Received by OCD: 5/25/2023 1:15:44 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 1 of 13
Incident ID	nAPP2306235620
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🖌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🖌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🖌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🖌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🖌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🖌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- ✓ Field data
- Data table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- ✓ Topographic/Aerial maps
- ✓ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/25/2023 1:1 Form C-141	5:44 PM			Page 2 of 130
			Incident ID	nAPP2306235620
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators are require public health or the environment. T failed to adequately investigate and addition, OCD acceptance of a C-1- and/or regulations. Printed Name: Connor Walker Signature: Connor Walker email: cwalker@mewbourne.	- 	ifications and perform co DCD does not relieve the eat to groundwater, surfa	prrective actions for relea operator of liability sho ce water, human health iance with any other fed	ases which may endanger ould their operations have or the environment. In
OCD Only Received by:Jocelyn Ha	rimon	Date: <u>05/2</u>	25/2023	

Page 6

Oil Conservation Division

	0 0
Incident ID	nAPP2306235620
D' (' (DD	
District RP	
Facility ID	
Application ID	

Page 3 of 130

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Connor Walker Title: Sr. Engineer Signature: Date: 5/25/2023 email: cwalker@mewbourne.com Telephone: (806)202-5281 **OCD Only** Received by: _____ Jocelyn Harimon Date: 05/25/2023 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: <u>Nelson Velez</u> Date: <u>08/17/2023</u>
Printed Name: <u>Nelson Velez</u> Trut France Title: Environmental Specialist - Adv

Remediation Summary & Soil Closure Request

Mewbourne Oil Company Black Sheep 4-33 B3OB Fed Com #1H Battery

Lea County, New Mexico Unit Letter "O", Section 4, Township 22 South, Range 34 East Latitude 32.4142510 North, Longitude 103.474413 West NMOCD Reference No. nAPP2306235620

Prepared By:

Etech Environmental & Safety Solutions, Inc. 6309 Indiana Ave, Ste. D Lubbock, Texas 79413

Arguijo

Lance Crenshaw

Environmental & Safety Solutions, Inc.

Midland • San Antonio • Lubbock • Hobbs • Lafayette

.

TABLE OF CONTENTS

Section

PROJECT INFORMATION	1.0
SITE CHARACTERIZATION.	2.0
CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE	3.0
REMEDIATION ACTIVITIES SUMMARY	
RESTORATION, RECLAMATION & RE-VEGETATION PLAN	5.0
SOIL CLOSURE REQUEST	
LIMITATIONS	7.0
DISTRIBUTION	8.0

FIGURES

Figure 1 - Topographic Map Figure 2 - Site Characterization Map Figure 3 - Site & Sample Location Map

TABLES

Table 1 - Concentrations of BTEX, TPH & Chloride in Soil

APPENDICES

- Appendix A Depth to Groundwater Information
- Appendix B Field Data & Soil Profile Logs
- Appendix C Photographic Log
- Appendix D Laboratory Analytical Reports
- Appendix E Regulatory Correspondence

1.0 PROJECT INFORMATION

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Mewbourne Oil Company, has prepared this *Remediation Summary & Soil Closure Request* for the release site known as the Black Sheep 4-33 B3OB Fed Com #1H Battery (henceforth, "Black Sheep"). Details of the release are summarized below:

atitude:	32.4142510	Longitude:	-103.4744130	1
	Provi	ded GPS are in WGS84 forma		
ite Name: Black She	ep 4-33 B3OB Fed Com #1H	I Battery Site Type:	Tank Battery	
ate Release Discover	red: 2/25/2023	API # (if applica	ble): N/A	
Unit Letter Se	ection Township	Range	County	
"O"	4 228	34E	Lea	
urface Owner: S	tate X Federal Triba	l Private (Nam	e	
	Nature a	and Volume of R	elease	
X Crude Oil	Volume Released (bbls)	179	Volume Recovered (bbls)	5
X Produced Water	Volume Released (bbls)	179	Volume Recovered (bbls)	5
	Is the concentration of tota (TDS) in the produced wat		X Yes No N	/A
Condensate	Volume Released (bbls)		Volume Recovered (bbls)	
Natural Gas	Volume Released (Mcf)		Volume Recovered (Mcf)	
Other (describe)	Volume/Weight Released		Volume/Weight Recovered	
Cause of Release:				
	ube gasket developed a leak v	which led to the heater	treater catching fire.	
]	Initial Response		
X The source of the	release has been stopped.			
	a has been secured to protect h	uman health and the en	vironment.	
X Release materials	have been contained via the us	se of berms or dikes, ab	sorbent pad, or other containment	devices
			ged appropriately.	

Previously submitted portions of the NMOCD Form C-141 are available in the NMOCD Imaging System.

2.0 SITE CHARACTERIZATION

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a halfmile radius of the Black Sheep release site. Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. Depth to groundwater information is provided as Appendix A.

What is the shallowest depth to groundwater beneath the area affected by the release?	20'
Did the release impact groundwater or surface water?	Yes X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark?	Yes X No
Are the lateral extents of the release within 300 feet of any occupied permanent residence, school, hospital, institution or church?	Yes X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes X No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within the incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	Yes X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production or storage site?	X Yes No

NMOCD Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) and Fish & Wildlife Services (FWS) shapefiles, topographic maps, NMOSE and USGS databases, and aerial imagery. The results are depicted in Figures 1, 2, 4, and 5.

3.0 CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE

Based on the volume and nature of the release, inferred depth to groundwater, and NMOCD Siting Criteria, the NMOCD Closure Criteria and NMOCD Reclamation Standards for the Black Sheep release site are as follows:

Probable Depth to Groundwater	Constituent	Laboratory Analytical Method	Closure Criteria*†	Reclamation Standard*‡
	Chloride (Cl-)	EPA 300.0 or SM4500 Cl B	600	600
	Total Petroleum Hydrocarbons (TPH)	EPA SW-846 Method 8015M Ext	100	100
20'	Gas Range Organics + Diesel Range Organics (GRO + DRO)	EPA SW-846 Method 8015M	N/A	N/A
	Benzene	EPA SW-846 Methods 8021b or 8260b	10	10
	Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA SW-846 Methods 8021b or 8260b	50	50

* Measured in milligrams per kilogram (mg/kg)

† Table I, Section 19.15.29.12 of the New Mexico Administrative Code (NMAC).

‡ The NMOCD Reclamation Standard applies only to the top 4' of soil in non-production areas. Section 19.15.29.13 D.(1) NMAC.

4.0 **REMEDIATION ACTIVITIES SUMMARY**

On March 3, 2023, remediation activities commenced at the Black Sheep release site. In accordance with NMOCD regulatory guidelines, impacted soil affected above the NMOCD Closure Criteria and NMOCD Reclamation Standards was excavated and stockpiled on-site, pending transfer to an NMOCD-permitted surface waste facility for disposal. Olfactory/visual senses and/or a chloride test kit were utilized to field-screen the horizontal and vertical extent of impacted soil and to guide the excavation. The sidewalls and floors of the excavation were advanced until field tests and field observations suggested BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards. Representative five-point composite confirmation soil samples were collected every 200 square feet from the sidewalls and floor of the excavated area to be submitted for laboratory analysis.

On March 3, 2023, Etech collected 19 confirmation soil samples (NW1, NW2, SW1, WW1, WW2, and FL 1 @ 3 through FL 14 @ 3) from the sidewalls and floor of the excavated area. The soil samples were submitted to a certified, commercial laboratory (henceforth, "the laboratory") for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated that BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. BTEX and TPH concentrations were also less than the applicable laboratory method detection limit (MDL). Chloride concentrations ranged from 32.0 mg/kg in soil sample FL 13 @ 4 1/2 to 480 mg/kg in soil sample WW1.

On March 4, 2023, Etech collected 31 confirmation soil samples (NW3, EW1, EW2, EW3, SW2, SW3, and FL 15 @ 3' through FL 39 @ 3') from the sidewalls and floor of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated that BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. BTEX and TPH concentrations were also less than the applicable laboratory MDL in each of the submitted soil samples, with the exception of sample FL 15 @ 3', which exhibited a BTEX concentration of 0.018 mg/kg. Chloride concentrations ranged from 2.77 mg/kg in soil sample SW2 to 210 mg/kg in soil sample EW1.

The final dimensions of the excavated area were approximately 124 feet in length, 70 to 102 feet in width, and 3 to 4.5 feet in depth. During the course of remediation activities, Etech transported approximately 1,080 cubic yards of impacted soil to an NMOCD-permitted surface waste facility for disposal and imported approximately 1,308 cubic yards of locally sourced, non-impacted material to the site for use as backfill.

Soil sample locations and the extent of the excavated area are depicted in Figure 3, "Site & Sample Location Map". Soil chemistry data is summarized in Table 1. Field data and a soil profile log are provided in Appendix B. General photographs of the site are provided in Appendix C. Laboratory analytical reports are provided in Appendix D. Copies of all regulatory correspondence are provided in Appendix E.

5.0 **RESTORATION, RECLAMATION & RE-VEGETATION PLAN**

Upon receiving laboratory analytical results from confirmation soil samples, excavated areas were backfilled with locally sourced, non-impacted, "like" material placed at or near original relative positions. The affected area was compacted and contoured to achieve erosion control, stability, and preservation of surface water flow, to the extent practicable. Affected areas not on production pads and/or lease roads will be reseeded with an agency and/or landowner-approved seed mixture during the first favorable growing season following closure of the site.

6.0 SOIL CLOSURE REQUEST

Remediation activities were conducted in accordance with NMOCD regulatory guidelines. Impacted soil affected above the NMOCD Closure Criteria and NMOCD Reclamation Standards was excavated and transported to an NMOCD-permitted disposal facility. Laboratory analytical results from confirmation soil samples indicate in-situ concentrations of BTEX, TPH, and chloride are below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards.

Based on laboratory analytical results and field activities conducted to date, Etech recommends Mewbourne Oil Company provide copies of this *Remediation Summary & Soil Closure Request* to the appropriate agencies and request closure be granted to the Black Sheep release site.

7.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this *Remediation Summary & Soil Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Mewbourne Oil Company. Use of the information contained in this report is prohibited without the consent of Etech and/or Mewbourne Oil Company.

8.0 **DISTRIBUTION**

Mewbourne Oil Company

4801 Business Park Blvd. Hobbs, NM 88240

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division, District 1 1220 South St. Francis Drive Santa Fe, NM 87505

United States Department of the Interior

Bureau of Land Management 620 E. Greene Street Carlsbad, NM 88220

(Electronic Submission)

Figure 1 Topographic Map

•

Figure 2 Site Characterization Map

•

Figure 3 Site & Sample Location Map

Received by OCD: 5/25/2023 1:15:44 PM

•

Table 1Concentrations of BTEX, TPH & Chloride in Soil

	Table 1 Concentrations of BTEX, TPH & Chloride in Soil											
					wbourne (-	•					
			Blac	-	-33 B3OB			ery				
	<u>an ai a</u>			1	D Ref. #: n							
	CD Closure C			10	50	N/A	N/A	N/A	N/A	100	600	
NMOCD	Reclamation	Standard		10	50	N/A	N/A	N/A	N/A	100	600	
				SW 840	5 8021B		SW	846 8015M GRO +	Ext.		4500 Cl	
Sample ID	Date	Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	$\frac{GRO +}{DRO}$ C_6-C_{28} (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)	
NW1	3/3/2023	0-4.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0	
NW2	3/3/2023	0-3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112	
NW3	3/4/2023	0-3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	4.98	
EW1	3/4/2023	0-3	In-Situ	< 0.00105	< 0.0063	<26.3	<26.3	<26.3	<26.3	<26.3	210	
EW2	3/4/2023	0-3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	7.98	
EW3	3/4/2023	0-3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	22.4	
SW1	3/3/2023	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0	
SW2	3/4/2023	0-3	In-Situ	< 0.00105	0.00203	<26.3	<26.3	<26.3	<26.3	<26.3	2.77	
SW3	3/4/2023	0-3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	3.26	
WW1	3/3/2023	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	480	
WW2	3/3/2023	0-3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128	
FL 1 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0	
FL 2 @ 4	3/3/2023	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0	
FL 3 @ 4	3/3/2023	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	176	
FL 4 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	208	
FL 5 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	208	
FL 6 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128	
FL 7 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112	
FL 8 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160	
FL 9 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	240	
FL 10 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160	
FL 11 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	144	
FL 12 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	176	
FL 13 @ 4 1/2	3/3/2023	4.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0	
FL 14 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0	
FL 15 @ 3'	3/4/2023	3	In-Situ	< 0.00103	0.0182	<25.8	<25.8	<25.8	<25.8	<25.8	3.00	
FL 16 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	47.7	
FL 17 @ 3'	3/4/2023	3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	8.29	
FL 18 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	7.71	
FL 19 @ 3'	3/4/2023	3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	8.99	
FL 20 @ 3'	3/4/2023	3		< 0.00103		<25.8	<25.8	<25.8	<25.8	<25.8	8.10	
FL 21 @ 3'	3/4/2023	3		< 0.00103		<25.8	<25.8	<25.8	<25.8	<25.8	8.26	
FL 22 @ 3'	3/4/2023	3		< 0.00111		<27.8	<27.8	<27.8	<27.8	<27.8	10.6	
FL 23 @ 3'	3/4/2023	3		< 0.00111		<27.8	<27.8	<27.8	<27.8	<27.8	6.59	
FL 24 @ 3'	3/4/2023	3		< 0.00105		<26.3	<26.3	<26.3	<26.3	<26.3	46.4	
FL 25 @ 3'	3/4/2023	3		< 0.00106		<26.6	<26.6	<26.6	<26.6	<26.6	43.5	
FL 26 @ 4'	3/4/2023	4		< 0.00105		<26.3	<26.3	<26.3	<26.3	<26.3	18.8	
FL 27 @ 4'	3/4/2023	4		< 0.00106		<26.6	<26.6	<26.6	<26.6	<26.6	135	
FL 28 @ 3'	3/4/2023	3		< 0.00103		<25.8	<25.8	<25.8	<25.8	<25.8	7.63	
FL 29 @ 3'	3/4/2023	3		< 0.00103		<25.8	<25.8	<25.8	<25.8	<25.8	8.31	
FL 30 @ 3'	3/4/2023	3		< 0.00103		<25.8	<25.8	<25.8	<25.8	<25.8	8.05	

Dash (-): Sample not analyzed for that constituent. **Bold:** NMOCD Closure Criteria exceedance. Red: NMOCD Reclamation Standard exceedance.

.

