SITE INFORMATION

	Report Type: Work Plan nAPP2307052908							
General Site Information:								
Site:		Honey Buzza	rd 102 Lay Fla	t Line				
Company:		EOG Resour						
	ship and Range	Unit A	Sec. 32	T 24S	R 34E			
Lease Number:	:							
County:		Lea County						
GPS:			32.180930°			-103	.487017°	
Surface Owner		State						
Mineral Owner:					, .		s. Turn Left and travel East	
Directions:			n for 1.89 miles. F					
Release Data: Date Released:		1/22/2023						
Type Release:		Reuse Water						
Source of Conta	mination:	Lay Flat Line						
Fluid Released:		10 bbl water						
Fluids Recovere	ed:	5 bbl water						
Official Commu	unication:							
Name:	Todd Wells				Clair Gon	zales		
Company:	EOG Resources				Tetra Teo	ch		
Address:	5509 Champions	Dr.			901 W. Wall St.			
					Ste 100			
City:	Midland, Texas, 79706				Midland.	Texas, 79701		
Phone number: (432) 686-3613					(432) 682			
Fax:					() 001			
Email:	Todd Wells@eogresources.com				clair don	zales@tetra	atech com	
			<u>- 1</u>		<u>e.a.r.go</u> ri			

Site Characterization	
Depth to Groundwater:	17.56'
Karst Potential:	Low

Recommended Remedial Action Levels (RRALs)					
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides	
10 mg/kg	50 mg/kg	100 mg/kg	100 mg/kg	600 mg/kg	

June 9, 2023

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Remediation Work Plan EOG Resources Honey Buzzard 102 Lay Flat Line Lea County, New Mexico nAPP2307052908

Oil Conservation Division:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources (EOG) to assess a release that occurred at the Honey Buzzard 102 Lay Flat Line Release, Unit A, Section 32, Township 24 South, Range 34 East, Lea County, New Mexico (Site). The spill site coordinates are 32.180930°, -103.487017°. The site location is shown on **Figures 1 and 2**.

Background

According to the State of New Mexico C-141 Initial Report, the release at the Site was caused by a developed hole in the lay flat line, causing the release of 10 bbls of reuse water, the release was in the ROW along a lease road, impacting an area of 55' in length and between 15' and 30' in width. Additionally, approximately 5 bbls of fluids were recovered. On January 22, 2023, the release was discovered and reported to the New Mexico Oil Conservation Division (NMOCD). The C-141 is shown in **Appendix A**.

Site Characterization

Significant Water Features

According to the NFHL (National Flood Hazard Layer) Flood Data Application and the USGS (United States Geological Survey) National Water Information System Mapper, there were no watercourses, lakebeds, sinkholes, playa lakes, springs, wetlands, subsurfaces mines, private domestic water wells, or floodplains located within the specified distances. Additionally, the site is located in a low karst area. The NFHL Map, USGS Mapper, and Karst map are shown in **Appendix B**.

Significant Boundaries

According to Google Earth US Government City Boundaries and US School Districts, the lateral extents of the release were not within an incorporated municipal boundaries, defined municipal fresh water well field, or a school district. Additionally, there were no occupied permanent residences, schools, hospitals, institution, or churches located within the specified distances of the lateral extents of the release.

Groundwater Review

Groundwater research was completed for the site through the USGS (United States Geological Survey) National Water Information System and New Mexico Office of the State Engineer (NMOSE) Water Rights Reporting System. Groundwater research conducted through these two resources, show the two closest water wells within a 2 mile radius of the Site. The well reported on the NMOSE Water Rights Reporting System reports a total depth of 60 ft bgs and measured water level of 30 ft bgs and is approximately 2.04 miles of the Site. The well reported on the USGS National Water Information System reports a water level measured at 17.56 ft bgs and is approximately 1.96 miles of the Site. The groundwater information is shown in **Appendix B**.

Distance from Site	Date of Data	Resource of Information	Depth of Well	Depth to Water
1.96 Miles	5/29/1991	USGS	-	17.56'
2.04 Miles	6/30/1912	NMOSE	60'	30'

Regulatory

A risk-based evaluation was performed for the site following the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 100 mg/kg (GRO + DRO + ORO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 600 mg/kg.

Site Assessment Activities

Tetra Tech conducted site assessment activities on February 8, 2023. A total of two (2) auger holes (AH-1 through AH-2) were installed to depths ranging from surface to 1.0 ft bgs, because of hitting refusal due to dense geological formation, to attempt to assess and vertically delineate the impacted the area. Additionally, a total of four (4) horizontals (H-1 through H-4) were installed to total depths of 0.5 ft bgs, to horizontally delineate the impact. The impact and sample locations are shown on **Figure 3**.

The samples were submitted to Eurofins Laboratories in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0. The analytical results are summarized in **Table 1** and the analytical laboratory reports are included in **Appendix C**.

Referring to Table 1, auger holes (AH-1 and AH-2) indicated chloride concentrations above RRALs, with concentrations of 966 mg/kg and 4,630 mg/kg at 1.0 ft bgs, respectively. However, vertical delineation of chlorides was not found in the both augers (AH-1 and AH-2)

due to hitting refusal due to the dense geological formation. Additionally, Horizontals (H-1 through H-4) did not indicate benzene, BTEX, TPH, or chloride concentrations above RRALs.

Work Plan

Based on the C-141 (nAPP2307052908) and information provided by EOG, Tetra Tech performed site characterization and groundwater research to determine groundwater depth, proximity from significant water features, and proximity from specified populated entities to determine RRALs and assess the impacted area. Based on the OCD *Guidelines for Remediation of Leaks, Spills, and Releases*, updated August 14, 2018, according to the groundwater data found during research activites, the RRALs that will be followed for the site, will be held to 600 mg/kg for chlorides, and 100 mg/kg (GRO + DRO + ORO) for TPH. Based on Tetra Tech assessment activites, laboratory results indicated chloride concentrations above RRALs, throughout the impact area, in total depths ranging from surface to 1.0 ft bgs.

Due to lay flat lines being in use and present on top of the release area, the remediation has been unable to be completed safely and without the chance of causing an additional release. The remediation will take place in the next 90 days once the production schedule allows the movement of the in use lay flat lines with minimal risk of damage or a release. Once the lines have been moved, EOG proposes to vertically delineate the area of auger holes (AH-1 and AH-2) by installing trenches during remediation activites. Following the delineation, and based on the collected data and determined RRALs, EOG will remediate the impacted areas to the most stringent RRALs, as determined by the delineation activities. The impacted area subject to delineation and remediation is indicated in **Table 1** and shown on **Figure 4**. Following excavation, 5-point composite confirmation bottom hole and sidewall samples will be installed within the remediated areas on a 200 square foot basis. The C-141 is included in **Appendix A**.

If you require any additional information or have any questions or comments, please contact us at (432) 682-4559.

Respectfully submitted, TETRA TECH

Brittany Long, Project Manager

Clair Gonzales, P.G. Senior Project Manager

Figures

.

