SITE INFORMATION

	R	eport Typ	e: Closure	e Report (1RP-5125	5)				
General Site I	nformation:			<u> </u>		•				
Site:		Mars 10 SC	506							
Company:		EOG Resou	urces							
Section, Towr	nship and Range	Unit M	Sec. 3	T 24S	R 33E					
County:		Lea County	/, NM							
GPS:			32.24140			-103.5662				
Surface Owne	er:	State of Ne	w Mexico							
Release Data:										
Date Released	1:	7/8/2018								
Type Release:		Produced W	/ater							
Source of Con		Illegal dump								
Fluid Released		60 bbls. PW								
Fluids Recover		0 bbls. PW								
Official Comm	nunication:									
Name:	James Kennedy			Clair Gonzales						
Company:	EOG Resources				Tetra Tech					
Address:	5509 Champions [Dr			901 West Wall Street					
					Suite 100					
City:	Midland, TX 79706	;			Midland, Texas 79701					
Phone number	∵ <mark>432-686-7016</mark>				432-687-8634					
Fax:										
Email:	James.Kennedy(@eogresource	es.com		clair.gonzales@tetratech.com					

Site Characterization	
Depth to Groundwater:	22.09' below ground surface (bgs)
Karst Potential:	Low - Playa Lake within 200'

Recommended Remedial Action Levels (RRALs)								
Benzene	Total BTEX	TPH (GRO+DRO+MRO)	Chlorides					
10 mg/kg	50 mg/kg	100 mg/kg	600 mg/kg					

July 13, 2021

Bradford Billings Hydrologist District 2 Artesia Oil Conservation Division Santa Fe, NM 87505

Re: Closure Report EOG Resources Mars 10 SC 506 Unit M, Section 3, Township 24 South, Range 33 East Lea County, New Mexico 1RP-5125 Incident Id: NOY1819840745

Mr. Billings:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources (EOG) to supervise the remediation and reclamation activities at the EOG Mars 10 SC 506 (Site), which is located in the Public Land Survey System (PLSS) Unit M, Section 3, Township 24 South, Range 33 East, Lea County, New Mexico (Site). The Site coordinates are 32.2414°, -103.5662°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the release occurred on July 9, 2018 due to an illegal dump of approximately 60 barrels (bbls.) of produced water that was found on lease road heading to the Mars CTB. During immediate response actions, no fluids were recovered. The initial C-141 report was submitted on July 16, 2018 and approved by the NMOCD on July 17, 2018. The release was subsequently assigned the Remediation Permit (RP) number 1RP-5125. The C-141 forms are included in Appendix A.

Site Characterization

A site characterization was performed for the site, and no watercourses, lakebeds, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances, a playa lake exists within 200 feet of the southern end of the release, in addition, the site is in a low karst potential area. The nearest well is listed in the USGS National Water Information Database website in Section 10, approximately 0.5 miles South of the site, and has a reported depth to groundwater of 22.09 ft. below ground surface (bgs.). Site characterization data is included in Appendix B.

Regulatory

Tetra Tech 901 West Wall Street, Suite 100, Midland, TX 79701 Tel 432.682.4559 Fax 432.682.3946 www.tetratech.com

A risk-based evaluation was performed for the site per the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 100 mg/kg (GRO+DRO+MRO), and chlorides is 600 mg/kg).

Previous Soil Assessment and Analytical Results

GHD Assessment and Remediation

On July 16, 2018, GHD on behalf of EOG performed initial assessment activities. Initial, pre-emptive spill response measures were conducted upon the approval of Ryan Mann with the NMSLO. The initial response consisted of mechanical scraping and excavation to minimize migration and spread of produced water to an unnamed playa lake approximately 200 feet to the south. In addition, during the assessment activities a total of four (4) test pits utilizing a backhoe were dug to depths ranging from 0.5 to 6 ft bgs and two hand auger soil borings were advanced to depths ranging from 0.5 to 1 ft bgs. Collected soil samples were field screened for chloride content using HACH test strips. Selected samples were submitted to Hall Environmental Analysis Laboratory (HEAL) located in Albuquerque, New Mexico, for chloride analysis by EPA Method 300.0, BTEX by EPA method 8021 and for TPH (gasoline, diesel, and oil range organics) by EPA method 8015.

Chloride field screening concentrations ranged from <120 to >2,560 milligrams per liter (mg/L). The highest concentrations were contained in soils from ground surface to 0.5 ft bgs. Chloride laboratory concentrations ranged from below the laboratory reporting limit (LRL) to 620 mg/kg. The sample collected from TP-2 at 4 ft bgs exceeded the Table 1 closure criteria of 600 mg/kg. All BTEX and TPH results were below the LRLs (non-detect). Soil sample locations and analytical results are summarized on Figure 2 and in Table 1, as well as the laboratory reports which are within the GHD report included in Appendix C.

GHD and SDR Enterprises LLC initiated contaminated soil scraping and excavation at the southern end of the release near the playa on July 25, 2018 after receiving authorization from Ryan Mann. Subsequently, on July 27, 2018, all work was stopped due to the potential presence of cultural materials.

A meeting with concerned parties was held at the NMSLO on November 16, 2018 to discuss the continuation of assessment/remediation activities in light of recognized archeological resources on the Site. As a result of that meeting, GHD performed an additional assessment under the supervision of a New Mexico permitted archaeologist on December 10, 2018 that included advancing eight (8) additional hand auger borings (HA-12 through HA-19) and the TP-2 location was deepened to 5 ft bgs with a hand auger (HA-2). Soil samples were collected from 6 inches and 1 ft bgs in HA-12 through HA-19 and 5 ft bgs in HA-2.

The samples were submitted to HEAL for chloride analysis by EPA Method 300. Chloride concentrations ranged from below the LRL to 660 mg/kg. The sample collected from HA-2 at 5 ft

bgs exceeded the closure criteria and was collected at the third-party release point. All remaining soil sample chloride concentrations were below the closure criteria. All soils disturbed via the hand auger process were observed by an archeologist to evaluate for the presence of cultural resources.

Goshawk Limited Testing Plan and Remediation and Stabilization Plan

On April 2019, Goshawk Environmental Consulting, Inc (Goshawk) developed a limited testing plan and a Remediation and Stabilization Plan (See Attachment C) and submitted them to the New Mexico State Land Office (NMSLO) for proposed contaminant remediation activities within the Site.

Remediation Activities

Between May 06 and May 30, 2019, Tetra Tech personnel were on site to supervise the remediation activities under the monitoring of Goshawk and collect samples. Based on Goshawk Remediation plan, three (3) areas (northern blade scrape, two-track path, and a southern blade scrape (see Attachment C). Tetra Tech was supervising the screening of the soil removed from the southern area to collect any cultural resource artifacts that may have been removed during the initial remediation effort. Before excavation, several areas within the proposed excavation area were screened for cultural artifacts and for salinity using an Extech EC400 ExStik to determine the chloride concentrations. A sample from the caliche pit composite (L/T/ Dillion Caliche Pit) was collected and submitted for laboratory analysis. An auger hole was advanced to a total depth of 6.5 ft. bgs and sample intervals were field screened for salinity to determine the chloride concentrations. All of the readings were below chloride limit. In addition, Tetra Tech performed delineation of the impacted area. Several sample locations were advanced and screened to the north (N-1 and N-2), to the west (W-1 through W-5), to the east (E-1 through E-3), and to the south (S-1 and S-2). Based on the chloride readings, five (5) sample locations (N-1, S-1, E-2, W-2 and W-5) were advanced at a depth from top to 5 ft. bgs. A total of eleven (11) samples were submitted and analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chainof-custody documentation are included in Appendix D. The results of the sampling are summarized in Table 1. See sample locations on Figure 3.

Referring to Table 1, the caliche pit composite sample, and all the delineation samples analyzed were below the Site RRAL for chloride (600 mg/kg) and TPH (100 mg/kg), BTEX (50 m/kg) and benzene (10 mg/kg).

Remediation and Confirmation Samples

On June 17, 2019, Tetra Tech collected confirmation samples at the excavation area every 200 sq. ft. A total of four (4) bottomhole (BH1 through B-4) samples were collected at a total depth of 5 ft. bgs. In addition, four (4) sidewall (NSW-1, ESW-1, SSW-1, and WSW-1) samples were collected at north, east, south and west of the excavation area. A total of eight (8) samples were submitted and analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. The results of the sampling are summarized in Table 2. See sample locations on Figure 4.

Referring to Table 2, the sample analyzed was below the Site RRAL for chloride (600 mg/kg) and TPH (100 mg/kg), BTEX (50 m/kg) and benzene (10 mg/kg).

The archaeological damage assessment also raised concerns about further degradation to site by wind and rainfall erosion. EOG proposed to implement secondary erosion and stabilization controls to minimize further impacts to the maximum extent practicable. Within the stabilization plan presented by Goshawk was proposed the following activities (Referred to Attachment C for figures, photos, and tables).

On July 19, 2019 Tetra Tech supervised the placing of seven (7) wattles in the locations shown on Figure 4. Backfilling of southern area (near playa-lake) was supervised using topsoil from a nearby area and the placement of the erosion control blanket was observed. Besides, large boulders were placed south of the access road at the edge of existing vegetation to serve as a "road" block. On June 22, 2019 backfilling of the northern area was conducted.

On August 16, 2019 the erosion control blanket was placed at the northern backfilled and along the two-track path as part of the stabilization efforts.

The excavations were all backfilled with clean soil material. Approximately 4.6 cubic yards of material was transported offsite for proper disposal.

Conclusion

Based on the laboratory results and the remediation activities performed, EOG requests closure of this spill issue. The final C-141 initial reports are enclosed in Appendix A. If you have any questions or comments concerning the assessment or remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

Paula Tocora Alonso

Paula Tocora Alonso Environmental Engineer I Tetra Tech, Inc

Figures

Mars 3301

125\\GIS\MXD\

02419

Received by OCD: 6/1/2023 12:44:31 PM

SITE LOCATOR

AH-1 32.241447005° -103.566151703° N-1 32.241487603° -103.566134787° N-2 32.241461° -103.566147° E-1 32.2414223° -103.566124628° E-2 32.241412145° -103.56608634° S-1 32.241379672° -103.566158333° S-1 32.241428° -103.566181954° S-2 32.241428° -103.566181954° W-1 32.241445874° -103.566230646° W-2 32.241445874° -103.566287723° W-3 32.241448472° -103.566202513°	SAMPLE DESIGNATION	LATITUDE	LONGITUDE	5 . C. S.
N-2 32.241461° -103.566147° E-1 32.2414223° -103.566124628° E-2 32.241412145° -103.56608034° S-1 32.241379672° -103.566158333° W-1 32.241428° -103.566181954° W-2 32.241442687° -103.566230646° W-3 32.241445874° -103.566287723° W-4 32.241448472° -103.566202513°	AH-1	32.241447005°	-103.566151703°	1. 17 mines of -
E-1 32.2414223° -103.566124628° E-2 32.241412145° -103.566061077° E-3 32.241417636° -103.56608634° S-1 32.241379672° -103.566158333° W-1 32.241428° -103.566181954° W-2 32.241442687° -103.566230646° W-3 32.241445874° -103.566254916° W-4 32.241448472° -103.566287723° W-5 32.241440695° -103.566202513°	N-1	32.241487603°	-103.566134787°	Balling and a start
E-2 32.241412145° -103.566061077° E-3 32.241417636° -103.56608634° S-1 32.241379672° -103.566177792° S-2 32.241428° -103.566158333° W-1 32.241436687° -103.566181954° W-2 32.241442419° -103.566230646° W-3 32.241445874° -103.566254916° W-4 32.241448472° -103.566287723° W-5 32.241440695° -103.566202513°	N-2	32.241461°	-103.566147°	1000000-0
E-3 32.241417636° -103.56608634° S-1 32.241379672° -103.566177792° S-2 32.241428° -103.566158333° W-1 32.241436687° -103.566181954° W-2 32.241442419° -103.566230646° W-3 32.241445874° -103.566254916° W-4 32.241448472° -103.566287723° W-5 32.241440695° -103.566202513°	E-1	32.2414223°	-103.566124628°	10.000
S-1 32.241379672° -103.566177792° S-2 32.241428° -103.566158333° W-1 32.241436687° -103.566181954° W-2 32.241442419° -103.566230646° W-3 32.241445874° -103.566254916° W-4 32.241448472° -103.566287723° W-5 32.241440695° -103.566202513°	E-2	32.241412145°	-103.566061077°	10.00
S-2 32.241428° -103.566158333° W-1 32.241436687° -103.566181954° W-2 32.241442419° -103.566230646° W-3 32.241445874° -103.566254916° W-4 32.241448472° -103.566202513° W-5 32.241440695° -103.566202513°	E-3	32.241417636°	-103.56608634°	A
W-1 32.241436687° -103.566181954° W-2 32.241442419° -103.566230646° W-3 32.241445874° -103.566254916° W-4 32.241448472° -103.566287723° W-5 32.241440695° -103.566202513°	S-1	32.241379672°	-103.566177792°	and the second
W-2 32.241442419° -103.566230646° W-3 32.241445874° -103.566254916° W-4 32.241448472° -103.566287723° W-5 32.241440695° -103.566202513°	S-2	32.241428°	-103.566158333°	Ston Stor
W-3 32.241445874° -103.566254916° W-4 32.241448472° -103.566287723° W-5 32.241440695° -103.566202513°	W-1	32.241436687°	-103.566181954°	1.1.1.1
W-4 32.241448472° -103.566287723° W-5 32.241440695° -103.566202513°	W-2	32.241442419°	-103.566230646°	- Contraction of the second se
W-5 32.241440695° -103.566202513°	W-3	32.241445874°	-103.566254916°	A STATE OF THE OWNER
	W-4	32.241448472°	-103.566287723°	and the second second
Ser Strengthere	W-5	32.241440695°	-103.566202513°	
	503		333	•

SPOIL PILE LOCATION

AFFECTED AREA EXTENT

20 Feet

Approximate Scale

Property located at coordinates 32.24140°, -103.5662° LEA COUNTY, NEW MEXICO

3

Released to Imaging: 6/30/2023 9:31:22 AM

Service Layer Credits: ESRI Basemap - Streets, 2021.

Received by OCD: 6/1/2023 12:44:31 PM

Page 10 of 141

Contraction and the second								
SAMPLE			1.00		and the second	· · · · ·	WATTLE	OCATOR
	LATITUDE	LONGITUDE	Cold makers	1.18.1	10	a de la de	1991 92	
DESIGNATION	22 244 42524 58	402 500000048	a management	15-000	- 1 A	-EB	OAD	3 1. 4 7.40
BH-1	32.241425315°	-103.566099394°	- Diele	100	10.00	LEASER	0	· · · ·
BH-2	32.241478968°	-103.566096719°	1.5 20	1234	Sec. 1	the second		1000
BH-3	32.241481677°	-103.566150267°	an cont	100	T. S. Million			1
BH-4	32.241430567°	-103.566153334°	10.0	Car TV	1.1.1	8 4 2	1000	55 B B
East Side Wall	32.241449634°	-103.566072079°	1.00	19962		R. aller to	A	- 12 × 1
North Side Wall	32.24150649°	-103.566120896°	100	The feet	1.00	Contraction (1)	▲ WT-2	and in the
South Side Wall	32.241396793°	-103.566120491°	1961.345	1990 (Sec. 1997)	- CAR	19		C. Drawer
West Side Wall	32.241454704°	-103.566179759°	0.00		-	the 2		43
WT-1	32.241325°	-103.56621°	2.2	1. T. A.	CT 634			all the second
WT-2	32.241086°	-103.566233°	20.416.	1.11	1000	386'		WT-4
WT-3	32.240931°	-103.566184°	100.00	a an	AL	1. A. S. A. S.		
WT-4	32.240774°	-103.566084°	1	18 C. S	A Description of the	A Start		WT-S
WT-5	32.240616667°	-103.56608°	A COLORADO NO.			1	A	the second second
WT-6	32.2405°	-103.566061°	Contraction of the			1000	1 A A	WT-6
WT-7	32.240338°	-103.56601°)			2 4 0	A PORT	1 1 1 1 1
Contraction						5-50		▲ WT+7
						2 1		22 6
						Company of	20.10	
					And and Personnel 7	E.c.s	33 C. T.	a second
EASE ROAT	D				- × × ×	1 PA.	1. A.	100
EASE RO.				1.1.1	Print.	Carlos C.	10 m 10 m	1000
		-	North S	ide wall	1990 S	10.000	1.1.1.1	100
					1000	12 47 19 10	2.57.675	A DECEMBER OF THE OWNER
and the local data	and and the second	-12 B.				1000		- Salar
	and a	1 + 1 - V			1000	10000	Sec. 2	
A CONTRACTOR			BH-3		1000		Section	Card and the second
10.110	10 A			BH-2	Distantia di Statu di	and the second se	A CONTRACTOR OF THE OWNER	
The second se	the second se	of the second se	N H H H H H H K K			and the second second	and the second	And the owner of the owner.
100000000000000000000000000000000000000	Wes	stside wall		uu m			10.7	Line set
	Wes	teide wall			EastSid	e Wall		100
3.4	Wes	steide wall			East Sid	A DECK	g,	17.2
345	We	7.9			EastSid	A DECK	9.	
35	Wei	7.9	BH-4		EastStd	A DECK	9.	
No.	Wee	7.9	BH-4	81+1	EastSid	A DECK	9	語れ
ない	Wes	7.9	BH=4		EastSid	A DECK	9.	語が
ない	Wer	7.9	BH=4		EastSid	A DECK	9	語が
たちい	Wer	7.9		611-1	EastSid	A DECK	9	
ない		7.9			EastSid	A DECK	9.	語の
ないで		7.9		611-1	EastSid	A DECK	9. 9.	語が
		7.9	Southe	BH=1 side wall	EastSid	A DECK	9.	語が
ないで		7 9		BH=1 side wall	EastSid	A DECK	9.	語が見た
ないであった			Southe	BH=1 side wall	EastSid	A DECK	9	語言語
ないであった		7 9	Southe	BH=1 side wall	EastSid	A DECK		によった
ないというない			Southe	BH=1 side wall	EastSid	A DECK		語が
ないであるという			Southe	BH=1 side wall	EastSid	A DECK		であるという
ないであったので			Southe	BH=1 side wall	EastSid	A DECK		であるという
			Southe	BH=1 side wall	EastSid	A DECK	9	語が見たい
			Southe	BH=1 side wall	EastSid	A DECK	9	
ないで、たちになっていたので、			Southe	BH=1 side wall	EastSid	A DECK		「「「「「「「「「「「」」」」
			Southe	BH=1 side wall	EastSid	A DECK		
ないであるというないである			Southe	BH=1 side wall	EastSid	A DECK		「「「「「「「「「「」」」」」
Воттомно		VT-1	Southe	BH-F1 side wall				
	DLE SAMPLE LOCATI	CATIONS	Southe	EH-1 side well	East Sid	A & DEPTH		「「「「「「「「「」」」」

Ś

10

Approximate Scale

0

20

Property located at coordinates 32.24140°, -103.5662' LEA COUNTY, NEW MEXICO

ant Path: C:UbersiE.MORENOFLORESDoournents/Projects/EOG/EOG-02419 Historical stess/Task 3301- Mars 10 State Com 506 (1RP-5125)/GISIMXD/Excervation .mxd Doc

WATTLE LOCATIONS

Service Layer Credits: ESRI Basemap - Streets, 2021.

SPOIL PILE LOCATION

5' DEPTH EXCAVATED AREA

•

Tables

•

Table 1 COG Mars 10 SC 506

Lea County, N	New Mexico
---------------	------------

Comula ID	Sample	Sample	Soil Status		TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride	
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Caliche Pit Composite	5/9/2019	-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64
North-1 20'Stepout	5/29/2019	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	288
North-1 20'Stepout	5/29/2019	4.5-5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	160
South-1 20'Stepout	5/29/2019	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	416
South-1 20'Stepout	5/29/2019	4.5-5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	368
East-2 20'Stepout	5/29/2019	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	352
East-2 20'Stepout	5/29/2019	4.5-5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	336
West-2 20'Stepout	5/29/2019	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	368
West-2 20'Stepout	5/29/2019	4.5-5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	480
West-5	5/30/2019	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.075	<0.150	288
West-5	5/30/2019	4.5-5	Х		<10.0	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.075	<0.150	288

(-)

Not Analyzed

Exceeding Thresholds

Table 2 EOG Mars 10 SC 506 Lea County, New Mexico

Sample ID	Sample Date	Sample	BEB	Soil	Status		TPH (I	ng/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth	Sample	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-1	7/18/2019	-	5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-2	7/18/2019	-	5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	< 0.050	<0.150	<0.300	<16.0
BH-3	7/18/2019	-	5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96
BH-4	7/18/2019	-	5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48
NSW-1	7/18/2019	-	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32
ESW-1	7/18/2019	-	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SSW-1	7/18/2019	-	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
WSW-1	7/18/2019	-	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176

Not Analyzed Excavated

Photos

View of the Northern Excavated Area

View of the Northern Excavated Area

View of the backfilling of the northern excavated area.

View of the backfilling of excavated northern area.

View of the Remediation Activities (Wattles).

View of the backfilling of excavated northern area.

View of the remediation activities (placement of erosion control blanket and boulders).

View of the remediation activities (placement of erosion control blanket at the two-track path) . .

