SITE INFORMATION

R	Report Type: Closure Report 2RP-1825 / 2RP-4224 (NAB1714639317)								
General Site Info	rmation:								
Site:		Coyote Compre	Coyote Compressor Station						
Company:		Targa Resourc				_	-		
Section, Townsh	ip and Range	Unit C	Sec. 09	T 25S	R 27E				
Lease Number:									
County:		Eddy County							
GPS:			32.1502			-104.	198000		
Surface Owner:		State							
Mineral Owner:					D 11				
Directions:		Miles. Turn right (rom intersection Black River Village Rd and Road Runner Rd, travel south on Road Runner Rd for 6.55 /iles. Turn right (Northwest) onto lease road, follow for 0.74 miles. Turn left (Southwest) onto lease road nd follow for 0.89 miles. Location is on the right (north of the road).						
Release Data:									
Date Released:		5/21/2017							
Type Release:		Condensate and Produced Water							
Source of Contam	ination:	Open and Malfunctioning Check Valve							
Fluid Released:		200 bbl condensate & 100 bbl water							
Fluids Recovered:		45 bbl condensate & 0 bbl water							
Official Commun	ication:								
Name:	Michael Gant				Clair Gonza	les			
Company:	Targa Resources				Tetra Tech				
Address:	3100 McKinnon St #	800			901 W. Wall St.				
					Ste 100				
City: Dallas, Texas 75201					Midland, Te	xas, 79701			
Phone number:	(314) 330-7876				(432) 682-4	559			
Fax:									
Email:	Mgant@targareso	urces.com			clair.gonza	ales@tetrat	ech.com		
			•		•				

Site Characterization	
Depth to Groundwater:	100' Below Ground Surface
Karst Potential:	High

Recommended Remedial Action Levels (RRALs)								
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides				
10 mg/kg	50 mg/kg	5,000 mg/kg	5,000 mg/kg					

October 20, 2023

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Closure Report Targa Resources Coyote Compressor Station Eddy County, New Mexico 2RP-1825 & 2RP-4224 #NAB1714639317

Oil Conservation Division:

Tetra Tech, Inc. (Tetra Tech) was contacted by Targa Resources (Targa) to assess the deferred areas of a release that occurred at the Coyote Compressor Station, Unit C, Section 9, Township 25 South, Range 27 East, Eddy County, New Mexico (Site). The spill site coordinates are 32.150200°, -104.198000°. The site location is shown on **Figures 1 and 2**.

Background

According to the State of New Mexico C-141 Initial Report, the release at the Coyote Compressor Station was caused by an open and malfunctioning check valve, causing the release of 200 barrels (bbls) of condensate and 100 bbls of produced water. The release was contained to the pad and along the side of the lease road, impacting an area of 203' X 152.5'. Additionally, approximately 45 bbls of condensate were recovered and no produced water was recovered. On May 21, 2017, the release was discovered and reported to the New Mexico Oil Conservation Division (NMOCD). The C-141 is shown in **Appendix A**. The work conducted on this site follows the NMOCD approved work plan, dated on June 20, 2017. The state correspondence referring to the work plan approval are shown in **Appendix B**. Additionally, Targa requested an extension for the additional work required for closure of the site on July 20, 2023 and received NMOCD approval on July 21, 2023 for the revised deadline of October 21, 2023, the correspondence is shown in **Appendix B**.

Site Characterization

Significant Water Features

According to the NFHL (National Flood Hazard Layer) Flood Data Application and the USGS (United States Geological Survey) National Water Information System Mapper, there were no watercourses, lakebeds, sinkholes, playa lakes, springs, wetlands, subsurfaces mines, private domestic water wells, or floodplains located within the specified distances. However, the

site is located in a high karst area. The NFHL Map and USGS Mapper are shown in **Appendix C**.

Significant Boundaries

According to Google Earth US Government City Boundaries and US School Districts, the lateral extents of the release were not within incorporated municipal boundaries, defined municipal fresh water well field, or a school district. Additionally, there were no occupied permanent residences, schools, hospitals, institution, or churches located within the specified distances of the lateral extents of the release.

Groundwater Review

Groundwater research was completed for the site through the USGS National Water Information System and New Mexico Office of the State Engineer (NMOSE) Water Rights Reporting System. Groundwater research conducted through these two resources, show the two closest water wells within a 4-mile radius of the Site. The well reported on the USGS National Water Information System reports a water level measured at 33.41 feet below ground surface (ft bgs) and is approximately 2.57 miles of the Site. The well reported on the NMOSE Water Rights Reporting System reports a total depth of 95 ft bgs and measured water level of 70 ft bgs and is approximately 3.77 miles of the Site. The groundwater information is shown in **Appendix C**. Additionally, as shown in the previously approved work plan and the previously submitted closure report, which is included in **Appendix D**, elevation and groundwater data was compiled and indicates that groundwater at the site is likely at 100 ft bgs.

	Distance from Site	Date of Data	Resource of Information	Depth of Well	Depth to Water
	2.57 Miles	1/07/1998	USGS	N/A	33.41'
ſ	3.77 Miles	7/23/1971	NMOSE	95'	70'

Regulatory

A risk-based evaluation was performed for the site following the NMOCD Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the previously approved work plan, the proposed RRAL for TPH is 5,000 mg/kg (GRO + DRO + ORO).

Previous Consultant Activities

Souder, Miller & Associates (SMA) previously conducted initial delineation and remediation activities, as described in the previously submitted closure report, dated November 14, 2017. A total of seven (7) samples (Source, L1 through L6), were installed within the impact to determine delineation of the release. Additionally, a total of four (4) samples (SW1 through SW4) were installed directly outside of the impact to determine horizontal delineation of the

release. Following the initial delineation, SMA conducted excavation activities of the areas of impact, to total depths ranging from 0.5 ft bgs to 3.5 ft bgs. However, due to equipment and safety concerns, a deferral was requested of the areas of the Source sample and the L1 sample.

Referring to the Summary Table located in the previous submitted closure report, shown in **Appendix D**, TPH concentrations above RRALs were indicated in samples L1, L4, and L5, with concentrations ranging from 5,906 mg/kg to 25,000 mg/kg, at depths ranging from surface to 3.5 ft bgs. Additionally, elevated chloride concentrations were indicated in samples Source and L4, with concentrations ranging from 4,000 mg/kg to 5,700 mg/kg, at surface depths. All elevated and exceeding concentrations were excavated, with the exception of the deferred areas of Source and L1. The initial impact and sample locations are shown on **Figure 3**.

Site Assessment Activities

On August 30, 2023, Tetra Tech conducted additional sampling activities of the deferred areas of samples Source and L1 to collect current data to determine if there was remaining impact. A total of two (2) auger holes (AH-1 through AH-2) were installed to total depths ranging from 2.5 ft bgs to 3.5 ft bgs to collect current data of the areas. The sample locations are shown on **Figure 4**.

The samples were submitted to Envirotech Laboratory in Farmington, New Mexico to be analyzed for TPH by method 8015 modified, BTEX by method 8021B, and Chloride by EPA Method 300.0. The analytical results are summarized in **Table 1** and the analytical laboratory reports are included in **Appendix E**.

Referring to Table 1, auger holes AH-1 through AH-2 did not indicate benzene, BTEX, TPH, or chloride concentrations above RRALs. Auger holes AH-1 and AH-2 indicated TPH concentrations above laboratory detection limits, with concentrations ranging from 70.1 mg/kg to 594 mg/kg, at depths ranging from surface to 3.5 ft bgs. Auger hole AH-2 indicated chloride concentrations above laboratory detection limits, with concentrations ranging from 207 mg/kg to 291 mg/kg, at depths ranging from surface to 1.5 ft bgs.

Conclusions

Targa requested an extension for the additional work required for closure of the site on July 20, 2023 and received NMOCD approval on July 21, 2023 for the revised deadline of October 21, 2023, the correspondence is shown in **Appendix B**. Based on the C-141 (NAB1714639317) and information provided by Targa, Tetra Tech performed site characterization and groundwater research to determine groundwater depth, proximity from significant water features, and proximity from specified populated entities to determine RRALs and assess the impacted area. Based on the NMOCD *Guidelines for Remediation of Leaks, Spills, and Releases*, updated August 14, 2018, according to the groundwater data found during research activities, and the NMOCD approved work plan, the RRALs of 5,000 mg/kg for TPH were followed. Based on Tetra Tech assessment activities, laboratory results indicated current chloride and TPH concentrations in auger holes AH-1 and AH-2, in the previously deferred areas of samples Source and L1, were reported below RRALs. The decrease in TPH

concentrations is likely due to natural attenuation and the decrease in chloride concentrations is likely due to dilution due to rain events over the extended period of time.

The analytical results indicated all samples from auger holes AH-1 and AH-2 reported below the RRALs, as approved by the NMOCD in the previously approved work plan, for all constituents. Based on this information, it is recommended that the Site requires no further action. The final C-141 is included in **Appendix A**.

If you require any additional information or have any questions or comments, please contact us at (432) 682-4559.

Respectfully submitted, TETRA TECH

Brittany Long, Project Manager

Clair Gonzales, P.G. Senior Project Manager

Figures

.

Released to Imaging: 11/6/2023 7:58:18 AM

Released to Finaging E11/0/2023 7:58.18 SAM PART P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community

Released 105 Fmaging: 311/6/2029 7.58:18 AM

Released ros Finitesing 2111/6/2023 7: 585/18 ar Astro Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Released ros Finite ing 2011 1/6/2023 7: 5851 8 1 1/6/2023 Field Coographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Tables

.

Table 1 Targa Resources Coyote Compressor Station

Eddy County, New Mexico

		Sample	Soil S	Status			(mg/kg)				BTEX (mg/kg)			
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO mg/kg	DRO mg/kg	ORO mg/kg	Total mg/kg	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylenes (mg/Kg)	Total (mg/Kg)	Chloride (mg/kg)
RRALs (Bas Previously Appr Plan)	oved Work							5,000 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
	Assessment													
	8/30/2023	0-1	Х	-	<20.0	149	445	594	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<20.0
AH-1	"	1.0-1.5	Х	-	<20.0	89.9	151	151	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<200
(Area of "L1")	"	2.0-2.5	Х	-	<20.0	200	315	515	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<200
	"	3.0-3.5	Х	-	<20.0	70.1	<50.0	70.1	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<200
411.2	8/30/2023	0-1	Х	-	<20.0	<25.0	73.1	73.1	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	291
AH-2 (Area of "Source")	"	1.0-1.5	Х	-	<20.0	<25.0	<50.0	<50.0	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	207
	"	2.0-2.5	Х	-	<20.0	<25.0	73.3	73.3	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<200

NOTES

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills, and Releases.

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the recommended remediation action level.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Exceedance

Photographic Documentation

Released to Imaging: 11/6/2023 7:58:18 AM

Page 14 of 170

TETRA TECH

Targa Resources Coyote Compressor Station Eddy County, New Mexico

View of Area of Source and L1 – View West

View of Area of Source and L1 – View Northwest

Appendix A

C-141 Document

eceived by OCD: 11/1/2023 2:31:21 PM					Page 16 of 17
District I 625 N. French Dr., Hobbs, NM 88240		f New Mex			Form C-141
<u>vistrict II</u> 11 S. First St., Artesia, NM 88210	Energy Minerals	s and Natura	l Resources		Revised August 8, 2011
<u>listrict III</u> 000 Rio Brazos Road, Aztec, NM 87410	Oil Conse	rvation Div	vision	Submit 1 Copy	to appropriate District Office in coordance with 19.15.29 NMAC.
<u>District IV</u> 220 S. St. Francis Dr., Santa Fe, NM 87505		h St. Franc			
	the second s	re, NM 875			ana ang ang tananang ana ang panjarana ang sang tang tang tang tang tang tang tang t
	lease Notificatio	on and Co	orrective A	ction	
JMW132264086	8	OPER A			al Report 🗌 Final Repor
Name of Company AGAVE ENERGY (Address 105 SOUTH 4 TH STREET AR	COMPANY / 4783/		USTIN WEYA No. 575 513-8		
Facility Name COYOTE COM[RESSO		Facility Typ		SOR STATION	
Surface Owner	Mineral Owner			API No).
	LOCATIO	N OF RE	LEASE		
Unit LetterSectionTownshipRangeC925 S27E	Feet from the North	h/South Line	Feet from the	East/West Line	County EDDY
	Latitude N32.150	9 Longitud	le W104.1980	.l	
	NATURE	E OF REL	EASE		
Type of Release CONDENSATE Source of Release PRODUCT TANK		Volume of	Release 200B		Recovered 45BBL Hour of Discovery
Was Immediate Notice Given?		If YES, To	Whom? A	pprox. 8/9/13	por phone call
	No X Not Required				
By Whom? Was a Watercourse Reached?		Date and H		the Watercourse.	
Yes 2	X No	11 125, V	func impacting	the watercourse.	
If a Watercourse was Impacted, Describe Fully	*			B	ECEIVED
					AUG 1 3 2013
Describe Cause of Problem and Remedial Act	on Taken.*			INM	OCD ARTESIA
2 inch ball valve failed allowing condensate to	flow back through open	drain piping ar	nd out compresso	r unit sump. The a	ffected area was bordered with a
temporary soil berm while a vacuum truck pre	formed recovery operation				
installed on open drain line to prevent any futu	re backflow.				
Describe Area Affected and Cleanup Action T	aken.*				
Affected area on the station's pad is 100ft X 6)ft with a vertical extent o	f 4-7 inches, a	portion of the re	lease flowed off the	pad and on to a lease road and
bare ditch Affected are is 70ft long by 3ft wide	with a vertical extent of 2	2ft. Affected s	oil will be remov	ed and hauled off t	o R360 for disposal and
replaced with unaffected top soil. Samples wi	I be pulled from surface d	lown to 4ft Cl,	TPH and BTEX	will be included in	any analysis.
I hanshi as dife that the information since the		1	·	1	
I hereby certify that the information given abo regulations all operators are required to report					
public health or the environment. The accepta	nce of a C-141 report by t	he NMOCD m	arked as "Final I	Report" does not rel	ieve the operator of liability
should their operations have failed to adequate					
or the environment. In addition, NMOCD acc federal, state, or local laws and/or regulations.	eptance of a C-141 report	does not reliev	e the operator of	responsibility for c	compliance with any other
			OIL CON	SERVATION	DIVISION
Signature:	M				A I
	V V	Approved by	Environmental S	Specializated By	Ally Brancher
Printed Name: AUSTIN WEYANT		Approval Da	JG 1 4 201		Data
Title: ENG TECH		Approval Da		Expiration	
E-mail Address: aweyant@yatespetroleum.c	om	Conditions of	f Approval: ediation per (CD Rule &	Attached
Date: 8/13/13 Pho	ne: 575 513-8988				
FTM W 13726407/31: TI					2RP-189=
leased to Imaging: 11/6/2023 7:58:18 A		Ser	stember		
Date: 8/13/13 Pho FJMW 1322-6407/3 ;51 Pleased to Imaging: 11/6/2023 7:58:18 A	ne: 575 513-8988 NW 1 3226440 3 M	Guidelir 52 PRO	nes. SUBMIT F POSAL NO LA	REMEDIATION	2RP-1825

Page 17 of 170

District 1				64		New Mex			CONSER	NOITAVS	1 480
1625 N. French District II							l Resources		Y 25 20		Form C-1 vised August 8, 20
11 S. First St., Artesia, NM 88210 District III Oil Conser			Conser	vation Div	vision				•		
1000 Rio Brazos District IV						St. Franc		RI	ECEIVÊ	cordance wit	te District Office h 19.15.29 NMA
1220 S. St. Fran		a Fe, NM 87503				, NM 875					
AR1714	• •	18	Rele	ease Notifie	cation	and Co	orrective A	ction	l i		
	+639		D 1	2-101.	<u> </u>		RATOR		X Ir	itial Report	Final Re
		ucid Energy Juay Artesia				Contact K	erry Egan No. 575 513-8	988			
		e Compresso					e: Compressor				
Surface Ow	ner: State	of NM		Mineral (Owner				API No	•	
				LOCA	ATION	OF RE	LEASE				
Unit Letter	Section 9	Township 25S	Range 27E	Feet from the	North/	South Line	Feet from the	East/	West Line	County EDDY	
	ł		.	Latitude	32.1502	Longitud	e -104.1980			L	
				NAT	FURE	OF REL					· · · · · · · · · · · · · · · · · · ·
Type of Rele	ase: Pipelir	ne Liquids				58 KURSTANAARSONAL (1835	Release: Estima f pipeline liquids		Volume I	Recovered: N	one
Source of Pa	lesse: Valu	e left onen ar	id a malfu	nctioning check v	value	(condensa	te/waste water) lour of Occurren		Date and	Hour of Disc	overy: 5/21/201
failed to prev	rent flow					5/21/2017					
Was Immedi	ate Notice		Yes 🗌	No 🗌 Not R	equired		Whom? Upon n to Mike Bratcher			EH&S, an ei	nail notification
By Whom? H Was a Water		ah ad?		······································			Hour: 5/23/2017 (olume Impacting		araourao		
was a water	course rea		Yes 🛛	No		ILILO, V	orume impacting	uic mat	cicourse.		
		pacted, Desci									
During the e station. A va	arly morni lve was mis	stakenly left o	5/21/2017 pen on the	a load of pipeline lines connecting	the tank	s to station d	produced water) umps and skid dr mpressor unit ski	ains. Th	e check val	ve intended to	o prevent backflo
				was still in the sk d on proper truck			sumped to the tan at the site.	ks. The	check valve	e has been rep	aired to ensure
		and Cleanup			e surface	of the station	pad, toward the	south fe	nce line. fo	r approximate	elv 120' Once it
	outh fence.						oad. The area wh				
will be subm	itted after r	eviewing the	initial sam	pling results.	-		ding sample resu			-	
							knowledge and nd perform corre				
							narked as "Final l ion that pose a th				
or the enviro	nment. In		OCD accep				ve the operator of	f respon	sibility for a	compliance w	ith any other
	N	11	~				OIL CON	ISERV	VATION	DIVISIC	<u>N</u>
Signature:	Merry	ler				Approved by	Signed Environmental	By X	1/4 1	Benerentes	<u>. </u>
Printed Nam					· · · · · ·			T		Date: N/	A
		Compliance Co				Approval Da	nte: 5/26/1	1	Expiration	Date: NI	<u></u>
		n@agaveener	gy.com			Conditions of	of Approval: SAP/At	tool.	a	Attached	X
	24/20			: 575 810-6021			OTENT	MU			
Attach Add	uonal She	eets If Neces	sary				e found in th				2RP-42
							ebsite in for .state.nm.us/				

OCD/forms.html

Operator/Responsible Party,

The OCD has received the form C-141 you provided on 5/25/17 regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number 2RP 4224 has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District 2 office in <u>ARTESIA</u> on or before <u>6/25/17</u>. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us **Received by OCD: 11/1/2023 2:31:21 PM** Form C-141 State of New Mexico

Page 3

	NJMW13226#08680 of 1	7 0
t ID	NAB1714639317	

Oil Conservation Division

Incident ID	NAB1714639317
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>~100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗸 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🖌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗸 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🖌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🖌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗸 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a wetland?	□ Yes 🗸 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🖌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🖌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information

- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by Form C-14	OCD: 11/1/2023 2:31:21 PM State of New Mexico		Incident ID	NJMW132264226821 of 170
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations public heal failed to ad addition, O and/or regu Printed Na Signature:	rtify that the information given above is true and complete to the all operators are required to report and/or file certain release not the or the environment. The acceptance of a C-141 report by the C equately investigate and remediate contamination that pose a three CD acceptance of a C-141 report does not relieve the operator of lations. The acceptance of a C-141 report does not relieve the operator of lations. The acceptance of a C-141 report does not relieve the operator of lations. The acceptance of a C-141 report does not relieve the operator of lations.	ifications and perform co OCD does not relieve the eat to groundwater, surfa responsibility for compl	orrective actions for rele operator of liability sho ce water, human health iance with any other feo onmental Specialis	ases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Onl	Ϋ́			
Received	by: <u>Shelly Wells</u>	Date: <u>11/1/2</u>	023	

Page 6

Oil Conservation Division

NJMW13226#086822 of 170

Incident ID	NJMW1322640868
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Title: Senior Environmental Specialist

Printed Name: Michael Gant

email: mgant@targaresources.com

Signature: <u>MGant</u> Date: <u>11/1/2023</u>

Telephone: (314) 330-7876

OCD Only

Received by: Shelly Wells

Date: 11/1/2023

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

uttan Hall Closure Approved by:

Printed Name: Brittany Hall

Date: 11/6/2023

Title: Environmental Specialist

Appendix B

State Correspondence

Bratcher, Mike, EMNRD

From:	Bratcher, Mike, EMNRD
Sent:	Thursday, July 13, 2017 9:12 AM
То:	'Kerry Egan'; Weaver, Crystal, EMNRD
Cc:	Heather Patterson
Subject:	RE: Coyote Compressor Station: 2RP-1825 and 2RP-4224

RE: Lucid Energy Delaware * Coyote Compressor Station * 2RP-4224 * DOR: 5/21/17

Kerry,

Your proposal for partial remediation of the above refenced release is approved. It is OCD's understanding that it will not be practicable to achieve RRAL's in some of the impacted areas due to equipment, lines, and/or bedrock. Some elevated hydrocarbon levels will be left in place and deferred to a time when access permits additional remedial actions. This deferral will be documented in OCD database. All impacted material above RRAL that is accessible will be removed to an OCD approved disposal. OCD's depth to groundwater research for this site, indicates that there is a potential for encountering groundwater at slightly less than 100' bgs, however, that would not affect the proposed remedial actions at this time, and would likely require installation of an exploratory well to confirm.

If you have any questions or concerns, and for notification, please contact me.

Thanks,

Mike Bratcher NMOCD District 2 811 S. First St. Artesia NM 88210 575-748-1283 Ext 108 mike.bratcher@state.nm.us

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Kerry Egan [mailto:KEgan@agaveenergy.com]
Sent: Thursday, June 29, 2017 11:12 AM
To: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>
Cc: Heather Patterson <heather.patterson@soudermiller.com>
Subject: Coyote Compressor Station: 2RP-1825 and 2RP-4224

Mike and Crystal,

As we discussed here is the report and work plan for the release at the Coyote Compressor Station. I've included the second map with the depth to groundwater of surrounding wells shown. Upon approval of work plan we'll finish excavating the contaminated material and sample as planned.

If you have any subsequent questions that weren't covered in our meeting this morning, please feel free to get in touch with me.

Thanks, Kerry Egan Environmental Compliance Coordinator

326 W. Quay Artesia, NM Office: (575) 810-6021 | Cell: (575) 513-8988 Kegan@agaveenergy.com | www.lucid-energy.com

This email and its attachments may contain information which is confidential and/or legally privileged. If you are not the intended recipient of this e-mail please notify the sender immediately by e-mail and delete this e-mail and its attachments from your computer and IT systems. You must not copy, re-transmit, use or disclose (other than to the sender) the existence or contents of this e-mail or its attachments or permit anyone else to do so.

Bratcher, Mike, EMNRD

From:	Bratcher, Mike, EMNRD
Sent:	Wednesday, October 18, 2017 8:02 AM
То:	Heather Patterson; Weaver, Crystal, EMNRD
Cc:	Kerry Egan; Austin Weyant; agroves (agroves@slo.state.nm.us)
Subject:	RE: Backfill request

RE: Lucid Energy * Coyote Station * 2RP-1825 & 4224

Heather,

Your request to backfill the areas identified as L4 & L5 at the above referenced site is approved.

Thank you,

Mike Bratcher NMOCD District 2 811 South First Street Artesia, NM 88210 575-748-1283 Ext 108

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Heather Patterson [mailto:heather.patterson@soudermiller.com]
Sent: Tuesday, October 17, 2017 2:59 PM
To: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>
Cc: Kerry Egan <KEgan@lucid-energy.com>; Austin Weyant <austin.weyant@soudermiller.com>
Subject: Backfill request

RE: Lucid Energy * Coyote Station * 2RP-1825 * 2RP-4224

Good Afternoon,

On behalf of Lucid Energy, I would like to request backfill at the Coyote Station. This request is for the area between the pipelines and includes sample locations L4 and L5. Attached you'll find the site map and the lab results.