	Table 1 Concentrations of BTEX, TPH & Chloride in Soil												
			cone		wbourne (i Son					
			Blac		-33 B3OB	-	·	ery					
				NMOCI	D Ref. #: n	APP2306	235620	·					
NMOCD Closure Criteria 10 50 N/A N/A N/A 100													
NMOCD	Reclamation	Standard		10	50	N/A	N/A	N/A	N/A	100	600		
				SW 840	6 8021B		SW	846 8015M	Ext.		4500 Cl		
Sample ID	Date	Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C ₆ -C ₂₈ (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)		
FL 31 @ 3'	3/4/2023	3	In-Situ	< 0.00106	< 0.00636	<26.6	<26.6	<26.6	<26.6	<26.6	22.0		
FL 32 @ 3'	3/4/2023	3	In-Situ	< 0.00101	< 0.00606	<25.3	<25.3	<25.3	<25.3	<25.3	8.96		
FL 33 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	6.03		
FL 34 @ 3'	3/4/2023	3	In-Situ	< 0.00108	< 0.00648	<26.9	<26.9	<26.9	<26.9	<26.9	9.30		
FL 35 @ 3'	3/4/2023	3	In-Situ	< 0.00109	< 0.00654	<27.2	<27.2	<27.2	<27.2	<27.2	11.6		
FL 36 @ 3'	3/4/2023	3	In-Situ	< 0.00105	< 0.0063	<26.3	<26.3	<26.3	<26.3	<26.3	18.0		
FL 37 @ 3'	3/4/2023	3	In-Situ	< 0.00110	< 0.0066	<27.5	<27.5	<27.5	<27.5	<27.5	17.1		
FL 38 @ 3'	3/4/2023	3	In-Situ	< 0.00108	< 0.00648	<26.9	<26.9	<26.9	<26.9	<26.9	42.1		
FL 39 @ 3'	3/4/2023	3	In-Situ	< 0.001 04	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	47.9		

.

•

Appendix A Depth to Groundwater Information

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right	(R=POE been rej O=orpha C=the fi	placed, aned,						NW 2= nallest t	NE 3=SW 4	4=SE)				
file.)	closed)			```	qua arge		are sn	allest		IAD83 UTM in I	meters)	(In	feet)	
		POD												
	0.1	Sub-	0		Q		- -		v	v	DistanceD		-	/ater
POD Number CP 00744	Code	Dasin CP	County LE	64	16 1			s нng 6 34Е	X 643618		DistanceDe 329	460	othwaterCo	blumn
01 00744		01	LL		'	2 0	5 220) 04L	043010	5567691	525	400		
<u>CP 00597 POD1</u>		CP	LE		2	2 0	8 228	34E	642410	3587074* 🌍	1088	35		
<u>CP 01913 POD3</u>		СР	LE	1	4	2 0	8 225	6 34E	642394	3586721 🌍	1247	26		
<u>CP 01913 POD1</u>		СР	LE	1	4	2 0	8 225	6 34E	642346	3586730 🌍	1284	35	31	4
CP 01913 POD2		CP	LE	1	4	2 0	8 228	6 34E	642366	3586694 🌍	1285	31		
<u>CP 00944 POD1</u>		CP	LE		3	1 0	3 228	34E	644531	3588351 🧧	1450	109	70	39
<u>CP 01720 POD1</u>		CP	LE	1	3	2 0	8 228	34E	642003	3586723 🌍	1592	1190	824	366
										Ave	rage Depth to V	Water:	308 fe	et
											Minimum D	epth:	31 fe	et
											Maximum D	epth:	824 fe	et
Record Count:7														
<u>UTMNAD83 Radiı</u>	us Search	(in mete	ers):											
Easting (X): 64	3455.46		North	hing) (Y)	: 35	87377	.69		Radius: 1610)			
*UTM location was deriv	ed from PL	SS - see	Help											

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/24/23 11:03 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(1				E 3=SV largest	V 4=SE)	(NAD83 U	JTM in meters)	
Well Tag	POD	Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
	CP (00744		1	2	09	22S	34E	643618	3587091* 🍯	
x Driller Lice	nse:	421	Driller	· Con	npar	ıy:	GL	ENN'S	WATER W	ELL SERVICE	
Driller Nam	ne:	GLENN, CLARK	A."CORK	(IY" (I	LD)						
Drill Start I	Date:	10/06/1989	Drill F	inish	Dat	te:	1	0/06/19	989 P	lug Date:	
Log File Da	te:	10/17/1989	PCW	Rcv I	Date	:			Se	ource:	Shallow
Pump Type:	:		Pipe D	ischa	ırge	Size:			E	stimated Yield	:
Casing Size:	:		Depth	Well	:		4	60 feet	D	epth Water:	

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 10:55 AM

POINT OF DIVERSION SUMMARY

ed by OCD: 5/2	5/2023 1:15:4	44 PM	Lore the	······································				Page 24 o
	a de la composición d		- 9	·.	•		i di	Revised June 1972
sur sa			STATE ENG	INEER OFFI	CF			-C67
				RECORD			4	1587)
		i.		NECOND			•	
			Section 1. GENE	RAL INFORM	ATION		E S	
(A) Owner of	well <u>Oryx</u>	Energy		- W-77 0		90\winer	's Well No	
Street or I	Post Office Ad	Idress C/O G	lenn's Wate: Tatum, N.M	88267	ervic	e, inc. 07	<u>y</u> A//	•
-				<u> </u>		ATP 5.		17
Well was drilled	under Permit	No	+4	and is	located	in the ATA FE. J 22-S. Ban	ASIAN	
a	14 E1	NW 1	$\frac{\text{NE}}{\text{ME}}$ ¼ of Section	9	/nship_2	22-S. Ran	EB47ES	ICEN.M.P.M
at in the			,		-		Be	·0
b. Tract N	10	of Map No. <u>.</u>		of the			·	·
c. Lot No		of Block No		of the		:		
Subdiv	ision, recorde	d in	·····	County.				
d. X=		feet, Y=	f	eet. N.M. Coc	ordinate S	System		Zone ii
the	· · · · · · · · · · · · · · · · · · ·					·····		Grant
(B) Drilling C	ontractor	Glei	nn's Water	Well Ser	vice,	U Linguage No. WI) 421	
	•				· · ·	_ License NO.		
Address P.	U. Box 6	592n Tati	um, N.M. 8	8267		· · · · · · · · · · · · · · · · · · ·		
Drilling Regan	10/6/89	Compl	eted 10/6/89	Tune	toole Ro	tary	Size of h	ole7 7/8
Elevation of lan	d surface or _			at well is		_ ft. Total depth	of well	<u> </u>
Completed well	is 🗄 sl	hallow 🗖 ar	tesian.	Depth	to water	upon completion	of well	fi
			' .					•
	- Ea-t	T	ion 2. PRINCIPAL	WATER-BEAI	RING ST	RATA	·	
Depth i From	n Feet To	Thickness in Feet	Descripti	ion of Water-H	Bearing F	ormation		ated Yield per minute)
	····					· .		
Well w	as:back	ITILLED W	ith native	airt				·····
						:	·	•
					·			
· · · · · · · · · · · · · · · · · · ·	<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
				·				
			Section 3. RE		SING	· · · · ·	· .	
Diameter	Pounds	Threads	Depth in Feet		ngth	T		Perforations
(inches)	per foot	per in.	Top Bott		eet)	Type of Sho	e Fro	
			- 		··· · · ·			
		· · ·	· · · · · · · · · · · · · · · · · · ·			<u></u>		
		· .			. :			
	\$							
: .		· · · · ·						teriore de la composición de
Depth i	n Feet	Sectio Hole	n 4. RECORD OF 1 Sacks	Cubic Fe		· · · · ·		
From	То	Diameter	of Mud	of Ceme		Metho	d of Placem	ent
						•	•	· · ·
		1	• • •					
				l l			·	
	······		, 		· · · · · ·			• .
					· · · ·		··· · · ·	
			Section 5. PL	UGGING REC	CORD		· · · · · · · · · · · · · · · · · · ·	
Plugging Contra	ctor			UGGING REC	CORD		· · · · · · · · · · · · · · · · · · ·	
Plugging Contra Address			Section 5. PLI	UGGING REC	·	Depth in l		Cubic Feet
Plugging Contra Address Plugging Method	d	· · · · · · · · · · · · · · · · · · ·	Section 5. PLI	UGGING REC	CORD No.	Depth in I Top	Feet Bottom	Cubic Feet of Cement
Plugging Contra Address Plugging Method Date Well Plugg	1 ed	· · · · · · · · · · · · · · · · · · ·	Section 5. PLI	UGGING REC	No.			
Plugging Contra Address Plugging Method	1 ed	· · · · · · · · · · · · · · · · · · ·	Section 5. PL1	UGGING REC	·			
Plugging Contra Address Plugging Method Date Well Plugg	1 ed	· · · · · · · · · · · · · · · · · · ·	Section 5. PLI	UGGING REC	No.			
Plugging Contra Address Plugging Method Date Well Plugg	1 ed	· · · · · · · · · · · · · · · · · · ·	Section 5. PLI neer Representative		No. 1 2 3 4	Top		
Plugging Contra Address Plugging Method Date Well Plugg	1 ed ed by: 	State Engi	Section 5. PL1		No. 1 2 3 4	Top		of Cement
Plugging Contra Address Plugging Method Date Well Plugg Plugging approv	1 ed ed by: 	· · · · · · · · · · · · · · · · · · ·	Section 5. PLI neer Representative		No. 1 2 3 4	Top		

Contraction of the second of

Received by OCD: 5/25/2023 1:15:44 PM

<u>.</u>

Page 25 of 130

	in Feet	Thickness	Color and Type of Material Encountered
From	To -	, in Feet , ·	
)	4	4	soil
4	22	.18	caleche
22	35	13	sand
35	49	14	sand y clay
49	52	3	gravel
52	63	11	brown sand stone
63	67	4	light blue clay
67	86	19	red clay
86	98	13	purple clay
98	140	42	red clay
140	190	50	brown shale
190	204	14	blue sand rock
204	265	61	brown shale with blue streeks
265	272	7	blue snad rock
272	320	48	red clay
320	404	132	brown shale
+04	415	11	clay conglomerate (red yellow blue)
+15	460	45	brown shale
:			
· · ·			· · · · · · · · · · · · · · · · · · ·

Section 7. REMARKS AND ADDITIONAL INFORMATION

Η

1

Driller

 ∞

The undersigned here by certifies that, to the best of his knowledge and belief, the foregoing is a true and correct described hole. cord of the above described hole. م m

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except 500 on 5, shall be answered as completely and a stately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed. drilled, repaired or deepened. When this form is Released to Imaging: 8/17/2023 9:01:33 AM

New Mexico Office of the State Engineer **Point of Diversion Summary**

		(quarters are 1=NW 2=1 (quarters are smallest t		(NAD83 UTM in meters)	
Well Tag	POD Number	Q64 Q16 Q4 Sec	Tws Rng	X Y	
	CP 00597 POD1	2 2 08	22S 34E	642410 3587074* 🌍	
Driller Lic Driller Na		Driller Company:	UNKNOWN	1	
Drill Start	Date:	Drill Finish Date:		Plug Date:	
Log File D	Pate:	PCW Rcv Date:		Source:	Shallow
Pump Typ	e:	Pipe Discharge Size	:	Estimated Yield:	3 GPM

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Transaction Summary

	DCI	Declaration of	of a Water l	Right		
saction Number: 546	6663 Ti	ansaction Desc:	CP 00597	7	File Date: 04	4/17/1979
Secondary Status: P Person Assigned: **	CL Declared RC Processe ***** HE MERCHAN		COMPANY	Ý		
x Events						
Date		scription plication Receive	d	Comment *	Process *****	•
04/17/1979	FTN Fin	alize non-publish	ed Trans.		*****	**
05/15/2014	QAT Qu	ality Assurance C	Completed	SQ2	*****	**
09/17/2014	QAT Qu	ality Assurance C	Completed	IMAGE	*****	**
12/15/2016	QAT Qu	ality Assurance C	Completed	DATA	*****	**
Water Right Informa				D 4		
WR File Nbr CP 00597	Acres 0	Diversion 3	Consumptiv	ve Purpose of Us PLS NON 72 WATERING	e 2-12-1 LIVEST(OCK
** Point of Divers CP 00597 POD		642410 35	587074* 🧲			
	orthing value indic	ates UTM location v	vas derived fr	om PLSS - see Helj	p	
**Place of Use						
Q Q Q Q 256 64 16 4	Sec Tws Rn	g Acres	Diversion	Consumptive	Use Priority	Status Other Loc
		0	3	Ι	PLS 12/31/1918	DCL NO PLACE USE GIVE

Remarks

NAME OF WELL - HAMILTON

"ABSTRACTOR'S NOTE: THE POD FOR THIS DECLARATION HAS BEEN RE-NUMBERED ACCORDING TO THE APPROVED OSE POD POLICY".

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 11:01 AM

TRANSACTION SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarters are 1=NW 2 (quarters are smalles	,	(NAD83 UTM in meters)
Well Tag PO	DD Number	Q64 Q16 Q4 Se	ec Tws Rng	X Y
NA CI	• 01913 POD3	1 4 2 0	8 22S 34E	642394 3586721 🌍
x Driller License	: 1249	Driller Company:	ATKINS EN	IGINEERING ASSOC. INC.
Driller Name:	JACKIE ATKINS			
Drill Start Date	e: 08/09/2022	Drill Finish Date:	08/09/202	2 Plug Date:
Log File Date:	08/11/2022	PCW Rcv Date:		Source:
Pump Type:		Pipe Discharge Siz	ze:	Estimated Yield:
Casing Size:		Depth Well:	26 feet	Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

PAGE 1 OF 2

WELL TAG ID NO.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

_	OSE POD NO	. (WELL NO).)		WELL TAG ID NO.			OSE FILE NO(S).			
LION	POD-3 WELL OWNE	D MAN (D/C)						CP- PHONE (OPTIO				
GENERAL AND WELL LOCATION	Marathon ()					PHONE (OPTI	UNAL)			
ELL I	WELL OWNE 4111 S. Tio							CITY Carlsbad			тате М 88220	ZIP
IM Q				GREES	MINUTES	SECOND	e.	Carisbau				
LAN	WELL LOCATIO	N TA	TITUDE	32	24	30.50		* ACCURACY	REQUIRED: C	ONE TENTH	OF A SECOND	
ERA	(FROM GP	(S)	NGITUDE	103	29	8.88		* DATUM REC	QUIRED: WGS	84		
GEN			NG WELL LOCATION TO		ESS AND COMMON	LANDMA	RKS – PLS	S (SECTION, TO	WNSHJIP, RAI	NGE) WHER	E AVAILABLE	
1.	NW SEN	IE Sec. 08	8 T22S R34E, NMP	M								
	LICENSE NO		NAME OF LICENSED		adia D. Addia						ING COMPANY	•
	124 DRILLING ST		DRILLING ENDED		ackie D. Atkins						eering Associates,	
	8/9/2		8/9/2022		Soil Boring			le depth (ft) ±26	DEPTH WA	TER FIRST	ENCOUNTERED (FI N/A	()
N	COMPLETEI	O WELL IS:		✓ DRY HOL	E SHALLO	W (UNCON	FINED)		WATER LEVE PLETED WELI		DATE STATIO	C MEASURED
ATIO	DRILLING FI	LUID:	AIR	MUD	ADDITIV	ES – SPECI	FY:					
2. DRILLING & CASING INFORMATION	DRILLING M	ETHOD:	ROTARY HAMM	MER CABL	E TOOL 🔽 OTHI	ER – SPECII	FY: H	Iollow Stem	Auger	CHECK HE	ERE IF PITLESS ADA D	APTER IS
INFO	DEPTH		BORE HOLE	CASING	MATERIAL AND GRADE	/OR	CA	ASING	CASIN	IG	CASING WALL	SLOT
SING	FROM	то	DIAM (inches)		each casing string,		Т	NECTION TYPE	INSIDE D (inche		THICKNESS (inches)	SIZE (inches)
¢ CA	0	26	6.5"		sections of screen) Soil Boring		(add coup)	ling diameter)				
NG												
ILLL												
2. DI												
	DEPTH	(feet bgl)	BORE HOLE	LIS	ST ANNULAR SE	AL MAT	ERIAL A	AND	AMO	DUNT	METH	OD OF
RIAL	FROM	ТО	DIAM. (inches)	GRA	VEL PACK SIZE-	RANGE I	BY INTE	RVAL	(cubi	c feet)	PLACE	MENT
ANNULAR MATERIAL												
LR M												
NUL									DEE DI	1 AUG 1.	1. 2022 рм4.13	3
INN.												
З.												
FOR	OSE INTER	NAL USE						WR-20	0 WELL RE	CORD & I	LOG (Version 01/	28/2022)
FILE	NO.	-191	3-2023		POD NO	PO	DZ	TRN	NO.	7326	250	

Enfo Released to Imaging: 8/17/2023 9:01:33 AM

2.34.142

LOCATION

PAGE 2 OF 2

.