Released to Imaging: 9/12/2023 10:53:23 AM

Released to Imaging: 9/12/2023 10:53:23 AM

Received by OCD: 6/9/2023 5.57:47 PM	NORTH
THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	The second second second
	The second second
SITE LOCATOR MAP	and the second second
All the second sec	
THAT'S COMMENTED STATES	- Charles All
	STATISTICS STATISTICS
	10 State
	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
and the second sec	A CALL AND A
and the state of the second states and the	
No 25 M COLOR DO TO THE REAL PROPERTY OF	
State of the second state	
1	
The second s	
EOG SUBSURFACE LINES SURFACE POLYLINES	🍪 eog resources
DELINEATION AND EXCAVATION AREA (1.0'+)	FIGURE 4
RIGHT-OF-WAY	PROPOSED EXCAVATION MAP HONEY BUZZARD 102
	LEA COUNTY, NEW MEXICO
0 10 20	32.180812°, -103.486974° Project: 212C-MD-03007
Approximate Scale in Feet	Date: 6/7/2023
እም ነሳታት ለአድምር በሚኒቱ። ከባባያሉ ለካባዮው 2020 /ም ፓታሚ በሚኒቶርስ ርሞ ፋድላዊ የልተለ ዓመር Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and t	Name: Figure 4 - Honey Buzzard 102

Tables

	Sample	Sample	Soil S	Status		TPH	(mg/kg)				BTEX (mg/kg)			Chloride
Sample ID	Date	Depth	In-Situ	Removed	GRO	DRO	ORO	Total	Benzene	Toluene	Ethylbenzene	Xylenes	Total	(mg/kg)
	Dute	(ft)	monta	Removed	mg/kg	mg/kg	mg/kg	mg/kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(iiig/kg)
RRALs								100	10				50	600
INIALS								mg/kg	mg/kg				mg/kg	mg/kg
AH-1	2/8/2023	0-1	Х	-	<50.0	<50.0	<50.0	<50.0	< 0.00201	<0.00201	<0.00201	< 0.00402	< 0.00402	966
	2/0/2022	0.1	V		-50.0	-50.0	-50.0		10.00100	10.00100	10,001,00	10,00000	-0.00000	4.620
AH-2	2/8/2023	0-1	Х	-	<50.0	<50.0	<50.0	<50.0	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00398	4,630
H-1	2/8/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	< 0.00401	<0.00401	78.6
H-2	2/8/2023	0-0.5	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	6.97
H-3	2/8/2023	0-0.5	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	6.54
H-4	2/8/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	21.5
				•							•			

NOTES

Released to Imaging: 9/12/2023 10:53:23 AM

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Exceedance

Photographic Documentation

Page 13 of 57

TETRA TECH

EOG Resources Honey Buzzard 102 Lay Flat Line Lea County, New Mexico

View of Release Area – View Southeast

View of Release Area - View East

Page 14 of 57

EOG Resources Honey Buzzard 102 Lay Flat Line Lea County, New Mexico

View of Release Area - View South

Released to Imaging: 9/12/2023 10:53:23 AM

Appendix A

C-141 Document

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2307052908
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EOG Resources	OGRID 7377
Contact Name Todd Wells	Contact Telephone (432) 686-3613
Contact email Todd_Wells@eogresources.com	Incident # (assigned by OCD) nAPP2307052908
Contact mailing address 5509 Champions Drive Midland, TX 79706	

Location of Release Source

Latitude 32.180930°

Longitude -103.487017° (NAD 83 in decimal degrees to 5 decimal places)

Site Name Honey Buzzard 102 Lay Flat Line	Site Type Reuse Water Line
Date Release Discovered 1/22/23	API# (if applicable)

Unit Letter	Section	Township	Range	County
А	32	24S	34E	Lea

Surface Owner: State Federal Tribal Private (*Name:*_____)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

	(s) Released (Select an that apply and attach calculations of specific					
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)				
Reuse Water	Volume Released (bbls) 10	Volume Recovered (bbls) 5				
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No				
Condensate	Volume Released (bbls)	Volume Recovered (bbls)				
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)				
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)				
Cause of Release: The lay flat line going to the Honey Buzzard 102 developed a hole releasing reuse water. The line is located outside of the Klondike Reuse Pit and near Resource Lane. Initially, the release was estimated as less than 5 bbls. Following the initial soil assessment, the volume released from the lay flat line was revised to 10 bbls of reuse water in the pasture beside the lease road with 5 bbls recovered.						

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🖾 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Todd Wells	Title:	Environmental Specialist
Todd Wells		Date: <u>3/11/23</u>
_Todd_Wells@eogresources.com		Telephone: (432) 686-3613
		Date:
	Todd Wells	Todd Wells

Page 2

Received by OCD: 6/9/2023 5:57:47 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 18 of 57
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 6/9/20.	23 5:57:47 PM State of New Mexico		Page 19 of				
Form C-141			Incident ID				
Page 4	Oil Conservation Division		District RP				
			Facility ID				
			Application ID				
regulations all operators ar public health or the environ failed to adequately investi addition, OCD acceptance and/or regulations. Printed Name: Signature: Todd (The acceptance of a C-141 report by the gate and remediate contamination that pose a thr of a C-141 report does not relieve the operator of a C-141 report does not relieve th	tifications and perform of OCD does not relieve the reat to groundwater, surfa f responsibility for comp 	orrective actions for rele e operator of liability sha ace water, human health	eases which may endanger ould their operations have or the environment. In deral, state, or local laws			
OCD Only							
Received by:	elyn Harimon	Date:06/	12/2023				

Received by OCD: 6/9/2023 5:57:47 PM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Title: Printed Name: Signature: Todd Wells Date: email: Telephone: _____ OCD Only Received by: Jocelyn Harimon Date: 06/12/2023 Approved Approved with Attached Conditions of Approval Denied Deferral Approved Nelson Velez 09/12/2023 Date: Signature:

Appendix B

Site Characterization Documents

USGS Groundwater for USA: Water Levels -- 1 sites

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

• Full News 🔝

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list = • 321127103310401

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321127103310401 24S.33E.24.44444

Lea County, New Mexico Latitude 32°11'27", Longitude 103°31'04" NAD27 Land-surface elevation 3,538 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Table of data

<u>Tab-separated data</u> <u>Graph of data</u>

Reselect period

Date	Time	? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status	
1953-11-27		D	62610		3518.95	NGVD29	1	Z				А
1953-11-27		D	62611		3520.60	NAVD88	1	Z				А
1953-11-27		D	72019	17.40			1	Z				А
1976-01-21		D	62610		3522.78	NGVD29	1	Z				А
1976-01-21		D	62611		3524.43	NAVD88	1	Z				А
1976-01-21		D	72019	13.57			1	Z				А
1981-03-19		D	62610		3520.32	NGVD29	1	Z				А
1981-03-19		D	62611		3521.97	NAVD88	1	Z				А
1981-03-19		D	72019	16.03			1	Z				А
1986-03-06		D	62610		3521.55	NGVD29	1	Z				А
1986-03-06		D	62611		3523.20	NAVD88	1	Z				А
1986-03-06		D	72019	14.80			1	Z				А
1991-05-29		D	62610		3518.79	NGVD29	1	Z				А
1991-05-29		D	62611		3520.44	NAVD88	1	Z				А
1991-05-29		D	72019	17.56			1	Z				А

Explanation Section Code Description D Water-level date-time accuracy Date is accurate to the Day 62610 Groundwater level above NGVD 1929, feet Parameter code Parameter code 62611 Groundwater level above NAVD 1988, feet 72019 Parameter code Depth to water level, feet below land surface Referenced vertical datum NAVD88 North American Vertical Datum of 1988 Referenced vertical datum NGVD29 National Geodetic Vertical Datum of 1929 Status Static 1 Method of measurement Ζ Other. Measuring agency Not determined Source of measurement Not determined Approved for publication -- Processing and review completed. Water-level approval status A

Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2023-06-07 11:41:19 EDT 0.29 0.24 nadww01 USA.gov

.