Thank you,

Heather Patterson Staff Scientist Souder, Miller & Associates Engineering ♦ Environmental ♦ Surveying 201 Halagueno St Carlsbad, NM 88220 www.soudermiller.com *Received by OCD: 11/1/2023 2:31:21 PM*

(575)200-5343 (mobile)

•

Long, Brittany

From:	Long, Brittany
Sent:	Friday, October 20, 2023 11:13 AM
То:	Long, Brittany
Subject:	FW: [EXTERNAL] (Extension Approval) NAB1714639317 COYOTE COMPRESSOR STATION

Brittany D. Long,

Brittany D. Long | Biologist & Project Manager Phone: 432.682.4559 | Mobile 432.741.5813 | Fax:432.682.3946 Brittany.Long@tetratech.com

Tetra Tech | *Leading with Science*[®] 901 West Wall Street, Suite 100 Midland, Texas 79701

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

📑 💟 🛅 💿 Please consider the environment before printing. <u>Read more</u>

From: Gant, Michael <mgant@targaresources.com>
Sent: Friday, October 20, 2023 9:47 AM
To: Long, Brittany <Brittany.Long@tetratech.com>
Subject: FW: [EXTERNAL] (Extension Approval) NAB1714639317 COYOTE COMPRESSOR STATION

A CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Michael Gant Senior Environmental Specialist

Targa Resources 3100 McKinnon St. #800 Dallas, TX 75201 +1 (314) 330 7876 Cell mgant@targaresources.com https://www.targaresources.com/

From: Hamlet, Robert, EMNRD <<u>Robert.Hamlet@emnrd.nm.gov</u>>
Sent: Friday, July 21, 2023 4:10 PM
To: Gant, Michael <<u>mgant@targaresources.com</u>>
Cc: Higginbotham, Christina M. <<u>chigginbotham@targaresources.com</u>>
Subject: [EXTERNAL] (Extension Approval) NAB1714639317 COYOTE COMPRESSOR STATION

CAUTION: This email originated from outside of Targa. Do not click links or open attachments unless you recognize the sender and know the content is safe.

RE: Incident #NAB1714639317

Michael,

Your request for an extension to **October 21st, 2023** is approved. Please include this e-mail correspondence in the remediation and/or closure report.

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau EMNRD - Oil Conservation Division 506 W. Texas Ave.| Artesia, NM 88210 575.909.0302 | robert.hamlet@state.nm.us http://www.emnrd.state.nm.us/OCD/

From: Gant, Michael <<u>mgant@targaresources.com</u>>
Sent: Thursday, July 20, 2023 2:17 PM
To: Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>; Hamlet, Robert, EMNRD
<<u>Robert.Hamlet@emnrd.nm.gov</u>>; Harimon, Jocelyn, EMNRD <<u>Jocelyn.Harimon@emnrd.nm.gov</u>>
Cc: Higginbotham, Christina M. <<u>chigginbotham@targaresources.com</u>>
Subject: [EXTERNAL] NAB1714639317 Extension Request

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon,

Targa Resources is submitting a request for extension of time to respond to the incident, NAB1714639317 at the Coyote Compressor Station. This incident occurred in 2017 under Lucid Energy Delaware LLC. and a closure report was submitted via email on 11.15.2017. On 4/26/2023, OCD updated the incident page reporting that the incident had been denied closure and a representative was notified. However, there was no notice of the closure denial received by any of the current Targa Resources representatives. Lucid Energy Delaware assets were acquired by Targa Resources on 7/1/2022. Targa only recently learned this week that this historical Lucid incident was still reported as "Closure Not Approved" on the OCD incident page and would appreciate additional time to appropriately respond to the OCD regarding site remediation and closure request.

Please let me know if you have any questions or concerns.

Thank you, **Michael Gant** Senior Environmental Specialist

3100 McKinnon St. #800 Dallas, TX 75201

+1(314) 330 7876 Cell | mgant@targaresources.com | https://www.targaresources.com/

This email (including any attachments and accompanying emails) may contain proprietary and confidential information. If you are not the intended recipient, please telephone the sender and immediately delete this e-mail (including any attachments and accompanying emails). Please do not replicate, disclose, distribute, forward, or retain this e-mail or any part of this email. Thank you.

Appendix C

Site Characterization Documents

New Mexico Office of the State Engineer Point of Diversion Summary

D Number 01452 30 BARRON, EMME	(quarters are smal Q64 Q16 Q4 Driller Company	Sec 22	Tws 24S	Rng 27E	(NAD83 U X 577435 EMMETT	JTM in meters) Y 3563175* 🌍	
01452 30 BARRON, EMME	Driller Company	22	24S	27E	577435	-	
30 BARRON, EMME				-		3563175* 🌍	
BARRON, EMME		y:	BA	RRON,	EMMETT		
,	CTT						
: 07/21/1971	Drill Finish Date	e:	0′	7/23/197	71 P	lug Date:	
Log File Date: 08/02/1971		PCW Rcv Date:			Se	ource:	Shallow
Ритр Туре:		Pipe Discharge Size:			Estimated Yield:		
7.00	Depth Well: 95 feet		D	epth Water:	70 feet		
ter Bearing Stratific	ations: To	o E	Bottom	Desci	ription		
8					•	el/Conglomerate	
	7.00	Pipe Discharge S 7.00 Depth Well: ater Bearing Stratifications: Top	Pipe Discharge Size:7.00Depth Well:	Pipe Discharge Size: 7.00 Depth Well: 9. Atter Bearing Stratifications: Top Bottom	Pipe Discharge Size: 7.00 Depth Well: 95 feet atter Bearing Stratifications: Top Bottom Description	Pipe Discharge Size: Ea 7.00 Depth Well: 95 feet D atter Bearing Stratifications: Top Bottom Description	Pipe Discharge Size: Estimated Yield: 7.00 Depth Well: 95 feet Depth Water:

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/14/23 3:55 PM

POINT OF DIVERSION SUMMARY

Click to hideNews Bulletins

- How are we doing? We want to hear from you. Take our guick survey to tell us what you think.
- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide. • <u>Full News</u> ₪

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 320959104093001

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320959104093001 25S.27E.02.21211

Eddy County, New Mexico Latitude 32°09'59", Longitude 104°09'30" NAD27 Land-surface elevation 3,145.0 feet above NGVD29 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Azotea Tongue of Seven Rivers Formation (313AZOT) local aquifer. Output formats

Ta	able of data
Та	ab-separated data
Gr	iraph of data
Re	eselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1992-11-20	16:30 UTC	m	62610		3113.97	NGVD29	1	S		
1992-11-20	16:30 UTC	m	62611		3115.61	NAVD88	1	S		
1992-11-20	16:30 UTC	m	72019	31.03			1	S		
1998-01-07		D	62610		3111.59	NGVD29	1	S		
1998-01-07		D	62611		3113.23	NAVD88	1	S		
1998-01-07		D	72019	33.41			1	S		

Explanation	
-------------	--

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface

Regeived by OGP: 11/1/2023 2:31:21 PM

USGS Groundwater for USA: Water Levels -- 1 sites

Page 34 of 170

Section	Code	Description
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

<u>Questions or Comments</u> <u>Automated retrievals</u> <u>Help</u> Data Tips Explanation of terms Subscribe for system changes News

Accessibility

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2023-09-14 17:42:02 EDT

0.28 0.24 nadww01

New Mexico NFHL Data

September 14, 2023

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

Received by OCD: 11/1/2023 2:31:21 PM

Appendix D

Previous Consultant Data

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Lucid Energy Group	OGRID: 372422
Contact Name: Kerry Egan	Contact Telephone: 575-810-6021
Contact email: Kegan@lucid-energy.com	Incident # (assigned by OCD): 2RP-1825 & 2RP-4224
Contact mailing address: PO BOX 158 Artesia, NM 882	11

Location of Release Source

Latitude 32.1502

[NAD 83 in decimal degrees to 5 decimal places]

Site Name: Coyote Compressor Station	Site Type: Compressor Station
Date Release Discovered: 8/9/2013 & 5/21/2017	API# (if applicable):N/A

Unit Letter	Section	Township	Range	County
С	9	258	27E	Eddy

Surface Owner: X State Federal Tribal Private (Name:_____

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)		
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls): 200 bbls & 100 bbls	Volume Recovered (bbls): 45 bbls & 0 bbls
🗌 Natural Gas	Volume Released (Mcf):	Volume Recovered (Mcf):
Other (describe):	Volume/Weight Released (provide units):	Volume/Weight Recovered (provide units):
Pipeline Liquids (i.e.		
mixture of condensate		
and water)		

<i>Received by OCD: 11/1/2</i> Form C-141	State of New Mexico	Page 4
	Oil Conservation Division	Incident ID
age 2	On Conservation Division	District RP Facility ID
		Application ID
liquids consisting of cor of the facility impacting ditch, with the majority In 2013 Lucid, then ope from the compressor sta	adensate and waste water. The spill ran across the pa a total of 950 square yards of surface. Three buried of the spill impacting the area between the pipelines rating the station as Agave Energy Company, had a tion pad to the pipeline ROW. That spill was addres is work plan is intended to address and close both sp If YES, for what reason(s) does the responsible p	pipelines run through the similar spill (2RP-1825) that followed the same spill path sed at the time, but remains open in NMOCD records. The ills. arty consider this a major release? are, greater than 25 bbls of condensate were released during
If YES, was immediate notice was provided to N	notice given to the OCD? By whom? To whom? Mike Bratcher, NMOCD District II via phone call or	When and by what means (phone, email, etc)? Immedi 5/23/2017, by Kerry Egan.
The responsible	e party must undertake the following actions immediately unless i	
The source of the re	lease has been stopped.	
The impacted area h	as been secured to protect human health and the env	ironment.
Released materials I	nave been contained via the use of berms or dikes, al	sorbent pads, or other containment devices.
	recoverable materials have been removed and manage	
If all the actions describ At the time of the releas existing fence around th construction of a barbwi	ed above have <u>not</u> been undertaken, explain why: e, all efforts were made to isolate the source of the re e station. The affected area the traveled from the stat re fence to prevent vehicles, persons or livestock fro g between the station pad and a lease road. This is v	elease. The site was already partially secured due to the ion to the adjoining pipeline ROW was secured with the m entering the impacted area. The pipeline ROW itself w thy the liquids collected here, and prevented them from
Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.		
regulations all operators ar public health or the environ failed to adequately investi	e required to report and/or file certain release notifications ment. The acceptance of a C-141 report by the OCD doe gate and remediate contamination that pose a threat to gro	by knowledge and understand that pursuant to OCD rules and and perform corrective actions for releases which may endange is not relieve the operator of liability should their operations have undwater, surface water, human health or the environment. In bility for compliance with any other federal, state, or local laws
Printed Name: Kerry E	oan Title	: Environmental Compliance Manager

Date: 11/4/2018

email: <u>_KEgan@lucid-energy.com</u>____

Signature: Mary W

Telephone: <u>575-810-6021</u>

<i>Received by OCD: 11/1/2023 2:31:21 PM</i> Form C-141 State of New Mexico		Page 41 of 170	
Page 3	Oil Conservation Division	Incident ID District RP Facility ID	
		Application ID	
OCD Only			
Received by:	Date:		

Received by OCD: 11/1/2023 2:31:21 PM Form C-141 Sta

Page 7

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: <u>Kerry Egan</u>	Title: <u>Environmental Compliance Manager</u>
Signature: Mory Ly	Date: 11/9/2018
email: <u>KEgan@lucid-energy.com</u>	Telephone: <u>575-810-6021</u>
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:

Title:

Printed Name:

Kerry Egan

From:	Heather Patterson <heather.patterson@soudermiller.com></heather.patterson@soudermiller.com>
Sent:	Wednesday, November 15, 2017 8:22 AM
То:	mike.bratcher@state.nm.us; Weaver, Crystal, EMNRD (Crystal.Weaver@state.nm.us); agroves@slo.state.nm.us
Cc:	Austin Weyant; Kerry Egan; Ruben Molina
Subject:	Coyote Station Closure Report
Attachments:	Coyote Compressor Station Final Closure Report.pdf

RE: Lucid Energy * Coyote Compressor Station * 2RP-1825 and 2RP-4224

Good Morning,

Please find the attached closure report for the Lucid Energy Group Coyote Compressor Station.

Thank you,

Heather Patterson Staff Scientist Souder, Miller & Associates Engineering ♦ Environmental ♦ Surveying 201 Halagueno St Carlsbad, NM 88220 www.soudermiller.com (575)200-5343 (mobile)

Souder, Miller & Associates•201 S. Halagueno St.•Carlsbad, NM 88220 (575) 689-8801

November 14, 2017

#5E26084-BG3

NMOCD District 2 Mike Bratcher 811 South First Street Artesia, NM 88210

SUBJECT: SOIL REMEDIATION CLOSURE REPORT FOR THE INCIDENT AT THE COYOTE COMPRESSOR STATION, EDDY COUNTY, NEW MEXICO

Dear Mr. Bratcher:

On behalf of Lucid Energy Group (Lucid), Souder, Miller & Associates (SMA) has prepared this CLOSURE REPORT that describes the assessment, initial delineation and remediation for a release associated with the Coyote Compressor Station. The site is in UNIT C, SECTION 9, TOWNSHIP 25S, RANGE 27E, NMPM, Eddy County, New Mexico, on State land. Figure 1 illustrates the vicinity and location of the site.

		Table 1: Polease information and Site Pankir
	, 501011, 0011	

Table 1 below summarizes information regarding the release

Table 1: Rele	ease information and Site Ranking
Name	Coyote Compressor Station
Company	Lucid Energy Group
Incident Number	2RP-1825, 2RP-4224
API Number	fJMW1322640713, fAB1714639098
Location	32.1502, -104.1980
Estimated Date of Release	August 9, 2013, May 21, 2017
Date Reported to NMOCD	August 9, 2013, May 23,2017
Land Owner	State
Reported To	NM Oil Conservation Division (NMOCD)
Source of Release	Open valve and malfunctioning check valve
Released Material	Pipeline liquids (Condensate and waste water)
Released Volume	200 bbls, 100 bbls
Recovered Volume	45 bbls, 0 bbls
Net Release	155 bbls, 100bbls
Nearest Waterway	Black River is 5 miles northwest of the location
Depth to Groundwater	Estimated to be greater than 100 feet
Nearest Domestic Water Source	Greater than 1,000 feet
NMOCD Ranking	0
SMA Response Dates	5/31/17, 6/9/17, 9/14/17, 10/16/17 and 10/30/17

Coyote Compressor Station November 14, 2017

1.0 Background

An open valve and a malfunctioning check valve caused the release of 100 bbls of pipeline liquids consisting of condensate and waste water. The spill ran across the pad and down the bar ditch in front of the facility impacting a total of 950 square yards of surface. Three buried pipelines run through the ditch, with the majority of the spill impacting the area between the pipelines. Lucid, then operating the station as Agave Energy Company, had a similar spill that followed the same spill path in 2013. That spill was addressed at the time, but remains open in NMOCD records. The planned mitigation in this work plan is intended to address and close both spills.

2.0 Site Ranking and Land Jurisdiction

Malaga is approximately 9 miles northeast of the release location. The elevation of the release site is approximately 3,296 feet above sea level. After evaluation of the site using aerial photography and topographic maps, depth to groundwater is estimated to be greater than 100 feet below ground surface (bgs). NMOSE data in the area is rather sparse, but most information supports groundwater being greater than 100 feet. One well, C 03262 POD1, shows a depth to water at 75 feet, but its surface elevation is approximately 200 feet below the elevation of the site.

Recommended Remediation Action Levels (RRALs) are determined by the site ranking according to the NMOCD *Guidelines for Remediation of Leaks, Spills, and Releases* (1993). Below in Table 2 are the remediation standards and the site ranking for this location. Justification for this site ranking is found in Figure 1 and Appendix B.

Soil Remediation Standards	0 to 9	10 to 19	>19
Benzene	10 PPM	10 PPM	10 PPM
BTEX	50 PPM	50 PPM	50 PPM
ТРН	5000 PPM	1000 PPM	100 PPM

Table 2. Site Ranking

Depth to Groundwater	NMOCD Numeric Rank
< 50 BGS = 20	
50' to 99' = 10	
>100' = 0	0
Distance to Nearest Surface Water	NMOCD Numeric Rank
< 200' = 20	
200' - 1000' = 10	
>1000' = 0	0
Well Head Protection	NMOCD Numeric Rank
<1000' (or <200' domestic) = 20	
> 1000' = 0	0
Total Site Ranking	0

Page 45 of 170

Page 2 of 4

Coyote Compressor Station November 14, 2017 Page 46 of 170

3.0 Release Characterization

On June 9, 2017, after receiving 811 clearance, SMA field personnel assessed the release area. Soil samples were field-screened using an EC meter. Several sample locations were augered by hand and with a backhoe to a maximum depth of 5 feet bgs. Samples were collected to characterize and delineate the release. All samples were collected and processed according to NMOCD soil sampling procedures. The samples were sent under chain-of-custody protocols to Hall Environmental Analysis Laboratory for analysis for BTEX by EPA Method 8021, TPH EPA Method 418.1 and chlorides EPA Method 300.0. Sample locations are depicted on Figure 2. All laboratory results are summarized in Table 3. Laboratory reports are included in Appendix C.

The area on the pad was sampled to a total depth of 4.5 feet, represented by samples L1-L3. Characterization samples indicated that soil near the source area and L1 needed further excavation. Samples L2 and L3 resulted in all contaminants below the RRALs, and further no further excavation was recommended.

Samples L4 and L5 were collected from the pooling area in the ditch and were advanced to 2.5 feet and 3.5 feet respectively. Sample results indicated that TPH exceeded RRALs and further excavation was recommended.

Side wall samples from the area of pooling in the ditch were also collected utilizing the backhoe (SW1, SW2, SW3, and SW4) to define the extent of the impacted area. Each side wall sample was a composite of the excavation wall from the ground level to bedrock (3.5 feet bgs at SW4, 3 feet bgs at SW2 and 4 feet bgs at SW3 and SW1). All side wall samples resulted in contaminants below the RRALs, indicating that the extents in this area had been defined.

4.0 Soil Remediation

With approval from area utilities owners via 811, SMA executed the proposed action of excavation of the impacted soils. The area excavated is shown in Figure 2, and is highlighted in Table 3. Due to safety concerns, the excavation in this area did not come within 3 feet of the buried pipelines.

While waiting for approval of the work plan submitted on July 13, 2017, the excavation described above remained open. After September rain events, the open excavation filled with rainwater. This fluid was removed by vacuum truck and disposed of. On September 14, 2017, the area within the bar ditch was excavated and sampled to bedrock, which occurred at 3.5 feet bgs at L4 and 4 feet bgs at L5. Confirmation samples were collected from L4 and L5; results from L4 indicated further excavation was still necessary, and L5 indicated results below RRALs and no further excavation was necessary. Upon returning to the site on October 11, 2017 to resample, the open excavation was completely flooded again. After hydrovacing for the second time, a closure sample obtained at the final depth of excavation for sample L4.

All contaminated soil was transported for proper disposal at an NMOCD permitted disposal facility. Backfill approval was granted by the State Land Office and the NMOCD on October 18, 2017.

On October 30th, 2017, SMA returned to the site to further delineate the area to be deferred. Additional samples at the source area at 2 feet bgs and L1 at 2 and 3 feet bgs were collected by method of hand-augering. These samples resulted in all contaminants below RRALs, indicating that remaining affected soil is primarily surficial.

Coyote Compressor Station November 14, 2017

5.0 Scope and Limitations

The scope of our services consisted of the performance of assessment sampling, verification of release stabilization, regulatory liaison, and preparation of this work plan. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact either Austin Weyant at 575-689-8801 or Shawna Chubbuck at (970) 565-4465 x1504 .

Submitted by: SOUDER, MILLER & ASSOCIATES

tusto Merant

Austin Weyant Project Scientist

Reviewed by:

haina Chubbuck

Shawna Chubbuck Senior Scientist

ATTACHMENTS:

Figures:

Figure 1: Vicinity and Well Head Protection Map Figure 2: Site and Sample Location Map

Tables:

Table 3: Summary of Sample Results

Appendices:

Appendix A: Form C141 Initial and Final Appendix B: NMOSE Wells Report Appendix C: Laboratory Analytical Reports Page 4 of 4

•

FIGURE 1 VICINITY AND NMOSE DATA MAP

ceived by OCD: 11/1/2023 2:31:21 PM

FIGURE 2 SITE AND SAMPLE LOCATION MAP

eived by OCD: 11/1/2023 2:31:21 PM

TABLE 3 SUMMARY SAMPLE RESULTS

Coyote Sample Summary Table

Тэ	b	ما	2
ıa	N		J.

Sample				BTEX	Benzene	GRO	DRO	MRO	Total TPH	CI-
Number on Figure 2	Sample Date	Depth (feet bgs)	Proposed Action	ppm	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	Laboratory mg/Kg
١	MOCD RRAL's fo	or Site Ranking	g 0	50 mg/Kg	10 mg/Kg				5000 mg/Kg	
Source	5/31/2017	0.5	excavated	<0.212	<0.024	<4.7	160	210	370	5700
Source	10/30/2017	2	in-situ							480
	6/9/2017	0.5	excavated	<0.216	<0.024				3500	790
L1	6/9/2017	1	deferred	0.512	<0.023				11000	1000
LI	10/30/2017	2	in-situ			<5.0	14	120	134	
	10/30/2017	3	in-situ			<5.0	<9.1	<45	<59	
	6/9/2017	0.5	excavated							91
L2	6/9/2017	1	in-situ							130
	6/9/2017	2	in-situ	<0.22	<0.024				21	220
	6/9/2017	1	in-situ							55
L3	6/9/2017	3	in-situ							35
	6/9/2017	4.5	in-situ						38	49
	6/9/2017	0.5	excavated							4000
	6/9/2017	1.5	excavated							510
L4	6/9/2017	2.5	excavated	<0.211	<0.023				4500	720
	9/14/2017	3	excavated			6.2	3500	2400	5906.2	
	10 /16 /2017	3.5	in-situ			<4.7	16	<44	16	
	6/9/2017	0.5	excavated							280
L5	6/9/2017	2	excavated							73
LJ	6/9/2017	3.5	excavated	5.5	<0.12				25000	80
	9/14/2017	4	in-situ			<4.7	1100	960	2060	
L6	6/9/2017	0.5	in-situ	<0.216	<0.024				110	830
SW1	6/9/2017	comp	in-situ	<0.211	<0.023				<19	120
SW2	6/9/2017	comp	in-situ	<0.206	<0.024				61	40
SW3	6/9/2017	comp	in-situ	<0.208	<0.024				<19	39
SW4	6/9/2017	comp	in-situ	<0.206	<0.024				42	<30
DC1	6/9/2017	1	in-situ							170
BG1	6/9/2017	2	in-situ							120