WELL TAG ID NO.

-

	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	ND TYPE OF MATERIAL ENC ER-BEARING CAVITIES OR F pplemental sheets to fully descr	FRACTURE ZONE	ES BEARING (YES / No	G?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	9	9	Sand, medium/ f	ine grained , poorly graded, unco	onsolidated. Brown	n Y	N	Londo (Bpill)
	9	11	3		fine grained , poorly graded, wit			N	
	11	16	5		grained, poorly graded, with gra			N	
	16	26	10		Clay, Stiff, High Plasticity, Deep			N	
							Y	N	
L							Y	N	
4. HYDROGEOLOGIC LOG OF WELL							Y	N	
OF V							Y	N	
90							Y	N	
ICL							Y	N	
DO							Y	N	
EOI							Y	N	
ROG							Y	N	
QXE							Y	N	
4.1							Y	N	
							Y	N	
							Y	N	
							Y	N	
							Y	N	
							Y	N	
							Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARIN	G STRATA:		TOTAL ESTIMA	TED	
	D PUM	P A	IR LIFT	BAILER 0	THER – SPECIFY:		WELL YIELD (g	gpm):	0.00
NOIS	WELL TES				ΓΑ COLLECTED DURING WE HOWING DISCHARGE AND I				
TEST; RIG SUPERVISI	MISCELLA	NEOUS INF	FORMATION: THE 6.4	ne boring was plugge 0 gallons of water per	d using augers as tremie to la r 94 lb. sack.		ortland TYPE I/II N ISE DIT AUG 11		
EST	PRINT NAM	E(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PRO	VIDED ONSITE SUPERVISIO	ON OF WELL CON	NSTRUCTION OTH	ER TH	AN LICENSEE:
5.7	Shane Eldri								
TURE	CORRECT I	RECORD O	F THE ABOVE I	DESCRIBED HOLE AN	BEST OF HIS OR HER KNOW ND THAT HE OR SHE WILL F IPLETION OF WELL DRILLIN	FILE THIS WELL	LIEF, THE FOREGO RECORD WITH TH	DING IS IE STA	S A TRUE AND TE ENGINEER
SIGNATURE	Jack A	tkins		Ja	ckie D. Atkins		8/10/20)22	
6.		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME		D	ATE	
FOI	R OSE INTER	NAL USE				WR-20 WI	ELL RECORD & LO	G (Ver	sion 01/28/2022)
FIL	ENO. CP	-1913	3-100	3	POD NO. POD 3	TRN NO.	73203		

Expl

22.34.142

LOCATION

Mike A. Hamman, P.E. State Engineer

ROSWEll Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO

OFFICE OF THE STATE ENGINEER

Trn Nbr: 732035 File Nbr: CP 01913 Well File Nbr: CP 01913 POD3

Aug. 11, 2022

MELODIE SANJARI MARATHON OIL 4111 S TIDWELL RD CARLSBAD, NM 88220

Greetings:

The above numbered permit was issued in your name on 08/15/2022.

The Well Record was received in this office on 08/11/2022, stating that it had been completed on 08/09/2022, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 08/15/2023.

If you have any questions, please feel free to contact us.

Sincerely,

Maret Amaral (575)622-6521

drywell

New Mexico Office of the State Engineer **Point of Diversion Summary**

				29	34		-	Conglomerat	e
X	Water Bearing Stratif	fications:	Та	n I	Bottom	Desci	ription		
Casing Siz	e:	Depth We	ll:		35	5 feet	De	oth Water:	31 feet
Pump Typ	e:	Pipe Disc	harge	Size:			Est	imated Yield	:
Log File D	ate: 08/11/2022	PCW Rev	Date	:			Sou	irce:	Shallow
Drill Start	Date: 08/09/2022	Drill Finis	sh Dat	e:	08	3/09/202	22 Plu	g Date:	
Driller Na	me: JACKIE ATKIN	S							
Driller Lic	ense: 1249	Driller Co	ompan	y:	ATH	KINS EI	NGINEERIN	GASSOC. II	NC.
NA	CP 01913 POD1	1 4	2	08	22S	34E	642346	3586730)
Well Tag	POD Number	Q64 Q1	-			0	X	Y	
		(quarters			0 /			M in meters)	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO POD-2). (WELL)	NO.)		WELL TAG ID NO.			OSE FILE NO(S	S).				
OCATI	WELL OWN		(\$)		•			PHONE (OPTIC	ONAL)				
MELL I	WELL OWN 4111 S. Tie		NG ADDRESS d.					CITY Carlsbad			STAT NM		ZIP
GENERAL AND WELL LOCATION	WELL LOCATIO	N I	ATITUDE	DEGREES 32	minutes 24	SECON 29.6		* ACCURACY	-		TH OF .	A SECOND	
NER/	(FROM GP	PS) I	ONGITUDE	103	29	9.9	6 W	* DATUM REQ	QUIRED: WGS	84			
1. GEI			TING WELL LOCATION 08 T22S R34E, NI		DDRESS AND COMMON	I LANDMA	RKS – PLS	S (SECTION, TO	WNSHJIP, RA	NGE) WHI	ERE A	VAILABLE	
	LICENSE NO 124		NAME OF LICEN	SED DRILLER	Jackie D. Atkins	-						COMPANY ng Associates, In	nc.
	DRILLING S 8/8/2		DRILLING ENDER 8/8/2022	D DEPTH O	F COMPLETED WELL (FI Soil Boring	r)		le depth (ft) ±31	DEPTH WA	TER FIRS		COUNTERED (FT)	
N	COMPLETE	D WELL I	S: ARTESIAN	✓ DRY	HOLE SHALLO	W (UNCON	NFINED)		WATER LEVE PLETED WELI		'A	DATE STATIC N 8/8/20	
ATIO	DRILLING F	LUID:	AIR	MUD	ADDITIV	ES – SPEC	IFY:						
RM	DRILLING M	ETHOD:	ROTARY H	AMMER 🗌 (CABLE TOOL 🔽 OTHI	ER – SPEC	IFY: H	Iollow Stem	Auger	CHECK INSTAL	HERE LED	IF PITLESS ADAP	TER IS
2. DRILLING & CASING INFORMATION	DEPTH FROM	(feet bgl TO	DORE HOL	E	NG MATERIAL AND GRADE 1de each casing string,		CON	ASING NECTION	CASI INSIDE I			SING WALL HICKNESS	SLOT SIZE
CASI			(inches)		ote sections of screen)		T (add coup)	TYPE ling diameter)	(inche	es)		(inches)	(inches)
8	0	31	6.5"		Soil Boring								-
TIN													
DRIL													
2.1													
									USE		(3.1.) (3.1.)	2027 pmd 1	
											the state of	- 207 Z Paul - j	4
T	DEPTH FROM	(feet bgl	DIAM (inch		LIST ANNULAR SE FRAVEL PACK SIZE					OUNT ic feet)		METHO PLACEM	
ANNULAR MATERIAL													
TAM													
AR													
INNI													
3. AN													
FOR	OSE INTER	NAL US	SE		_			WR-2	0 WELL RE	CORD &	& LO	G (Version 01/2	8/2022)

FILE NO. CP-19	113-PODZ	POD NO	2 407 C	TRN NO.	732035	-
LOCATION EVAL	1 22.34	1.08.142		WELL TAG ID NO.		PAGE 1 OF 2

	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WAT	ND TYPE OF MATERIAL ENCOU ER-BEARING CAVITIES OR FRA pplemental sheets to fully describe	CTURE ZONES	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	14	14	Sand, medium/ fine	grained, poorly graded, unconsolida	ated, Tan and Gre	y Y √N	
	14	16	2		d, poorly graded, unconsolidated, with			
	16	31	14	(Clay, Stiff, High Plasticity, Deep Rec	1	Y √N	
							Y N	
							Y N	
ц							Y N	
HYDROGEOLOGIC LOG OF WELL							Y N	
OF V							Y N	
DO							Y N	
ICL							Y N	
DOG							Y N	
EOI							Y N	
ROG							Y N	
QXE							Y N	
4.1							Y N	
1							Y N	
							Y N	
							Y N	
							Y N	
							Y N	
							Y N	
	METHOD U	SED TO ES	STIMATE YIELD	OF WATER-BEARIN	IG STRATA:	1	TOTAL ESTIMATED	
	PUM	P 🗌 A	IR LIFT	BAILER 0	THER – SPECIFY:		WELL YIELD (gpm):	0.00
NC	WELL TES				TA COLLECTED DURING WELL HOWING DISCHARGE AND DRA			
TEST; RIG SUPERVISION	MISCELLA	NEOUS INF		he boring was plugge 0 gallons of water pe	ed using augers as tremie to land or 94 lb. sack.	a slurry of Portl	and TYPE I/II Neat c	ement less than
EST	PRINT NAM	E(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PRO	OVIDED ONSITE SUPERVISION (OF WELL CONST	RUCTION OTHER TH	IAN LICENSEE:
5. T			eron Pruitt, Luc					
SIGNATURE	CORRECT I	RECORD O	F THE ABOVE I	DESCRIBED HOLE A	BEST OF HIS OR HER KNOWLEI ND THAT HE OR SHE WILL FILF APLETION OF WELL DRILLING:	E THIS WELL RE		
	Jack A	tkins		Ja	ackie D. Atkins		8/10/2022	
9.		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME		DATE	
FOR	R OSE INTER	NAL USE				WR-20 WELL	RECORD & LOG (Ve	rsion 01/28/2022)
			3-POT	>2.	POD NO. POD 2	TRN NO.	73203	

WELL TAG ID NO.

PAGE 2 OF 2

.

YA

22.34.08.142

LOCATION

Received by OCD: 5/25/2023 1:15:44 PM

Mike A. Hamman, P.E. State Engineer

Noswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO

OFFICE OF THE STATE ENGINEER

 Trn Nbr:
 732035

 File Nbr:
 CP 01913

 Well File Nbr:
 CP 01913 POD2

Aug. 11, 2022

MELODIE SANJARI MARATHON OIL 4111 S TIDWELL RD CARLSBAD, NM 88220

Greetings:

The above numbered permit was issued in your name on 08/15/2022.

The Well Record was received in this office on 08/11/2022, stating that it had been completed on 08/08/2022, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 08/15/2023.

If you have any questions, please feel free to contact us.

Sincerely,

Maret Amaral (575)622-6521

drywell

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarters are 1=NW2) (quarters are smaller	,	(NAD83 UTM in meters)
Well Tag PO	OD Number	Q64 Q16 Q4 S	ec Tws Rng	X Y
	P 01913 POD2	1 4 2 0	08 22S 34E	642366 3586694 🌍
^x Driller License	: 1249	Driller Company:	ATKINS EN	NGINEERING ASSOC. INC
Driller Name:	JACKIE ATKINS			
Drill Start Dat	e: 08/08/2022	Drill Finish Date:	08/08/202	2 Plug Date:
Log File Date:	08/11/2022	PCW Rcv Date:		Source:
Pump Type:		Pipe Discharge Si	ze:	Estimated Yield:
Casing Size:		Depth Well:	31 feet	Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer **Point of Diversion Summary**

			• •	s are 1=N rs are sma				(NAD83 U	TM in meters)	
Well Tag	POD	Number	Q64 Q	216 Q4	Sec	Tws	Rng	X	Y	
	CP (00944 POD1		3 1	03	228	34E	644531	3588351 🧉	
^x Driller Lic	ense:	1456	Driller (Compar	ıy:	WH	ITE DR	RILLING CO	OMPANY	
Driller Na	me:	WHITE, JOHN W								
Drill Start	Date:	03/05/2007	Drill Fir	nish Dat	te:	03	3/05/200)7 P l	ug Date:	
Log File D	ate:	03/22/2007	PCW R	ev Date	:			So	urce:	Shallow
Pump Type	e:		Pipe Dis	charge	Size:	:		Es	timated Yield	:
Casing Siz	e:	5.00	Depth V	Depth Well:		109 feet		De	Depth Water:	
X	Wate	er Bearing Stratific	ations:	To	p l	Bottom	Desci	ription		
				(52	72	Other	/Unknown		
X		Casing Perfo	rations:	To	p l	Bottom				
				4	57	97				