•

Appendix A

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 8750

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Form C-141 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Franc	vis Dr., Santa I	⁷ e, NM 87505	5	Sa	inta F	e, NM 875	505					
			Rele	ease Notific	atio	n and Co	orrective A	ctio	n			
						OPERA	TOR		🗍 Initia	al Report		Final Report
Name of Cor	mpany: EO	G Resource	es, Inc		T	*****	non Hohensee		k			p
Address: 550				, 7976			No.: 432-556-80	074				
Facility Nam						e: Production F		7				
Surface Own	ner: State La	ands		Mineral C)wner:	State			API No			
										•		
Unit Letter	Section	Township	Danga	Feet from the		N OF RE		Deat	West Line	Country		
M	3	24S	Range	reet nom the	North	/South Line	Feet from the	East	west Line	County		
		Lat	titude	32.2414	I	_Longitude	e103.56					
				NAT	URE	OF REL	EASE					
Type of Releas	se: Produced	l Water		£ 12 £ 1	~		Release: 60bbls		Volume R	Recovered: ()	
Source of Rele	ease: illegal	dump			2071.72		Iour of Occurrence	ce	Date and	Hour of Dis	covery	
XX7 X 1 * /						7/9/18 at n			7/12/18 1	300		
Was Immediat	te Notice Gr		Yes 🛛	No 🗌 Not Re	equired	If YES, To	Whom?					
By Whom?			i			Date and H	Iour					
Was a Waterco	ourse Reach			• • • • •		If YES, Vo	olume Impacting t	the Wa	tercourse.			
			Yes 🛛	No								
If a Watercour	rse was Impa	icted, Descri	be Fully.*	<								
na							RECEIVE	:D				
							By Olivia	Yu a	t 11:02	am. Ju	ıl 17	2018
						(,		
Describe Caus					11	12 / 1 14	10.0000 5/	10/10				
megai dump o	of approxima	tely 60661s o	of PW wa	s found on lease r	oad hea	iding to the M	ars 10 CTB on 7/	/12/18.	No fluids we	ere recovere	d.	
Describe Area	Affected an	d Cleanup A	otion Tak	an *								
				tory standards. Co	ontamin	ated soils wil	l be transferred to	o an apr	proved dispo	sal facility.	Site wi	l he brought
back to natural	l state with a	ppropriate s	eed mixes	for the area.				PI	no rea aropo		5100 111	a oo brought
I hereby certify	v that the inf	ormation giv	ven above	is true and comp	lete to t	he best of my	knowledge and u	Inderete	and that nure	uant to NM		lec and
regulations all	operators ar	e required to	o report an	id/or file certain r	elease n	otifications a	nd perform correct	ctive ac	tions for rele	eases which	may en	danger
public health o	or the enviror	nment. The	acceptanc	e of a C-141 repo	rt by th	e NMOCD m	arked as "Final R	eport"	does not reli	eve the oper	ator of	liability
should their op	perations hav	re failed to a	dequately	investigate and r	emediat	e contaminati	on that pose a thr	eat to g	ground water	, surface wa	ter, hui	nan health
federal, state, o				tance of a C-141	report d	loes not reliev	e the operator of i	respons	sibility for co	ompliance w	ith any	other
,, c, c		1/ 1					OIL CON	SERV	VATION	DIVISIC	N	
C ¹	Č.	11.1~								=~~~		
Signature:		<u>11 V</u>							04			
Printed Name:	Jamon Hohe	ensee				Approved by	Environmental S	pecialis	st:	Y		
Title: Environr	mental Denra	contotivo				Approval Dat	7/17/2018		True in ation T	Da#a.		
Title: Environr						Approval Dat	e:		Expiration I			
E-mail Addres	s: jamon_ho	hensee@eog	gresources	.com		Conditions of	Approval:			Attached	d l	
Date: 7-	-16-18			432-556-8074	٤	see attach	ned directive	•				
Attach Additi	onal Sheets	If Necessa	ary		Г		- 1					
		LOV/	10100/	0040	''	1RP-5125) In∩V	1210	840745		Y181	9841663

nOY1819840745

pOY1819841663

Released to Imaging: 6/30/2023 9:31:22 AM

fOY1819840649

Received by OCD: 6/1/2023 12:44:31 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 21 of 141
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Received by OCD: 6/1/2023	12:44:31 PM State of New Mexico			Page 22 of 141
			Incident ID	
Page 4	Oil Conservation Divisio	n	District RP	
			Facility ID	
			Application ID	
regulations all operators are republic health or the environm failed to adequately investigat addition, OCD acceptance of and/or regulations. Printed Name:	nation given above is true and complete to t equired to report and/or file certain release r ent. The acceptance of a C-141 report by th te and remediate contamination that pose a t a C-141 report does not relieve the operator	notifications and perform c the OCD does not relieve the threat to groundwater, surfa- of responsibility for comp Title: Date:	orrective actions for rele e operator of liability sh ace water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by: Jocely	n Harimon	Date: <u>06</u>	/05/2023	

Page 6

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following in	tems must be included in the closure report.						
A scaled site and sampling diagram as described in 19.15.29.11 NMAC							
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)							
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)						
Description of remediation activities							
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in						
Printed Name:	Title:						
Signature: <u>James F Kennedy</u> email:	Date:						
email:	Telephone:						
OCD Only							
Received by: Jocelyn Harimon	Date:06/05/2023						
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.							
Closure Approved by:	Date: 06/30/2023						
Printed Name: Jocelyn Harimon	Title: Environmental Specialist						
/							

•

Appendix B

1RP-5125

NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

Received by OCD: 6/1/2023 12:44:31 PM wrrs/ReportProxy?queryData=%7B"report"%3A"waterColumn"%2C%0A"BasinDiv"%3A"true"%2C%0A"BasinDiv"%3A"true"%2C%0A"BasinDiv"%3A"true"%2C%0A"BasinDiv"%3A"true"%2C%0A"BasinDiv"%3A"true"%2C%0A"BasinDiv"%3A"true"%2C%0A"BasinDiv

and Safe	V								ate Eng epth te		ter	
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD been rep O=orpha C=the file closed)	laced, ned,			rs are 1=NW 2= rs are smallest	to	4=SE) NAD83 L	JTM in r	neters)	(In fe	et)	
POD Number <u>C 02308</u>	Code	POD Sub- basin CUB	County LE		Sec Tws Rng 10 24S 33E			Y 864* 🥌	DistanceDep 741	thWellDept 40		/ater olumn 20
								Aver	age Depth to Wa	ater:	20 fee	et
									Minimum Dep	oth:	20 fee	et
									Maximum Dep	oth:	20 fee	et
Record 1 Count: <u>UTMNAD83 Radiu</u>	us Search ((in mete	<u>rs):</u>									
Easting (X): 63	5081		Nort	hing (Y):	3568094.78		Radius	s: 800				
*UTM location was deriv The data is furnished by th concerning the accuracy, o	he NMOSE/IS	SC and is	accepte						e OSE/ISC make n	o warranties, e:	xpressed or i	mplied,

4/19/21 10:56 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

USGS

National Water Information System: Web Interface USGS Water Res

USGS Home Contact USGS Search USGS

✓ GO

Data Category: Geographic Area: Groundwater V New Mexico

Click to hideNews Bulletins

Explore the **NEW** <u>USGS National Water Dashboard</u> to access real-time data from over 13,500 stations nationwide.
 Full News

Groundwater levels for New Mexico

Click to hide state-specific text

* IMPORTANT: Next Generation Station Page

Search Results -- 1 sites found

Agency code = usgs site_no list = • 321348103340401

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321348103340401 24S.33E.10.13123

Lea County, New Mexico Latitude 32°14'04.9", Longitude 103°34'02.4" NAD83 Land-surface elevation 3,592 feet above NAVD88 The depth of the well is 36 feet below land surface. This well is completed in the Other aquifers (N9990THER) national aquifer. This well is completed in the Other aquifers (N9990THER) national aquifer.

Output formats

Table of data Tab-separated data

Graph of data	
Reselect period	
	-

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water-level approval status
1953-11-27		D	62610		3565.69	NGVD29	1	Z			
1953-11-27		D	62611		3567.40	NAVD88	1	Z			
1953-11-27		D	72019	24.60			1	z			
1973-04-17		D	62610		3568.09	NGVD29	1	Z			
1973-04-17		D	62611		3569.80	NAVD88	1	z			
1973-04-17		D	72019	22.20			1	Z			
1976-01-21		D	62610		3569.90	NGVD29	1	Z			
1976-01-21		D	62611		3571.61	NAVD88	1	Z			
1976-01-21		D	72019	20.39			1	Z			
1981-03-20		D	62610		3570.27	NGVD29	1	Z			
1981-03-20		D	62611		3571.98	NAVD88	1	Z			
1981-03-20		D	72019	20.02			1	Z			
1986-03-07		D	62610		3574.42	NGVD29	1	Z			
1986-03-07		D	62611		3576.13	NAVD88	1	Z			
1986-03-07		D	72019	15.87			1	Z			
1991-05-24		D	62610		3568.37	NGVD29	1	Z			
1991-05-24		D	62611		3570.08	NAVD88	1	Z			
1991-05-24		D	72019	21.92			1	Z			
1996-03-13		D	62610		3568.20	NGVD29	1	S			
1996-03-13		D	62611		3569.91	NAVD88	1	S			
1996-03-13		D	72019	22.09			1	S			

Explanation					
Section	Code	Description			
Water-level date-time accuracy	D	Date is accurate to the Day			
Parameter code	62610	Groundwater level above NGVD 1929, feet			
Parameter code	62611	Groundwater level above NAVD 1988, feet			
Parameter code	72019	Depth to water level, feet below land surface			
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988			
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929			
Status	1	Static			
Method of measurement	S	Steel-tape measurement.			
Method of measurement	Z	Other.			
Measuring agency		Not determined			
Source of measurement		Not determined			
Water-level approval status	А	Approved for publication Processing and review completed.			

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms

Subscribe for system changes News

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2021-04-19 13:14:36 EDT 0.34 0.31 nadww01

USA.gov

.

New Mexico NFHL Data

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Receipted by OCD: 6/1/2023 12:44:31 PM

National Water Information System: Mapper

USGS Home Contact USGS Search USGS

Help Info

.

•

Appendix C

February 7, 2019

Reference No. 088210-75

James Kennedy Environmental Representative 5509 Champions Dr. Midland, Texas 79706 Via E-Mail: James_Kennedyeogresources.com

Dear Mr. Kennedy:

Re: Assessment Summary Report Mars 10 SC 506 1RP-5125 EOG Resources, Inc. Site Location: Unit M, Sec. 3, T 24-S, R 33-E (Lat 32.2414°, Long -103.5662°) Lea County, New Mexico

GHD Services Inc. (GHD) is pleased to present this letter report for the above-referenced site. Assessment activities were performed at the Mars 10 SC 506 site (hereafter referred to as the "Site"), on July 16, 25, and 27, 2018 and December 10, 2018 by GHD. The Site is located within Unit M, Section 23, Township 24 South, Range 33 East, in Lea County, New Mexico, approximately 23 miles northwest of Jal, New Mexico (Figure 1). The surface owner of the Site is the New Mexico State Land Office (NMSLO).

1. Site Background

This Site assessment concerns the investigation of the impacts from a third party discharge of production fluids that occurred on or around July 9, 2018. The release was reported to the New Mexico Oil Conservation Division (NMOCD) by EOG Resources, Inc. (EOG) personnel on July 16, 2018. The Initial C-141 (Attachment 1) reported a release of 60 barrels (bbls) of produced water with no liquids recovered. The release occurred along an access road that leads to the Mars 10 CTB (see Attachment 2 for photographs).

2. Regulatory Framework

The nearest well to the Site, as determined by a well record search on the New Mexico Office of the State Engineer's (OSE) online database, is located approximately 0.5 mile from the Site with a listed depth to water of 20 feet below ground surface (ft bgs) (See Attachment 3). A playa exists within 200 feet of the southern end of the release and therefore, in accordance with 19.15.29, the closure criteria is based on a less than 50 foot depth to water beneath the Site (see Attachment 4). In accordance with Table 1 of 19.15.29 NMAC, soil closure criteria for chloride are 600 milligrams per kilogram (mg/kg); 100 mg/kg for total TPH (total petroleum hydrocarbons); 50 mg/kg for BTEX (benzene, toluene, ethylbenzene and xylenes) and 10 mg/kg for benzene. Table 2.1 of 19.15.29 NMAC is presented below:

Depth below bottom of release to ground water less than 10,000 mg/l TDS	Constituent	Method*	Limit**
<u><</u> 50 feet	Chloride***	EPA 300.0	600 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8015M	10 mg/kg
51 feet-100 feet	Chloride***	EPA 300.0	10,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg
Greater than 100 feet	Chloride***	EPA 300.0	20,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8015M	10 mg/kg

Table 2.1 Table 1: Closure Criteria for Soils Impacted by Release

3. GHD Assessment Activities

Initial, pre-emptive spill response measures were conducted upon the approval of Ryan Mann with the NMSLO. The initial response consisted of mechanical scraping and excavation to minimize migration and spread of produced water to an unnamed playa lake approximately 200 feet to the south (see Figure 2).

GHD performed initial assessment activities on July 16, 2018 prior to the enactment of 19.15.29 NMAC. A total of four test pits utilizing a backhoe were dug to depths ranging from 0.5 to 6 ft bgs and two hand auger soil borings were advanced to depths ranging from 0.5 to 1 ft bgs. Collected soil samples were field screened for chloride content using HACH test strips. Selected samples were submitted to Hall Environmental Analysis Laboratory (HEAL) located in Albuquerque, New Mexico, for chloride analysis by EPA Method 300.0, BTEX by EPA method 8021 and for TPH (gasoline, diesel and oil range organics) by EPA method 8015.

Chloride field screening concentrations ranged from <120 to >2,560 milligrams per liter (mg/L). The highest concentrations were contained in soils from ground surface to 0.5 ft bgs. Chloride laboratory concentrations ranged from below the laboratory reporting limit (LRL) to 620 mg/kg. The sample collected from TP-2 at 4 ft bgs exceeded the Table 1 closure criteria of 600 mg/kg. All BTEX and TPH results were below the LRLs (non-detect).

Soil sample locations and analytical results are summarized on Figure 2 and in Table 1. The laboratory reports are included in Attachment 5.

GHD and SDR Enterprises LLC initiated contaminated soil scraping and excavation at the southern end of the release near the playa on July 25, 2018 after receiving authorization from Ryan Mann. Subsequently, on July 27, 2018, all work was stopped due to the potential presence of cultural materials.

A meeting with concerned parties was held at the NMSLO on November 16, 2018 to discuss the continuation of assessment/remediation activities in light of recognized archeological resources on the Site. As a result of that meeting, GHD performed an additional assessment under the supervision of a New Mexico permitted archaeologist on December 10, 2018 that included advancing eight additional hand auger borings (HA-12 through HA-19) and the TP-2 location was deepened to 5 ft bgs with a hand auger (HA-2). Soil samples were collected from 6 inches and 1 ft bgs in HA-12 through HA-19 and 5 ft bgs in HA-2.

The samples were submitted to HEAL for chloride analysis by EPA Method 300. Chloride concentrations ranged from below the LRL to 660 mg/kg. The sample collected from HA-2 at 5 ft bgs exceeded the Table 1 closure criteria and was collected at the third party release point. All remaining soil sample chloride concentrations were below the Table 1 closure criteria. All soils disturbed via the hand auger process were observed by an archeologist to evaluate for the presence of cultural resources. The results of the archeological analyses are presented under separate cover.

4. Summary and Conclusions

A release from a third party discharge occurred on or around July 9, 2018. Initial, pre-emptive spill response measures were conducted upon the approval of Ryan Mann with the NMSLO. The initial response consisted of mechanical scraping and excavation to minimize migration and spread of produced water to an unnamed playa lake. Confirmation core sampling was conducted to assess the vertical and horizontal extent of the spill.

One soil sample submitted to a laboratory for chloride analysis contained a chloride concentration of 620 mg/kg that exceeds the Table 1 closure criteria of 600. This sample was collected from TP-2 at a depth of 4 ft bgs. Initial excavation activities were ceased upon determining that the release was located in a cultural resource area. An additional assessment was performed on December 10, 2018 and one soil sample collected from TP-2 at 5 ft bgs contained a soil chloride concentration of 660 mg/kg. The December Site assessment was conducted in conjunction with NMSLO oversight to limit further disturbance of potential cultural resources.

Based on laboratory results, impacted soil concentrations slightly exceeding the Table 1 closure criteria exist at the TP-2 location. Soil in the TP-1, TP-3, HA-5, and HA-6 locations contained elevated field screening chloride levels at one half or 2 ft bgs, however, laboratory concentrations for samples collected at 1 ft bgs in HA-5 and HA-6 were below the Table 1 criteria. Potentially, based on the nature of the cultural resource area, the NMOCD and NMSLO may elect to initiate further assessment and remedial activities as necessary.

At the request of the NMSLO and NMOCD, further remedial activities, if any, would be initiated. Soils would be screened in the field to guide any excavation activities and soil samples would be collected for laboratory chloride analysis.

Should you have any questions, or require additional information regarding this submittal please feel free to contact Alan Brandon at (505) 884-0672.

Sincerely,

GHD

Maller

Jeff Walker Geologist

AB/mk/14

All Brand

Alan Brandon Senior Project Manager

Encl. Figure 1 – Site Location Map
Figure 2 – Sample Location Map
Table 1 – Summary of Soil Analytical Data
Attachment 1 – June 16, 2018 C-141 Initial
Attachment 2 – Photographs
Attachment 3 – NMOSE Well Search
Attachment 4 – USGS ½ Mile Radius Water Resources Map
Attachment 5 – HEAL Laboratory Reports

Figures

•

CAD File: 1\CAD)File: 1\CAD)File: 1\CAD)File: 0882-1088210-EQG-Madera Ridge 25-1\088210-75(000)GN-DL001.dwg Released to Imaging: 6/30/2023 9:31:22 AM

EOG RESOURCES, INC LEA COUNTY, NEW MEXICO MARS 10 SC 506

SAMPLE LOCATION MAP

的复数形式 化合理 化合理 化合理 化合理 化合理 化合理 化合理
and the second
Contraction of the second state of the second state of the second s
a section and the section of the section of the section and the section and the section and the section and the
and the second state of the second
and the second
the second s
5. 10 10 10 10 10 10 10 10 10 10 10 10 10
The second se
and the second of the second o
the second se
「「「「「「「「「」」」」「「「」」」「「」」」「「」」」」」
the state of the s
the same the same the same start and
the second
A CARD A
A start and a start of the second start of the
これの語言で、自己、「自己」の意思、意思、自己的なながない。
and the second
and a set of the set of
and the second state with the second state of the
NOTES:
NOTES: 1. Sample results are in milligram per kilogram (mg/kg).
1. Sample results are in milligram per kilogram (mg/kg).
1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate.
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs.
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs.
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs.
1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate. 3. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location
 1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate. 3. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area
 1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate. 3. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft)
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft) ND Not Detected
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft)
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft) ND Not Detected NA Not Analyzed
 1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate. 3. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft) ND Not Detected NA Not Analyzed
 Sample results are in milligram per kilogram (mg/kg). Locations are approximate. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft) ND Not Detected NA Not Analyzed
 1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate. 3. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft) ND Not Detected NA Not Analyzed
 1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate. 3. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft) ND Not Detected NA Not Analyzed Lat/Lorg: 32.241455° North, 103.566235° West
 1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate. 3. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft) ND Not Detected NA Not Analyzed
 1. Sample results are in milligram per kilogram (mg/kg). 2. Locations are approximate. 3. Yellow shaded cells indicate analytical samples that exceed the RRALs. LEGEND Test Pit Location Hand Auger Location Approximate Spill Area Initial Scraping and Excavation Limits Depth Depth of Sample (ft) ND Not Detected NA Not Analyzed Lat/Lorg: 32.241455° North, 103.566235° West

ging: 6/30/2023 9:31:22 AM

FIGURE 2

Tables

•

Page 1 of 1

Table 1Mars 10 SC 506Summary of Soil Analytical Data

	Depth				Ethyl-			TPH	TPH	TPH	Total	
Sample ID	(feet)	Date	Benzene	Toluene	benzene	Xylenes	BTEX	(GRO)	(DRO)	(MRO)	TPH	Chloride
S-088210-75-071618-PL-TP-1-2	2	7/16/2018	<0.023	<0.047	< 0.047	< 0.094	<0.221	<4.7	<9.9	<50	<64.6	80
S-088210-75-071618-PL-TP-2-4	4	7/16/2018	<0.023	<0.046	< 0.046	<0.092	<0.207	<4.6	<10	<50	<64.6	620
S-088210-75-121018-PL-HA-2-5	5	12/10/2018	NA	NA	NA	NA		NA	NA	NA		660
S-088210-75-071618-PL-TP-3-4	4	7/16/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-071618-PL-TP-4-2	2	7/16/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-071618-PL-HA-5-1	1	7/16/2018	<0.025	<0.049	<0.049	<0.098	<0.221	<4.9	<9.9	<50	<64.8	180
S-088210-75-071618-PL-HA-6-1	1	7/16/2018	NA	NA	NA	NA		NA	NA	NA		280
S-088210-75-121018-PL-HA-12-1	1	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-12-2	2	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-13-1	1	12/10/2018	NA	NA	NA	NA		NA	NA	NA		60
S-088210-75-121018-PL-HA-13-2	2	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-14-6"	0.5	12/10/2018	NA	NA	NA	NA		NA	NA	NA		34
S-088210-75-121018-PL-HA-14-1	1	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-15-6"	0.5	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-15-1	1	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-16-6"	0.5	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-16-1	1	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-17-6"	0.5	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-17-1	1	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-18-6"	0.5	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-18-1	1	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-19-6"	0.5	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
S-088210-75-121018-PL-HA-19-1	1	12/10/2018	NA	NA	NA	NA		NA	NA	NA		<30
NMOCD Table 1 Closur	e Limits		10		Total BTE	EX: 50			Total T	PH: 100		600