exceeds RRAL's

excavated

"--" = Not Analyzed

APPENDIX A FORM C141 INITIAL AND FINAL

District 1 625 N. French Dr., Hobbs, NM 88240	State of New Mexico	Form C-141
istrict II Ence Ence Ence Ence Ence Ence Ence Ence	ergy Minerals and Natural Resourc	Ces Revised August 8, 2011
<u>istrict III</u> 000 Rio Brazos Road, Aztec, NM 87410	Oil Conservation Division	Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.
<u>istrict IV</u> 220 S. St. Francis Dr., Santa Fe, NM 87505	1220 South St. Francis Dr.	
	Santa Fe, NM 87505	
	Notification and Correctiv	
Name of Company AGAVE ENERGY COMPAN	OPERATOR IY 14783/ Contact AUSTIN W	X Initial Report Final Report
Address 105 SOUTH 4^{TH} STREET ARTESIA, N	IM Telephone No. 575	
Facility Name COYOTE COM[RESSOR STAT]		PRESSOR STATION
Surface Owner M	1ineral Owner	API No.
	LOCATION OF RELEASE	
Unit LetterSectionTownshipRangeFeet freeC925 S27E	om the North/South Line Feet from	n the East/West Line County EDDY
La	titude N32.1509 Longitude W104.19	980
	NATURE OF RELEASE	
Type of Release CONDENSATE Source of Release PRODUCT TANK	Volume of Release 2 Date and Hour of Occ	200BBL Volume Recovered 45BBL currence Date and Hour of Discovery 4
Was Immediate Notice Given?	If YES, To Whom?	Approx. 8/9/13 per phone call
	Not Required	
By Whom? Was a Watercourse Reached?	Date and Hour If YES, Volume Impa	orting the Watercourse
Yes X No		in watercourse.
If a Watercourse was Impacted, Describe Fully.*		RECEIVED
		AUG 1 3 2013
Describe Cause of Problem and Remedial Action Taken.	*	NMOCD ARTESIA
2 inch ball valve failed allowing condensate to flow back temporary soil berm while a vacuum truck preformed rec installed on open drain line to prevent any future backflo	covery operations. An emergency 811 wa	pressor unit sump. The affected area was bordered with a is made and clean up started. Check valves have been
Describe Area Affected and Cleanup Action Taken.*		
Affected area on the station's pad is 100ft X 60ft with a v bare ditch Affected are is 70ft long by 3ft wide with a ver replaced with unaffected top soil. Samples will be pulled	rtical extent of 2ft. Affected soil will be r	removed and hauled off to R360 for disposal and
I hereby certify that the information given above is true a	and complete to the best of my knowledge	and understand that pursuant to NMOCD rules and
regulations all operators are required to report and/or file public health or the environment. The acceptance of a C- should their operations have failed to adequately investig or the environment. In addition, NMOCD acceptance of	certain release notifications and perform -141 report by the NMOCD marked as "F gate and remediate contamination that pos- a C-141 report does not relieve the opera	corrective actions for releases which may endanger inal Report" does not relieve the operator of liability is a threat to ground water, surface water, human health tor of responsibility for compliance with any other
regulations all operators are required to report and/or file public health or the environment. The acceptance of a C- should their operations have failed to adequately investig or the environment. In addition, NMOCD acceptance of	certain release notifications and perform -141 report by the NMOCD marked as "F gate and remediate contamination that pos- a C-141 report does not relieve the opera	corrective actions for releases which may endanger inal Report" does not relieve the operator of liability a a threat to ground water, surface water, human health
regulations all operators are required to report and/or file public health or the environment. The acceptance of a C- should their operations have failed to adequately investig or the environment. In addition, NMOCD acceptance of federal, state, or local laws and/or regulations.	certain release notifications and perform -141 report by the NMOCD marked as "F ate and remediate contamination that pos- a C-141 report does not relieve the operation OIL C	corrective actions for releases which may endanger "inal Report" does not relieve the operator of liability is a threat to ground water, surface water, human health tor of responsibility for compliance with any other <u>CONSERVATION DIVISION</u>
regulations all operators are required to report and/or file public health or the environment. The acceptance of a C- should their operations have failed to adequately investig or the environment. In addition, NMOCD acceptance of federal, state, or local laws and/or regulations.	certain release notifications and perform -141 report by the NMOCD marked as "F gate and remediate contamination that pos- a C-141 report does not relieve the operation OIL C Approved by Environme	corrective actions for releases which may endanger "inal Report" does not relieve the operator of liability is a threat to ground water, surface water, human health itor of responsibility for compliance with any other <u>CONSERVATION DIVISION</u> ental Speciestigned By <u>Mille Beamure</u> 2012
regulations all operators are required to report and/or file public health or the environment. The acceptance of a C- should their operations have failed to adequately investig or the environment. In addition, NMOCD acceptance of federal, state, or local laws and/or regulations.	certain release notifications and perform -141 report by the NMOCD marked as "F ate and remediate contamination that pos- a C-141 report does not relieve the operation OIL C	corrective actions for releases which may endanger inal Report" does not relieve the operator of liability the a threat to ground water, surface water, human health itor of responsibility for compliance with any other <u>CONSERVATION DIVISION</u> ental Specialized By <u>Mile Brance</u>
I hereby certify that the information given above is true a regulations all operators are required to report and/or file public health or the environment. The acceptance of a C- should their operations have failed to adequately investig or the environment. In addition, NMOCD acceptance of federal, state, or local laws and/or regulations. Signature: Printed Name: AUSTIN WEYANT Title: ENG TECH E-mail Address: aweyant@yatespetroleum.com	certain release notifications and perform -141 report by the NMOCD marked as "F gate and remediate contamination that poss a C-141 report does not relieve the opera OIL C Approved by Environme Approval Date: 14 Conditions of Approval;	corrective actions for releases which may endanger inal Report" does not relieve the operator of liability is a threat to ground water, surface water, human health itor of responsibility for compliance with any other <u>CONSERVATION DIVISION</u> ental Specielighed By <u>Mile Beamure</u> 2013 Expiration Date:
regulations all operators are required to report and/or file public health or the environment. The acceptance of a C- should their operations have failed to adequately investig or the environment. In addition, NMOCD acceptance of federal, state, or local laws and/or regulations. Signature: Printed Name: AUSTIN WEYANT Title: ENG TECH E-mail Address: aweyant@yatespetroleum.com Date: 8/13/13 Phone: 575 51	certain release notifications and perform -141 report by the NMOCD marked as "F gate and remediate contamination that poss a C-141 report does not relieve the opera OIL C Approved by Environme Approval Date. Conditions of Approval: Remediation Guidelines. SUBN	corrective actions for releases which may endanger Vinal Report" does not relieve the operator of liability ie a threat to ground water, surface water, human health tor of responsibility for compliance with any other CONSERVATION DIVISION ental Specialigned By 2013 Expiration Date:

Page 56 of 170

istrict [Stat	o of b	New Mex			SIA DIST	RVATION	0
525 N. French Dr., Hobbs, NM 88240 istrict II	Energy Mine					Y 25 2		Form C-141 sed August 8, 2011
11 S. First St., Artesia, NM 88210	Oil Co	onserv	ation Div	vision				District Office in
000 Rio Brazos Road, Aztec, NM 87410 <u>istrict IV</u> 220 S. St. Francis Dr., Santa Fe, NM 87505		St. Franc NM 875		RE	ECEIVÊ	nit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.		
AB1714639098 R	elease Notifica				ction	1		
AB17141039317			OPEI	RATOR		X Ir	itial Report	Final Report
Name of Company: Lucid Energy Delay			Contact K		000			
Address 326 West Quay Artesia, NM Facility Name: Coyote Compressor Stat				No. 575 513-89 e: Compressor				
Surface Owner: State of NM	Mineral Ow	vner		······		API No	•	
			OF RE	FASE				
Unit Letter Section Township Ran 9 25S 27E			South Line	Feet from the	East/V	West Line	County EDDY	
	Latitude 32	2.1502	Longitud	e -104.1980	L		L	
	NATU	URE	OF REL	EASE				
Type of Release: Pipeline Liquids			Volume of 100 bbls o	Release: Estimat f pipeline liquids e/waste water)	ed	Volume I	Recovered: Nor	e
Source of Release: Valve left open, and a ma failed to prevent flow	Ifunctioning check val	ve	Date and I 5/21/2017	lour of Occurrent				
Was Immediate Notice Given?	No Not Req	luired		Whom? Upon not to Mike Bratcher			EH&S, an ema	ul notification
By Whom? Kerry Egan Was a Watercourse Reached?				Hour: 5/23/2017 6 Jume Impacting				
Yes	🛛 No		11 1 LS, V	sume impacting	uie wat	cicourse.		
If a Watercourse was Impacted, Describe Fu Describe Cause of Problem and Remedial A During the early morning of Sunday 5/21/2 station. A valve was mistakenly left open on in the line was not properly operating and al Upon discovery the valve was shut, what liq proper operation. Contractors are being instr	tion Taken.* 17 a load of pipeline li the lines connecting th owed flow back throug nid was still in the skid acted on proper truck h	ne tanks gh the l l contai	to station d ines, to a con nment was p	umps and skid dra npressor unit skic umped to the tanl	ains. Th 1. This t	e check val backflow ov	ve intended to p verflowed the sl	prevent backflow kids containment.
Describe Area Affected and Cleanup Action Once the liquid overflowed the skid contain reached the south fence, it pooled in a low-ly by 20' in width.	ment it ran along the suing spot between the f	ènce ar	id the lease r	oad. The area wh	ere pool	ling occurre	ed appears to be	100' in length
Preliminary remediaiton has begun inside th will be submitted after reviewing the initial		er excav	vation is pen	ding sample resul	ts. A sit	e remediati	on plan is being	g prepared and
I hereby certify that the information given al regulations all operators are required to repo public health or the environment. The accep should their operations have failed to adequa or the environment. In addition, NMOCD a federal, state, or local laws and/or regulation	ove is true and completed and/or file certain relations of a C-141 reportely investigate and respectively and certain ceptance of a C-141 respectively.	lease no t by the mediate	otifications a NMOCD n contaminat	nd perform corre narked as "Final F ion that pose a th	ctive act Report" (reat to g	tions for re does not re round wate	leases which m lieve the operator, surface water	ay endanger or of liability r, human health
Al	<u> </u>			OIL CON	SERV	ATION	DIVISION	I
Signature: heref for		Approved by	Signed I Environmental S	By Specialis	Alle &	Second	angene Territoria	
Printed Name: Kerry Egan Title: Environmental Compliance Coordina	or		Approval Da	ite: 5/26/1	7	Expiration	Date: N/A	t
E-mail Address: KEgan@agaveenergy.com				of Approval:			Attached y	1
	one: 575 810-6021			Seeat		ed		<u>`</u>
Attach Additional Sheets If Necessary	New M	exico	State W	e found in the ebsite in form .state.nm.us/			2	RP-4224

OCD/forms.html

Operator/Responsible Party,

The OCD has received the form C-141 you provided on 5/25/17 regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number 2RP 4224 has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District 2 office in ARTESIA on or before $\frac{6}{25}/17$. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

ceived by OC	C D: 11/1/2	023 2:31:2	1 PM							Page 59 o		
<u>District I</u> 1625 N. French <u>District II</u> 811 S. First St., <u>District III</u> 1000 Rio Brazo <u>District IV</u> 1220 S. St. Fran	Artesia, NM s Road, Azteo	88210 c, NM 87410	i	Energy Mi Oil C 1220	nerals a Conser South	New Mex and Natura vation Div St. Franc e, NM 875	l Resources vision is Dr.	Submit 1 Cop	Form C-141 Revised April 3, 2017 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.			
			Rele	ease Notific	atior	and Co	orrective A	ction				
						OPE	RATOR	🗆 I	nitial Report	I Final Report		
Name of Co	ompany: L	ucid Energy h Street, Arte	Delawar	e		Contact: Ke		00				
		e Compresso					No.: 575-513-89 e: Compressor					
Surface Ow				Mineral C				API N	0			
- Surface of	ner. State	011111					EACE	71111	0.			
Unit Letter	Section	Township	Range	Feet from the		N OF RE	Feet from the	East/West Line	County			
С	9	25 S	27 E						EDDY			
	,	25 0	27 2	Latituda: 32 1	502 L o	ngitudo: 1	04.1980 NAD83	3				
						0		5				
Type of Rele	ase: Pipelin	e Fluids		NAI	URE	OF RELEASE Volume of Release: Estimated 100BBLs of pipeline fluids (condensate/waste water)						
Source of Re failed to prev		e left open, an	d a malfu	nctioning check v	alve		Date and Hour of Occurrence Date and Hour of Discovery 5/21/2017 5/21/2017					
Was Immedi			Yes 🗌] No 🗌 Not Re	equired	If YES, To Upon notif		d EH&S, an email notification				
By Whom? I		1 10				Date and H	Date and Hour: 5/23/2017 6:55AM If YES, Volume Impacting the Watercourse.					
Was a Water			Yes 🛛	*/		If YES, Vo	fume Impacting f	the Watercourse.				
If a Waterco	urse was Im	pacted, Descr	ibe Fully.'	k								
Describe Cause of Problem and Remedial Action Taken.* During the early morning of Sunday 5/21/2017 a load of pipeline liquids (condensate/produced water) was being collected at the Coyote Compressor station. A valve was mistakenly left open on the lines connecting the tanks to station dumps and skid drains. The check valve intended to prevent backflow in the line was not properly operating and allowed flow back through the lines, to a compressor unit skid. This backflow overflowed the skids containment. Upon discovery the valve was shut, what liquid was still in the skid containment was pumped to the tanks. The check valve has been repaired to ensure proper operation. Contractors are being instructed on proper truck loading procedures at the site.												
Describe Area Affected and Cleanup Action Taken.* Once the liquid overflowed the skid containment it ran along the surface of the station pad, toward the south fence line, for approximately 120'. Once it reached the south fence, it pooled in a low-lying spot between the fence and the lease road. The area where pooling occurred appears to be 100' in length by 20' in width. Remediation was done as per an NMOCD approved work plan which included excavation of affected soils followed by an approved backfill request.												
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liabilit should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human here or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal state, or local laws and/or regulations.									nay endanger itor of liability er, human health			
federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Norvey									N			

Printed Name: Kerry Egan	Approved by Environmental Specia	list:
Title: Environmental Compliance Coordinator	Approval Date:	Expiration Date:
E-mail Address: Kegan@lucid-energy.com	Conditions of Approval:	Attached
Date: 10/31/17 Phone: 575-513-8988		

* Attach Additional Sheets If Necessary

2RP4224

.

ceived by OG	C D: 11/1/2 0	023 2:31:2	1 PM								Page 60 of
District I 1625 N. French District II 811 S. First St., District III 1000 Rio Braze District IV 1220 S. St. Fran	Artesia, NM 8 os Road, Aztec,	8210 NM 87410	Energy Mi Oil C 1220 Sa	nerals Conser South inta Fe						Form C-141 levised April 3, 2017 e District Office in h 19.15.29 NMAC.	
			Rele	ase Notific	eation	1 and Co	rrective A	ction			
							RATOR		🔲 Ini	tial Report	I Final Report
	ompany: Luc					Contact: Ke		0.0			
	05 South 4 th me: Coyote						lo.: 575-513-89 e: Compressor				
			i otation	1		raenny ryp	e. compressor	Station	1		
Surface Ow	vner: State o	fNM		Mineral C)wner				API No		
				LOCA	TIO	N OF REI	LEASE				
Unit Letter	Section	Township	Range	Feet from the	North/	South Line	Feet from the	East/W	/est Line	County	
С	9	25 S	27 E							EDDY	
	,	23 5								LDDI	
				Latitude: 32.1	502 Lo	ngitude: -10	04.1980 NAD8	3			
//2/11-1-1-17				NAT	URE	OF RELI	EASE				
	ease: Condens						Release: 200BB			Recovered: 45	
	elease: Produc iate Notice Gi					Date and Hour of Occurrence Date and Hour of Discovery If YES, To Whom? If YES, To Whom?					
was minicu			Yes 🗌	No 🗌 Not Re	equired		9/13 per phone c	all			
By Whom?					-	Date and H					
	rcourse Reach	ned?		17 2 7 2		If YES, Vo	lume Impacting	the Wate	rcourse.		
			Yes 🛛	No							
If a Waterco	urse was Imp	acted, Descri	ibe Fully.*								
Describe Ca	use of Probler	m and Remed	dial Action	Taken.*							
temporary so		e a vacuum tr	ruck prefor	med recovery op			d out compressor cy 811 was made				s bordered with a ves have been
Describe Are	ea Affected ar	nd Cleanup A	Action Take	en.*							
bare ditch. A		s 70ft long b					portion of the relession of the relession of the relevant terms and the removed terms of the relation of the r				a lease road and osal and
regulations a public health should their or the enviro	all operators a n or the enviro operations ha	re required to onment. The ve failed to a dition, NMO	o report and acceptance idequately OCD accept	d/or file certain r e of a C-141 repo investigate and r	elease n ort by th emediat	otifications a e NMOCD m e contaminati	knowledge and und perform corre- arked as "Final R on that pose a the e the operator of	ctive acti leport" d reat to gr	ons for rele oes not reli ound water	eases which n eve the opera , surface wate	hay endanger tor of liability er, human health
	0						OIL CON	SERV	ATION	DIVISIO	N
Signature: C	Kory	18				Approved by					-
Printed Nam	ie: Kerry Egai	n				Approved by	Environmental S	pecialist	•		
Title: Enviro	onmental Com	pliance Coo	rdinator			Approval Dat	e:	1	Expiration	Date:	
E-mail Addr	ess: Kegan@	lucid-energy	.com			Conditions of	Approval:			Attechad	_

* Attach Additional Sheets If Necessary

Phone: 575-513-8988

Date: 10/31/17

2RP1825

.

Attached

APPENDIX B NMOSE WELLS REPORT

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(•					2=NE 3 st to lar	3=SW 4=S aest) (SE) NAD83 UTM in r	neters)	(In feet)	
	POD Sub-	(Q					9) (,	,	Matax
POD Number	Code basin C	county				Sec	Tws	Rng	>	K Y	Distance	-	Depth Water	Column
C 03261 POD1		ED	3				25S	27E	57400	7 3554006*	3746	351		
C 03262 POD1	С	ED	2	1	2	22	25S	27E	57783	7 3554244* 🌍	3768	75		
C 03264 POD1	С	ED	2	1	2	02	25S	27E	57939	1 3559099* 🌍	4084			
C 01841	С	ED			1	29	24S	27E	57380	6 3561953* 🌍	4979	150		
C 03263 POD1	С	ED	1	1	1	07	25S	28E	581628	8 3557501* 🌍	5929	133		
<u>C 01452</u>	С	ED				22	24S	27E	57743	5 3563175* 🌍	6079	95	70	25
C 03654 POD1	CUB	ED	2	3	1	24	25S	26E	570654	4 3553773 🌍	6184			
<u>C 01721</u>	С	ED			1	25	24S	27E	58027	1 3562033* 🌍	6545	170		
C 00819	С	ED		4	4	26	24S	26E	570022	2 3560935* 🌍	6716	62	42	20
<u>C 02221</u>	CUB	ED	4	3	2	25	25S	26E	571412	2 3551961* 🌍	6885	35		
										Ave	age Depth to	Water:	56	feet
											Minimum	Depth:	42	feet
											Maximum	Depth:	70 1	feet
Record Count: 10														

UTMNAD83 Radius Search (in meters):

Easting (X): 575700.33

Northing (Y): 3557348.29

Radius: 7000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/14/17 2:32 PM

Page 62 of 170

APPENDIX C LABORATORY ANALYTICAL REPORTS

June 16, 2017

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Coyote

OrderNo.: 1706251

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 1 sample(s) on 6/6/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1706251

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/16/2017

CLIENT: Souder, Miller & Associates Project: Coyote	Client Sample ID: L 1-0.5 (Source) Collection Date: 5/31/2017										
Lab ID: 1706251-001	Matrix:	SOIL	Received Date: 6/6/2017 10:15:00 AM								
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch							
EPA METHOD 300.0: ANIONS				Analyst: MRA							
Chloride	5700	300	mg/Kg	200 6/12/2017 5:00:22 PM 32211							
EPA METHOD 8015M/D: DIESEL RANG		S		Analyst: TOM							
Diesel Range Organics (DRO)	160	9.9	mg/Kg	1 6/8/2017 1:47:05 PM 32152							
Motor Oil Range Organics (MRO)	210	50	mg/Kg	1 6/8/2017 1:47:05 PM 32152							
Surr: DNOP	93.6	70-130	%Rec	1 6/8/2017 1:47:05 PM 32152							
EPA METHOD 8015D: GASOLINE RANG	GE			Analyst: NSB							
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1 6/7/2017 9:11:27 PM 32141							
Surr: BFB	97.2	54-150	%Rec	1 6/7/2017 9:11:27 PM 32141							
EPA METHOD 8021B: VOLATILES				Analyst: NSB							
Methyl tert-butyl ether (MTBE)	ND	0.094	mg/Kg	1 6/7/2017 9:11:27 PM 32141							
Benzene	ND	0.024	mg/Kg	1 6/7/2017 9:11:27 PM 32141							
Toluene	ND	0.047	mg/Kg	1 6/7/2017 9:11:27 PM 32141							
Ethylbenzene	ND	0.047	mg/Kg	1 6/7/2017 9:11:27 PM 32141							
Xylenes, Total	ND	0.094	mg/Kg	1 6/7/2017 9:11:27 PM 32141							
Surr: 4-Bromofluorobenzene	119	66.6-132	%Rec	1 6/7/2017 9:11:27 PM 32141							

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method I
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	R	RPD outside accepted recovery limits

Released to Imaging: 11/6/2023 7:58:18 AM

RL Reporting Detection Limit

- Blank
- ^s Page 1 of 5
- % Recovery outside of range due to dilution or matrix S

Client: Project:	Souder, Coyote	Miller & Asso	ociate	28							
Sample ID	MB-32211	SampTyp	e: MI	BLK	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch I): 32	211	F	RunNo: 43	3415				
Prep Date:	6/9/2017	Analysis Date	e: 6	9/2017	S	eqNo: 1	366812	Units: mg/K	g		
Analyte Chloride		Result I ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID	LCS-32211	SampTyp	e: LC	s	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch I): 32	211	F	RunNo: 4;	3415				
Prep Date:	6/9/2017	Analysis Date	e: 6	9/2017	S	eqNo: 1;	366813	Units: mg/K	g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	94.8	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

R

- RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix

1706251

16-Jun-17

WO#:

Page 2 of 5

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:Souder,Project:Coyote	Miller & A	ssociate	es							
Sample ID LCS-32152	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batcl	n ID: 32	152	F	RunNo: 4	3341				
Prep Date: 6/7/2017	Analysis D	0ate: 6/	/8/2017	S	SeqNo: 1	364955	Units: mg/#	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	42	10	50.00	0	84.3	73.2	114			
Surr: DNOP	4.0		5.000		81.0	70	130			
Sample ID MB-32152	SampT	ype: MI	BLK	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: PBS	Batcl	n ID: 32	152	F	RunNo: 4	3341				
Prep Date: 6/7/2017	Analysis E)ate: 6/	/8/2017	5	SeqNo: 1	364956	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.0		10.00		90.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

R

- RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix

1706251

16-Jun-17

WO#:

Page 3 of 5

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:Souder,Project:Coyote	, Miller & Associates			
Sample ID MB-32141	SampType: MBLK	TestCode: EPA Method	8015D: Gasoline Range	1
Client ID: PBS	Batch ID: 32141	RunNo: 43317		
Prep Date: 6/6/2017	Analysis Date: 6/7/2017	SeqNo: 1364057	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 5.0 1000 1000	101 54	150	
Sample ID LCS-32141	SampType: LCS	TestCode: EPA Method	8015D: Gasoline Range	1
Client ID: LCSS	Batch ID: 32141	RunNo: 43317		
Prep Date: 6/6/2017	Analysis Date: 6/7/2017	SeqNo: 1364058	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Gasoline Range Organics (GRO) Surr: BFB	26 5.0 25.00 1100 1000		125 150	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

R

- RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix

1706251

16-Jun-17

WO#:

Page 4 of 5

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	Souder, Miller & . Coyote	Associate	es							
Sample ID MB-3214	I1 Samp	oType: ME	BLK	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID: PBS	RunNo: 43317									
Prep Date: 6/6/201	7 Analysis	Analysis Date: 6/7/2017		SeqNo: 1364078			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MT	BE) ND	0.10					-			
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluoroben	zene 1.3		1.000		126	66.6	132			
Sample ID LCS-321	41 Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: LCSS	Bat	ch ID: 32	141	F	RunNo: 4	3317				
Prep Date: 6/6/201	7 Analysis	Date: 6/	7/2017	S	SeqNo: 1	364079	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MT	BE) 1.0	0.10	1.000	0	101	66.5	120			
Benzene	1.1	0.025	1.000	0	105	80	120			
Toluene	1.1	0.050	1.000	0	106	80	120			
Ethylbenzene	1.1	0.050	1.000	0	106	80	120			
Xylenes, Total	3.2	0.10	3.000	0	107	80	120			
Surr: 4-Bromofluoroben	zene 1.2		1.000		124	66.6	132			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

R

S

- RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix

1706251

16-Jun-17

WO#:

Page 5 of 5

•

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental . Albu TEL: 505-345-3975 Website: www.hau	4901 Hawkir querque, NM 8 FAX: 505-345-	ns NE 87109 Sam 4107	Sample Log-In Check List				
Client Name: SMA-CARLSBAD	Work Order Number:	1706251		RcptNo:	1			
Received By: Richie Eriacho	6/6/2017 10:15:00 AM		2-2	м 1 ма				
Completed By: Ashley Gallegos	6/6/2017 12:48:39 PM		AZ					
Reviewed By: Ar oldoudin			V					
<u>Chain of Custody</u>								
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹				
2. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present				
3. How was the sample delivered?		<u>Courier</u>						
<u>Log In</u>								
4. Was an attempt made to cool the samples?	?	Yes 🗹	No 🗌	NA 🗌				
5. Were all samples received at a temperature	e of >0° C to 6.0°C	Yes 🗹	No 🗌					
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌					
7. Sufficient sample volume for indicated test(5)?	Yes 🗹	No 🗌					
8. Are samples (except VOA and ONG) prope	ly preserved?	Yes 🔽	No 🗌					
9. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗆				
10.VOA vials have zero headspace?		Yes	No 🗌	No VOA Vials 🔽				
11. Were any sample containers received brok	en?	Yes 🗌	No 🗹	# of preserved				
40 -			N. 🗆	bottles checked				
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗔	for pH: (<2 or	>12 unless noted)			
13 Are matrices correctly identified on Chain of	Custody?	Yes 🗹	No 🗌	Adjusted?				
14. Is it clear what analyses were requested?		Yes 🔽	No 🗌					
 Were all holding times able to be met? (If no, notify customer for authorization.) 		Yes 🗹	No 🗌	Checked by:				
Special Handling (if applicable)								
		× □	N 🗆					
16. Was client notified of all discrepancies with		Yes 🗀	No 🗌	NA 🗹				
Person Notified:	Date							
By Whom: Regarding:	Via:	eMail	Phone Fax	In Person				
Client Instructions:	***************************************							
17. Additional remarks:								
18. <u>Cooler Information</u>		Seal Date	Signed By					
Page 1 of 1	<u> </u>							

June 15, 2017

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

OrderNo.: 1706645

RE: Lucid Coyote

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 21 sample(s) on 6/13/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109
Project: Lucid Coyote

CLIENT: Souder, Miller & Associates

.

