District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

| Incident ID    | nOY1809249211 |
|----------------|---------------|
| District RP    | 1RP-5003.     |
| Facility ID    |               |
| Application ID |               |

# **Release Notification**

## **Responsible Party**

| Responsible Party Marathon Oil Permian LLC                     | OGRID 372098                   |
|----------------------------------------------------------------|--------------------------------|
| Contact Name Melodie Sanjari                                   | Contact Telephone 575-988-8753 |
| Contact email msanjari@marathonoil.com                         | Incident # (assigned by OCD)   |
| Contact mailing address 4111 S. Tidwell Rd., Carlsbad, NM 8220 |                                |

## **Location of Release Source**

Latitude 32.7459831

Longitude -103.5429764

(NAD 83 in decimal degrees to 5 decimal places)

| Site Name TONTO 15 STATE #001      | Site Type Oil & Gas Facility      |
|------------------------------------|-----------------------------------|
| Date Release Discovered: 3/14/2018 | API# (if applicable) 30-025-28897 |

| Unit Letter | Section | Township | Range | County |
|-------------|---------|----------|-------|--------|
| Ι           | 15      | 18S      | 34E   | Lea    |

Surface Owner: State Federal Tribal Private (Name:

# Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below) 🛛 Crude Oil Volume Released (bbls) 7 Volume Recovered (bbls) 5 Produced Water Volume Released (bbls) Volume Recovered (bbls) Is the concentration of dissolved chloride in the  $\boxtimes$  Yes  $\square$  No produced water >10,000 mg/l? Condensate Volume Released (bbls) Volume Recovered (bbls) 🗌 Natural Gas Volume Released (Mcf) Volume Recovered (Mcf) Volume/Weight Released (provide units) Other (describe) Volume/Weight Recovered (provide units)

### Cause of Release

While conducting daily rounds, Operator arrived onside and observed standing fluids around the perimeter of the wellhead. Upon investigation, it was found the stuffing box had released and misted approx. 6. 32 bbl. onsite around the wellhead. Misting affected a 55 ft x 3 ft. area and a 30 ft x 30 ft. area. A vac truck was dispatched to recover standing fluids. Contaminated soils will be removed and disposed of at R360.

# Amended Closure Report Starts on Page 76

| Page | 2 |
|------|---|
| rage | 4 |

### Oil Conservation Division

| Incident ID    | nOY1809249211 |
|----------------|---------------|
| District RP    | 1RP-5003.     |
| Facility ID    |               |
| Application ID |               |

| Was this a major<br>release as defined by<br>19.15.29.7(A) NMAC? | If YES, for what reason(s) does the responsible party consider this a major release?  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 🗌 Yes 🖾 No                                                       |                                                                                       |
|                                                                  |                                                                                       |
| If YES, was immediate ne                                         | otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? |
|                                                                  |                                                                                       |
|                                                                  |                                                                                       |

# **Initial Response**

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 $\boxtimes$  The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

| Printed Name: | Callie Karrigan | Title: | Environmenta | l Professiona |
|---------------|-----------------|--------|--------------|---------------|
|               |                 |        |              |               |

Signature: Callie Karrigan Date: 4/02/2018

email: Telephone:

OCD Only

Received by: \_\_\_\_\_ Date: \_\_\_\_\_

Received by OCD: 9/21/2023 6:16:51 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

| Incident ID    | nOY1809249211 |
|----------------|---------------|
| District RP    | 1RP-5003.     |
| Facility ID    |               |
| Application ID |               |

Page 3 of 406

# Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

|                                                                                                                                                                                                 | 1                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                           | <u>&lt;50</u> (ft<br>bgs) |
| Did this release impact groundwater or surface water?                                                                                                                                           |                           |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                              | ☐ Yes ⊠ No<br>☐ Yes ⊠ No  |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                    | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                            | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes? | 🗌 Yes 🛛 No                |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                |                           |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                           | ☐ Yes ⊠ No<br>☐ Yes ⊠ No  |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                            |                           |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                             | ☐ Yes ⊠ No                |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                        | ☐ Yes ⊠ No                |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                            | 🗌 Yes 🛛 No                |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                            | 🗌 Yes 🛛 No                |
| 2 in the receive infrate ment of an englisteriolity, as enspirionity production, of storage sites                                                                                               | 🗌 Yes 🕅 No                |

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

#### Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

Field data

Data table of soil contaminant concentration data

 $\boxtimes$  Depth to water determination

- Determination of water sources and significant watercourses within <sup>1</sup>/<sub>2</sub>-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

|                                                                                          | 6:16:51 AM<br>State of New Mexico                                                                                                                                                                                                   |                          |                                                          |                            | Page 4 of 4                             |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|----------------------------|-----------------------------------------|
|                                                                                          |                                                                                                                                                                                                                                     |                          | Incident ID                                              | nO                         | Y1809249211                             |
| Page 4                                                                                   | Oil Conservation Division                                                                                                                                                                                                           | n                        | District RP                                              | 1R                         | P-5003.                                 |
|                                                                                          |                                                                                                                                                                                                                                     |                          | Facility ID                                              |                            |                                         |
|                                                                                          |                                                                                                                                                                                                                                     |                          | Application 1                                            | D                          |                                         |
| public health or the environme<br>failed to adequately investigate                       | quired to report and/or file certain release notification<br>nt. The acceptance of a C-141 report by the OCD do<br>e and remediate contamination that pose a threat to gr<br>C-141 report does not relieve the operator of response | es not reli<br>oundwater | eve the operator of liability, surface water, human h    | ity should the alth or the | neir operations have<br>environment. In |
| Printed Name: <u>Melod</u><br>Signature: <u>Melodí</u><br>email: <u>msanjari@maratho</u> | <u>e Sanjarí</u> D                                                                                                                                                                                                                  | ate: 9/21/               | <u>Environmental Prof</u><br>2023<br><u>575-988-8753</u> | essional                   |                                         |

Page 6

Oil Conservation Division

Application ID

# Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: <u>Melodie Sanjari</u> Title: Environmental Professional Signature: <u>Melodie Sanjari</u> Date 9/21/2023 email: msanjari@marathonoil.com Telephone: 575-988-8753 **OCD Only** Received by: \_\_\_\_\_ Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Hall Date: 11/6/2023 Title: Environmental Specialist Printed Name: Brittany Hall



July 10, 2018

NMOCD District I Olivia Yu 1625 N. French Drive Hobbs, NM 88240

Souder, Miller & Associates 201 S. Halagueno St. Carlsbad, NM 88220

(575) 689-8801

REVIEWED By Olivia Yu at 10:22 am, Jul 25, 2018

NMOCD agrees that delineation is completed for 1RP-4869 & 1RP-5003. See email correspondence regarding remediation.