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

	DOD	Numbe	(q	Juarters	are small	2=NE 3=9 est to larg	est)	(NAD83	UTM in meters) X Y	
Well Tag NA		Numbe 1720 P		1 3		ec Tws 8 22S	-	64200		I
Driller Lic Driller Nai			Dril	ler Co	mpany	: GL	ENN'S	WATER	WELL SERVICE	
					. .	•			Diana Data	
Drill Start					h Date:	0	5/07/20		Plug Date:	Artesian
•	Log File Date: 06/05/2019 Pump Type:			V Rcv		N=			Source:	Artesian
					harge S		100 (Estimated Yield	
Casing 51	ze:	8.13	Dep	oth We		I	190 fee	el	Depth Water:	824 feet
	Wate	r Bearir	g Stratification	ns:	Тор	Bottom	Desc	cription		
					824	1109	Sanc	dstone/G	ravel/Conglomer	ate
					1109	1140) Sanc	dstone/G	ravel/Conglomer	ate
					1140	1171	Sanc	dstone/G	ravel/Conglomer	ate
			sing forations:		Тор	Bottom	1			
		1 01	iorations.		728	1190)			
	Meter	r Numbo	er: 19147	7		Meter	Make:		SEAMETRICS	
	Meter	r Serial	Number: 0320 ⁻	190008	828	Meter	Multip	lier:	1.0000	
	Num	ber of D	ials: 9			Meter	-		Diversion	
		of Meas		ls 42 g	al.			Percent:		
		e Multip				Readir	ng Fred	quency:	Monthly	
Meter I	Readin	as (in A	cre-Feet)							
	d Date	•	Mtr Reading	Flag	Rdr	Comm	ent		Mtr	Amount Online
09/0	5/2019	2019	0	А	RPT					0
09/1	4/2019	2019	24359	А	RPT	10 day	pump	test		3.140
04/0	9/2020	2020	24539	А	RPT					0.023
05/3	1/2020	2020	24539	А	WEE	3				0 X
06/3	0/2020	2020	24539	А	WEE	3				0 X
07/3	1/2020	2020	61186	А	WEE	3				4.724 X
08/3	1/2020	2020	67016	А	WEE	3				0.751 X
09/3	0/2020	2020	67220	А	WEE	3				0.026 X
10/3	1/2020	2020	96007	А	WEE	3				3.710 X
11/3	0/2020	2020	149485	А	WEE	3				6.893 X
12/3	1/2020	2020	174672	А	WEE	3				3.246 X
01/3	1/2021	2021	206617	А	WEE	3				4.117 X
02/2	8/2021	2021	249261	А	WEE	3				5.497 X
03/3	1/2021	2021	311766	А	WEE	3				8.056 X
04/3	0/2021	2021	339969	А	WEE	3				3.635 X
05/3	1/2021	2021	380626	А	WEE	3				5.240 X
06/3	0/2021	2021	388412	А	WEE	3				1.004 X

Received by OCD: 5/25/2023 1:15:44 PM

73	20	-	1 2 0
Page	39	ot	130
1 "8"	~	<i>y</i>	100

**YTD Mete Amounts:	F	Year 2019 2020 2021		Amount 3.140 19.373 56.931
11/30/2021		616373	A	WEB
10/31/2021	2021	564629	А	WEB
09/30/2021	2021	514619	А	WEB
08/31/2021	2021	478711	А	WEB
07/31/2021	2021	420517	А	WEB

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/24/23 11:11 AM

POINT OF DIVERSION SUMMARY

500-Ft Radius

- □ 1,000-Ft Radius
- 0.5-Mi Radius

Released to Imaging: 8/17/2023 9:01:33 AM

Black Sheep 4-33 B3OB Fed Com #1H Battery GPS: 32.414251, -103.474413 Lea County

Environmental & Safety Solutions, Inc.

Drafted: bja

Checked: lc

Date: 5/1/23

0

Click forNews Bulletins

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 322422103291501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 322422103291501 22S.34E.08.22333

Lea County, New Mexico Latitude 32°24'36", Longitude 103°29'15" NAD27 Land-surface elevation 3,578.00 feet above NGVD29 The depth of the well is 35 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date \$	Time \$? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical ≎ datum	? \$tatus	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level \$ approval status
1968-06-10		D	72019	31.64			1	Z			А
1970-12-04		D	72019	31.46			1	Z			A
1976-12-16		D	72019	30.49			1	Z			А
1981-03-18		D	72019	30.73			1	Z			А

Received by OCD: 5/25/2023 1:15:44 PM

Date ≎	Time	٢	? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical ≎ datum	? \$tatus	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1986-04-10			D	72019	29.83			1	Z			А
1991-05-03			D	72019	29.52			1	Z			A
1996-02-16			D	72019	30.84			1	S			А

Explanation Section \$ Code \$ Description ¢ Water-level date-time accuracy D Date is accurate to the Day 62610 Parameter code Groundwater level above NGVD 1929, feet 62611 Groundwater level above NAVD 1988, feet Parameter code Depth to water level, feet below land surface Parameter code 72019 Referenced vertical datum NAVD88 North American Vertical Datum of 1988 NGVD29 Referenced vertical datum National Geodetic Vertical Datum of 1929 Status 1 Static Method of measurement S Steel-tape measurement. Ζ Method of measurement Other. Measuring agency Not determined Source of measurement Not determined А Approved for publication -- Processing and review completed. Water-level approval status

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2023-05-24 13:14:01 EDT 0.29 0.24 nadww02

Appendix B Field Data & Soil Profile Logs

Sample Log

Date:

Black Sheep 4-33 B30B Fed Com 1H Battery Project: -103.472888 Project Number: 17711 Latitude: 32.41418 Longitude:

Sample ID		PID/Odor	Chloride Conc.	GPS
Ewi	3.0		363	
Elw. Z	3.6		Sos	
21-3	3.0	Paster Canadiana	368	
SW2	3.1	A. TOTAL	452	
5103	3.0	Crocomit	36 \$	
3	3.0	AND DESCRIPTION OF A	303	
FL 24 23	3.2	State State State	408	
FL 2523	3.4	~	452	
FL 26 03	n The second		844	
FL 27@3	46		180	
FL 286 3	2.6		292	
22983	2.0		200	
FL 30@ 3	2.2		223	
FL 31 @ 3 FL 32 @ 3	2.6		292	
FL 32 @ 3	3.6	1000 Harrison Colored	ş 62	
FL3? & 3		-LACTORIZATION	50	
FL34@3	24	-	260	
FL3523	-2.4		760	
FL 76 @ 3	2.2		228	·
<u>re 176 2</u>	3.0		363	
rl 3392	-3.6		500	
FLIGEL	°⊊ , Ø		368	
F! 2784	2.4		260	
FL 3982	2.4	>	260	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	e			
i			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Sample Deint - CD #1 @	## atc	1	Tast Tranch - TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
Sample Point = SP #1 @ Floor = FL #1 etc	## etc		Test Trench = TT #1 @ ## Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
Sidewall = SW #1 etc	ic.		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Area
Floor = FL #1 etc Sidewall = SW #1 et			201 Intended to be belefied - 25 #1 @ 4 In-200	and sample round, center or compared

Released to Imaging: 8/17/2023 9:01:33 AM

Sample Log

Date:

Project:Black Sheep 4-33 B30B Fed Com 1H BatteryProject Number:17711Latitude:32.41418Longitude:-103.472888

Sample ID		PID/Odor	Chloride Conc.	GPS
VW 1	3.6	- martin	500	X
FLI @ 3	2.8	C	328	
12 @ 3	7.8		2444	
L2 @ 4	2.2		228	
130 3	7.8		244	
14@3	3.4		452	
-3 € 4	3.4		452	
W1	2.2		218	
1503	3.4		452	
1683	P. 6		500	
2783	2.6		192	
2883	3.6		500	
2903	3.4		452	
110@3	3.6		500	
21103	3.4		452	
1123	2.6		292	
12 -2	76	-	292	
N'WI-	2-12	-	228	
F113@3	4.4		716	
11103	4.0	Lisht	104	
NWZ	3.4		462 -	
=21304	4.4	-	716	
11404	.2.6	-	292	
21304/2	3.4	-	452	
1583	3.4	-	452	
21683	3.9	-	452	
21783	3.6		5000	
1863	2-4		260	4
21773	2.8.	Contentingen and	428	
22002	. 7.6	-	242	
4 21 62	2.8		328	
122@3	3.0	-	368	
12303	3.2		408	
-				
	Ŧ			

Floor = FL #1 etc

Refusal = SP #1 @ 4'-R

Stockpile = Stockpile #1

5idewall = SW #1 etc

Received by OCD:

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

GPS Sample Points, Center of Comp Areas

Soil Profile

•

Environmental & Safety Solution			Date:	
Project: Black Shee Project Number:	ep 4-33 B30B Fed Com 1H Battery Latitude:	32.41418	Longitude:	-103.472888
Depth (ft. bgs)		De.	scription	
1	Caliche			
2	Sano			
4	Sand Sand			
5				
6				
7				
8				
9				
10				
11				
- 12				<u></u>
13				
14				
15				
16				
17				
18				
19				
20				
21				
22 23				
23				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				
				3
				8

Appendix C Photographic Log

Photographic Log

Photographic Log

•

Appendix D Laboratory Analytical Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Lance Crenshaw E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa, TX 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Location: 32.41418,-103.472888

Lab Order Number: 3C06013

Current Certification

Report Date: 03/08/23

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Proje Odessa TX, 79765 Proje

Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FL 15 @ 3'	3C06013-01	Soil	03/04/23 00:00	03-06-2023 12:08
FL 16 @ 3'	3C06013-02	Soil	03/04/23 00:00	03-06-2023 12:08
FL 17 @ 3'	3C06013-03	Soil	03/04/23 00:00	03-06-2023 12:08
FL 18 @ 3'	3C06013-04	Soil	03/04/23 00:00	03-06-2023 12:08
FL 19 @ 3'	3C06013-05	Soil	03/04/23 00:00	03-06-2023 12:08
FL 20 @ 3'	3C06013-06	Soil	03/04/23 00:00	03-06-2023 12:08
FL 21 @ 3'	3C06013-07	Soil	03/04/23 00:00	03-06-2023 12:08
FL 22 @ 3'	3C06013-08	Soil	03/04/23 00:00	03-06-2023 12:08
FL 23 @ 3'	3C06013-09	Soil	03/04/23 00:00	03-06-2023 12:08
FL 24 @ 3'	3C06013-10	Soil	03/04/23 00:00	03-06-2023 12:08
FL 25 @ 3'	3C06013-11	Soil	03/04/23 00:00	03-06-2023 12:08
FL 26 @ 3'	3C06013-12	Soil	03/04/23 00:00	03-06-2023 12:08
FL 27 @ 3'	3C06013-13	Soil	03/04/23 00:00	03-06-2023 12:08
FL 28 @ 3'	3C06013-14	Soil	03/04/23 00:00	03-06-2023 12:08
FL 29 @ 3'	3C06013-15	Soil	03/04/23 00:00	03-06-2023 12:08
FL 30 @ 3'	3C06013-16	Soil	03/04/23 00:00	03-06-2023 12:08
FL 31 @ 3'	3C06013-17	Soil	03/04/23 00:00	03-06-2023 12:08
FL 32 @ 3'	3C06013-18	Soil	03/04/23 00:00	03-06-2023 12:08
FL 33 @ 3'	3C06013-19	Soil	03/04/23 00:00	03-06-2023 12:08
FL 34 @ 3'	3C06013-20	Soil	03/04/23 00:00	03-06-2023 12:08
FL 35 @ 3'	3C06013-21	Soil	03/04/23 00:00	03-06-2023 12:08
FL 36 @ 3'	3C06013-22	Soil	03/04/23 00:00	03-06-2023 12:08
FL 37 @ 3'	3C06013-23	Soil	03/04/23 00:00	03-06-2023 12:08
FL 38 @ 3'	3C06013-24	Soil	03/04/23 00:00	03-06-2023 12:08
FL 39 @ 3'	3C06013-25	Soil	03/04/23 00:00	03-06-2023 12:08
EW1	3C06013-26	Soil	03/04/23 00:00	03-06-2023 12:08
EW2	3C06013-27	Soil	03/04/23 00:00	03-06-2023 12:08
EW3	3C06013-28	Soil	03/04/23 00:00	03-06-2023 12:08
SW2	3C06013-29	Soil	03/04/23 00:00	03-06-2023 12:08
SW3	3C06013-30	Soil	03/04/23 00:00	03-06-2023 12:08
NW3	3C06013-31	Soil	03/04/23 00:00	03-06-2023 12:08

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

FL 15 @ 3'

