

July 5, 2023

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Report ConocoPhillips Brinninstool Unit 003H Tubing Release Unit Letter O, Section 20, Township 23 South, Range 33 East DOR: 5/3/2023 Lea County, New Mexico Incident ID: nAPP2313138369

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from tubing equipment during service work at the Brinninstool Unit 003H (API # 30-025-41371) wellhead. The release footprint is located within Public Land Survey System (PLSS) Unit Letter O, Section 20, Township 23 South, Range 33 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.283882° -103.593160° as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on May 3, 2023. The C-141 reports that the release occurred due to a paraffin plug in the production tubing during workover rig operations. While pulling tubing, the rig crew unscrewed a joint and the well started to flow gas and oil. Approximately 0.40 barrels (bbls) of produced water and 0.93 bbls of crude oil were reported released, of which no fluids were recovered.

The release extent was reported as starting on the developed well pad and spreading north via surface flow with some overspray. The NMOCD approved the initial C-141 on May 11, 2023, and subsequently assigned the release the Incident ID nAPP2313138369. The initial C-141 form is included in Appendix A.

LAND OWNERSHIP

According to the NMOCD Oil and Gas Map, the site is located is Private land. Prior to assessment and remedial activities, the appropriate parties were contacted and informed of the work and remedial work was coordinated with the landowner.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

Closure Report July 5, 2023 Page 2 of 77

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there is one (1) water well located within an 800-meter (approximately ½-mile) radius of the release location. The average depth to groundwater is 400 feet below ground surface (bgs). This well was completed December 31, 1974, however, meter readings continued until April 1, 2020. The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the Site RRALs for the on-pad areas at the release Site are as follows:

Constituent	Site RRALs
Chloride	10,000 mg/kg
TPH	2,500 mg/kg
BTEX	50 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
ТРН	100 mg/kg
BTEX	50 mg/kg

INITIAL RESPONSE AND REMEDIAL ACTIVITIES

In accordance with 19.15.29.8. B (4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", ConocoPhillips operations elected to begin remediation of the impacted area footprint on May 11, 2023. The nAPP2313138369 release extent consisted of approximately 3,660 square feet of lease pad, as shown in Figure 3. Visually stained areas on pad were scraped to remove impacted materials. The on-pad material was scraped from approximately 1-3 inches below ground surface, resulting in 10 cubic yards of contaminated soil being removed and sent to R360 Halfway Facility in Hobbs, New Mexico. Waste manifests can be found in Appendix C. The initial response areas are indicated in Figure 3. Photographic documentation of the release extent and the scrape are found in Appendix E.

SITE ASSESSMENT / CONFIRMATION SAMPLING

On June 1, 2023, Tetra Tech personnel were onsite to conduct soil sampling to delineate the release footprint and confirm the efficacy of the remediation activities conducted during the initial response. A total of fourteen (14) borings were installed both within and outside the reported release footprint using a hand auger. Six (6) borings (AH-1 through AH-6) were installed within the release area footprint to achieve vertical delineation. Eight (8) borings (AH-7 and AH-14) were installed outside the release area footprint to achieve horizontal delineation. Soil samples collected were field screened for salinity parts per million (ppm) using an ExStik II EC 400 meter. The approximate release extent and boring locations are shown in Figure 4.

A total of twenty-eight (28) samples were collected from the fourteen (14) boring locations and submitted to Cardinal Laboratories (Cardinal) in Hobbs, New Mexico to be analyzed for chlorides via EPA Method

Closure Report July 5, 2023

4500.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D. Photographic documentation of Site conditions at the time of the assessment is presented in Appendix E.

SUMMARY OF SAMPLING RESULTS

Results from the June 2023 soil sampling event are summarized in Table 1. After review of the analytical results from the sampling event, both horizontal and vertical delineation was achieved following the June 2023 soil assessment activities. All analytical results associated with on-pad samples collected during the assessment activities were below Site RRALs. The boring locations are indicated in Figure 4. The initial response remedial action was successful in removing the contaminant mass to meet the standards of Table I of 19.15.29.12 NMAC. The small off-pad portion of the release footprint was below reclamation requirements for all three constituents.

The release extent consisted of approximately 3,660 sf. Samples were collected such that each discrete sample (horizontal and vertical) were representative of no more than 200 square feet of remediated area. A total of twenty (20) samples were collected and analyzed from the release interior (vertical), and eight (8) additional samples from the release perimeter (horizontal) were collected and analyzed during the sampling activities. Samples were collected from the surface and subsurface, to be representative of the remediated surface and not clean backfill.

CONCLUSION

Based on the results of the site assessment and confirmation sampling, ConocoPhillips respectfully requests closure of the incident. The current release footprint is fully delineated. All analytical results associated with the on-pad site assessment were below applicable Site RRALs following the initial response actions; therefore, no further remediation of the on-pad release footprint is required. The impacted surface area was remediated to meet the standards of Table I of 19.15.29.12 NMAC during the initial response remedial activities.

This final closure report has been submitted within 90 days of discovery of the release. This final closure report details the release characterization, remediation activities and the results of the assessment sampling. Final reclamation shall take place in accordance with 19.15.29.13 NMAC once the site is no longer being used for oil and gas operations. The final C-141 forms are enclosed in Appendix A. If you have any questions concerning the soil assessment activities for the Site, please call me at (512) 338-2861.

Sincerely, **Tetra Tech, Inc.**

Christian M. Llull, P.G. Project Manager

cc: Mr. Jacob Laird, GPBU – ConocoPhillips Closure Report July 5, 2023

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Approximate Release Extent and Initial Response

Figure 4 – Site Assessment

Tables:

Table 1 – Summary of Analytical Results – Soil Assessment

Appendices:

Appendix A – C-141 Forms

Appendix B - Site Characterization Data

Appendix C – Waste Manifests

Appendix D – Laboratory Analytical Data

Appendix E – Photographic Documentation

Page 4 of 77

FIGURES

Received by OCD: 7/6/2023 7:25:32 AM

Released to Imaging: 9/27/2023 1:24:37 PM

Released to Imaging: 9/27/2023 1:24:37 PM

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS 2023 SOIL ASSESSMENT- NAPP231318369 CONOCOPHILLIPS BRINNINSTOOL UNIT #003H LEA COUNTY, NEW MEXICO