#5E27122-BG8

SUBJECT: SOIL REMEDIATION CLOSURE REPORT FOR THE INCIDENTS AT THE TONTO 15 STATE #1, LEA COUNTY, NEW MEXICO

Dear Ms. Yu:

On behalf of Marathon Oil Permian LLC, Souder, Miller & Associates (SMA) has prepared this CLOSURE REPORT that describes the assessment, delineation and remediation for the releases associated with the Tonto 15 State #1. The site is in UNIT I, SECTION 15, TOWNSHIP 18S, RANGE 34E, NMPM, Lea County, New Mexico, on State land. Figure 1 illustrates the vicinity and location of the site. Table 1, below, summarizes information regarding the release.

| Table 1: Release information and Site Ranking |                                                      |  |
|-----------------------------------------------|------------------------------------------------------|--|
| Name                                          | Tonto 15 State #1                                    |  |
| Company                                       | Marathon Oil Permian LLC                             |  |
| Incident Number                               | 1RP-4869                                             |  |
|                                               | 1RP-5003                                             |  |
| API Number                                    | 30-025-28897                                         |  |
| Location                                      | 32.7459831, -103.5429764                             |  |
| Estimated Date of Release                     | 1RP-4869-October 29, 2017                            |  |
| Estimated Date of Release                     | 1RP-5003-March 14, 2018                              |  |
| Date Reported to NMOCD                        | 1RP-4869-November 2, 2017                            |  |
|                                               | 1RP-5003-March 15, 2018                              |  |
| Land Owner                                    | State                                                |  |
| Reported To                                   | NMOCD District I                                     |  |
| Source of Release                             | 1RP-4869-Stuffing Box                                |  |
|                                               | 1RP-5003-Stuffing Box                                |  |
| Released Material                             | 1RP-4869-Oil                                         |  |
|                                               | 1RP-5003-Oil                                         |  |
| Released Volume                               | 1RP-4869-23 bbls                                     |  |
|                                               | 1RP-5003-6.32 bbls                                   |  |
| Recovered Volume                              | 1RP-4869-12 bbls                                     |  |
|                                               | 1RP-5003-5.3 bbls                                    |  |
| Net Release                                   | 1RP-4869-11 bbls                                     |  |
|                                               | 1RP-5003-1.02 bbls                                   |  |
| Nearest Waterway                              | Surface water is approximately 2,660' SW of location |  |
| Depth to Groundwater                          | Estimated to be 100'                                 |  |
| Nearest Domestic Water Source                 | Greater than 1,000 feet                              |  |
| NMOCD Ranking                                 | 0                                                    |  |
| SMA Response Dates                            | April 26, 2018, May 17, 2018, June 7, 2018           |  |

Page 7 of 406

Page 2 of 4

Tonto 15 State #1 July 10, 2018

# **1.0 Background**

On October 29, 2017, a 23 bbl oil spill occurred due to a valve at the well being inadvertently closed, which resulted in the stuffing box forming a leak (1RP-4869). The surface impact was confined to the well pad and access road. An area of approximately 144 feet wide by 4 feet long was impacted on the well pad. An area approximately 16 feet wide and 48 feet long was impacted on the access road. A vacuum truck was able to recover approximately 12 bbls of standing fluid.

On March 14, 2018, a 6.32 bbls oil spill occurred due to a stuffing box leak (1RP-5003). The surface impact was confined to the well pad. Two areas of impact were observed measuring approximately 55 feet wide by 3 feet long and 30 feet wide by 30 feet long. A vacuum truck was able to recover approximately 1 bbl of standing fluid.

# 2.0 Site Ranking and Land Jurisdiction

The release site is located near Artesia, New Mexico with an elevation of approximately 4,020 feet above sea level. SMA searched the New Mexico State Engineer's Office (NMOSE) online water well database for water wells in the vicinity of the release. Several wells are located within a three-mile radius of the site. After evaluation of the site using aerial photography and topographic maps, depth to groundwater is estimated to be 100 feet below ground surface (bgs).

Recommended Remediation Action Levels (RRALs) are determined by the site ranking according to the NMOCD Guidelines for Remediation of Leaks, Spills, and Releases (1993). Below in Table 2 are the remediation standards and the site ranking for this location. Justification for this site ranking is found in Figure 1 and Appendix B.

0

| Table 2.                   |          |          |         |
|----------------------------|----------|----------|---------|
| Soil Remediation Standards | 0 to 9   | 10 to 19 | >19     |
| Benzene                    | 10 PPM   | 10 PPM   | 10 PPM  |
| BTEX                       | 50 PPM   | 50 PPM   | 50 PPM  |
| ТРН                        | 5000 PPM | 1000 PPM | 100 PPM |

**NMOCD Numeric Rank** Depth to Groundwater < 50 BGS = 20 50' to 99' = 10 >100' = 0 NMOCD Numeric Rank **Distance to Nearest Surface Water** < 200' = 20 2001 10001 - 10

| $200^{\circ} - 1000^{\circ} = 10^{\circ}$ |                    |
|-------------------------------------------|--------------------|
| >1000' = 0                                | 0                  |
| Well Head Protection                      | NMOCD Numeric Rank |
| <1000' (or <200' domestic) = 20           |                    |
| > 1000' = 0                               | 0                  |
| Total Site Ranking                        | 0                  |

Page 3 of 4

Tonto 15 State #1 July 10, 2018

## 3.0 Release Characterization

On April 26, 2018, SMA field personnel assessed the release area. Soil samples were field-screened using a mobile EC unit (EPA 4500) and a calibrated MiniRAE 3000 photoionization detector (PID). Five sample locations (L1-L5) were augured by hand to a maximum depth of 1 foot bgs to characterize the release.

On May 17, 2018, SMA field personnel returned to the location to further delineate sample locations L1 through L5 with a backhoe service. The backhoe encountered limestone bedrock across the pad at depths that ranged from 10 inches to 2 feet. This occurance is validated in the Web Soil Survey (USDA), which states that bedrock should be found from 10 to 16 inches and will continue to at least 80 inches.

As summarized in Table 3, results indicated that hydrocarbon impacts were primarily surficial (0.5 foot), with chloride impacts extending to at least 1.5 feet. SMA recommended excavation of the impacted area to remove chloride-contaminated soil, or until bedrock was encountered.

All samples were collected and processed according to NMOCD soil sampling procedures. The samples were sent under chain-of-custody protocols to Hall Environmental Analysis Laboratory for analysis for MRO, DRO, and GRO by EPA Method 8015D, BTEX by EPA Method 8021, and Chlorides by Method 300. Sample locations are depicted on Figure 2. All field screening and laboratory results are summarized in Table 3. Laboratory reports are included in Appendix C.

# 4.0 Soil Remediation

SMA guided the excavation in the impact area to bedrock. Sample L4 was excavated to 1 foot bgs, sample locations L2 and L3 were excavated to 1.5 feet bgs, and the pooling area around sample location L5 was excavated to 2 feet bgs. SMA continuously guided the excavation activities by collecting soil samples for field screening with a mobile EC unit (EPA 4500) and PID unit. Seven sidewall samples were collected from the excavated area to demonstrate lateral delineation. However, one sidewall (SW6) and two bottom hole (L2 and L3) samples still resulted in elevated chlorides, so these areas were extended and resampled on June 20, 2018.

All samples were collected and processed according to NMOCD soil sampling procedures. The samples were sent under chain-of-custody protocols to Hall Environmental Analysis Laboratory for analysis for MRO, DRO, and GRO by EPA Method 8015D, BTEX by EPA Method 8021, and Chlorides by Method 300. Contaminated soils were removed and replaced with clean backfill material to return the surface to previous contours. The contaminated soils were transported for proper disposal at an NMOCD permitted disposal facility. Sample location L1 was not excavated due to multiple electrical lines and proximity to the pump jack. We are requesting to defer the cleanup in the area until site abandonment.