Notes:

All sample laboratory results are in milligrams per kilogram

NMOCD = New Mexico Oil Conservation Division

Table 1 Closure Limits = In accordance with 19.15.29 Release Rule

NA = Not Analyzed

BTEX =Benzene, Toluene, Ethylbenzene, Xylenes

TPH = Total Petroleum Hydrocarbons

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil Range Organics

TP = Test Pit

HA = Hand Auger

BS = Bottom Sample

Highlighted = Exceeds NMOCD Limits

GHD-088210-75

Attachments

•

Attachment 1 June 16, 2018 C-141 Initial

•

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 8750

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa	1 Fe, NM 875	505			
Release Notificat	ion and Co	orrective A	ction		
	OPERA	TOR	🗌 In	itial Report	Final Report
Name of Company: EOG Resources, Inc		mon Hohensee			
Address: 5509 Champions Dr, Midland TX, 7976		No.: 432-556-80			
Facility Name: Mars 10 SC 506	Facility Ty	be: Production F	acility		
Surface Owner: State Lands Mineral Owner	er: State		API 1	No.	
LOCATI	ON OF RE	LEASE			
	orth/South Line	Feet from the	East/West Line	e County	
M 3 24S 33E					
Latitude32.2414	Longitud	e103.56	62		
NATUR	RE OF REL	EASE			
Type of Release: Produced Water		Release: 60bbls		e Recovered: ()
Source of Release: illegal dump		Hour of Occurrence		ld Hour of Dis	covery
Was Immediate Notice Given?	7/9/18 at n		7/12/1	8 1300	
🗌 Yes 🖾 No 🗌 Not Requir	red If YES, To	whom?			
By Whom?	Date and I				
Was a Watercourse Reached?	If YES, V	olume Impacting	the Watercourse.		
If a Watercourse was Impacted, Describe Fully.*					
na		RECEIVE	-D		
				~ .	
		By Olivia	Yu at 11:0	2 am, Ju	ıl 17, 2018
Describe Cause of Problem and Remedial Action Taken.*		144 A			
Illegal dump of approximately 60bbls of PW was found on lease road	heading to the M	ars 10 CTB on 7/	12/18. No fluids	were recovere	d.
	C				
Describe Area Affected and Cleanup Action Taken.*		· · ·			
Area will be delineated and remediated to regulatory standards. Contar	minated soils wil	l be transferred to	an approved dis	posal facility.	Site will be brought
back to natural state with appropriate seed mixes for the area.					
I hereby certify that the information given above is true and complete t	to the best of my	knowledge and u	nderstand that p	rsuant to NM	CD rules and
regulations all operators are required to report and/or file certain releas	se notifications a	nd perform correc	tive actions for r	eleases which	may endanger
public health or the environment. The acceptance of a C-141 report by	the NMOCD m	arked as "Final R	eport" does not r	elieve the oper	ator of liability
should their operations have failed to adequately investigate and remed	liate contaminati	on that pose a thr	eat to ground wa	ter, surface wa	ter, human health
or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	rt does not reliev	e the operator of	responsibility for	compliance w	ith any other
- 1/ 1		OIL CON	SERVATIO	N DIVISIC	N
		011 001			
Signature: Jon 14			\Box	4	
Printed Name: Jamon Hohensee	Approved by	Environmental S	pecialist:	\mathbf{r}	
		7/17/2018	7		
Title: Environmental Representative	Approval Dat	te: //1//2010	Expiratio	n Date:	
E-mail Address: jamon_hohensee@eogresources.com	Conditions of	f Approval:		Attached	
Date: $7 - 16 - 18$ Phone: 432-556-8074	see attac	ned directive	•	- mannou	
Attach Additional Sheets If Necessary	Į L	<u></u>]]
	1RP-512		181984074	5 nO	Y1819841663
fOY1819840649			101007074		

Operator/Responsible Party,

The OCD has received the form C-141 you provided on _7/16/2018_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number _1RP-5125_ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before _8/17/2018_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

Attachment 2 Photographs

•

Photo 1 - Third party release point

Photo 2 - Looking south towards the playa

Site Photographs

GHD | Mars 10 SC 506 - Assessment Summary Report | 088210 (75) | Page 1

Attachment 3 NMOSE Well Search

.

0.46 mile 5,5w

sta State states merulat Street	W										tate En epth			ſ	
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD h been repla O=orphane C=the file i closed)	aced, ed,			ters a		IW 2=N allest to		4=SE) NAD83 U	TM in	meters)	(Ir	n feet)		
POD Number <u>C 02308</u>	Code b	POD Sub- basin CUB	County LE		4 Sec	: Tws 24S		X 634953	356736	Υ 64* 💽	DistanceDe 742	pthWellDe 40	pthWate 20		
										Ave	rage Depth to V	Vater:	20) feet	
											Minimum D	epth:	20) feet	
											Maximum De	epth:	20) feet	
Record Count:1						*******									
UTMNAD83 Radiu	s Search (in	n meter	rs):												
Easting (X): 635	5079.72		North	ning (Y)	3568	3095.8			Radius	: 1000	r.				
*UTM location was derive	ed from PLSS	- see H	lelp												
The data is furnished by the concerning the accuracy, concerning the accuracy, concerning the accuracy of the											e OSE/ISC make	no warranties	s, expresse	d or imp	olied,
10/30/18 1:51 PM											WATER CC WATER	LUMN/ AVE	RAGE DE	PTH T	0

Attachment 4 USGS 1/2 Mile Radius Water Resources Map

.

Scale: 1:36,112 Zoom Level: 14 0.6mi

-103.550 32.241 Degrees

https://viewer.nationalmap.gov/advanced-viewer/viewer/index.html Released to Imaging: 6/30/2023 9:31:22 AM

10/31/2018

Attachment 5 HEAL Laboratory Report

.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

July 30, 2018

Alan Brandon GHD 6121 Indian School Road, NE #200 Albuquerque, NM 87110 TEL: (505) 884-0672 FAX

OrderNo.: 1807B53

RE: Mars 10 CBT

Dear Alan Brandon:

Hall Environmental Analysis Laboratory received 6 sample(s) on 7/20/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Envi	ronmental Analysis	s Laboratory	, Inc.			Ι	Analytical Report Lab Order: 1807B53 Date Reported: 7/30		3
CLIENT:	GHD				L	ab C)rder: 1807E	353	
Project:	Mars 10 CBT								
Lab ID:	1807B53-001		С	ollecti	on Date	: 7 /1	16/2018 1:10:00 PM	M	
Client Sample	e ID: S-088210-75-071618	-PL-TP-1-2'			Matrix	: SC	DIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Ba	tch I
EPA METHO	D 300.0: ANIONS						Ana	alvst:	JRR
Chloride		80	30		mg/Kg	20	7/26/2018 12:57:16	-	
	D 8015M/D: DIESEL RANG								
-								alyst:	
-	e Organics (DRO)	ND	9.9		mg/Kg	1	7/25/2018 8:27:34		3936
Motor Oil Rar Surr: DNO	nge Organics (MRO)	ND 108	50 50.6-138		mg/Kg %Rec	1 1	7/25/2018 8:27:34 7/25/2018 8:27:34		3936 3936
			20.0-130		%Rec	I			
-	D 8015D: GASOLINE RANG							-	NSB
	nge Organics (GRO)	ND	4.7		mg/Kg	1	7/25/2018 1:13:53		3935
Surr: BFB		90.6	15-316		%Rec	1	7/25/2018 1:13:53	AM	3935
EPA METHO	D 8021B: VOLATILES						Ana	alyst:	NSE
Benzene		ND	0.023		mg/Kg	1	7/25/2018 1:13:53	AM	3935
Toluene		ND	0.047		mg/Kg	1	7/25/2018 1:13:53	AM	3935
Ethylbenzene	e	ND	0.047		mg/Kg	1	7/25/2018 1:13:53	AM	3935
Xylenes, Tota	al	ND	0.094		mg/Kg %Rec	1	7/25/2018 1:13:53 7/25/2018 1:13:53		3935 3935
Client Sample	e ID: S-088210-75-071618	-PL-TP-2-4'			Matrix	: SC	DIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Ba	tch I
EPA METHO	D 300.0: ANIONS						Ana	alyst:	JRR
Chloride		620	30		mg/Kg	20	7/26/2018 1:34:29	PM	3942
	D 8015M/D: DIESEL RANG						Ana	alyst:	Irm
	e Organics (DRO)	ND	10		mg/Kg	1	7/25/2018 8:52:18	-	3936
-	nge Organics (MRO)	ND	50		mg/Kg	1	7/25/2018 8:52:18		3936
Surr: DNO		103	50.6-138		%Rec	1	7/25/2018 8:52:18		3936
	D 8015D: GASOLINE RANG	F					Ana	alvst.	NSE
-	nge Organics (GRO)	ND	4.6		mg/Kg	1	7/25/2018 1:37:05	-	3935
Surr: BFB	ige organics (Groo)	86.7	4.0 15-316		%Rec	1	7/25/2018 1:37:05		3935
	D 8021B: VOLATILES	00.7	10 010		, 31 (00	•			
	D OUZID. VULATILES		0.000		m = // -			-	NSE
Benzene			0.023		mg/Kg	1	7/25/2018 1:37:05		3935
Toluene Ethylbenzene	2	ND ND	0.046 0.046		mg/Kg mg/Kg	1 1	7/25/2018 1:37:05 7/25/2018 1:37:05		3935 3935
Xylenes, Tota		ND	0.048		mg/Kg	1	7/25/2018 1:37:05		3935
-	omofluorobenzene	96.7	80-120		%Rec	1	7/25/2018 1:37:05		3935
	to the QC Summary report an			gged (
	 Value exceeds Maximum Con 		В		-	-	ne associated Method B		
-	D Sample Diluted Due to Matrix		E		e above qu				
			1				·· 2-		
]	H Holding times for preparation	or analysis exceeded	J	Anal	yte detecte	d belo	w quantitation limits	Der	o 1 -
	H Holding times for preparationNOt Detected at the Reporting		J P		yte detecte ple pH Not		-	Pag	ge 1 of

RL Reporting Detection Limit

Received by OCD: 6/1/2023 12:44:31 PM

Page 54 of 141

.

Released to Imaging: 6/30/2023 9:31:22 AM

PQL Practical Quanitative Limit

Page 2 of 7

.

Hall Environ	mental Analysis La	aboratory,	Inc.			Ι	Analytical Report Lab Order: 1807B53 Date Reported: 7/30	/2018	
	GHD Aars 10 CBT				L	.ab C)rder: 1807F	353	
Lab ID:	1807B53-003		C	ollecti	on Date	: 7/1	6/2018 2:14:00 PI	М	
Client Sample ID:	S-088210-75-071618-PL-	TP-3-4'			Matrix	: SC	DIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batc	h ID
EPA METHOD 300	.0: ANIONS						Ana	alyst: J	RR
Chloride		ND	30		mg/Kg	20	7/26/2018 1:46:54	PM 3	9427
Lab ID:	1807B53-004		С	ollecti	on Date	: 7/1	6/2018 2:48:00 PI	М	
Client Sample ID:	S-088210-75-071618-PL-	TP-4-2'			Matrix	: SC	DIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batc	h ID
EPA METHOD 300	.0: ANIONS						Ana	alyst: J	RR
Chloride		ND	30		mg/Kg	20		2	9427
Lab ID:	1807B53-005		С	ollecti	on Date	: 7/1	6/2018 3:54:00 PI	М	
Client Sample ID:	S-088210-75-071618-PL-	HA-5-1'			Matrix	: SC	DIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batc	h ID
EPA METHOD 300	.0: ANIONS						Ana	alyst: J	RR
Chloride		180	30		mg/Kg	20		-	9427
EPA METHOD 801	5M/D: DIESEL RANGE OR	GANICS					Ana	alyst: Ir	m
Diesel Range Orga	nics (DRO)	ND	9.9		mg/Kg	1	7/25/2018 9:17:03	PM 3	9361
Motor Oil Range Or	ganics (MRO)	ND	50		mg/Kg	1	7/25/2018 9:17:03	PM 3	9361
Surr: DNOP		118	50.6-138		%Rec	1	7/25/2018 9:17:03	PM 3	9361
EPA METHOD 801	5D: GASOLINE RANGE						Ana	alyst: N	ISB
Gasoline Range Or	ganics (GRO)	ND	4.9		mg/Kg	1	7/25/2018 2:00:19	AM 3	9352
Surr: BFB		88.6	15-316		%Rec	1	7/25/2018 2:00:19	AM 3	9352
EPA METHOD 802	1B: VOLATILES						Ana	alyst: N	ISB
Benzene		ND	0.025		mg/Kg	1	7/25/2018 2:00:19	AM 3	9352
Toluene		ND	0.049		mg/Kg	1	7/25/2018 2:00:19	AM 3	9352
Ethylbenzene		ND	0.049		mg/Kg	1	7/25/2018 2:00:19		9352
Xylenes, Total		ND	0.098		mg/Kg	1	7/25/2018 2:00:19		9352
Surr: 4-Bromoflue	orobenzene	98.8	80-120		%Rec	1	7/25/2018 2:00:19	AM 3	9352

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method E	Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	1 45
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit	

Hall Enviro	nmental Analysis La	boratory,	Inc.		L	Analytical R Lab Order: 18 Date Reported:	07B53	18
CLIENT: Project:	GHD Mars 10 CBT				Lab C)rder:	1807B53	
Lab ID: Client Sample ID Analyses	1807B53-006 : S-088210-75-071618-PL-I	HA-6-1' Result			rix: SC	6/2018 4:20 DIL Date Analy		Batch ID
EPA METHOD 30 Chloride	00.0: ANIONS	280	30	mg/ł		7/26/2018 2	Analys	st: JRR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 7
- P Sample pH Not In Range
- RL Reporting Detection Limit

Client: Project:	GHD Mars 10	CBT						
Sample ID	MB-39427	SampType:	MBLK	Tes	tCode: EPA Method	300.0: Anions		
Client ID:	PBS	Batch ID:	39427	R	RunNo: 52996			
Prep Date:	7/26/2018	Analysis Date:	7/26/2018	S	SeqNo: 1743207	Units: mg/Kg		
Analyte		Result PQI	_ SPK value	SPK Ref Val	%REC LowLimit	HighLimit %	RPD RPDLimit	Qual
Chloride		ND 1	.5					
Sample ID	LCS-39427	SampType:	LCS	Tes	tCode: EPA Method	300.0: Anions		
Client ID:	LCSS	Batch ID:	39427	R	RunNo: 52996			
Prep Date:	7/26/2018	Analysis Date:	7/26/2018	S	SeqNo: 1743208	Units: mg/Kg		
Analyte		Result PQ	_ SPK value	SPK Ref Val	%REC LowLimit	HighLimit %	RPD RPDLimit	Qual
Chloride		14 1	.5 15.00	0	95.3 90	110		

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

1807B53

30-Jul-18

WO#:

Page 4 of 7

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1807B53
	30-Jul-18

Client: GHI Project: Mar	D s 10 CBT								
Sample ID MB-39422	SampType: M	IBLK	Test	Code: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID: 3	9422	R	unNo: 5 2	2984				
Prep Date: 7/26/2018	Analysis Date: 7	7/26/2018	S	eqNo: 17	741732	Units: %Red	;		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	8.8	10.00		88.4	50.6	138			
Sample ID LCS-39422	SampType: L	cs	Test	Code: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch ID: 3	9422	R	unNo: 52	2984				
Prep Date: 7/26/2018	Analysis Date: 7	7/26/2018	S	eqNo: 17	741733	Units: %Ree	;		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	4.3	5.000		86.1	50.6	138			
Sample ID MB-39361	SampType: M	IBLK	Test	Code: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID: 3	9361	R	unNo: 52	2953				
Prep Date: 7/24/2018	Analysis Date: 7	7/25/2018	S	eqNo: 17	741734	Units: mg/K	g		
Prep Date: 7/24/2018 Analyte	Analysis Date: 7 Result PQL		S SPK Ref Val		7 41734 LowLimit	Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
Analyte Diesel Range Organics (DRO)	Result PQL ND 10	SPK value				•	•	RPDLimit	Qual
Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRC	Result PQL ND 10 D) ND 50	SPK value		%REC	LowLimit	HighLimit	•	RPDLimit	Qual
Analyte Diesel Range Organics (DRO)	Result PQL ND 10	SPK value				•	•	RPDLimit	Qual
Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRC	Result PQL ND 10 D) ND 50	SPK value) 10.00	SPK Ref Val	%REC 96.5	LowLimit 50.6	HighLimit	%RPD		Qual
Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO Surr: DNOP	- Result PQL ND 10 0) ND 50 9.7	SPK value) 10.00	SPK Ref Val	%REC 96.5	LowLimit 50.6	HighLimit 138	%RPD		Qual
Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO Surr: DNOP Sample ID LCS-39361	Result PQL ND 10 ND 50 9.7 SampType: L	SPK value) 10.00 CS 9361	SPK Ref Val Test	%REC 96.5 Code: EF	LowLimit 50.6 PA Method 2953	HighLimit 138	%RPD		Qual
Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO Surr: DNOP Sample ID LCS-39361 Client ID: LCSS	Result PQL ND 10 ND 50 9.7 SampType: L Batch ID: 3	SPK value 10.00 CS 9361 7/25/2018	SPK Ref Val Test	%REC 96.5 Code: EF unNo: 52 aeqNo: 17	LowLimit 50.6 PA Method 2953	HighLimit 138 8015M/D: Die	%RPD		Qual
Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO Surr: DNOP Sample ID LCS-39361 Client ID: LCSS Prep Date: 7/24/2018	Result PQL ND 10 ND 50 9.7 SampType: L Batch ID: 39 Analysis Date: 7	SPK value) 10.00 CS 9361 7/25/2018 SPK value	SPK Ref Val Test R S	%REC 96.5 Code: EF unNo: 52 aeqNo: 17	LowLimit 50.6 PA Method 2953 741735	HighLimit 138 8015M/D: Die Units: mg/K	%RPD	e Organics	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 5 of 7

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1807B53
	30-Jul-18

Client: Project:	GHD Mars 10	CBT							
Sample ID	MB-39339	SampType	e: MBLK	Test	Code: EPA Method	8015D: Gaso	line Rang	e	
Client ID:	PBS	Batch ID	39339	Ru	unNo: 52947				
Prep Date:	7/23/2018	Analysis Date	: 7/24/2018	Se	eqNo: 1740052	Units: %Rec	:		
Analyte		Result P	QL SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		920	1000		92.1 15	316			
Sample ID	LCS-39339	SampType	e: LCS	Test	Code: EPA Method	8015D: Gaso	line Rang	e	
Client ID:	LCSS	Batch ID	39339	Ru	unNo: 52947				
Prep Date:	7/23/2018	Analysis Date	7/24/2018	Se	eqNo: 1740053	Units: %Rec	;		
Analyte		Result P	QL SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		1000	1000		103 15	316			
-									
Sample ID	MB-39352	SampType	E MBLK	Test	Code: EPA Method	8015D: Gaso	line Rang	e	
Sample ID Client ID:		SampType Batch ID			Code: EPA Method unNo: 52947	8015D: Gaso	line Rang	e	
	PBS		39352	Ru		8015D: Gaso Units: mg/K	U	e	
Client ID:	PBS	Batch ID Analysis Date	: 39352 : 7/24/2018	Ru Se	unNo: 52947 eqNo: 1740075		U	e RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang	PBS	Batch ID Analysis Date Result P ND	: 39352 : 7/24/2018 PQL SPK value 5.0	Ru Se	unNo: 52947 eqNo: 1740075 %REC LowLimit	Units: mg/K HighLimit	g		Qual
Client ID: Prep Date: Analyte	PBS 7/23/2018	Batch ID Analysis Date Result P	: 39352 : 7/24/2018 PQL SPK value	Ru Se	unNo: 52947 eqNo: 1740075	Units: mg/K	g		Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	PBS 7/23/2018	Batch ID Analysis Date Result P ND	: 39352 : 7/24/2018 : QL SPK value 5.0 1000	Ri Se SPK Ref Val	unNo: 52947 eqNo: 1740075 %REC LowLimit	Units: mg/K HighLimit 316	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	PBS 7/23/2018 e Organics (GRO) LCS-39352	Batch ID Analysis Date Result P ND 950	: 39352 : 7/24/2018 PQL SPK value 5.0 1000 e: LCS	Rt SPK Ref Val Testo	unNo: 52947 eqNo: 1740075 <u>%REC LowLimit</u> 95.3 15	Units: mg/K HighLimit 316	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID	PBS 7/23/2018 te Organics (GRO) LCS-39352 LCSS	Batch ID Analysis Date Result P ND 950 SampType	: 39352 : 7/24/2018 PQL SPK value 5.0 1000 :: LCS : 39352	Ru SPK Ref Val Testo Ru	unNo: 52947 eqNo: 1740075 <u>%REC LowLimit</u> 95.3 15 Code: EPA Method	Units: mg/K HighLimit 316	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID:	PBS 7/23/2018 te Organics (GRO) LCS-39352 LCSS	Batch ID Analysis Date Result P ND 950 SampType Batch ID Analysis Date	: 39352 : 7/24/2018 PQL SPK value 5.0 1000 P: LCS : 39352 : 7/24/2018	Ru SPK Ref Val Testo Ru Se	unNo: 52947 eqNo: 1740075 <u>%REC LowLimit</u> 95.3 15 Code: EPA Method unNo: 52947	Units: mg/K HighLimit 316 8015D: Gaso	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID Client ID: Prep Date: Analyte	PBS 7/23/2018 te Organics (GRO) LCS-39352 LCSS	Batch ID Analysis Date Result P ND 950 SampType Batch ID Analysis Date	: 39352 : 7/24/2018 PQL SPK value 5.0 1000 P: LCS : 39352 : 7/24/2018	Ru SPK Ref Val Testo Ru Se	unNo: 52947 eqNo: 1740075 %REC LowLimit 95.3 15 Code: EPA Method unNo: 52947 eqNo: 1740076	Units: mg/K HighLimit 316 8015D: Gaso Units: mg/K	g %RPD line Rang	RPDLimit e	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 6 of 7