Analytical Report
Lab Order 1706645

Hall Environmental	Analysis	Laboratory, Inc.	
		, , , , , , , , , , , , , , , , , , , ,	

Lab Order 1706645 Date Reported: 6/15/2017

Client Sample ID: L1-0.5 Collection Date: 6/9/2017 9:00:00 AM Pageiyad Date: 6/13/2017 9:45:00 AM

Lab ID: 1706645-001	Matrix:	SOIL	Received I	Received Date: 6/13/2017 9:45:00 AM			
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch	
EPA METHOD 418.1: TPH					Analy	st: MAB	
Petroleum Hydrocarbons, TR	3500	200	mg/Kg	10	6/15/2017	32267	
EPA METHOD 300.0: ANIONS					Analy	st: LGT	
Chloride	790	30	mg/Kg	20	6/14/2017 11:42:44 A	M 32282	
EPA METHOD 8021B: VOLATILES					Analy	st: NSB	
Methyl tert-butyl ether (MTBE)	ND	0.096	mg/Kg	1	6/14/2017 11:29:43 A	M 32244	
Benzene	ND	0.024	mg/Kg	1	6/14/2017 11:29:43 A	M 32244	
Toluene	ND	0.048	mg/Kg	1	6/14/2017 11:29:43 A	M 32244	
Ethylbenzene	ND	0.048	mg/Kg	1	6/14/2017 11:29:43 A	M 32244	
Xylenes, Total	ND	0.096	mg/Kg	1	6/14/2017 11:29:43 A	M 32244	
Surr: 4-Bromofluorobenzene	111	66.6-132	%Rec	1	6/14/2017 11:29:43 A	M 32244	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Project: Lucid Coyote

CLIENT: Souder, Miller & Associates

Analytical Report
Lab Order 1706645

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/15/2017

 Client Sample ID: L1-1

 Collection Date: 6/9/2017 9:15:00 AM

 Matrix: SOIL
 Received Date: 6/13/2017 9:45:00 AM

Lab ID: 1706645-002	Matrix:	SOIL	Received I	Received Date: 6/13/2017 9:45:00 AM				
Analyses	Result	PQL Q	Qual Units	DF Date Analyzed	Batch			
EPA METHOD 418.1: TPH				Analys	t: MAB			
Petroleum Hydrocarbons, TR	11000	1900	mg/Kg	100 6/15/2017	32267			
EPA METHOD 300.0: ANIONS				Analys	t: LGT			
Chloride	1000	30	mg/Kg	20 6/14/2017 12:44:47 PN	1 32282			
EPA METHOD 8021B: VOLATILES				Analys	t: NSB			
Methyl tert-butyl ether (MTBE)	ND	0.092	mg/Kg	1 6/14/2017 11:53:34 AN	1 32244			
Benzene	ND	0.023	mg/Kg	1 6/14/2017 11:53:34 AM	1 32244			
Toluene	0.052	0.046	mg/Kg	1 6/14/2017 11:53:34 AM	1 32244			
Ethylbenzene	ND	0.046	mg/Kg	1 6/14/2017 11:53:34 AM	1 32244			
Xylenes, Total	0.46	0.092	mg/Kg	1 6/14/2017 11:53:34 AM	1 32244			
Surr: 4-Bromofluorobenzene	136	66.6-132	S %Rec	1 6/14/2017 11:53:34 AN	1 32244			

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis	s Laborat	tory, Inc.		Analytical Report Lab Order 1706645 Date Reported: 6/15/2017	
CLIENT: Souder, Miller & Associates			Client Samp	le ID: L2-0.5	
Project: Lucid Coyote			Collection	Date: 6/9/2017 12:00:00 PM	
Lab ID: 1706645-003	Matrix: S	SOIL	Received	Date: 6/13/2017 9:45:00 AM	
Analyses	Result	PQL Qua	l Units	DF Date Analyzed Ba	ıtch
EPA METHOD 300.0: ANIONS				Analyst: LG	ЭТ
Chloride	91	30	mg/Kg	20 6/14/2017 1:22:01 PM 32	282

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis	s Laborat	tory, Inc.		Analytical Report Lab Order 1706645 Date Reported: 6/15/2017
CLIENT: Souder, Miller & Associates			Client Samp	le ID: L2-1
Project: Lucid Coyote			Collection	Date: 6/9/2017 12:15:00 PM
Lab ID: 1706645-004	Matrix: S	SOIL	Received	Date: 6/13/2017 9:45:00 AM
Analyses	Result	PQL Qu	al Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS				Analyst: LGT
Chloride	130	30	mg/Kg	20 6/14/2017 1:34:25 PM 32282

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Project: Lucid Coyote

CLIENT: Souder, Miller & Associates

.

Analytical Report
Lab Order 1706645

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/15/2017

Client Sample ID: L2-2 Collection Date: 6/9/2017 12:30:00 PM Received Date: 6/13/2017 9:45:00 AM

Lab ID: 1706645-005	Matrix:	SOIL	Received 1	Date: 6/13/2017 9:45:00 AM
Analyses	Result	PQL Qu	al Units	DF Date Analyzed Batch
EPA METHOD 418.1: TPH				Analyst: MAB
Petroleum Hydrocarbons, TR	21	20	mg/Kg	1 6/15/2017 32267
EPA METHOD 300.0: ANIONS				Analyst: LGT
Chloride	220	30	mg/Kg	20 6/14/2017 1:46:50 PM 32282
EPA METHOD 8021B: VOLATILES				Analyst: NSB
Methyl tert-butyl ether (MTBE)	ND	0.098	mg/Kg	1 6/14/2017 12:17:14 PM 32244
Benzene	ND	0.024	mg/Kg	1 6/14/2017 12:17:14 PM 32244
Toluene	ND	0.049	mg/Kg	1 6/14/2017 12:17:14 PM 32244
Ethylbenzene	ND	0.049	mg/Kg	1 6/14/2017 12:17:14 PM 32244
Xylenes, Total	ND	0.098	mg/Kg	1 6/14/2017 12:17:14 PM 32244
Surr: 4-Bromofluorobenzene	109	66.6-132	%Rec	1 6/14/2017 12:17:14 PM 32244

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis	s Laborat	tory, Inc.		Analytical Report Lab Order 1706645 Date Reported: 6/15/201	17
CLIENT: Souder, Miller & Associates			Client Samp	le ID: L3-1	
Project: Lucid Coyote			Collection	Date: 6/9/2017 1:15:00 PM	
Lab ID: 1706645-006	Matrix:	SOIL	Received	Date: 6/13/2017 9:45:00 AM	
Analyses	Result	PQL Qua	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analyst:	LGT
Chloride	55	30	mg/Kg	20 6/14/2017 1:59:15 PM	32282

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis	Analytical Report Lab Order 1706645 Date Reported: 6/15/2017				
CLIENT: Souder, Miller & Associates			Client Samp	le ID: L3-3	
Project: Lucid Coyote			Collection	Date: 6/9/2017 1:00:00 PM	
Lab ID: 1706645-007	Matrix:	SOIL	Received	Date: 6/13/2017 9:45:00 AM	
Analyses	Result	PQL Qua	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analys	st: LGT
Chloride	35	30	mg/Kg	20 6/14/2017 2:11:39 PM	32282

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysi		Analytical Report Lab Order 1706645 Date Reported: 6/15/2017				
CLIENT: Souder, Miller & Associates Project: Lucid Coyote Lab ID: 1706645-008	Client Sample ID: L3-4.5 Collection Date: 6/9/2017 1:20:00 PM Matrix: SOIL Received Date: 6/13/2017 9:45:00 AM					
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 418.1: TPH Petroleum Hydrocarbons, TR	38	19	mg/Kg	1	6/15/2017	st: MAB 32267
EPA METHOD 300.0: ANIONS Chloride	49	30	mg/Kg	20	Analy 6/14/2017 12:58:02 P	st: LGT M 32285

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 8 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysi	Analytical Report Lab Order 1706645 Date Reported: 6/15/2017				
CLIENT: Souder, Miller & Associates			Client Samp	le ID: L4-0.5	
Project: Lucid Coyote			Collection	Date: 6/9/2017 1:30:00 PM	
Lab ID: 1706645-009	Matrix:	SOIL	Received	Date: 6/13/2017 9:45:00 AM	
Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	vst: MRA
Chloride	4000	150	mg/Kg	100 6/14/2017 8:51:45 PI	M 32282

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysi	Analytical Report Lab Order 1706645 Date Reported: 6/15/2017				
CLIENT: Souder, Miller & Associates			Client Samp	le ID: L45	
Project: Lucid Coyote			Collection	Date: 6/9/2017 11:00:00 AM	[
Lab ID: 1706645-010	Matrix:	SOIL	Received	Date: 6/13/2017 9:45:00 AM	[
Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Anal	yst: LGT
Chloride	510	30	mg/Kg	20 6/14/2017 2:36:29 P	M 32282

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 10 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Project:

Lab ID:

Analyses

CLIENT: Souder, Miller & Associates

Lucid Coyote

1706645-011

Analytical Report
Lab Order 1706645

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/15/2017 Client Sample ID: L4-2.5

 Collection Date: 6/9/2017 11:00:00 AM

 Matrix:
 SOIL
 Received Date: 6/13/2017 9:45:00 AM

 Result
 PQL
 Qual
 Units
 DF Date Analyzed
 Batch

 Analyst: MAB

EPA METHOD 418.1: TPH					Analyst	MAB
Petroleum Hydrocarbons, TR	4500	1900	mg/Kg	100	6/15/2017	32267
EPA METHOD 300.0: ANIONS					Analyst	LGT
Chloride	720	30	mg/Kg	20	6/14/2017 3:13:43 PM	32282
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Methyl tert-butyl ether (MTBE)	ND	0.094	mg/Kg	1	6/14/2017 12:40:50 PM	32244
Benzene	ND	0.023	mg/Kg	1	6/14/2017 12:40:50 PM	32244
Toluene	ND	0.047	mg/Kg	1	6/14/2017 12:40:50 PM	32244
Ethylbenzene	ND	0.047	mg/Kg	1	6/14/2017 12:40:50 PM	32244
Xylenes, Total	ND	0.094	mg/Kg	1	6/14/2017 12:40:50 PM	32244
Surr: 4-Bromofluorobenzene	117	66.6-132	%Rec	1	6/14/2017 12:40:50 PM	32244

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 11 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

				Analytical Report Lab Order 1706645	
Hall Environmental Analysi	s Labora	tory, Inc.	Date Reported: 6/15/2017		
CLIENT: Souder, Miller & Associates			Client Samp	le ID: L5-0.5	
Project: Lucid Coyote			Collection	Date: 6/9/2017 2:00:00 PM	
Lab ID: 1706645-012	Matrix:	SOIL	Received	Date: 6/13/2017 9:45:00 AM	
Analyses	Result	PQL Qua	l Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analys	st: LGT
Chloride	280	30	mg/Kg	20 6/14/2017 3:26:08 PM	32282

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit. Page 12 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysi		Analytical Report Lab Order 1706645 Date Reported: 6/15/2017			
CLIENT: Souder, Miller & Associates Project: Lucid Coyote			Client Samp Collection	*	
Lab ID: 1706645-013	Matrix: S	SOIL	Received	Date: 6/13/2017 9:45:00 AM	
Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: MRA
Chloride	73	30	mg/Kg	20 6/14/2017 8:02:06 PM	/ 32282

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit. Page 13 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Project: Lucid Coyote

CLIENT: Souder, Miller & Associates

.

Analytical Report
Lab Order 1706645

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/15/2017 Client Sample ID: L5-3.5

Collection Date: 6/9/2017 1:45:00 PM Received Date: 6/13/2017 9:45:00 AM

Lab ID: 1706645-014	Matrix:	SOIL	Received I	Received Date: 6/13/2017 9:45:00 AM				
Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch			
EPA METHOD 418.1: TPH				Analys	: MAB			
Petroleum Hydrocarbons, TR	25000	1900	mg/Kg	100 6/15/2017	32267			
EPA METHOD 300.0: ANIONS				Analys	: MRA			
Chloride	80	30	mg/Kg	20 6/14/2017 8:14:30 PM	32282			
EPA METHOD 8021B: VOLATILES				Analys	: NSB			
Methyl tert-butyl ether (MTBE)	ND	0.48	mg/Kg	5 6/14/2017 1:04:27 PM	32244			
Benzene	ND	0.12	mg/Kg	5 6/14/2017 1:04:27 PM	32244			
Toluene	ND	0.24	mg/Kg	5 6/14/2017 1:04:27 PM	32244			
Ethylbenzene	ND	0.24	mg/Kg	5 6/14/2017 1:04:27 PM	32244			
Xylenes, Total	5.5	0.48	mg/Kg	5 6/14/2017 1:04:27 PM	32244			
Surr: 4-Bromofluorobenzene	140	66.6-132	S %Rec	5 6/14/2017 1:04:27 PM	32244			

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit. Page 14 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Project: Lucid Coyote

CLIENT: Souder, Miller & Associates

Analytical Report
Lab Order 1706645

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/15/2017
Client Sample ID: L6-0.5

Collection Date: 6/9/2017 11:10:00 AM Received Date: 6/13/2017 9:45:00 AM

Lab ID: 1706645-015	Matrix:	Received 1	Received Date: 6/13/2017 9:45:00 AM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch	
EPA METHOD 418.1: TPH					Analys	: MAB	
Petroleum Hydrocarbons, TR	110	20	mg/Kg	1	6/15/2017	32267	
EPA METHOD 300.0: ANIONS					Analys	: MRA	
Chloride	830	30	mg/Kg	20	6/14/2017 8:26:55 PM	32282	
EPA METHOD 8021B: VOLATILES					Analys	: NSB	
Methyl tert-butyl ether (MTBE)	ND	0.096	mg/Kg	1	6/14/2017 1:51:43 PM	32244	
Benzene	ND	0.024	mg/Kg	1	6/14/2017 1:51:43 PM	32244	
Toluene	ND	0.048	mg/Kg	1	6/14/2017 1:51:43 PM	32244	
Ethylbenzene	ND	0.048	mg/Kg	1	6/14/2017 1:51:43 PM	32244	
Xylenes, Total	ND	0.096	mg/Kg	1	6/14/2017 1:51:43 PM	32244	
Surr: 4-Bromofluorobenzene	110	66.6-132	%Rec	1	6/14/2017 1:51:43 PM	32244	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 15 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

EPA METHOD 8021B: VOLATILES

Methyl tert-butyl ether (MTBE)

Surr: 4-Bromofluorobenzene

Benzene

Toluene

Ethylbenzene

Xylenes, Total

32244

32244

32244

32244

32244

32244

Analyst: NSB

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1706645

Date Reported: 6/15/2017

6/14/2017 6:11:55 PM

		-			-			
CLIENT: Souder, Miller & Associates	Client Sample ID: SW1							
Project: Lucid Coyote		Collection Date: 6/9/2017 2:00:00 PM						
Lab ID: 1706645-016	Matrix: SOIL Received Date: 6/13/2017 9:45:00					AM		
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch		
EPA METHOD 418.1: TPH					A	nalyst: MAB		
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	6/15/2017	32267		
EPA METHOD 300.0: ANIONS					A	nalyst: MRA		
Chloride	120	30	mg/Kg	20	6/14/2017 8:39:2	20 PM 32282		

0.094

0.023

0.047

0.047

0.094

66.6-132

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%Rec

1

1

1

1

1

1

ND

ND

ND

ND

ND

113

Qual	ifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
		D	Sample Diluted Due to Matrix	Е	Value above quantitation range
		Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 16 of 24
	Ν	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
		R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
		S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

.

Analytical Report Lab Order 1706645

Date Reported: 6/15/2017

CLIENT: Souder, Miller & Associates		(lient Sam	ole ID: SW2	
Project: Lucid Coyote	Collection Date: 6/9/2017 2:30:00 PM				
Lab ID: 1706645-017	Matrix: SOIL Received Date: 6/13/2017 9:45:00 AM				
Analyses	Result	PQL Qual	Units	DF Date Analyzed	Batch
EPA METHOD 418.1: TPH				Analys	t: MAB

					,	
Petroleum Hydrocarbons, TR	61	19	mg/Kg	1	6/15/2017	32267
EPA METHOD 300.0: ANIONS					Analyst:	LGT
Chloride	40	30	mg/Kg	20	6/14/2017 1:35:16 PM	32285
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Methyl tert-butyl ether (MTBE)	ND	0.096	mg/Kg	1	6/14/2017 6:35:33 PM	32244
Benzene	ND	0.024	mg/Kg	1	6/14/2017 6:35:33 PM	32244
Toluene	ND	0.048	mg/Kg	1	6/14/2017 6:35:33 PM	32244
Ethylbenzene	ND	0.048	mg/Kg	1	6/14/2017 6:35:33 PM	32244
Xylenes, Total	ND	0.096	mg/Kg	1	6/14/2017 6:35:33 PM	32244
Surr: 4-Bromofluorobenzene	112	66.6-132	%Rec	1	6/14/2017 6:35:33 PM	32244

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 17 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

of 24

Analytical Report

Lab Order 1706645

Date Reported: 6/15/2017

CLIENT :	Souder, Miller & Associates		Client Sample ID: SW3
Project:	Lucid Coyote		Collection Date: 6/9/2017 2:45:00 PM
Lab ID:	1706645-018	Matrix: SOIL	Received Date: 6/13/2017 9:45:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 418.1: TPH					Analyst	MAB
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	6/15/2017	32267
EPA METHOD 300.0: ANIONS					Analyst	LGT
Chloride	39	30	mg/Kg	20	6/14/2017 1:47:41 PM	32285
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	0.097	mg/Kg	1	6/14/2017 6:59:13 PM	32244
Benzene	ND	0.024	mg/Kg	1	6/14/2017 6:59:13 PM	32244
Toluene	ND	0.048	mg/Kg	1	6/14/2017 6:59:13 PM	32244
Ethylbenzene	ND	0.048	mg/Kg	1	6/14/2017 6:59:13 PM	32244
Xylenes, Total	ND	0.097	mg/Kg	1	6/14/2017 6:59:13 PM	32244
Surr: 4-Bromofluorobenzene	113	66.6-132	%Rec	1	6/14/2017 6:59:13 PM	32244

(Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
		D	Sample Diluted Due to Matrix	Е	Value above quantitation range
		Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 18 of 24
		ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
		R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
		S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Methyl tert-butyl ether (MTBE)

Surr: 4-Bromofluorobenzene

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1706645

Date Reported: 6/15/2017

6/14/2017 7:22:46 PM

32244

32244

32244

32244

32244

32244

		• •				017		
CLIENT: Souder, Miller & Associates		(Client Samp	le ID: SW	/4			
Project: Lucid Coyote		Collection Date: 6/9/2017 3:15:00 PM						
Lab ID: 1706645-019	Matrix:	SOIL	Received	Date: 6/1	3/2017 9:45:00 AM			
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed	Batch		
EPA METHOD 418.1: TPH					Analys	st: MAB		
Petroleum Hydrocarbons, TR	42	20	mg/Kg	1	6/15/2017	32267		
EPA METHOD 300.0: ANIONS					Analys	st: LGT		
Chloride	ND	30	mg/Kg	20	6/14/2017 2:00:05 PM	32285		
EPA METHOD 8021B: VOLATILES					Analys	st: NSB		

0.095

0.024

0.048

0.048

0.095

66.6-132

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%Rec

1

1

1

1

1

1

ND

ND

ND

ND

ND

110

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 19 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysi	s Laborat	tory, Inc.		Analytical Report Lab Order 1706645 Date Reported: 6/15/2017
CLIENT: Souder, Miller & Associates			Client Samp	le ID: BG1-1
Project: Lucid Coyote			Collection 1	Date: 6/9/2017 2:45:00 PM
Lab ID: 1706645-020	Matrix:	SOIL	Received	Date: 6/13/2017 9:45:00 AM
Analyses	Result	PQL Qu	al Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS				Analyst: LGT
Chloride	170	30	mg/Kg	20 6/14/2017 2:37:18 PM 32285

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 20 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis	s Laborat	tory, Inc.		Analytical Report Lab Order 1706645 Date Reported: 6/15/2017	7
CLIENT: Souder, Miller & Associates			Client Sampl	e ID: BG1-2	
Project: Lucid Coyote			Collection 1	Date: 6/9/2017 2:50:00 PM	
Lab ID: 1706645-021	Matrix: S	SOIL	Received	Date: 6/13/2017 9:45:00 AM	
Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analyst:	LGT
Chloride	120	30	mg/Kg	20 6/13/2017 11:45:17 PM	32261

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 21 of 24
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Client: Project:		er, Miller & Associates d Coyote			
Sample ID	MB-32261	SampType: MBLK	TestCode: EPA Method	300.0: Anions	
Client ID:	PBS	Batch ID: 32261	RunNo: 43495		
Prep Date:	6/13/2017	Analysis Date: 6/13/2017	SeqNo: 1369763	Units: mg/Kg	
Analyte Chloride		Result PQL SPK value ND 1.5	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Sample ID	LCS-32261	SampType: LCS	TestCode: EPA Method	300.0: Anions	
Client ID:	LCSS	Batch ID: 32261	RunNo: 43495		
Prep Date:	6/13/2017	Analysis Date: 6/13/2017	SeqNo: 1369764	Units: mg/Kg	
Analyte Chloride		ResultPQLSPK value141.515.00	SPK Ref Val%RECLowLimit092.790	HighLimit %RPD 110	RPDLimit Qual
Sample ID	MB-32285	SampType: MBLK	TestCode: EPA Method	300.0: Anions	
Client ID:	PBS	Batch ID: 32285	RunNo: 43507		
Prep Date:	6/14/2017	Analysis Date: 6/14/2017	SeqNo: 1370245	Units: mg/Kg	
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		ND 1.5			
Sample ID	LCS-32285	SampType: LCS	TestCode: EPA Method	300.0: Anions	
Client ID:	LCSS	Batch ID: 32285	RunNo: 43507		
Prep Date:	6/14/2017	Analysis Date: 6/14/2017	SeqNo: 1370246	Units: mg/Kg	
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		14 1.5 15.00	0 94.6 90	110	
Sample ID	MB-32282	SampType: mblk	TestCode: EPA Method	300.0: Anions	
Client ID:	PBS	Batch ID: 32282	RunNo: 43485		
Prep Date:	6/14/2017	Analysis Date: 6/14/2017	SeqNo: 1370344	Units: mg/Kg	
Analyte Chloride		Result PQL SPK value ND 1.5	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
	1.00.00000		T		
	LCS-32282	SampType: Ics	TestCode: EPA Method	300.0: Anions	
Client ID: Prep Date:	6/14/2017	Batch ID: 32282 Analysis Date: 6/14/2017	RunNo: 43485 SeqNo: 1370345	Units: mg/Kg	
Analyte			SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		14 1.5 15.00	0 91.8 90	110	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 22 of 24

- WO#: 1706645 15-Jun-17

Client: Project:	Souder, Miller & A	Associat	es							
Sample ID MB-3	2267 Samp	туре: М	BLK	Tes	tCode: El	PA Method	418.1: TPH			
Client ID: PBS	Bat	ch ID: 32	267	F	RunNo: 4	3516				
Prep Date: 6/14	Analysis	Date: 6	/15/2017	S	SeqNo: 1	370773	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hydrocarbo	ns, TR ND	20								
Sample ID LCS-	32267 Samp	SampType: LCS TestCode: EPA Method					418.1: TPH			
Client ID: LCSS	Bat Bat	Batch ID: 32267 RunNo: 43516								
Prep Date: 6/14	Analysis	Date: 6	/15/2017	S	SeqNo: 1	370775	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hydrocarbo	ns, TR 110	20	100.0	0	112	61.7	138			
Sample ID LCSE)-32267 Samp	Type: LO	CSD	Tes	tCode: El	PA Method	418.1: TPH			
Client ID: LCSS	BO2 Bat	ch ID: 32	267	F	RunNo: 4	3516				
Prep Date: 6/14	/2017 Analysis	Date: 6	/15/2017	S	SeqNo: 1	370776	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hydrocarbo	ns, TR 120	20	100.0	0	120	61.7	138	6.40	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

15-Jun-17

1706645

WO#:

Page 23 of 24

	Souder, Miller & A Lucid Coyote	Associate	25							
Sample ID MB-322	44 Samp	Туре: МЕ	BLK	Tes	tCode: El	tiles				
Client ID: PBS	Bato	h ID: 32	244	F	RunNo: 4	3491				
Prep Date: 6/13/20	017 Analysis I	Date: 6/	14/2017	S	eqNo: 1	370062	Units: mg/k	íg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (M	rbe) ND	0.10								
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorober	izene 1.1		1.000		108	66.6	132			
Sample ID LCS-32	244 Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: LCSS	Bato	ch ID: 32	244	F	RunNo: 4	3491				
Prep Date: 6/13/20	017 Analysis I	Date: 6/	14/2017	S	eqNo: 1	370063	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (M	TBE) 0.85	0.10	1.000	0	84.5	66.5	120			
Benzene	1.0	0.025	1.000	0	99.6	80	120			
Toluene	1.0	0.050	1.000	0	99.8	80	120			
Ethylbenzene	0.98	0.050	1.000	0	97.8	80	120			
Xylenes, Total	2.9	0.10	3.000	0	97.2	80	120			
Surr: 4-Bromofluorober	izene 1.1		1.000		111	66.6	132			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix

Released to Imaging: 11/6/2023 7:58:18 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1706645

15-Jun-17

WO#:

Page 24 of 24

Page 97 of 170

ANAL	RONMENTA Ysis Ratory	L	7 TEL: 505-345-3	tal Analysis Labora 4901 Hawkins Albuquerque, NM 87 975 FAX: 505-345-4 .hallenvironmental.	NE 7109 Sam 1107	ple Log-In Cł	eck List
Client Name:	SMA-CARL	SBAD	Work Order Numl	per: 1706645		RcptNo:	1
Received By:	Richie Eria	icho	6/13/2017 9:45:00 /	λM	12-2	~	
Completed By:	Ashley Gal	legos	6/13/2017 10:37:10	AM	AZ		
Reviewed By:	ENM		06/13/17		V		
Chain of Cus	stody						
1. Custody set	als intact on sa	ample bottles?		Yes 🗌	No 🗌	Not Present 🔽	
2. Is Chain of	Custody comp	lete?		Yes 🗹	No 🗌	Not Present	
3. How was th	e sample deliv	ered?		Courier			
<u>Log In</u>				_			
4. Was an atte	empt made to	cool the sample	es?	Yes 🗹	No 🗌	NA 🗌	
5. Were all sa	mples receive	d at a temperati	ure of >0° C to 6.0°C	Yes 🗹	No 🗌	NA	
6. Sample(s)	in proper conta	iner(s)?		Yes 🗹	No 🗍		
7. Sufficient sa	ample volume	for indicated tes	st(s)?	Yes 🗹	No 🗌		
8. Are sample	s (except VOA	and ONG) prop	perly preserved?	Yes 🔽	No 🗌		
9. Was preser	vative added t	o bottles?		Yes 🗌	No 🗹	NA 🗌	
10.VOA vials h	ave zero head	space?		Yes 🗌	No 🗌	No VOA Vials 🗹	
11. Were any s	ample contain	ers received bro	oken?	Yes ∐	No 🗹	# of preserved	
12. Does paper (Note discre		ottle labels? ain of custody)		Yes 🗹	No 🗌	bottles checked for pH: (<2 or	>12 unless noted
13. Are matrice			of Custody?	Yes 🗹	No 🗌	Adjusted?	
14, Is it clear wi	hat analyses w	ere requested?		Yes 🔽	No 🗌	: :	
15. Were all ho (If no, notify	lding times abl customer for			Yes 🗹	No 🗔	Checked by:	
Special Hand	dling (if app	olicable)					
16. Was client r	notified of all d	iscrepancies wi	th this order?	Yes 🗌	No 🗌	NA 🗹	
Perso	n Notified:		Date				
By WI	hom:		Via:	eMail 🗌 I	Phone 📋 Fax	In Person	
Regar							
Client	Instructions:		·			· · · · · · · · · · · · · · · · · · ·	
17. Additional r	remarks:						
18. <u>Cooler Infe</u> Cooler N		Condition	Seal Intact Seal No	Seal Date	Signed By	1	
1	1.3		res				

0

Client: SMA										ļ					
			Standard	XRush		Л			Į	No.			ANAI YSTS I ABODATODY		12
			Project Name:				100		www.hallenvironmontal.com) monto			>	;
Mailing Address:			Lucid	Coyote	r	4	4901 Hawkins NE	awkins		Albuqu	erone	- Albuquerque NM 87109	7109		
			Project #:	D		1	Tel. 505-345-3975	5-345-		Fax	505-3	505-345-4107	22		
Phone #:									Ar	Analysis Request	Requ	est			
email or Fax#:			Project Manager:	jer.		_	_			(*(_	
QA/QC Package:		Level 4 (Full Validation)	Austin	Weyant	tut				(SMI	05'*05	10000				
Accreditation	O Post		2						-	NO ^{3'} I					
			On Ice:	W Yes	O No		1000		28			(A			
C EDD (Type)			Temp	erature: 1,8		1	10.00	1.12) ol	-	səp				70
Date Time M	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No. 170 (0095	тм + хэта тм + хэта	8015B	EDB (Metho)168) a'HA9	PCRA 8 Me Prions (FQ	oitse9 1808	40V) 80828 im92) 0728			Air Bubbles
NelDa117 2:00 S	Soil	15-0.5	4 02.		-01-242	-			-	×					\vdash
1 1:30	-	15-2	-		6410-			-		×					
1:45		15-3.5			-01.84	×		×		×					
01:10		16 - 0.5	<i>→</i>		59110-	×		×		×					
	_							_				_			
1 2:00	_	Suel	_		-017 B	×		×		×					
2:30	_	SWZ	_		-0181	×		×		×					- 2
2:45		5 W 3			-010	×		×		X					
3.15		Sw4	->		-0501	×		×		×					
2:45		B61-1			-020					×		-			-
. 2:50	>	61-2	9		1220					×					-
8	Relinquished by	Norman	Receipedar.		6/12/17 1400	Remarks	:S:		8						
Date: Time: Rel	and the	phil of the second seco	Received by:	9	bate Time (6) 13/17 0945										

September 21, 2017

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Coyote

OrderNo.: 1709919

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 2 sample(s) on 9/15/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysi	s Labora	с.	Lab Order 1709919 Date Reported: 9/21/2017						
CLIENT: Souder, Miller & Associates			C	lient Samp	e ID: L4	-3			
Project: Coyote				Collection 1	Date: 9/1	4/2017 9:05:00 AM			
Lab ID: 1709919-001	Matrix:	SOIL		Received	Date: 9 /1	5/2017 9:30:00 AM			
Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch		
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS	6				Analys	: JME		
Diesel Range Organics (DRO)	3500	92		mg/Kg	10	9/20/2017 5:37:23 PM	33944		
Motor Oil Range Organics (MRO)	2400	460		mg/Kg	10	9/20/2017 5:37:23 PM	33944		
Surr: DNOP	0	70-130	S	%Rec	10	9/20/2017 5:37:23 PM	33944		
EPA METHOD 8015D: GASOLINE RANG	GE					Analys	: NSB		
Gasoline Range Organics (GRO)	6.2	4.8		mg/Kg	1	9/19/2017 2:41:39 PM	33919		
Surr: BFB	126	54-150		%Rec	1	9/19/2017 2:41:39 PM	33919		

Qualifiers: *	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the as

- Sample Diluted Due to Matrix D
 - Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 4 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order 1709919

Hall E	nvironmental Analysis	Laboratory, Inc.	Date Reported: 9/21/2017
CLIENT	Souder, Miller & Associates		Client Sample ID: L5-4
Project:	Coyote		Collection Date: 9/14/2017 9:07:00 AM
Lab ID:	1709919-002	Matrix: SOIL	Received Date: 9/15/2017 9:30:00 AM

Analyses	Result	POL (Dual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS		C · · ·			J.	st: JME
Diesel Range Organics (DRO)	1100	93		mg/Kg	10	9/20/2017 6:05:59 PI	И 33944
Motor Oil Range Organics (MRO)	960	470		mg/Kg	10	9/20/2017 6:05:59 PI	A 33944
Surr: DNOP	0	70-130	S	%Rec	10	9/20/2017 6:05:59 PM	И 33944
EPA METHOD 8015D: GASOLINE R	ANGE					Analy	st: NSB
Gasoline Range Organics (GRO)	ND	4.7		mg/Kg	1	9/19/2017 8:09:35 PI	A 33919
Surr: BFB	98.3	54-150		%Rec	1	9/19/2017 8:09:35 PI	A 33919

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	E	3	Analyte detected in the associated Method Blank

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- E Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 4 J
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

.

Client: Souder	r, Miller & A	ssociate	s							
Project: Coyote	e									
Sample ID MB-33944	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	n ID: 33	944	F	RunNo: 4	5741				
Prep Date: 9/19/2017	Analysis D	0ate: 9 /	20/2017	S	452485	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	10		10.00		102	70	130			
Sample ID LCS-33944	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	n ID: 33	944	F	RunNo: 4	5741				
Prep Date: 9/19/2017	Analysis D)ate: 9 /	20/2017	S	eqNo: 1	453129	Units: mg/M	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	10	50.00	0	93.9	73.2	114			
Surr: DNOP	4.8		5.000		95.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1709919

21-Sep-17

WO#:

Page 3 of 4

Client: Project:	Souder, N Coyote	Miller & As	sociate	es							
Sample ID	MB-33919	SampTy	/pe: ME	BLK	Tes	Code: E	PA Method	8015D: Gaso	line Rang	e	
Client ID:	PBS	Batch	ID: 33	919	F	lunNo: 4	5719				
Prep Date:	9/18/2017	Analysis Da	ate: 9 /	19/2017	S	eqNo: 1	452000	Units: mg/K	g		
Analyte Gasoline Rang Surr: BFB	e Organics (GRO)	Result ND 990	PQL 5.0	SPK value	SPK Ref Val	%REC 99.2	LowLimit 54	HighLimit	%RPD	RPDLimit	Qual
	LCS-33919	SampTy	•					8015D: Gaso	line Rang	e	
Client ID: Prep Date:	LCSS 9/18/2017	Batch Analysis Da	ID: 33 ate: 9 /			tunNo: 4 SeqNo: 1		Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang Surr: BFB	e Organics (GRO)	31 1200	5.0	25.00 1000	0	123 121	76.4 54	125 150			
Sample ID	MB-33922	SampTy	/pe: ME	BLK	Tes	Code: E	PA Method	8015D: Gaso	line Rang	e	
Client ID:	PBS	Batch	ID: 33	922	F	unNo: 4	5719				
Prep Date:	9/18/2017	Analysis Da	ate: 9 /	19/2017	5	eqNo: 1	452007	Units: %Red	;		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		1000		1000		104	54	150			
Sample ID	LCS-33922	SampType: LCS TestCode: EPA Method 8015D: Gasoline Range									
Client ID:	LCSS	Batch	ID: 33	922	F	lunNo: 4	5719				
Prep Date:	9/18/2017	Analysis Da	ate: 9 /	19/2017	S	eqNo: 1	452008	Units: %Red	;		
Analyte Surr: BFB		Result 1200	PQL	SPK value 1000	SPK Ref Val	%REC 116	LowLimit 54	HighLimit 150	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1709919

21-Sep-17

WO#:

Page 4 of 4

•

HALL ENVIRONMENTAL ANALYSIS LABORATORY		Albu TEL: 505-345-3975	Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquergue, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com Work Order Number: 1709919				eck List
Client Name:	SMA-CARLSBAD	Work Order Number:	17099	919		RcptNo: 1	I
Received By:	Isaiah Ortiz	9/15/2017 9:30:00 AM		1			
Completed By:	Sophia Campuzano	9/18/2017 11:47:11 AM		در	and the second -		
Reviewed By:	IMO	9/18/2017		·			
Chain of Cust	tody						
1. Custody seal	ls intact on sample bottles?		Yes		No 🗌	Not Present 🔽	
2. Is Chain of C	ustody complete?		Yes	\checkmark	No 🗌	Not Present	
3. How was the	sample delivered?		<u>UPS</u>				
<u>Log In</u>							
4. Was an atter	mpt made to cool the sampl	es?	Yes	\checkmark	No 🗌	NA 🗌	
5. Were all sam	ples received at a temperat	ure of >0° C to 6.0°C	Yes		No 🗌		
6. Sample(s) in	proper container(s)?		Yes		No 🗌		
7. Sufficient san	mple volume for indicated te	st(s)?	Yes	\checkmark	No 🗌		
8. Are samples	(except VOA and ONG) pro	perly preserved?	Yes	\checkmark	No 🗌		
9. Was preserva	ative added to bottles?		Yes		No 🗹	NA 🗔	
10.VOA vials ha	ve zero headspace?		Yes		No 🗌	No VOA Vials 🗹	
11. Were any sa	mple containers received br	oken?	Yes		No 🗹 👘	# of preserved	
	ork match bottle labels? pancies on chain of custody)		Yes		No 🗌	bottles checked for pH:	>12 unless noted)
	correctly identified on Chair		Yes		No 🗌 🗄	Adjusted?	· · · · · · · · ·
14. Is it clear what	at analyses were requested?	>	Yes	\checkmark	No 🗌		
	ing times able to be met? customer for authorization.)		Yes		No 🗌 –	Checked by:	
Special Handl	ling (if applicable)						
16. Was client no	tified of all discrepancies w	th this order?	Yes		No 🗌	NA 🔽	
Person	Notified:	Date		****	aveirus an		
By Who	om:	Via:] eMa	iil 🗌 Phone	e 🗌 Fax 🛛	In Person	
Regardi	ing:						
	nstructions:	·····				·····	
17. Additional rei							
18. <u>Cooler Infor</u> Cooler No	Temp °C Condition	Seal Intact Seal No S	eal Da	ite Sigi	ned By		
· · · · · ·	<u></u>		=		ا 		· · · · · · · · · · · · · · · · · · ·
Page 1 of	1						

Received by OCD: 11/1/2023 2:31:21 PM

4901 Hawkins NE - Albuquerque, NM 87109

www.hallenvironmental.com

Fax 505-345-4107

Tel. 505-345-3975

ANALYSIS LABORATORY HALL ENVIRONMENTAL

5 day hum

Turn-Around Time:

Chain-of-Custody Record

-laulsball

Client: SMA

Mailing Address:

C Rush

K Standard Project Name:

0

Conol

Project #:

Accreditation K Standard

O NELAP

EDD (Type)

QA/QC Package:

email or Fax#:

Phone #:

Released to Imaging: 11/6/2023 7:58:18 AM

Date

Ş

(Tho

10.7 9.0

0

Air Bubbles (Y or N)

(O	
'OS'*((S) WBW /	
00 WI	
28082 1-20 250 2 1-1) 1-1) 1-1) 1-1) 1-1 1-1 1-1 1-1 1-1	
983 \ 1 40 ³¹ 112 204 204 204 205 205 205 205 205 205 205 205 205 205	
BTEX + MTB BTEX + MTB BTEX + MTB BTPH 8015B (TPH 8015B (B1012 (8310 d B2HP's (8310 d B2HP's (8310 d B2HP (8310 d B1012 (YOA) B050B (YOA)	
3	
Time Remarks:	-
Time	
to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical record	troug
No No No No No </td <td>Bit RCRA 6 Metals Bit Anions (F, CI, NO₂, PO₄, SO Bit Bit Bit Bit</td>	Bit RCRA 6 Metals Bit Anions (F, CI, NO ₂ , PO ₄ , SO Bit Bit Bit Bit

NPS

Date:

Qate;

diulic

Т T

October 17, 2017

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

RE: Coyote

OrderNo.: 1710762

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/13/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysi	s Labora	tory, Inc.			Lab Order 1710762 Date Reported: 10/17	//2017
CLIENT: Souder, Miller & Associates			Client Sample	e ID: L4		
Project: Coyote			Collection I	Date: 10	/11/2017 12:08:00 P	Μ
Lab ID: 1710762-001	Matrix:	SOIL	Received I	Date: 10	/13/2017 9:15:00 AM	N
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS	;			Anal	/st: TOM
Diesel Range Organics (DRO)	16	8.9	mg/Kg	1	10/16/2017 11:45:12	AM 34401
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	10/16/2017 11:45:12	AM 34401
Surr: DNOP	92.6	70-130	%Rec	1	10/16/2017 11:45:12	AM 34401
EPA METHOD 8015D: GASOLINE RANG	GE				Analy	/st: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/16/2017 9:56:25	AM 34399
Surr: BFB	97.8	54-150	%Rec	1	10/16/2017 9:56:25	AM 34399

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Anal

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 3
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
| Client: Souder, | Miller & A | ssociate | es | | | | | | | |
|--------------------------------|------------|----------|-----------|-------------|-----------|-----------|---------------------|-----------|------------|------|
| Project: Coyote | | | | | | | | | | |
| Sample ID LCS-34401 | SampT | ype: LC | s | Tes | tCode: El | PA Method | 8015M/D: Di | esel Rang | e Organics | |
| Client ID: LCSS | Batcl | h ID: 34 | 401 | F | RunNo: 4 | 6361 | | | | |
| Prep Date: 10/13/2017 | Analysis E | Date: 10 | 0/16/2017 | S | SeqNo: 1 | 476752 | Units: mg/ # | ٢g | | |
| Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual |
| Diesel Range Organics (DRO) | 46 | 10 | 50.00 | 0 | 92.3 | 73.2 | 114 | | | |
| Surr: DNOP | 4.6 | | 5.000 | | 92.8 | 70 | 130 | | | |
| Sample ID MB-34401 | SampT | ype: ME | BLK | Tes | tCode: El | PA Method | 8015M/D: Di | esel Rang | e Organics | |
| Client ID: PBS | Batcl | h ID: 34 | 401 | F | RunNo: 4 | 6361 | | | | |
| Prep Date: 10/13/2017 | Analysis D | Date: 10 | 0/16/2017 | 5 | SeqNo: 1 | 476753 | Units: mg/ # | ٢g | | |
| Analyte | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | %RPD | RPDLimit | Qual |
| Diesel Range Organics (DRO) | ND | 10 | | | | | | | | |
| Motor Oil Range Organics (MRO) | ND | 50 | | | | | | | | |
| Surr: DNOP | 8.9 | | 10.00 | | 89.0 | 70 | 130 | | | |

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710762

17-Oct-17

WO#:

Page 2 of 3

Client:SoudeProject:Coyo	er, Miller & Asso te	ociates							
Sample ID MB-34399	SampType	e: MBLK	Test	Code: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch ID	: 34399	R	unNo: 46	6367				
Prep Date: 10/13/2017	Analysis Date	: 10/16/2017	S	eqNo: 14	177828	Units: mg/K	g		
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0							
Surr: BFB	970	1000		96.9	54	150			
Sample ID LCS-34399	SampType	e: LCS	Test	Code: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch ID	: 34399	R	unNo: 46	6367				
Prep Date: 10/13/2017	Analysis Date	: 10/16/2017	S	eqNo: 14	477829	Units: mg/K	g		
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	29	5.0 25.00	0	116	75.9	131			
Surr: BFB	1100	1000		108	54	150			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710762

17-Oct-17

WO#:

Page 3 of 3

Released to Imaging: 11/6/2023 7:58:18 AM

ANAL	I/1/2023 2:31:21 PM RONMENTAL YSIS RATORY	All TEL: 505-345-397.	4901 Hawkins Suquerque, NM 87	NE 109 Sam 107	Sample Log-In Check List				
Client Name:	SMA-CARLSBAD	Work Order Number	r: 1710762		RcptNo:	1			
Received By:	Richie Eriacho	10/13/2017 9:15:00 A	м	12-2					
Completed By:	Ashley Gallegos	10/13/2017 9:32:10 A	M	AJ					
Reviewed By:	DDS	10/13/17		V					
Chain of Cus	stody								
1. Custody sea	als intact on sample bot	tles?	Yes	No 🗌	Not Present 🗹				
2. Is Chain of	Custody complete?		Yes 🔽	No 🗀	Not Present				
3. How was th	e sample delivered?		<u>Courier</u>						
<u>Log In</u>									
4. Was an atte	empt made to cool the s	amples?	Yes 🗹	No 🗌	NA 🗌				
5. Were all sa	mples received at a terr	perature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗌				
6. Sample(s) i	n proper container(s)?		Yes 🔽	No 🗌					
7. Sufficient sa	ample volume for indica	ted test(s)?	Yes 🗹	No 🗌					
	s (except VOA and ONC		Yes 🗹	No 🗌	_				
9. Was preser	vative added to bottles?		Yes 🗌	No 🗹	NA 🗌				
10.VOA vials h	ave zero headspace?		Yes	No 🗌	No VOA Vials 🗹				
11. Were any s	ample containers receiv	ved broken?	Yes	No 🗹	# of preserved bottles checked				
	work match bottle labels		Yes 🖌	No 🗌	for pH:				
	pancies on chain of cus s correctly identified on		Yes 🗹	No 🗌	ر<2 0 Adjusted?	>12 unless noted)			
	nat analyses were reque	•	Yes 🗹	No 🗀					
15. Were all hol	ding times able to be m customer for authorizat	et?	Yes 🗹	No 🗌	Checked by:				
Special Hand	lling (if applicable	2			,				
16. Was client r	notified of all discrepand	ies with this order?	Yes 🗌	No 🗌	NA 🗹				
Perso	n Notified:	Date		·····					
By Wr	10 m :	Via:	🗌 eMail 🔲 P	hone 🗌 Fax	In Person				
Regar Client	ding: Instructions:								
17. Additional r	emarks:					1			
18. <u>Cooler Info</u>	the fight of the second s		<u>ed.</u> fer ug <u>ie sono i recedo lo ro</u> r	n <u>a</u> undekaen jane ersest teat					
Cooler N	o Temp °C Condit 4.1 Good	ion Seal Intact Seal No Yes	Seal Date	Signed By					

•

Rec	eived	l by C	CD:	11/	1/20	23 2	2:31:	21 1	PM (1	or V	Y) səldduB .	iiA	[1	Т	Τ	T	Т			—	1		Pag	<u>e 112 of</u> .
	Ļ	2										<u> </u>	+			+-	+-	+	+	+	-	+	+	-	
	ENVIRONMENTA	ANALYSIS LABORATOR										+-	\uparrow	-+-	+	-}	-				+		╉─	1	
	Z	A		~									T		\uparrow			1	1	+	1		+	-	10/12/17 0915 This serves as indice of this monthlike
	Σ	R		7109	22															1-	1 -		\uparrow		
	Z	BG	ШO	۱M 8	5-410	<u>א</u>	_			(∀С								T			1-		\uparrow	-	
	R		ntal.c	ue, N	505-345-4107	Request		_			(AOV) 8089												Ť	1	Í
	5	S	nme	uerq		S Ke					Pesticide	_	\downarrow												
	Z	S	www.hallenvironmental.com	Albuquerque, NM 87109	Fax	Anaiysis I I)	05	5°°O	d'°ON	_	N,IO,A) enoin		_	_			<u> </u>	ļ]	
			E C	1	5	Alla					EteM 8 APD									<u> </u>					
	HALL	۲ Z	WW.	4901 Hawkins NE	lel. 505-345-3975			(SM			DOINOM) 44		╞			-	<u> </u>	<u> </u>				<u> </u>	<u> </u>		
	I	<	≥ .	wkin:	-345			-			DB (Method		╆-				<u> </u>	_			<u> </u>			-	
			-	г на	205	((אואכ				PH 8015B (C		╞	-				<u> </u>	-		-		<u> </u>	1	4
				1 4 % 0 -	el.						TEX + MT8		╞						-	-				ks:	
						<u> </u>			_		TEX + MTBI		┼─	+		<u> </u>		 						Remarks.	
				Τ					TT	-		- -	┢	-						-				<u>8</u>	
												8												ß	0915
							J	T			HEAL No.	ĮŎ													
)					5	د ا	6	HEA		ĺ											Cate	E San
			Y	1				Sen	$\frac{1}{2}$																10/10/
	hsh		3	5			-	Z			<u>s</u>	<u>R</u>		<u>†</u> -								_	—	4	Dries
	🔏 Rush		5	þ						<u>،</u>	eservative Type														aborat
Time:		Ì.,	9			ler.		5.	2		Pres T												4		dited
Turn-Around Ti	dard	Project Name:	\bigcirc			Project Manager		m				2						_			-+	_	-	Z	r accre
I-Aro	Standard	ect N		Project #:		sct M	<	2	pler:		Container Type and #	03											E		o otte
Turr		Proj		Proje		Proje		~	Sampler:	Sample Temperature: 4	Type	2												Received Received	2 acted 1
						Γ		(L							\rightarrow		-	-+	_			+	-	<u>× </u>	pcontr
P								Level 4 (Full Validation)			Sample Request ID														/ be su
0 S								Valic			dne														al may
Re								Full			Ř	2	1											J	nment
qλ								el 4 (hple	$ \mathcal{I} $												Z	Enviro
ŏ								Ľe Ľ			San											•	-		to Hall
Sn									ler							_				_					nitted
Y	∇	ſ] Other		Matrix	ŤQ.	•										Relfindition	Relinquished by:	Idus se
2	$\overline{\mathbb{A}}$		SS:				×					1							_	_	_		- Hora		I when the submitted to Hall Environmental may be subcontracted to other accredited laboratories
Chain-ot-Custody Record	R		ddre			aX#:	ckage	g	tion	ype)	Time	12.68											12		Seary,
5	۲ ۷ L	1	Mailing Address:		e #:	email or Fax#:	QA/QC Package:	Standard	Accreditation	EDD (Type)		7	\dashv					+	_				10/22	S III	
	Client:		Maili		Phone #:	∋mai) MO	St			Date		.										Date:		- The second se
		to I	magi	ng:				58:1	≤ ⊔ 8 AM		l I	10	1	1	ļ		1							Date	