Physical					-in a Describe	BTEX ²					TPH ³														
Image: base intermediate intermed	Completio	Comula Data	Sample Depth	Field Screen	ning Results	Chlorid	le ¹	Downowa		Taluar	-	Ethulhon		Total Vul		Tatal D	TEV	GRO		DRO		EXT DF	RO	Total TPH	
As 1 NUMB 4.40 - 1.100<	Sample ID	Sample ID Sample Date	Sample ID Sample Date		Chloride	PID			Benzene		Toluer	le	Ethylben	zene	TOLAT AVI	lenes	TOLATE	IEA	C ₆ - C ₁	.0	> C ₁₀ -	C ₂₈	> C ₂₈ -	C ₃₆	(GRO+DRO+EXT DRO)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ft. bgs	pp	om	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	
All $\eta_1/20$ <th< td=""><td></td><td></td><td>0-0.5</td><td>-</td><td>-</td><td>1,800</td><td></td><td><0.050</td><td></td><td><0.050</td><td></td><td><0.050</td><td></td><td>0.270</td><td></td><td><0.300</td><td></td><td><10.0</td><td></td><td>295</td><td></td><td>119</td><td></td><td>414</td></th<>			0-0.5	-	-	1,800		<0.050		<0.050		<0.050		0.270		<0.300		<10.0		295		119		414	
Int int <td>AH-1</td> <td>6/1/2023</td> <td>0.5-1</td> <td>-</td> <td>-</td> <td>752</td> <td></td> <td><0.050</td> <td></td> <td><0.050</td> <td></td> <td><0.050</td> <td></td> <td><0.150</td> <td></td> <td><0.300</td> <td></td> <td><10.0</td> <td></td> <td>34.2</td> <td></td> <td><10.0</td> <td></td> <td>34.2</td>	AH-1	6/1/2023	0.5-1	-	-	752		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		34.2		<10.0		34.2	
All 2 0.05 - 5.8 0.090 0.000		-, ,		-	-																			-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1.5-2	-	-	240		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0-0.5	-	-	336		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		833		149		982	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AH-2	6/1/2023	0.5-1	-	-									<0.150				<10.0		13.9		<10.0		13.9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	-	-																			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.5-2	-	-	80.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
Image: bord biase 1.52 . 208 0.000 0.000 0.010 0.000			0.5-1	-	-	800		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH4 6/1/2023 0.5.1 - 400 0.050 0.050 0.010 0.0300 0.010 0.0	AH-3	6/1/2023	-	-	-																	<10.0		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1.5-2	-	-	208		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.5-1	-	-	400		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		10.2		<10.0		10.2	
0 0	AH-4	6/1/2023	1-1.5	-	-	176		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1.5-2	-	-	224		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
1.52			0-0.5	-	-	400		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH-6 O-1 O-1 O-0 O-0 O-1 O-1 O-0 O-1 O-0 O-1 O-0 O-1 O-1 <td>AH-5</td> <td>6/1/2023</td> <td>1-1.5</td> <td>-</td> <td>-</td> <td>176</td> <td></td> <td><0.050</td> <td></td> <td><0.050</td> <td></td> <td><0.050</td> <td></td> <td><0.150</td> <td></td> <td><0.300</td> <td></td> <td><10.0</td> <td></td> <td><10.0</td> <td></td> <td><10.0</td> <td></td> <td>-</td>	AH-5	6/1/2023	1-1.5	-	-	176		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1.5-2	-	-	208		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
Image: bound bou			0-0.5	-	-	32.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH-7 6/1/202 0-1 94 - 80.0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	AH-6	6/1/2023	1-1.5	-	-	48.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH-8 6/1/2023 0-1 155 - 88.0 <0.050 <0.050 <0.050 <0.150 <0.300 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <			1.5-2	-	-	16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH-9 6/1/2023 O-1 - 16.0	AH-7	6/1/202	0-1	94	-	80.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH-10 6/1/2023 0-1 160 - 64.0 <	AH-8	6/1/2023	0-1	155	-	80.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH-11 6/1/2023 O-1 138 - 16.0 <0.050 <0.050 <0.150 <0.150 <0.300 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 37.0 <10.0 <10.0 37.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	AH-9	6/1/2023	0-1	-	-	16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH-12 6/1/2023 0-1 69 - 64.0 <0.050 <0.050 <0.150 <0.300 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1	AH-10	6/1/2023	0-1	160	-	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
AH-13 6/1/2023 0-1 93 - 16.0 <0.050 <0.050 <0.150 <0.300 <10.0 37.4 <10.0 37.4	AH-11	6/1/2023	0-1	138	-	16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		37.0		<10.0		37.0	
	AH-12	6/1/2023	0-1	69	-	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
	AH-13	6/1/2023	0-1	93	-	16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		37.4		<10.0		37.4	
AH-14 6/1/2023 0-1 71 - 48.0 <0.050 <0.050 <0.150 <0.300 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1	AH-14	6/1/2023	0-1	71	-	48.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	

<u>NOTES:</u>

ft. Feet bgs Below ground surface

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

1 Method SM4500Cl-B

2 Method 8021B

3 Method 8015M

.

APPENDIX A C-141 Forms

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 13 of 77

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	Longitude
	(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
1 age	4

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🗌 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

The source of the release has been stopped.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by: Jocelyn Harimon	Date:05/11/2023

L48 Spill Volume Estimate Form - Fill In Gray Cells										
Init 3H Release Discovery Date & Time: 5/3/2023 11:00 MST	Release Discovery Date & Time: 5/3/2023 11:00 MST				Brinninstool Unit 3	& Well Number(s):	y Name	Facilit		
out of hole with paraffin plugged 2-7/8° production w unscrewed a joint installed mud bucket and picked he well started to flow gas and oil.		and nickod	alled mud bucket	nscrewed a joint insta	tubing the crew ur	Provide any known details about the event				
elease to Soil / Caliche dropdown): dropdown): volume calculations) Release Type (dropdown): Method of Determin (dropdown): volume calculations)	not included in	available, n	Pad							
Yes Off-Pad none recovered Oil Mixture Other	recovered	none r			Y	DBE - Asset Avg.	et Area:	Ass	BU: Permian	
~					No	olume (dropdown):	Known Volume (dropdown			
					No	Known Area (dropdown				
Spill Calculation - On Pad Surface Bool Spill	Spill	Surface Boo	ulation - On-Pad	Spill Calc	~					
Spill Calculation - On-Pad Surface Pool Spill	ated Volume of Spill	Total Estima	Penetration allowance	Estimated volume of each pool area	Estimated <u>Pool</u> Area (sq. ft.)	Average Depth (in.)	Width (ft.)	Length (ft.)	Convert Irregular shape into a series of rectangles	
Spill Calculation - On-Pad Surface Pool Spill 20/ Estimated volume of each pool area allowance Total Estimated Volume of Spill Percentage of Oil if Spilled Fluid ic a Mixture (%) Total Estimated Volum Spilled Liquid other th	ated Volume of Spill bbl.)	Total Estima S (t	Penetration allowance (ft.)	Estimated volume of each pool area (bbl.)	Estimated <u>Pool</u> Area					
Spill Calculation - On-Pad Surface Pool Spill 20/ Estimated volume of each pool area (bbl.) Penetration allowance (ft.) Total Estimated Volume of Spill (bbl.) Percentage of Oil if Spilled Fluid is a Mixture (%.) Total Estimated Volume Volume of Spilled Oil (bbl.) Total Estimated Volume Spilled Liquid other th (bbl.)	ated Volume of Spill bbl.) 0.89	Total Estima S (t	Penetration allowance (ft.) 0.00	Estimated volume of each pool area (bbl.) 0.89	Estimated <u>Pool</u> Area (sq. ft.)	(in.)	(ft.)	(ft.)	series of rectangles	
Spill Calculation - On-Pad Surface Pool Spill 20/ of each pool area (bbl.) Penetration allowance (ft.) Total Estimated Volume of Spill (bbl.) Percentage of Oil if Spilled Fluid is a Mixture (%.) Total Estimated Volu Volume of Spilled Oil (bbl.) Total Estimated Volu Spilled Liquid other th (bbl.) 0.89 0.00 0.89 0.62 0.27	ated Volume of Spill bbl.) 0.89 0.00	Total Estima (t	Penetration allowance (ft.) 0.00 0.00	Estimated volume of each pool area (bbl.) 0.89 0.00	Estimated <u>Pool</u> Area (sq. ft.) 960.00	(in.)	(ft.)	(ft.)	series of rectangles Rectangle A	
Spill Calculation - On-Pad Surface Pool Spill Dol of each pool area (bbl.) Penetration allowance (ft.) Total Estimated Volume of Spill (bbl.) Percentage of Oil if Spilled Fluid is a Mixture (%.) Total Estimated Volu Volume of Spilled Spilled Liquid other th Oil (bbl.) Total Estimated Volu Spilled Liquid other th Oil (bbl.) 0.69 0.00 0.69 0.62 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ated Volume of Spill bbl.) 0.89 0.00 0.00 0.00	Total Estima S (tr C C C C C C C C C C C C C C C C C C C	Penetration allowance (ft.) 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 0.89 0.00 0.00	Estimated <u>Pool</u> Area (sq. ft.) 960.00 0.00	(in.)	(ft.)	(ft.)	series of rectangles Rectangle A Rectangle B	
Spill Calculation - On-Pad Surface Pool Spill 20/ of each pool area (bbl.) Penetration allowance (ft.) Total Estimated Volume of Spill (bbl.) Percentage of Oil if Spilled Fluid is a Mixture (%.) Total Estimated Volu Volume of Spilled Oil (bbl.) Total Estimated Volu Spilled Liquid other th (bbl.) 0.89 0.00 0.89 0.62 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ated Volume of Spill bbl.) 0.89 0.00 0.00 0.00 0.00	Total Estima S (tr C C C C C C C C C C C C C C C C C C C	Penetration allowance (ft.) 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 0.89 0.00 0.00 0.00 0.00	Estimated <u>Pool</u> Area (sq. ft.) 960.00 0.00 0.00 0.00 0.00	(in.)	(ft.)	(ft.)	series of rectangles Rectangle A Rectangle B Rectangle C	
Spill Calculation - On-Pad Surface Pool Spill 20/ Estimated volume of each pool area (bbl.) Penetration allowance (tt.) Total Estimated Volume of Spill (bbl.) Percentage of Oil if Spilled Fluid is a Mixture (%.) Total Estimated Volume of Spilled Oil (bbl.) Spilled Liguid other th (bbl.) 0.89 0.00 0.89 0.62 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ated Volume of Spill bbl.) 0.89 0.00 0.00 0.00 0.00 0.00 0.00	Total Estima S (t C C C C C C C C C C C C C C C C C C	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 0.89 0.00 0.00 0.00 0.00 0.00	Estimated <u>Pool</u> Area (sq. ft.) 960.00 0.00 0.00 0.00 0.00 0.00	(in.)	(ft.)	(ft.)	series of rectangles Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E Rectangle F	
Spill Calculation - On-Pad Surface Pool Spill 20/ of each pool area (bbl.) Penetration allowance (ft.) Total Estimated Volume of Spill (bbl.) Percentage of Oil if Spilled Fluid is a Mixture (%.) Total Estimated Volu Volume of Spilled Doil (bbl.) Spilled Liquid other th Spilled Liquid other th Oil (bbl.) 0.89 0.00 0.89 0.62 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ated Volume of Spill bbl.) 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total Estima S (t C C C C C C C C C C C C C C C C C C	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 0.89 0.00 0.00 0.00 0.00 0.00 0.00	Estimated <u>Pool</u> Area (sq. ft.) 960.00 0.00 0.00 0.00 0.00 0.00 0.00	(in.)	(ft.)	(ft.)	series of rectangles Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E Rectangle F Rectangle G	
Spill Calculation - On-Pad Surface Pool Spill 20/2 Estimated volume of each pool area (bbl.) Penetration allowance (ft.) Total Estimated Volume of Spill (bbl.) Percentage of Oil if Spilled Fluid is a Mixture (%.) Total Estimated Volu Volume of Spilled Oil (bbl.) Spilled Liquid other th (bbl.) 0.89 0.00 0.89 0.00 0.0	ated Volume of Spill bbl.) 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total Estima S (t) C C C C C C C C C C C C C C C C C C C	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Estimated <u>Pool</u> Area (sq. ft.) 960.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(in.)	(ft.)	(ft.)	Rectangle A Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E Rectangle F	
Spill Calculation - On-Pad Surface Pool Spill Dol of each pool area (bbl.) Penetration allowance (tt.) Total Estimated Volume of Spill (bbl.) Penetration (bbl.) Total Estimated Volum (bbl.) Total Estimated Volum (bbl.) Spill Calculation - Notal Fluid is a Mixture (%.) Total Estimated Volume of Spilled (bbl.) Spilled Liguid other th (bbl.) 0.08 0.00	ated Volume of Spill bbl.) 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total Estima (t) (t) (t) (t) (t) (t) (t) (t) (t) (t)	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Estimated volume of each pool area (bbl.) 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Estimated <u>Pool</u> Area (sq. ft.) 960.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(in.)	(ft.)	(ft.)	series of rectangles Rectangle A Rectangle B Rectangle D Rectangle E Rectangle F Rectangle F Rectangle H Rectangle H Rectangle I	
Spill Calculation - On-Pad Surface Pool Spill 20/2 Estimated volume of each pool area (bbl.) Penetration allowance (ft.) Total Estimated Volume of Spill (bbl.) Percentage of Oil if Spilled Fluid is a Mixture (%.) Total Estimated Volu Volume of Spilled Oil (bbl.) Total Estimated Volu Spilled Liquid other th (bbl.) 0.89 0.00 0.89 0.00	ated Volume of Spill bbl.) 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total Estima (t) (t) (t) (t) (t) (t) (t) (t) (t) (t)	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Estimated volume of each pool area (bbl.) 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Estimated <u>Pool</u> Area (sq. ft.) 960.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(in.) .	(ft.)	(ft.)	series of rectangles Rectangle A Rectangle D Rectangle D Rectangle E Rectangle F Rectangle F Rectangle G Rectangle H	