# 5.0 Scope and Limitations

The scope of our services consisted of the performance of assessment sampling, verification of release stabilization, regulatory liaison, remediation and preparation of this closure report. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

Tonto 15 State #1 July 10, 2018 Page 4 of 4

If there are any questions regarding this report, please contact either Austin Weyant at 575-689-8801 or Shawna Chubbuck at 505-325-7535.

Submitted by: SOUDER, MILLER & ASSOCIATES Reviewed by:

histo Merant

Austin Weyant Project Scientist

hauna Chubbuck

Shawna Chubbuck Senior Scientist

### ATTACHMENTS:

### Figures:

Figure 1: Vicinity and Well Head Protection Map Figure 2: Site and Sample Location Map

### Tables:

Table 3: Summary of Sample Results

### **Appendices:**

Appendix A: Form C141 Initial Appendix B: NMOSE Wells Report Appendix C: Laboratory Analytical Reports

.

# FIGURE 1 VICINITY AND NMOSE DATA MAP



# FIGURE 2 SITE AND SAMPLE LOCATION MAP



Released to Imaging: 11/6/2023 11:57:53 AM

.

# TABLE 3 SUMMARY SAMPLE RESULTS

# Tonto 15 State #1

Table 3.

| Sample                |              | _                   |                 | BTEX     | Benzene  | GRO   | DRO    | MRO   | Total TPH  | CI-                 |
|-----------------------|--------------|---------------------|-----------------|----------|----------|-------|--------|-------|------------|---------------------|
| Number on<br>Figure 2 | Sample Date  | Depth (feet<br>bgs) | Action<br>Taken | mg/Kg    | mg/Kg    | mg/Kg | mg/Kg  | mg/Kg | mg/Kg      | Laboratory<br>mg/Kg |
|                       | NMOCD RRAL's | for Site Ranking    | 0               | 50 mg/Kg | 10 mg/Kg |       |        |       | 5000 mg/Kg | 600                 |
| L1                    | 4/26/2018    | 0.5                 | in-situ         | 141      | <0.49    | 970   | 23000  | 9300  | 33270      | 920                 |
| LI                    | 5/17/2018    | 2.5                 | in-situ         | <0.23    | <0.025   | <5.0  | 45     | 55    | 100        | 490                 |
|                       | 4/26/2018    | 0.5                 | excavated       | 49.9     | <0.46    | 480   | 17000  | 7900  | 25380      | 210                 |
| L2                    | 5/17/2018    | 1                   | excavated       | <0.23    | <0.023   | <4.7  | 66     | 53    | 119        | 860                 |
| LZ                    | 6/7/2018     | 1.5                 | excavated       |          |          | <4.8  | 500    | 420   | 920        | 770                 |
|                       | 6/20/2018    | 1.75                | in-situ         |          |          | <4.7  | 12     | <47   | 12         | 120                 |
|                       | 4/26/2018    | 0.5                 | excavated       | 120      | <0.50    | 970   | 17,000 | 6,200 | 24,170     | 250                 |
| L3                    | 5/17/2018    | 1                   | excavated       | 0.5      | <0.024   | 9.8   | 2000   | 1200  | 3209.8     | 2100                |
| LS                    | 6/7/2018     | 1.5                 | excavated       |          |          | 5.2   | 680    | 640   | 1325.2     | 1900                |
|                       | 6/20/2018    | 1.75                | in-situ         |          |          | <4.6  | 180    | <48   | 180        | 160                 |
| L4                    | 4/26/2018    | 0.5                 | excavated       | 147      | <0.48    | 1400  | 17000  | 5900  | 24300      | 300                 |
| L4                    | 5/17/2018    | 1                   | in-situ         | <0.23    | <0.025   | <5.0  | 23     | <50   | 23         | 530                 |
|                       | 4/26/2018    | 1                   | excavated       | 2.75     | <0.12    | 31    | 6100   | 3800  | 9931       | 920                 |
| L5                    | 5/17/2018    | 1.5                 | excavated       | <0.23    | <0.024   | <4.8  | 690    | 470   | 1160       | 1200                |
|                       | 5/17/2018    | 2                   | in-situ         | <0.23    | <0.024   | <4.9  | 22     | <50   | 22         | 250                 |
| SW1                   | 6/7/2018     | sidewall            | in-situ         |          |          | <4.8  | 60     | 61    | 121        | 180                 |
| SW2                   | 6/7/2018     | sidewall            | in-situ         |          |          | <4.7  | 110    | 210   | 320        | 610                 |
| SW3                   | 6/7/2018     | sidewall            | in-situ         |          |          | <4.8  | <9.9   | <50   | <65        | 480                 |
| SW4                   | 6/7/2018     | sidewall            | in-situ         |          |          | <4.9  | 550    | 390   | 940        | 57                  |
| SW5                   | 6/7/2018     | sidewall            | in-situ         |          |          | <4.7  | 160    | 350   | 510        | 120                 |
| CN/C                  | 6/7/2018     | sidewall            | excavated       |          |          | <4.8  | 35     | 60    | 95         | 1200                |
| SW6                   | 6/20/2018    | sidewall            | in-situ         |          |          |       |        |       |            | 550                 |
| SW7                   | 6/7/2018     | sidewall            | in-situ         |          |          | <4.8  | 20     | <47   | 20         | 380                 |
| SP                    | 4/26/2018    | comp                | hauled          | 13.1     | <0.12    | 94    | 7400   | 5300  | 12794      | 1500                |

"--" = Not Analyzed

# APPENDIX A FORM C141 INITIAL

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

API No. :30-025-28897

### **Release Notification and Corrective Action**

|                                                      | <b>OPERATOR</b>                       | Initial Report            | Final Repo |
|------------------------------------------------------|---------------------------------------|---------------------------|------------|
| Name of Company Marathon Oil Permian LLC             | Contact Raquel Chacon                 |                           |            |
| Address 5555 San Felipe Street, Houston, Texas 77056 | Telephone No. 281-910-0441            | (cell) 575-297-0988 (offi | ice)       |
| Facility Name: Tonto 15 State #1                     | Facility Type Oil and gas prod        | duction facilities        |            |
|                                                      | · · · · · · · · · · · · · · · · · · · |                           |            |

Surface: Owner: State of NM

### LOCATION OF RELEASE

Mineral: Owner: State of NM

| Unit Letter | Section | Township | Range | Feet from the | North/South Line | Feet from the | East/West Line | County |  |  |  |  |  |
|-------------|---------|----------|-------|---------------|------------------|---------------|----------------|--------|--|--|--|--|--|
| Ι           | 15      | 18S      | 34E   | 1980          | South            | 900           | East           | Lea    |  |  |  |  |  |