State State						00		J			Engine	
			× 1					V 4=SE)		u T	M in meters)	
Well Tag	POD	Number	••				largest Tws	·	(NAD83)		Y m meters)	
	C 02	2309	2	2	2	25	24S	33E	639708		3562997 🌍	
Driller Lice	ense:		Driller	Con	ıpan	ıy:						
Driller Nan	ne:	UNKNOWN										
Drill Start]	Date:	01/01/1912	Drill F	inish	Dat	e:	0	6/30/19	12 P	lu	g Date:	
Log File Da	ate:		PCWI	Rev I	Date	:			S	ou	rce:	
Ритр Туре	:		Pipe D	ischa	irge	Size:			E	sti	imated Yield:	40 GPM
Casing Size		7.00	Depth	Well	•		6	0 feet	D)er	oth Water:	30 feet

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/7/23 9:51 AM

POINT OF DIVERSION SUMMARY

.

New Mexico NFHL Data

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

Produced by the United States Geological Survey North American Datum of 1983 (NAD83) World Geodetic System of 1984 (WGS84). Projection and 1 000-meter grid:Universal Transverse Mercator, Zone 13S This map is not a legal document. Boundaries may be generalized for this map scale. Private lands within government reservations may not be shown. Obtain permission before entering private lands.

Imagery......NAIP, May 2016 - August 2016Roads.....U.S.Census Bureau, 2016Names......GNIS, 1980 - 1994Hydrography.....National Hydrography Dataset, 1899 - 2018Contours.....National Elevation Dataset, 2002Boundaries.....Multiple sources; see metadata file 2017 - 2018Public Land Survey System......BLM, 2019Wetlands.....FWS National Wetlands Inventory 2014

Released to Imaging: 9/12/2023 10:53:23 AM

Appendix C

Laboratory Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Brittany Long Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701 Generated 2/13/2023 7:39:28 PM

JOB DESCRIPTION

Honey Buzzard 102 SDG NUMBER Lea County NM

JOB NUMBER

890-4059-1

RT OR .ong Inc. Wall 100 0701

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Received by OCD: 6/9/2023 5:57:47 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 2/13/2023 7:39:28 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4059-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

2

Client: Tetra Tech, Inc.
Project/Site: Honey Buzzard 102

3

5

ceived by OCI	D: 6/9/2023 5:57:47 PM	Page 33 of	57
	Definitions/Glossary		
Client: Tetra Te	ch, Inc.	Job ID: 890-4059-1	
Project/Site: He	oney Buzzard 102	SDG: Lea County NM	
Qualifiers			
GC VOA Qualifier	Qualifier Description		
S1-	Surrogate recovery exceeds control limits, low biased.		-
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			f
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		

Qua

DER

DL

DLC

EDL

LOD

LOQ

MCL

MDA

MDC

MDL

ML

MPN

MQL

NC

ND

NEG

POS

PQL PRES

QC RER

RL

RPD

TEF

TEQ

TNTC

Dil Fac

DL, RA, RE, IN

Duplicate Error Ratio (normalized absolute difference)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Dilution Factor

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive **Quality Control**

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

Released to Imagi	ng: 9/1	2/2023	10:53:23	AM
--------------------------	---------	--------	----------	----

Eurofins Carlsbad

Job ID: 890-4059-1 SDG: Lea County NM

Job ID: 890-4059-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4059-1

Receipt

The samples were received on 2/8/2023 1:07 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

Receipt Exceptions

The following were received and analyzed from an unpreserved bulk soil jar: H-1 (890-4059-1), H-2 (890-4059-2), H-3 (890-4059-3), H-4 (890-4059-4), AH-1 (0-1') (890-4059-5) and AH-2 (0-1') (890-4059-6).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: H-1 (890-4059-1), H-3 (890-4059-3) and H-4 (890-4059-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-1 (890-4059-1), H-2 (890-4059-2), H-3 (890-4059-3), H-4 (890-4059-4), AH-1 (0-1') (890-4059-5) and AH-2 (0-1') (890-4059-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The method blank for preparation batch 880-46070 and analytical batch 880-46062 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: Spike compounds were inadvertently omitted during the extraction process for the matrix spike/matrix spike duplicate (MS/MSD); therefore, matrix spike recoveries are unavailable for preparation batch 880-46070 and analytical batch 880-46062. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: Spike compounds were inadvertently omitted during the extraction process for the matrix spike/matrix spike duplicate (MS/MSD); therefore, matrix spike recoveries are unavailable for preparation batch 880-45905 and analytical batch 880-45919. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Page 35 of 57

Job ID: 890-4059-1 SDG: Lea County NM

Matrix: Solid

5

Lab Sample ID: 890-4059-1

Client Sample ID: H-1 Date Collected: 02/08/23 00:00

Project/Site: Honey Buzzard 102

Client: Tetra Tech, Inc.

Date Received: 02/08/23 13:07

Benzene	< 0.00200								
	~0.00200	U	0.00200		mg/Kg		02/10/23 15:02	02/12/23 15:14	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/10/23 15:02	02/12/23 15:14	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/10/23 15:02	02/12/23 15:14	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		02/10/23 15:02	02/12/23 15:14	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/10/23 15:02	02/12/23 15:14	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		02/10/23 15:02	02/12/23 15:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	64	S1-	70 - 130				02/10/23 15:02	02/12/23 15:14	1
1,4-Difluorobenzene (Surr)	98		70 - 130				02/10/23 15:02	02/12/23 15:14	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			02/13/23 19:47	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/13/23 15:10	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		02/12/23 09:06	02/12/23 18:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		02/12/23 09:06	02/12/23 18:26	1
C10-C28)	10.0		10.0						
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		02/12/23 09:06	02/12/23 18:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	51	S1-	70 - 130				02/12/23 09:06	02/12/23 18:26	1
o-Terphenyl	51	S1-	70 - 130				02/12/23 09:06	02/12/23 18:26	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	78.6		4.96		mg/Kg			02/10/23 10:31	1
lient Sample ID: H-2							Lab San	nple ID: 890-	4059-2
ate Collected: 02/08/23 00:00								Matri	x: Solic
ate Received: 02/08/23 13:07									
ate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile	Organic Comp	ounde (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		02/10/23 15:02	02/12/23 15:34	1
Toluene	<0.00199	U	0.00199		mg/Kg		02/10/23 15:02	02/12/23 15:34	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/10/23 15:02	02/12/23 15:34	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/10/23 15:02	02/12/23 15:34	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/10/23 15:02	02/12/23 15:34	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		02/10/23 15:02	02/12/23 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				02/10/23 15:02	02/12/23 15:34	1
1,4-Difluorobenzene (Surr)	94		70 - 130				02/10/23 15:02	02/12/23 15:34	1

Eurofins Carlsbad

Released to Imaging: 9/12/2023 10:53:23 AM

Client Sample Results

Job ID: 890-4059-1 SDG: Lea County NM

Matrix: Solid

5

Lab Sample ID: 890-4059-2

Client Sample ID: H-2

Project/Site: Honey Buzzard 102

Client: Tetra Tech, Inc.

Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/13/23 19:47	1
Method: SW846 8015 NM - Diesel	Range Organi	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			02/13/23 15:10	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		02/12/23 09:06	02/12/23 18:47	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		02/12/23 09:06	02/12/23 18:47	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		02/12/23 09:06	02/12/23 18:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	58	S1-	70 - 130				02/12/23 09:06	02/12/23 18:47	1
o-Terphenyl	54	S1-	70 - 130				02/12/23 09:06	02/12/23 18:47	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.97		4.97		mg/Kg			02/10/23 10:36	1

Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		02/10/23 15:02	02/12/23 15:55	1
Toluene	<0.00198	U	0.00198		mg/Kg		02/10/23 15:02	02/12/23 15:55	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		02/10/23 15:02	02/12/23 15:55	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		02/10/23 15:02	02/12/23 15:55	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		02/10/23 15:02	02/12/23 15:55	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		02/10/23 15:02	02/12/23 15:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130				02/10/23 15:02	02/12/23 15:55	1
1,4-Difluorobenzene (Surr)	65	S1-	70 - 130				02/10/23 15:02	02/12/23 15:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			02/13/23 19:47	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			02/13/23 15:10	1
- Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
method. Offorto of tob him - bit									
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	Result <49.8		RL 49.8	MDL	Unit mg/Kg	D	Prepared 02/12/23 09:06	Analyzed 02/12/23 19:09	Dil Fac
Analyte				MDL		<u> </u>			Dil Fac 1

Eurofins Carlsbad

Released to Imaging: 9/12/2023 10:53:23 AM

C10-C28)
Job ID: 890-4059-1 SDG: Lea County NM

Matrix: Solid

5

1

Lab Sample ID: 890-4059-3

02/10/23 15:02 02/12/23 16:15

Client Sample ID: H-3

Project/Site: Honey Buzzard 102

Client: Tetra Tech, Inc.

Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		02/12/23 09:06	02/12/23 19:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	54	S1-	70 - 130				02/12/23 09:06	02/12/23 19:09	
o-Terphenyl	54	S1-	70 - 130				02/12/23 09:06	02/12/23 19:09	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	6.54		5.03		mg/Kg			02/10/23 10:50	
ate Collected: 02/08/23 00:00							Lab San	nple ID: 890- Matri	4059- ix: Soli
ate Collected: 02/08/23 00:00 ate Received: 02/08/23 13:07	Organic Comp	ounds (GC)					Lab San		
ate Collected: 02/08/23 00:00 ate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile	• •	ounds (GC) Qualifier	RL	MDL	Unit	D	Lab San	Matri	ix: Soli
ate Collected: 02/08/23 00:00 ate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile Analyte	• •	Qualifier		MDL	Unit mg/Kg	<u>D</u>			ix: Soli
ate Collected: 02/08/23 00:00 ate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile Analyte Benzene	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	ix: Soli
ate Collected: 02/08/23 00:00 ate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.00200	Qualifier U U	RL 0.00200	MDL	mg/Kg	D	Prepared 02/10/23 15:02	Matri Analyzed 02/12/23 16:15	
ate Collected: 02/08/23 00:00 ate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Result <0.00200 <0.00200	Qualifier U U U	RL 0.00200 0.00200	MDL	mg/Kg mg/Kg	<u>D</u>	Prepared 02/10/23 15:02 02/10/23 15:02	Matri <u>Analyzed</u> 02/12/23 16:15 02/12/23 16:15	ix: Soli
ate Collected: 02/08/23 00:00 ate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00200 <0.00200 <0.00200	Qualifier U U U U U	RL 0.00200 0.00200 0.00200	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/10/23 15:02 02/10/23 15:02 02/10/23 15:02	Matri <u>Analyzed</u> 02/12/23 16:15 02/12/23 16:15 02/12/23 16:15	ix: Soli
ate Collected: 02/08/23 00:00 ate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene		Qualifier U U U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00399	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/10/23 15:02 02/10/23 15:02 02/10/23 15:02 02/10/23 15:02	Matri Analyzed 02/12/23 16:15 02/12/23 16:15 02/12/23 16:15 02/12/23 16:15	ix: Soli
Client Sample ID: H-4 bate Collected: 02/08/23 00:00 bate Received: 02/08/23 13:07 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Result <0.00200	Qualifier U U U U U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00399 0.00200	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/10/23 15:02 02/10/23 15:02 02/10/23 15:02 02/10/23 15:02 02/10/23 15:02	Matri 02/12/23 16:15 02/12/23 16:15 02/12/23 16:15 02/12/23 16:15 02/12/23 16:15	ix: Soli

1,4-Difluorobenzene (Surr)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			02/13/23 19:47	1

70 - 130

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/13/23 15:10	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

82

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		02/12/23 09:06	02/12/23 19:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		02/12/23 09:06	02/12/23 19:31	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		02/12/23 09:06	02/12/23 19:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	49	S1-	70 - 130				02/12/23 09:06	02/12/23 19:31	1
o-Terphenyl	49	S1-	70 - 130				02/12/23 09:06	02/12/23 19:31	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.5		5.00		mg/Kg			02/10/23 10:55	1

Page 37 of 57

Released to Imaging: 9/12/2023 10:53:23 AM

RL

0.00201

0.00201

0.00201

0.00402

0.00201

0.00402

Limits

70 - 130

70 - 130

RL

RL

50.0

0.00402

MDL

MDL Unit

MDL Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

D

Prepared

02/10/23 15:02

02/10/23 15:02

02/10/23 15:02

02/10/23 15:02

02/10/23 15:02

02/10/23 15:02

Prepared

02/10/23 15:02

02/10/23 15:02

Prepared

Prepared

Dil Fac

1

1

1

1

1

1

1

Dil Fac

Dil Fac

Dil Fac

Job ID: 890-4059-1 SDG: Lea County NM

Client Sample ID: AH-1 (0-1')

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

Qualifier

<0.00201 U

<0.00201 U

<0.00201 U

<0.00402 U

<0.00201 U

<0.00402 U

89

91

<0.00402 U

Result Qualifier

Result Qualifier

<50.0 U

%Recovery

Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

Project/Site: Honey Buzzard 102

Sample Depth: 0 - 1

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: Tetra Tech, Inc.

Lab Sample ID: 890-4059-5 Matrix: Solid

Analyzed

02/12/23 16:36

02/12/23 16:36

02/12/23 16:36

02/12/23 16:36

02/12/23 16:36

02/12/23 16:36

Analyzed

02/12/23 16:36

02/12/23 16:36

Analyzed

02/13/23 19:47

Analyzed

02/13/23 15:10

5

9
13

Analyta	Desult	Qualifian	ы	MDI	11		Drenered	Amalymaal	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		02/12/23 09:06	02/12/23 19:53	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		02/12/23 09:06	02/12/23 19:53	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		02/12/23 09:06	02/12/23 19:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	54	S1-	70 - 130				02/12/23 09:06	02/12/23 19:53	1
o-Terphenyl	53	S1-	70 - 130				02/12/23 09:06	02/12/23 19:53	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ony - Solubi	е						
Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

· · · · · · · · · · · · · · · · · · ·				-		· · · · · · · · · · · · · · · · · · ·	
Chloride	966	4.98	mg/Kg	J		02/10/23 10:59	1
Client Sample ID: AH-2 (0-1')					Lab Sa	mple ID: 890-	4059-6
Date Collected: 02/08/23 00:00						Matri	x: Solid

Date Received: 02/08/23 13:07 Sample Depth: 0 - 1

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		02/10/23 15:02	02/12/23 16:56	1
Toluene	<0.00199	U	0.00199		mg/Kg		02/10/23 15:02	02/12/23 16:56	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/10/23 15:02	02/12/23 16:56	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/10/23 15:02	02/12/23 16:56	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/10/23 15:02	02/12/23 16:56	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		02/10/23 15:02	02/12/23 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				02/10/23 15:02	02/12/23 16:56	1

Eurofins Carlsbad

Released to Imaging: 9/12/2023 10:53:23 AM

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

Client Sample Results

Limits

70 - 130

RL

RL

50.0

RL

50.0

50.0

50.0

Limits

70 - 130

70 - 130

0.00398

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

Job ID: 890-4059-1 SDG: Lea County NM

Client Sample ID: AH-2 (0-1')

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

<50.0 U

<50.0 U

<50.0 U

<50.0 U

%Recovery Qualifier

52 S1-

51 S1-

92

<0.00398 U

Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

Project/Site: Honey Buzzard 102

Client: Tetra Tech, Inc.