	L48 Spill Volume Estimate Form - Fill In Gray Cells											
Facility Name & Well Number(s):					e & Well Number(s):	Brinninstool Unit 3H		Release Disco	very Date & Time:	5/3/2023 11:00 MST		
Provide any known details about the event				ails about the event:	While pulling out of hole with unscrewed a joint installed n flow gas and oil.	n paraffin plugged 2-7/8" hud bucket and picked u	production tubing the crew o on tubing the well started to	Primary Cause (dropdown):		Secondary Cause (dropdown):	~	
					-	Recovered Volume (bbl.) (if available, not included in volume calculations)	Method of Determination (dropdown)	Release Type (dropdown):		ain in Last 24 Hours ropdown):		ecovered (not included in ulations, informational):
BU: F	Permian	~	Asse	t Area:	DBE - Asset Avg.	None Recovered	Field Measurement	Oil Mixture		No 🗸		0%
Known Volume (dropdown):			Volume (dropdown):	No								
Known Area (dropdown)				wn Area (dropdown):	No							
					Spi	Il Calculation - Subsurface	Spill - Rectangle				Remediatio	on Recommendation
Convert Irregular shape into a series of rectangles	Length (ft.)	(ft.)	Average Depth (in.)	On/Off Pad (dropdown)	Soil Spilled-Fluid Saturation (%.)	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture (%.)	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)	Total Estimated Contaminated Soil, uncompacted, 25% (yd ³ .)	Current Rule of Thumb - RMR Handover Volume, (yd ³ .)
Rectangle A	60.0	40.0	0.1	On-Pad∽	10.50%	3.56	0.37		0.26	0.11	0.93	
Rectangle B	20.0	15.0	0.1	Off-Pad∽ ∽	15.02%	0.45	0.07		0.05	0.02	0.12	
Rectangle C Rectangle D			_	~		0.00					0.00	4
Rectangle E				~		0.00					0.00	
Rectangle F				~		0.00		70%			0.00	750
Rectangle G				~		0.00					0.00	
Rectangle H				~		0.00					0.00	
Rectangle I				* *		0.00					0.00	4
Rectangle J				~	Total S	0.00 ubsurface Volume Released:	0.4406		0.3084	0.1322	0.00	BU
					Total S	ubsurface voidiffe Released.	0.4406		0.3084	0.1322	1.04	BU

Received by OCD: 7/6/2023 7:25:32 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 17 of 72
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Received by OCD: 7/6/202.	<i>³ 7:25:32 AM</i> State of New Mexico		Page 18 of 77			
Form C-141			Incident ID			
Page 4	Oil Conservation Division		District RP			
			Facility ID			
			Application ID			
regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name: Signature: email:	rmation given above is true and complete to the required to report and/or file certain release not ment. The acceptance of a C-141 report by the ate and remediate contamination that pose a thr f a C-141 report does not relieve the operator or <i>Caird</i>	tifications and perform cc OCD does not relieve the eat to groundwater, surfa f responsibility for compl 	prrective actions for rele e operator of liability sh- ice water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws		
OCD Only						
Received by: Shelly We	lls	Date: <u>7/6/2</u>	.023			

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.					
A scaled site and sampling diagram as described in 19.15.29.11 NMAC					
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)					
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)					
Description of remediation activities					
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and ren human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in				
Printed Name:	Title:				
Signature: Jacob Laird	Date:				
email:	Telephone:				
OCD Only					
Received by: <u>Shelly Wells</u>	Date: <u>7/6/2023</u>				
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.				
Closure Approved by:	Date:09/26/2023				
Printed Name: Nelson Velez	Title: Environmental Specialist - Adv				
Communication with operator informing that they					
forbearance given on 09/27/2023 Release resolve					

APPENDIX B Site Characterization Data

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	(quarters are 1=NW (quarters are smalles		E) IAD83 UTM in meters)) (I	n feet)
POD Number	POD Sub- Code basin Cou	QQQ Inty 64 16 4 Sec Tws	Rng X	Y Dis	-	Depth Water Water Column
C 02277	CUB LI	-		3572970* 🌍	271 550	400 150
				Average D	epth to Water:	400 feet
				Mi	nimum Depth:	400 feet
				Ma	ximum Depth:	400 feet
Pocord Count: 1						

Record Count: 1

UTMNAD83 Radius Search (in meters):

Easting (X): 632478.22

Northing (Y): 3572771.34

Radius: 800

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

OCD - USGS Water Wells

6/7/2023, 1:15:37 PM

- USGS Historical GW Wells
- USGS Active Monitoring GW Wells

Esri, HERE, Garmin, USGS, Maxar

•

OCD - Karst Potential Map

6/7/2023, 1:16:43 PM Karst Occurrence Potential Low

BLM, OCD, New Mexico Tech, Esri, HERE, Garmin, iPC, Maxar

OCD - Waterbodies Map

6/7/2023, 1:16:13 PM

Esri, HERE, Garmin, iPC, Maxar, NM OSE

•

OCD - Land Ownership Map

6/7/2023, 1:17:32 PM

Mineral Ownership

A-All minerals are owned by U.S.

Land Ownership

BLM

Ρ

U.S. BLM, Maxar, Microsoft, Esri, HERE, Garmin, iPC

•

.