#### Latitude 32.745796 Longitude -103.542489

### NATURE OF RELEASE

| Type of Release : Oil                                                          | Volume of Release : 23 bbls                      | Volume Recovered : 12 bbls                 |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| Source of Release: stuffing box                                                | Date and Hour of Occurrence                      | Date and Hour of Discovery                 |  |  |  |  |  |  |
|                                                                                | 10/29/2017 approximately 8:00 10/29/2017 4:30 pm |                                            |  |  |  |  |  |  |
|                                                                                | am                                               |                                            |  |  |  |  |  |  |
| Was Immediate Notice Given?                                                    | If YES, To Whom?                                 |                                            |  |  |  |  |  |  |
| 🗌 Yes 🔲 No 🖾 Not Required                                                      |                                                  |                                            |  |  |  |  |  |  |
| By Whom?                                                                       | Date and Hour                                    |                                            |  |  |  |  |  |  |
| Was a Watercourse Reached?                                                     | If YES, Volume Impacting the Wat                 | tercourse.                                 |  |  |  |  |  |  |
| 🗌 Yes 🖾 No                                                                     |                                                  |                                            |  |  |  |  |  |  |
| If a Weters and I Describe Fully *                                             |                                                  |                                            |  |  |  |  |  |  |
| If a Watercourse was Impacted, Describe Fully.*                                | RECEIVED                                         |                                            |  |  |  |  |  |  |
| Not applicable.                                                                | By Olivia Vy at 2                                | 22 pm Nov 15 2017                          |  |  |  |  |  |  |
|                                                                                | by Olivia Tu at 3.                               | 22 pm, Nov 15, 2017                        |  |  |  |  |  |  |
| Describe Cause of Problem and Remedial Action Taken.*                          |                                                  |                                            |  |  |  |  |  |  |
| The valve at the wellhead was found to be shut by an unknown source. The       | e well was still active and resulted in          | a release at the stuffing box. The pumping |  |  |  |  |  |  |
| unit was shut in immediately until the cause was discovered. A vacuum tr       |                                                  |                                            |  |  |  |  |  |  |
| and the unit was put back on-line.                                             |                                                  |                                            |  |  |  |  |  |  |
| 1                                                                              |                                                  |                                            |  |  |  |  |  |  |
| Describe Area Affected and Cleanup Action Taken.*                              |                                                  |                                            |  |  |  |  |  |  |
| The area affected was on the well pad and access road. The area on the w       | ell pad was 144' wide by 4' long and             | the area on the road was 16' wide and 48'  |  |  |  |  |  |  |
| long. An 811 call was placed immediately in order for a backhoe to             | o remove contaminants in order to                | prevent further impact to soils or         |  |  |  |  |  |  |
| tracking with vehicles. Soil samples will be submitted to a laborat            |                                                  |                                            |  |  |  |  |  |  |
| corrective actions were effective.                                             |                                                  |                                            |  |  |  |  |  |  |
|                                                                                |                                                  |                                            |  |  |  |  |  |  |
|                                                                                |                                                  |                                            |  |  |  |  |  |  |
| I hereby certify that the information given above is true and complete to the  |                                                  |                                            |  |  |  |  |  |  |
| regulations all operators are required to report and/or file certain release n |                                                  |                                            |  |  |  |  |  |  |
| public health or the environment. The acceptance of a C-141 report by the      |                                                  |                                            |  |  |  |  |  |  |
| should their operations have failed to adequately investigate and remediate    |                                                  |                                            |  |  |  |  |  |  |
| or the environment. In addition, NMOCD acceptance of a C-141 report d          | oes not relieve the operator of respons          | sibility for compliance with any other     |  |  |  |  |  |  |
| federal, state, or local laws and/or regulations.                              |                                                  |                                            |  |  |  |  |  |  |
| Signature: Bagual Chasen                                                       | OIL CONSERV                                      | ATION DIVISION                             |  |  |  |  |  |  |
| Signature: Raquel Chacon                                                       |                                                  |                                            |  |  |  |  |  |  |
| Printed Name: Raquel Chacon                                                    |                                                  | PV /                                       |  |  |  |  |  |  |
| Finted Name. Raquel Chacon                                                     | Approved by Environmental Specialis              | st:                                        |  |  |  |  |  |  |
|                                                                                | 11/15/2017                                       |                                            |  |  |  |  |  |  |
| Title: HES Environmental Professional                                          | Approval Date:                                   | Expiration Date:                           |  |  |  |  |  |  |
| E mail Address whereas Groundham 'l                                            | Conditions of Annual                             |                                            |  |  |  |  |  |  |
| E-mail Address: rchacon@marathonoil.com                                        | Conditions of Approval:                          |                                            |  |  |  |  |  |  |
|                                                                                |                                                  | Attached                                   |  |  |  |  |  |  |
| Date: 11/2/2017                                                                | see attached directive                           |                                            |  |  |  |  |  |  |

\* Attach Additional Sheets If Necessary

1RP-4869

nOY1731955602

pOY1731959593

|  | Released to | Imaging: | 11/6/2023 | 11:57:53 AM |
|--|-------------|----------|-----------|-------------|
|--|-------------|----------|-----------|-------------|

### Operator/Responsible Party,

The OCD has received the form C-141 you provided on \_11/6/2017\_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number \_1RP-4869\_ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District \_1\_ office in \_\_Hobbs\_\_\_\_ on or before \_12/15/2017\_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