3C06013-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Toluene	0.00389	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Ethylbenzene	0.00247	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Xylene (p/m)	0.00925	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Xylene (o)	0.00254	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.9 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
<u> Total Petroleum Hydrocarbons C</u>	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:17	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:17	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:17	TPH 8015M	
Surrogate: 1-Chlorooctane		93.3 %	70-130		P3C0701	03/06/23 14:00	03/07/23 17:17	TPH 8015M	
		112 %	70-130		P3C0701	03/06/23 14:00	03/07/23 17:17	TPH 8015M	
Surrogate: o-Terphenyl							02/07/02 17 17	calc	
Surrogate: o-Terphenyl Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 17:17	cale	
Total Petroleum Hydrocarbon				1	[CALC]	03/06/23 14:00	03/0//23 1/:1/	care	
Total Petroleum Hydrocarbon C6-C35				·	[CALC] P3C0608	03/06/23 14:00	03/07/23 17:17	EPA 300.0	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765		Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw							
L				FL 16	5 @ 3'				
				3C06013	-02 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.6 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
Surrogate: 1-Chlorooctane		97.3 %	70-130		P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 17:41	calc	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	47.7	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 18:43	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765		-	Number:	1	4-33 B30B Fed Com 1 naw	H Battery			
				FL 17 3C06013	' @ 3' -03 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.3 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
Surrogate: 1-Chlorooctane		94.5 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 18:05	calc	
General Chemistry Parameters by	EPA / Stand	lard Met							
Chloride	8.29	1.04	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 19:04	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw								
L				FL 18	3 @ 3'				
				3C06013	-04 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
Surrogate: 1-Chlorooctane		97.3 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 18:30	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	7.71	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 19:24	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solutio 13000 West County Road 100 Odessa TX, 79765			Number:	1	4-33 B30B Fed Com 1 naw	H Battery			
				FL 19 3C06013	0				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
Surrogate: 1-Chlorooctane		91.5 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 18:54	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.99	1.04	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 19:44	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	is, Inc. [1]		Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw						
				FL 20 3C06013	@ 3' -06 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.4 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Total Petroleum Hydrocarbons C6-0	C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
Surrogate: 1-Chlorooctane		95.6%	70-130		P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 19:19	calc	
General Chemistry Parameters by E	PA / Stand	lard Met	hods						
Chloride	8.10	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 20:05	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765		-	Number:	1	4-33 B30B Fed Com 1 naw	H Battery			
				FL 21 3C06013	. @ 3' -07 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
Surrogate: 1-Chlorooctane		95.7 %	70-130		P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
Surrogate: o-Terphenyl		114 %	70-130		P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 19:44	calc	
General Chemistry Parameters by	<u>- EPA / Stano</u>	dard Met	hods						
Chloride	8.26	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 20:25	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ns, Inc. [1]		5	Number:	1	4-33 B30B Fed Com 1 naw	H Battery		
				FL 22 3C06013	2 @ 3' -08 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
Surrogate: 1-Chlorooctane		91.6 %	70-130		P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 20:10	calc	
General Chemistry Parameters by I	EPA / Stand	lard Met	hods						
Chloride	10.6	1.11	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 21:27	EPA 300.0	
% Moisture	10.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765		5	Number:	1	4-33 B30B Fed Com 1 naw	H Battery			
				FL 23 3C06013	5 @ 3' -09 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	ısin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.8 %	80-120		P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
Surrogate: 1-Chlorooctane		91.5 %	70-130		P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 20:37	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	6.59	1.11	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 22:29	EPA 300.0	
% Moisture	10.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solutions 13000 West County Road 100 Odessa TX, 79765	, Inc. [1]		Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw						
				FL 24 3C06013	(@ 3' -10 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Total Petroleum Hydrocarbons C6-C	35 by EP	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
Surrogate: 1-Chlorooctane		94.6 %	70-130		P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 08:39	calc	
General Chemistry Parameters by El	PA / Stand	dard Met	hods						
Chloride	46.4	1.05	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 22:49	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	1	4-33 B30B Fed Com 1 naw	H Battery		
				FL 25 3C06013	5 @ 3' -11 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
Surrogate: 1-Chlorooctane		93.1 %	70-130		P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 22:20	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	43.5	1.06	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 23:10	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ions, Inc. [1]		5	Number:	1	4-33 B30B Fed Com 1 naw	H Battery		
				FL 26 3C06013	5 @ 3' -12 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EP.	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
Surrogate: 1-Chlorooctane		90.6 %	70-130		P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 22:47	calc	
General Chemistry Parameters by	<u>v EPA / Stan</u>	dard Met							
Chloride	18.8	1.05	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 23:30	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw					
				FL 27 3C06013	' @ 3' -13 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.1 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
Surrogate: 1-Chlorooctane		90.9 %	70-130		P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 23:14	calc	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	135	1.06	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 23:51	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ions, Inc. [1]		-	Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 roject Manager: Lance Crenshaw					
				FL 28 3C06013	3 @ 3' -14 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EP.	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
Surrogate: 1-Chlorooctane		92.1 %	70-130		P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 23:41	calc	
General Chemistry Parameters by	<u>v EPA / Stan</u>	dard Met							
Chloride	7.63	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/07/23 00:11	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw						
				FL 29 3C06013	0 @ 3' -15 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.7 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
Surrogate: 1-Chlorooctane		90.3 %	70-130		P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 00:08	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.31	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/07/23 00:32	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765		Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw							
				FL 30	0				
				3C06013-	-16 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.6 %	80-120		P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
Surrogate: 1-Chlorooctane		96.5 %	70-130		P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
Surrogate: o-Terphenyl		114 %	70-130		P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 00:35	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.05	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/07/23 00:52	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	5	Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711 Project Manager: Lance Crenshaw							
				FL 31 3C06013	. @ 3' -17 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	ısin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.9 %	80-120		P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
Surrogate: 1-Chlorooctane		98.1 %	70-130		P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 09:06	calc	
General Chemistry Parameters by	EPA / Stand	lard Met							
Chloride	22.0	1.06	mg/kg dry	1	P3C0608	03/06/23 15:00	03/07/23 01:13	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	
E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	1	4-33 B30B Fed Com 1 naw	H Battery		
--	---------------	--------------------	-----------	------------------	----------------------	----------------------------	----------------	------------	-------
				FL 32 3C06013	2 @ 3' -18 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.6 %	80-120		P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
Surrogate: 1-Chlorooctane		94.3 %	70-130		P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 01:28	calc	
General Chemistry Parameters by	EPA / Stand	dard Met							
Chloride	8.96	1.01	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 16:10	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solutions 13000 West County Road 100 Odessa TX, 79765	s, Inc. [1]		5	Number:	1	4-33 B30B Fed Com 1 naw	H Battery		
				FL 33	5 @ 3' -19 (Soil)				
				500015	-17 (301)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.1 %	80-120		P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Total Petroleum Hydrocarbons C6-C	35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
Surrogate: 1-Chlorooctane		92.1 %	70-130		P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-130		P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 01:55	calc	
General Chemistry Parameters by E	PA / Stand	dard Met	hods						
Chloride	6.03	1.03	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 16:53	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solutions 13000 West County Road 100 Odessa TX, 79765	s, Inc. [1]		5	Number:	1	4-33 B30B Fed Com 1 naw	H Battery		
				FL 34 3C06013	@ 3' -20 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.7 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Total Petroleum Hydrocarbons C6-C	35 by EP	A Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
Surrogate: 1-Chlorooctane		93.1 %	70-130		P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 02:23	calc	
General Chemistry Parameters by E	PA / Stan	dard Met	hods						
Chloride	9.30	1.08	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 17:07	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	1	4-33 B30B Fed Com 1 naw	H Battery		
				FL 35 3C06013	5 @ 3' -21 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.5 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
Surrogate: 1-Chlorooctane		93.6 %	70-130		P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 06:27	calc	
General Chemistry Parameters by	EPA / Stand	dard Met							
Chloride	11.6	1.09	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 17:21	EPA 300.0	
% Moisture	8.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solutions, Inc. [1]Project:Black Sheep 4-33 B30B Fed Com 1H Battery13000 West County Road 100Project Number:17711Odessa TX, 79765Project Manager:Lance Crenshaw											
				FL 36 3C06013-	5 @ 3' -22 (Soil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.					
BTEX by 8021B											
Benzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B			
Toluene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B			
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B			
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B			
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B			
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B			
Surrogate: 1,4-Difluorobenzene		97.7 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B			
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M								
C6-C12	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M			
>C12-C28	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M			
>C28-C35	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M			
Surrogate: 1-Chlorooctane		92.3 %	70-130		P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M			
Surrogate: o-Terphenyl		109 %	70-130		P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M			
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 06:53	calc			
General Chemistry Parameters by	<u>- EPA / Stan</u>	lard Met	hods								
Chloride	18.0	1.05	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 17:36	EPA 300.0			
% Moisture	5.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216			

E Tech Environmental & Safety Solutions, Inc. [1]Project:Black Sheep 4-33 B30B Fed Com 1H Battery13000 West County Road 100Project Number:17711Odessa TX, 79765Project Manager:Lance Crenshaw										
				FL 37 3C06013	' @ 3' -23 (Soil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		Р	ermian Ba	asin Envi	ronmental I	ab, L.P.				
BTEX by 8021B										
Benzene	ND	0.00110	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B		
Toluene	ND	0.00110	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B		
Ethylbenzene	ND	0.00110	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B		
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B		
Xylene (o)	ND	0.00110	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B		
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B		
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M							
C6-C12	ND	27.5	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M		
>C12-C28	ND	27.5	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M		
>C28-C35	ND	27.5	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M		
Surrogate: 1-Chlorooctane		90.6 %	70-130		P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M		
Surrogate: o-Terphenyl		107 %	70-130		P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 07:21	calc		
General Chemistry Parameters by	<u>- EPA / Stan</u>	dard Met	hods							
Chloride	17.1	1.10	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 17:50	EPA 300.0		
% Moisture	9.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216		

E Tech Environmental & Safety Solutions, Inc. [1]Project:Black Sheep 4-33 B30B Fed Com 1H Battery13000 West County Road 100Project Number:17711Odessa TX, 79765Project Manager:Lance Crenshaw										
				FL 38 3C06013	3 @ 3' -24 (Soil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.				
BTEX by 8021B										
Benzene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B		
Toluene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B		
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B		
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B		
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B		
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B		
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M							
C6-C12	ND	26.9	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M		
>C12-C28	ND	26.9	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M		
>C28-C35	ND	26.9	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M		
Surrogate: 1-Chlorooctane		95.4 %	70-130		P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M		
Surrogate: o-Terphenyl		113 %	70-130		P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 07:47	calc		
General Chemistry Parameters by	EPA / Stand	dard Met	hods							
Chloride	42.1	1.08	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 18:04	EPA 300.0		
% Moisture	7.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216		

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ions, Inc. [1]		-	Number:	1	4-33 B30B Fed Com 1 naw	H Battery		
				FL 39 3C06013) @ 3' -25 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
Surrogate: 1-Chlorooctane		91.4 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 10:01	calc	
General Chemistry Parameters by	<u>v EPA / Stano</u>	lard Met							
Chloride	47.9	1.04	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 18:19	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solutions, Inc. [1]Project:Black Sheep 4-33 B30B Fed Com 1H Battery13000 West County Road 100Project Number:17711Odessa TX, 79765Project Manager:Lance Crenshaw										
				W1						
			3C06013	-26 (Soil)						
Analyte Resu	Reporting lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	P	ermian Ba	asin Envi	ironmental l	Lab, L.P.					
BTEX by 8021B										
Benzene N	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B			
Toluene NI	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B			
Ethylbenzene NI	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B			
Xylene (p/m) NI	0.00211	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B			
Xylene (o) NI	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B			
Surrogate: 4-Bromofluorobenzene	104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B			
Surrogate: 1,4-Difluorobenzene	98.3 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B			
Total Petroleum Hydrocarbons C6-C35 by E	PA Method	l 8015M								
C6-C12 N	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M			
>C12-C28 NI	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M			
>C28-C35 NI	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M			
Surrogate: 1-Chlorooctane	89.6 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M			
Surrogate: o-Terphenyl	109 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M			
Total Petroleum HydrocarbonNIC6-C35	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 10:28	calc			
General Chemistry Parameters by EPA / Sta	ndard Met	hods								
Chloride 21	0 1.05	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 18:33	EPA 300.0			
% Moisture 5.	0 0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216			

E Tech Environmental & Safety Solutions, Inc. [1]Project:Black Sheep 4-33 B30B Fed Com 1H Battery13000 West County Road 100Project Number:17711Odessa TX, 79765Project Manager:Lance Crenshaw											
				EV							
				3C06013-	-27 (Soil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		Р	ermian Ba	asin Envi	ronmental I	lab, L.P.					
BTEX by 8021B											
Benzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B			
Toluene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B			
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B			
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B			
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B			
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B			
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B			
Total Petroleum Hydrocarbons C6-C3	5 by EP	A Method	8015M								
C6-C12	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M			
>C12-C28	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M			
>C28-C35	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M			
Surrogate: 1-Chlorooctane		97.0 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M			
Surrogate: o-Terphenyl		116 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M			
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 10:55	calc			
General Chemistry Parameters by EP	A / Stan	lard Metl	hods								
Chloride	7.98	1.04	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 18:47	EPA 300.0			
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216			

E Tech Environmental & Safety Solutions, Inc. [1]Project:Black Sheep 4-33 B30B Fed Com 1H Battery13000 West County Road 100Project Number:17711Odessa TX, 79765Project Manager:Lance Crenshaw											
				EV							
				3006013	-28 (Soil)]		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.					
BTEX by 8021B											
Benzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B			
Toluene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B			
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B			
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B			
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B			
Surrogate: 1,4-Difluorobenzene		98.1 %	80-120		P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B			
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B			
Total Petroleum Hydrocarbons C6-C35	5 by EP.	A Method	8015M								
C6-C12	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M			
>C12-C28	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M			
>C28-C35	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M			
Surrogate: 1-Chlorooctane		88.1 %	70-130		P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M			
Surrogate: o-Terphenyl		106 %	70-130		P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M			
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 11:23	calc			
General Chemistry Parameters by EPA	A / Stan	dard Met	hods								
Chloride	22.4	1.04	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 19:30	EPA 300.0			
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216			

E Tech Environmental & Safety Solut 13000 West County Road 100 Odessa TX, 79765	ions, Inc. [1]			Number:	t: Black Sheep 4-33 B30B Fed Com 1H Battery r: 17711 r: Lance Crenshaw					
				SV	V2					
				3C06013-	-29 (Soil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.				
BTEX by 8021B										
Benzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B		
Toluene	0.00203	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B		
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B		
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B		
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B		
Surrogate: 1,4-Difluorobenzene		98.6 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B		
Total Petroleum Hydrocarbons C	6-C35 by EP	A Method	8015M							
C6-C12	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M		
>C12-C28	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M		
>C28-C35	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M		
Surrogate: 1-Chlorooctane		93.2 %	70-130		P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M		
Surrogate: o-Terphenyl		111 %	70-130		P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 11:49	calc		
General Chemistry Parameters by	y EPA / Stand	dard Met	hods							
Chloride	2.77	1.05	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 20:13	EPA 300.0		
% Moisture	5.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216		

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]			Number:	-	4-33 B30B Fed Com 1 naw	H Battery		
				SV					
				3C06013	-30 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.0 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
Surrogate: 1-Chlorooctane		93.4 %	70-130		P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 12:16	calc	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	3.26	1.03	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 20:27	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	1	4-33 B30B Fed Com 1 1aw	H Battery		
				NV					
				3C06013-	-31 (8011)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.1 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
Surrogate: 1-Chlorooctane		91.4 %	70-130		P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 13:38	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	4.98	1.04	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 20:42	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0601 - *** DEFAULT PREP ***										
Blank (P3C0601-BLK1)				Prepared &	Analyzed:	03/06/23				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100								
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200								
Xylene (o)	ND	0.00100								
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		96.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		99.7	80-120			
LCS (P3C0601-BS1)				Prepared &	Analyzed:	03/06/23				
Benzene	0.0905	0.00100	mg/kg	0.100		90.5	80-120			
Toluene	0.0882	0.00100		0.100		88.2	80-120			
Ethylbenzene	0.0914	0.00100		0.100		91.4	80-120			
Xylene (p/m)	0.160	0.00200		0.200		80.2	80-120			
Xylene (o)	0.0846	0.00100		0.100		84.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		101	80-120			
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		107	80-120			
LCS Dup (P3C0601-BSD1)				Prepared &	Analyzed:	03/06/23				
Benzene	0.0992	0.00100	mg/kg	0.100		99.2	80-120	9.15	20	
Toluene	0.0980	0.00100		0.100		98.0	80-120	10.6	20	
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120	10.5	20	
Xylene (p/m)	0.177	0.00200		0.200		88.4	80-120	9.73	20	
Xylene (o)	0.0937	0.00100		0.100		93.7	80-120	10.2	20	
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Calibration Blank (P3C0601-CCB1)				Prepared &	Analyzed:	03/06/23				
Benzene	0.00		ug/kg							
Toluene	0.00									
Ethylbenzene	0.00									
Xylene (p/m)	0.120									
Xylene (o)	0.00									
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0601 - *** DEFAULT PREP ***										
Calibration Blank (P3C0601-CCB2)				Prepared &	Analyzed:	03/06/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.190		"							
Xylene (p/m)	0.230		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
Calibration Check (P3C0601-CCV1)				Prepared &	Analyzed:	03/06/23				
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.188	0.00200	"	0.200		94.1	80-120			
Xylene (o)	0.102	0.00100	"	0.100		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Calibration Check (P3C0601-CCV2)				Prepared &	Analyzed:	03/06/23				
Benzene	0.101	0.00100	mg/kg	0.100		101	80-120			
Toluene	0.0976	0.00100	"	0.100		97.6	80-120			
Ethylbenzene	0.0949	0.00100	"	0.100		94.9	80-120			
Xylene (p/m)	0.173	0.00200	"	0.200		86.3	80-120			
Xylene (o)	0.0938	0.00100	"	0.100		93.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.4	75-125			
Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		104	75-125			
Calibration Check (P3C0601-CCV3)				Prepared: ()3/06/23 At	nalyzed: 03	/07/23			
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120			
Toluene	0.100	0.00100	"	0.100		100	80-120			
Ethylbenzene	0.0967	0.00100	"	0.100		96.7	80-120			
Xylene (p/m)	0.174	0.00200	"	0.200		87.1	80-120			
Xylene (o)	0.0953	0.00100	"	0.100		95.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3C0601 - *** DEFAULT PREP ***

