlorooctane o-Terphenyl		Cas Number 111-85-3 84-15-1	% Recovery 94 110	Units % %	Limits 70-135 70-135	Analysis Date 09.06.19 00.03 09.06.19 00.03	Flag	

.

LT Environmental, Inc., Arvada, CO

Sample Id: FS01		Matrix:	Soil		Date Received:	08.28.19 08.4	5
Lab Sample Id: 635303-005		Date Collecte	ed: 08.27.19 16.15		Sample Depth:	2 ft	
Analytical Method: BTEX by EPA 80	21B				Prep Method: S	SW5030B	
Tech: KTL					% Moisture:		
Analyst: KTL		Date Prep:	08.29.19 15.00		Basis:	Wet Weight	
Seq Number: 3100245					SUB: T1047044	400-19-19	
Parameter	Cas Number	Result I	RL	Units	Analysis Dat	e Flag	Dil

1 al ameter	Cas Number	Ktsuit	KL		Units	Analysis Date	riag	Dii
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	08.30.19 12.08	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	08.30.19 12.08	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	08.30.19 12.08	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	08.30.19 12.08	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	08.30.19 12.08	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	08.30.19 12.08	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	08.30.19 12.08	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	115	%	70-130	08.30.19 12.08		
1,4-Difluorobenzene		540-36-3	104	%	70-130	08.30.19 12.08		

Certificate of Analytical Results 635303

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: Lab Sample Id	FS02 d: 635303-006		Matrix: Date Colle	Soil cted: 08.27.19 16.20		Date Received:08.2 Sample Depth: 2 ft		5
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E30	00P	
Tech:	CHE					% Moisture:		
Analyst:	CHE		Date Prep:	08.30.19 10.30		Basis: We	t Weight	
Seq Number:	3100248		•			SUB: T104704400	-19-19	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	144	5.04	mg/kg	08.30.19 12.31		1

Analytical Method:TPH by SW80Tech:DVMAnalyst:ARMSeq Number:3100186	15 Mod	Date Prep	p: 08.29.	19 14.00	9 E	Prep Method: SW 6 Moisture: Basis: We SUB: T104704400	t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<25.0	25.0		mg/kg	08.29.19 19.40	U	1
Diesel Range Organics (DRO)	C10C28DRO	160	25.0		mg/kg	08.29.19 19.40		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	32.9	25.0		mg/kg	08.29.19 19.40		1
Total GRO-DRO	PHC628	160	25.0		mg/kg	08.29.19 19.40		1
Total TPH	PHC635	193	25.0		mg/kg	08.29.19 19.40		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	98	%	70-135	08.29.19 19.40		
o-Terphenyl		84-15-1	96	%	70-135	08.29.19 19.40		

LT Environmental, Inc., Arvada, CO

Sample Id: FS02		Matrix:	Soil		Date Received:	8.28.19 08.4	5
Lab Sample Id: 635303-006	ample Id: 635303-006 Date Colle				Sample Depth: 2	2 ft	
Analytical Method: BTEX by EPA 80	21B				Prep Method: S	SW5030B	
Tech: KTL					% Moisture:		
Analyst: KTL		Date Prep:	08.29.19 15.00		Basis: V	Vet Weight	
Seq Number: 3100245					SUB: T1047044	00-19-19	
Parameter	Cas Number	Result R	L	Units	Analysis Dat	e Flag	Dil

1 al alleter	Cas Humber	Ktsuit	NL		Units	Analysis Date	riag	Dii
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.30.19 12.28	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.30.19 12.28	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.30.19 12.28	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.30.19 12.28	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.30.19 12.28	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.30.19 12.28	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.30.19 12.28	U	1
Surrogate		Cas Number	% D	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	Recovery 105	%	70-130	08.30.19 12.28	8	
1,4-Difluorobenzene		480-00-4 540-36-3	103	%	70-130	08.30.19 12.28 08.30.19 12.28		