| 1220 S. St. Fran         | icis Dr., Santa | Fe, NM 87505    |             | S                                        | anta Fe                | e, NM 875                                               | 05         |              |         |                 |               |                                               |              |  |
|--------------------------|-----------------|-----------------|-------------|------------------------------------------|------------------------|---------------------------------------------------------|------------|--------------|---------|-----------------|---------------|-----------------------------------------------|--------------|--|
|                          |                 |                 | Rele        | ase Notifi                               | cation                 | and Co                                                  | rrec       | ctive A      | ctio    | n               |               |                                               |              |  |
|                          |                 |                 |             |                                          |                        | <b>OPERA</b>                                            | <b>FOR</b> |              |         | 🛛 Initi         | al Report     |                                               | Final Report |  |
| Name of Co               | ompany Ma       | rathon Oil F    | Permian I   | LC                                       |                        | Contact Callie Karrigan                                 |            |              |         |                 |               |                                               |              |  |
| Address 55               | 55 San Felij    | pe Street, H    | ouston, T   | exas 77056                               | ,                      | Telephone No. 405-202-1028 (cell) 575-297-0956 (office) |            |              |         |                 |               |                                               |              |  |
| Facility Nat             | me: Tonto 1     | 5 State #1      |             |                                          | ]                      | Facility Typ                                            | e Oil a    | and gas pr   | oduct   | tion facilitie  | es            |                                               |              |  |
| Surface: Ov              | vner: State     |                 |             | Mineral:                                 | Owner <sup>.</sup>     | State                                                   |            |              |         | API No          | . :30-025-2   | 8897                                          |              |  |
| Surface. 04              | where blute     |                 |             |                                          |                        |                                                         | ТАС        | SE.          |         | minte           |               | 20077                                         |              |  |
| Unit Letter              | Section         | Township        | Range       | Feet from the                            |                        | N OF REI<br>South Line                                  |            | from the     | East    | /West Line      | County        |                                               |              |  |
| Ι                        | 15              | 18S             | 34E         | 1980                                     | South                  |                                                         | 900        |              | East    |                 | Lea           |                                               |              |  |
|                          |                 |                 |             | Latitude 32.                             | 746234                 | Longitude                                               | 32.        | 745983       | 1,-1    | 03.54297        | 764           |                                               |              |  |
|                          |                 |                 |             |                                          |                        | OF RELI                                                 | -          |              |         |                 |               |                                               |              |  |
| Type of Rele             | ase : Oil       |                 |             | 1 1 1 1                                  |                        | Volume of                                               |            |              | rrels   | Volume I        | Recovered : : | 5.30 b                                        | arrels       |  |
| Source of Re             |                 | ig box          |             |                                          |                        | Date and H                                              |            |              |         |                 | Hour of Dis   |                                               |              |  |
|                          |                 | -               |             |                                          |                        | 3/14/18 un                                              |            |              |         | 3/14/18 0       | 1:15 pm       | -                                             |              |  |
| Was Immedi               | ate Notice G    |                 | Yes         | No 🗌 Not R                               | equired                | If YES, To<br>Olivia Yu                                 | Whom       | 1?           |         |                 |               |                                               |              |  |
| By Whom? (               | Callie Karrig   |                 |             |                                          | 1                      | Date and H                                              | our 03     | /15/18 11:   | 15 am   |                 |               |                                               |              |  |
| Was a Water              |                 | ned?            |             | -                                        |                        | If YES, Vo                                              |            |              |         | atercourse.     |               |                                               |              |  |
|                          |                 |                 | Yes 🛛       | No                                       |                        |                                                         |            |              |         |                 |               |                                               |              |  |
| If a Waterco             | -               | acted, Descri   | ibe Fully.* | <                                        |                        | R                                                       | <b>C</b> E | IVED         | )       |                 |               |                                               |              |  |
| Not applicab             | le.             |                 |             |                                          |                        |                                                         |            |              |         | 4.94            | . A           |                                               | 040          |  |
|                          |                 |                 |             |                                          |                        | Ву                                                      | OIN        | via vu       | at      | 1:31 pn         | i, Apr C      | 12, 4                                         | 2018         |  |
| Describe Cau             | use of Proble   | m and Reme      | dial Action | n Taken.*                                |                        |                                                         |            |              |         |                 |               |                                               |              |  |
|                          |                 |                 |             | d onsite and obse                        |                        |                                                         |            |              | er of t | he wellhead.    | Upon inves    | tigatio                                       | on, it was   |  |
| found the stu            | iffing box ha   | d released an   | d misted a  | pproximately 6.3                         | 32 barrels             | onsite aroun                                            | d the w    | vellhead.    |         |                 |               |                                               |              |  |
| Describe Are             | ea Affected a   | nd Cleanup A    | Action Tak  | en.*                                     |                        |                                                         |            |              |         |                 |               |                                               |              |  |
|                          |                 | -               |             |                                          |                        |                                                         |            |              |         |                 |               |                                               |              |  |
|                          |                 |                 |             | vac truck was di                         |                        |                                                         |            |              |         |                 |               |                                               |              |  |
| down.                    | rmation samp    | oles will be ta | ken and u   | ne affected area v                       | viii de da             | ckilled. In a                                           | antion     | , the wellne | ead an  | a equipment     | will also be  | wasn                                          | ed and wiped |  |
|                          | ify that the ir | formation gi    | ven above   | is true and com                          | plete to th            | ne best of my                                           | knowle     | edge and u   | nderst  | and that purs   | suant to NM   | OCD 1                                         | rules and    |  |
| regulations a            | ll operators a  | re required to  | o report ar | d/or file certain                        | release no             | otifications a                                          | nd perf    | orm correc   | tive ac | ctions for rel  | eases which   | may e                                         | endanger     |  |
|                          |                 |                 |             | e of a C-141 rep                         |                        |                                                         |            |              |         |                 |               |                                               |              |  |
|                          |                 |                 |             | investigate and tance of a C-141         |                        |                                                         |            |              |         |                 |               |                                               |              |  |
| federal, state           |                 |                 |             | talice of a C-141                        | report de              | Jes not renev                                           | e the of   | perator or r | lespon  | isibility for c | omphance w    | iui an                                        | y other      |  |
|                          | ,               |                 |             |                                          |                        |                                                         | OI         | L CON        | SER     | VATION          | DIVISIO       | )N                                            |              |  |
| Signature: C             | allie Karr      | rígan           |             |                                          |                        |                                                         | <u></u>    | <u>L 001</u> |         |                 |               | <u>, , , , , , , , , , , , , , , , , , , </u> |              |  |
|                          | a 11 - 11       |                 |             |                                          |                        |                                                         |            |              |         | 67              | _             |                                               |              |  |
| Printed Nam              | e: Callie Kar   |                 |             | Approved by Environmental Specialist:    |                        |                                                         |            |              |         |                 |               |                                               |              |  |
| Title: HES P             | rofessional     |                 |             | Approval Date: 4/2/2018 Expiration Date: |                        |                                                         |            |              |         |                 |               |                                               |              |  |
| E-mail Addr              | ess: cnkarrig   | an@maratho      | noil.com    |                                          |                        | Conditions of Approval:                                 |            |              |         |                 |               |                                               |              |  |
|                          |                 |                 |             |                                          | _                      | Attached                                                |            |              |         |                 |               |                                               |              |  |
| Date: 03/28/             |                 |                 |             |                                          | see attached directive |                                                         |            |              |         |                 |               |                                               |              |  |
| Phone: 405-              |                 |                 |             | fice)                                    |                        |                                                         |            |              |         |                 |               |                                               |              |  |
| <sup>c</sup> Attach Addi | tional Shee     | ts If Necess    | ary         |                                          |                        |                                                         |            |              | 000     | 249211          | 7             |                                               |              |  |
|                          |                 |                 |             |                                          | 1                      | RP-5003                                                 |            |              | 0094    | 249211          |               |                                               |              |  |

pOY1809249756

### Operator/Responsible Party,

The OCD has received the form C-141 you provided on \_3/28/2018\_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number \_1RP-5003\_ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District \_1\_ office in \_\_Hobbs\_\_\_\_ on or before \_5/2/2018\_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