APPENDIX C Waste Manifests

Received by OCD: 7/6/2023 7:25:32 A		د		Page 27 of 77			
RB3600 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 MICHELLE MULLINS 72259 5/11/2023 J & R OILFIELD SERVICE AMALIO 115	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	999908			
Facility: CRI							
Product / Service		Quantity	/ Units				
Contaminated Soil (RCRA Exemp	t)	10.	00 yards				
I hereby certify that according to the Re 1988 regulatory determination, the abov X RCRA Exempt: Oil Field wastes ge RCRA Non-Exempt: Oil field waste characteristics established in RCRA reg amended. The following documentation MSDS Information _ RCRA Ha	Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _ MSDS Information _ _ RCRA Hazardous Waste Analysis _ Process Knowledge _ _ Other (Provide description above) _						
Driver/ Agent Signature		R360 Representative	Signature				
Customer Approval							
		S IS NOT AN INVO	ICE!				
Approved By:		Date:					

And the second se

.

.

APPENDIX D Laboratory Analytical Data

June 07, 2023

CHRISTIAN LLULL TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: BRINNINSTOOL UNIT #003H

Enclosed are the results of analyses for samples received by the laboratory on 06/02/23 11:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	BRINNINSTOOL UNIT #003H 212C - MD - 03130 CHRISTIAN LLULL (432) 682-3946	Reported: 07-Jun-23 17:04
---	-------------------------------------	---	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
AH - 1 (0-0.5')	H232797-01	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-1 (0.5'-1')	H232797-02	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-1 (1'-1.5')	H232797-03	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 1 (1.5'-2')	H232797-04	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 2 (0-0.5')	H232797-05	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 2 (0.5'-1')	H232797-06	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 2 (1'-1.5')	H232797-07	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-2 (1.5'-2')	H232797-08	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 3 (1'-1.5')	H232797-09	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 3 (1.5'-2')	H232797-10	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 4 (1'-1.5')	H232797-11	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 4 (1.5'-2')	H232797-12	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 5 (1'-1.5')	H232797-13	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 5 (1.5'-2')	H232797-14	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 6 (1'-1.5')	H232797-15	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 6 (1.5'-2')	H232797-16	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 7 (0-1')	H232797-17	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-8 (0-1')	H232797-18	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 9 (0-1')	H232797-19	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-10 (0-1')	H232797-20	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-11 (0-1')	H232797-21	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-12 (0-1')	H232797-22	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-13 (0-1')	H232797-23	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH-14 (0-1')	H232797-24	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 3 (0.5'-1')	H232797-26	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 4 (0.5'-1')	H232797-28	Soil	01-Jun-23 00:00	02-Jun-23 11:55
AH - 5 (0-0.5')	H232797-29	Soil	01-Jun-23 00:00	02-Jun-23 11:55

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample sidentified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

TETRA TECH 901 WEST WALL STREET , STE 1 MIDLAND TX, 79701	00	Project Number: Project Manager:	BRINNINSTOOL UNIT #003H 212C - MD - 03130 CHRISTIAN LLULL (432) 682-3946	Reported: 07-Jun-23 17:04
AH - 6 (0-0.5')	H232797-31	Soil	01-Jun-23 00:00	02-Jun-23 11:55

06/07/23 - Client added analysis to samples -26, -28, -29 and -31. This is the revised report and will replace the one sent earlier today, 06/07/23.

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based to be performed by client the amount be performed except in full with written approval of Cardinal Liopatorities.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project Num Project Mana	ber: 212 ger: CHF		Reported: 07-Jun-23 17:04						
				l (0-0.5 797-01 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	1800		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method 8(021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	0.270		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		113 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B	
DRO >C10-C28*	295		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	119		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			108 %	48.2	-134	3060214	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			118 %	49.1	-148	3060214	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitstoewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based to reproduced except in full with written approval of Cardinal Lobarotories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project: BRINNINSTOOL UNIT #003H Project Number: 212C - MD - 03130 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946					Reported: 07-Jun-23 17:04					
AH - 1 (0.5'-1') H232797-02 (Soil)											
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	752		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B		
Surrogate: 4-Bromofluorobenzene (Ph	ID)		108 %	71.5	-134	3060220	JH/	02-Jun-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B		
DRO >C10-C28*	34.2		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B		
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3060214	MS	02-Jun-23	8015B		
Surrogate: 1-Chlorooctadecane			114 %	49.1	-148	3060214	MS	02-Jun-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitstoewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project: BRINNINSTOOL UNIT #003H Project Number: 212C - MD - 03130 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946					Reported: 07-Jun-23 17:04						
AH - 1 (1'-1.5') H232797-03 (Soil)												
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
Cardinal Laboratories												
<u>Inorganic Compounds</u> Chloride	288		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B			
Volatile Organic Compound	s by EPA Method 8	8021										
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B			
Surrogate: 4-Bromofluorobenzene (PL	ID)		108 %	71.5	-134	3060220	JH/	02-Jun-23	8021B			
Petroleum Hydrocarbons by	GC FID											
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B			
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B			
Surrogate: 1-Chlorooctane			111 %	48.2	-134	3060214	MS	02-Jun-23	8015B			
Surrogate: 1-Chlorooctadecane			114 %	49.1	-148	3060214	MS	02-Jun-23	8015B			