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: SW01 Lab Sample Id: 635303-007		Matrix: Date Collec	Soil cted: 08.27.19 16.25		Date Received:08.2 Sample Depth: 0 - 2		5
Analytical Method: Chloride by E	PA 300				Prep Method: E30	0P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.30.19 10.30		Basis: Wet	Weight	
Seq Number: 3100248					SUB: T104704400	-19-19	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10.3	4.96	mg/kg	08.30.19 12.37		1

Analytical Method: TPH by SW801Tech:DVMAnalyst:ARMSeq Number:3100186	5 Mod	Date Prep	o: 08.29.	19 14.00	% E	rep Method: SW 6 Moisture: Basis: We UB: T104704400	t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<24.9	24.9		mg/kg	08.29.19 19.59	U	1
Diesel Range Organics (DRO)	C10C28DRO	389	24.9		mg/kg	08.29.19 19.59		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	85.3	24.9		mg/kg	08.29.19 19.59		1
Total GRO-DRO	PHC628	389	24.9		mg/kg	08.29.19 19.59		1
Total TPH	PHC635	474	24.9		mg/kg	08.29.19 19.59		1
Surrogate 1-Chlorooctane o-Terphenyl		Cas Number 111-85-3 84-15-1	% Recovery 100 99	Units % %	Limits 70-135 70-135	Analysis Date 08.29.19 19.59 08.29.19 19.59	Flag	

.

LT Environmental, Inc., Arvada, CO

Sample Id: SW01		Matrix:	Soil]	Date Received:0	8.28.19 08.4	5
Lab Sample Id: 635303-007		Date Collected: 08.27.19 16.25 Sample Depth: 0 -				- 2 ft	
Analytical Method: BTEX by EPA	8021B]	Prep Method: S	W5030B	
Tech: KTL					% Moisture:		
Analyst: KTL		Date Prep:	08.29.19 15.00]	Basis: V	Vet Weight	
Seq Number: 3100245				:	SUB: T1047044	00-19-19	
Parameter	Cas Number	Result F	Ľ	Units	Analysis Date	Flag	Dil

r al allietel	Cas Number	Kesuit	KL		Units	Analysis Date	riag	DII
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	08.30.19 12.48	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	08.30.19 12.48	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	08.30.19 12.48	U	1
m,p-Xylenes	179601-23-1	< 0.00404	0.00404		mg/kg	08.30.19 12.48	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	08.30.19 12.48	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	08.30.19 12.48	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	08.30.19 12.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	111	%	70-130	08.30.19 12.48		
1,4-Difluorobenzene		540-36-3	105	%	70-130	08.30.19 12.48		

Analytical Method: TPH by SW8015 Mod

Chloride

Certificate of Analytical Results 635303

1

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: SW02 Lab Sample Id: 635303-008		Matrix: Soil Date Collected: 08.27.	19 16.30	Date Received:08.2 Sample Depth: 0 - 2	
Analytical Method: Chloride by EPA	. 300			Prep Method: E30	0P
Tech: CHE				% Moisture:	
Analyst: CHE		Date Prep: 08.30.	19 10.30	Basis: Wet	Weight
Seq Number: 3100248				SUB: T104704400	-19-19
Parameter	Cas Number	Result RL	Units	s Analysis Date	Flag Dil

16887-00-6 **139** 5.00

Prep Method: SW8015P

08.30.19 12.53

mg/kg

				9	6 Moisture:		
	Date Prep	p: 08.29.1	19 14.00	E	Basis: We	t Weight	
				S	SUB: T104704400)-19-19	
Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	<25.0	25.0		mg/kg	08.29.19 20.18	U	1
C10C28DRO	<25.0	25.0		mg/kg	08.29.19 20.18	U	1
PHCG2835	<25.0	25.0		mg/kg	08.29.19 20.18	U	1
PHC628	<25.0	25.0		mg/kg	08.29.19 20.18	U	1
PHC635	<25.0	25.0		mg/kg	08.29.19 20.18	U	1
	Cas Number	% Recoverv	Units	Limits	Analysis Date	Flag	
	111-85-3	95	%	70-135	08.29.19 20.18		
	84-15-1	92	%	70-135	08.29.19 20.18		
	PHC610 C10C28DRO PHCG2835 PHC628	Cas Number Result PHC610 <25.0	Cas Number Result RL PHC610 <25.0	Cas Number Result RL PHC610 <25.0	Date Prep: 08.29.19 14.00 E Cas Number Result RL Units PHC610 <25.0	Date Prep: 08.29.19 14.00 Basis: We SUB: T104704400 Cas Number Result RL Units Analysis Date PHC610 <25.0	Date Prep: 08.29.19 14.00 Basis: Wet Weight SUB: T104704400-19-19 Cas Number Result RL Units Analysis Date Flag PHC610 <25.0