Matrix Spike (P3C0601-MS1)	Sour	ce: 3C06013	-01	Prepared &	& Analyzed:	03/06/23				
Benzene	0.0769	0.00103	mg/kg dry	0.103	ND	74.6	80-120			QM-05
Toluene	0.0735	0.00103		0.103	0.00389	67.5	80-120			QM-05
Ethylbenzene	0.0745	0.00103		0.103	0.00247	69.8	80-120			QM-05
Xylene (p/m)	0.130	0.00206		0.206	0.00925	58.7	80-120			QM-05
Xylene (o)	0.0684	0.00103	"	0.103	0.00254	63.9	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.133		"	0.124		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.124		97.6	80-120			
Matrix Spike Dup (P3C0601-MSD1)	Sour	ce: 3C06013	-01	Prepared:	03/06/23 An	alyzed: 03	3/07/23			
Benzene	0.0879	0.00103	mg/kg dry	0.103	ND	85.3	80-120	13.3	20	
Toluene	0.0841	0.00103		0.103	0.00389	77.8	80-120	14.1	20	QM-05
Ethylbenzene	0.0856	0.00103		0.103	0.00247	80.6	80-120	14.4	20	
Xylene (p/m)	0.149	0.00206		0.206	0.00925	68.0	80-120	14.7	20	QM-05
Xylene (o)	0.0793	0.00103	"	0.103	0.00254	74.4	80-120	15.2	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.121		"	0.124		97.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.134		"	0.124		108	80-120			

Batch P3C0602 - *** DEFAULT PREP ***

			Prepared: 03/06/23 Analyzed: 03/07/23				
ND	0.00100	mg/kg					
ND	0.00100	"					
ND	0.00100	"					
ND	0.00200	"					
ND	0.00100	"					
0.121		"	0.120	101	80-120		
0.116		"	0.120	96.2	80-120		
	ND ND ND 0.121	ND 0.00100 ND 0.00100 ND 0.00200 ND 0.00100	ND 0.00100 mg/kg ND 0.00100 " ND 0.00100 " ND 0.00200 " ND 0.00100 " 0.121 " "	ND 0.00100 mg/kg ND 0.00100 " ND 0.00100 " ND 0.00200 " ND 0.00100 " 0.121 " 0.120	ND 0.00100 mg/kg ND 0.00100 " ND 0.00100 " ND 0.00200 " ND 0.00100 " 0.121 " 0.120 101		

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Permian	Basin	Environmental	Lab,	L.P.
---------	-------	---------------	------	------

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0602 - *** DEFAULT PREP ***										
LCS (P3C0602-BS1)				Prepared: ()3/06/23 A1	nalyzed: 03	/07/23			
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120			
Xylene (p/m)	0.182	0.00200	"	0.200		90.8	80-120			
Xylene (o)	0.0981	0.00100	"	0.100		98.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	80-120			
LCS Dup (P3C0602-BSD1)				Prepared: ()3/06/23 A1	nalyzed: 03	/07/23			
Benzene	0.100	0.00100	mg/kg	0.100		100	80-120	5.82	20	
Toluene	0.0964	0.00100	"	0.100		96.4	80-120	6.79	20	
Ethylbenzene	0.0983	0.00100	"	0.100		98.3	80-120	7.17	20	
Xylene (p/m)	0.170	0.00200	"	0.200		85.0	80-120	6.58	20	
Xylene (o)	0.0918	0.00100	"	0.100		91.8	80-120	6.58	20	
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	80-120			
Calibration Blank (P3C0602-CCB1)				Prepared: ()3/06/23 A1	nalyzed: 03	/07/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.8	80-120			
Calibration Blank (P3C0602-CCB2)				Prepared: ()3/06/23 Aı	nalyzed: 03	/07/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.6	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C0602 - *** DEFAULT PREP ***	ressure	Linit	Cinto	20101	ressure	,	2		Linn	1.5005
Calibration Check (P3C0602-CCV1)				Prepared: ()3/06/23 A	nalyzed: 03	/07/23			
Benzene	0.104	0.00100	mg/kg	0.100	15/00/25 A	104	80-120			
Toluene	0.100	0.00100	"	0.100		101	80-120			
Ethylbenzene	0.0967	0.00100	"	0.100		96.7	80-120			
Xylene (p/m)	0.174	0.00200	"	0.200		87.1	80-120			
Xylene (o)	0.0953	0.00100	"	0.100		95.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.2	75-125			
Calibration Check (P3C0602-CCV2)				Prepared: ()3/06/23 A	nalyzed: 03	/07/23			
Benzene	0.0978	0.00100	mg/kg	0.100		97.8	80-120			
Toluene	0.0934	0.00100	"	0.100		93.4	80-120			
Ethylbenzene	0.0902	0.00100	"	0.100		90.2	80-120			
Xylene (p/m)	0.162	0.00200	"	0.200		80.9	80-120			
Xylene (o)	0.0894	0.00100	"	0.100		89.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.3	75-125			
Calibration Check (P3C0602-CCV3)				Prepared: (03/06/23 A	nalyzed: 03	/07/23			
Benzene	0.0976	0.00100	mg/kg	0.100		97.6	80-120			
Toluene	0.0933	0.00100	"	0.100		93.3	80-120			
Ethylbenzene	0.0896	0.00100	"	0.100		89.6	80-120			
Xylene (p/m)	0.160	0.00200	"	0.200		80.2	80-120			
Xylene (o)	0.0889	0.00100	"	0.100		88.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.4	75-125			
Matrix Spike (P3C0602-MS1)	Sou	ırce: 3C06013	-18	Prepared: (03/06/23 A	nalyzed: 03	/07/23			
Benzene	0.0865	0.00101	mg/kg dry	0.101	ND	85.7	80-120			
Toluene	0.0819	0.00101	"	0.101	ND	81.1	80-120			
Ethylbenzene	0.0831	0.00101	"	0.101	ND	82.3	80-120			
Xylene (p/m)	0.144	0.00202	"	0.202	ND	71.1	80-120			QM-0
Xylene (o)	0.0763	0.00101	"	0.101	ND	75.5	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.132		"	0.121		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.121		99.9	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3C0602 - *** DEFAULT PREP ***

Matrix Spike Dup (P3C0602-MSD1)	Sour	-ce: 3C06013	8-18	Prepared: 0	3/06/23 A	nalyzed: 03	3/07/23			
Benzene	0.0875	0.00101	mg/kg dry	0.101	ND	86.6	80-120	1.09	20	
Toluene	0.0833	0.00101	"	0.101	ND	82.4	80-120	1.69	20	
Ethylbenzene	0.0844	0.00101	"	0.101	ND	83.5	80-120	1.48	20	
Xylene (p/m)	0.146	0.00202	"	0.202	ND	72.1	80-120	1.31	20	QM-05
Xylene (o)	0.0775	0.00101	"	0.101	ND	76.8	80-120	1.59	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.120		"	0.121		99.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.121		108	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch P3C0701 - TX 1005											
Blank (P3C0701-BLK1)				Prepared: (03/06/23 At	nalyzed: 03	/07/23				
C6-C12	ND	25.0	mg/kg								
>C12-C28	ND	25.0									
>C28-C35	ND	25.0									
Surrogate: 1-Chlorooctane	95.1		"	100		95.1	70-130				
Surrogate: o-Terphenyl	54.7		"	50.0		109	70-130				
LCS (P3C0701-BS1)		Prepared: 03/06/23 Analyzed: 03/07/23									
C6-C12	886	25.0	mg/kg	1000		88.6	75-125				
>C12-C28	936	25.0		1000		93.6	75-125				
Surrogate: 1-Chlorooctane	119		"	100		119	70-130				
Surrogate: o-Terphenyl	57.7		"	50.0		115	70-130				
LCS Dup (P3C0701-BSD1)				Prepared: (03/06/23 Ai	nalyzed: 03	/07/23				
C6-C12	884	25.0	mg/kg	1000		88.4	75-125	0.252	20		
>C12-C28	933	25.0		1000		93.3	75-125	0.251	20		
Surrogate: 1-Chlorooctane	118		"	100		118	70-130				
Surrogate: o-Terphenyl	55.7		"	50.0		111	70-130				
Calibration Check (P3C0701-CCV1)				Prepared: (03/06/23 Ai	nalyzed: 03	/07/23				
C6-C12	520	25.0	mg/kg	500		104	85-115				
>C12-C28	450	25.0		500		90.0	85-115				
Surrogate: 1-Chlorooctane	115		"	100		115	70-130				
Surrogate: o-Terphenyl	57.2		"	50.0		114	70-130				
Calibration Check (P3C0701-CCV2)				Prepared: ()3/06/23 At	nalyzed: 03	/07/23				
C6-C12	526	25.0	mg/kg	500		105	85-115				
>C12-C28	450	25.0		500		89.9	85-115				
Surrogate: 1-Chlorooctane	116		"	100		116	70-130				
Surrogate: o-Terphenyl	57.0		"	50.0		114	70-130				

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0701 - TX 1005										
Matrix Spike (P3C0701-MS1)	Sourc	e: 3C06013	-20	Prepared: (03/06/23 At	nalyzed: 03	/08/23			
C6-C12	866	26.9	mg/kg dry	1080	19.0	78.8	75-125			
>C12-C28	905	26.9	"	1080	13.5	82.9	75-125			
Surrogate: 1-Chlorooctane	120		"	108		111	70-130			
Surrogate: o-Terphenyl	60.8		"	53.8		113	70-130			
Matrix Spike Dup (P3C0701-MSD1)	Sourc	e: 3C06013	-20	Prepared: (03/06/23 Ai	nalyzed: 03	/08/23			
C6-C12	843	26.9	mg/kg dry	1080	19.0	76.6	75-125	2.85	20	
>C12-C28	895	26.9	"	1080	13.5	82.0	75-125	1.16	20	
Surrogate: 1-Chlorooctane	116		"	108		108	70-130			
Surrogate: o-Terphenyl	56.6		"	53.8		105	70-130			
Batch P3C0702 - TX 1005										
Blank (P3C0702-BLK1)				Prepared: (03/06/23 Ai	nalyzed: 03	/08/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	91.8		"	100		91.8	70-130			
Surrogate: o-Terphenyl	52.5		"	50.0		105	70-130			
LCS (P3C0702-BS1)				Prepared: (03/06/23 Ai	nalyzed: 03	/08/23			
C6-C12	890	25.0	mg/kg	1000		89.0	75-125			
>C12-C28	933	25.0	"	1000		93.3	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	58.7		"	50.0		117	70-130			
LCS Dup (P3C0702-BSD1)				Prepared: (03/06/23 A1	nalyzed: 03	/08/23			
C6-C12	866	25.0	mg/kg	1000		86.6	75-125	2.66	20	
>C12-C28	896	25.0	"	1000		89.6	75-125	4.01	20	
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	55.1		"	50.0		110	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0702 - TX 1005										
Calibration Check (P3C0702-CCV1)				Prepared: (03/06/23 A	nalyzed: 03	/08/23			
C6-C12	527	25.0	mg/kg	500		105	85-115			
>C12-C28	453	25.0	"	500		90.6	85-115			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	56.2		"	50.0		112	70-130			
Calibration Check (P3C0702-CCV2)				Prepared: (03/06/23 A	nalyzed: 03	/08/23			
C6-C12	508	25.0	mg/kg	500		102	85-115			
>C12-C28	452	25.0	"	500		90.3	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	57.4		"	50.0		115	70-130			
Matrix Spike (P3C0702-MS1)	Sou	rce: 3C06013	-31	Prepared: (03/06/23 A	nalyzed: 03	/08/23			
C6-C12	859	26.0	mg/kg dry	1040	ND	82.5	75-125			
>C12-C28	881	26.0	"	1040	11.1	83.5	75-125			
Surrogate: 1-Chlorooctane	119		"	104		115	70-130			
Surrogate: o-Terphenyl	59.9		"	52.1		115	70-130			
Matrix Spike Dup (P3C0702-MSD1)	Sou	rce: 3C06013	-31	Prepared: ()3/06/23 A	nalyzed: 03	/08/23			
C6-C12	840	26.0	mg/kg dry	1040	ND	80.6	75-125	2.31	20	
>C12-C28	869	26.0	"	1040	11.1	82.3	75-125	1.43	20	
Surrogate: 1-Chlorooctane	117		"	104		112	70-130			
Surrogate: o-Terphenyl	59.1		"	52.1		114	70-130			

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C0606 - *** DEFAULT PREP ***										
LCS (P3C0606-BS1)				Prepared &	& Analyzed:	03/06/23				
Chloride	20.7		mg/kg	20.0		103	90-110			
LCS Dup (P3C0606-BSD1)				Prepared &	& Analyzed:	03/06/23				
Chloride	20.6		mg/kg	20.0		103	90-110	0.364	10	
Calibration Check (P3C0606-CCV2)				Prepared &	& Analyzed:	03/06/23				
Chloride	20.8		mg/kg	20.0	•	104	90-110			
Calibration Check (P3C0606-CCV3)				Prepared &	& Analyzed:	03/06/23				
Chloride	21.3		mg/kg	20.0		107	90-110			
Matrix Spike (P3C0606-MS1)	Sou	rce: 3C06013	-18	Prepared &	& Analyzed:	03/06/23				
Chloride	29.9	1.01	mg/kg dry	25.3	8.96	83.0	80-120			
Matrix Spike (P3C0606-MS2)	Sou	rce: 3C06013	-28	Prepared & Analyzed: 03/06/23						
Chloride	58.0	1.04	mg/kg dry	26.0	22.4	137	80-120			QM-0.
Matrix Spike Dup (P3C0606-MSD1)	Sou	rce: 3C06013	-18	Prepared &	& Analyzed:	03/06/23				
Chloride	30.7	1.01	mg/kg dry	25.3	8.96	86.2	80-120	2.66	20	
Matrix Spike Dup (P3C0606-MSD2)	Sou	rce: 3C06013	-28	Prepared &	& Analyzed:	03/06/23				
Chloride	61.6	1.04	mg/kg dry	26.0	22.4	151	80-120	6.15	20	QM-0
Batch P3C0608 - *** DEFAULT PREP ***										
LCS (P3C0608-BS1)				Prepared: (03/06/23 A	nalyzed: 03	/07/23			
Chloride	19.1		mg/kg	20.0		95.4	90-110			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