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1807B53
	30. Jul. 18

Page 7 of 7

Client: GH	D									
Project: Man	rs 10 CBT									
Sample ID MB-39339	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBS	Batch	n ID: 39	339	F	RunNo: 5	2947				
Prep Date: 7/23/2018	Analysis D	ate: 7/	24/2018	S	SeqNo: 1	740111	Units: %Re	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	1.0		1.000		101	80	120			
Sample ID LCS-39339	SampT	ype: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSS	Batch	n ID: 39	339	F	RunNo: 5	2947				
Prep Date: 7/23/2018	Analysis D	ate: 7/	24/2018	S	SeqNo: 1	740112	Units: %Re	6		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	1.0		1.000		103	80	120			
Sample ID MB-39352	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBS	Batch	n ID: 39	352	F	RunNo: 5	2947				
Prep Date: 7/23/2018	Analysis D	ate: 7/	24/2018	S	SeqNo: 1	740124	Units: mg/K	ģ		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND ND	0.050								
Xylenes, Total Surr: 4-Bromofluorobenzene		0.10	1.000		108	80	120			
Sample ID LCS-39352 Client ID: LCSS		ype: LC 1 ID: 39			RunNo: 5		8021B: Volat	lies		
Prep Date: 7/23/2018	Analysis D				SeqNo: 1	-	Units: mg/K	'n		
	-						_	-		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.94	0.025	1.000	0	93.8	77.3	128			
Toluene	0.97 0.95	0.050 0.050	1.000 1.000	0 0	97.2 94.6	79.2 80.7	125 127			
Ethylbenzene Xylenes, Total	2.9	0.050	3.000	0	94.6 97.1	80.7 81.6	127			
Surr: 4-Bromofluorobenzene	-	0.10	1.000	U	102	81.6	129			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page	11		· •	11
Page	nı	Π	- 1	41
Luse		vj		

.

HALL ENVIRONMENTAL ANALYSIS LABORATORY		1901 Hawkins N erque, NM 8710 X: 505-345-410	7E 09 San 07	nple Log-In C	Page (
Client Name: GHD	Work Order Number: 18	307B53	:	RcptNo	: 1
Received By: Isaiah Ortiz 7/	20/2018 10:45:00 AM		IG		
Completed By: Michelle Garcia 7/2 Reviewed By: MW 7/20/18 Labeled By ' JAB	20/2018 2:57:45 PM		I Colo Minus G	anue >	
Chain of Custody	0/120/18				
1. Is Chain of Custody complete?	Ye	es 🗹	No 🗌	Not Present	
2. How was the sample delivered?	<u>C</u> (ourier			
Log In				🗆	
3. Was an attempt made to cool the samples?	Ye	es 🔽	No 🗌	NA 🗌	
4. Were all samples received at a temperature of >	•0° C to 6.0°C Ye	es 🔽	No 🗌	NA 🗆	
5. Sample(s) in proper container(s)?	Ye	es 🗸	No 🗌		
6. Sufficient sample volume for indicated test(s)?	Ye	s 🗸	No 🗌		
7. Are samples (except VOA and ONG) properly pre	eserved? Ye	s 🗹	No 🗌		
8. Was preservative added to bottles?	Ye	s 🗌	No 🗹	NA 🗌	
9. VOA vials have zero headspace?	Ye	s 🗌	No 🗌	No VOA Vials 🗹	
10. Were any sample containers received broken?	Ye	s 🗌	No 🗹	# of preserved	
 Does paperwork match bottle labels? (Note discrepancies on chain of custody) 	Ye	s 🗸	No 🗌	bottles checked for pH: (<2 or	>12 unless noted)
2. Are matrices correctly identified on Chain of Cust	ody? Ye	s 🔽		Adjusted?	
3. Is it clear what analyses were requested?	Ye	s 🖌	No 🗆		
 Were all holding times able to be met? (If no, notify customer for authorization.) 	Ye	s 🗸	No 🗌	Checked by:	<u>X12</u>
Special Handling (if applicable)			مذ		
15. Was client notified of all discrepancies with this of	order? Ye	es 🗌	No 🗌	NA 🗹	
Person Notified:	Date				
By Whom:	······································	Mail 📋 Phoi	ne 🗌 Fax	In Person	
Regarding:					
Client Instructions:					
16. Additional remarks:					
17. <u>Cooler Information</u> Cooler No Temp °C Condition Seal Ir	nact Seal No Seal	Data l oi	gned By	I	
1 2.5 Good Yes		-are 0	auen Dà		

eceived by	v OC	C D: 6	/1/2	023	12:4	4:31 P	M (N -	o Y)	Air Bubbles	 '						 _	_			Page 62 o	f 1
ENVIRONMENTAL YSIS LABORATOR									Hdit	X	$ \chi $			X							trout
		<u>о</u>							XILIA ONIANO		X			$ \times$		 					+iral re
Σő	_	8710	107				()		-imos) 0728	×	×	$\overline{\mathbf{X}}$	×	$ \times $	X	 					Vienele
- Z Å	Lcon	MN	45-4,	est					AOV) 80828								_				Ę
		Albuquerque, NM 87109	505-345-4107	Analysis Request		PCB's	2808 /		8081 Pestici									-			notater
HALL ENVI ANALYSIS	ronm	Ionbr	Fax 5	sis R	(*C	PO4,5(°'NO ^s	ON	IO, A) snoinA	<u> </u>											-learly
E S	lenvi	Albu	Ű	naly				slst	ым 8 АЯЭЯ												, ad Iliv
AL	v.hall	ч Ц	975	A		(SMI	S 0728) OL)158) a'HAA				·····			-					I data v
HAL	~~~~	4901 Hawkins NE	505-345-3975				(1.4	9 P	edb (Metho												tractor
		Hawk	05-3						TPH (Metho												aco qu
		901 F	Tel. 5						AB108 H9T							 				:s:	0.000
		46	F						BTEX + MTI											Remarks	- Aller
			1		()	r208) a	'amt ·	3E + ≣≣	BTEX + MTI							 	_			·····	- 3
(د			E				A No.	<u> </u>	HEAL No.	001	002	003	POOL	005	OUP					$\frac{p_{\text{ate}}}{7/19/18} \frac{T_{\text{ime}}}{293C}$ Date Time	This serves as
2 der	-	10 CI51		210-75	iger:	Brandoù	1) Lorary		Preservative Type	र र					Ą					Contra	
□ Standard	-	Mars	Project	088310	Project Manager:	Alan Bro	Sampler: ////	Sample Temperature:	Container Type and #	Hoz, glass					7					Received by: Received by:	
Chain-or-Custoay Kecora EAD Services Inc		School RINNE & 200	01/12	672	email or Fax#: Alan, branden Oghd. Com	∕ □ Level 4 (Full Validation)			Sample Request ID			121	5-088216-75-071618-	1-75-	-219100-25-018-7d 1-74-72-010-54					Part I py:	and the second
Servies		it alian		6-884-0672	rlan, bran		□ Other		Matrix	Soil					-9					Relinquished by	
GHD.		Mailing Address: Th	Albuaravenum	50	or Fax#: ,	Package: ndard	Accreditation	EDD (Type)	Time	3 13:10	14:05	14:14	14:48	15:54	16:20					Time: (68.(3) Time:	-
Client:	Ima	Mailinc Mailinc	Albu	:# enone #	email c	0A/OC Package:	Accreditati		Date	2-16-18					- 9					Date: -b)-lb Date: rlaks	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

December 17, 2018

Alan Brandon GHD 6121 Indian School Road, NE #200 Albuquerque, NM 87110 TEL: (505) 884-0672 FAX

OrderNo.: 1812656

Dear Alan Brandon:

RE: Mars 10

Hall Environmental Analysis Laboratory received 17 sample(s) on 12/12/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

.

Hall Environ	mental Analysis	Laboratory,	Inc.			L	ab Order: 1812656 ate Reported: 12/	6
	GHD Mars 10				L	ab O	order: 1812	656
Lab ID:	1812656-001		Co	ollectio	on Date	: 12/	/10/2018 9:10:00	AM
Client Sample ID:	S-088210-75-121018-	PL-HA-12-1'			Matrix	: SO	IL	
Analyses		Result	PQL (Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	0.0: ANIONS	ND	30		mg/Kg	20	Ar 12/13/2018 7:40:*	nalyst: smb I4 PM 42094
Lab ID:	1812656-002		Co	ollectio	on Date	: 12/	/10/2018 9:34:00	AM
Client Sample ID:	S-088210-75-121018-	PL-HA-12-2'			Matrix	so:	IL	
Analyses		Result	PQL (Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride).0: ANIONS	ND	30		mg/Kg	20	Ar 12/13/2018 7:52:3	nalyst: smb 39 PM 42094
Lab ID:	1812656-003		Co	ollectio	on Date	: 12/	/10/2018 10:04:0	0 AM
Client Sample ID:	S-088210-75-0121018	8-PL-HA-13-1'			Matrix	so:	IL	
Analyses		Result	PQL 0	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	0.0: ANIONS	60	30		mg/Kg	20		nalyst: smb 04 PM 42094
Lab ID:	1812656-004		Co	ollectio	on Date	: 12/	/10/2018 10:13:0	0 AM
Client Sample ID:	S-088210-75-121018-	PL-HA-13-2'			Matrix	so:	OIL	
Analyses		Result	PQL (Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300	0.0: ANIONS						Ar	nalyst: MRA
Chloride		ND	30		mg/Kg	20	12/14/2018 12:53	-
Lab ID:	1812656-005		Co				/10/2018 11:16:0	0 AM
Client Sample ID:	S-088210-75-121018-				Matrix			
Analyses		Result	PQL (Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300								nalyst: MRA

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method B	lank
Ι	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
H	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 1 of 5
N	D	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	ruge rors
PQ	QL	Practical Quanitative Limit	RL	Reporting Detection Limit	

Page 2 of 5

.

Hall Environ	mental Analysis	Laboratory,	Inc.			L	ab Order: 181265 ate Reported: 12/	6
	GHD Mars 10				L	ab O	order: 1812	2656
Lab ID:	1812656-006		C	ollect	ion Date	: 12/	/10/2018 11:21:0	0 AM
Client Sample ID:	S-088210-75-121018-H	HA-14-1'			Matrix	: SO	OIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	D.0: ANIONS	ND	30		mg/Kg	20	Aı 12/14/2018 2:08:	nalyst: MRA 02 PM 42115
Lab ID:	1812656-007		С	ollect	ion Date	: 12/	/10/2018 11:31:0	0 AM
Client Sample ID:	S-088210-75-121018-F	PL-HA-15-6"			Matrix	: so	IL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	D.0: ANIONS	ND	30		mg/Kg	20	Aı 12/14/2018 2:20:	nalyst: MRA 26 PM 42115
Lab ID:	1812656-008		C	ollect	ion Date	: 12/	/10/2018 11:37:0	0 AM
Client Sample ID:	S-088210-75-121018-F	PL-HA-15-1'			Matrix	: SO	IL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	D.0: ANIONS	ND	30		mg/Kg	20	Ai 12/14/2018 2:32:	nalyst: MRA 50 PM 42115
Lab ID:	1812656-009		C	ollect	ion Date	: 12/	/10/2018 12:47:0	0 PM
Client Sample ID:	S-088210-75-121018-F	PL-HA-16-6"			Matrix	so:	OIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300	0.0: ANIONS						Ai	nalyst: MRA
Chloride		ND	30		mg/Kg	20	12/14/2018 2:45:	15 PM 42115
Lab ID:	1812656-010		C	ollect	ion Date	: 12/	/10/2018 12:53:0	0 PM
Client Sample ID:	S-088210-75-121018-F	PL-HA-16-1'			Matrix	: SO	IL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300	0.0: ANIONS						Ai	nalyst: MRA
Chloride		ND	30		mg/Kg	20	12/14/2018 2:57:	39 PM 42115

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method H	Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Pag
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	1 45
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit	

Blank

Page 3 of 5

.

Hall Environ	mental Analysi	s Laboratory,]	Inc.			L	Analytical Report ab Order: 1812656 Date Reported: 12/	i
	GHD Mars 10				L	ab O)rder: 1812	656
Lab ID:	1812656-011		С	ollecti	on Date	: 12/	/10/2018 1:00:00	PM
Client Sample ID:	S-088210-75-12101	8-PL-HA-17-6"			Matrix	: SO	NL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	0.0: ANIONS	ND	30		mg/Kg	20	An 12/14/2018 3:10:0	alyst: MRA 04 PM 42115
Lab ID:	1812656-012		С	ollecti	on Date	: 12/	/10/2018 1:09:00	PM
Client Sample ID:	S-088210-75-12101	8-PL-HA-17-1'			Matrix	: SO	IL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	0.0: ANIONS	ND	30		mg/Kg	20	An 12/14/2018 3:22:2	alyst: MRA 9 PM 42115
Lab ID:	1812656-013		С	ollecti	on Date	: 12/	/10/2018 1:12:00	PM
Client Sample ID:	S-088210-75-12101	8-PL-HA-18-6"			Matrix	: SO	IL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300	0.0: ANIONS						An	alyst: MRA
Chloride		ND	30		mg/Kg	20	12/14/2018 3:34:5	53 PM 42115
Lab ID:	1812656-014		С	ollecti	on Date	: 12/	/10/2018 1:17:00	PM
Client Sample ID:	S-088210-75-12101	8-PL-HA-18-1'			Matrix	: SO	IL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300	0.0: ANIONS						An	alyst: MRA
Chloride		ND	30		mg/Kg	20	12/14/2018 3:47:1	7 PM 42115
Lab ID:	1812656-015		С	ollecti	on Date	: 12/	/10/2018 2:52:00	PM
Client Sample ID:	S-088210-75-12101	8-PL-HA-19-6"			Matrix	: SO	IL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300	0.0: ANIONS						An	alyst: MRA
Chloride		ND	30		mg/Kg	20	12/14/2018 4:24:3	-

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method I
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit

				Analytical Report										
Hall Environ	mental Analysis I	aboratory	[nc	Lab Order: 1812656 Date Reported: 12/17/2018										
		2 abol atol y , 1	inc.			Date R	teported: 12/	17/2018						
CLIENT: C	HD				Lab	Order	: 1812	656						
Project: N	Aars 10													
Lab ID:	1812656-016		Co	ollection I	ate:	12/10/2	018 2:56:00	PM						
Client Sample ID:	S-088210-75-121018-P	L-HA-19-1'		Matrix: SOIL										
Analyses		Result	PQL	Qual Un	its D	F Dat	e Analyzed	Batch II						
EPA METHOD 300	.0: ANIONS						Ar	alyst: MRA						
Chloride		ND	30	mg	′Kg 2	20 12/	14/2018 4:36:5	5 PM 4211						
Lab ID:	1812656-017		Co	ollection I	ate:	12/10/2	018 3:18:00	PM						
Client Sample ID:	S-088210-75-121018-P	L-HA-2-5'		Ma	trix: S	SOIL								
Analyses		Result	PQL	Qual Un	its D	F Dat	e Analyzed	Batch II						
EPA METHOD 300	0.0: ANIONS						Ar	alyst: MRA						
Chloride		660	30	mg	′Kg 2	20 12/ ⁻	14/2018 4:49:1	9 PM 4211						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Page	68	of	<i>141</i>
------	-----------	----	------------

1812656	WO#:
17-Dec-18	

Client:	GHD															
Project:	Mars 10															
Sample ID	MB-42094	SampType: MBLK	TestCode: EPA Method	TestCode: EPA Method 300.0: Anions												
Client ID:	PBS	Batch ID: 42094	RunNo: 56335													
Prep Date:	12/13/2018	Analysis Date: 12/13/201	SeqNo: 1882791	Units: mg/Kg												
Analyte			ue SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual										
Chloride		ND 1.5														
Sample ID	LCS-42094	SampType: LCS	TestCode: EPA Method	1 300.0: Anions												
Client ID:	LCSS	Batch ID: 42094	RunNo: 56335	RunNo: 56335												
Prep Date:	12/13/2018	Analysis Date: 12/13/2018	SeqNo: 1882793	Units: mg/Kg												
Analyte		Result PQL SPK va	ue SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual										
Chloride		14 1.5 15	00 0 93.3 90	110												
Completio																
Sample ID	MB-42115	SampType: MBLK	TestCode: EPA Method	l 300.0: Anions												
Client ID:	MB-42115 PBS	SampType: MBLK Batch ID: 42115	TestCode: EPA Methoo RunNo: 56356	1 300.0: Anions												
•	PBS	1 21	RunNo: 56356	I 300.0: Anions Units: mg/Kg												
Client ID:	PBS	Batch ID: 42115 Analysis Date: 12/14/201	RunNo: 56356	Units: mg/Kg	RPDLimit	Qual										
Client ID: Prep Date:	PBS	Batch ID: 42115 Analysis Date: 12/14/201	RunNo: 56356 SeqNo: 1884868	Units: mg/Kg	RPDLimit	Qual										
Client ID: Prep Date: Analyte Chloride	PBS	Batch ID: 42115 Analysis Date: 12/14/201 Result PQL SPK va	RunNo: 56356 SeqNo: 1884868	Units: mg/Kg HighLimit %RPD	RPDLimit	Qual										
Client ID: Prep Date: Analyte Chloride	PBS 12/14/2018 LCS-42115	Batch ID: 42115 Analysis Date: 12/14/201 Result PQL SPK va ND 1.5	RunNo: 56356 SeqNo: 1884868 ue SPK Ref Val %REC LowLimit	Units: mg/Kg HighLimit %RPD	RPDLimit	Qual										
Client ID: Prep Date: Analyte Chloride Sample ID	PBS 12/14/2018 LCS-42115 LCSS	Batch ID: 42115 Analysis Date: 12/14/2018 Result PQL SPK va ND 1.5 SampType: LCS	RunNo: 56356 SeqNo: 1884868 ue SPK Ref Val %REC LowLimit TestCode: EPA Methoo RunNo: 56356	Units: mg/Kg HighLimit %RPD	RPDLimit	Qual										
Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	PBS 12/14/2018 LCS-42115 LCSS	Batch ID: 42115 Analysis Date: 12/14/2018 Result PQL SPK va ND 1.5 SampType: LCS Batch ID: 42115 Analysis Date: 12/14/2018	RunNo: 56356 SeqNo: 1884868 ue SPK Ref Val %REC LowLimit TestCode: EPA Methoo RunNo: 56356	Units: mg/Kg HighLimit %RPD	RPDLimit	Qual										

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 5 of 5

Page	69	of	14	11
I uge	0,	U	17	

•

ANALYSIS	Hall Environme TEL: 505-345	ntal Analysis Laboi 4901 Hawki Albuquerque, NM 3975 FAX: 505-345 w.hallenvironmenta	ns NE 87109 Sar -4107	Page Sample Log-In Check List						
Client Name: GHD	Work Order Num	iber: 1812656		RcptNo: 1						
Received By: Victoria Zellar	12/12/2018 8:40:0	D AM	Victinia, Ge	cinia Gillan						
Completed By: Jazzmine Burkhead	12/12/2018 11:38:	42 AM	and some first for the sol							
Reviewed By: JU12.12.1 Labeled by: JAB Chain of Custody	12/12/18		14							
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present						
2. How was the sample delivered?		Courier								
Log In 3. Was an attempt made to cool the sa	mples?	Yes 🔽	No 🗌	NA 🗌						
4. Were all samples received at a temp	erature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗔						
5. Sample(s) in proper container(s)?		Yes 🖌	No 🗌							
6. Sufficient sample volume for indicate	d test(s)?	Yes 🗹	No 🗌							
7. Are samples (except VOA and ONG)	properly preserved?	Yes 🗹	No 🗌							
8. Was preservative added to bottles?		Yes	No 🗹	NA 🗌						
9. VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA Vials 🗹						
10. Were any sample containers receive	d broken?	Yes	No 🗹	# of preserved	- <u> </u>					
11. Does paperwork match bottle labels? (Note discrepancies on chain of cust		Yes 🗹	No 🗌	bottles checked for pH:	2 unless noted)					
12. Are matrices correctly identified on C	hain of Custody?	Yes 🖌	No 🗌	Adjusted?						
13. Is it clear what analyses were reques	ted?	Yes 🗹	No 🗌	AL)					
 Were all holding times able to be me (If no, notify customer for authorization) 		Yes 🗹	No 🗌	Checked by						
Special Handling (if applicable)			2							
15. Was client notified of all discrepanci	es with this order?	Yes	No 🗌	NA 🗹						
Person Notified:	Date	. 17								
By Whom:	Via:	μ.	Phone Fax	In Person						
Regarding:				NEWLEY CONTRACTOR OF CONTRACTOR						
Client Instructions:		NATURAL CONTRACTOR OF THE OWNER		Marg. 200 (1997)						
16. Additional remarks:	······································	· · · · · · · · · · · · · · · · · · ·		, <u> </u>						
17. Cooler Information										
Cooler No Temp °C Conditi	on Seal Intact Seal No	Seal Date	Signed By							