LT Environmental, Inc., Arvada, CO

Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	3100245					SUB: T10470440	00-19-19	
Analyst:	KTL		Date Prep:	08.29.19 15.00		Basis: W	et Weight	
Tech:	KTL					% Moisture:		
Analytical Me	ethod: BTEX by EPA 802	21B				Prep Method: S	W5030B	
Sample Id: Lab Sample Id	SW02 d: 635303-008		Matrix: Date Collec	Soil ted: 08.27.19 16.30		Date Received:08 Sample Depth:0		,
C 1. T.I.	CILLOS		Matular	C - 11		D.4. D	0 00 10 00 45	-

i urumeter	Cusitumber	Rebuit	KL/		Onits	Analysis Date	Thag	DI
Benzene	71-43-2	<0.00199	0.00199		mg/kg	08.30.19 13.08	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.30.19 13.08	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.30.19 13.08	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.30.19 13.08	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.30.19 13.08	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.30.19 13.08	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.30.19 13.08	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	103	%	70-130	08.30.19 13.08		
1,4-Difluorobenzene		540-36-3	102	%	70-130	08.30.19 13.08		

Chloride

Certificate of Analytical Results 635303

1

LT Environmental, Inc., Arvada, CO

PLU 78 SWD (2RP-3576)

Sample Id: SW03 Lab Sample Id: 635303-009		Matrix: Date Collec	Soil ted: 08.27.19 16.35		Date Received:08. Sample Depth:0 -		i
Analytical Method: Chloride by EPA 3	00				Prep Method: E30)0P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.30.19 10.30		Basis: We	t Weight	
Seq Number: 3100248					SUB: T104704400	-19-19	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil

4.99

mg/kg

08.30.19 12.58

28.0

16887-00-6

Analytical Method: TPH by SW8015 Mod Prep Method: SW8015P DVM % Moisture: Tech: ARM Analyst: Basis: Wet Weight Date Prep: 08.29.19 14.00 Seq Number: 3100186 SUB: T104704400-19-19 Result Cas Number RL Parameter Units **Analysis Date** Flag Dil Gasoline Range Hydrocarbons (GRO) PHC610 <25.0 25.0 08.29.19 20.37 U mg/kg 1 C10C28DRO Diesel Range Organics (DRO) <25.0 25.0 mg/kg 08.29.19 20.37 U 1 Motor Oil Range Hydrocarbons (MRO) PHCG2835 <25.0 25.0 08.29.19 20.37 U mg/kg 1 Total GRO-DRO PHC628 <25.0 25.0 mg/kg 08.29.19 20.37 U 1 Total TPH PHC635 25.0 08.29.19 20.37 U <25.0 mg/kg 1 % Cas Number Units Surrogate Limits **Analysis Date** Flag Recovery 1-Chlorooctane 111-85-3 70-135 08.29.19 20.37 95 % 93 o-Terphenyl 84-15-1 % 70-135 08.29.19 20.37

LT Environmental, Inc., Arvada, CO

Sample Id: Lab Sample Id	SW03 d: 635303-009		Matrix: Date Collec	Soil ted: 08.27.19 16.35		Date Received: Sample Depth:		5
Analytical Me	ethod: BTEX by EPA 802	21B				Prep Method:	SW5030B	
Tech:	KTL					% Moisture:		
Analyst:	KTL		Date Prep:	08.29.19 15.00		Basis:	Wet Weight	
Seq Number:	3100245					SUB: T104704	400-19-19	
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil

i ur uniciter	Cus i tumber	Rebuit	NL		Onits	Analysis Date	Thag	Dii
Benzene	71-43-2	<0.00199	0.00199		mg/kg	08.30.19 13.28	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.30.19 13.28	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.30.19 13.28	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.30.19 13.28	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.30.19 13.28	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.30.19 13.28	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.30.19 13.28	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	101	%	70-130	08.30.19 13.28		
4-Bromofluorobenzene		460-00-4	99	%	70-130	08.30.19 13.28		