	D L	Reporting	T T * .	Spike	Source	NAFC	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0608 - *** DEFAULT PREP ***										
LCS Dup (P3C0608-BSD1)				Prepared: (03/06/23 At	nalyzed: 03	/07/23			
Chloride	19.2		mg/kg	20.0		96.1	90-110	0.778	10	
Calibration Check (P3C0608-CCV1)				Prepared &	Analyzed:	03/06/23				
Chloride	20.2		mg/kg	20.0		101	90-110			
Calibration Check (P3C0608-CCV2)				Prepared 8	Analyzed:	03/06/23				
Chloride	20.3		mg/kg	20.0		102	90-110			
Calibration Check (P3C0608-CCV3)				Prepared: (03/06/23 Ai	nalyzed: 03	/07/23			
Chloride	20.5		mg/kg	20.0		102	90-110			
Matrix Spike (P3C0608-MS1)	Sou	rce: 3B21014	-10	Prepared &	Analyzed:	03/06/23				
Chloride	45.4	1.08	mg/kg dry	26.9	31.7	51.1	80-120			QM-0
Matrix Spike (P3C0608-MS2)	Sou	rce: 3C06013	-08	Prepared &	Analyzed:	03/06/23				
Chloride	30.3	1.11	mg/kg dry	27.8	10.6	70.8	80-120			QM-0
Matrix Spike Dup (P3C0608-MSD1)	Sou	rce: 3B21014	-10	Prepared 8	Analyzed:	03/06/23				
Chloride	54.0	1.08	mg/kg dry	26.9	31.7	83.1	80-120	17.3	20	QM-0
Matrix Spike Dup (P3C0608-MSD2)	Sou	rce: 3C06013	-08	Prepared 8	Analyzed:	03/06/23				
Chloride	27.8	1.11	mg/kg dry	27.8	10.6	61.6	80-120	8.80	20	QM-0.
Batch P3C0703 - *** DEFAULT PREP ***										
Blank (P3C0703-BLK1)				Prepared &	z Analyzed:	03/07/23				
% Moisture	ND	0.1	%	-						

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Black Sheep 4-33 B30B Fed Com 1H Battery	Project	7
13000 West County Road 100	Project Number: 17711	Project Number	
Odessa TX, 79765	Project Manager: Lance Crenshaw	Project Manager	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian	Basin	Environmental	Lab, L.P.
---------	-------	---------------	-----------

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0703 - *** DEFAULT PREP ***										
Duplicate (P3C0703-DUP1)	Source: 3C06009-07 Pr			Prepared &	Analyzed:	: 03/07/23				
% Moisture	6.0	0.1	%		5.0			18.2	20	
Duplicate (P3C0703-DUP2)	Sour	-ce: 3C06009-	17	Prepared &	Analyzed:	: 03/07/23				
% Moisture	7.0	0.1	%		6.0			15.4	20	
Duplicate (P3C0703-DUP3)	Sour	Prepared &	Analyzed:	: 03/07/23						
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P3C0703-DUP4)	Sour	·ce: 3C06013-	04	Prepared &	Analyzed:	: 03/07/23				
% Moisture	4.0	0.1	%		3.0			28.6	20	
Duplicate (P3C0703-DUP5)	Sour	-ce: 3C06013-	19	Prepared &	Analyzed:	: 03/07/23				
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P3C0703-DUP6)	Source: 3C06013-29 Pro			Prepared &	z Analyzed:	: 03/07/23				
% Moisture	4.0	0.1	%		5.0			22.2	20	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

Notes and Definitions

ROI	Received on Ice
R	The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
NPBEL CO	Chain of Custody was not generated at PBELAB
BULK	Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike

Report Approved By:

Dup

Duplicate

Sun Barron

Date: 3/8/2023

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Black Sheep 4-33 B30B Fed Com 1H Battery
13000 West County Road 100	Project Number:	17711
Odessa TX, 79765	Project Manager:	Lance Crenshaw

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

PBELA Project Manager:	B	.0310	DYRI	ECORD AND A		Pen 140	mian 0 Ra	Bas nki	sin En n Hwy exas	,		ental	Lab, I		Proje	oct N	ame	Blac	Phone k Sheep		8-686-72		om 1	H Ba
Company Name	Etech Environmental &	Safety	Solu	tions, Inc.						-				-	1	Proje	ect #	177	11					
Company Addres	ss: 2617 West Marland		_				_	_		_				-	Pro	oject	Loc	32.41	418, -10	3.472	888			
City/State/Zip:	Hobbs, NM 88240			ł										_		F	PO #							
Telephone No:	(575) 264-9884 63	1-25	532		Fax No:									Rep	ort F	orm	at:	XS	andard			RP		NPDES
					e-mail:		PM	Det	echei	nv.c	om	CW	alker	@mewt	oourr	ne.c	om							
Sampler Signatu	re:				o man.			201	001101	11.0					F	10.0			Anal	lyze F	or:			
use only)																								call)
DER #: 30060	13					_	F	Pr	reservat	ion &	# of	Солта	iners	Matr	ix				11				11	Sec
		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ce	HNO3 260,m Poly HCI	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	None 1L Poly NaOH/ZnAc	DV≐Drinking Water SL≖Sludge GW = Groundwater S≂Soil/Solid	NP=Non-Potable Specify Other	Chloride	BTEX by 8021B							Rush 24 48 72 (Please
	FIELD CODE	ä	<u>لت</u>		F	Fie		-	TI	I	z	z	Z	-	-	-		H	++	+		$\left \right $	+	X
	FL 15 @ 3'	+	-	03/04/23			1	x	+			$\left \right $	+	S	-	_	x x	H	++	+		$\left \right $	++	x
	FL 16 @ 3'			03/04/23				x	+				+	s			< X	Ħ	++	+			++	X
,	FL 17 @ 3' FL 18 @ 3'			03/04/23				x	+	1	t		+	s	-	_	XX			1			11	X
-	FL 19 @ 3'			03/04/23				x	1					S	-	-	x x	\square		1			11	X
	FL 20 @ 3'	1		03/04/23				x			T			S	-	-	xx							X
	FL 21 @ 3'			03/04/23			1	x						S		x x	x x							X
	FL 22 @ 3'			03/04/23			1	X						S		x	xx	Π						X
	FL 23 @ 3'			03/04/23			1	X						S		X)	xx							X
)	FL 24 @ 3'			03/04/23			1	x						S		x	xx							X
cial Instructions: Please email co RUSH SAMPLES Inquished by: Inquished by:	ppy of COC to and results to	12	ime UY ime	Received by: Received by:	ılker@mewb	oour	ne.c	om		-				Date		ime	Si > LOO	ample DCs Fi bels o ustody ustody ample by S	containe ree of He n contain seals or seals or Hand De ampler/C	ers Inta adspa ner(s) n conta n coole livere lient R	act? ace? ainer(s) er(s) d ep. ?		(+++++++++++++++++++++++++++++++++++++	
linquished by:	Date	Т	Time	Received by:	(2	K	1			ł		36	23	120	ime H	R	empera eceive djusted			°S DH ceipt: °C °C Fac	17	FO)

Received by OCD: 5/25/2023 1:15:44 PM

Released to Imaging: 8/17/2023 9:01:33 AM

Page 102 of 130	P	BELA	B CHAIN OF C	USTO	DYRI	ECORD AND A			nia 0 Ri	n Ba anki	in H	wy	ronm 701	enta	I La	b, LF		rojec	ct Na	ame	F Black S	Phone:				Com 1	Rage 49 of 51
		Company Name	Etech Environmental &	Safety	/ Solu	tions, Inc.												P	roje	ct #	: 17711				_		<u> </u>
		Company Address:	2617 West Marland															Pro	ject	Loc	: 32.4141	8, -103	3.4728	88			
		City/State/Zip:	Hobbs, NM 88240																F	PO #	:						
		Telephone No:	(575) 264-9884	A			Fax No:										Repo	rt Fo	orma	at:	X Sta	ndard	C] _{TR}	RP		NPDES
							e-mail:		DM		tech	henv	com		valk	ar@	mewbo										
		Sampler Signature:					e-mail.	-	1 191	<u>w</u> e		ICIN		1, 04	Vain	citu	THEWDO	F	0.01			Analy	ze For				T
	ab use												Å														(ili
0	RDE	R#: 30060)13		-	T		ГТ	-	P	reser	rvation	8 # 0	f Con	tainer	s	Matrix										sec
	AB # (lab use only)	FII	ELD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ice	HNO3 250.ml Poly	HCI	H2SO4 NaOH	Na ₂ S ₂ O ₃	None 1L Poly	NaOH/ZnAc	DW≃Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	TPH by TX 1005 8015B 8015M		BTEX by 8021B							Rush(24)48 72 (Please call) Standard
	T	FI	L 25 @ 3'			03/04/23			1	х							S	>	$\langle \rangle$	X							X
	12	F	L 26 @ 4'			03/04/23			1	х							S	>	$\langle \rangle$	(X							X
	13	FI	L 27 @ 4'			03/04/23			1	х							S		$\langle \rangle$	(X							X
	14	F	L 28 @ 3'			03/04/23	_		1	Х							S)	$\langle \rangle$	(X				-			X
	15	F	L 29 @ 3'			03/04/23			1	х			-				S	>	$\langle \rangle$	X					\downarrow		X
Md	16	F	L 30 @ 3'	A.	-	03/04/23			1	Х	_		-	1			S)	$\langle \rangle$	(X				-	\square		X
4 P	17	F	L 31 @ 3'		-	03/04/23	1		1		_		-	+	-		S)	-	(X			\square	-	++		X
15:44	18	F	L 32 @ 3'	-	-	03/04/23			1		_	-	+	+	-		S	1	_	(X			++	-	++		X
3	19		L 33 @ 3'	-		03/04/23		\square	1	_	-	+	+	+	-	\square	S	1	_	(X		\vdash	++		++	+	X
202	20		L 34 @ 3'			03/04/23			1	Х							S		$\langle \rangle$	_	aboratory	Comr	nente				X
5/25		Instructions: Please email copy RUSH SAMPLES AS ished by:	Date	ТТ	Time	Received by:	alker@mewb	bouri	ne.	com	1.	_		_	Г	Da	te	Ti	me	S V Li	ample Co OCs Free abels on c ustody se	ontainers of Heat	s Intac adspac er(s)	ct? ce?		Pin	N N N N N N
	Relinqui	ished by:	Date	V) Gime	Received by:			_				-		-	Da	te	Ti	me	C	ustody se ample Ha by Sam by Cour	als on o nd Deli pler/Clie	cooler(ivered ent Rep	(s)		edEx	N N N Lone Star
Received by	Relinqu	ished by:	Date	1	Time	Received by:	(0	R	/					R	Da		Ti U	me 14	R	emperatu eceived: djusted: (n Rece		1	FO	

Released to Imaging: 8/17/2023 9:01:33 AM

PBELA Project Manager:	CHAIN OF CO	USTO N	DY RI	ECORD AND A	NALYSIS F	REQU Perm 1400 Midla	ian I Ran	Basin kin H	łwy			al La	b, L		ojec	t Na	me:	Black				6-7235 0B Fe	5 ed Com	1H B	Page 50 of 51
Company Name	Etech Environmental &	Safety	Solut	tions, Inc.			_								Pr	ojec	:t #:	1771	1	-					ă
Company Address	s: 2617 West Marland						_				4	_			Proje	ect L	oc:	32.41	418, -1	103.47	72888				
City/State/Zip:	Hobbs, NM 88240															P)#:								
Telephone No:	(575) 264-9884				Fax No:									Repor	t Fo	rmat	t:	X S	tandar	d		TRRP	٢		ES
Sampler Signatur	e:				e-mail:	P	M@	etec	hen		m, c	walk	er@	mewbo	urne	e.co	m								
lab use only)															F			Т	An	alyze	For:		TT	H	
ORDER #: 3COLOL	13						Г	Prese	rvatio	1&#</td><td>of Co</td><td>ntainer</td><td>s</td><td>Matrix</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>call)</td></tr><tr><th>B # (lab use only)</th><th>FIELD CODE</th><th>Beginning Depth</th><th>Ending Depth</th><th>Date Sampled</th><th>Time Sampled</th><th>Field Filtered Total # of Containance</th><th>Ce Contraction</th><th>HNO₃ 250.ml Poly</th><th>HCI</th><th>H2SO4</th><th>NaOH Na_SS₂O₃</th><th>None 1L Poly</th><th>NaOH/ZnAc</th><th>DV+Drinking Water SL=Sludge GW = Groundwater S=Soll/Solid NP=Non-Potable Specify Other</th><th>TPH by TX 1005 8015B 8015M</th><th>Chloride</th><th>BTEX by 8021B</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Rush 24 48 72 (Please Standard</th></tr><tr><td></td><td>FL 35 @ 3'</td><td></td><td></td><td>03/04/23</td><td>1</td><td></td><td>1 X</td><td></td><td></td><td></td><td></td><td>\perp</td><td></td><td>S</td><td>X</td><td>X</td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>x</td></tr><tr><td></td><td>FL 36 @ 3'</td><td>-</td><td></td><td>03/04/23</td><td></td><td></td><td>I X</td><td>-</td><td></td><td>-</td><td>_</td><td>-</td><td></td><td>S</td><td>X</td><td>X</td><td>Х</td><td>_</td><td>11</td><td></td><td></td><td></td><td>11</td><td>\square</td><td>X</td></tr><tr><td>23</td><td>FL 37 @ 3'</td><td></td><td>-</td><td>03/04/23</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>_</td><td></td><td>S</td><td>X</td><td>X</td><td>Х</td><td>-</td><td>11</td><td>-</td><td></td><td></td><td>\downarrow</td><td>\square</td><td>X</td></tr><tr><td></td><td>FL 38 @ 3'</td><td></td><td></td><td>03/04/23</td><td></td><td></td><td>1 ></td><td></td><td></td><td>+</td><td>'</td><td>-</td><td></td><td>S</td><td>X</td><td>X</td><td>Х</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>X</td></tr><tr><td></td><td>FL 39 @ 3'</td><td></td><td></td><td>03/04/23</td><td></td><td></td><td>1 ×</td><td>-</td><td></td><td>-</td><td>_</td><td>-</td><td></td><td>S</td><td>X</td><td>X</td><td>Х</td><td>-</td><td></td><td>-</td><td></td><td></td><td>\downarrow</td><td>\square</td><td>X</td></tr><tr><td>26</td><td>EW1</td><td></td><td></td><td>03/04/23</td><td></td><td></td><td>1 ×</td><td>-</td><td></td><td>+</td><td>-</td><td>+</td><td></td><td>S</td><td>X</td><td>X</td><td>Х</td><td>_</td><td>+</td><td>_</td><td></td><td></td><td>\downarrow</td><td>+</td><td>X</td></tr><tr><td>27</td><td>EW2</td><td>-</td><td>-</td><td>03/04/23</td><td></td><td></td><td>1 ></td><td>-</td><td>\vdash</td><td>+</td><td>-</td><td>+</td><td></td><td>S</td><td>-</td><td>X</td><td>-</td><td>-</td><td>+</td><td>_</td><td></td><td>\vdash</td><td>++</td><td>++</td><td>X</td></tr><tr><td>28</td><td>EW3</td><td>-</td><td></td><td>03/04/23</td><td></td><td></td><td>1)</td><td>-</td><td></td><td>+</td><td>-</td><td>1</td><td>4</td><td>S</td><td>X</td><td>X</td><td></td><td>-</td><td>+</td><td>-</td><td>1</td><td></td><td>++</td><td>+</td><td>X</td></tr><tr><td>29</td><td>SW2</td><td>-</td><td>-</td><td>03/04/23</td><td></td><td>++</td><td>1 ></td><td></td><td>\square</td><td>+</td><td>-</td><td>-</td><td></td><td>S</td><td>X</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>++</td><td>+</td><td>X</td></tr><tr><td>30</td><td>SW3</td><td></td><td></td><td>03/04/23</td><td></td><td></td><td>1)</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>S</td><td>X</td><td>X</td><td>_</td><td>orata</td><td>ry Cor</td><td></td><td></td><td></td><td>1</td><td></td><td>X</td></tr><tr><td>Special Instructions: Please email cop RUSH SAMPLES A Relinquished by: Relinquished by:</td><td>by of COC to and results to P ISAP 2015 Date Date</td><td>N</td><td>ime ime</td><td>Received by: Received by:</td><td>lker@mewl</td><td>bourne</td><td>e.co</td><td>m.</td><td></td><td></td><td></td><td></td><td>Da</td><td></td><td>Tim</td><td></td><td>San VO Lab Cus Cus San</td><td>tody hple f</td><td>contain ee of H conta seals o seals o land D mpler/0</td><td>iners In leadsp iner(s on con on coo Deliver</td><td>ntact? pace? s) ntainer bler(s) red</td><td>(s)</td><td>Service 3</td><td>3</td><td>2 2 2 2 2 2 2</td></tr><tr><td>Relinquished by:</td><td>Date</td><td>Т</td><td>ïme</td><td>Received by:</td><td>of</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>62</td><td>ite 3 [</td><td>Tim</td><td>-</td><td>Ten</td><td>by Co</td><td>urier? ture Up</td><td>U</td><td>eceipt °C</td><td>DHL</td><td>Feder</td><td></td><td>e Star</td></tr></tbody></table>															