Page 112 of 170

November 08, 2017

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Coyote

OrderNo.: 1711124

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 2 sample(s) on 11/2/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysi	s Labora	tory, Inc.			Lab Order 1711124 Date Reported: 11/8/20	17
CLIENT: Souder, Miller & Associates Project: Coyote			Client Sampl Collection I		-2' /30/2017 12:03:00 PM	
Lab ID: 1711124-001	Matrix:	SOIL	Received I	Date: 11/	/2/2017 9:10:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS	5			Analyst	: том
Diesel Range Organics (DRO)	14	9.4	mg/Kg	1	11/7/2017 5:02:17 PM	34843
Motor Oil Range Organics (MRO)	120	47	mg/Kg	1	11/7/2017 5:02:17 PM	34843
Surr: DNOP	87.4	70-130	%Rec	1	11/7/2017 5:02:17 PM	34843
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/6/2017 5:05:48 PM	34792
Surr: BFB	83.4	15-316	%Rec	1	11/6/2017 5:05:48 PM	34792

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in th

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- 3 Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis	s Labora	tory, Inc.		Analytical Report Lab Order 1711124 Date Reported: 11/8/20	017
CLIENT: Souder, Miller & Associates			Client Samp	le ID: Source 2'	
Project: Coyote			Collection	Date: 10/30/2017 11:50:00 AN	1
Lab ID: 1711124-002	Matrix:	SOIL	Received	Date: 11/2/2017 9:10:00 AM	
Analyses	Result	PQL Qua	l Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analys	t: MRA
Chloride	480	30	mg/Kg	20 11/8/2017 5:31:42 AM	34875

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Η	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Client: Project:	Souder, Coyote	, Miller & As	sociate	es							
Sample ID	MB-34875	SampTy	/pe: m l	olk	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	ID: 34	875	F	RunNo: 46	6976				
Prep Date:	11/7/2017	Analysis Da	ate: 1 ′	1/7/2017	5	SeqNo: 14	498823	Units: mg/K	ģ		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-34875	SampTy	/pe: Ics	5	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	ID: 34	875	F	RunNo: 46	6976				
Prep Date:	11/7/2017	Analysis Da	ate: 1 ′	1/7/2017	S	SeqNo: 14	498824	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		15	1.5	15.00	0	99.8	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL

1711124

08-Nov-17

WO#:

Page 3 of 5

Value above quantitation range

- W Sample container temperature is out of limit as specified
- Released to Imaging: 11/6/2023 7:58:18 AM

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Souder, M Coyote	Ailler & Ass	sociate	es							
Sample ID	LCS-34843	SampTy	pe: LC	S	Test	Code: EF	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID:	LCSS	Batch I	ID: 34	843	R	unNo: 40	6928				
Prep Date:	11/6/2017	Analysis Da	te: 1 ′	1/7/2017	S	eqNo: 14	497169	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	42	10	50.00	0	84.4	73.2	114			
Surr: DNOP		4.1		5.000		82.5	70	130			
Sample ID	MB-34843	SampTy	pe: ME	BLK	Test	Code: EF	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID:	PBS	Batch I	ID: 34	843	R	unNo: 40	6928				
Prep Date:	11/6/2017	Analysis Da	te: 1 ′	1/7/2017	S	eqNo: 14	497170	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
•	Organics (DRO)	ND	10								
-	e Organics (MRO)	ND	50								
Surr: DNOP		8.1		10.00		80.8	70	130			
Sample ID	1711124-001AMS	SampTy	pe: M\$	6	Test	Code: EF	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID:	L1-2'	Batch I	ID: 34	843	R	unNo: 40	6928				
Prep Date:	11/6/2017	Analysis Da	te: 1 '	1/7/2017	S	eqNo: 14	497858	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	50	9.6	47.76	14.28	74.3	55.8	122			
Surr: DNOP		4.3		4.776		90.7	70	130			
Sample ID	1711124-001AMSI) SampTy	pe: MS	SD	Test	Code: EF	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID:	L1-2'	Batch I	ID: 34	843	R	unNo: 40	6928				
Prep Date:	11/6/2017	Analysis Da	te: 1 ′	1/7/2017	S	eqNo: 14	497859	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
•	Organics (DRO)	44	9.1	45.70	14.28	65.7	55.8	122	11.5	20	
Surr: DNOP		4.1		4.570		90.4	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
 - Sample container temperature is out of limit as specified

1711124

08-Nov-17

WO#:

Page 4 of 5

- W
- Released to Imaging: 11/6/2023 7:58:18 AM

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Souder, I Coyote	Miller & A	ssociate	es							
Sample ID	MB-34792	SampT	ype: ME	ЗLK	Tes	Code: E	PA Method	8015D: Gaso	line Rang	e	
Client ID:	PBS	Batch	D: 34	792	F	lunNo: 4	6898				
Prep Date:	11/3/2017	Analysis D	ate: 1'	1/6/2017	S	eqNo: 1	496403	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Surr: BFB	Organics (GRO)	ND 850	5.0	1000		84.8	15	316			
Sample ID	LCS-34792	SampT	ype: LC	s	Tes	tCode: E	PA Method	8015D: Gasc	line Rang	e	
Client ID:	LCSS	Batch	n ID: 34	792	F	lunNo: 4	6898				
Prep Date:	11/3/2017	Analysis D	ate: 1	1/6/2017	S	eqNo: 1	496404	Units: mg/K	ģ		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Surr: BFB	Organics (GRO)	24 940	5.0	25.00 1000	0	97.2 94.1	75.9 15	131 316			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1711124

08-Nov-17

WO#:

Page 5 of 5

•

ANALY	ONMENTAL (SIS RATORY	Hall Environmental Albua TEL: 505-345-3975 Website: www.hal	4901 querque FAX: 50	Hawkins NE 2, NM 87109 05-345-4107	Sample Log-In Check List					
Client Name:	SMA-CARLSBAD	Work Order Number:	17111	24		RcptNo:	1			
Received By:	Dennis Suazo	11/2/2017 9:10:00 AM		,						
Completed By:	Ashley Gallegos	11/2/2017 1:58:22 PM		5	AJ					
Reviewed By:	ENM	11/2/17			V					
Chain of Cus	<u>tody</u>									
1. Custody sea	Is intact on sample bottles?		Yes		No 🗆	Not Present 🗹				
2. Is Chain of C	Sustody complete?		Yes		No 🗌	Not Present				
3. How was the	sample delivered?		<u>Cour</u>	ier						
<u>Log In</u>										
4. Was an atte	mpt made to cool the sample	s?	Yes		No 🗌	NA 🗆				
5. Were all san	nples received at a temperatu	rre of >0° C to 6.0°C	Yes		No 🗌	NA 🗍	~			
6. Sample(s) ir	n proper container(s)?		Yes		No 🗍					
7. Sufficient sa	mple volume for indicated tes	t(s)?	Yes		No 🗆					
8. Are samples	(except VOA and ONG) prop	erly preserved?	Yes		No 🗌					
9. Was preserv	rative added to bottles?		Yes		No 🗹	NA 🗌				
10.VOA vials ha	ave zero headspace?		Yes		No 🗆	No VOA Vials 🗹				
11. Were any sa	ample containers received bro	oken?	Yes		No 🗹	# of preserved				
	vork match bottle labels? pancies on chain of custody)		Yes		No 🗌	bottles checked for pH:	r >12 unless noted)			
, ,	correctly identified on Chain	of Custody?	Yes	\checkmark	No 🗌	Adjusted?				
14. Is it clear wh	at analyses were requested?		Yes		No 🗌		,			
	ding times able to be met? customer for authorization.)		Yes		No 🗌	Checked by:				
Special Hand	ling (if applicable)									
	otified of all discrepancies wit	h this order?	Yes		No 🗀	NA 🗹				
	jetin sinin minimum]			
By Wh	n Notified:	Date Date	_] eMa	ail 🗌 Pho	ne 🗌 Fax	In Person				
Regard		via. L								
	Instructions:					2017 C. L.				
17. Additional re		···· ······ ·· ·· ·· · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
18. <u>Cooler Info</u> Cooler No 1	rmation o Temp ºC Condition	Seal Intact Seal No Sea	Seal Da	ate S	gned By					
Page 1 of	<u> </u>									

	ORY							or N)	· (,) :	e9lddu8 iiA														
UALL ENVIDONMENTA	ANALYSIS LABORATORY		109	2														 						nalytical repo
	S S	L L	Albuquerque, NM 87109	Fax 505-345-4107				(A		imə2) 0728														tated on the ana
C) q	www.hallenvironmental.com	le, N	-345	Analysis Request					OV) 80928														ated of
	L S		nerqu	505	Rec					sos1 Pestio								 						arly not
Ž	IS IS	viror	puqu	Fах	lysis	(*O	S' [†] Od		_) enoinA		>						 						be clea
	2	allen			Ana		(RCRA 8 Me								 						ta will
- 3	Į	, r	Ш	3975			(SMI			158) <i>s'</i> HA9								 -		-	\neg			ted da
		ŝ	/kins	345-						EDB (Method		e.g. ve.	s					 	_	_	\neg			contrac
_	-1 -		4901 Hawkins NE	Tel. 505-345-3975		(O)-				TPH 8015B									+	-+	\neg			/ sub-c
	an a		t901	Tel.						TPH 900465	>					_			-		_	rks:		y. Any
			7							TEX + MT					_					\dashv	-	Remarks:		ssibili
	G														_			 		\rightarrow	\neg			this pc
	A Rush 5 day tum	<i>с</i>					lout	J II No	-0.5ch=5.0	HEAL NO.	-001	- 002										Date Time 11/2/17 0910	Date Time	. This serves as notice of
Time:			2			ager:	Austin Weyant	Nes 1	Sample Temperature 55-70-5	Preservative Type												Lef ~		accredited laboratories
Turn-Around Time:	Standard	Project Name:	Couote	Project #:		Project Manager:	AUS	Sampler: On Ices	Sample Ten	Container Type and #	402	402.		1986 - 11			-					Received by:	Received by:	ontracted to other
Chain-of-Custody Record			201 S. Hayaqueno				□ Level 4 (Full Validation)			Sample Request ID	1-5,	source 2'										d by:	d by:	If nancessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
of-Cu:	4		1				_	□ Other		Matrix	Soil	لي										Relinquished by	Relinquished by:	eamoles subm
hain-	SMA		Mailing Address:		# 	r Fax#:	QA/QC Package:	itation AP	(Type)_	Time	101301712:03											Time:	Time:	f neressarv
O	Client:		Mailing		Phone #:	email or Fax#:	QA/QC Packa	Accreditation	EDD (Type)	Date	01301-	10/20/11/120										Date:	Date:	

Released to Imaging: 11/6/2023 7:58:18 AM

November 08, 2017

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1711125

RE: Coyote

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 1 sample(s) on 11/2/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysi	s Labora	tory, Inc.			Lab Order 1711125 Date Reported: 11/8/20	17
CLIENT:Souder, Miller & AssociatesProject:CoyoteLab ID:1711125-001	Matrix:	SOIL		Date: 10/	-3' '30/2017 12:15:00 PM '2/2017 9:10:00 AM	[
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS	6			Analysi	: TOM
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	11/7/2017 6:26:08 PM	34843
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	11/7/2017 6:26:08 PM	34843
Surr: DNOP	83.1	70-130	%Rec	1	11/7/2017 6:26:08 PM	34843
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/6/2017 5:29:07 PM	34792
Surr: BFB	82.7	15-316	%Rec	1	11/6/2017 5:29:07 PM	34792

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

	 v	<i>c</i> -	 510	P or t un	 	108	• • • • • • • • • • • • • • • • • • • •	 	X =	 	preser	

*	Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 3
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Qualifiers:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:Souder,Project:Coyote	Miller & A	ssociate	es							
Sample ID LCS-34843	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	n ID: 34	843	F	RunNo: 4	6928				
Prep Date: 11/6/2017	Analysis D	ate: 1 ′	1/7/2017	S	eqNo: 14	497169	Units: mg/k	٨g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	42	10	50.00	0	84.4	73.2	114			
Surr: DNOP	4.1		5.000		82.5	70	130			
Sample ID MB-34843	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	n ID: 34	843	F	RunNo: 4	6928				
Prep Date: 11/6/2017	Analysis D)ate: 1 ′	1/7/2017	5	eqNo: 14	497170	Units: mg/ #	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.1		10.00		80.8	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1711125

08-Nov-17

WO#:

Page 2 of 3

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:Souder,Project:Coyote	Miller & As	ssociate	es							
Sample ID MB-34792	SampT	ype: ME	BLK	Tes	Code: E	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch	ID: 34	792	F	lunNo: 4	6898				
Prep Date: 11/3/2017	Analysis D	ate: 1'	1/6/2017	S	eqNo: 1	496403	Units: mg/k	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 850	5.0	1000		84.8	15	316			
Sample ID LCS-34792	SampT	ype: LC	S	Tes	tCode: E	PA Method	8015D: Gasc	line Rang	e	
Client ID: LCSS	Batch	ID: 34	792	F	unNo: 4	6898				
Prep Date: 11/3/2017	Analysis D	ate: 1	1/6/2017	S	eqNo: 1	496404	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24	5.0	25.00	0	97.2	75.9	131			
Surr: BFB	940		1000		94.1	15	316			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1711125

08-Nov-17

WO#:

Page 3 of 3

<i>Received by OCD: 11/1/2023 2:31:21 PM</i>	
HALL	Hall Environmental Analysis Laboratory
	4901 Hawkins NE
	Albuquerque, NM 87109

Sample Log-In Check List

n	ANAL' LABOI	YSIS Ratory	Albu TEL: 505-345-3975 Website: www.hal		-4107	ple Log-In Cl	ieck List
Client	Name:	SMA-CARLSBAD	Work Order Number:	1711125		RcptNo:	1
Receiv	ved By:	Dennis Suazo	11/2/2017 9:10:00 AM				
Comp	leted By:	Ashley Gallegos	11/2/2017 2:01:20 PM		AJ		
Review	wed By:	ENM	11/2/17		V		
<u>Chain</u>	of Cus	tody					
1. Cu	ustody sea	is intact on sample bottles	\$?	Yes 🗌	No 🗌	Not Present 🗹	
2. Is	Chain of (Custody complete?		Yes 🗹	No 🗌	Not Present	
3. Ho	w was the	e sample delivered?		<u>Courier</u>			
<u>Log</u> i	<u>In</u>						
4. w	/as an atte	empt made to cool the sam	nples?	Yes 🗹	No 🗌	NA 🗔	
5. W	ere all sar	nples received at a tempe	rature of >0° C to 6.0°C	Yes 🗹	No 🗌		
6. sa	ample(s) i	n proper container(s)?		Yes 🗹	No 🗌		
7, Su	ifficient sa	mple volume for indicated	test(s)?	Yes 🔽	No 🗌		
8. Ar	e samples	e (except VOA and ONG) p	properly preserved?	Yes 🗹	No 🗌		
9. W	as presen	vative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
10.vo	OA vials h	ave zero headspace?		Yes	No 🗌	No VOA Vials 🗹	
11. W	ere any s	ample containers received	broken?	Yes 🗀	No 🗹	# of preserved bottles checked	
		work match bottle labels? pancies on chain of custod	tv)	Yes 🔽	No 🗆	for pH:	r >12 unless noted)
		correctly identified on Ch		Yes 🗹	No 🗆	Adjusted?	
		at analyses were requeste		Yes 🗹	No 🗌		
		ding times able to be met? customer for authorization		Yes 🗹	No 🗆	Checked by:	
Orter		lling (if one list)					
		Illing (if applicable) notified of all discrepancies	with this order?	Yes 🗌	No 🗌		
. .						· · · · · · · · · · · · · · · · · · ·]
	By Wr	n Notified:	Date Via:	eMail] Phone 🗌 Fax	In Person	

17. Additional remarks:

18. Cooler Information

Regarding:

Client Instructions:

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	5.0	Good	Yes			A 40 40 40 40 40 40 40 40 40 40 40 40 40

Page 1 of 1

Rec	eived	by C	CD:	11/1	/20	23 2.	:31:2	1 PM	(NJ	lo 1) ir Bubbles (/	I	I	I.	1	I.	1	I	1	I	1 1	P	age 126	of 170
			www.nallenvironmental.com 4901 Hawkins NF - Albi initercita NM 87100	5 Fax 505-345-4107	Analysis Request		s,80	MIS (7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	VOV sep) ON (ON (ON (ON	PPH (Method EDB (Method PPH's (8310 RCRA 8 Met RCRA 8 Met ID, 1 RCRA 8081 Pesticid AOV) 8081 AOV) 8081 AOV) 8081 AOV) 8081 AOV) 8081 AOV) 8081 AOV) 8081 AOV) 8081 AOV) 8081 AOV														ed laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
			901 F	[el. 5(TPH 8015B	$\mathbf{\overline{>}}$:S		Any sul
			4						_		BTEX + MTE				<u> </u>								 Remarks:		sibility.
Turn-Around Time:	D Standard & Rush D d U.U. HUM		Cousts	Project #:	~~c.	Project Manager:	+	Th Weyer	On Ice: Exes	êmperatûre: 5.5 - 0.5(CF) -5.0	ative HEAL No.	402001											 Received by: Date Time Re Dewning Juryon 11/22/17 0910	Received by: Date Time	ontracted to other accredited laboratories. This serves as notice of this pos-
Chain-of-Custody Record	Client: SMA		Mailing Address: 201 S. Hadaqueno	7	Phone #:	email or Fax#:	ige:	Candard Level 4 (Full Validation) Accreditation	NELAP Other	🗆 EDD (Type)	Date Time Matrix Sample Request ID	10/30/17 12:15 Soil 11-3'											Date: Time: Relinquished by:	Date: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredit

Released to Imaging: 11/6/2023 7:58:18 AM

•

Bratcher, Mike, EMNRD

From:	Bratcher, Mike, EMNRD
Sent:	Wednesday, October 18, 2017 8:02 AM
То:	Heather Patterson; Weaver, Crystal, EMNRD
Cc:	Kerry Egan; Austin Weyant; agroves (agroves@slo.state.nm.us)
Subject:	RE: Backfill request

RE: Lucid Energy * Coyote Station * 2RP-1825 & 4224

Heather,

Your request to backfill the areas identified as L4 & L5 at the above referenced site is approved.

Thank you,

Mike Bratcher NMOCD District 2 811 South First Street Artesia, NM 88210 575-748-1283 Ext 108

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Heather Patterson [mailto:heather.patterson@soudermiller.com]
Sent: Tuesday, October 17, 2017 2:59 PM
To: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>
Cc: Kerry Egan <KEgan@lucid-energy.com>; Austin Weyant <austin.weyant@soudermiller.com>
Subject: Backfill request

RE: Lucid Energy * Coyote Station * 2RP-1825 * 2RP-4224

Good Afternoon,

On behalf of Lucid Energy, I would like to request backfill at the Coyote Station. This request is for the area between the pipelines and includes sample locations L4 and L5. Attached you'll find the site map and the lab results.

Thank you,

Heather Patterson Staff Scientist Souder, Miller & Associates Engineering ♦ Environmental ♦ Surveying 201 Halagueno St Carlsbad, NM 88220 www.soudermiller.com

(575)200-5343 (mobile)

•

Appendix E

Laboratory Reports

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Targa

Project Name: Coyote Comp

Coyote Compressor Station

Work Order: E309019

Job Number: 21102-0001

Received: 9/5/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 9/11/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 9/11/23

Brittany Long 12600 WCR 91 Midland, TX 79707

Project Name: Coyote Compressor Station Workorder: E309019 Date Received: 9/5/2023 8:15:00AM

Brittany Long,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 9/5/2023 8:15:00AM, under the Project Name: Coyote Compressor Station.

The analytical test results summarized in this report with the Project Name: Coyote Compressor Station apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759

ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Page 131 of 170

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
AH-2 (2-2.5')	5
QC Summary Data	6
QC - Volatile Organic Compounds by EPA 8260B	6
QC - Nonhalogenated Organics by EPA 8015D - GRO	7
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	8
QC - Anions by EPA 300.0/9056A	9
Definitions and Notes	10
Chain of Custody etc.	11

v		Sample Sum	mary		8
Targa 12600 WCR 91		Project Name: Project Number:	Coyote Compresso 21102-0001	r Station	Reported:
Midland TX, 79707		Project Manager:	Brittany Long		09/11/23 16:51
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
AH-2 (2-2.5')	E309019-01A	Soil	08/30/23	09/05/23	Glass Jar, 4 oz.