Page 155 of 166

LT Environmental, Inc., Arvada, CO

Sample Id: SW04 Lab Sample Id: 635303-010		Matrix: Date Collec	Soil cted: 08.27.19 16.40		Date Received:08.2 Sample Depth:0 - 2		5
Analytical Method: Chloride by El	PA 300				Prep Method: E30	0P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	08.30.19 10.30		Basis: Wet	Weight	
Seq Number: 3100248					SUB: T104704400	-19-19	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	195	4.97	mg/kg	08.30.19 13.04		1

Analytical Method: TPH by SW801 Tech: DVM Analyst: ARM Seq Number: 3100186	15 Mod	Date Prep	: 08.29.	19 14.00	% E	Prep Method: SW 6 Moisture: Basis: We 5UB: T104704400	t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<24.9	24.9		mg/kg	08.29.19 20.57	U	1
Diesel Range Organics (DRO)	C10C28DRO	704	24.9		mg/kg	08.29.19 20.57		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	149	24.9		mg/kg	08.29.19 20.57		1
Total GRO-DRO	PHC628	704	24.9		mg/kg	08.29.19 20.57		1
Total TPH	PHC635	853	24.9		mg/kg	08.29.19 20.57		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	96	%	70-135	08.29.19 20.57		
o-Terphenyl		84-15-1	98	%	70-135	08.29.19 20.57		

LT Environmental, Inc., Arvada, CO

Sample Id: Lab Sample Id	SW04 l: 635303-010		Matrix: Date Collect	Soil eed: 08.27.19 16.40		Date Received: Sample Depth: (5
Analytical Me	thod: BTEX by EPA 802	21B				Prep Method: S	SW5030B	
Tech:	KTL					% Moisture:		
Analyst:	KTL		Date Prep:	08.29.19 15.00		Basis: V	Wet Weight	
Seq Number:	3100245					SUB: T1047044	400-19-19	
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil

i ur uniciter	Cubittunide	Result	NL		Onits	Analysis Date	Tiag	DI
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	08.30.19 13.48	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	08.30.19 13.48	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	08.30.19 13.48	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	08.30.19 13.48	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	08.30.19 13.48	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	08.30.19 13.48	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	08.30.19 13.48	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	101	%	70-130	08.30.19 13.48		
1,4-Difluorobenzene		540-36-3	100	%	70-130	08.30.19 13.48		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

ATORIES

LT Environmental, Inc. PLU 78 SWD (2RP-3576)

Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3 3100248 7685356-1-BLK	600		Matrix: nple Id:	Solid 7685356-	1-BKS		Prep Metho Date Pre LCSD Sample	p: 08.3	0.19	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD RPD Limi	t Units	Analysis Date	Flag
Chloride	<0.858	250	245	98	244	98	90-110	0 20	mg/kg	08.30.19 10:48	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3100248 635299-011	900		Matrix: nple Id:	Soil 635299-0	11 S		Prep Metho Date Pre MSD Sample	p: 08.3	0.19	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Limi	t Units	Analysis Date	Flag
Chloride	303	250	571	107	565	105	90-110	1 20	mg/kg	08.30.19 11:04	
Analytical Method: Seq Number: Parent Sample Id: Parameter Chloride	Chloride by EPA 3 3100248 635303-005 Parent Result 225	500 Spike Amount 250		Matrix: nple Id: MS %Rec 103	Soil 635303-00 MSD Result 482	05 S MSD %Rec 103	Limits 90-110	Prep Metho Date Pre MSD Sample %RPD RPD Limi 0 20	p: 08.3 Id: 6353	0.19	Flag
Analytical Method: Seq Number: MB Sample Id: Parameter	TPH by SW8015 M 3100186 7685286-1-BLK MB Result	Iod Spike Amount		Matrix: nple Id: LCS %Rec	Solid 7685286- LCSD Result	1-BKS LCSD %Rec	Limits	Prep Metho Date Pre LCSD Sample %RPD RPD Limi	p: 08.2 Id: 768		Flag
Gasoline Range Hydrocarb		1000	1040	104	1010	101	70-135	3 20	mg/kg	08.29.19 16:47	
Diesel Range Organics	(DRO) <25.0	1000	974	97	951	95	70-135	2 20	mg/kg	08.29.19 16:47	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			Units	Analysis Date	
1-Chlorooctane	94 93			25 10		120 104		70-135 70-135	% %	08.29.19 16:47 08.29.19 16:47	
o-Terphenyl	95		1	10		104		/0-155	70	00.27.17 10:47	