Sample Depth: 0 - 1

1,4-Difluorobenzene (Surr)

Gasoline Range Organics (GRO)-C6-C10

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Surrogate

Analyte

Analyte

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Total TPH

Total BTEX

Lab Sample ID: 890-4059-6 Matrix: Solid

Analyzed

02/12/23 16:56

Analyzed

02/13/23 19:47

Analyzed

02/13/23 15:10

Analyzed

5
8
9

	2	
		2

 mg/Kg	02/12/23 09:06	02/12/23 20:15	1
mg/Kg	02/12/23 09:06	02/12/23 20:15	1
mg/Kg	02/12/23 09:06	02/12/23 20:15	1
	Prepared	Analyzed	Dil Fac
	02/12/23 09:06	02/12/23 20:15	1
	02/12/23 09:06	02/12/23 20:15	1

Prepared

02/10/23 15:02

Prepared

Prepared

Prepared

D

D

D

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4630		49.7		mg/Kg			02/10/23 15:16	10

Eurofins Carlsbad

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 820-7364-A-1-B MS Matrix Spike 104 121 820-7364-A-1-C MSD Matrix Spike Duplicate 115 106 890-4059-1 H-1 64 S1-98 890-4059-2 H-2 86 94 890-4059-3 H-3 87 65 S1-890-4059-4 H-4 65 S1-82 890-4059-5 AH-1 (0-1') 89 91 890-4059-6 95 92 AH-2 (0-1') LCS 880-46019/1-A Lab Control Sample 114 102 LCSD 880-46019/2-A Lab Control Sample Dup 109 104 MB 880-46019/5-A Method Blank 74 95 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits
		1CO1	OTPH1	
b Sample ID	Client Sample ID	(70-130)	(70-130)	
-24599-A-1-H MS	Matrix Spike	76	72	
24599-A-1-I MSD	Matrix Spike Duplicate	82	77	
059-1	H-1	51 S1-	51 S1-	
4059-2	H-2	58 S1-	54 S1-	
059-3	H-3	54 S1-	54 S1-	
59-4	H-4	49 S1-	49 S1-	
59-5	AH-1 (0-1')	54 S1-	53 S1-	
59-6	AH-2 (0-1')	52 S1-	51 S1-	
30-46070/2-A	Lab Control Sample	98	95	
880-46070/3-A	Lab Control Sample Dup	113	94	
380-46070/1-A	Method Blank	74	75	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

SDG: Lea County NM

Job ID: 890-4059-1

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-46019/5-A	
Motrix: Colid	

Matrix: Solid Analysis Batch: 46073

-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		02/10/23 15:02	02/12/23 14:31	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/10/23 15:02	02/12/23 14:31	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/10/23 15:02	02/12/23 14:31	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		02/10/23 15:02	02/12/23 14:31	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/10/23 15:02	02/12/23 14:31	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		02/10/23 15:02	02/12/23 14:31	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130				02/10/23 15:02	02/12/23 14:31	1
1,4-Difluorobenzene (Surr)	95		70 - 130				02/10/23 15:02	02/12/23 14:31	1

Lab Sample ID: LCS 880-46019/1-A Matrix: Solid

Analysis Batch: 46073

Spike	LCS	LCS			%Rec
Analyte Added	Result	Qualifier Unit	D	%Rec	Limits
Benzene 0.100	0.1043	mg/Kg		104	70 - 130
Toluene 0.100	0.1031	mg/Kg		103	70 - 130
Ethylbenzene 0.100	0.1072	mg/Kg		107	70 - 130
m-Xylene & p-Xylene 0.200	0.2306	mg/Kg		115	70 - 130
o-Xylene 0.100	0.1142	mg/Kg		114	70 - 130

	LCS		
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 880-46019/2-A

Matrix: Solid

Analysis Batch: 46073							Prep	Batch:	46019
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1134		mg/Kg		113	70 - 130	8	35
Toluene	0.100	0.1048		mg/Kg		105	70 - 130	2	35
Ethylbenzene	0.100	0.1094		mg/Kg		109	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.2311		mg/Kg		116	70 - 130	0	35
o-Xylene	0.100	0.1138		mg/Kg		114	70 - 130	0	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sa

Matrix: Analyza

Analysis Batch: 46073									Pre	Batch: 46019
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0996	0.09111		mg/Kg		91	70 - 130	
Toluene	<0.00201	U	0.0996	0.09028		mg/Kg		91	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

13

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 46019

Prep Batch: 46019

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

			Spike		LCSD	
			Added	Result	Qualifier	Unit
9			0.100	0.1134		mg/Kg
			0.100	0.1048		mg/Kg
izene			0.100	0.1094		mg/Kg
e & p-Xylene			0.200	0.2311		mg/Kg
e			0.100	0.1138		mg/Kg
	LCSD	LCSD				
te	%Recovery	Qualifier	Limits			
ofluorobenzene (Surr)	109		70 - 130			
orobenzene (Surr)	104		70 - 130			
ample ID: 820-7364-A	1-B MS					
	-1-B MS					
: Solid	-1-B MS					
: Solid		Sample	Spike	MS	MS	
ample ID: 820-7364-A- : Solid sis Batch: 46073	Sample	Sample Qualifier	Spike Added		MS Qualifier	Unit
: Solid	Sample Result	•	-			- <mark>Unit</mark> mg/Kg