-	TORY			1/20					(N 10	» ۲)	Air Bubbles														8	f report.
	ANALYSIS LABORATORY	al.com	Albuquerque, NM 87109	505-345-4107	nest				(A		(OV) 80958 im92) 0728															This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
	T SIS	vironment	ondnerque	Fax 505-:	Analysis Request				οn'εα) snoinA DH) snoinA DH Pestic	X	×	Ý	×	X	X	X	×	\times	×	X	X			e clearly nota
_	ANALY	www.hallenvironmental.com	I.	-3975	Anal		(SM		0728	10 O	EDB (Metho PAH's (8310 RCRA 8 Me														Q I	cted data will t
		×	4901 Hawkins NE	Tel. 505-345-3975		(0)	łW / C		(1.81	₽ Þ¢	TPH (Methodel)														Penning and Manual All	Any sub-contra
			490	Te							TM + X3T8 TM + X3T8													Remarks:		s possibility. A
	ł						6			$2.6^{\circ\circ}$	HEAL No. 12656	-001	- 002	-003	- 004	- 005	- OOG	- 007	500 -	- 009	- dlà	- 0(]	- 012	e Time	Bate Time	rves as notice of thi
	Rush 3-Ja			25	>	-	# Brandon		<i>_ora∧a</i>) es / □ No	387 w)10=														Date	bate 19116	redited laboratories. This se
und Time:		*	0 2	6-01288	2	anager:	Alan Lat		7 1:41	дщé	er Preservative 1 # Type	205 ICe	•										<u>_</u>	- Li	thin N NANDA	her accredited lab
Turn-Around Time:	□ Standard	Project Name:		Project #:	c	Project Manager:	×	,	Sampler: On Ice:	Sample T	Container Type and #	Hoz. glass	,!								· · ·		-4- -4-	Received	Received by	contracted to ot
Chain-of-Custody Record	10.		00) R.J. NE, # 200	87110	X						Sample Request ID	5-088210-75-131018- PL- HA-12-11	6-088210-13-12-3, 01-14,12-3,	- 2-0882310-75-13-191018-	6.1	5-088213-75-121018-	1-41	75-1 15-6	5-088210-75-181018- PL-HA-15-181018-	5-6	5-088210-75-131018- PL-HA-16-11	10	-2/0121-,52-912880-5			If necessary, samples submitted to Hall Environmental may be subcontracted to other acc
of-Cust	Client SHAD Senvices, Inc.		Mailing Address: Dulin Schoo.	Albuquerque, MM 2	505-884-0672		[□ Other		Matrix			5 -1	3-0	5-0	5-080 BHN	5-0	5-0	5-0	5-1	5-10	5-0 PL-0	Relinquished by:	Relinquister by	sampies submitted
Chain-	FHD S		Address:	(huguera	~	email or Fax#:	QA/QC Package:	naaru	Accreatiation	🗆 EDD (Type)	Time	2+10-18 09:10 501	HE 160	Ho;ol	10:13	11:16	11:21	11:31	11:37	12:47	12153	13:00	13:09	Time:	Time:	If necessary, s
Relea	of pacificant.	Ima	an Mailing	: 6/3	Phone #:	Cemail C	0 9:31:				Date	7-0142	~								84		ġ	Date: 1/0 - 18	Date:	

Recei	ved by	, 00	C D: 6 /	/1/2	023	<u>12:4</u>	14:3	<u>1 P</u> A	/ (NI	10	1)	Air Bubbles									T			Page 71 of 1	141
	ג∟										<u></u>														
	HALL ENVIKUNMENTAL ANALYSIS LABORATOR																							ţ	ы.
	zĚ																							he clearly notated on the analytical report	र्भा कि
5			7109	2																					aliaiyuu
		Eo	M 8	505-345-4107	it					(∀(imə2) 0728												. tr	an uc
	Σ₹	ntal.c	ne, N	5-345	Request							OV) 80928												1000 1000 1000	vlaleu u
	T s	nmer	nerqı		s Re							sos1 Pestic								_	-	$\left \right $			ariy ixu
í	ENVIKONMEN YSIS LABORAT	www.hallenvironmental.com	Albuquerque, NM 87109	Fax	Analysis	(°C)S''(0 <u></u> .	°ON) snoinA	\times	\times	\times	\sim	\times					+		ן קר ער	De cie
	ב ב	aller	1	5	Ana		(9		2017			158) г'НАЧ В М 8 АЯЭЯ								+	+				ata wili
		Tww.	s NE	-397	•		(3					EDB (Metho								+	+	+		200	n naioi
		N		-345	-							Niem) H9T								_	+			A. 7	COTILE
			4901 Hawkins NE	Tel. 505-345-3975		(0)	- MF	02				89108 H9T							-+	+		+			as notice of this possibility. Any sub-contracted
			490	Tel								TM + XJT8									<u> </u>			Convertise Converting	r . Y
						(1208	8) s'	IMB	_ +	BE.	B⊤EX + MT												Rem Rem	possin
												وي ا					. (ot this
											کی ا	HEAL No. 812.65(5	าเ	210		5							Time If the B (()	notice
	5										30	HEAL No \$1261	$\left \begin{array}{c} \\ \\ \\ \end{array} \right $											00	ves as
	da									No		, [≖] ∾		(ł		1							Date Date	nis ser
	3-									□ No	-CE														TIES. 1
	<u>r</u> ∕Rush_			-					burg	press in the	39	Preservative Type													borato
e:			0		75		den	***	4 or	Yes	ature	eserva Type	100												liteQ4a
TIT	σ	.е.	2		-21	ager	iran		1:1	া য	upera		Н												accrec
Turn-Around Time:	□ Standard	Project Name:	Mars	#	088210-	Project Manager	Alan Brandon		Sampler: Phil Lorang		Sample Temperature:3.0-(17)1.0-3.0 ^c	Container Type and #	alass											Made by:	o other
In-A	l Sta	oject		Project #:	0	oject	À à		mple	n Ice	Idmi	Conta ype a	Hozal	<u> </u>										Received by:	acted 10
μ		<u>Ē</u>	1	ቒ		P			Sa	٦ D	Se		4							_			<u> </u>		bcontra
			94.20					tion)					200	8	2	2	18.								/ be su
50								Level 4 (Full Validation)				Sample Request ID	5-088210-75-121618- PL-44-18-6"	5-088210-75-121018.	3101	5-088216-75-121018-	5-088210-75-121018								tai may
ec.			NE	•				ull V				Req	1-5-1	5	5-1	115	2								nmeni
R R			RJ.	c				4 (F				ple	181-	10-1	.01	101	000								l Envir
ody	,		i jaz	87/10	3			evel				Sam	688	1883 H	883	883. - HA	1020				1				to Hall
Iste	ĥ		Sch	00	690					۲. ا			202	5-0	500	20-0	5-0								mitted
ប៊	12.25		lan	MM	4.					□ Other		Matrix												Relinquished by: Relinquished by Relinquished by	les súb
Chain-of-Custody Record	650		H.	90								M	Soil				— **						<u> </u>	Relin	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited
, Úľ	0 2		Jress	0.0	505	:#X	(age:	σ	uc		(pe)	Time	13:13	13:17	14:52	14:56	15118							Time: 14/ : Ch Time: 1910	essary
Зĥ	Gil		J Agi	Albantraue	;; #	or Fa	Pack	ndan	Jitatic	LAP	Έ				ž	17	19							Time: Time: Time:	lf nec
0	of Client, GHD Services Inc.		lailin	Å1	L Shone #:	Cemail or Fax#:	CA/QC Package:	20 Standard	Accreditation		🗆 EDD (Type)	Date	81-01-											Date: 7-10-18 Date:	
Relea	sed to	Im	aging	: 6/3	30/2	0 <u>2</u> 3	9:3)	1:22	AM				1]	l	ļ	1	I		ł	ł	I		I		

Received by OCD: 6/1/2023 12:44:31 PM

LIMITED TESTING PLAN FOR CONTAMINANT REMEDIATION EFFORTS WITHIN ARCHAEOLOGICAL SITE LA 43495

LEA COUNTY, NEW MEXICO

Plan Prepared by: Goshawk Environmental Consulting, Inc. P.O. Box 151525 Austin, Texas 78715

Principal Investigator: Mark Willis

Lead Agency: New Mexico State Land Office

> Permits: NM-18-290

April 2019

WWW.GOSHAWKENV.COM

P.O. BOX 151525 📕 AUSTIN, TX 78715 🐓 PH: 512-203-0484 두

ADMINISTRATIVE SUMMARY

At the request of the New Mexico State Land Office, Goshawk Environmental Consulting, Inc., has developed this limited testing plan for proposed contaminant remediation activities within archaeological site LA 43495. Produced water was illegally dumped (released) by an unknown third party along the south side of an access road that serves the Mars State Com mineral lease in Lea County, New Mexico. Initial remediation efforts were halted due to the presence of LA 43495. A subsequent confirmation sampling effort revealed chlorides above the 600 mg/kg remediation threshold existed immediately adjacent to the lease road. Site LA 43495 is in the area that will require remediation of chlorides.

LA 43495 is located on state-owned land. The limited testing plan will allow a preliminary assessment of the portion of site LA 43495 that will be impacted by contaminant remediation efforts to determine whether potentially significant cultural features or deposits are present. If no potentially significant cultural materials are found within the remediation area, data recovery will not be necessary. The presence of potentially significant cultural deposits or features will trigger more detailed examination of the remediation area to recover data.

LA 43495 is part of a group of sites known as the Bell Lake Site Complex. LA 43495 was originally documented in 1973 by the Lea County Archaeological Society. The site was revisited in 1989 by Pecos Archaeological Consultants; in 2014 by Lone Mountain Archaeological Services, Inc.; in 2014 by Boone Archaeological Services of New Mexico, LLC; and in 2018 by APAC. The site was documented as an extensive Early Pueblo to Late Pueblo-Jornada Mogollon association site with a possible Archaic component containing approximately 5,000 artifacts, including temporally diagnostic prehistoric sherds and lithic tools. In 1989, the New Mexico SHPO determined the site eligible for listing on the National Register of Historic Places.

LA 43495 is located within a dune field in a semi-arid desert. The site is approximately 0.8 kilometer east of Bell Lake and 183 meters north of an unnamed playa. Several small drainages cross the site; some of the drainages feed into the unnamed playa to the south and others end in small ponding areas. The vegetative community consists of honey mesquite, broom snakeweed, soapweed yucca, and various desert grasses and forbs.

P.O. BOX 151525

5 AUSTIN, TX 78715

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

CONTENTS

1.0	PROJECT BACKGROUND	
2.0	ENVIRONMENTAL SETTING	2
2.1	Physiographic Context	2
2.2	GEOMORPHIC CONTEXT	2
2.3	Soils	2
2.4	FLORAL AND FAUNAL COMMUNITIES	2
2.5	Modern Climate	3
2.6	PALEOENVIRONMENT	3
3.0	CULTURAL OVERVIEW OF THE EASTERN NEW MEXICO REGION	4
3.1	Prehistory	4
3.2	HISTORIC PERIOD (A.D. 1864 TO PRESENT)	6
4.0	ARCHAEOLOGICAL SITE DESCRIPTIONS	
4.1	LA 43495	7
4.2		8
5.0	TESTING METHODOLOGY	9
6.0	REFERENCES	0

AUSTIN, TX 78715 F PH: 512-203-0484

APPENDICES

A FIGURES

B PHOTOGRAPHS

WWW.GOSHAWKENV.COM

.

1.0 PROJECT BACKGROUND

EOG Resources, Inc. (EOG) identified the illegal dumping (release) of produced water by an unknown third party along the south side of an access road within the Mars State Com mineral lease. The illegal dumping was first identified on or around 9 July 2018. Initial contaminant remediation efforts commenced on 25 July 2018. A day later, after EOG became aware of the presence of archaeological site LA 43495, remediation activities were halted. After negotiations with the New Mexico State Land Office (NMSLO) and New Mexico Oil Conservation Division (NMOCD), EOG conducted a confirmation sampling effort on 10 December 2018. This was done in order to understand the extent of contamination within LA 43495. A single sample exceeded the remediation threshold for chlorides of 600 mg/kg. The sample was collected from an area adjacent to the access road and contained chloride levels of 620 mg/kg (Figure 1, Appendix A). No other samples contained vertical or horizontal chloride contamination above the remediation threshold.

An area around the contaminated sample will need to be remediated (contaminant remediation area). Soil will be excavated from the contaminant remediation area and hauled to an approved landfill. Although the exact area of chloride levels above the remediation threshold has not been specifically identified, soil removal is expected to be relatively limited. The remediation plan will excavate, utilizing a backhoe, an approximately 5-foot-by-5-foot (1.5-meter-by-1.5-meter) area centered on the contaminated sample (Figure 2, Appendix A). This area will be excavated to a depth of approximately 5 feet (1.5 meters [m]) for a total of approximately 4.6 cubic yards (3.5 m³).

The potential presence of significant cultural deposits or features within the contaminant remediation area of site LA 43495 cannot be adequately assessed by surface examination alone. Previous surface impacts (oil and gas activities) have occurred within the contaminant remediation area, therefore, significant cultural deposits or features are not expected to exist. A 1-meter-by-2-meter test unit will be excavated within the contaminant remediation area to facilitate examination of subsurface deposits. If any potentially significant deposits and/or features are encountered during testing, work will be halted, and a recovery plan will be developed with the assistance of the NMSLO.

P.O. BOX 151525

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

AUSTIN, TX 78715

2.0 ENVIRONMENTAL SETTING

2.1 PHYSIOGRAPHIC CONTEXT

The proposed contaminant remediation area is within the Great Plains Physiographic Province (Fenneman and Johnson 1946). More specifically, it is within the Pecos Valley section, which is a long trough that has been eroded below the High Plains (Fenneman 1931). Precipitation levels of fewer than 20 inches per year are typical within the Great Plains; however, the southern portions, where the contaminant remediation area is located, typically experience even less rainfall. Increased temperatures and evaporation rates further stress the environment. This environment lacks the moisture typically needed to support lush vegetation.

2.2 GEOMORPHIC CONTEXT

The Geologic Map of New Mexico indicates that the contaminant remediation area is underlain by a small area of older alluvial deposits (Qoa), which is surrounded by a much larger area of eolian and piedmont deposits (Qep). Older alluvial deposits were formed on upland plains and piedmont areas of the High Plains. Eolian and piedmont alluvial deposits are associated with higher gradient tributaries bordering major stream valleys, alluvium from piedmont slopes, and alluvial fans. These areas include scattered lacustrine, playa, and alluvial sediments. Headward erosion of the present Pecos Valley appears to have begun with the earliest Pleistocene glacial advancement (Reeves 1972). Small lake basins appear to have formed along abandoned drainage channels within the Pecos Valley. The small basins may have provided ephemeral water to early populations.

2.3 SOILS

The Natural Resource Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO) indicates the soil map unit underlying the contaminant remediation area is Kermit-Wink complex (KE). Kermit soils are very deep fine sands. Wink soils are very deep fine sandy loams. Both soils are common on uplands within relatively arid environments and are of eolian origin.

2.4 FLORAL AND FAUNAL COMMUNITIES

Southeastern New Mexico is within a transition zone between the arid West and Southern Great Plains ecosystems. Desert scrub generally dominates the arid West, while the Great Plains are dominated by grasses and forbs. Vegetation within the desert scrub and grassland communities is dominated by warm season, short, and mid-height grasses such as black grama, bush muhly, dropseeds, tobosa, and three-awns. Various bluestems, bristlegrass, lovegrasses, and hooded windmill grass are less common. Shrubs include creosote, honey mesquite, acacia, shinnery oak, sand sagebrush, broom snakeweed, and yucca. A variety of forbs occur, though production fluctuates greatly from year to year and season to season. Common forbs include bladderpod, dove weed, globemallow, annual buckwheat, and sunflower.

Aerial orthoimagery suggests the contaminant remediation area is in a disturbed area with very little vegetative cover. The surrounding area can be described as desert scrub. A caliche-surfaced road parallels the contaminant remediation area. Other oil/gas development and right-of-ways are in the general vicinity of the contaminant remediation area. The vegetative community observed at the site is consistent with that shown on the aerial orthoimagery. Vegetation is limited within the contaminant remediation area (Photo 1, Appendix B); shrubs and grasses are adjacent the contaminant

🗲 AUSTIN, TX 78715 🗲 PH: 512-203-0484 🗲

P.O. BOX 151525

remediation area (Photo 2, Appendix B). Species observed include honey mesquite, broom snakeweed, dove weed, yucca, and purple three-awn.

Various mammal, bird, reptile, and invertebrate species inhabit this ecosystem in southeastern New Mexico. Herbivorous mammals include mule deer, pronghorn, and numerous rodent species. Bison were common in the area around 8,000–12,000 years ago (Dillehay 1974). Carnivores include coyote, bobcat, badger, striped skunk, and swift fox. Two upland game bird species, scaled quail and mourning dove, are prevalent throughout southeastern New Mexico. Many species of songbirds nest within this ecosystem; however, a greater diversity of birds utilize this habitat during migration or for non-nesting activities. Common avian predators include northern harrier, Swainson's hawk, red-tailed hawk, American kestrel, burrowing owl, and Chihuahuan raven. Numerous snake and lizard species also inhabit this ecosystem. Invertebrates, including grasshoppers, beetles, wasps, spiders, and scorpions, are abundant.

2.5 MODERN CLIMATE

Lea County has a sub-humid to dry climate with hot summers and mild winters. The average temperature is 63.7 degrees Fahrenheit, and the average annual high temperature is 79.3 degrees Fahrenheit (U.S. Climate Data 2019). Average precipitation is approximately 14 inches of rainfall and 3 inches of snow per annum (U.S. Climate Data 2019). Most rainfall occurs from late spring to early fall; evaporation rates are high. The growing season is just over 200 frost-free days on average. Warm temperatures, winds, high evaporation rates, and low rainfall accelerate soil erosion.

2.6 PALEOENVIRONMENT

Thousands of years ago, during the Pleistocene, the climate was more mesic with fewer temperature extremes and relatively lush vegetation. Megafauna thrived in this setting but were dependent upon streams and waterholes.

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

3.0 CULTURAL OVERVIEW OF THE EASTERN NEW MEXICO REGION

Lea County is within the Southeastern New Mexico Archaeological Region. Studies show that several cultures inhabited the area for the last 13,000 years (Abbott 2009; Jelinek 1967; and Railey 2013 and 2016). The following cultural/temporal periods are used to categorize those habitations: Paleoindian (ca. 11,500 to 7000 B.C.), Archaic (ca. 6000 B.C. to A.D. 500), Ceramic (ca. A.D. 500 to 1400), Post Formative Native American (ca. A.D. 1400 to present), and Historic Euro-American (ca. A.D. 1865 to present).

3.1 PREHISTORY

3.1.1 Paleoindian Period (ca. 11,500 to 7,000 B.C.)

Recent archaeological evidence indicates prehistoric people may have occupied this area prior to the Paleoindian Period. However, the controversial sites that show evidence of an earlier period of habitation have not yet been widely accepted by the archaeological community (Dillehay and Meltzer 1991). For this reason, the prehistoric period will begin with the Paleoindian Period. One radiocarbon date from the Lubbock Lake Landmark site firmly established Clovis occupation to 11,500 years ago or 9,500 B.C. in North Texas (Holliday 1987:22). Earlier dates have been secured from a Clovis site in northeastern New Mexico, where the lowest level was dated to 13,300 and 13,000 years ago (Haynes and Warnica 2012).

Coinciding with the decline of the Wisconsin glaciation, the Paleoindian Period is characterized by a relatively cool, moist climate that encouraged the development of now-extinct species of Pleistocene megafauna (Johnson and Holliday 2004). This period is sometimes called the Big Game Hunting Tradition (Willey 1966), due to a presumed reliance by Paleoindian peoples on megafauna as a food source. These conclusions are based on well-documented exploitation of megafauna in the western United States and evidence of the presence of similar species in New Mexico and North Texas between 11,000 and 9,000 years ago.