Analytical Method:TPHSeq Number:3100	186 Matrix:	Prep Method:SolidDate Prep:7685286-1-BLK		
Parameter Motor Oil Range Hydrocarbons (M	MB Result RO) <50.0	-	nalysis Date 9.19 16:27	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B $\begin{aligned} \text{RPD} &= 200^* \mid (\text{C-E}) / (\text{C+E}) \mid \\ \text{[D]} &= 100^* (\text{C}) / \text{[B]} \end{aligned}$ Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control SampleA = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Page 28 of 34

Received by OCD: 6/28/2023 3:01:36 PM

LT Environmental, Inc. PLU 78 SWD (2RP-3576)

Analytical Method:TPH by SSeq Number:3100186Parent Sample Id:635303-00		lod		Matrix: nple Id:		01 S			ep Metho Date Pre D Sample	p: 08.2	8015P 9.19 303-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	t Units	Analysis Date	Flag
Gasoline Range Hydrocarbons (GRO)	<15.0	999	983	98	969	97	70-135	1	20	mg/kg	08.29.19 17:45	
Diesel Range Organics (DRO)	<25.0	999	948	95	932	93	70-135	2	20	mg/kg	08.29.19 17:45	
Surrogate				/IS Rec	MS Flag	MSD %Ree			mits	Units	Analysis Date	
1-Chlorooctane			1	22		120		70	-135	%	08.29.19 17:45	
o-Terphenyl			9	96		96		70	-135	%	08.29.19 17:45	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3100245 7685326-1-BLK	l B	LCS San	Matrix: nple Id:		1-BKS			Prep Metho Date Pre SD Sample	p: 08.2	5030B 9.19 5326-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI) RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.000385	0.100	0.0988	99	0.0922	92	70-130	7	35	mg/kg	08.30.19 08:47	
Toluene	< 0.000456	0.100	0.101	101	0.0938	94	70-130	7	35	mg/kg	08.30.19 08:47	
Ethylbenzene	< 0.000565	0.100	0.108	108	0.102	102	70-130	6	35	mg/kg	08.30.19 08:47	
m,p-Xylenes	< 0.00101	0.200	0.209	105	0.197	99	70-130	6	35	mg/kg	08.30.19 08:47	
o-Xylene	< 0.000344	0.100	0.109	109	0.104	104	70-130	5	35	mg/kg	08.30.19 08:47	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSD %Rec			Limits	Units	Analysis Date	
1,4-Difluorobenzene	98		9	99		101			70-130	%	08.30.19 08:47	
4-Bromofluorobenzene	100		1	12		116			70-130	%	08.30.19 08:47	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3100245 635303-001	1B	MS San	Matrix: nple Id:	Soil 635303-00	01 S			Prep Metho Date Pre SD Sample	ep: 08.2	5030B 9.19 303-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Benzene	< 0.00198	0.0990	0.0793	80	0.0876	88	70-130	10	35	mg/kg	08.30.19 09:27	
Toluene	< 0.00198	0.0990	0.0808	82	0.0902	90	70-130	11	35	mg/kg	08.30.19 09:27	
Ethylbenzene	< 0.00198	0.0990	0.0852	86	0.0952	95	70-130	11	35	mg/kg	08.30.19 09:27	
m,p-Xylenes	< 0.00100	0.198	0.161	81	0.181	91	70-130	12	35	mg/kg	08.30.19 09:27	
o-Xylene	< 0.00198	0.0990	0.0840	85	0.0944	94	70-130	12	35	mg/kg	08.30.19 09:27	
Surrogate				1S Rec	MS Flag	MSD %Rec		-	limits	Units	Analysis Date	
1,4-Difluorobenzene			1	02		102		7	0-130	%	08.30.19 09:27	
4-Bromofluorobenzene			1	19		117		7	0-130	%	08.30.19 09:27	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Page 29 of 34