Released to Imaging: 9/12/2023 10:53:23 AM

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Page 42 of 57

	-1-B MS										Client S	Sample ID		
Matrix: Solid												Prep 1	Type: To	tal/NA
Analysis Batch: 46073												Prep	Batch:	46019
	Sample	Sampl	е	Spike	MS	MS						%Rec		
Analyte	Result	Qualif	ier	Added	Result	Qualif	fier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00201	U		0.0996	0.09883			mg/Kg		_	98	70 - 130		
m-Xylene & p-Xylene	<0.00402	U		0.199	0.2130			mg/Kg			106	70 - 130		
o-Xylene	0.00207			0.0996	0.1063			mg/Kg			105	70 - 130		
	MS	MS												
Surrogate	%Recovery	Qualif	ïer	Limits										
4-Bromofluorobenzene (Surr)	121			70 - 130										
1,4-Difluorobenzene (Surr)	104			70 - 130										
Lab Sample ID: 820-7364-A-	-1-C MSD								Clier	nt Sa	mple ID:	: Matrix Sp	oike Du	olicate
Matrix: Solid											- C		· Type: To	
Analysis Batch: 46073													Batch:	
	Sample	Sampl	е	Spike	MSD	MSD						%Rec		RPD
Analyte	Result	Qualif	ier	Added	Result	Qualif	fier	Unit		D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U		0.0996	0.1013			mg/Kg		_	102	70 - 130	11	35
Toluene	<0.00201	U		0.0996	0.1036			mg/Kg			104	70 - 130	14	35
Ethylbenzene	<0.00201	U		0.0996	0.1085			mg/Kg			108	70 _ 130	9	35
m-Xylene & p-Xylene	<0.00402	U		0.199	0.2331			mg/Kg			116	70 - 130	9	35
o-Xylene	0.00207			0.0996	0.1158			mg/Kg			114	70 - 130	9	35
	MSD	MSD												
	%Recovery	Qualif												
Surrogate	76Recovery	Qualit	ler	Limits										
Surrogate 4-Bromofluorobenzene (Surr)		Quain	ier	Limits 70 - 130										
		Quan	ier											
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	115 106			70 - 130 70 - 130										
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1ethod: 8015B NM - Die	115 106 esel Range Or			70 - 130 70 - 130										
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Aethod: 8015B NM - Die Lab Sample ID: MB 880-460	115 106 esel Range Or			70 - 130 70 - 130							Client Sa	ample ID:		
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Die Lab Sample ID: MB 880-460 Matrix: Solid	115 106 esel Range Or			70 - 130 70 - 130							Client Sa	Prep 1	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Die Lab Sample ID: MB 880-460 Matrix: Solid	115 106 esel Range Or	gani	cs (DR	70 - 130 70 - 130							Client Sa	Prep 1		tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Die Lab Sample ID: MB 880-460 Matrix: Solid Analysis Batch: 46062	115 106 esel Range Or 070/1-A	gani MB M	cs (DR ив	70 - 130 70 - 130								Prep 1 Prep	Spe: To Batch:	tal/NA 46070
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Die Lab Sample ID: MB 880-460 Matrix: Solid Analysis Batch: 46062 Analyte	115 106 esel Range Or 070/1-A Re	rgani MB MB	CS (DR MB Qualifier	70 - 130 70 - 130		MDL			D	Pi	repared	Prep 1 Prep Analyz	Batch:	tal/NA 46070 Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Die Lab Sample ID: MB 880-460 Matrix: Solid Analysis Batch: 46062 Analyte Gasoline Range Organics	115 106 esel Range Or 070/1-A Re	gani MB M	CS (DR MB Qualifier	70 - 130 70 - 130	RL 9.9		Unit mg/Kg		<u>D</u> .	Pi		Prep 1 Prep	Batch:	tal/NA 46070
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Die Lab Sample ID: MB 880-460 Matrix: Solid Analysis Batch: 46062 Analyte	115 106 esel Range Or 070/1-A 	rgani MB MB	CS (DR MB Qualifier	70 - 130 70 - 130 20) (GC)		i			<u>D</u> .	P r 02/12	repared	Prep 1 Prep Analyz	Batch: ed 09:21	tal/NA 46070 Dil Fac

Analysis Batch: 46062			
	MB	МВ	
Analyte	Result	Qualifier	RL
Gasoline Range Organics	<49.9	U	49.9
(GRO)-C6-C10			
Diesel Range Organics (Over	<49.9	U	49.9
C10 C29)			

MB MB Limits Surrogate %Recovery Qualifier 70 - 130 1-Chlorooctane 74 75 70 - 130 o-Terphenyl

<49.9 U

Lab Sample ID: LCS 880-46070/2-A Matrix: Solid

Oll Range Organics (Over C28-C36)

Analysis Batch: 46062							Prep Batch: 46070					
	Spike	LCS	LCS				%Rec					
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits					
Gasoline Range Organics	999	987.2		mg/Kg		99	70 - 130					
(GRO)-C6-C10												
Diesel Range Organics (Over	999	1094		mg/Kg		110	70 - 130					
C10-C28)												

49.9

mg/Kg

02/12/23 09:06

Prepared

02/12/23 09:06

02/12/23 09:06 02/12/23 09:21

02/12/23 09:21

Analyzed

02/12/23 09:21

Client Sample ID: Lab Control Sample

1

1

1

Dil Fac

Eurofins Carlsbad

Prep Type: Total/NA

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

<50.0 UF1

MSD MSD

%Recovery Qualifier

82

77

ethod: 8015B NW - Dies	sei kange Ol	ryanics (L		Jontinue	÷u)						
Lab Sample ID: LCS 880-460	070/2-A						Client	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 46062									Prep	Batch:	46070
	1.00	1.00									
		LCS	Limits								
Surrogate I-Chlorooctane	%Recovery	Qualifier	70 - 130								
p-Terphenyl	98 95		70 - 130 70 - 130								
- Terphenyi	95		70 - 730								
Lab Sample ID: LCSD 880-4	6070/3-A					Clie	nt Sam	ple ID: I	Lab Contro	ol Sampl	e Dup
Matrix: Solid										Type: To	-
Analysis Batch: 46062										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			999	1059		mg/Kg		106	70 - 130	7	20
GRO)-C6-C10											
Diesel Range Organics (Over			999	1004		mg/Kg		101	70 - 130	9	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
-Chlorooctane			70 - 130								
-Terphenyl	94		70 - 130								
Lab Sample ID: 880-24599-A	N-1-H MS							Client	Sample ID		
Matrix: Solid										Гуре: То	
Analysis Batch: 46062										Batch:	46070
		Sample	Spike		MS		_		%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<50.0	U F1	997	<49.9	U F1	mg/Kg		-0.01	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	II F1	997	<49.9	II F1	mg/Kg		-0.3	70 - 130		
C10-C28)	400.0	011	551		011	mg/rtg		-0.0	70 - 100		
,											
		MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	76 72		70 ₋ 130 70 <u>-</u> 130								
p-Terphenyl	72		10 - 130								
_ab Sample ID: 880-24599-A	A-1-I MSD					CI	lient Sa	mple IF	: Matrix S	nike Dur	olicate
Matrix: Solid										Гуре: То	
Analysis Batch: 46062										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.0		998	<49.9		mg/Kg		0.3	70 - 130	8	20
GRO)-C6-C10											
	-50.0	11 54	000	- 10.0	11 54			0.04	70 400	44	00