# APPENDIX B NMOSE WELLS REPORT



# New Mexico Office of the State Engineer Water Column/Average Depth to Water

| (A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a | (R=POD has<br>been replace<br>O=orphaned,<br>C=the file is |       | (quai | ters a | are 1  | =NW    | 2=NE 3    | 3=SW 4=SE | ,              |          |       |         |        |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|-------|--------|--------|--------|-----------|-----------|----------------|----------|-------|---------|--------|
| water right file.)                                                                              | closed)                                                    |       | (quai | ters a | are si | malles | st to lar | gest) (NA | AD83 UTM in me | eters)   | (     | n feet) | _      |
|                                                                                                 | POD<br>Sub-                                                |       | Q     | QQ     |        |        |           |           |                |          | Depth | Depth   | Water  |
| POD Number                                                                                      | Code basin                                                 | Count |       |        | Sec    | Tws    | Rng       | х         | Y              | Distance |       |         | Column |
| L 04531                                                                                         | L                                                          | LE    |       | 13     | 14     | 18S    | 34E       | 637016    | 3624067* 🌍     | 512      | 125   | 100     | 25     |
| L 09775                                                                                         | L                                                          | LE    | 1     | 23     | 14     | 18S    | 34E       | 637249    | 3624084 🌍      | 744      | 183   | 110     | 73     |
| L 05881                                                                                         | L                                                          | LE    |       | 1 1    | 15     | 18S    | 34E       | 635395    | 3624846* 🌍     | 1355     | 230   | 110     | 120    |
| L 01613 S2                                                                                      | L                                                          | LE    | 2     | 33     | 11     | 18S    | 34E       | 637095    | 3625374* 🌍     | 1435     | 220   | 99      | 121    |
| L 05876                                                                                         | L                                                          | LE    | 3     | 14     | 10     | 18S    | 34E       | 636085    | 3625563* 🌍     | 1554     | 230   | 110     | 120    |
| L 05374                                                                                         | L                                                          | LE    |       | 22     | 16     | 18S    | 34E       | 634994    | 3624840* 🌍     | 1696     | 192   | 105     | 87     |
| L 05882                                                                                         | L                                                          | LE    |       | 14     | 16     | 18S    | 34E       | 634605    | 3624030* 🌍     | 1899     | 230   | 110     | 120    |
| L 01613                                                                                         | L                                                          | LE    | 3     | 14     | 11     | 18S    | 34E       | 637696    | 3625589* 🌍     | 1933     | 211   | 85      | 126    |
| L 13211 POD1                                                                                    | L                                                          | LE    | 4     | 34     | 16     | 18S    | 34E       | 634629    | 3623592 🌍      | 1934     | 140   |         |        |
| L 05875                                                                                         | L                                                          | LE    |       | 42     | 10     | 18S    | 34E       | 636581    | 3626073* 🌍     | 2008     | 230   | 110     | 120    |
| L 09767                                                                                         | L                                                          | LE    |       | 33     | 13     | 18S    | 34E       | 638636    | 3623688* 🌍     | 2165     | 182   | 96      | 86     |
| L 03765 POD4                                                                                    | L                                                          | LE    | 2     | 12     | 27     | 18S    | 34E       | 636475    | 3621831 🌍      | 2235     | 180   | 80      | 100    |
| L 09750                                                                                         | L                                                          | LE    |       | 33     | 22     | 18S    | 34E       | 635440    | 3622029* 🌍     | 2298     | 200   |         |        |
| L 05574                                                                                         | R L                                                        | LE    | 1     | 33     | 12     | 18S    | 34E       | 638509    | 3625399* 🌍     | 2407     |       |         |        |
| L 05355                                                                                         | L                                                          | LE    |       | 12     | 10     | 18S    | 34E       | 636173    | 3626469* 🌍     | 2425     | 186   | 110     | 76     |
| L 02499 POD3                                                                                    | L                                                          | LE    | 1     | 1 1    | 27     | 18S    | 34E       | 635252    | 3621814 🌍      | 2576     | 180   | 121     | 59     |
| L 05885                                                                                         | L                                                          | LE    |       | 2 1    | 11     | 18S    | 34E       | 637380    | 3626489* 🌍     | 2576     | 230   | 110     | 120    |
| L 05079                                                                                         | L                                                          | LE    |       | 13     | 12     | 18S    | 34E       | 638604    | 3625702* 🌍     | 2662     | 159   | 76      | 83     |
| L 02722 S3                                                                                      | L                                                          | LE    |       | 43     | 02     | 18S    | 34E       | 637374    | 3626892* 🌍     | 2956     |       |         |        |
| L 13634 POD1                                                                                    | L                                                          | LE    | 3     | 3 1    | 27     | 18S    | 34E       | 635352    | 3621122 🌍      | 3160     | 182   | 152     | 30     |
| L 01614                                                                                         | L                                                          | LE    | 3     | 14     | 12     | 18S    | 34E       | 639305    | 3625618* 🌍     | 3202     | 204   | 85      | 119    |
| L 05139                                                                                         | L                                                          | LE    |       | 2 1    | 12     | 18S    | 34E       | 638992    | 3626517* 🌍     | 3492     | 150   | 95      | 55     |
| L 07361                                                                                         | L                                                          | LE    |       | 2 1    | 12     | 18S    | 34E       | 638992    | 3626517* 🌍     | 3492     | 202   | 100     | 102    |
| L 04160                                                                                         | L                                                          | LE    |       | 33     | 01     | 18S    | 34E       | 638585    | 3626911* 🌍     | 3524     | 165   | 100     | 65     |
| L 09752                                                                                         | L                                                          | LE    | 3     | 12     | 20     | 18S    | 34E       | 632968    | 3623188 🌍      | 3643     | 179   | 130     | 49     |
| L 05788 POD10                                                                                   | L                                                          | LE    | 4     | 4 1    | 02     | 18S    | 34E       | 637459    | 3627596* 🌍     | 3656     | 240   | 100     | 140    |
| *UTM location was derived f                                                                     | rom PLSS - see                                             | Help  |       |        |        |        |           |           |                |          |       |         |        |

5/14/18 2:23 PM

### Received by OCD: 9/21/2023 6:16:51 AM

water right file.)

been replaced, O=orphaned, C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters) Page 25 of 406