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitstoewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project Num Project Mana	ber: 212 ager: CHF		Reported: 07-Jun-23 17:04				
				l (1.5'-2 797-04 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	240		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		106 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060214	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			107 %	48.2	-134	3060214	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	3060214	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitstoewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based to reproduced except in full with written approval of Cardinal Lobarotories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project Num Project Mana	, ber: 212 ger: CHF		Reported: 07-Jun-23 17:04						
				2 (0-0.5	,					
			H232'	797-05 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	336		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		112 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	QM-07
DRO >C10-C28*	833		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	QM-07, QR-03
EXT DRO >C28-C36	149		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			89.0 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			94.0 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitstoewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based to reproduced except in full with written approval of Cardinal Lobarotories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701	STE 100		Project Num Project Mana Fax AH - 2	ger: CHF To: (43)	Reported: 07-Jun-23 17:04					
				797-06 (Se	DII)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	32.0		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		109 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by (GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	13.9		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			83.3 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			102 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHF		3130 ULL	03H	(Reported:)7-Jun-23 17:	04
				2 (1'-1.: 797-07 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	48.0		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 802	21								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		110 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			88.6 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			107 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	iber: 212 Iger: CHF		3130 ULL	03H	C	Reported:)7-Jun-23 17:	04
				2 (1.5'-2 797-08 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds Chloride	80.0		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		108 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			91.7 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			110 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ager: CHF		3130 ULL	03H	C	Reported:)7-Jun-23 17:	04
				3 (1'-1.: 797-09 (Se						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	96.0		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		109 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			91.7 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			112 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	901 WEST WALL STREET , STE 100				NNINSTOO C - MD - 03 RISTIAN LL 2) 682-394	03H	Reported: 07-Jun-23 17:04			
				3 (1.5'-2 797-10 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	tories					
<u>Inorganic Compounds</u> Chloride	208		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	ID)		106 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			87.2 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			104 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHF		3130 ULL	03H	C	Reported:)7-Jun-23 17:(04
				+ (1'-1.5 797-11 (So	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	176		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		105 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			86.0 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			103 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	901 WEST WALL STREET , STE 100				NNINSTOO C - MD - 03 RISTIAN LL 2) 682-394	3130 ULL	03H	Reported: 07-Jun-23 17:04		
				4 (1.5'-2 797-12 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	tories					
<u>Inorganic Compounds</u> Chloride	224		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		107 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			84.1 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			99.9 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHF		3130 ULL	03H	(Reported:)7-Jun-23 17:	04
				5 (1'-1.: 797-13 (Se	· ·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	176		16.0	mg/kg	4	3060224	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 80	21								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (PI	D)		104 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			89.4 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			106 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHF		3130 ULL	03H	C	Reported:)7-Jun-23 17:	04
				5 (1.5'-2 797-14 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	208		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 80	21								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		105 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			89.2 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			104 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ager: CHF		03H	Reported: 07-Jun-23 17:04			
				5 (1'-1.: 797-15 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	48.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (Ph	ID)		106 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			87.3 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			101 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	1 WEST WALL STREET , STE 100				NNINSTOO C - MD - 03 RISTIAN LL 2) 682-394	03H	Reported: 07-Jun-23 17:04			
				5 (1.5'-2 797-16 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	16.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		107 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			89.0 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			104 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana Fax	ber: 212 ger: CHF To: (432	RISTIAN LL 2) 682-394	3130 ULL	03H	C	Reported:)7-Jun-23 17:	04
				7 (0-1' 797-17 (Se	/					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (PI	D)		105 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			89.9 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			107 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 07-Jun-23 17:04					
				8 (0-1' 797-18 (Se	<i>,</i>					
			11202	10 (50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		104 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			81.0 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			97.9 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 07-Jun-23 17:04					
				9 (0-1' 797-19 (So	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060220	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	ID)		104 %	71.5	-134	3060220	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			79.7 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			93.9 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701	Project: BRINNINSTOOL UNIT #003H Project Number: 212C - MD - 03130 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946 AH - 10 (0-1')								Reported: 07-Jun-23 17:04		
				10 (0-1 797-20 (So	<i>,</i>						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	64.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B		
Volatile Organic Compounds	by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Surrogate: 4-Bromofluorobenzene (PII	D)		112 %	71.5	-134	3060221	JH/	02-Jun-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B		
Surrogate: 1-Chlorooctane			90.6 %	48.2	-134	3060215	MS	02-Jun-23	8015B		
Surrogate: 1-Chlorooctadecane			108 %	49.1	-148	3060215	MS	02-Jun-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Proj Project Num Project Mana Fax	C	Reported:)7-Jun-23 17:	04				
				11 (0-1 797-21 (So	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		110 %	71.5	-134	3060221	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
DRO >C10-C28*	37.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			85.9 %	48.2	-134	3060215	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			98.6 %	49.1	-148	3060215	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		03H	Reported: 07-Jun-23 17:04				
				12 (0-1 797-22 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds Chloride	64.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
		0001	10.0	ing/kg	·	5000227	ne	02 Juli 25	1500 61 15	
Volatile Organic Compounds Benzene*	<u><0.050 </u>	021	0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Toluene*	<0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B 8021B	
Ethylbenzene*	<0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total BTEX	<0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl			112 %	71.5	-134	3060221	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
Surrogate: 1-Chlorooctane			89.8 %	48.2	-134	3060215	MS	03-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			108 %	49.1	-148	3060215	MS	03-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		03H	Reported: 07-Jun-23 17:04				
				13 (0-1 797-23 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	16.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		111 %	71.5	-134	3060221	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
DRO >C10-C28*	37.4		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
Surrogate: 1-Chlorooctane			85.3 %	48.2	-134	3060215	MS	03-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			101 %	49.1	-148	3060215	MS	03-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Pro Project Num Project Mana Fax	C	Reported:)7-Jun-23 17:	04				
				14 (0-1 797-24 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	48.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		111 %	71.5	-134	3060221	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060215	MS	03-Jun-23	8015B	
Surrogate: 1-Chlorooctane			86.4 %	48.2	-134	3060215	MS	03-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			101 %	49.1	-148	3060215	MS	03-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: BRINNINSTOOL UNIT #003H Project Number: 212C - MD - 03130 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946						Reported: 07-Jun-23 17:04		
				3 (0.5'-1 797-26 (Se	<i>,</i>						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
<u>Inorganic Compounds</u> Chloride	800		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B		
Volatile Organic Compound	ls by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		111 %	71.5	-134	3060221	JH/	02-Jun-23	8021B		
Petroleum Hydrocarbons by	y GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B		
Surrogate: 1-Chlorooctane			86.6 %	48.2	-134	3060217	MS	02-Jun-23	8015B		
Surrogate: 1-Chlorooctadecane			89.1 %	49.1	-148	3060217	MS	02-Jun-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 07-Jun-23 17:04					
				4 (0.5'-1 797-28 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	400		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		112 %	71.5	-134	3060221	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B	
DRO >C10-C28*	10.2		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			85.7 %	48.2	-134	3060217	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			87.5 %	49.1	-148	3060217	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 07-Jun-23 17:04					
				5 (0-0.5 797-29 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	400		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		109 %	71.5	-134	3060221	JH/	02-Jun-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctane			84.0 %	48.2	-134	3060217	MS	02-Jun-23	8015B	
Surrogate: 1-Chlorooctadecane			84.7 %	49.1	-148	3060217	MS	02-Jun-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100	Project: BRINNINSTOOL UNIT #003H Project Number: 212C - MD - 03130 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946 AH - 6 (0-0.5')								Reported: 07-Jun-23 17:04		
				6 (0-0.5 797-31 (Se	<i>,</i>							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	l Laborat	ories							
Inorganic Compounds												
Chloride	32.0		16.0	mg/kg	4	3060227	AC	02-Jun-23	4500-Cl-B			
Volatile Organic Compound	s by EPA Method 80	21										
Benzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3060221	JH/	02-Jun-23	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	3060221	JH/	02-Jun-23	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	3060221	JH/	02-Jun-23	8021B			
Surrogate: 4-Bromofluorobenzene (P.	ID)		111 %	71.5	-134	3060221	JH/	02-Jun-23	8021B			
Petroleum Hydrocarbons by	GC FID											
GRO C6-C10*	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B			
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3060217	MS	02-Jun-23	8015B			
Surrogate: 1-Chlorooctane			85.6 %	48.2	-134	3060217	MS	02-Jun-23	8015B			
Surrogate: 1-Chlorooctadecane			86.0 %	49.1	-148	3060217	MS	02-Jun-23	8015B			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	BRINNINSTOOL UNIT #003H 212C - MD - 03130 CHRISTIAN LLULL (432) 682-3946	Reported: 07-Jun-23 17:04
---	-------------------------------------	---	------------------------------

Inorganic Compounds - Quality Control Cardinal Laboratories

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared &	Analyzed:	02-Jun-23				
ND	16.0	mg/kg							
			Prepared &	Analyzed:	02-Jun-23				
416	16.0	mg/kg	400		104	80-120			
			Prepared &	Analyzed:	02-Jun-23				
416	16.0	mg/kg	400		104	80-120	0.00	20	
			Prepared &	Analyzed:	02-Jun-23				
ND	16.0	mg/kg							
			Prepared &	Analyzed:	02-Jun-23				
400	16.0	mg/kg	400		100	80-120			
			Prepared &	Analyzed:	02-Jun-23				
400	16.0	mg/kg	400		100	80-120	0.00	20	
	ND 416 416 ND 400	Result Limit ND 16.0 416 16.0 416 16.0 416 16.0 400 16.0	Result Limit Units ND 16.0 mg/kg 416 16.0 mg/kg 416 16.0 mg/kg 416 16.0 mg/kg 416 16.0 mg/kg 410 16.0 mg/kg	Result Limit Units Level Prepared & ND 16.0 mg/kg 416 16.0 mg/kg 400 416 16.0 mg/kg 400 416 16.0 mg/kg 400 MD 16.0 mg/kg 400 Prepared & Prepared & MD 16.0 mg/kg Prepared & Prepared &	Result Limit Units Level Result Prepared & Analyzed: ND 16.0 mg/kg 416 16.0 mg/kg 400 416 16.0 mg/kg 400 416 16.0 mg/kg 400 Prepared & Analyzed: Prepared & Analyzed: 416 16.0 mg/kg 416 16.0 mg/kg 400 16.0 mg/kg Prepared & Analyzed: Prepared & Analyzed: ND 16.0 mg/kg	Result Limit Units Level Result %REC Prepared & Analyzed: 02-Jun-23 ND 16.0 mg/kg Prepared & Analyzed: 02-Jun-23 416 16.0 mg/kg 400 104 Prepared & Analyzed: 02-Jun-23 Prepared & Analyzed: 02-Jun-23 104 416 16.0 mg/kg 400 104 Prepared & Analyzed: 02-Jun-23 MD 16.0 mg/kg 400 104 Prepared & Analyzed: 02-Jun-23 MD 16.0 mg/kg 400 100 Prepared & Analyzed: 02-Jun-23 MD 16.0 mg/kg 400 100 Prepared & Analyzed: 02-Jun-23	Result Limit Units Level Result %REC Limits Prepared & Analyzed: 02-Jun-23 ND 16.0 mg/kg Prepared & Analyzed: 02-Jun-23 416 16.0 mg/kg 400 104 80-120 Prepared & Analyzed: 02-Jun-23 Prepared & Analyzed: 02-Jun-23 Prepared & Analyzed: 02-Jun-23 90 416 16.0 mg/kg 400 104 80-120 Prepared & Analyzed: 02-Jun-23 MD 16.0 mg/kg 400 104 80-120 Prepared & Analyzed: 02-Jun-23 MD 16.0 mg/kg 400 100 80-120 Prepared & Analyzed: 02-Jun-23 MD 16.0 mg/kg 400 100 80-120 400 16.0 mg/kg 400 100 80-120 Prepared & Analyzed: 02-Jun-23 Prepared & Analyzed: 02-Jun-23 100 80-120	Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 02-Jun-23 ND 16.0 mg/kg Prepared & Analyzed: 02-Jun-23	Result Limit Units Level Result %REC Limits RPD Limit Prepared & Analyzed: 02-Jun-23 ND 16.0 mg/kg Prepared & Analyzed: 02-Jun-23