Excavations at the Aubrey site (41DN479) in North Texas indicated subsistence efforts did not focus on big game animals alone (Ferring 1989, 2001). The entire range of available fauna was utilized by the occupants of the site. Meat sources included bison, deer, rabbit, squirrel, fish, and turtle (Ferring 1989, 2001; Ferring and Yates 1997). Whether this pattern of a more generalized foraging subsistence system is characteristic of Clovis adaptations to this region remains to be documented. Ferring and Yates (1997) suggest that the Clovis people probably employed "very flexible adaptive strategies."

Temporally diagnostic Paleoindian tool types include a variety of finely chipped, sometimes fluted, lanceolate projectile point styles, such as Clovis, Folsom, Plainview, and Scottsbluff (Prikryl 1990; Willey 1966). The Paleoindian projectile points transition from early Paleoindian to Early Archaic Period points. By the late Paleoindian period or Early Archaic, unfluted lanceolate projectile points such as Plainview, Golondrina, Meserve, Scottsbluff, and Angostura are more common (Story 1990; Hester 1980). Today these projectile points are most often found on the ground surface as isolated occurrences.

F PH: 512-203-0484

P.O. BOX 151525

1525 **AUSTIN, TX 78715**

Overall population density was probably rather low during Paleoindian times. Early sites in New Mexico include Hermit's Cave, Burnet Cave, and Blackwater Draw locality 1 (Hanes and Warnica 2012; Stuart and Gauthier 1980; Sebastian and Larralde 1989:26; Tainter and Girrio 1980:28; and Cordell 1979).

3.1.2 Archaic Period (6000 B.C. to A.D. 500)

Following the close of the Pleistocene, eastern New Mexico experienced a trend toward a warmer and drier climate (Johnson and Holliday 1986). It has been postulated that this climate shift was partially responsible for the extinction of megafauna. The archaeological record of this period exhibits of a gradual diversification in subsistence patterns (Collins 1971). Although not well-defined in the region, studies indicate a dependence on hunting and gathering. From approximately 2,500 B.C. to A.D. 500, bison herds returned to the High Plains and must have held great appeal to Archaic hunters (Dillehay 1974). Agricultural pursuits, which were established in part in northwestern New Mexico by 1,000 B.C., were non-existent in the southeast (Stuart and Gauthier 1980). By the end of the Archaic, sea levels stabilized at current levels and the modern climatic regime was established (Aten 1983:157–159).

3.1.3 Ceramic Period (A.D. 500 to A.D. 1400-1450)

Ceramics first appeared in southeastern New Mexico around A.D. 900, later than in other parts of New Mexico (Leslie 1979). During this time, a trend toward sedentary group structure and population aggregation began. Horticulture began to support villages that were located within walking distance of water sources (Haskell 1977). Trade routes became more formalized as ceramics, such as Jornada Brownware, were imported from the west, and later from Mexico.

The Querecho phase, dated from A.D. 900 to A.D 1100, was characterized by gathering camps near water with Jornada Brownware the most common ceramic. Small villages, with small rectangular pit structures, became common toward the end of the phase (Leslie 1979). This was followed by the Maljamar phase, which lasted from A.D. 1100 to A.D. 1250, bringing with it larger pithouse villages and increased sedentism. Importation of ceramics increased dramatically. Partial abandonment followed, perhaps due to decreased rainfall and changing seasonality. Dillehay (1974) suggests an increase in the bison population from A.D. 1200 to A.D. 1300 brought returned reliance on megafauna as a food source.

Following the Maljamar phase, a new florescence called the Ochoa phase lasted from A.D. 1,300 to A.D. 1,450. This phase saw the introduction of above-ground adobe structures, a decreased reliance on corn and perhaps an increase in hunting (Miller et al., 2016:19). By the end of the Ochoa phase, there appears to have been only scattered remnants of a once congregated native population. Whether this was due to a return of drought conditions or the increased pressure of new migrations of Indian populations remains a mystery.

3.1.4 Post Formative Native American Period (A.D. 1450 to present)

AUSTIN, TX 78715

After abandonment of prehistoric villages in the southern High Plains, nomadic bison hunters roamed the deserted plains of New Mexico. Apachean groups and Plains Indians began raiding the region as Spanish and later Anglo ranchers began to settle southeastern New Mexico. Sebastian and

PH: 512-203-0484

P.O. BOX 151525

Larraide (1989) present a comprehensive study of this settlement pattern, as do other researchers such as Railey (2016:134-136) and Miller et al. (2016:22).

3.2 HISTORIC PERIOD (A.D. 1864 TO PRESENT)

Spanish influence in southeastern New Mexico was minimal compared to the burgeoning settlements along the Rio Grande and the upper Pecos River (Russell 2010). First, conquistadors under Coronado, then Comancheros, then early Anglo hunters crossed the wide plains searching for gold, trade, and fortune. After the Pueblo Revolt in 1680, Comanche horse soldiers began raiding through the region on their way to the richer haunts of northern Mexico. After the Mexican Revolution in 1810, the new constitution (1824) spelled out governance in the northern territory. By 1850 with pressure from all sides, many Comanche were removed to rancherias and reservations in Oklahoma.

After the Mexican-American War (1846), the Treaty of Guadalupe Hidalgo (1848) ceded the southeast New Mexico territory to Texas. After the Compromise of 1850 the land was ceded to the federal government giving the United States governance over the New Mexico territory. The American military began waging continuous warfare by establishing military posts and forts throughout Texas. Indians gained ground somewhat during the hiatus caused by the American Civil War, but soon retreated as the military returned to the frontier. The Red River Wars culminating in Mackenzie's battle at Palo Duro Canyon in 1878 opened the way for cattle ranchers like Goodnight and Chisolm to establish large ranches in southeastern New Mexico. Battles to establish dominance led to fighting, such as the Lincoln County Wars, before governing forces could bring peace to the region.

The territory grew between 1880 and 1910 with railroads and ranching leading American and Mexican settlers into the area. The New Mexico Education Association of school teachers was organized in 1886. In 1889 small state colleges were established at Albuquerque, Las Cruces, and Socorro; and in 1891 the first effective public school law was passed. An irrigation project in the Pecos River Valley in 1889 marked the first of many projects to irrigate farms in the dry state. The 1890 discovery of artesian waters at Roswell gave farming and mining a boost. The power of the cattle barons faded as land was fenced in at the expense of open range. Cattle ranchers and sheep ranchers began tolerating one other. Coal mining developed during the 1890s, primarily to supply railroads. Oil was discovered in nearby Eddy County in 1909.

P.O. BOX 151525

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

4.0 ARCHAEOLOGICAL SITE DESCRIPTIONS

As noted previously, archaeological site LA 43495 is situated in state-owned land in Lea County (Figure 3, Appendix A). More specifically, the centroid of the site is located at 103°33'54.508"W, 32°14'27.814"N (UTM 1983 Zone 13 X=635180.4 and Y=3568058.9 coordinates). Only a small portion of site LA 43495 will be affected by the contaminant remediation efforts. A detailed description of LA 43495 can be found in Section 4.2.

4.1 LA 43495

LA 43495 was first recorded in the 1970's by the Lea County Archaeological Society (LCAS). During this recording it was reported to be a dense artifact scatter consisting of lithic debitage, stone tools, projectile points, groundstone, ceramics, burnt bone, and mussel shell fragments. LCAS also reported that the site had "exposed layers of burned soil" but no defined features were described. The site was then updated in 1989 by Pecos Archaeological Consultants and was reported to have thousands of artifacts across the site (NMCRIS Activity 24728).

In 2014, Lone Mountain Archaeological Services, Inc. (Lone Mountain) visited LA 43495 and updated the site based on their in-field observations (NMCRIS Activity 129811). Lone Mountain reported the site to be approximately 150 m south of the BLM/Archaeological Records Management Section (ARMS) site boundary. Based on the distribution of artifacts observed, Lone Mountain placed the sites boundary at 399 m by 259 m with an area of 10.3 hectares (ha). Artifacts were reported to be estimated at over 5,000 artifacts across the site. Lone Mountain reported that no discrete features were identified. Lone Mountain reported LA 43495 as having two Cultural/Temporal Affiliations, an Archaic cultural affiliation with a temporal affiliation of Late Archaic (1600 BC to 200 AD) and a Jornada Mogollon cultural affiliation with a temporal affiliation of Early Pithouse to Late Pueblo (200 AD to 1500 AD).

Boone Archaeological Services of New Mexico, LLC (Boone) also visited the site in 2014 and agreed with LMAS's findings but did add a single burned caliche feature to the site (NMCRIS Activity 132837). Boone revisited the site on 1 August 2018. This revisit was largely concerned with recording the illegal dumping of produced water and the initial remediation activities. The site boundary during this visit was changed to match the in-field observations from Boone, which measured 455 m by 282 m with an area of 12.8 ha. It was also reported to have over 10,000 artifacts located across the site.

APAC conducted a revisit to LA 43495 in October 2018 to begin a preliminary assessment of possible impacts by the initial remediation activities (NMCRIS Activity 142336). Observations most similarly matched those recorded by Lone Mountain in 2014. The exceptions were additional diagnostics and a loci consisting of numerous artifacts in the southern portion of the site. Impacts to the loci were documented. Two projectile points were observed and recorded. One is from the Datil Cluster likely affiliated with Late Archaic to Early Pithouse periods (Justice 2002). The other is similar to a Tularosa Corner Notched from the Cienega Cluster. Temporal affiliation of the Cienega Cluster is Early Pithouse to Late Pithouse (Justice 2002). The artifact assemblage is still estimated to be in excess of 5000.

AUSTIN, TX 78715

P.O. BOX 151525

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

LA 43495 is believed to contain considerable data potential and is considered eligible for listing on the National Registry of Historic Places under criterion "d".

4.2 PREVIOUS RESEARCH

Numerous NMCRIS-listed activities have been conducted in the vicinity of the proposed contaminant remediation. These include seismic surveys; well pad surveys; and road, pipeline, and other infrastructure surveys triggered by construction in the oil and gas industry. A list of the NMCRIS activities within 500 m of the site LA 43495 (N=7) is shown in Table 1.

Activity Number	Organization Name	Lead Agency	Total Acres	Sites Visited	Date of Survey Start
129811	Lone Mountain Archaeological Services	BLM-CFO & NM State Land Office	22139.53	104	27 Jul 2013
135199	Boone Archaeological Services of New Mexico, LLC	NM State Land Office	69.95	0	13 Feb 2016
136481	Boone Archaeological Consultants, LLC	NM State Land Office	8.07	0	16 Aug2016
137377	Goshawk Environmental Consulting, Inc.	BLM-CFO	101.67	0	12 Dec 2016
138023	Goshawk Environmental Consulting, Inc.	NM State Land Office	1.05	0	8 May 2017
138352	Goshawk Environmental Consulting, Inc.	BLM-CFO & NM State Land Office	25.43	0	1 Aug 2017
142050	Goshawk Environmental Consulting, Inc.	NM State Land Office	4.71	0	5 Dec 2018

Table 1: List of NMCRIS Activities within 500 m of the LA 43495

The nearest archaeological site to the contaminant remediation area other than LA 43495 is LA 178364. Site LA 178364 is approximately 305 m southwest of the contaminant remediation area. Lone Mountain originally documented the site during NMCRIS Activity #129811 in 2014. LA 178364 was recorded as a late archaic artifact scatter with diagnostic Mogollon artifacts/features. The artifact assemblage consisted of lithic debitage, chipped stone tools, diagnostic projectile points, and fire-cracked rock. The most recent revisit was performed by Boone, in 2015 under NMCRIS Activity #132837. However, NMCRIS Activity #132837 appears to have occurred approximately 37 kilometers to the northeast of LA 178364 in Eddy County. The data entry for NMCRIS Activity #132837 is still in progress.

Released to Imaging: 6/30/2023 9:31:22 AM

Limited Testing Plan Site LA 43495

5.0 TESTING METHODOLOGY

Prior to mechanical excavation of soils for contaminant remediation purposes, archaeologists will excavate a 1-meter-by-2-meter test unit (Figure 4, Appendix A). The unit will be centered on the contaminated sample location within the proposed contaminant remediation area. Prior to excavating the unit, a GPS will be used to establish a horizontal grid system in NAD 1983 projection. All corners of the unit will be recorded. Vertical levels (strata) will be maintained with a metric tape measure.

The unit will be excavated by hand at 10-centimeter intervals until sterile soils are encountered (no cultural artifacts found). All soils removed from the test unit will be systematically screened through $\frac{1}{4}$ -inch hardwire mesh to collect any cultural resource artifacts that may be present. Archaeologists will have discretion to also use $\frac{1}{8}$ -inch hardwire mesh if determined necessary. All cultural material will be inventoried and assigned a field number. If botanical material is encountered, a sample will be collected for further analysis.

Recording forms will keep track of findings within each vertical level of the unit. Data recorded will include cultural materials by lot, soil composition, and soil color. Evidence of rock, botanicals, and previous disturbances will also be noted.

This effort will allow documentation of any cultural materials and possible features within the proposed contaminant remediation area. If significant cultural materials or features are encountered within the test unit, testing will be halted, and the NMSLO will be contacted for additional planning. Any features uncovered will not be bisected, and only macrobotanical samples from the matrix adjacent to the features will be collected for additional study. All artifacts recovered from the test units will be analyzed and curated with the Laboratory of Anthropology at the New Mexico Museum of Indian Arts and Culture.

The presence of human remains within the proposed testing area is highly unlikely. If human bone or funerary objects are found, the testing effort will be halted, and appropriate authorities contacted.

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM X

6.0 **REFERENCES**

Abbott, James T.

2009

Chronometrics and Chronology. *Significance and Research Standards for Prehistoric Archaeological Sites at Fort Bliss: A Design for the Evaluation, Management, and Treatment of Cultural Resources,* edited by Myles R. Miller, Nancy A. Kenmotsu, and Melinda R. Landreth. Fort Bliss Environmental Division, Fort Bliss Garrison Command, Historic and Natural Resources Report No. 05-16. Geo-Marine, El Paso.

Aten, Lawrence

1983 Indians of the Upper Texas Coast. Academic Press, New York.

Collins, Michael B.

1971 A Review of Llano Estacado Archaeology and Ethnohistory. *Plains Anthropologist* 16(52):85-103.

Cordell, Linda S.

1979 A Cultural Resource Overview of the Middle Rio Grande Valley, New Mexico. Bureau of Land Management, Albuquerque; USDA Forest Service, Southwest Region, U.S. Government Printing Office, Washington, D.C.

Dillehay, Tom D.

1974 Late Quaternary Bison Population Changes in the Southern Plains. *Plains Anthropologist* 19:180-196.

Dillehay, Tom D. and David J. Meltzer

1991 *The First Americans: Search and Research.* CRC Press, Boca Raton, Florida.

Fenneman, N.M.

1931 *Physiography of Western United States.* McGraw-Hill, Inc., New York.

Fenneman, N.M. and D.W Johnson

1946 Physiographical Divisions of the United States: US Geological Survey.

Ferring, Reid

- 1989 The Aubrey Clovis Site: A Paleo-Indian Locality in the Upper Trinity River Basin, Texas. *Current Research in the Pleistocene 6:9-11.*
- 2001 The Archaeology and Paleoarchaeology of the Aubrey Clovis Site (41DN479), Denton County, Texas. Center for Environmental Archaeology, Department of Geography, University of North Texas, Denton.

Ferring, Reid and B.C. Yates

1997 Holocene Geoarchaeology and Prehistory of the Ray Roberts Lake Area, North Central Texas. Institute of Applied Sciences, University of North Texas, Denton. Submitted to the Fort Worth District, U.S. Army Corps of Engineers.

PH: 512-203-0484

P.O. BOX 151525

AUSTIN, TX 78715

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

- Haskell, J. Loring (ed.)
 - 1977 *Caprock Water System Archaeological Project, Eddy County, New Mexico.* Agency for Conservation Archaeology, Eastern New Mexico University, Portales.

Hanes, Caleb Vance, Jr., and James M. Warnica

2012 Geology, Archaeology and Climate Change in Blackwater Draw, New Mexico: F. Earl Green and the Geoarchaeology of the Clovis Type Site. Eastern New Mexico University Contributions in Anthropology 5:1-205.

Hester, T.R.

1980 A Survey of Paleo-Indian Archeological Remains along the Texas Coast. *Papers on the Archeology of the Texas Coast*, edited by L. Highley and T.R. Hester, pp. 1–12. Special Report No. 11. Center for Archaeological Research, The University of Texas at San Antonio, Texas.

Holliday, V. T.

1987 Cultural Chronology. *Lubbock Lake: Late Quaternary Studies on the Southern High Plains*. Eileen Johnson, editor, Texas A&M University Press, College Station, pp. 22-25.

Jelinek, Arthur J.

1967 *A Prehistoric Sequence in the Middle Pecos Valley, New Mexico*. Anthropological Papers 31. Museum of Anthropology, University of Michigan, Ann Arbor.

Johnson, Eileen McAllister and Vance T. Holliday

- 1986 The Archaic Record at Lubbock Lake. Plains Anthropologist 31:7 54.
- 2004 Archeology and Late Quaternary Environments of the Southern High Plains. *The Prehistory of Texas*, edited by Timothy K. Perttula, pp. 283-295. Texas A&M Press, College Station.

Justice, Noel D.

2002 Stone Age Spear and Arrow Points of the Southwestern United States. Indiana University Press, Bloomington.

Leslie, Robert H.

1979 The Eastern Jornada Mogollon, Extreme Southeastern New Mexico. *Jornada Mogollon Archeology: Proceedings of the First Jornada Conference*, edited by P. H. Beckett and R. N. Wiseman, pp. 179-199. New Mexico State University, Las Cruces.

Miller, Myles R., Tim B. Graves, and Robert H. Leslie

AUSTIN, TX 78715

2016 The Merchant Site: A Late Prehistoric Ochoa Phase Settlement in Southeastern New Mexico. VESPAR, Inc., Report No. 836EP, El Paso and Richardson, Texas.

PH: 512-203-0484

P.O. BOX 151525

NRCS (Natural Resources Conservation Service)

2019 http://websoilsurvey.nrcs.usta.gov/app/websoilSurvey.aspx (accessed April 2019).

Prikryl, Dan

1990 Lower Elm Fork Prehistory: A Redefinition of the Cultural Concepts and Chronologies along the Trinity River, North-Central Texas. Office of the State Archeologist, Report 37. Texas Historical Commission, Austin.

Railey, J. A. (editor)

- 2013 The Human Landscape in Southeastern New Mexico: A Class I Overview of Cultural Resources within the Bureau of Land Management's Carlsbad Field Office Region. NMCRIS 122067. SWCA Environmental Consultants, Albuquerque, New Mexico.
- 2016 Permian Basin Research Design 2016-2026 Volume I: Archaeology and Native American Cultural Resources. SWCA Environmental Consultants, Albuquerque, New Mexico.

Russell, Phillip

2010 *The History of Mexico: From Pre-Conquest to Present*. Routledge Taylor and Francis Group, New York and London.

Sebastian, Lynne and Signa Larralde

1989 *Living on the Land: 11,000 Years of Human Adaptation in Southeastern New Mexico.* Cultural Resource Series No. 6. Bureau of Land Management, Roswell District, New Mexico.

Story, Dee Ann

Cultural History of the Native Americans. *The Archeology and Bioarcheology of the Gulf Coastal Plain,* Vol. 1, by D.A. Story, J.A. guy, B.A. Burnett, M.D. Freeman, J.C. Rose, D.G. Steele, B.W. Olive, and K.J. Reinhard, pp. 163-366. Arkansas Archeological Survey Research Series no. 38, Fayetteville.

Stuart, David E. and Rory P. Gauthier

1980 *Prehistoric New Mexico.* Historic Preservation Bureau, Santa Fe.

AUSTIN, TX 78715

Tainter, Joseph A., and David "A" Girrio

1980 *Cultural Resources Overview, Mt. Taylor Area, New Mexico.* USDA Forest Service, Southwest Region, and Bureau of Land Management, New Mexico State Office, Albuquerque and Santa Fe.

US Climate Data

2019 Online services. http://www.usclimatedata.com/climate/jal/new-mexico/unitedstates/usnm0150 (accessed April 2019).

PH: 512-203-0484

P.O. BOX 151525

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

Willey, G.R.

1966 An Introduction to American Archaeology. Prentice-Hill, Englewood, New York.

P.O. BOX 151525

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

.

Received by OCD: 6/1/2023 12:44:31 PM

APPENDIX A

FIGURES

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

AUSTIN, TX 78715 FPH: 512-203-0484

•

Received by OCD: 6/1/2023 12:44:31 PM

Received by OCD: 6/1/2023 12:44:31 PM

APPENDIX B

PHOTOGRAPHS

P.O. BOX 151525

AUSTIN, TX 78715 F PH: 512-203-0484

Limited Testing Plan Site LA 43495 Released to Imaging: 6/30/2023 9:31:22 AM

.

AUSTIN, TX 78715 FPH: 512-203-0484

P.O. BOX 151525

16 April 2019

Mr. William S. Barnes Deputy Director Field Operations Division New Mexico State Land Office 310 Old Santa Fe Trail P.O. Box 1148 Santa Fe, NM 87504 Mr. David C. Eck Trust Land Archaeologist Field Operations Division New Mexico State Land Office 310 Old Santa Fe Trail P.O. Box 1148 Santa Fe, NM 87504

WWW.GOSHAWKENV.COM

Re: Remediation and Stabilization Plan, Mars State Com Site Lea County, New Mexico

Dear Mr. Barnes and Mr. Eck:

Please allow this letter to serve as EOG Resources, Inc. (EOG) Remediation and Stabilization Plan for the Mars State Com Site. As you are aware, produced water was illegally dumped (released) by an unknown third party along the south side of an access road that serves the Mars 10 State Com lease. This letter outlines EOG's proposed cultural resources inventory to account for possible further impacts to archaeological resources due to necessary and required remediation activities. Additionally, this letter proposes stabilization controls within disturbed areas to help prevent further damage due to wind and water erosion.