1

Page 104 of 130	Project Manager: Company Name Company Address: City/State/Zip:	Lance Crens	haw onmental & S /larland			tions, Inc.	ANALYSIS I	Per 140	mia 00 R	n Bank	in H				ital L	ab, L	P		Pr	ojec oct L	:t #:	<u>177</u>	k She	ep 4	432-68 -33 B: 472888	30B I		om 1H		Page 51 of 51
	Telephone No:	(575) 264-98	384				Fax No:										R	eport	For	mat	t:	xs	tanda	rd		TRR	RP		PDE	s
	Sampler Signature						e-mail:		PM	@e	etecl	henv	/.CO	m, (cwal	ker@	me	vbou	Irne	.COI	m									
(lab use ORDEI	2001	6013		1					8		Prese	rvation	n & #	of Co	ontain	ers	SL=Sludge	Srecity Other	80 15B 8015M						e For:				72 (Ple:ase call)	
LAB # (lab use	F	IELD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers		HNO _{3 250,ml} Poly	HCI	H ₂ SO ₄	NaOH	Na20203 None 11 Polv	NaOH/ZnAc	DW=Drinking Water	GW = Groundwater NP=Nnn-Pritchle	TPH by TX 1005	Chloride	BTEX by 8021B								Rush 24 48	Standard
31		NW3				03/04/23			1	X			-	-	+			S	×	X	X				+				X	+
						l																								
Vd 44:01:13														+															-	
5/25/	al Instructions: Please email copy RUSH SAMPLES AS uisned by:	AP	Date	Т	ime.	v.com and cw	alker@mewt	our	ne.	com	n.					Da	ate		Time		Sar VO Lat	nple (Cs Fr pels or	ee of l	ners I Heads ainer(Intact? space?	?			2 2 2 2	1
ed b	uished by: uished by:		Date	Т) 6 ime ime	Received by:	()							k	12	Da	ite US	+	Time	e	Cut Sar Ter Rec	nple I by Sa by Co	seals land [impler/ ourier? ture U l: c	on co Delive /Client	oler(s) ered t Rep. 1 UPS Receip °C) ? DHL)t:	<u></u>	D L	N N N Lone S	itar

Released to Imaging: 8/17/2023 9:01:33 AM

March 06, 2023

LANCE CRENSHAW Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: BLACK SHEEP 4-33 B 30 B FED COM 1H BATTERY

Enclosed are the results of analyses for samples received by the laboratory on 03/03/23 16:15.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: WW1 (H230989-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	03/06/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	183	91.7	200	8.86	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	165	82.7	200	13.1	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	99.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 1 @ 3 (H230989-02)

BTEX 8021B	mg,	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/06/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	183	91.7	200	8.86	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	165	82.7	200	13.1	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 2 @ 4 (H230989-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	03/06/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	183	91.7	200	8.86	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	165	82.7	200	13.1	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 3 @ 4 (H230989-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	03/06/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	183	91.7	200	8.86	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	165	82.7	200	13.1	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 4 @ 3 (H230989-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	85.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: SW1 (H230989-06)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	87.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	84.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 5 @ 3 (H230989-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	91.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 6 @ 3 (H230989-08)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	95.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 7 @ 3 (H230989-09)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	98.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 8 @ 3 (H230989-10)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	85.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 9 @ 3 (H230989-11)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	84.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 10 @ 3 (H230989-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	87.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 11 @ 3 (H230989-13)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	85.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 12 @ 3 (H230989-14)

BTEX 8021B	mg,	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	95.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 14 @ 3 (H230989-15)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	193	96.4	200	2.85	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	191	95.6	200	2.63	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: FL 13 @ 4 1/2 (H230989-16)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	ide, SM4500Cl-B mg/kg								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	193	96.4	200	2.85	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	191	95.6	200	2.63	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	77.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: WW2 (H230989-17)

BTEX 8021B	/kg	Analyze	d By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	193	96.4	200	2.85	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	191	95.6	200	2.63	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	86.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: NW1 (H230989-18)

TEX 8021B mg/kg			Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 71.5-13	4						
Chloride, SM4500Cl-B	le, SM4500Cl-B mg/kg								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	179	89.4	200	0.561	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	203	101	200	4.49	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	85.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/03/2023	Sampling Date:	03/03/2023
Reported:	03/06/2023	Sampling Type:	Soil
Project Name:	BLACK SHEEP 4-33 B 30 B FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	17711	Sample Received By:	Shalyn Rodriguez
Project Location:	MEWBOURNE - RURAL EUNICE		

Sample ID: NW2 (H230989-19)

TEX 8021B mg/kg			Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	179	89.4	200	0.561	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	203	101	200	4.49	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

RDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476

Company Name: Etech Environmental & Safety Solutions, Inc.							BILL TO									ANA	LYSI	S RE	EQUE	ST			
Project Manage	: Lance Crenshaw				P,(0. #:																	
Address: 261	7 W Marland				Co	mpa	ny /	N	erbo	VCA													
City: Hobbs	State: NM	Zip:	882	240	Attn: Jeff Broom																		
Phone #: (578	5) 264-9884 Fax # :				Ad	Idres	s: 4	80	Bis	, Blod													
Project #: 17711 Project Owner: Merbourn						ty:	Hol	4	14														
Project Name: [Sheep 4-33 BJOB Fed C	on	H	Batter					Lip: 882	740	e	SN)	l a										
Project Location	1: RUVAL EURICE				1	one					Chloride	801											
Sampler Name:	Buck Sheep 4-33 BDB FEEC Rural EUNICE Pominic Casare	と			Fa	x #:					ਲ	TPH (8015M)	ATEX (8021B)	1 2									
FOR LAB USE ONLY				MATRIX		PRE	SERV	4	SAMPLI	NG		۲,		5									
Lab I.D. H230989	Sample I.D.	G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER MASTEWATER Soil OIL SLUDGE	OTHER :	ACID/BASE:	ICE / COOL MHER :		¹ DATE	TIME				_									
PCI	WWI	C	ĩ			\square	1		33.23		7	1/	17	\square					1				
2	FLIQ3	C	1				1		1		1			r									
- AM	FLZQU	C	T	1			1	Г			\Box												
ũ	A304	C	1				N																
5	FL4@3	С	1				1	L				Ц											
le	SWI	C	1	1	L		1/		,			\square											
7	FL503	0	۱			1	V							\square			ļ						
8	FLCC 3	0	1	V	-		V/	┢			\bot	\square	\downarrow							ļ			
9	FL703	2	1	V/			V	L				$\downarrow \downarrow$		4			L		<u> </u>	ļ			
	F28E 3 nd Damages, Cardinal's liability and client's exclusive remedy for a		(V whether based in contract	orto	t shall t	Y			by the client for			V				<u> </u>						
analyses. All claims includi	ng those for negligence and any other cause whatsoever shall be ardinal be liable for incidental or consequental damages, includin	deemed	l waiv	ed unless made in writing an	d rece	eived by	Cardinal	with	un 30 days afte	r completion of th	ve applica	ble											
	ng out of or related to the performance of services hereunder by	Cardinal	, rega	rdless of whether such claim							ю.					Addy	Phone	4.					
Reiniquisited B	-1 33.21		\sim							Fax Resul	t:	ΟY					Fax #:						
tom	A Time: US		\bigcirc	RAAR	\mathcal{O}	11	l	/	\mathcal{A}	REMARKS	5:		\bigcap	>		,		γ		~	2	do	
Relinguished B	y: Date:	Re	ceiv	ved By:	7	v	-		0				\prec	ίı	15	h	Ą	14	pa	5	-	GEO	3
	Time:	1			'					Please e	mail			, - d a		f Col	- to n	-	tacha		. 24	0 hr	
Delivered By	: (Circle One) 11: 10-0.1	0,.		Sample Condit	ion	1				i lease e		coull	3 01		opyc		συρ	mwe	echel	IV.CON	(0-,	
Sampler - UPS	$\begin{array}{c} \text{(Circle One)} \\ \text{- Bus - Other:} \\ 0,8 \\ \text{- } \end{array}$	-113	2	Cool Intact	S 0		The second secon	itia	ls)														
FORM-0	-	ardin	al c	annot accept ve	_	l cha	nges	i. P	lease fa	k written o	hang	es to	575	-393	-2476	5							

.

Page 126 of 130

Revision 1.0

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

	(575) 393-2326 FAX	bbs, NM 882 ((575) 393-24															-								
Company Name:	Etech Environmental	& Safety Soluti	ons,	Inc.				BILL TO					ر می انتخاب العمین المام و المحکم می از می المحک می از این از از مراجع از محک می العمار می محکم از محکم	ANALYSIS REQUEST											
Project Manager:	Lance Cr	enshaw	· _					P.O.	#:		ì														
Address: 2617 W Marland					Con	npar	ny M	lew	too	irn															
City: Hobbs		State: NM	Zip: 8	882	40			Attn	. 7	6A	-R		~												
Phone #: (575)		Fax #:						Add	ress	s: 49	01	Bus,	Blud												
Project #: [77	110	Project Owner	M	en	100	0-	7	City	:	He	bb	5	Blud												
Project Name:	Black Sheep							Stat	e: /	Nm	Zip:	882	.40	8	5M	218					1				
Project Location:								Pho	ne #	#:				Chloride	801	(8021B)									
Sampler Name:	Domini	(Casar	~ tá	2				Fax	_					л Б	FPH (8015M)	втех									
FOR LAB USE ONLY				Ţ		MATE	RIX	F	PRES	SERV.	S/	MPLI	NG		F	Ē									
Lab I.D.	Sample I.I	D.	(G)RAB OR (C)OMF	# CONTAINERS	GROUNDWATER WASTEWATER	SOIL	SLUDGE	OTHER :	ACID/BASE:	OTHER :	D	ATE	TIME												
Del	FL9@Z		С	١		V	/		1	\mathbf{V}	3.	. 23		1	1	1									
12	FL 10 @ 3		C			V	/																		
	FL 11 @ 3		C)		\checkmark	4		-	\mathbf{V}						\square					ļ				
	FL1283		C)	_	V			_	N_						\square			L	L	ļ				ļ
	FL14@3		ζ	ļļ	_	V			_	V					\vdash	H					 	L			
	EL130 4 1/2		$\sum_{i=1}^{n}$	+		17			1	V/	-			\mathbf{H}	++	\mathbb{H}	+	+							
	WW2		$\frac{c}{c}$	$\frac{1}{1}$	_		-				-			$\left \right $	$\left \right $	++									
18	NWI		c	$\frac{1}{2}$						1		\leftarrow		14	1	-₩					+				
	NW L		Ĕ	ì		- V	-	+	+	-+						-	+		+						
	Damages. Cardinal's liability and client															L				1	<u> </u>	L			
service. In no event shall Car	those for negligence and any other ca dinal be liable for incidental or consequ	ental damages, including	without	limitat	ion, busi	iness inter	ruptions	, ioss of u	rse, or i	ioss of pr	ofits inco	arred by cl	lient, its subsidia	ries,	Die										
Relinguished By:	out of or related to the performance of	Date:			ed B			I IS Dased	a abou	any or th	e anove	Statuota 165	Phone Re	sult:			No		Phone	#:	•				_
	Jenton	5525 Time: 45	<	\leq		20	10	10	NΛ	1	0 1	Λ	Fax Resu REMARK		□ Ye	5	□ No	Add	Fax #:						
Relinquished By:	:	Datë:	Red	ceiv	ed B	- U v:	<u> 14</u>	70	<i>I</i>	\mathcal{N}	~	F			6	2	1)<	sh	Ŧ	2e	a	\leq	3	Da	H
Delivered By:	(Circle One)		e :			mple (AUDI CHEORED DI.			Please e	email r	esult	s and	l copy	ofCo	C to p	m@e	techer	NV.COM	1. Z	th			
Sampler - UPS		8: #11	Z	5	Į	001 1 2 Yes 2 No		es lo	9	SVZ	lials)														

ł.

Page 23 of 23

130 0

Appendix E Regulatory Correspondence

From:	Lance Crenshaw
То:	Enviro, OCD, EMNRD; Ben Arguijo; Connor Walker; Joel Lowry
Subject:	Confirmation Sampling notification
Date:	Friday, March 3, 2023 11:04:31 AM

This email serves as notice that Etech intends to collect excavation confirmation soil samples on March 6 from the following locations/reportable release sites:

Mewbourne Oil Co –Black Sheep 4-33 B33 0B Fed Com 1H Battery- nAPP2306235620

If you have any questions or need any additional information, please contact Lance Crenshaw by phone (575-631-2532) or email <u>lance@etechenv.com.</u>

Lance Crenshaw Etech Environmental & Safety Solutions 575-631-2532

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: MEWBOURNE OIL CO	OGRID: 14744
	Action Number: 220750
	Action Type: [C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
nvelez	None	8/17/2023

Action 220750