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	BRINNINSTOOL UNIT #003H 212C - MD - 03130 CHRISTIAN LLULL (432) 682-3946	Reported: 07-Jun-23 17:04	
---	-------------------------------------	---	------------------------------	--

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal	Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060220 - Volatiles										
				Duomono 1 0	Amalaura	02 Ium 22				
Blank (3060220-BLK1)		0.050	4	Prepared &	Analyzed:	02-Jun-23				
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0527		mg/kg	0.0500		105	71.5-134			
LCS (3060220-BS1)				Prepared &	Analyzed:	02-Jun-23				
Benzene	2.14	0.050	mg/kg	2.00		107	81.4-118			
Toluene	2.20	0.050	mg/kg	2.00		110	88.7-121			
Ethylbenzene	2.07	0.050	mg/kg	2.00		104	86.1-120			
m,p-Xylene	4.33	0.100	mg/kg	4.00		108	88.2-124			
o-Xylene	2.08	0.050	mg/kg	2.00		104	84.9-118			
Total Xylenes	6.42	0.150	mg/kg	6.00		107	87.3-122			
Surrogate: 4-Bromofluorobenzene (PID)	0.0516		mg/kg	0.0500		103	71.5-134			
LCS Dup (3060220-BSD1)				Prepared &	Analyzed:	02-Jun-23				
Benzene	2.19	0.050	mg/kg	2.00		110	81.4-118	2.44	15.8	
Toluene	2.26	0.050	mg/kg	2.00		113	88.7-121	2.44	15.9	
Ethylbenzene	2.13	0.050	mg/kg	2.00		107	86.1-120	2.98	16	
m,p-Xylene	4.51	0.100	mg/kg	4.00		113	88.2-124	3.98	16.2	
o-Xylene	2.11	0.050	mg/kg	2.00		106	84.9-118	1.36	16.7	
Total Xylenes	6.62	0.150	mg/kg	6.00		110	87.3-122	3.14	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0526		mg/kg	0.0500		105	71.5-134			

Batch 3060221 - Volatiles

Blank (3060221-BLK1)			Prepared & Analyzed: 02-Jun-23
Benzene	ND	0.050	mg/kg
Toluene	ND	0.050	mg/kg
Ethylbenzene	ND	0.050	mg/kg
Total Xylenes	ND	0.150	mg/kg

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: 2 Project Manager: 0	BRINNINSTOOL UNIT #003H 212C - MD - 03130 CHRISTIAN LLULL (432) 682-3946	Reported: 07-Jun-23 17:04
---	---	---	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal	Labor	atories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3060221 - Volatiles										
Blank (3060221-BLK1)				Prepared &	Analyzed:	02-Jun-23				
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0546		mg/kg	0.0500		109	71.5-134			
LCS (3060221-BS1)				Prepared &	Analyzed:	02-Jun-23				
Benzene	2.02	0.050	mg/kg	2.00		101	81.4-118			
Toluene	2.00	0.050	mg/kg	2.00		99.8	88.7-121			
Ethylbenzene	2.06	0.050	mg/kg	2.00		103	86.1-120			
m,p-Xylene	4.10	0.100	mg/kg	4.00		103	88.2-124			
o-Xylene	2.05	0.050	mg/kg	2.00		102	84.9-118			
Total Xylenes	6.15	0.150	mg/kg	6.00		102	87.3-122			
Surrogate: 4-Bromofluorobenzene (PID)	0.0498		mg/kg	0.0500		99.7	71.5-134			
LCS Dup (3060221-BSD1)				Prepared &	Analyzed:	02-Jun-23				
Benzene	2.15	0.050	mg/kg	2.00		107	81.4-118	5.90	15.8	
Toluene	2.12	0.050	mg/kg	2.00		106	88.7-121	5.94	15.9	
Ethylbenzene	2.20	0.050	mg/kg	2.00		110	86.1-120	6.20	16	
m,p-Xylene	4.39	0.100	mg/kg	4.00		110	88.2-124	6.91	16.2	
o-Xylene	2.16	0.050	mg/kg	2.00		108	84.9-118	5.39	16.7	
Total Xylenes	6.56	0.150	mg/kg	6.00		109	87.3-122	6.41	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0513		mg/kg	0.0500		103	71.5-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	BRINNINSTOOL UNIT #003H 212C - MD - 03130 CHRISTIAN LLULL (432) 682-3946	Reported: 07-Jun-23 17:04	
---	-------------------------------------	---	------------------------------	--

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3060214 - General Prep - Organics										
Blank (3060214-BLK1)				Prepared &	& Analyzed:	02-Jun-23				
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	44.2		mg/kg	49.6		89.2	48.2-134			
Surrogate: 1-Chlorooctadecane	45.4		mg/kg	50.0		90.8	49.1-148			
LCS (3060214-BS1)				Prepared &	& Analyzed:	02-Jun-23				
GRO C6-C10	180	10.0	mg/kg	200		90.1	78.5-124			
DRO >C10-C28	171	10.0	mg/kg	200		85.4	72.5-126			
Total TPH C6-C28	351	10.0	mg/kg	400		87.8	77.6-123			
Surrogate: 1-Chlorooctane	50.7		mg/kg	49.6		102	48.2-134			
Surrogate: 1-Chlorooctadecane	49.7		mg/kg	50.0		99.4	49.1-148			
LCS Dup (3060214-BSD1)				Prepared &	& Analyzed:	02-Jun-23				
GRO C6-C10	175	10.0	mg/kg	200		87.7	78.5-124	2.71	17.7	
DRO >C10-C28	177	10.0	mg/kg	200		88.3	72.5-126	3.35	21	
Total TPH C6-C28	352	10.0	mg/kg	400		88.0	77.6-123	0.282	18.5	
Surrogate: 1-Chlorooctane	48.6		mg/kg	49.6		98.2	48.2-134			
Surrogate: 1-Chlorooctadecane	47.8		mg/kg	50.0		95.6	49.1-148			
Batch 3060215 - General Prep - Organics										
Blank (3060215-BLK1)				Drepared &	& Analyzed:	02_lun_23				

Blank (3060215-BLK1)	Prepared & Analyzed: 02-Jun-23								
GRO C6-C10	ND	10.0	mg/kg						
DRO >C10-C28	ND	10.0	mg/kg						
EXT DRO >C28-C36	ND	10.0	mg/kg						
Surrogate: 1-Chlorooctane	37.1		mg/kg	49.6	74.8	48.2-134			
Surrogate: 1-Chlorooctadecane	43.5		mg/kg	50.0	87.0	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060215 - General Prep - Organics										
LCS (3060215-BS1)				Prepared &	Analyzed:	02-Jun-23				
GRO C6-C10	166	10.0	mg/kg	200		83.1	78.5-124			
DRO >C10-C28	181	10.0	mg/kg	200		90.5	72.5-126			
Total TPH C6-C28	347	10.0	mg/kg	400		86.8	77.6-123			
Surrogate: 1-Chlorooctane	43.5		mg/kg	49.6		87.8	48.2-134			
Surrogate: 1-Chlorooctadecane	47.9		mg/kg	50.0		95.7	49.1-148			
LCS Dup (3060215-BSD1)				Prepared &	Analyzed:	02-Jun-23				
GRO C6-C10	164	10.0	mg/kg	200		81.9	78.5-124	1.51	17.7	
DRO >C10-C28	180	10.0	mg/kg	200		90.0	72.5-126	0.633	21	
Total TPH C6-C28	344	10.0	mg/kg	400		85.9	77.6-123	1.05	18.5	
Surrogate: 1-Chlorooctane	42.3		mg/kg	49.6		85.3	48.2-134			
Surrogate: 1-Chlorooctadecane	45.9		mg/kg	50.0		91.9	49.1-148			
Batch 3060217 - General Prep - Organics										
Blank (3060217-BLK1)				Prepared &	Analyzed:	02-Jun-23				
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	36.6		mg/kg	49.6		73.9	48.2-134			
Surrogate: 1-Chlorooctadecane	36.5		mg/kg	50.0		72.9	49.1-148			
LCS (3060217-BS1)				Prepared &	Analyzed:	02-Jun-23				
GRO C6-C10	188	10.0	mg/kg	200		93.8	78.5-124			
DRO >C10-C28	160	10.0	mg/kg	200		80.0	72.5-126			
Total TPH C6-C28	347	10.0	mg/kg	400		86.9	77.6-123			
Surrogate: 1-Chlorooctane	40.8		mg/kg	49.6		82.2	48.2-134			
Surrogate: 1-Chlorooctadecane	37.8		mg/kg	50.0		75.6	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	BRINNINSTOOL UNIT #003H 212C - MD - 03130 CHRISTIAN LLULL (432) 682-3946	Reported: 07-Jun-23 17:04	
---	-------------------------------------	---	------------------------------	--