CHRONOLOGY SUMMARY

EOG identified the illegal dumping on or about 9 July 2018. Initial remediation efforts commenced on 25 July 2018. A day later, after EOG became aware of the presence of archaeological site LA 43495, remediation activities were halted. After negotiations with the New Mexico State Land Office (NMSLO) and New Mexico Oil Conservation Division (NMOCD), EOG conducted a confirmation sampling effort on 10 December 2018. The sampling effort was completed to understand contamination levels in the disturbed areas of LA 43495. A single sample exceeded 600 mg/kg, the remediation threshold for chlorides. The sample was taken immediately adjacent to the access road and contained chloride levels of 620 mg/kg (Figure 1). No other samples contained vertical or horizontal chloride contamination above remediation thresholds.

CULTURAL RESOURCES INVENTORY

An archaeological damage assessment was conducted at site LA 43495. The damage assessment identified possible impacts to cultural deposits due to a northern blade scrape, two-track path, and a southern blade scrape (See Figure 1). The blade scrape areas were initially excavated in an attempt to remediate chlorides from the illegal dumping, while the two-track path was inadvertently created by mechanical equipment accessing the southern blade scrape. The northern blade scrape currently contains a spoil pile and is the remediation area where the chloride levels tested above remediation thresholds. Additional remediation efforts will be necessary within the northern blade scrape area.

🗲 AUSTIN, TX 78715 🗲 PH: 512-203-0484

P.O. BOX 151525

EOG will contract an archaeological consultant to conduct a cultural resources inventory for the remaining remediation activities. Both the spoil pile and remediation area will need to be assessed. A report of findings will be completed following the cultural resources inventory and submitted to the NMSLO for review.

SPOIL PILE

Material within the spoil pile was excavated from the southern scrape area and "temporarily" stored at its current location (Photo 1). The spoil pile is approximately 26 feet (7.9 meters) long (Figure 2). The north end is circular and approximately 5 feet (1.5 meters) tall with a diameter of 15 feet (4.6 meters). The south end is 2.5 feet (0.8 meter) tall and 9 feet (2.7 meters) wide. The total estimated volume of the spoil pile is approximately 377 cubic feet (10.7 cubic meters). This spoil pile likely contains chloride levels above remediation thresholds; however, recent sampling has not been completed on the spoil pile.

Archaeologists will screen the entire spoil pile through ¼ inch mesh screen to collect any cultural resource artifacts that may have been removed during the initial remediation effort. Any artifacts found from the screening will be analyzed and curated. Screened soils will be deposited temporarily on plastic sheeting and a sample submitted to the lab for chloride analysis. If the spoil pile has chloride levels above remediation thresholds, the soils will be hauled off and disposed of in an approved landfill. However, if the soils contain chloride levels below remediation thresholds, the soils will be transported to and deposited within the southern scrape area.

REMEDIATION AREA

The remediation area will need to have soil excavated and hauled to an approved landfill. Although the exact area of chloride levels above remediation threshold limits has not been specifically identified, it is expected that soil removal will be relatively limited. The remediation plan will be to excavate, utilizing a backhoe, an approximately 5- by 5-foot (1.5- by 1.5-meter) area centered on the contaminated sample (Figure 3). This area will be excavated to a depth of approximately 5 feet (1.5 meters), for a total of approximately 4.6 cubic yards (3.5 cubic meters).

Prior to mechanical excavation of soils for remediation purposes, limited testing within LA 43495 will be conducted by archaeologists. A separate testing plan has been provided for review to the NMSLO, which outlines testing methodology within LA 43495.

After the limited testing plan is completed, EOG will provide an archaeological monitor to observe the mechanical excavation of contaminated soils. The archaeological monitor will have authority to direct excavation efforts and halt work if additional cultural materials or features are encountered.

STABILIZATION CONTROLS

The archaeological damage assessment also raised concerns about further degradation to site LA 43495 by wind and rainfall erosion. EOG proposes to implement secondary erosion and stabilization controls to minimize further impacts to the maximum extent practicable.

PH: 512-203-0484

P.O. BOX 151525

AUSTIN, TX 78715

NORTHERN BLADE SCRAPE

Since further remediation will be necessary within the northern blade scrape, erosion and stabilization controls will be implemented following remediation activities. The northern blade scrape will be seeded utilizing the Bureau of Land Management's (BLM's) Seed Mixture #2 for sandy sites. Seeds will be distributed by hand and lightly raked into the soil. The seed and exposed soil will be covered with a netted, straw erosion control blanket. The erosion control blanket will be secured utilizing u-shaped sod staples. The erosion control blanket will help minimize rainfall impacts to exposed soil, slow water velocity during runoff, prevent seed predation, and limit seed loss due to runoff. The erosion control blanket will degrade over time, after the seed has had a chance to germinate and establish.

A natural, eroded, linear drainage is located immediately south of the northern blade scrape (Photos 2 and 3). This linear drainage feature will allow for increased water flow (volume and velocity) from stormwater runoff that may accumulate within the northern blade scrape. Wattles will be installed across the linear drainage at varying distances from the northern scrape area south toward the southern scrape area (Photo 4). Wattles will not be "trenched" into place as normally specified but will be placed on the ground surface and secured using small wooden laths. The wattles will reduce velocity within the linear drainage feature during heavy rainfall events.

Wattles will be constructed of a polypropylene netting (photodegradable) that is filled with either straw or aspen excelsior both of which are biodegradable. Aspen excelsior typically is much less palatable by livestock and will not typically be destroyed or consumed. After installation, the wattles will degrade over time and continue to reduce water velocity along the linear drainage.

TWO-TRACK PATH

Although much of the native vegetation along the two-track path was damaged during initial remediation efforts, some of the root structure continues to provide stabilization and the seed source has allowed vegetation to regrow (Photo 5). Preventing further access along this two-track path is critical. Large boulders will be strategically placed south of the access road at the edge of existing vegetation to serve as a "road" block. These boulders will be of a size that they can only be relocated using heavy equipment. Additionally, boulders will be spaced no more than 6 feet apart to prevent access to passenger vehicles and work trucks. Boulders will be place at least 50 feet on each side of the two-track path to discourage trespassers from trying to access the two-track path around the boulders (Figure 4).

The two-track path will also be seeded utilizing the BLM's Seed Mixture #2. Distributing seed along the path will establish additional seedlings to further minimize wind and water erosion. Erosion control blankets will be installed (following seed distribution) in areas that currently have minimal or no vegetative coverage (Photo 6). This will help prevent/minimize seed loss due to predation and/or wind and water erosion.

SOUTHERN BLADE SCRAPE

The southern blade scrape is an area where vegetation and topsoil has been removed for remediation purposes (Photos 7 and 8). The area can generally be described as an open, shallow

PH: 512-203-0484

AUSTIN, TX 78715

P.O. BOX 151525

"pit" or series of narrow linear excavations. This area is likely to experience very slow vegetative regrowth due to the loss of topsoil. EOG proposes to sample the spoil pile currently located within the northern blade scrape to determine if chloride levels are above remediation thresholds. If the soils within this pile are below remediation thresholds, the soil will be transported and deposited within the southern blade scrape. However, if the spoil pile contains chloride levels above remediation thresholds, EOG proposes to bring in topsoil from a nearby area to fill and level the southern scrape area. Topsoil will be obtained from a nearby well pad or from the state caliche pit located approximately 1 mile (1.6 kilometers) northwest of the remediation site. Following placement of topsoil, the area will be seeded utilizing BLM's Seed Mixture #2 and covered with an erosion control blanket. The erosion control blanket should help limit loss of seed from predation and erosion, as well as, provide some stabilization until vegetation regrowth occurs.

SUMMARY

EOG proposes to conduct stabilization activities and a cultural resources inventory at the Mars 10 State Com site to allow additional remediation and to attempt to minimize further impacts to archaeological site LA 43495. None of the proposed efforts described within this letter will be conducted until approval is granted from the NMSLO. Please review proposed stabilization and survey activities and provide feedback. If you have any questions or desire additional information, please feel free to contact myself at 512-203-0484 (<u>zhomesley@goshawkenv.com</u>) or Michael Yemm at 432-556-7258 (michael yemm@eogresources.com).

Sincerely,

ane NH

Zane N. Homesley President

Cc: Michael Yemm, EOG Resources, Inc. Doug Lowrie, EOG Resources, Inc.

PH: 512-203-0484

Received by OCD: 6/1/2023 12:44:31 PM

AUSTIN, TX 78715 FPH: 512-203-0484

P.O. BOX 151525

Released to Imaging: 6/30/2023 9:31:22 AM

1525 🧩 AUSTIN, TX 78715 🐓 PH: 512-203-0484 矣

Page 105 of 141

🗲 AUSTIN, TX 78715 🗲 PH: 512-203-0484 🗲

두 AUSTIN, TX 78715 두 PH: 512-203-0484 🗲

Released to Imaging: 6/30/2023 9:31:22 AM

•

Appendix D

May 10, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MARS 10

Enclosed are the results of analyses for samples received by the laboratory on 05/09/19 14:20.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/09/2019	Sampling Date:	05/09/2019
Reported:	05/10/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Jodi Henson
Project Location:	EOG-LEA CO., NM		

Sample ID: CALICHE PIT COMPOSITE (H901710-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/10/2019	ND	2.00	100	2.00	6.09	
Toluene*	<0.050	0.050	05/10/2019	ND	2.35	117	2.00	0.0228	
Ethylbenzene*	<0.050	0.050	05/10/2019	ND	2.34	117	2.00	2.83	
Total Xylenes*	<0.150	0.150	05/10/2019	ND	6.37	106	6.00	1.71	
Total BTEX	<0.300	0.300	05/10/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	05/10/2019	ND	400	100	400	0.00	QR-03
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/10/2019	ND	215	108	200	1.68	
DRO >C10-C28*	<10.0	10.0	05/10/2019	ND	202	101	200	0.304	
EXT DRO >C28-C36	<10.0	10.0	05/10/2019	ND					
Surrogate: 1-Chlorooctane	92.2	% 41-142							
Surrogate: 1-Chlorooctadecane	102	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

<i>by OCD: 6</i> 2/2023	m	M		HADITIO LAB # (LAB USE) (ONLY)	Invoice to: Receiving Laboratory: Comments:	Project Location: (county, state)	Project Name:	Client Name:
Date: Time:	15			SAMPLE IDENTIFICATION	EOG - James Kennedy	Lea Co, NM	Mars 10	Cilent Name: EOG
Time:	Received by: Date: Time:			U/J DATE YEAR: 2019 TIME TIME WATER SOIL HCL HNO3 K ICE None # CONTAINETS FILTERED (Y/N)	Sampler Signature: Conner Moehring	· cur mb	Mike Carmona	Site Manager:
Preparature	ONLY REMARKS:			TPH TX1005 (Ext to C TPH 8015M (GRO - I) PAH 8270C Total Metals Ag As Ba TCLP Metals Ag As Ba TCLP Volatiles TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 62 PCB's 8082 / 608 NORM PLM (Asbestos) Chloride	DRO - ORO - MRO) Cd Cr Pb Se Hg Cd Cr Pb Se Hg 24 0C/625		ANALYSIS REQUEST (Circle or Specify Method No.)	Page / of

May 31, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MARS 10

Enclosed are the results of analyses for samples received by the laboratory on 05/30/19 8:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/29/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: NORTH 1 (4-4.5') (H901898-05)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/30/2019	ND	1.87	93.7	2.00	4.54	
Toluene*	<0.050	0.050	05/30/2019	ND	1.98	99.0	2.00	4.64	
Ethylbenzene*	<0.050	0.050	05/30/2019	ND	1.90	94.9	2.00	5.51	
Total Xylenes*	<0.150	0.150	05/30/2019	ND	5.79	96.5	6.00	4.85	
Total BTEX	<0.300	0.300	05/30/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	05/30/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/30/2019	ND	191	95.7	200	4.18	
DRO >C10-C28*	<10.0	10.0	05/30/2019	ND	199	99.3	200	7.57	
EXT DRO >C28-C36	<10.0	10.0	05/30/2019	ND					
Surrogate: 1-Chlorooctane	89.3	% 41-142							
Surrogate: 1-Chlorooctadecane	92.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/29/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: NORTH 1 (4.5-5') (H901898-06)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/30/2019	ND	1.87	93.7	2.00	4.54	
Toluene*	<0.050	0.050	05/30/2019	ND	1.98	99.0	2.00	4.64	
Ethylbenzene*	<0.050	0.050	05/30/2019	ND	1.90	94.9	2.00	5.51	
Total Xylenes*	<0.150	0.150	05/30/2019	ND	5.79	96.5	6.00	4.85	
Total BTEX	<0.300	0.300	05/30/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	05/30/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/30/2019	ND	191	95.7	200	4.18	
DRO >C10-C28*	<10.0	10.0	05/30/2019	ND	199	99.3	200	7.57	
EXT DRO >C28-C36	<10.0	10.0	05/30/2019	ND					
Surrogate: 1-Chlorooctane	100 \$	% 41-142							
Surrogate: 1-Chlorooctadecane	105 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/29/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: EAST 2 (4-4.5') (H901898-11)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/30/2019	ND	1.87	93.7	2.00	4.54	
Toluene*	<0.050	0.050	05/30/2019	ND	1.98	99.0	2.00	4.64	
Ethylbenzene*	<0.050	0.050	05/30/2019	ND	1.90	94.9	2.00	5.51	
Total Xylenes*	<0.150	0.150	05/30/2019	ND	5.79	96.5	6.00	4.85	
Total BTEX	<0.300	0.300	05/30/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	05/30/2019	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/30/2019	ND	191	95.7	200	4.18	
DRO >C10-C28*	<10.0	10.0	05/30/2019	ND	199	99.3	200	7.57	
EXT DRO >C28-C36	<10.0	10.0	05/30/2019	ND					
Surrogate: 1-Chlorooctane	86.3	% 41-142	2						
Surrogate: 1-Chlorooctadecane	91.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/29/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: EAST 2 (4.5-5') (H901898-12)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/30/2019	ND	1.87	93.7	2.00	4.54	
Toluene*	<0.050	0.050	05/30/2019	ND	1.98	99.0	2.00	4.64	
Ethylbenzene*	<0.050	0.050	05/30/2019	ND	1.90	94.9	2.00	5.51	
Total Xylenes*	<0.150	0.150	05/30/2019	ND	5.79	96.5	6.00	4.85	
Total BTEX	<0.300	0.300	05/30/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	05/30/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/30/2019	ND	191	95.7	200	4.18	
DRO >C10-C28*	<10.0	10.0	05/30/2019	ND	199	99.3	200	7.57	
EXT DRO >C28-C36	<10.0	10.0	05/30/2019	ND					
Surrogate: 1-Chlorooctane	93.7	% 41-142	,						
Surrogate: 1-Chlorooctadecane	96.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/29/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: WEST 2 (4-4.5') (H901898-17)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/30/2019	ND	1.87	93.7	2.00	4.54	
Toluene*	<0.050	0.050	05/30/2019	ND	1.98	99.0	2.00	4.64	
Ethylbenzene*	<0.050	0.050	05/30/2019	ND	1.90	94.9	2.00	5.51	
Total Xylenes*	<0.150	0.150	05/30/2019	ND	5.79	96.5	6.00	4.85	
Total BTEX	<0.300	0.300	05/30/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	05/30/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/30/2019	ND	191	95.7	200	4.18	
DRO >C10-C28*	<10.0	10.0	05/30/2019	ND	199	99.3	200	7.57	
EXT DRO >C28-C36	<10.0	10.0	05/30/2019	ND					
Surrogate: 1-Chlorooctane	99.1	% 41-142	,						
Surrogate: 1-Chlorooctadecane	106 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/29/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: WEST 2 (4.5-5') (H901898-18)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/30/2019	ND	1.87	93.7	2.00	4.54	
Toluene*	<0.050	0.050	05/30/2019	ND	1.98	99.0	2.00	4.64	
Ethylbenzene*	<0.050	0.050	05/30/2019	ND	1.90	94.9	2.00	5.51	
Total Xylenes*	<0.150	0.150	05/30/2019	ND	5.79	96.5	6.00	4.85	
Total BTEX	<0.300	0.300	05/30/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	05/30/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/30/2019	ND	191	95.7	200	4.18	
DRO >C10-C28*	<10.0	10.0	05/30/2019	ND	199	99.3	200	7.57	
EXT DRO >C28-C36	<10.0	10.0	05/30/2019	ND					
Surrogate: 1-Chlorooctane	92.0	% 41-142	,						
Surrogate: 1-Chlorooctadecane	88.9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/29/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: SOUTH 1 (4-4.5') (H901898-23)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/30/2019	ND	1.87	93.7	2.00	4.54	
Toluene*	<0.050	0.050	05/30/2019	ND	1.98	99.0	2.00	4.64	
Ethylbenzene*	<0.050	0.050	05/30/2019	ND	1.90	94.9	2.00	5.51	
Total Xylenes*	<0.150	0.150	05/30/2019	ND	5.79	96.5	6.00	4.85	
Total BTEX	<0.300	0.300	05/30/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	05/30/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/30/2019	ND	191	95.7	200	4.18	
DRO >C10-C28*	<10.0	10.0	05/30/2019	ND	199	99.3	200	7.57	
EXT DRO >C28-C36	<10.0	10.0	05/30/2019	ND					
Surrogate: 1-Chlorooctane	94.2	% 41-142	,						
Surrogate: 1-Chlorooctadecane	99.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/29/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: SOUTH 1 (4.5-5') (H901898-24)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/30/2019	ND	1.87	93.7	2.00	4.54	
Toluene*	<0.050	0.050	05/30/2019	ND	1.98	99.0	2.00	4.64	
Ethylbenzene*	<0.050	0.050	05/30/2019	ND	1.90	94.9	2.00	5.51	
Total Xylenes*	<0.150	0.150	05/30/2019	ND	5.79	96.5	6.00	4.85	
Total BTEX	<0.300	0.300	05/30/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	05/30/2019	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/31/2019	ND	191	95.7	200	4.18	
DRO >C10-C28*	<10.0	10.0	05/31/2019	ND	199	99.3	200	7.57	
EXT DRO >C28-C36	<10.0	10.0	05/31/2019	ND					
Surrogate: 1-Chlorooctane	87.0	% 41-142	2						
Surrogate: 1-Chlorooctadecane	87.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by	Date: Time:		<	Bound and and Staller 0805	ast 2 (3-3.5')	9 East 2 (2-2.5')	S East 2 (1-1.5')	7 East 2 (0-1')	(North 1 (4.5-5')	S North 1 (4-4.5')	4 North 1 (3-3.5')	3 North 1 (2-2.5')	2 North 1 (1-1.5')	North 1 (0-1')	(LAB USE)	LAB # SAMPLE IDENTIFICATION	363106H	Comments:	Cardinal	EOG - James Kennedy	Project Location: (county, state) Lea Co, NM	Project Name: Mars 10	Client Name: EOG	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record	Page 11 of 13
ORIGINAL COPY	Received by:	1	Received by:	Heceived by:	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	DATE TIME	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		Site Manager:			
	Date: Time:		NUCLAN S-30-1	Date: Time:		X X	x	×	X	X X	XXX	X	X X	X X	WATEF SOIL HCL HNO ₃ ICE None	۹ ۹	MATRIX PRESERVATIVE METHOD		Conner Moehring		212C-MD-01735		Mike Carmona	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946		
(Cir		Sar	19 0808	,	1 N	1 N	1 N		1 Z X		L Z	1 N	1 N	1 N	# CONT/ FILTERE BTEX 80	ED (Y	/N)	X 8260B								
(Circle) HAND DELIVERED FEDEX UPS Tracking #:	- 3.8°	Sample Temperature	10 h	LAB USE REMARKS:		×			×	×					TPH TX1 TPH 801 PAH 827 Total Met TCLP Me TCLP Vol TCLP Ser RCI GC/MS V GC/MS	1005 (5M (1 70C als Aç tals A latiles mi Vol ol. 82 emi. \ 082 / 6 eestos Sul Water	Ext to GRO - g As Ba g As B latiles 260B / /ol. 822 608))	C35) DRO - C a Cd Cr F Ba Cd Cr I 624 270C/625 TDS nistry (se	RO - M	Hg	3t)	Circle of Specify Method No.)	ANALYSIS REQUEST		Page1 of	