| (In | feet) |  |
|-----|-------|--|

|                | POD<br>Sub-  |    | Q | QQ  | !    |     |     |        |            |          | Depth | Depth | Water  |
|----------------|--------------|----|---|-----|------|-----|-----|--------|------------|----------|-------|-------|--------|
| POD Number     | Code basin ( | -  |   |     |      |     | -   | Х      | Y          | Distance |       |       | Column |
| L 05788 POD17  | L            | LE | 4 | 4 1 | 02   | 18S | 34E | 637459 | 3627596* 🌍 | 3656     | 240   | 97    | 143    |
| L 13563 POD1   | L            | LE | 4 | 4 4 | 20   | 18S | 34E | 633506 | 3621920 🌍  | 3686     | 200   |       |        |
| <u>L 03721</u> | L            | LE |   | 33  | 18   | 18S | 35E | 640241 | 3623717* 🌍 | 3753     | 161   | 90    | 71     |
| <u>L 10236</u> | L            | LE |   | 33  | 27   | 18S | 34E | 635466 | 3620420* 🌍 | 3790     |       |       |        |
| L 10344 POD2   | L            | LE |   | 33  | 27   | 18S | 34E | 635466 | 3620420* 🌍 | 3790     | 142   | 112   | 30     |
| L 13526 POD1   | L            | LE | 2 | 2 1 | 20   | 18S | 34E | 632769 | 3623271 🌍  | 3818     | 196   | 106   | 90     |
| L 05788 POD19  | L            | LE | 2 | 4 1 | 02   | 18S | 34E | 637459 | 3627796* 🌍 | 3850     | 240   | 98    | 142    |
| L 12633 POD1   | L            | LE | 2 | 2 2 | 34   | 18S | 34E | 636852 | 3620203 🌍  | 3877     | 180   | 117   | 63     |
| L 04851        | L            | LE |   | 4 2 | 12   | 18S | 34E | 639801 | 3626130* 🌍 | 3889     | 155   | 95    | 60     |
| L 05788 POD20  | L            | LE | 1 | 32  | 02   | 18S | 34E | 637662 | 3627802* 🌍 | 3911     | 240   | 96    | 144    |
| L 05788 POD7   | L            | LE | 1 | 32  | 02   | 18S | 34E | 637662 | 3627802* 🌍 | 3911     | 240   |       |        |
| <u>L 05172</u> | L            | LE |   | 33  | 07   | 18S | 35E | 640214 | 3625331* 🌍 | 3919     | 161   | 85    | 76     |
| L 03888        | L            | LE |   | 3 1 | 19   | 18S | 35E | 640253 | 3622912* 🌍 | 3922     | 107   | 70    | 37     |
| L 10202        | L            | LE |   | 4 4 | - 28 | 18S | 34E | 635065 | 3620414* 🌍 | 3925     | 70    | 50    | 20     |
| L 05788 POD11  | L            | LE | 2 | 32  | 02   | 18S | 34E | 637862 | 3627802* 🌍 | 3975     | 240   | 95    | 145    |
| L 05788 POD16  | L            | LE | 2 | 3 2 | 02   | 18S | 34E | 637862 | 3627802* 🌍 | 3975     | 240   | 96    | 144    |
| L 05788 POD6   | L            | LE | 2 | 3 2 | 02   | 18S | 34E | 637862 | 3627802* 🌍 | 3975     | 240   | 94    | 146    |
| L 05788 POD9   | L            | LE | 2 | 3 2 | 02   | 18S | 34E | 637862 | 3627802* 🌍 | 3975     | 250   | 95    | 155    |
| L 05788 POD15  | L            | LE | 4 | 2 1 | 02   | 18S | 34E | 637451 | 3627998* 🌍 | 4044     | 240   |       |        |
| L 05788 POD4   | L            | LE | 4 | 2 1 | 02   | 18S | 34E | 637451 | 3627998* 🌍 | 4044     | 240   | 98    | 142    |
| L 04931 X      | L            | LE |   | 13  | 07   | 18S | 35E | 640208 | 3625735* 🌍 | 4062     | 212   | 105   | 107    |
| L 09576        | L            | LE |   | 1 1 | 35   | 18S | 34E | 637082 | 3620041* 🌍 | 4066     | 180   | 130   | 50     |
| CP 01582 POD1  | CP           | LE | 2 | 1 2 | 29   | 18S | 34E | 633167 | 3621715 🌍  | 4081     | 180   | 180   | 0      |
| L 02722 S      | L            | LE | 3 | 1 2 | 02   | 18S | 34E | 637654 | 3628004* 🌍 | 4102     | 236   | 70    | 166    |
| L 05788 POD14  | L            | LE | 3 | 1 2 | 02   | 18S | 34E | 637654 | 3628004* 🌍 | 4102     | 240   | 97    | 143    |
| L 05788 POD18  | L            | LE | 3 | 1 2 | 02   | 18S | 34E | 637654 | 3628004* 🌍 | 4102     | 240   | 97    | 143    |
| L 05788 POD21  | L            | LE | 3 | 1 2 | 02   | 18S | 34E | 637654 | 3628004* 🌍 | 4102     | 240   | 96    | 144    |
| L 12926 POD1   | L            | LE | 2 | 23  | 25   | 18S | 34E | 639839 | 3621631 🌍  | 4129     | 182   | 117   | 65     |
| <u>L 05788</u> | L            | LE | 4 | 1 2 | 02   | 18S | 34E | 637854 | 3628004* 🌍 | 4162     | 230   | 97    | 133    |

\*UTM location was derived from PLSS - see Help

5/14/18 2:23 PM

### Received by OCD: 9/21/2023 6:16:51 AM

water right file.)

been replaced, O=orphaned, C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters) (In feet)

|                | POD<br>Sub- |    | Q | QQ  | 2    |     |     |        |            |          | Depth | Depth | Water  |
|----------------|-------------|----|---|-----|------|-----|-----|--------|------------|----------|-------|-------|--------|
| POD Number     | Code basin  |    |   |     |      |     | -   | Х      | Y          | Distance |       |       | Column |
| L 05788 POD12  | L           | LE | 4 | 1 2 | 2 02 | 18S | 34E | 637854 | 3628004* 🌍 | 4162     | 240   | 94    | 146    |
| L 05788 POD13  | L           | LE | 4 | 1 2 | 2 02 | 18S | 34E | 637854 | 3628004* 🌍 | 4162     | 240   | 95    | 145    |
| L 04906        | L           | LE |   | 3   | 07   | 18S | 35E | 640415 | 3625532* 🌍 | 4176     | 155   | 87    | 68     |
| L 10345 POD2   | L           | LE |   | 23  | 3 20 | 18S | 34E | 632620 | 3622393* 🌍 | 4228     | 130   | 120   | 10     |
| L 02722 S2     | L           | LE | 3 | 2 2 | 02   | 18S | 34E | 638057 | 3628011* 🌍 | 4239     | 228   | 89    | 139    |
| L 05788 POD2   | L           | LE | 3 | 2 2 | 2 02 | 18S | 34E | 638057 | 3628011* 🌍 | 4239     | 240   | 98    | 142    |
| L 05788 POD5   | L           | LE | 3 | 2 2 | 2 02 | 18S | 34E | 638057 | 3628011* 🌍 | 4239     | 240   | 94    | 146    |
| L 05788 POD8   | L           | LE | 3 | 2 2 | 2 02 | 18S | 34E | 638057 | 3628011* 🌍 | 4239     | 240   | 95    | 145    |
| L 07928        | L           | LE | 4 | 4 1 | 19   | 18S | 35E | 640639 | 3622915 🌍  | 4292     | 175   |       |        |
| L 05788 POD22  | L           | LE | 4 | 2 2 | 2 02 | 18S | 34E | 638257 | 3628011* 🌍 | 4316     |       |       |        |
| L 08100        | L           | LE | 3 | 4 4 | 34   | 17S | 34E | 636439 | 3628393* 🌍 | 4327     | 135   | 80    | 55     |
| L 05851        | L           | LE |   | 1   | 34   | 18S | 34E | 635681 | 3619816* 🌍 | 4329     | 240   | 85    | 155    |
| L 05788 POD3   | L           | LE | 2 | 1 2 | 2 02 | 18S | 34E | 637854 | 3628204* 🌍 | 4352     | 240   | 97    | 143    |
| L 04953        | L           | LE | 4 | 33  | 8 08 | 18S | 34E | 632269 | 3625104* 🌍 | 4360     | 200   | 150   | 50     |
| L 06031        | L           | LE |   | 2 2 | 2 02 | 18S | 34E | 638158 | 3628112* 🌍 | 4370     | 230   | 102   | 128    |
| L 02722        | L           | LE | 3 | 1 1 | 01   | 18S | 34E | 638460 | 3628017* 🌍 | 4408     | 229   | 105   | 124    |
| L 02724 S3     | L           | LE |   | 3 4 | 34   | 17S | 34E | 636137 | 3628487* 🌍 | 4436     | 210   | 95    | 115    |
| L 05883        | L           | LE |   | 34  | 34   | 17S | 34E | 636137 | 3628487* 🌍 | 4436     | 244   | 93    | 151    |
| <u>L 10040</u> | L           | LE |   | 33  | 80 8 | 18S | 34E | 632170 | 3625205* 🌍 | 4481     | 215   | 145   | 70     |
| <u>L 10346</u> | L           | LE |   | 3   | 20   | 18S | 34E | 632425 | 3622187* 🌍 | 4490     | 130   |       |        |
| <u>L 10436</u> | L           | LE |   | 3   | 20   | 18S | 34E | 632425 | 3622187* 🌍 | 4490     | 120   | 80    | 40     |
| <u>L 04975</u> | L           | LE | 2 | 23  | 07   | 18S | 35E | 640688 | 3625837* 🌍 | 4543     | 152   | 105   | 47     |
| <u>L 06115</u> | L           | LE | 1 | 1 1 | 01   | 18S | 34E | 638460 | 3628217* 🌍 | 4588     | 230   | 110   | 120    |
| <u>L 02349</u> | R L         | LE | 3 | 1 4 | 07   | 18S | 35E | 640891 | 3625641* 🌍 | 4661     | 207   | 85    | 122    |
| <u>L 06029</u> | L           | LE |   | 4 4 | 35   | 17S | 34E | 638150 | 3628523* 🌍 | 4751     | 230   | 102   | 128    |
| <u>L 04778</u> | L           | LE |   | 2 1 | 07   | 18S | 35E | 640575 | 3626545* 🌍 | 4766     | 150   | 75    | 75     |
| L 02724 S4     | L           | LE | 3 | 33  | 36   | 17S | 34E | 638451 | 3628429* 🌍 | 4777     | 230   | 140   | 90     |
| L 02349 POD2   | L           | LE | 4 | 1 4 | 07   | 18S | 35E | 641091 | 3625641* 🌍 | 4849     | 214   | 85    | 129    |
| L 02349 POD3   | L           | LE | 4 | 1 4 | 07   | 18S | 35E | 641091 | 3625641 🌍  | 4849     | 220   | 142   | 78     |
|                |             |    |   |     |      |     |     |        |            |          |       |       |        |