age 10	BORATORIES	Mid	ton, TX (281) 240-4200 land, TX (432-704-5440	louston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX 75 000 7550 Distance of the paso for the	0		12
Project Manager:	Dan Moir		Bill to: (if different)	Bill to: if dfferent) Kyle Littrell	GA (770-448-0000) Tampa,FL (013-620-2000)	Work Order Comments	simments
	inmental, Inc.,	Permian office	Company Name:	XTO Energy		Program: UST/PST PRP Brownfields	elds RC uperfund
_			Address:	3104 E Green Street	et	State of Project:	I
e ZIP:	Midland, TX 79705		City, State ZIP:	Carlsbad, NM 88220	20	Reporting:Level II _evel III PST/UST	
	432.236.3849	Ema	Email: bbelill@ltenv.com			Deliverables: EDD ADaPT	Other:
Project Name:	plu 78 swid	SWD(1RP-3576)	Turn Around		ANALYSIS REQUEST	ST	Work Order Notes
Project Number: 0	12918131	Ro	Routine				
P.O. Number:		Rush:					
Sampler's Name: Benj	Benjamin Belill	Due	Due Date:				
SAMPLE RECEIPT	Temp Blank:	(Yes) No Wet Ice:	Yes No	~			
Temperature (°C):	3.4	The					
Received Intact:	Ges No	T-NM	Ğ	021)			
Cooler Custody Seals:	6	Correction Factor:	-0.2	015) 0=80			TAT starts the day receiied by the
		Date Time	nber	(EPA X (EP			
PHUT	^	4/17/14 12.30	11 N	< т < в			
PHOTA	_	_	4				
PH02		1255	t, t	×××			
PHORA		1300	4. 7	F X X X			
FSOI		1615	2' 1	XXX			
F502		1620	2' 1	XXX			
SWOL		1625	0-2' 1	XXX			
SW 02		1630	0-2. 2	- X X X			
SW 03		1635	0-2' 1	· × × ×			
PO WS	U	A 1640	0-2' 2				
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	200.8 / 6020: d Metal(s) to be anal	00	RCRA 13PPM Texas 11 / TCLP / SPLP 6010: 8RCRA	Al Sb As Ba Be B A Sb As Ba Be Cd	Cd Ca Cr Cr Co Cu	Vi K Se Ag SiO2	Na Sr TI Sn U V Zn 1631/245.1/7470/7471:Hg
otice: Signature of this docume of service. Xenco will be liable o fXenco. A minimum charge of t	ant and relinquishment of s only for the cost of samples \$75.00 will be applied to ea	amples constitutes a valid and shall not assume any ch project and a charge of	purchase order from clic responsibility for any lo \$5 for each sample subi	ent company to Xenco, its a sses or expenses incurred mitted to Xenco, but not an	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	standard terms and conditions irrcumstances beyond the control less previously negotiated.	
Relinquished by: (Signature)	nature)	Received by: (Signature)	ture)	Date/Time	Relinquished by: (Signature)	re) Received by: (Signature)) Date/Time
ASPANG -	dh	MYYY'	8	58/198 08:45:	Ø		
	((1	1			

Inter-Office Shipment

Page 1 of 2

IOS Number 47032

Date/Time: 08/28/19 10:09

Created by: Elizabeth Mcclellan

Please send report to: Jessica Kramer

Lab# From: Carlsbad

Lab# To: Midland

Air Bill No.: 776104978254

Delivery Priority:

Address: 1089 N Canal Street

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
635303-001	S	PH01	08/27/19 12:30	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-001	S	PH01	08/27/19 12:30	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	
635303-001	S	PH01	08/27/19 12:30	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-002	S	PH01A	08/27/19 12:40	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-002	S	PH01A	08/27/19 12:40	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-002	S	PH01A	08/27/19 12:40	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	
635303-003	S	PH02	08/27/19 12:55	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-003	S	PH02	08/27/19 12:55	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-003	S	PH02	08/27/19 12:55	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	
635303-004	S	PH02A	08/27/19 13:00	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-004	S	PH02A	08/27/19 13:00	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	
635303-004	S	PH02A	08/27/19 13:00	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-005	S	FS01	08/27/19 16:15	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-005	S	FS01	08/27/19 16:15	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	
635303-005	S	FS01	08/27/19 16:15	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-006	S	FS02	08/27/19 16:20	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-006	S	FS02	08/27/19 16:20	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-006	S	FS02	08/27/19 16:20	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PI	
635303-007	S	SW01	08/27/19 16:25	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-007	S	SW01	08/27/19 16:25	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-007	S	SW01	08/27/19 16:25	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	
635303-008	S	SW02	08/27/19 16:30	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-008	S	SW02	08/27/19 16:30	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-008	S	SW02	08/27/19 16:30	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	
635303-009	S	SW03	08/27/19 16:35	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	

Inter-Office Shipment

Page 2 of 2

IOS Number 47032

Date/Time: 08/28/19 10:09

Created by: Elizabeth Mcclellan

Please send report to: Jessica Kramer

Lab# From: Carlsbad

Lab# To: Midland

Air Bill No.: 776104978254

Delivery Priority:

Address: 1089 N Canal Street

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
635303-009	S	SW03	08/27/19 16:35	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-009	S	SW03	08/27/19 16:35	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-010	S	SW04	08/27/19 16:40	SW8021B	BTEX by EPA 8021B	09/04/19	09/10/19	JKR	BR4FBZ BZ BZME EBZ X	
635303-010	S	SW04	08/27/19 16:40	E300_CL	Chloride by EPA 300	09/04/19	02/23/20	JKR	CL	
635303-010	S	SW04	08/27/19 16:40	SW8015MOD_NM	TPH by SW8015 Mod	09/04/19	09/10/19	JKR	GRO-DRO PHCC10C28 PH	

Inter Office Shipment or Sample Comments:

Relinquished By:

Elizabeth McClellan

Date Relinquished: 08/28/2019

Received By:

Brianna Teel

Date Received:	08/29/2019 11:46	
Cooler Temperature:	0.3	

Released to Imaging: 6/30/2023 10:20:49 AM

Page 32 of 34

Final 1.001

ABORATORIES

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Midland IOS #: 47032

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : R8

Sent By:	Elizabeth McClellan	Date Sent:	08/28/2019 10:09 AM
Received By:	Brianna Teel	Date Received:	08/29/2019 11:46 AM

Sample Receipt Checklist

Comments

.3
Yes
No
Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

Brianna Teel

Date: 08/29/2019

Received by OCD: 6/28/2023 3:01:36 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 08/28/2019 08:45:00 AM Temperature Measuring device used : T-NM-007 Work Order #: 635303 Sample Receipt Checklist #1 *Temperature of cooler(s)? 3.4 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? Na

#4 *Custody Seals intact on shipping container/ cooler?	No	
#5 Custody Seals intact on sample bottles?	Νο	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	Νο	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	Yes Subbed to Xenco Midland.	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan

Date: 08/28/2019

Comments

Checklist reviewed by: Jession Veamer

Jessica Kramer

Date: 08/28/2019

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

COMMENTS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	234025
	Action Type:
	[C-141] Release Corrective Action (C-141)

COMMENTS

Created By	Comment	Comment Date
csmith	Application Returned to OCD Review: Data requested was present in Appendix E.	6/30/2023

Page 165 of 166 COMMENTS

Action 234025

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	234025
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

CONDITIONS		
Created By	Condition	Condition Date
amaxwell	Closure approved.	6/30/2023
amaxwell	Release area is subject to o 19.15.29.13 NMAC Restoration, Reclamation, and Re-Vegetation upon removal of production equipment or plug and abandonment activity.	6/30/2023

Page 166 of 166

Action 234025