<49.9 UF1

mg/Kg

-0.04

70 - 130

11

20

Job ID: 890-4059-1

Eurofins Carlsbad

Diesel Range Organics (Over

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

998

Limits

70 - 130

70 - 130

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102

Project/Site. Holley Buzzaru 102

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-45905	5/1-A							Client S	Sample ID: I	Method	Blank
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 45919											
		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		<u>D</u>	Prepared	Analyz	ed	Dil Fac
Chloride	<	<5.00 U	Ę	5.00	mg/K	g			02/10/23 (08:35	1
Lab Sample ID: LCS 880-4590	5/2-A						Clien	t Sample	e ID: Lab Co	ontrol S	ample
Matrix: Solid										Type: S	
Analysis Batch: 45919											
-			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	253.0		mg/Kg		101	90 - 110		
Lab Sample ID: LCSD 880-459	905/3-A					CI	ient Sar	nple ID:	Lab Contro	l Sampl	e Dur
Matrix: Solid										Type: S	
Analysis Batch: 45919										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· ······			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	268.4		mg/Kg		107	90 - 110	6	20
Lab Sample ID: 890-4058-A-1-	R MS							Client	Sample ID:	Matrix	Snike
Matrix: Solid								onent		Type: S	
Analysis Batch: 45919									Trop	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	orabit
Analysis Baten. 40010	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	2470		2510	5014		mg/Kg		101	90 - 110		
- Lab Sample ID: 890-4058-A-1-							Client S	Sample II): Matrix Sp	nike Dur	olicate
Matrix: Solid										Type: S	
Analysis Batch: 45919										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· · · · · , · · · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride	2470		2510	5198		mg/Kg		109	90 - 110	4	20
Lab Sample ID: 890-4058-A-11	I-B MS							Client	Sample ID:	: Matrix	Spike
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 45919											
-	Sample	Sample	Spike	MS	MS				%Rec		
		Qualifian	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Analyte	Result	Qualifier	Addod						00 110		
Analyte Chloride	Result		1240	2547	F1	mg/Kg		10	90 - 110		
Chloride	2420			2547	F1		Client S			oike Dur	olicate
Chloride Lab Sample ID: 890-4058-A-11	2420			2547	F1		Client S): Matrix Sp	oike Dup Type: S	
Chloride Lab Sample ID: 890-4058-A-11 Matrix: Solid	2420			2547	F1		Client S): Matrix Sp		
Chloride Lab Sample ID: 890-4058-A-11 Matrix: Solid	2420				F1 MSD		Client S): Matrix Sp		
	2420 I-C MSD Sample	F1	1240	MSD			Client S		D: Matrix Sp Prep		oluble

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102

Job ID: 890-4059-1 SDG: Lea County NM

GC VOA

Prep Batch: 46019

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4059-1	H-1	Total/NA	Solid	5035	
890-4059-2	H-2	Total/NA	Solid	5035	
890-4059-3	H-3	Total/NA	Solid	5035	
890-4059-4	H-4	Total/NA	Solid	5035	
890-4059-5	AH-1 (0-1')	Total/NA	Solid	5035	
890-4059-6	AH-2 (0-1')	Total/NA	Solid	5035	
MB 880-46019/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-46019/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-46019/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
820-7364-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
820-7364-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 46073

MB 880-46019/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-46019/1-A	Lab Control Sample	Total/NA	Solid	5035		8
LCSD 880-46019/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
820-7364-A-1-B MS	Matrix Spike	Total/NA	Solid	5035		9
820-7364-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		
Analysis Batch: 46073						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	11
890-4059-1	H-1	Total/NA	Solid	8021B	46019	
890-4059-2	H-2	Total/NA	Solid	8021B	46019	12
890-4059-3	H-3	Total/NA	Solid	8021B	46019	
890-4059-4	H-4	Total/NA	Solid	8021B	46019	12
890-4059-5	AH-1 (0-1')	Total/NA	Solid	8021B	46019	13
890-4059-6	AH-2 (0-1')	Total/NA	Solid	8021B	46019	
MB 880-46019/5-A	Method Blank	Total/NA	Solid	8021B	46019	14
LCS 880-46019/1-A	Lab Control Sample	Total/NA	Solid	8021B	46019	
LCSD 880-46019/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	46019	ľ
820-7364-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	46019	
820-7364-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	46019	

Analysis Batch: 46248

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4059-1	H-1	Total/NA	Solid	Total BTEX	
890-4059-2	H-2	Total/NA	Solid	Total BTEX	
890-4059-3	H-3	Total/NA	Solid	Total BTEX	
890-4059-4	H-4	Total/NA	Solid	Total BTEX	
890-4059-5	AH-1 (0-1')	Total/NA	Solid	Total BTEX	
890-4059-6	AH-2 (0-1')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 46062

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4059-1	H-1	Total/NA	Solid	8015B NM	46070
890-4059-2	H-2	Total/NA	Solid	8015B NM	46070
890-4059-3	H-3	Total/NA	Solid	8015B NM	46070
890-4059-4	H-4	Total/NA	Solid	8015B NM	46070
890-4059-5	AH-1 (0-1')	Total/NA	Solid	8015B NM	46070
890-4059-6	AH-2 (0-1')	Total/NA	Solid	8015B NM	46070
MB 880-46070/1-A	Method Blank	Total/NA	Solid	8015B NM	46070
LCS 880-46070/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	46070
LCSD 880-46070/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	46070
880-24599-A-1-H MS	Matrix Spike	Total/NA	Solid	8015B NM	46070
880-24599-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	46070

Eurofins Carlsbad

Page 45 of 57

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102 Job ID: 890-4059-1

SDG: Lea County NM

GC Semi VOA

Prep Batch: 46070

ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
390-4059-1	H-1	Total/NA	Solid	8015NM Prep	
390-4059-2	H-2	Total/NA	Solid	8015NM Prep	
390-4059-3	H-3	Total/NA	Solid	8015NM Prep	
390-4059-4	H-4	Total/NA	Solid	8015NM Prep	
390-4059-5	AH-1 (0-1')	Total/NA	Solid	8015NM Prep	
890-4059-6	AH-2 (0-1')	Total/NA	Solid	8015NM Prep	
//B 880-46070/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
CS 880-46070/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
CSD 880-46070/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-24599-A-1-H MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
80-24599-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4059-1	H-1	Total/NA	Solid	8015 NM	
890-4059-2	H-2	Total/NA	Solid	8015 NM	
890-4059-3	Н-3	Total/NA	Solid	8015 NM	
890-4059-4	H-4	Total/NA	Solid	8015 NM	
890-4059-5	AH-1 (0-1')	Total/NA	Solid	8015 NM	
890-4059-6	AH-2 (0-1')	Total/NA	Solid	8015 NM	
-					

HPLC/IC

Leach Batch: 45905

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4059-1	H-1	Soluble	Solid	DI Leach	
890-4059-2	H-2	Soluble	Solid	DI Leach	
890-4059-3	H-3	Soluble	Solid	DI Leach	
890-4059-4	H-4	Soluble	Solid	DI Leach	
890-4059-5	AH-1 (0-1')	Soluble	Solid	DI Leach	
890-4059-6	AH-2 (0-1')	Soluble	Solid	DI Leach	
MB 880-45905/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-45905/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-45905/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4058-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-4058-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
890-4058-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-4058-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 45919

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4059-1	H-1	Soluble	Solid	300.0	45905
890-4059-2	H-2	Soluble	Solid	300.0	45905
890-4059-3	H-3	Soluble	Solid	300.0	45905
890-4059-4	H-4	Soluble	Solid	300.0	45905
890-4059-5	AH-1 (0-1')	Soluble	Solid	300.0	45905
890-4059-6	AH-2 (0-1')	Soluble	Solid	300.0	45905
MB 880-45905/1-A	Method Blank	Soluble	Solid	300.0	45905
LCS 880-45905/2-A	Lab Control Sample	Soluble	Solid	300.0	45905
LCSD 880-45905/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	45905
890-4058-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	45905

Eurofins Carlsbad

Page 46 of 57

5 6 7

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102 Job ID: 890-4059-1 SDG: Lea County NM

HPLC/IC (Continued)

Analysis Batch: 45919 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4058-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	45905
890-4058-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	45905
890-4058-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	45905

Eurofins Carlsbad

Job ID: 890-4059-1 SDG: Lea County NM

Lab Sample ID: 890-4059-1 Matrix: Solid

Lab Sample ID: 890-4059-2

Lab Sample ID: 890-4059-3

Lab Sample ID: 890-4059-4

Matrix: Solid

Matrix: Solid

Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

Client Sample ID: H-1

Project/Site: Honey Buzzard 102

Client: Tetra Tech, Inc.