	\sim	ampic D				
Targa 12600 WCR 91 Midland TX, 79707	Project Name Project Numb Project Manaş	er: 2110	ote Compres 02-0001 cany Long	Reported: 9/11/2023 4:51:07PM		
	I	AH-2 (2-2.5')				
		E309019-01				
Analyte	Result	Reporting Limit	Dilut	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Α	Analyst: IY		Batch: 2336016
Benzene	ND	0.0250	1	09/05/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/07/23	
Toluene	ND	0.0250	1	09/05/23	09/07/23	
o-Xylene	ND	0.0250	1	09/05/23	09/07/23	
p,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
Surrogate: Bromofluorobenzene		98.3 %	70-130	09/05/23	09/07/23	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	09/05/23	09/07/23	
Surrogate: Toluene-d8		95.5 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Α	Analyst: IY		Batch: 2336016
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
Surrogate: Bromofluorobenzene		98.3 %	70-130	09/05/23	09/07/23	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	09/05/23	09/07/23	
Surrogate: Toluene-d8		95.5 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	A	Analyst: KM		Batch: 2336060
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Oil Range Organics (C28-C36)	73.3	50.0	1	09/07/23	09/09/23	
Surrogate: n-Nonane		101 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	Analyst: BA		Batch: 2336055
Chloride	ND	200	10	09/06/23	09/08/23	

Sample Data

QC Summary Data

Targa		Project Name:		oyote Compres	sor Station	n			Reported:		
12600 WCR 91		Project Number:	21	102-0001							
Midland TX, 79707		Project Manager:	Br	ittany Long				9/	11/2023 4:51:07PM		
		Volatile Organic	Compo	unds by EP	A 8260E	3			Analyst: IY		
Analyte		Reporting	Spike	Source		Rec		RPD			
	Result	Limit	Level	Result	Rec	Limits	RPD	Limit			
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes		
Blank (2336016-BLK1)							Prepared: 0	9/05/23 Ana	lyzed: 09/06/23		
Benzene	ND	0.0250									
Ethylbenzene	ND	0.0250									
Toluene	ND	0.0250									
o-Xylene	ND	0.0250									
p,m-Xylene	ND	0.0500									
Total Xylenes	ND	0.0250									
Surrogate: Bromofluorobenzene	0.502		0.500		100	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.302		0.500		97.1	70-130					
			0.500		97.5	70-130					
Surrogate: Toluene-d8	0.488		0.500		71.J	/0-150					
LCS (2336016-BS1)							Prepared: 0	9/05/23 Ana	lyzed: 09/06/23		
Benzene	2.46	0.0250	2.50		98.4	70-130					
Ethylbenzene	2.36	0.0250	2.50		94.6	70-130					
Toluene	2.30	0.0250	2.50		92.0	70-130					
o-Xylene	2.30	0.0250	2.50		92.1	70-130					
p,m-Xylene	4.54	0.0500	5.00		90.8	70-130					
Total Xylenes	6.84	0.0250	7.50		91.2	70-130					
Surrogate: Bromofluorobenzene	0.494		0.500		98.8	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.486		0.500		97.2	70-130					
Surrogate: Toluene-d8	0.488		0.500		97.5	70-130					
Matrix Spike (2336016-MS1)				Source: I	E 308250- 2	25	Prepared: 09/05/23 Analyzed: 09/06/23				
Benzene	2.79	0.0250	2.50	ND	112	48-131					
Ethylbenzene	2.64	0.0250	2.50	ND	106	45-135					
Toluene	2.56	0.0250	2.50	ND	102	48-130					
o-Xylene	2.62	0.0250	2.50	ND	105	43-135					
p,m-Xylene	5.14	0.0500	5.00	ND	103	43-135					
Total Xylenes	7.76	0.0250	7.50	ND	103	43-135					
Surrogate: Bromofluorobenzene	0.497		0.500		99.4	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.507		0.500		101	70-130					
Surrogate: Toluene-d8	0.479		0.500		95.7	70-130					
Matrix Spike Dup (2336016-MSD1)				Source: I	E 308250- 2	25	Prepared: 0	9/05/23 Ana	lyzed: 09/06/23		
Benzene	2.53	0.0250	2.50	ND	101	48-131	9.95	23	-		
Ethylbenzene	2.41	0.0250	2.50	ND	96.4	45-135	9.07	27			
Toluene	2.36	0.0250	2.50	ND	94.4	48-130	8.07	24			
o-Xylene	2.36	0.0250	2.50	ND	94.2	43-135	10.4	27			
p,m-Xylene	4.64	0.0500	5.00	ND	92.8	43-135	10.3	27			
Total Xylenes	6.99	0.0250	7.50	ND	93.3	43-135	10.3	27			
Surrogate: Bromofluorobenzene	0.501		0.500		100	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.514		0.500		103	70-130					
Surrogate: 1,2-Dichloroeinane-a4 Surrogate: Toluene-d8	0.314		0.500		96.8	70-130					
Numorata: Toluana dV	0.484										

QC Summary Data

		QC DI		ary Data					
Targa 12600 WCR 91 Midland TX, 79707		Project Name: Project Number: Project Manager:	2	Coyote Compres 21102-0001 Brittany Long	sor Statio	n			Reported: 9/11/2023 4:51:07PM
	No	onhalogenated O	rganics	s by EPA 801	5D - GI	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2336016-BLK1)							Prepared: 0	9/05/23	Analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.502		0.500		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.486		0.500		97.1	70-130			
Surrogate: Toluene-d8	0.488		0.500		97.5	70-130			
LCS (2336016-BS2)							Prepared: 0	9/05/23	Analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	45.5	20.0	50.0		90.9	70-130			
Surrogate: Bromofluorobenzene	0.510		0.500		102	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.488		0.500		97.6	70-130			
Surrogate: Toluene-d8	0.494		0.500		98.8	70-130			
Matrix Spike (2336016-MS2)				Source: I	E 308250- 2	25	Prepared: 0	9/05/23	Analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	54.8	20.0	50.0	ND	110	70-130			
Surrogate: Bromofluorobenzene	0.513		0.500		103	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.501		0.500		100	70-130			
Surrogate: Toluene-d8	0.490		0.500		98.0	70-130			
Matrix Spike Dup (2336016-MSD2)		Source: I	E308250-2	25	Prepared: 0	9/05/23	Analyzed: 09/06/23		
Gasoline Range Organics (C6-C10)	54.4	20.0	50.0	ND	109	70-130	0.713	20	
Surrogate: Bromofluorobenzene	0.511		0.500		102	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.493		0.500		98.5	70-130			

QC Summary Data

		QU N	411111		•					
Targa 12600 WCR 91		Project Name: Project Number:		Coyote Compres 21102-0001	ssor Static	on			Reported:	
Midland TX, 79707		Project Manager:]	Brittany Long					9/11/2023 4:51:07PM	
	Nonh	alogenated Org	anics by	y EPA 8015E	- DRO	/ORO			Analyst: KM	
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2336060-BLK1)							Prepared: 0	9/06/23 A	nalyzed: 09/09/23	
Diesel Range Organics (C10-C28)	ND	25.0								
Oil Range Organics (C28-C36)	ND	50.0								
Surrogate: n-Nonane	50.8		50.0		102	50-200				
LCS (2336060-BS1)							Prepared: 0	9/06/23 A	nalyzed: 09/09/23	
Diesel Range Organics (C10-C28)	258	25.0	250		103	38-132				
Surrogate: n-Nonane	46.1		50.0		92.3	50-200				
Matrix Spike (2336060-MS1)				Source:	E309015-	01	Prepared: 0	9/06/23 A	nalyzed: 09/11/23	
Diesel Range Organics (C10-C28)	18200	1250	250	19500	NR	38-132			M4	
Surrogate: n-Nonane	46.7		50.0		93.3	50-200				
Matrix Spike Dup (2336060-MSD1)		Source:	E309015-	01	Prepared: 0	epared: 09/06/23 Analyzed: 09/11/23				
Diesel Range Organics (C10-C28)	18400	1250	250	19500	NR	38-132	1.36	20	M4	
Surrogate: n-Nonane	46.4		50.0		92.7	50-200				

QC Summary Data

		$\chi \sim \sim$	••••••						
Targa 12600 WCR 91 Midland TX, 79707		Project Name: Project Number: Project Manager:		Coyote Compre 21102-0001 Brittany Long	ssor Statio	n			Reported: 9/11/2023 4:51:07PM
		Anions	by EPA	300.0/9056A	\				Analyst: BA
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2336055-BLK1)							Prepared: 0	9/06/23 A	Analyzed: 09/08/23
Chloride	ND	20.0							
LCS (2336055-BS1)							Prepared: 0	9/06/23 A	Analyzed: 09/08/23
Chloride	242	20.0	250		96.9	90-110			
Matrix Spike (2336055-MS1)				Source:	E309018-()1	Prepared: 0	9/06/23 A	Analyzed: 09/08/23
Chloride	329	200	250	ND	132	80-120			M2
Matrix Spike Dup (2336055-MSD1)				Source:	E309018-()1	Prepared: 0	9/06/23 A	Analyzed: 09/08/23
Chloride	247	200	250	ND	98.9	80-120	28.5	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Targa	Project Name:	Coyote Compressor Station	
12600 WCR 91	Project Number:	21102-0001	Reported:
Midland TX, 79707	Project Manager:	Brittany Long	09/11/23 16:51

- M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.
- M4 Matrix spike recovery value is suspect since the analyte concentration in the sample is disproportionate to the spike level. The associated LCS spike recovery was acceptable.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite
- Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Tetra Tech, Inc.		901 W Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946						Page 1 of												
lient Name: Targa	Site Manager:						Ι			A	NAL	YSI		EQU	-		16-	000		
oject Name: Coyote Compressor Station		741-5813 ny.long@te		ech.com	1				II	(Cir 	cle 	or S	Spe	cify	Me 	tho 	d N	o.)		TI
ounty, state) Eddy County, NM	Project #:		Party Constant	MD-032				1										list)		
voice to: <u>Targa</u>		ł.								ВН	Se Hg							attached		
eceiving Laboratory: Envirotech Inc.	Sampler Signature:	Mig	guel	A. Flore	es			m	- ORO)	Pb Se	r Pb			5				(see att		
omments:								BTEX 8260B	- DRO -	a Cd Cr	S		VCS	8270C/62			TDS	Chemistry (
	SAMPLING	MATE	RIX		RVATIVE	RS	(N/	BTE)	GRO -	g As Ba	Ag As B	latiles	1 anac	Vol. 82	608	s)	Sulfate			
LAB # SAMPLE IDENTIFICATION	YEAR: 2023 ULY WIL	WATER		HCL HNO ₃	,	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B BTE	TPH 8015M (TPH 8015M (GRO - PAH 8270C Total Metals Ag As Bi TCLP Metals Ag As E TCLP Volatiles	TCLP Semi Volatiles	RCI GC/MS Vol 8	GC/MS Semi. Vol. 827	PCB's 8082 / NORM	PLM (Asbestos)	Chloride SI	12 13			
/ AH-2 (2-2.5')	8/30/2023	x		<u> </u>	TT	#		X	X								x			
						1											\pm		Ħ	
						_						-	_		-		-		$\left \right $	
						1											1			
	2. 2 1 1															\mathbb{H}				
elinquished by: Date: Time: Miguel A Flores	Received by: Michille	surples	-	Date: 9-1-2		6730	ک	L	-AB ON		R				anda					
Midulle Genzle 9-1-23 1645		NEO	(Date:		184	5		ole Ten	nperatu	ure				ame rges /			ir 48	nr 72	2 hr
Indre Mrzzo 9.2.23 Oll		Carth Man 9/5/23 8:15						4				Spec	ial Re	eport	imits	or T	RRP R	eport		

10 of 170

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Targa Da	ate Received:	09/05/23 08	3:15	Work Order ID: E309019
Phone:	(432) 999-8675 Da	ate Logged In:	09/05/23 09	9:37	Logged In By: Caitlin Mars
Email:	brittany.long@tetratech.com Du	le Date:	09/11/23 17	2:00 (4 day TAT)	
Chain of	f Custody (COC)				
1. Does t	the sample ID match the COC?		Yes		
2. Does t	the number of samples per sampling site location match	the COC	Yes		
3. Were s	samples dropped off by client or carrier?		Yes	Carrier: C	<u>Courier</u>
4. Was th	ne COC complete, i.e., signatures, dates/times, requested	l analyses?	No		
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
Sample '	<u>Turn Around Time (TAT)</u>				
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		Time sampled not provided on COC per
Sample (Cooler				client.
7. Was a	sample cooler received?		Yes		
8. If yes,	was cooler received in good condition?		Yes		
9. Was th	ne sample(s) received intact, i.e., not broken?		Yes		
10. Were	e custody/security seals present?		No		
11. If yes	s, were custody/security seals intact?		NA		
12. Was tl	he sample received on ice? If yes, the recorded temp is 4°C, i.e. Note: Thermal preservation is not required, if samples are re-		Yes		
13 If no	minutes of sampling visible ice, record the temperature. Actual sample tem	nnerature: 4º	C		
		<u></u>	<u> </u>		
-	Container_ aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	e head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?		Yes		
	appropriate volume/weight or number of sample containers	collected?	Yes		
Field La					
	e field sample labels filled out with the minimum inform	ation:			
	Sample ID?		Yes		
	Date/Time Collected?		Yes	I	
	Collectors name?		No		
	Preservation	10	ЪT		
	s the COC or field labels indicate the samples were prese	erved?	No		
	sample(s) correctly preserved?	1-9	NA		
	o filteration required and/or requested for dissolved meta	115 /	No		
	ase Sample Matrix				
	s the sample have more than one phase, i.e., multiphase?		No		
27. If yes	s, does the COC specify which phase(s) is to be analyzed	d?	NA		
	ract Laboratory				
	samples required to get sent to a subcontract laboratory?		No		
29. Was	a subcontract laboratory specified by the client and if so	who?	NA S	Subcontract Lab	o: na
Client I	Instruction				

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

-

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Targa

Project Name: Coyote (

Coyote Compressor Station

Work Order: E309020

Job Number: 21102-0001

Received: 9/5/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 9/11/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 9/11/23

Brittany Long 12600 WCR 91 Midland, TX 79707

Project Name: Coyote Compressor Station Workorder: E309020 Date Received: 9/5/2023 8:15:00AM

Brittany Long,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 9/5/2023 8:15:00AM, under the Project Name: Coyote Compressor Station.

The analytical test results summarized in this report with the Project Name: Coyote Compressor Station apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759

ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Page 143 of 170

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
AH-1 (0-1')	5
AH-1 (1-1.5')	6
AH-2 (0-1')	7
AH-2 (1-1.5')	8
QC Summary Data	9
QC - Volatile Organics by EPA 8021B	9
QC - Nonhalogenated Organics by EPA 8015D - GRO	10
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	11
QC - Anions by EPA 300.0/9056A	12
Definitions and Notes	13
Chain of Custody etc.	14
Sample Summary

		Sample Sum	mai y		
Targa 12600 WCR 91 Midland TX, 79707		Project Name: Project Number: Project Manager:	Coyote Compresso 21102-0001 Brittany Long	r Station	Reported: 09/11/23 10:47
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
AH-1 (0-1')	E309020-01A	Soil	08/30/23	09/05/23	Glass Jar, 4 oz.
AH-1 (1-1.5')	E309020-02A	Soil	08/30/23	09/05/23	Glass Jar, 4 oz.
AH-2 (0-1')	E309020-03A	Soil	08/30/23	09/05/23	Glass Jar, 4 oz.
AH-2 (1-1.5')	E309020-04A	Soil	08/30/23	09/05/23	Glass Jar, 4 oz.

	0	ampic D	ala			
Targa 12600 WCR 91 Midland TX, 79707	Project Name Project Numb Project Mana	ber: 2110	ote Compressor S 02-0001 tany Long		Reported: 9/11/2023 10:47:01AM	
		AH-1 (0-1')				
		E309020-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2336040
Benzene	ND	0.0250	1	09/06/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/06/23	09/07/23	
oluene	ND	0.0250	1	09/06/23	09/07/23	
-Xylene	ND	0.0250	1	09/06/23	09/07/23	
o,m-Xylene	ND	0.0500	1	09/06/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/06/23	09/07/23	
urrogate: 4-Bromochlorobenzene-PID		92.6 %	70-130	09/06/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2336040
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/06/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		93.0 %	70-130	09/06/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: KM		Batch: 2336059
Diesel Range Organics (C10-C28)	149	25.0	1	09/06/23	09/08/23	T17
Dil Range Organics (C28-C36)	445	50.0	1	09/06/23	09/08/23	T17
Surrogate: n-Nonane		101 %	50-200	09/06/23	09/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: BA		Batch: 2336055
Chloride	ND	20.0	1	09/06/23	09/08/23	

Sample Data

Sample Data

		ampic D	uu			
Targa 12600 WCR 91 Midland TX, 79707	Project Name: Project Numb Project Manag	er: 2110	ote Compressor St)2-0001 tany Long	Reported: 9/11/2023 10:47:01AM		
	A	H-1 (1-1.5')				
		E309020-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2336040
Benzene	ND	0.0250	1	09/06/23	09/08/23	
Ethylbenzene	ND	0.0250	1	09/06/23	09/08/23	
Toluene	ND	0.0250	1	09/06/23	09/08/23	
p-Xylene	ND	0.0250	1	09/06/23	09/08/23	
o,m-Xylene	ND	0.0500	1	09/06/23	09/08/23	
Fotal Xylenes	ND	0.0250	1	09/06/23	09/08/23	
Surrogate: 4-Bromochlorobenzene-PID		95.4 %	70-130	09/06/23	09/08/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2336040
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/06/23	09/08/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		95.8 %	70-130	09/06/23	09/08/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: KM		Batch: 2336059
Diesel Range Organics (C10-C28)	89.9	25.0	1	09/06/23	09/08/23	T17
Dil Range Organics (C28-C36)	151	50.0	1	09/06/23	09/08/23	T17
Surrogate: n-Nonane		101 %	50-200	09/06/23	09/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: BA		Batch: 2336055
Chloride	ND	200	10	09/06/23	09/08/23	

Sample Data

		I -				
Targa	Project Name	e: Coy	ote Compressor S	tation		
12600 WCR 91	Project Numb	ber: 2110	02-0001			Reported:
Midland TX, 79707	Project Mana	iger: Brit	tany Long	9/11/2023 10:47:01AN		
		AH-2 (0-1')				
		E309020-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2336040
Benzene	ND	0.0250	1	09/06/23	09/08/23	
Ethylbenzene	ND	0.0250	1	09/06/23	09/08/23	
Toluene	ND	0.0250	1	09/06/23	09/08/23	
o-Xylene	ND	0.0250	1	09/06/23	09/08/23	
p,m-Xylene	ND	0.0500	1	09/06/23	09/08/23	
Total Xylenes	ND	0.0250	1	09/06/23	09/08/23	
Surrogate: 4-Bromochlorobenzene-PID		94.4 %	70-130	09/06/23	09/08/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2336040
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/06/23	09/08/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.3 %	70-130	09/06/23	09/08/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KM		Batch: 2336059
Diesel Range Organics (C10-C28)	ND	25.0	1	09/06/23	09/08/23	
Oil Range Organics (C28-C36)	73.1	50.0	1	09/06/23	09/08/23	
Surrogate: n-Nonane		104 %	50-200	09/06/23	09/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 2336055
Chloride	291	200	10	09/06/23	09/10/23	

Sample Data

T	Due is at Ne	-	-+- ()				
0	Project Name		ote Compressor St	ation		D-m-mt-d-	
	Project Numb)2-0001		Reported: 9/11/2023 10:47:01AM		
Midland TX, 79707	Project Manag	ger: Brit	tany Long	9/11/2023 10:4/:01AN			
	A	AH-2 (1-1.5')					
		E309020-04					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: IY		Batch: 2336040	
Benzene	ND	0.0250	1	09/06/23	09/07/23		
Ethylbenzene	ND	0.0250	1	09/06/23	09/07/23		
Toluene	ND	0.0250	1	09/06/23	09/07/23		
o-Xylene	ND	0.0250	1	09/06/23	09/07/23		
o,m-Xylene	ND	0.0500	1	09/06/23	09/07/23		
Total Xylenes	ND	0.0250	1	09/06/23	09/07/23		
Surrogate: 4-Bromochlorobenzene-PID		95.7 %	70-130	09/06/23	09/07/23		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: IY		Batch: 2336040	
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/06/23	09/07/23		
Surrogate: 1-Chloro-4-fluorobenzene-FID		93.3 %	70-130	09/06/23	09/07/23		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: KM		Batch: 2336059	
Diesel Range Organics (C10-C28)	ND	25.0	1	09/06/23	09/08/23		
Dil Range Organics (C28-C36)	ND	50.0	1	09/06/23	09/08/23		
Surrogate: n-Nonane		104 %	50-200	09/06/23	09/08/23		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: BA		Batch: 2336055	
Chloride	207	200	10	09/06/23	09/10/23		

QC Summary Data

		QC DI		ary Dut									
Targa 12600 WCR 91 Midland TX, 79707		Project Name: Project Number: Project Manager:	2	Coyote Compre 1102-0001 Srittany Long	essor Statio	'n			Reported: 9/11/2023 10:47:01AM				
		Volatile O	rganics	by EPA 802	21B				Analyst: IY				
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit					
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes				
Blank (2336040-BLK1)							Prepared: 0	9/06/23 A	nalyzed: 09/07/23				
Benzene	ND	0.0250					-						
Ethylbenzene	ND	0.0250											
Toluene	ND	0.0250											
o-Xylene	ND	0.0250											
p,m-Xylene	ND	0.0500											
Total Xylenes	ND	0.0250											
Surrogate: 4-Bromochlorobenzene-PID	7.59	0.0250	8.00		94.9	70-130							
LCS (2336040-BS1)							Prepared: 0	9/06/23 A	nalyzed: 09/07/23				
Benzene	4.28	0.0250	5.00		85.6	70-130							
Ethylbenzene	4.28	0.0250	5.00		85.6	70-130							
Toluene	4.41	0.0250	5.00		88.2	70-130							
o-Xylene	4.31	0.0250	5.00		86.2	70-130							
p,m-Xylene	8.74	0.0500	10.0		87.4	70-130							
Total Xylenes	13.0	0.0250	15.0		87.0	70-130							
Surrogate: 4-Bromochlorobenzene-PID	7.35		8.00		91.9	70-130							
Matrix Spike (2336040-MS1)				Source:	E309014-	01	Prepared: 0	9/06/23 A	analyzed: 09/07/23				
Benzene	4.63	0.0250	5.00	ND	92.6	54-133							
Ethylbenzene	4.63	0.0250	5.00	ND	92.6	61-133							
Toluene	4.66	0.0250	5.00	ND	93.1	61-130							
o-Xylene	4.63	0.0250	5.00	ND	92.5	63-131							
p,m-Xylene	9.44	0.0500	10.0	ND	94.4	63-131							
Total Xylenes	14.1	0.0250	15.0	ND	93.8	63-131							
Surrogate: 4-Bromochlorobenzene-PID	7.50		8.00		93.7	70-130							
Matrix Spike Dup (2336040-MSD1)				Source:	E309014-	01	Prepared: 0	9/06/23 A	analyzed: 09/07/23				
Benzene	4.47	0.0250	5.00	ND	89.3	54-133	3.59	20					
Ethylbenzene	4.50	0.0250	5.00	ND	89.9	61-133	3.00	20					
•	4.51	0.0250	5.00	ND	90.2	61-130	3.20	20					
Toluene		0.0400											
Toluene o-Xvlene		0.0250	5.00	ND	89.9	63-131	2.92	20					
o-Xylene	4.49	0.0250	5.00 10.0	ND ND			2.92 3.10						
		0.0250 0.0500 0.0250	5.00 10.0 15.0	ND ND ND	89.9 91.5 90.9	63-131 63-131 63-131	2.92 3.10 3.04	20 20 20					

QC Summary Data

		QC D	umm	ary Data	a de la constante de la consta				
Targa 12600 WCR 91		Project Name: Project Number:	2	Coyote Compre 21102-0001	ssor Statio	'n			Reported:
Midland TX, 79707		Project Manager	: ŀ	Brittany Long					9/11/2023 10:47:01AM
	Noi	nhalogenated (Organics	s by EPA 80	15D - GI	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2336040-BLK1)							Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.29		8.00		91.2	70-130			
LCS (2336040-BS2)							Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Gasoline Range Organics (C6-C10)	43.4	20.0	50.0		86.8	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.55		8.00		94.3	70-130			
Matrix Spike (2336040-MS2)				Source:	E309014-	01	Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Gasoline Range Organics (C6-C10)	47.4	20.0	50.0	ND	94.8	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.49		8.00		93.6	70-130			
Matrix Spike Dup (2336040-MSD2)				Source:	E309014-	01	Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Gasoline Range Organics (C6-C10)	49.9	20.0	50.0	ND	99.9	70-130	5.27	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.53		8.00		94.2	70-130			

QC Summary Data

		QU N	411111	ary Date	•				
Targa 12600 WCR 91		Project Name: Project Number:		Coyote Compre 21102-0001	ssor Static	on			Reported:
Midland TX, 79707		Project Manager:	1	Brittany Long					9/11/2023 10:47:01AM
	Nonh	alogenated Org	anics by	y EPA 8015E) - DRO	/ORO			Analyst: KM
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2336059-BLK1)							Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	51.6		50.0		103	50-200			
LCS (2336059-BS1)							Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Diesel Range Organics (C10-C28)	260	25.0	250		104	38-132			
Surrogate: n-Nonane	50.3		50.0		101	50-200			
Matrix Spike (2336059-MS1)				Source:	E308244-	03	Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Diesel Range Organics (C10-C28)	263	25.0	250	ND	105	38-132			
Surrogate: n-Nonane	51.6		50.0		103	50-200			
Matrix Spike Dup (2336059-MSD1)				Source:	E308244-	03	Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Diesel Range Organics (C10-C28)	260	25.0	250	ND	104	38-132	0.915	20	
Surrogate: n-Nonane	52.5		50.0		105	50-200			

QC Summary Data

		$\mathbf{x} \in \mathbf{z}$	••••••						
Targa 12600 WCR 91 Midland TX, 79707		Project Name: Project Number: Project Manager		Coyote Compre 21102-0001 Brittany Long	ssor Statio	n			Reported: 9/11/2023 10:47:01AM
		Anions	by EPA	300.0/9056A	\				Analyst: BA
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2336055-BLK1)							Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride LCS (2336055-BS1)	ND	20.0					Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	242	20.0	250		96.9	90-110			
Matrix Spike (2336055-MS1)				Source:	E309018-0	01	Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	329	200	250	ND	132	80-120			M2
Matrix Spike Dup (2336055-MSD1)				Source:	E309018-	01	Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	247	200	250	ND	98.9	80-120	28.5	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

Γ	Targa	Project Name:	Coyote Compressor Station	
	12600 WCR 91	Project Number:	21102-0001	Reported:
	Midland TX, 79707	Project Manager:	Brittany Long	09/11/23 10:47

M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.