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3060217 - General Prep - Organics										
LCS Dup (3060217-BSD1)				Prepared &	& Analyzed:	02-Jun-23				
GRO C6-C10	196	10.0	mg/kg	200		97.9	78.5-124	4.34	17.7	
DRO >C10-C28	158	10.0	mg/kg	200		79.0	72.5-126	1.25	21	
Total TPH C6-C28	354	10.0	mg/kg	400		88.5	77.6-123	1.81	18.5	
Surrogate: 1-Chlorooctane	43.4		mg/kg	49.6		87.6	48.2-134			
Surrogate: 1-Chlorooctadecane	40.5		mg/kg	50.0		81.0	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.								
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.								
ND	Analyte NOT DETECTED at or above the reporting limit								
RPD	Relative Percent Difference								
**	Samples not received at proper temperature of 6°C or below.								
***	Insufficient time to reach temperature.								
- Chloride by SM4500Cl-B does not require samples be received at or below 6°C									
	Samples reported on an as received basis (wet) unless otherwise noted on report								

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Released to Imaging: 9/27/2023 1:24:37 PM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

	101 East Marland, Hobbs, NM 8 (575) 393-2326 FAX (575) 393						And A state of the														
Company Name:	Tetra Tech								B	LL TO					ANA	LYSIS	S REC	UEST	Г		
Project Manager:	Christian Llull							P.O. #	ŧ.												
Address: 8911 Ca	pital o Texas Hwy, Suite 2310							Comp	any: Te	tra Tech											
City: Austin	State: TX	Zip):					Attn:	Christia	n Llull		1									
Phone #:	(512)565-0190 Fax #:							Addre	ss: EMA	AIL											
Project #:	212C-MD-03130 Project Owner:			Co	nocoF	hilli	ips	City:]									
Project Name: Bri	inninstool Unit #003H							State: Zip:						B							
Project Location:	Lea County, New Mexico							Phone #:				1		5							
Sampler Name: C	olton Bickerstaff							Fax #	:			1		00							
FOR LAB USE ONLY					MA	TRIX	(PR	ESERV.	SAMP	LING		~	145							
Lab I.D. H232797	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	WASTEWATER		SLUDGE	O'THER : ACID/BASE:	ICE / COOL OTHER :		8.0	TPH 8015M	BTEX 8021B	Chloride SM4500C		8					
MDDd191			#	G			SL	IO A		6/1/2023	TIME	E X	X	X							
2	AH-1 (0-0.5') AH-1 (0.5'-1')	G	1	-	X	+ +		\vdash	X X	6/1/2023	_	X	X	X		-					
	AH-1 (0.5-1) AH-1 (1'-1.5')	G	1	-			-		<u>л</u> Х,	6/1/2023		X	X	X				-			
	AH-1 (1.5'-2')	G	1		X	+ +			X	6/1/2023		X	X	X				-	-		
	AH-2 (0-0.5')	G	1	-	X				X	6/1/2023		X	X	X		-			-		
6	AH-2 (0.5'-1')	G	1		X	+ +			X	6/1/2023		X	Х	X							
5	AH-2 (1'-1.5')	G	1		X				X	6/1/2023		X	Х	X							
8	AH-2 (1.5'-2')	G	1		X				X	6/1/2023		X	Х	X							
	AH-3 (1'-1.5')	G	1		X				X	6/1/2023		X	Х	X							
10	AH-3 (1.5'-2')	G	1		X				X	6/1/2023	_	X	Х	X							

PLEASE NOTE: Lab/ly and Damages. Caldral's lability and clents exclusive remedy for any claim arising whether based in contract or tort shall be limited to the amount paid by the clent for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be lable for incidental or consequential damages. Including without limitation, business interruptions, loss of profits incurred by clent, its sublidianes. affiliates or successors arising out of or related to the performance of services hereunded by Cardinal within 30 days after completion of the applicable service. In no affiliates or successors arising out of or related to the performance of services hereunded by Cardinal regardinger of the above stated reasons or otherwise.

Relinquished By: Colton Bickerstaff	Date: 6/2/23 R	eceived By:	11111	Verbal Result: Yes No	Add'I Phone #: /ide Email address: Christian.Llull@tetratech.com	
	Time::/153	MUARAN	MARTON	-	ide Email address: Christian, Liungietratech.com	
Relinquished By:	Date: R	eceived By:	ng	REMARKS:		
	Time:					
Delivered Fy: (Circle One)	Observed Temp. °C 🥑 💈	Sample Condition	CHECKED BY:	Turnaround Time: Standard Bacte	ria (only) Sample Condition	
Sampler - UPS Pire - Other:	Observed Temp. °C	Cool Intact	(Initiais)	Rush: N/A, Standard TAT Cool Int	oct Observed Temp. *C	· · · ·
	1.7		A.O.	Thermometer ID #113 Correction Factor -0.5°C	Yes Yes	

FORM-006 R 3.2 10/07/21

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Received by OCD: 7/6/2023 7:25:32 AM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476														20				<i>.</i>					
Company Name:	Tetra Tech									BI	LL TO					ANA	LYSI	S REC	UES	г			
Project Manager:	Christian Llull							P.0	0. #:			-							Ι				
Address: 8911 Ca	apital o Texas Hwy, Suite 2310							Co	mpan	ny: Tet	tra Tech		1										
City: Austin	State: TX	Zip) :					Att	tn: Ch	ristiar	n Llull		1										
Phone #:	(512)565-0190 Fax #:							Ad	dress	: EMA	AIL.		1										
Project #:	212C-MD-03130 Project Owner:			Co	onoc	oPhi	illips	Cit	ty:				1										
Project Name: Br	inninstool Unit #003H							Sta	ate:		Zip:		1		-B								
Project Location:	Lea County, New Mexico							Ph	Phone #:						5								
Sampler Name: C	olton Bickerstaff							Fa	x #:				1		00		× 1						
FOR LAB USE ONLY		T	T			MATE	RIX	1	PRES	ERV.	SAMP	LING	1		45								
Lab I.D. Hz32797	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	WASTEWATER	SOIL	SLUDGE	OTHER :	ACID/BASE:	ICE / COOL OTHER :	DATE	TIME	TPH 8015M	BTEX 8021B	Chloride SM4500CI		4			ŝ	*		
	AH-4 (1'-1.5')	G	1			Х				X	6/1/2023		Х	Х	X				-	-			
	AH-4 (1.5'-2')	G	1		\square	Х		\square	_	X	6/1/2023		X	Х	X				-				 \square
	AH-5 (1'-1.5')	• G	1		\square	X	-	\square	_	X	6/1/2023		X	Х	X		· ·						 \vdash
	AH-5 (1.5'-2')	G	1	-	\square	Х	-	++		X	6/1/2023		X	Х	X								 \vdash
	AH-6 (1'-1.5')	G	1	-	++	X	+	++	-	X	6/1/2023		X	X	X		-						 \vdash
	AH-6 (1.5'-2')	G	1	-	++	X	+	+		X	6/1/2023		X	X	X								 -
	AH-7 (0-1')	G	1	-	++	X		+		X	6/1/2023		X	X	X		-						 +
	AH-8 (0-1')	G	1	-	++	X	+	+		X	6/1/2023		X	X	X							+	 +
1	AH-9 (0-1')	G	-	-	++	X	-	+		X	6/1/2023		X	X	X		-						 +
20	AH-10 (0-1')	G	1			X				X	6/1/2023		X	X	X			1			L		

PLAGE NOTE: Labels and Danages. Cardina's labels and clerts accluse remedy for any claim arising whether based in contract or fort, shall be limited to the amount paid by the clert for the analyses. All claims including those for negligence and any other cause whatsoever shall be detred waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be label for incidental or consequential damages, including without limitation, business interruptions, loss of politis incurred by clert, its subsidiaries, affiliates or uncosessor ariting out of or related to the performance of exercises hereunder by clerting, this subsidiaries, additional be label.