Received by	OCD-	6/1/	202	312	-44	131	PM	<u> </u>	1	1	1	1	T	1	1	1	-		1 -		1 -	105	1 -	1 -	$- p_{\alpha}$	ee.12	3 ot
Received by		alinguish	nelli iquisi	12. Saling lished by	delinquist											LAB USE	LAB #	Hanisas	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:		22. Analysis Request of Chain of Custody Record	
	eu vy.	ed by:	ieu by.	ad hy:	led by:	20 South 1 (1-1.5')	19 Sc	M81	N CI	K W	1S W	14 W	13 W	12 Ea			-#F	A X		aborator		cation: ate)	me:	ë		s Requ	
				6	}	outh 1 (1	South 1 (0-1')	West 2 (4.5-5')	West 2 (4-4.5')	West 2 (3-3.5')	West 2 (2-2.5')	West 2 (1-1.5')	West 2 (0-1')	East 2 (4.5 - 5')	East 2 (4-4.5')					2						lest of	
				~	È.	-1.5')	-1')	5-5')	-4.5')	3.5')	-2.5')	-1.5')	-1.'	5 - 5')	4.5')					Cardinal	EOG	Lea C	Mars 10	EOG		Chain	
					*												SAMPL			nal	- Jame	Lea Co, NM	10		Tetra	of Cus	
	ç	ŗ	Ľ,	0	D												E IDENT				EOG - James Kennedy				ເສ	tody R	
	Dale.	ato:	Date:	O SO S	Date:												SAMPLE IDENTIFICATION				ledy				Tech,	ecord	
	ġ	Time.	lime:	S	Time:												N								5251		
				30/4		8																			Inc.		
-				-	_						L				L		13								è		
ORIGINAL COPY	neceived by:	-	Heceived by:	Ja	Received by:	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	5/29/2019	DATE	YEAR: 2019	4S		Sampler Signature:		Project #:		Site Manager:			
IAL CO	by:	2	by:	uara	by:	19	19	19	19	19	19	19	19	19	19			SAMPLING		ignature:				ger:			
рү				all	2											TIME				01150							
			(lade		×	×	×	×	×	×	×	×	×	×	WATER SOIL		MATRIX		Con		212		Mike Carmona	901\ F		
	Date:		Date:	50	Date:											HCL				Conner Moehring		212C-MD-01735		armon	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946		
	lime:	TI	lime:	5-30-19	Time:	×	×	×	×	×	×	×	×	×	×	HNO ₃ ICE None		PRESERVATIVE METHOD		oehring		01735		۵	et, Ste 100 ts 79705 t2-4559 32-3946		
				9 0	•••				_							NOTE		IVE									
				580		1 N	1 N	1 N	1 N	1 N	1 N	1 N	1 Z	1 Z	1 Z	# CONTA											
(Circle)	Ħ	Samp	<u> </u>	_			×	×					×	×	BTEX 80	21B	BTE	EX 8260	3							
	ŝ	s cut	2	ONLY	LAB USE			×	×					×	×	TPH 801	5M (DRO - I	MRO)		_				
HAND DELIVERED	100	jo.	rature		Ĩ											Total Meta TCLP Met								Circle			
			×		REMARKS:											TCLP Voli TCLP Ser			i								
PEDEX	Special Report Limits or TRRP Report	Rush Charges Authorized	X RUSH: Same Day	N N	RKS:											RCI GC/MS Vo	ol. 8	260B /	/ 624					YSIS			
UPS	l Repo	harge	Sam	STANDARD			_								_	GC/MS Se PCB's 80			3270C/62	5				t 22 2			
Tracking :	rt Limi	s Auth	le Day	ARD												NORM PLM (Asb	estos	s)						REQUEST		-	
ng #: _	ts or 1	orized	24 hr					×	×					×	×	Chloride								2		Page	
	FRRP	4	1.00					_	_							Chloride General V	0.0000	ulfate r Che	TDS mistry (s	ee atta	ched li	st)		5		l I	
	Repor		48 hr							_						Anion/Cat	_										
	+		72 hr											-												2 of	
						×	×			×	×	×	×			Unit										1	
Released to	Imagin	ıg: (5/30	/202:		0 A I		AM			\sim	~	~			Hold	_									ω	

ceived by	elinquished by:	/1/20	Belinquished by:	Relinquished by:			24 South 1 (45')	23 South	22 South		(LAB USE)	LAB #	1901298	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:		e 124 nalysis Request
	Date: Time:		Jarry s/20/14	Date: Time:			1 (45)	South 1 (4-4.5')	South 1 (3-3.5')	South 1 (2-2.5')		SAMPLE IDENTIFICATION			Cardinal	EOG - James Kennedy	Lea Co, NM	Mars 10	EOG	Tetra Tech, Inc.	e nalysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:		Autora	Received by:			5/29/2019	5/29/2019	5/29/2019	5/29/2019	DATE TIME	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		Site Manager:		
	Date: Time:		5-30	Date: Time:			×	×	×	×	WATE SOIL HCL HNO ₃ ICE None	R	MATRIX PRESERVATIVE METHOD		Conner Moehring		212C-MD-01735		Mike Carmona	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
0		- v	2080 91-				1 N X	1 N X	1 N	1 Z	# CON ^T FILTEP	ED (Y	:RS //N)	X 8260E	3						
(Circle) HAND DELIVERED FEDEX UPS Tracking #:	-38C Special Report Limits or TRRP Report	harges Authorized	TANDARD								TPH TX TPH 8C PAH 82 Total Mi TCLP M TCLP V TCLP S RCI GC/MS GC/MS GC/MS GC/MS Chloride Chloride	(1005 15M (107 70C atals A etals / 200 blatilesemi Vol. 8 Semi. 100 Semi. 100 082 / 100 bbesto	(Ext to GRO Ag As E Ag As E s blatiles 3260B Vol. 8 608 s)	0 C35) - DRO - C Ba Cd Cr Ba Cd Cr / 624 270C/628 TDS	Pb Se Pb Se Pb Se	Hg Hg			ALYSIS RE		Page
eased to		Ĩ							×	×	Genera Anion/C Hold		COS INT	mistry (si	ee atta	iched li	ist)	- 	-	2	3 of 3

May 31, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MARS 10

Enclosed are the results of analyses for samples received by the laboratory on 05/30/19 14:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/30/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: WEST 5 (4-4.5') (H901909-05)

BTEX 8260B	mg,	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	05/31/2019	ND	1.58	78.9	2.00	0.815	
Toluene*	<0.025	0.025	05/31/2019	ND	1.66	82.8	2.00	1.06	
Ethylbenzene*	<0.025	0.025	05/31/2019	ND	1.69	84.7	2.00	0.729	
Total Xylenes*	<0.075	0.075	05/31/2019	ND	5.34	89.0	6.00	1.35	
Total BTEX	<0.150	0.150	05/31/2019	ND					
Surrogate: Dibromofluoromethane	102	% 90.4-11	1						
Surrogate: Toluene-d8	99.0	% 85.3-11	4						
Surrogate: 4-Bromofluorobenzene	97.0	% 80.1-12	1						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	05/31/2019	ND	400	100	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/31/2019	ND	189	94.6	200	1.62	
DRO >C10-C28*	<10.0	10.0	05/31/2019	ND	195	97.5	200	1.42	
EXT DRO >C28-C36	<10.0	10.0	05/31/2019	ND					
Surrogate: 1-Chlorooctane	88.1	% 41-142	,						
Surrogate: 1-Chlorooctadecane	93.1	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	05/30/2019	Sampling Date:	05/30/2019
Reported:	05/31/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: WEST 5 (4.5-5') (H901909-06)

BTEX 8260B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	05/31/2019	ND	1.58	78.9	2.00	0.815	
Toluene*	<0.025	0.025	05/31/2019	ND	1.66	82.8	2.00	1.06	
Ethylbenzene*	<0.025	0.025	05/31/2019	ND	1.69	84.7	2.00	0.729	
Total Xylenes*	<0.075	0.075	05/31/2019	ND	5.34	89.0	6.00	1.35	
Total BTEX	<0.150	0.150	05/31/2019	ND					
Surrogate: Dibromofluoromethane	102	% 90.4-11	1						
Surrogate: Toluene-d8	99.4	% 85.3-11	4						
Surrogate: 4-Bromofluorobenzene	96.7	% 80.1-12	1						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	05/31/2019	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/31/2019	ND	189	94.6	200	1.62	
DRO >C10-C28*	<10.0	10.0	05/31/2019	ND	195	97.5	200	1.42	
EXT DRO >C28-C36	<10.0	10.0	05/31/2019	ND					
Surrogate: 1-Chlorooctane	90.2	% 41-142	,						
Surrogate: 1-Chlorooctadecane	95.4	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by	CD: elinquished by: Date: Time:		mparty s/30/19	5		6 WEST 5 (4.5-5")	5 WEST 5 (4-4.5')	4 WEST 5 (3-3.5)	3 WEST 5 (2-2.5")	2 WEST 6 (1-1.5")	(WEST 5 (0-1')	(LAB USE)	LAB # SAMPLE IDENTIFICATION	9		Comments:	Hecewing Laboratory: CA29いかみと	EOG - James Kennedy	Project Location: (county, state) Lea Co, NM	Project Name: Diamond Of Tod DomON MRES 10	Client Name: EOG	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record	Page 5 of 5
ORIGINAL COPY	Received by: Date: Time:	Date:	lara alatik			N → N → N → N → N → N → N → N → N → N →	5 - X	x x z		× ×		DATE TIME WAT SOIL HCL HNO ICE None # CON	ER 3	NERS	_		Sampler Signature: Conner Moehring		Project #: 2/2/-mp -017 35		Site Manager: Mike Carmona	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946		
(Circle) HAND DELIVERED FEDEX UPS Tracking #:	Special Report Limits or TRRP Report	Sample Temperature X RUSH: Same Day 24 hr 48 hr 72 hr)			× ×	× ×					PAH & Total M TCLP TCLP TCLP RCI GC/MS GC/MS PCB's NORM PLM (/ Chloric Chlori	X 100 3015M 32700 Metals Metal Volati Semi 3 Vol. 3 Sen 8082 Asbes le de de	05 (E) M (GF C S Ag / Is Ag Is Ag Volat Volat N. Vo 2 / 600 Stos) Sulfa ater C	xt to RO - As Ba As B tilles 0B / II. 82 8 8 atte Chern	DRO - C a Cd Cr P 3a Cd Cr 624 270C/625 TDS nistry (see	Pb Se I Pb Se Se I Pb Se	Hg	ist)		ANALYSIS REQUEST		Page I of T	

July 19, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MARS 10

Enclosed are the results of analyses for samples received by the laboratory on 07/18/19 16:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/18/2019	Sampling Date:	07/18/2019
Reported:	07/19/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: BOTTOM HOLE # 1 (5' BEB) (H902471-01)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/19/2019	ND	1.97	98.4	2.00	0.950	
Toluene*	<0.050	0.050	07/19/2019	ND	1.99	99.6	2.00	1.84	
Ethylbenzene*	<0.050	0.050	07/19/2019	ND	1.85	92.6	2.00	3.86	
Total Xylenes*	<0.150	0.150	07/19/2019	ND	5.66	94.4	6.00	3.68	
Total BTEX	<0.300	0.300	07/19/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/19/2019	ND	400	100	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/19/2019	ND	214	107	200	1.93	
DRO >C10-C28*	<10.0	10.0	07/19/2019	ND	202	101	200	3.59	
EXT DRO >C28-C36	<10.0	10.0	07/19/2019	ND					
Surrogate: 1-Chlorooctane	89.1	% 41-142	,						
Surrogate: 1-Chlorooctadecane	93.1	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/18/2019	Sampling Date:	07/18/2019
Reported:	07/19/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: BOTTOM HOLE # 2 (5' BEB) (H902471-02)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/19/2019	ND	1.97	98.4	2.00	0.950	
Toluene*	<0.050	0.050	07/19/2019	ND	1.99	99.6	2.00	1.84	
Ethylbenzene*	<0.050	0.050	07/19/2019	ND	1.85	92.6	2.00	3.86	
Total Xylenes*	<0.150	0.150	07/19/2019	ND	5.66	94.4	6.00	3.68	
Total BTEX	<0.300	0.300	07/19/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 :	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	mg/kg Analyzed By: AC							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/19/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/19/2019	ND	214	107	200	1.93	
DRO >C10-C28*	<10.0	10.0	07/19/2019	ND	202	101	200	3.59	
EXT DRO >C28-C36	<10.0	10.0	07/19/2019	ND					
Surrogate: 1-Chlorooctane	78.1	% 41-142	2						
Surrogate: 1-Chlorooctadecane	84.6	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/18/2019	Sampling Date:	07/18/2019
Reported:	07/19/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: BOTTOM HOLE # 3 (5' BEB) (H902471-03)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/19/2019	ND	1.97	98.4	2.00	0.950	
Toluene*	<0.050	0.050	07/19/2019	ND	1.99	99.6	2.00	1.84	
Ethylbenzene*	<0.050	0.050	07/19/2019	ND	1.85	92.6	2.00	3.86	
Total Xylenes*	<0.150	0.150	07/19/2019	ND	5.66	94.4	6.00	3.68	
Total BTEX	<0.300	0.300	07/19/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/19/2019	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/19/2019	ND	214	107	200	1.93	
DRO >C10-C28*	<10.0	10.0	07/19/2019	ND	202	101	200	3.59	
EXT DRO >C28-C36	<10.0	10.0	07/19/2019	ND					
Surrogate: 1-Chlorooctane	84.4	% 41-142	,						
Surrogate: 1-Chlorooctadecane	89.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/18/2019	Sampling Date:	07/18/2019
Reported:	07/19/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: BOTTOM HOLE # 4 (5' BEB) (H902471-04)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/19/2019	ND	1.97	98.4	2.00	0.950	
Toluene*	<0.050	0.050	07/19/2019	ND	1.99	99.6	2.00	1.84	
Ethylbenzene*	<0.050	0.050	07/19/2019	ND	1.85	92.6	2.00	3.86	
Total Xylenes*	<0.150	0.150	07/19/2019	ND	5.66	94.4	6.00	3.68	
Total BTEX	<0.300	0.300	07/19/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/19/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/19/2019	ND	214	107	200	1.93	
DRO >C10-C28*	<10.0	10.0	07/19/2019	ND	202	101	200	3.59	
EXT DRO >C28-C36	<10.0	10.0	07/19/2019	ND					
Surrogate: 1-Chlorooctane	81.6	% 41-142	2						
Surrogate: 1-Chlorooctadecane	86.9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/18/2019	Sampling Date:	07/18/2019
Reported:	07/19/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: NORTH # 1 SIDEWALL (H902471-05)

BTEX 8021B	mg/	'kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/19/2019	ND	1.97	98.4	2.00	0.950	
Toluene*	<0.050	0.050	07/19/2019	ND	1.99	99.6	2.00	1.84	
Ethylbenzene*	<0.050	0.050	07/19/2019	ND	1.85	92.6	2.00	3.86	
Total Xylenes*	<0.150	0.150	07/19/2019	ND	5.66	94.4	6.00	3.68	
Total BTEX	<0.300	0.300	07/19/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/19/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/19/2019	ND	214	107	200	1.93	
DRO >C10-C28*	<10.0	10.0	07/19/2019	ND	202	101	200	3.59	
EXT DRO >C28-C36	<10.0	10.0	07/19/2019	ND					
Surrogate: 1-Chlorooctane	83.8	% 41-142	2						
Surrogate: 1-Chlorooctadecane	87.7	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/18/2019	Sampling Date:	07/18/2019
Reported:	07/19/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: EAST # 1 SIDEWALL (H902471-06)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/19/2019	ND	1.97	98.4	2.00	0.950	
Toluene*	<0.050	0.050	07/19/2019	ND	1.99	99.6	2.00	1.84	
Ethylbenzene*	<0.050	0.050	07/19/2019	ND	1.85	92.6	2.00	3.86	
Total Xylenes*	<0.150	0.150	07/19/2019	ND	5.66	94.4	6.00	3.68	
Total BTEX	<0.300	0.300	07/19/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/19/2019	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/19/2019	ND	214	107	200	1.93	
DRO >C10-C28*	<10.0	10.0	07/19/2019	ND	202	101	200	3.59	
EXT DRO >C28-C36	<10.0	10.0	07/19/2019	ND					
Surrogate: 1-Chlorooctane	82.8	% 41-142	2						
Surrogate: 1-Chlorooctadecane	82.5	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/18/2019	Sampling Date:	07/18/2019
Reported:	07/19/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: SOUTH # 1 SIDEWALL (H902471-07)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/19/2019	ND	1.97	98.4	2.00	0.950	
Toluene*	<0.050	0.050	07/19/2019	ND	1.99	99.6	2.00	1.84	
Ethylbenzene*	<0.050	0.050	07/19/2019	ND	1.85	92.6	2.00	3.86	
Total Xylenes*	<0.150	0.150	07/19/2019	ND	5.66	94.4	6.00	3.68	
Total BTEX	<0.300	0.300	07/19/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/19/2019	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/19/2019	ND	214	107	200	1.93	
DRO >C10-C28*	<10.0	10.0	07/19/2019	ND	202	101	200	3.59	
EXT DRO >C28-C36	<10.0	10.0	07/19/2019	ND					
Surrogate: 1-Chlorooctane	81.3	% 41-142	,						
Surrogate: 1-Chlorooctadecane	82.7	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/18/2019	Sampling Date:	07/18/2019
Reported:	07/19/2019	Sampling Type:	Soil
Project Name:	MARS 10	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01735	Sample Received By:	Tamara Oldaker
Project Location:	EOG-LEA CO., NM		

Sample ID: WEST # 1 SIDEWALL (H902471-08)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/19/2019	ND	1.97	98.4	2.00	0.950	
Toluene*	<0.050	0.050	07/19/2019	ND	1.99	99.6	2.00	1.84	
Ethylbenzene*	<0.050	0.050	07/19/2019	ND	1.85	92.6	2.00	3.86	
Total Xylenes*	<0.150	0.150	07/19/2019	ND	5.66	94.4	6.00	3.68	
Total BTEX	<0.300	0.300	07/19/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/19/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/19/2019	ND	214	107	200	1.93	
DRO >C10-C28*	<10.0	10.0	07/19/2019	ND	202	101	200	3.59	
EXT DRO >C28-C36	<10.0	10.0	07/19/2019	ND					
Surrogate: 1-Chlorooctane	86.1	% 41-142	,						
Surrogate: 1-Chlorooctadecane	89.4	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received	by OC.	$D_{\mathbb{Z}}6$	/1/2	023-12	- 50	[:31	PM	-	T	T	-	1	-		T-				1							Pa_{i}	ge 140 of 14
Received i		elinquished by:		elinquished by:	elinquished by:		c	X V	1		-		<i>i</i> N	V	67)	(LAB USE)	LAB #	1114202471	Comments:	neceiving Laboratory:	EOC-	(county, state)	1	Project Name:	Client Name:	4	11 jo 11 aged
				anna				Vest #1 Sideman		TAAT #1 SIdemall	. 10	1111年日 1 2.1	Hole# 3 (5	Hole# 2 (S'	Bottom Hole # 1 (S'BER)		SAMPLEI		÷	ory: CARDINAL	- JAMES KENNEDY	LEA COININ	MARS 10		11 > p	Tetra	11 Jo 11 abed Analysis Request of Chain of Custody Record
		Date: Time:		Toto Time.	Date: Time:								B	37	3)		SAMPLE IDENTIFICATION				~					a Tech, Inc.	ody Record
ORIGINAL COPY		Received hv:	Heceived by:	Jama	Received by:		Li lail i		511811C	7/18/19	1118114	11-11-1	71/8/1 L	JISHA	1/18/11	DATE	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:			Site Manager:		×
ΟPΥ	1			na U												TIME WATER				LOVVER		126-mp-		SIKE			
	Date:		Date:	dats	Date:		×	<u><</u> X	×	×	×			<		SOIL		MATRIX		S		-01735		CARMONA	Fax (432	901W Wall Midland,1 Tel (432	
	lime:	1	Time:		Time:		×	×	×	*	×	· ×	< >	< \	×	HNO ₃ ICE None		PRESERVATIVE METHOD		EHRING				マンチ	2) 682-3946	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4559	L
				18-19/6				-	-	-		-	-		+	# CONTA	INEF	RS									
(Ci	C	214	and the second se	01.91	╀	-	2	5	Z	Z	Z	Z	2	-		FILTERED			8260P								
(Circle) HAND DELIVERED	3.5%	#97 3.12	nple Ter	LAB USI	-	-	×	X	×		X				-	TPH TX10	05 (Ext to C	35)	D MC	0)						
	5°c	4 .	nperatu	AB USE	-	-	-	-		_		É		1	F	PAH 8270 Total Metal	С				.0)		_ ?	5			
IVER	ę	2	5 6	2		-	-								1	CLP Meta	ls Ag										
FEDEX			XR												T	CLP Semi	1000	atiles					익	AN			
	pecial F	ush Ch	RUSH:	ST/											G	ICI IC/MS Vol							Speci	SISA ⁻			
UPS T	Report	larges	Same Day	s: STANDARD												C/MS Ser			0C/625				- <	, B			
Tracking #:	Limits	Rush Charges Authorized		RD .											-	ORM LM (Asbes	stos)	l.					Method	REQUEST			σ
#	or TRF	ized (24 hr)			×	\times	×	\times	X	×	×	×	>	hloride hloride	Sulf	ate T	DS					6			Page
	Special Report Limits or TRRP Report		48 hr							-	_			-	G	eneral Wa nion/Catio	ater	Chemis		ittache	d list)		No.)	6			
	ort		72 hr		_	-	_								Ļ												
			3												T											I	of
Released	to Ima	ging	: 6/.	30/202	39	 2:31:	:22	4 <i>M</i>							Н	old							-				1

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
P.O. Box 2267	Action Number:
Midland, TX 79702	222860
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jharimon	None	6/30/2023

Action 222860