T17 The sample chromatographic pattern does not resemble the typical fuel standard used for quantitation.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Tt	Tetra Tech, Inc.			Sector Sector	Midl	land,Te I (432)	treet, Ste xas 7970 682-4559 682-3946	1														109			
lient Name:	Targa	Site Manager:		Bri	ittany	Long	9				Τ						YSIS								alle mont (kryste
oject Name:	Coyote Compressor Station		(432) 741 brittany.lo			atech	n.com				1	1	(C	irc	le o	r S	pec I	ify II	Me	thc	od I I I	۷o.) ا		T	1.1
oject Locatio ounty, state)	n: Eddy County, NM	Project #:			212C			7			11											list)			
voice to:	Targa										11			6.	p							attached I			
eceiving Labo		Sampler Sign	ature:		Migue	el A.	Flore	s				- 080)	1000	Cr Pb Se Hg	гр эе нд			5				see atta			
omments:											BTEX 8260B	C35) DRO -		Ba Cd Cr			624	8270C/625				sultate IDS ater Chemistry (s	e		
		SAMP	LING	M	ATRIX	Τ	PRESER			(Z	BTE	(Ext to GRO -		Ag As Ba	d vs b	latiles	260B	101.	808			r Cher	Balanc		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2023		R		T			CONTAINERS	FILTERED (Y/N)		TX1005 (8015M (etals Ag	TCLP Volatiles	TCLP Semi Volatiles	Vol. 82	GC/MS Semi. \	PCB's 8082 / 608 NORM	PLM (Asbestos)	0	Chloride Sulf General Water	ation E		
LAB USE ONLY)	DATE	TIME	WATEF	SOIL	ЧĊ	HN03		# CON	ILTER		TPH TPH 80	PAH 82	Fotal Metals	CLPV	TCLP S	SC/MS	SC/MS	PCB's	PLM (A:	hloride	Senera	vnion/C		
1	AH-1 (0-1')	8/30/2023			x	-	x				x	X									x		4	\top	
2	AH-1 (1-1.5')	8/30/2023			x		x			2	x	x				\square					x				
3	AH-2 (0-1')	8/30/2023			x		x		T		x	x									x				
4	AH-2 (1-1.5')	8/30/2023			x		x			_	x	×						П			x				
						+			╋	-	+	_	+		+	$\left \cdot \right $	-	$\left \right $	-	+	\vdash	+		+	$\left \cdot \right $
									T																
E internet						-			-	-	+	-	-		+		-	$\left \right $	-	$\left \right $	\vdash	-	_	-	
Received and the second						1			+		+	-	+				-	+	-		\vdash	-		-	
Relinquished b	oy: Date: Time: Niguel A Flores	Received by: Michel		m	Je	Da 9-	te: [-2]	Time:	573	0		LAE			RE	MAR	RKS:	Sta	inda	rd					
Relinquished b Relinquished b	lee Empls 9-1-23 1645	Received by: Received by: Received by:	w Mu			Da	1.23	Time: / Time: 3 8	84	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Sam	H H		rature			Rush	Char	ges /	Autho	orized	hr 4 d TRRF			hr

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Targa Da	ate Received:	09/05/23 08	3:15	Work Order ID: E309020
Phone:	(432) 999-8675 Da	ate Logged In:	09/05/23 09	9:38	Logged In By: Caitlin Mars
Email:	brittany.long@tetratech.com Du	le Date:	09/11/23 17	7:00 (4 day TAT)	
Chain o	f Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match	the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: C	Courier
4. Was the	he COC complete, i.e., signatures, dates/times, requested	l analyses?	No	_	
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				
6. Did th	ne COC indicate standard TAT, or Expedited TAT?		Yes		Time sampled not provided on COC per
Sample	<u>Cooler</u>				client.
7. Was a	sample cooler received?		Yes		
8. If yes	, was cooler received in good condition?		Yes		
9. Was th	he sample(s) received intact, i.e., not broken?		Yes		
10. Were	e custody/security seals present?		No		
11. If ye	s, were custody/security seals intact?		NA		
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i.e. Note: Thermal preservation is not required, if samples are re-		Yes		
13 If no	minutes of sampling visible ice, record the temperature. Actual sample tem	nnerature: 4º	۲C		
	Container	<u></u>	<u> </u>		
-	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	e head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?		Yes		
	e appropriate volume/weight or number of sample containers	collected?	Yes		
Field La					
	e field sample labels filled out with the minimum inform	ation:			
	Sample ID?		Yes		
	Date/Time Collected?		Yes		L
	Collectors name?		No		
	Preservation	10			
	s the COC or field labels indicate the samples were prese	erved?	No		
	sample(s) correctly preserved?	1-9	NA		
	b filteration required and/or requested for dissolved meta	115 /	No		
-	ase Sample Matrix				
	s the sample have more than one phase, i.e., multiphase?		No		
27. If ye	s, does the COC specify which phase(s) is to be analyzed	d?	NA		
	tract Laboratory				
	samples required to get sent to a subcontract laboratory?		No		
29. Was	a subcontract laboratory specified by the client and if so	who?	NA S	Subcontract Lab	o: na
Client]	Instruction				

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Targa

Project Name: Coyote Com

Coyote Compressor Station

Work Order: E309021

Job Number: 21102-0001

Received: 9/5/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 9/11/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 9/11/23

Brittany Long 12600 WCR 91 Midland, TX 79707

Project Name: Coyote Compressor Station Workorder: E309021 Date Received: 9/5/2023 8:15:00AM

Brittany Long,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 9/5/2023 8:15:00AM, under the Project Name: Coyote Compressor Station.

The analytical test results summarized in this report with the Project Name: Coyote Compressor Station apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services

Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Page 158 of 170

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
AH-1 (2-2.5')	5
AH-1 (3-3.5')	6
QC Summary Data	7
QC - Volatile Organic Compounds by EPA 8260B	7
QC - Nonhalogenated Organics by EPA 8015D - GRO	8
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	9
QC - Anions by EPA 300.0/9056A	10
Definitions and Notes	11
Chain of Custody etc.	12

eceived by OCD: 11/1/2023 2:31:21 PM			Page 1	60 of 170
	Sample Sum	mary		
Targa	Project Name:	Coyote Compressor Station	Domontode	
12600 WCR 91	Project Number:	21102-0001	Reported:	
Midland TX, 79707	Project Manager:	Brittany Long	09/11/23 10:48	

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
AH-1 (2-2.5')	E309021-01A	Soil	08/30/23	09/05/23	Glass Jar, 4 oz.
AH-1 (3-3.5')	E309021-02A	Soil	08/30/23	09/05/23	Glass Jar, 4 oz.

		ampic D				
Targa 12600 WCR 91 Midland TX, 79707	Project Name Project Numb Project Mana	ber: 2110	ote Compress 02-0001 tany Long	or Station		Reported: 9/11/2023 10:48:48AM
	1	AH-1 (2-2.5')				
		E309021-01				
		Reporting				
Analyte	Result	Limit	Dilutic	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ar	nalyst: RKS		Batch: 2336027
Benzene	ND	0.0250	1	09/06/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/06/23	09/07/23	
Toluene	ND	0.0250	1	09/06/23	09/07/23	
o-Xylene	ND	0.0250	1	09/06/23	09/07/23	
p,m-Xylene	ND	0.0500	1	09/06/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/06/23	09/07/23	
Surrogate: Bromofluorobenzene		104 %	70-130	09/06/23	09/07/23	
Surrogate: 1,2-Dichloroethane-d4		95.7 %	70-130	09/06/23	09/07/23	
Surrogate: Toluene-d8		107 %	70-130	09/06/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ar	nalyst: RKS		Batch: 2336027
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/06/23	09/07/23	
Surrogate: Bromofluorobenzene		104 %	70-130	09/06/23	09/07/23	
Surrogate: 1,2-Dichloroethane-d4		95.7 %	70-130	09/06/23	09/07/23	
Surrogate: Toluene-d8		107 %	70-130	09/06/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ar	nalyst: KM		Batch: 2336059
Diesel Range Organics (C10-C28)	200	25.0	1	09/06/23	09/08/23	T17
Oil Range Organics (C28-C36)	315	50.0	1	09/06/23	09/08/23	T17
Surrogate: n-Nonane		102 %	50-200	09/06/23	09/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ar	nalyst: BA		Batch: 2336055
Chloride	ND	200	10	09/06/23	09/10/23	

Sample Data

Sample Data

	~						
Targa	Project Nam	e: Coy	ote Compres	ssor Statio	n		
12600 WCR 91	Project Num	ber: 2110	02-0001				Reported:
Midland TX, 79707	Project Man	ager: Brit	any Long				9/11/2023 10:48:48AM
		AH-1 (3-3.5')					
		E309021-02					
		Reporting					
Analyte	Result	Limit	Dilut	tion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	I	Analyst: RK	S		Batch: 2336027
Benzene	ND	0.0250	1		09/06/23	09/07/23	
Ethylbenzene	ND	0.0250	1		09/06/23	09/07/23	
Toluene	ND	0.0250	1		09/06/23	09/07/23	
o-Xylene	ND	0.0250	1		09/06/23	09/07/23	
p,m-Xylene	ND	0.0500	1		09/06/23	09/07/23	
Total Xylenes	ND	0.0250	1		09/06/23	09/07/23	
Surrogate: Bromofluorobenzene		107 %	70-130		09/06/23	09/07/23	
Surrogate: 1,2-Dichloroethane-d4		90.4 %	70-130		09/06/23	09/07/23	
Surrogate: Toluene-d8		106 %	70-130		09/06/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	I	Analyst: RK	S		Batch: 2336027
Gasoline Range Organics (C6-C10)	ND	20.0	1		09/06/23	09/07/23	
Surrogate: Bromofluorobenzene		107 %	70-130		09/06/23	09/07/23	
Surrogate: 1,2-Dichloroethane-d4		90.4 %	70-130		09/06/23	09/07/23	
Surrogate: Toluene-d8		106 %	70-130		09/06/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	I	Analyst: KN	1		Batch: 2336059
Diesel Range Organics (C10-C28)	70.1	25.0	1		09/06/23	09/08/23	
Oil Range Organics (C28-C36)	ND	50.0	1		09/06/23	09/08/23	
Surrogate: n-Nonane		129 %	50-200		09/06/23	09/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	Analyst: BA			Batch: 2336055
Chloride	ND	200	10	0	09/06/23	09/10/23	

QC Summary Data

	Project Name: Project Number: Project Manager:	21	oyote Compres 102-0001 rittany Long	ssor Statio	on			Reported:
	Project Manager:	Br	ittany Long					
			Ittally Long				9/1	1/2023 10:48:48AM
	Volatile Organic	Compo	unds by EP	PA 82601	B			Analyst: RKS
Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
						Prepared: 09	9/06/23 Ana	lyzed: 09/06/23
ND	0.0250							-
ND	0.0250							
ND	0.0250							
ND								
ND								
ND								
		0.500		106	70-130			
0.521		0.500		104	70-130			
						Prepared: 09	9/06/23 Ana	yzed: 09/06/23
2.83	0.0250	2.50		113	70-130			
2.77	0.0250	2.50		111	70-130			
2.85	0.0250	2.50		114	70-130			
2.83	0.0250	2.50		113	70-130			
5.60	0.0500	5.00		112	70-130			
8.43	0.0250	7.50		112	70-130			
0.519		0.500		104	70-130			
		0.500		94.7	70-130			
0.535		0.500		107	70-130			
			Source:	E309029-1	21	Prepared: 09	9/06/23 Ana	lyzed: 09/06/23
2.71	0.0250	2.50	ND	108	48-131			
2.73		2.50	ND	109	45-135			
2.78			ND	111	48-130			
	0.0250							
0.007			~			_		
0.75	0.0250	2.50				-		lyzed: 09/06/23
5.77	0.0500	5.00	ND	115	43-135	0.0173	27	
					43-135	0.265	27	
8.71	0.0250	7.50	ND	116	45-155	01200	27	
		7.50 0.500	ND	106	70-130	0.200	27	
8.71			ND			01200	27	
	Result mg/kg ND ND ND ND 0.532 0.480 0.521 2.83 2.77 2.85 2.83 5.60 8.43 0.519 0.474 0.535 2.71 2.71 2.73	Result mg/kg Reporting Limit mg/kg ND 0.0250 0.532 0.480 0.521 0.0250 2.83 0.0250 2.85 0.0250 2.83 0.0250 2.83 0.0250 2.77 0.0250 2.73 0.0250 2.73 0.0250 2.78 0.0250 2.79 0.0250 5.77 0.0500 8.68 0.0250 0.531 0.480 0.534 0.0250 2.75 0.0250 2.79 0.0250 2.79 0.0250	Result mg/kg Reporting Limit mg/kg Spike Level mg/kg ND 0.0250 0.532 0.500 0.521 0.500 2.83 0.0250 2.50 2.85 0.0250 2.50 2.83 0.0250 2.50 2.83 0.0250 7.50 0.519 0.500 5.00 0.519 0.500 5.00 0.535 0.500 2.50 2.71 0.0250 2.50 2.73 0.0250 2.50 2.74 0.0250 2.50 2.75 0.0500 5.00 8.68 0.0250 7.50	Result mg/kg Reporting Limit mg/kg Spike Level mg/kg Source Result mg/kg ND 0.0250 mg/kg mg/kg ND 0.0250 mg/kg mg/kg ND 0.0250 mg/kg mg/kg ND 0.0250 mg/kg mg/kg 0.532 0.500 0.500 mg/kg 0.532 0.500 0.500 0.500 0.521 0.500 0.500 0.500 2.83 0.0250 2.50 2.50 2.83 0.0250 2.50 2.50 2.83 0.0250 7.50 0.500 0.519 0.500 5.60 0.0500 0.519 0.500 5.60 0.500 0.335 0.500 5.50 ND 0.335 0.500 5.60 ND 0.335 0.500 5.50 ND 0.335 0.500 ND ND 2.71 0.0250 2.50 ND 2.73	Result Reporting Limit Spike Level Source Result Rec mg/kg ND 0.0250 mg/kg mg/kg % ND 0.0250 mg/kg % ND 0.0250 mg/kg % ND 0.0250 mg/kg % 0.532 0.500 106 0.480 0.500 95.9 0.521 0.500 104 2.83 0.0250 113 2.77 0.0250 2.50 113 2.83 0.0250 2.50 114 2.83 0.0250 2.50 113 2.77 0.0250 2.50 112 0.519 0.500 5.00 112 0.519 0.500 5.00 107 0.519 0.500 107 112 0.519 0.500 107 112 0.519 0.500 107 112 0.519 0.500 107 112	Result Reporting Limit Spike Source Result Rec Result Rec Limits mg/kg mg/kg mg/kg % % ND 0.0250 mg/kg % % ND 0.0250 % ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 0.532 0.500 106 70-130 0.521 0.500 104 70-130 2.83 0.0250 2.50 111 70-130 2.83 0.0250 2.50 112 70-130 2.85 0.0250 2.50 113 70-130 2.85 0.0250 7.50 112 70-130 0.519 0.500 104 70-130 0.533 <td>Result mg/kg Limit Limit mg/kg Spike Level mg/kg Source Result mg/kg Rec Mg/kg Rec % Rec % Rec % Rec % Rec % Imits % RPD ND 0.0250 0.0</td> <td>Result mg/kg Spike Limit mg/kg Source mg/kg Rec Result mg/kg Rec mg/kg Rec % Rep % RPD % Limit % ND 0.0250 mg/kg %</td>	Result mg/kg Limit Limit mg/kg Spike Level mg/kg Source Result mg/kg Rec Mg/kg Rec % Rec % Rec % Rec % Rec % Imits % RPD ND 0.0250 0.0	Result mg/kg Spike Limit mg/kg Source mg/kg Rec Result mg/kg Rec mg/kg Rec % Rep % RPD % Limit % ND 0.0250 mg/kg %

QC Summary Data

		QC DI		ary Data	•				
Targa 12600 WCR 91 Midland TX, 79707		Project Name: Project Number: Project Manager:	2	Coyote Compres 21102-0001 Brittany Long	ssor Station				Reported: 9/11/2023 10:48:48AM
	No	onhalogenated O	rganics	s by EPA 801	5D - GR	0			Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2336027-BLK1)							Prepared: 0	9/06/23	Analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.532		0.500		106	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.480		0.500		95.9	70-130			
Surrogate: Toluene-d8	0.521		0.500		104	70-130			
LCS (2336027-BS2)							Prepared: 0	9/06/23	Analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	58.7	20.0	50.0		117	70-130			
Surrogate: Bromofluorobenzene	0.536		0.500		107	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.476		0.500		95.1	70-130			
Surrogate: Toluene-d8	0.527		0.500		105	70-130			
Matrix Spike (2336027-MS2)				Source: l	E309029-21	l	Prepared: 0	9/06/23	Analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	51.6	20.0	50.0	ND	103	70-130			
Surrogate: Bromofluorobenzene	0.532		0.500		106	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.472		0.500		94.4	70-130			
Surrogate: Toluene-d8	0.536		0.500		107	70-130			
Matrix Spike Dup (2336027-MSD2)				Source: l	E309029-21	l	Prepared: 0	9/06/23	Analyzed: 09/06/23
Fasoline Range Organics (C6-C10)	59.6	20.0	50.0	ND	119	70-130	14.4	20	
Jasonne Range Organics (CO-C10)	5710								
Surrogate: Bromofluorobenzene	0.534		0.500		107	70-130			
			0.500 0.500		107 96.1	70-130 70-130			

QC Summary Data

		QU N							
Targa 12600 WCR 91		Project Name: Project Number:		Coyote Compre 21102-0001	ssor Static	on			Reported:
Midland TX, 79707		Project Manager:	I	Brittany Long					9/11/2023 10:48:48AM
	Nonh	alogenated Org	anics by	y EPA 8015E) - DRO	/ORO			Analyst: KM
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2336059-BLK1)							Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	51.6		50.0		103	50-200			
LCS (2336059-BS1)							Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Diesel Range Organics (C10-C28)	260	25.0	250		104	38-132			
Surrogate: n-Nonane	50.3		50.0		101	50-200			
Matrix Spike (2336059-MS1)				Source:	E308244-	03	Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Diesel Range Organics (C10-C28)	263	25.0	250	ND	105	38-132			
Surrogate: n-Nonane	51.6		50.0		103	50-200			
Matrix Spike Dup (2336059-MSD1)				Source:	E308244-	03	Prepared: 0	9/06/23 A	Analyzed: 09/07/23
Diesel Range Organics (C10-C28)	260	25.0	250	ND	104	38-132	0.915	20	
Surrogate: n-Nonane	52.5		50.0		105	50-200			

QC Summary Data

		$\mathbf{x} \in \mathbf{z}$	••••••						
Targa 12600 WCR 91 Midland TX, 79707		Project Name: Project Number: Project Manager		Coyote Compre 21102-0001 Brittany Long	ssor Statio	n			Reported: 9/11/2023 10:48:48AM
		Anions	by EPA	300.0/9056A	\				Analyst: BA
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2336055-BLK1)							Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride LCS (2336055-BS1)	ND	20.0					Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	242	20.0	250		96.9	90-110			
Matrix Spike (2336055-MS1)				Source:	E309018-(01	Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	329	200	250	ND	132	80-120			M2
Matrix Spike Dup (2336055-MSD1)				Source:	E309018-(01	Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	247	200	250	ND	98.9	80-120	28.5	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

Γ	Targa	Project Name:	Coyote Compressor Station	
	12600 WCR 91	Project Number:	21102-0001	Reported:
	Midland TX, 79707	Project Manager:	Brittany Long	09/11/23 10:48

M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.

T17 The sample chromatographic pattern does not resemble the typical fuel standard used for quantitation.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

TŁ	Tetra Tech, Inc.				Mid Te	Wall S Iland,Te Il (432) x (432)	exas 79 682-4	559										1. Se	30:	年:	E:	30	90	15 20	۱
ient Name:	Targa	Site Manager:		Bri	ittany	Long	g				a dan ka di sa							SIS	RE	QUE	EST			-	
oject Name:	Coyote Compressor Station		(432) 74 ⁻ brittany.lo			atack	h co	m				1	I	(C	ircle		r Sp	beci	fy I	Met	:hor	d No	5.) I I	L F	ī
oject Locatio ounty, state)	Eddy County, NM	Project #:	Drittarry.it		2120			-															æ		
oice to:																							ned list		
ceiving Lab		Sampler Sign	ature:		Migu		Flo						6		Se Hg				-				attach		
mments:	Envirotech Inc.				wigu	er A.	. FIO	res				SOB	- ORG		Cr Pb Cr Pb				625			S	(see		
												X 8260B	C35) DRO		Ba Cd (1 1		624	8270C/625			TDS	mistry		
		SAMP	LING	м	ATRIX			ERVATI	VE	RS	(N/	BTE	TX1005 (Ext to C35) 8015M (GRO - DRC		As I		latiles	260B /	Vol. 8	000	s)	Sulfate	er Che Balan		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2023		æ		Т				AINE	ED (Y	8021B	15M (8270C	etals Ag	Volatiles	emi Vo	Vol. 8:	Semi.	1700	besto	SI	Wate		
LAB USE ONLY)	DATE	TIME	WATEF	SOIL	HCL	HNO ₃	IJ		CONTAINERS	FILTERED (Y/N)	BTEX 8	TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO)	PAH 82	Total Metals A TCLP Metals	TCLP V	TCLP Semi Volatiles	C/MS	GC/MS Semi. Vol. 8270C/	NORM	PLM (Asbestos)	Chloride	General Water Chemistry (see attached list) Anion/Cation Balance		
1	AH-1 (2-2.5')	8/30/2023	F	T	x			×		#		X	X					. 0	0 1	- 2		(H	T
2	AH-1 (3-3.5')	8/30/2023			x			x				х	x								>	;			
									_			\square	_	\square	_		_		+	+	\square	_	\square	\square	+
				+		+	-	-	-			\vdash	+	\mathbb{H}	-	H	-		+	+	\vdash	-		\vdash	+
				t		-	\square		-	-			+	H	1				+	+	H	+	\vdash	\vdash	+
											-								_	\perp	\square				
all and a state of				-		+			-	-			-	\square	-		-	-	+	+	\vdash	+		\vdash	+
linquished	by: Date: Time:	Received by	0	1		Da	ate:	Tin	ne:				LAB	US	E	RE	MAR	KS:	Sta	ndai	d				
	by: Date: Time: Miguel A Flores	Calical	lu G	inj	k	9-	1-2	13	C	730	2			NLY											
linquished		Received by		0			ate:	Tin 22		Der	,	Sam	ple Te	emper	rature		R	USH:	Sa	me C)ay	24 hr	481	ır 72	2 hr
linquished	by: Date: Time:	Received by	The state of the state of the state of the	110	140	Contractor of the	t ·/·	23	-	84	2		4				R	ush (Charg	jes A	uthor	ized			
And	a 200 m115	Cont	la Th	Mo	m			23		:15	-		1				s	pecia	l Rep	oort L	imits.	or TF	RRP R	eport	
		Puil		-	3				0			(Circ	le) H	AND	DELIV	FRE) FF	DEX	LIPS	S T	rackin	a #:		_	

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Targa D	ate Received:	09/05/23 08	3:15	Work Order ID: E309021	
Phone:	(432) 999-8675 D	ate Logged In:	09/05/23 09	9:40	Logged In By: Caitlin Ma	ars
Email:	brittany.long@tetratech.com D	ue Date:	09/11/23 17	7:00 (4 day TAT)		
<u>Chain o</u>	f Custody (COC)					
1. Does 1	the sample ID match the COC?		Yes			
2. Does f	the number of samples per sampling site location match	the COC	Yes			
3. Were	samples dropped off by client or carrier?		Yes	Carrier: C	ourier	
4. Was th	he COC complete, i.e., signatures, dates/times, requested	d analyses?	No			
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		<u>Comments/Resolution</u>	<u>on</u>
<u>Sample '</u>	<u>Turn Around Time (TAT)</u>					~ ~ ~
6. Did th	ne COC indicate standard TAT, or Expedited TAT?		Yes		Time sampled not provided on (COC per
Sample	Cooler				client.	
7. Was a	sample cooler received?		Yes			
8. If yes,	, was cooler received in good condition?		Yes			
9. Was tł	he sample(s) received intact, i.e., not broken?		Yes			
10. Were	e custody/security seals present?		No			
11. If yes	s, were custody/security seals intact?		NA			
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re- minutes of sampling		Yes			
13. If no	visible ice, record the temperature. Actual sample te	mperature: 4°	С			
	<u>Container</u>		_			
	aqueous VOC samples present?		No			
	VOC samples collected in VOA Vials?		NA			
16. Is the	e head space less than 6-8 mm (pea sized or less)?		NA			
17. Was	a trip blank (TB) included for VOC analyses?		NA			
18. Are 1	non-VOC samples collected in the correct containers?		Yes			
19. Is the	e appropriate volume/weight or number of sample container	s collected?	Yes			
Field La	<u>ibel</u>					
	e field sample labels filled out with the minimum inform	nation:				
	Sample ID?		Yes			
	Date/Time Collected? Collectors name?		Yes	-		
	Preservation_		No			
	s the COC or field labels indicate the samples were pres	erved?	No			
	sample(s) correctly preserved?		NA			
	b filteration required and/or requested for dissolved met	als?	No			
	ase Sample Matrix					
	s the sample have more than one phase, i.e., multiphase	?	No			
	s, does the COC specify which phase(s) is to be analyze		NA			
27. If yes						
-	tract Laboratory					
<u>Subcont</u>		?	No			
Subcont 28. Are s	tract Laboratory_ samples required to get sent to a subcontract laboratory? a subcontract laboratory specified by the client and if so			Subcontract Lab	: na	

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Targa Northern Delaware, LLC.	331548
110 W. 7th Street, Suite 2300	Action Number:
Tulsa, OK 74119	281886
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created	Condition	Condition	
By		Date	
bhall	Closure approved under previous remediation levels as outlined in approved workplan dated 2017.	11/6/2023	

Action 281886