Relinquished By: Colton Bickerstaff	Date: 6/2/23 Receive	ed By	111/1/	Verbal Result:	Id'I Phone #: dress: Christian.Llull@tetratech.com
Relinquished By:	Date: Receive	ed By:	any	REMARKS:	
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Observed Temp. °C 2.3 Corrected Temp. °C 2.3	Sample Condition Cool Intact	CHECKED BY: (Initials)	Turnaround Time: Standard 🏟 Bacteria (only) Sampie C Rush: NA, Standard TAT 🔲 Cool Intact Observed T	1. I I I I I I I I I I I I I I I I I I I
N. S.	1.1	Nº Nº		Thermometer ID #113 Correction Factor -0.5°C	Yes Yes No No Corrected Temp. *C

FORM-006 R 3.2 10/07/21

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Page 40 of 42

Received by OCD: 7/6/2023 7:25:32 AM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

	101 East Marland, Hobbs, NM 8 (575) 393-2326 FAX (575) 393-2				Post of the second s	apuda 1955												2				
Company Name:	Tetra Tech				_		BI	LL TO					ANAL	YSIS	REC	UEST	Г					
Project Manager:	Christian Llull					P.O. #	t:	• <												•		
Address: 8911 Ca	apital o Texas Hwy, Suite 2310					Comp	any: Te	tra Tech]												
City: Austin	State: TX	Zip:				Attn: 0	Christia	n Llull		1												
Phone #:	(512)565-0190 Fax #:					Addre	ss: EMA	AIL .		1												
Project #:	212C-MD-03130 Project Owner:		С	onocoP	hillips	City:			1													
Project Name: Br	inninstool Unit #003H					State: Zip:					-B											
Project Location:	Lea County, New Mexico	8				Phone	e #:	×.	-			I		*						÷		
Sampler Name: C	colton Bickerstaff					Fax #:	:		_			M4500C										
FOR LAB USE ONLY		T		MA	TRIX	PRE	ESERV.	SAMP	LING		~	145										
Lab I.D. H232797	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS GROUNDWATER	WASTEWÄTER Soil	SLUDGE	OTHER : ACID/BASE:	ICE / COOL OTHER :	DATE	TIME	TPH 8015M	BTEX 8021B	Chloride S			8						ПОП	
	AH-11 (0-1')	G	1	X			Х	6/1/2023		X	Х	X				-						
	AH-12 (0-1')	G	1	X			X	6/1/2023		X	X	X									$\left \right $	
	AH-13 (0-1')	G	1	X	++	\square	X	5/1/2023	9	X	X	X							1		+	'
at,	AH-14 (0-1')	G	1	X	++		X	6/1/2023		X	X	X	1	del	d,	11	11	2-	ch		X	
	AH-3 (0-0.5')	G	1	X			X	6/1/2023		X X	X X	X X	64	and	1	191	17	12:	2		Ê	
al	AH-3 (0.5'-1')	G	1	X	++	++-	X	6/1/2023 6/1/2023		X	X	X	Cu .	40	The	Re	1-1	27	ch		X	
	AH-4 (0-0.5')	G	1	X	++	++-	X X	6/1/2023		X	X	X	n	lde	t. 1	1	171	23			X	
28	AH-4 (0.5'-1') AH-5 (0-0.5')	G	1	X	+ +	++-	X	6/1/2023		X	X	X	0	d	non l		0/7		2		(X)	
	AH-5 (0.5'-1')	G	1		++	++-	X	6/1/2023		X	X	X	4	are	in	+	r ((10.	1		X	

PLEASE NOTE: Lability and Damages. Candrar's lability and client's exclusive remedy for any claim arrang whether based in contract or two, hall be limited to the annual relation by the annual relation to the annual relation of th

		1	//		
Relinquished By: Colton Bickerstaff	Date: 6/2/23 Rec	eived By:	INAN	Verbal Result: Verbal Result: Verbal Results are emailed. Please provide En	Add'I Phone #: nail address: Christian.Llull@tetratech.com
	Time	Mulana ise	LANDEL		
Relinquished By:	Date: Rec	eived By:		REMARKS: A analysi's added	as per client 6/7/23. Cl
Delivered By: (Circle Gae)	Observed Temp. °C 🥎 📿	Sample Condition	CHECKED BY:	Tur around Time: Standard Sacteria (only) S	ample Condition
Sampler - UPS - Bus - Other	Corrected Temp. °C	Cool Intact	(Initials)	Rush: NLA, Standard TAT Cool Intact Ob	served Temp. *C
ž.	1.1		00	Thermometer ID #113	Ves Yes
		No No	Ac.	Correction Factor -0.5°C	No Corrected Temp. "C

FORM-006 R 3.2 10/07/21

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Page 41 of 42

1

Page 70 of

Received by OCD: 7/6/2023 7:25:32 AM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

.

	101 East Marland, Hobbs, NM (575) 393-2326 FAX (575) 393							ENGE	n na nainni Mair ann 1960 Laint Comhai	e.												
Company Name:	Tetra Tech							BILL TO					ANA	LYSIS	REQ	UEST						
Project Manager:	Christian Llull	•				P.O.	. #:							1. A								
Address: 8911 Ca	apital o Texas Hwy, Suite 2310					Con	npany:	Tetra Tech														
City: Austin	State: T)	Zip:				Attn	: Chris	tian Llull		1												
Phone #:	(512)565-0190 Fax #:					Add	ress: E	MAIL		1												
Project #:	212C-MD-03130 Project Owner:		C	onocoF	hillips	City	:]												
Project Name: Bri	inninstool Unit #003H					Stat	e:	Zip:				B										
Project Location:	Lea County, New Mexico					Pho	ne #:					Ċ						8.				
Sampler Name: C	mpler Name: Colton Bickerstaff			-	Fax	#:					SM4500C											
					TRIX	P	RESER	/. SAM	PLING		~	145										
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	WASTEWATER	SLUDGE	OTHER :	ICE / COOL	DATE	TIME	TPH 8015M	BTEX 8021B	Chloride SM								8	X X HOLD	
31	AH-6 (0-0.5')	G	1	<u>> 0</u> X			X	6/1/2023	1000	X	X	X		an	the	4	17/	23			X	<u>1</u> .
	AH-6 (0.5'-1')	G	1	X			X	6/1/2023		X	Х	X									X	
																,						
																			-			
						\downarrow				-									-			
			_	11		++		_		-												
			_			++	\rightarrow							-							+	
		++	_	++-		++	++	-	-					+			-				+	
		+		++-		++	-++							-					-	-	+	
DI EASE NOTE: Labib	mages. Cardinal's liability and client's exclusive remedy for any claim arising whi	ther based in a	antract or to	t shall be lie	nited to the set	Lies tour	by the client fr	or the analyses, All cla	ims including those	for negligenc	e and any ot	her cause v	vhatsoever sh	nall be deer	med waived u	niess marte	e in writing	and receiver	d by Cardina	al within 30 d	ays after c	ompletion of th

PLEASE NOTE: Liablity and Damages. Cardants islabily and clerct exclusive remedy for any claim arising whether based in contrat of tots thall be limited for bit amount paid by the clerct for the analyses. All claims incl event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or base of profits incurred by clerct, its subsidiaries. All filters or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of Mether such claims is based upon any of the above stated reasons or otherwise,

Relinguished By: Colton Bickerstaff	Date: 6/2/23	Received By.	11/1/		Add'l Phone #:
		101110h	r Illants	All Results are emailed. Please provide Email a	address: Christian.Llull@tetratech.com
	Time		IVIAN DE		
Relinguished By:	Date:	Received By:	and	REMARKS:	sper dient 6/7/23 ch
Keinquisited by.	Dute.	Received by.		* Ancles & added a	sperdient 6/7/13 V
	Time:		-	1 manger	
	20				
Delivered By: (Circle One)	Observed Temp. °C	3ar.ple Conditio		Turnaround Time: Standard Sacteria (only) Sample	Condition
Sampler - UPS - Bus - Other:	Corrected Temp. °C		(Initials)	Rush: N/A, Standard TAT Cool Intact Observed	I Temp. *C
		Yes res			
			OP	Thermometer ID #113	Yes Yes
				Correction Factor -0.5°C	No No Corrected Temp. *C
		+			
					*

FORM-006 R 3.2 10/07/21

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

APPENDIX E Photographic Documentation

TETRA TECH, INC. PROJECT NO. 212C-MD-03130	DESCRIPTION	View southeast of site signage.	1
	SITE NAME	Brinninstool Stool Unit #3H	5/11/2023

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north. Approximate release point and release extent.	3
212C-MD-03130	SITE NAME	Brinninstool Stool Unit #3H	1/16/2023

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	response efforts.	4
212C-MD-03130	SITE NAME	Brinninstool Stool Unit #3H	5/11/2023

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north. Initial response efforts depicting surface scrap.	5
212C-MD-03130	SITE NAME	Brinninstool Stool Unit #3H	5/11/2023

TETRA TECH, INC. PROJECT NO. 212C-MD-03130	DESCRIPTION	View south. View depicting assessment (AH-1 sample location).	9
	SITE NAME	Brinninstool Stool Unit #3H	6/1/2023

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	236326
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Plan to inform operator that they did not meet 19.15.29.12D (1a) NMAC. Forbearance given on 09/27/2023. Release resolved.	9/27/2023

Page 77 of 77

Action 236326