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			46019	MNR	EET MID	02/10/23 15:02
Total/NA	Analysis	8021B		1	46073	MNR	EET MID	02/12/23 15:14
Total/NA	Analysis	Total BTEX		1	46248	SM	EET MID	02/13/23 19:47
Total/NA	Analysis	8015 NM		1	46179	SM	EET MID	02/13/23 15:10
Total/NA	Prep	8015NM Prep			46070	AM	EET MID	02/12/23 09:06
Fotal/NA	Analysis	8015B NM		1	46062	SM	EET MID	02/12/23 18:26
Soluble	Leach	DI Leach			45905	KS	EET MID	02/09/23 14:50
Soluble	Analysis	300.0		1	45919	СН	EET MID	02/10/23 10:31

Client Sample ID: H-2

Date Collected: 02/08/23 00:00

Date Received: 02/08/23 13:07

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			46019	MNR	EET MID	02/10/23 15:02
Total/NA	Analysis	8021B		1	46073	MNR	EET MID	02/12/23 15:34
Total/NA	Analysis	Total BTEX		1	46248	SM	EET MID	02/13/23 19:47
Total/NA	Analysis	8015 NM		1	46179	SM	EET MID	02/13/23 15:10
Total/NA	Prep	8015NM Prep			46070	AM	EET MID	02/12/23 09:06
Total/NA	Analysis	8015B NM		1	46062	SM	EET MID	02/12/23 18:47
Soluble	Leach	DI Leach			45905	KS	EET MID	02/09/23 14:50
Soluble	Analysis	300.0		1	45919	CH	EET MID	02/10/23 10:36

Client Sample ID: H-3

Date Collected: 02/08/23 00:00

Date Received: 02/08/23 13:07

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			46019	MNR	EET MID	02/10/23 15:02
Total/NA	Analysis	8021B		1	46073	MNR	EET MID	02/12/23 15:55
Total/NA	Analysis	Total BTEX		1	46248	SM	EET MID	02/13/23 19:47
Total/NA	Analysis	8015 NM		1	46179	SM	EET MID	02/13/23 15:10
Total/NA	Prep	8015NM Prep			46070	AM	EET MID	02/12/23 09:06
Total/NA	Analysis	8015B NM		1	46062	SM	EET MID	02/12/23 19:09
Soluble	Leach	DI Leach			45905	KS	EET MID	02/09/23 14:50
Soluble	Analysis	300.0		1	45919	СН	EET MID	02/10/23 10:50

Client Sample ID: H-4 Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

	Batch Batch			Dilution Batch			Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Prep	5035			46019	MNR	EET MID	02/10/23 15:02	
Total/NA	Analysis	8021B		1	46073	MNR	EET MID	02/12/23 16:15	
Total/NA	Analysis	Total BTEX		1	46248	SM	EET MID	02/13/23 19:47	

Eurofins Carlsbad

5 6

9

Matrix: Solid

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102

Client Sample ID: H-4

Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 NM		1	46179	SM	EET MID	02/13/23 15:10
Total/NA	Prep	8015NM Prep			46070	AM	EET MID	02/12/23 09:06
Total/NA	Analysis	8015B NM		1	46062	SM	EET MID	02/12/23 19:31
Soluble	Leach	DI Leach			45905	KS	EET MID	02/09/23 14:50
Soluble	Analysis	300.0		1	45919	СН	EET MID	02/10/23 10:55

Client Sample ID: AH-1 (0-1') Date Collected: 02/08/23 00:00 Date Received: 02/08/23 13:07

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			46019	MNR	EET MID	02/10/23 15:02
Total/NA	Analysis	8021B		1	46073	MNR	EET MID	02/12/23 16:36
Total/NA	Analysis	Total BTEX		1	46248	SM	EET MID	02/13/23 19:47
Total/NA	Analysis	8015 NM		1	46179	SM	EET MID	02/13/23 15:10
Total/NA	Prep	8015NM Prep			46070	AM	EET MID	02/12/23 09:06
Total/NA	Analysis	8015B NM		1	46062	SM	EET MID	02/12/23 19:53
Soluble	Leach	DI Leach			45905	KS	EET MID	02/09/23 14:50
Soluble	Analysis	300.0		1	45919	CH	EET MID	02/10/23 10:59

Client Sample ID: AH-2 (0-1') Date Collected: 02/08/23 00:00

Date Received: 02/08/23 13:07

Batch Batch Dilution Batch Prepared Ргер Туре Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA Prep 5035 46019 MNR EET MID 02/10/23 15:02 Total/NA 8021B 46073 MNR EET MID 02/12/23 16:56 Analysis 1 Total/NA Total BTEX EET MID 02/13/23 19:47 Analysis 1 46248 SM Total/NA Analysis 8015 NM 46179 SM EET MID 02/13/23 15:10 1 02/12/23 09:06 Total/NA Prep 8015NM Prep 46070 AM EET MID Total/NA Analysis 8015B NM 46062 SM EET MID 02/12/23 20:15 1 Soluble Leach DI Leach 45905 KS EET MID 02/09/23 14:50 Soluble Analysis 300.0 10 45919 CH EET MID 02/10/23 15:16

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-4059-1 SDG: Lea County NM

Lab Sample ID: 890-4059-4 Matrix: Solid

Lab Sample ID: 890-4059-5

Lab Sample ID: 890-4059-6

Matrix: Solid

Matrix: Solid

Accreditation/Certification Summary

5

10

Job ID: 890-4059-1 SDG: Lea County NM Laboratory: Eurofins Midland Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority **Identification Number** Expiration Date Program NELAP T104704400-22-25 06-30-23 Texas The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 8015 NM Total TPH Solid Total BTEX Solid Total BTEX

Eurofins Carlsbad

Method Summary

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102

Job ID: 890-4059-1 SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	rences: STM International Environmental Protection Agency		
	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed	lition, November 1986 And Its Updates.	
TAL SOP :	= TestAmerica Laboratories, Standard Operating Procedure		
	eferences: = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		
	- Lutonina wilaland, 1211 w. Florida Ave, Milaland, 1X / 9/01, 1LL (432)/04-3440		

Laboratory References:

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Honey Buzzard 102 Job ID: 890-4059-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-4059-1		Solid	02/08/23 00:00	02/08/23 13:07		
890-4059-2	H-2	Solid	02/08/23 00:00	02/08/23 13:07		
890-4059-3	H-3	Solid	02/08/23 00:00	02/08/23 13:07		5
890-4059-4	H-4	Solid	02/08/23 00:00	02/08/23 13:07		J
890-4059-5	AH-1 (0-1')	Solid	02/08/23 00:00	02/08/23 13:07	0 - 1	
890-4059-6	AH-2 (0-1')	Solid	02/08/23 00:00	02/08/23 13:07	0 - 1	

Job Number: 890-4059-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 4059 List Number: 1

Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4059-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 02/09/23 11:55 AM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 4059 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Appendix D

State Correspondence

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

Released to Imaging: 9/12/2023 10:53:23 AM

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
P.O. Box 2267	Action Number:
Midland, TX 79702	226018
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Remediation plan is approved as written. EOG has 90-days (December 11, 2023) to submit the appropriate or final closure report.	9/12/2023

Action 226018

.