\*UTM location was derived from PLSS - see Help

5/14/18 2:23 PM

| Received by OCD: 9/21/20                      | 023 6:16:51 AM               | 1      |        |      |       |     |           |           |                     |             |        | Page     | 27 of 406 |
|-----------------------------------------------|------------------------------|--------|--------|------|-------|-----|-----------|-----------|---------------------|-------------|--------|----------|-----------|
| (A CLW##### in the POD suffix indicates the   | (R=POD has<br>been replaced  | d,     |        |      |       |     |           |           |                     |             |        |          |           |
| POD has been replaced<br>& no longer serves a | O=orphaned,<br>C=the file is | (      | auarte | ersa | are 1 | =NW | 2=NE :    | 3=SW 4=SE | )                   |             |        |          |           |
| water right file.)                            | closed)                      |        | •      |      |       |     | st to lar |           | ,<br>AD83 UTM in me | eters)      | (      | In feet) |           |
|                                               | POD                          |        |        |      |       |     |           |           |                     |             |        |          |           |
|                                               | Sub-                         |        | QC     |      |       |     |           |           |                     |             | -      | Depth    |           |
| POD Number                                    | Code basin (                 | County | / 64 1 | 64   | Sec   | Tws | Rng       | Х         | Y                   | Distance    | Well   | Water (  | Column    |
| L 05842                                       | L                            | LE     |        | 4    | 35    | 17S | 34E       | 637948    | 3628716* 🌍          | 4868        | 240    | 95       | 145       |
| L 06030                                       | L                            | LE     | ;      | 33   | 36    | 17S | 34E       | 638552    | 3628530* 🌍          | 4911        | 230    | 102      | 128       |
| <u>L 04794</u>                                | L                            | LE     |        | 4    | 07    | 18S | 35E       | 641200    | 3625540* 🌍          | 4921        | 150    | 95       | 55        |
| L 10467                                       | L                            | LE     |        | 12   | 01    | 18S | 34E       | 639365    | 3628137* 🌍          | 4975        | 231    | 115      | 116       |
|                                               |                              |        |        |      |       |     |           |           | Avera               | ge Depth to | Water: | 101 1    | eet       |
|                                               |                              |        |        |      |       |     |           |           |                     | Minimum     | Depth: | 50 f     | eet       |
|                                               |                              |        |        |      |       |     |           |           |                     | Maximum     | Depth: | 180 1    | eet       |
| Record Count: 88                              |                              |        |        |      |       |     |           |           |                     |             |        |          |           |

#### Record Count: 88

### UTMNAD83 Radius Search (in meters):

Easting (X): 636503.91

Northing (Y): 3624066.14

Radius: 5000

#### \*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

# APPENDIX C LABORATORY ANALYTICAL REPORTS



May 10, 2018

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

OrderNo.: 1805017

RE: Tonto

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 6 sample(s) on 5/1/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

**Project:** 

Lab ID:

**CLIENT:** Souder, Miller & Associates

1805017-001

Tonto

Analytical Report
Lab Order 1805017

| Hall Environmental Analysis Laboratory, Inc. | Date I |
|----------------------------------------------|--------|
|                                              |        |

Matrix: SOIL

Lab Order **1805017** Date Reported: **5/10/2018** 

| Client Sample ID: L1-3"               |  |
|---------------------------------------|--|
| Collection Date: 4/26/2018 2:43:00 PM |  |
| Received Date: 5/1/2018 9:15:00 AM    |  |

| Analyses                        | Result     | PQL (  | Qual | Units | DF  | Date Analyzed        | Batch |
|---------------------------------|------------|--------|------|-------|-----|----------------------|-------|
| EPA METHOD 300.0: ANIONS        |            |        |      |       |     | Analyst              | MRA   |
| Chloride                        | 920        | 30     |      | mg/Kg | 20  | 5/7/2018 1:43:15 PM  | 37967 |
| EPA METHOD 8015M/D: DIESEL RANG | E ORGANICS | ;      |      |       |     | Analyst              | том   |
| Diesel Range Organics (DRO)     | 23000      | 1000   |      | mg/Kg | 100 | 5/4/2018 2:40:42 AM  | 37916 |
| Motor Oil Range Organics (MRO)  | 9300       | 5000   |      | mg/Kg | 100 | 5/4/2018 2:40:42 AM  | 37916 |
| Surr: DNOP                      | 0          | 70-130 | S    | %Rec  | 100 | 5/4/2018 2:40:42 AM  | 37916 |
| EPA METHOD 8015D: GASOLINE RAN  | GE         |        |      |       |     | Analyst              | : NSB |
| Gasoline Range Organics (GRO)   | 970        | 97     |      | mg/Kg | 20  | 5/3/2018 12:15:25 PM | 37890 |
| Surr: BFB                       | 478        | 15-316 | S    | %Rec  | 20  | 5/3/2018 12:15:25 PM | 37890 |
| EPA METHOD 8021B: VOLATILES     |            |        |      |       |     | Analyst              | : NSB |
| Methyl tert-butyl ether (MTBE)  | ND         | 1.9    |      | mg/Kg | 20  | 5/3/2018 12:15:25 PM | 37890 |
| Benzene                         | ND         | 0.49   |      | mg/Kg | 20  | 5/3/2018 12:15:25 PM | 37890 |
| Toluene                         | 19         | 0.97   |      | mg/Kg | 20  | 5/3/2018 12:15:25 PM | 37890 |
| Ethylbenzene                    | 48         | 0.97   |      | mg/Kg | 20  | 5/3/2018 12:15:25 PM | 37890 |
| Xylenes, Total                  | 74         | 1.9    |      | mg/Kg | 20  | 5/3/2018 12:15:25 PM | 37890 |
| Surr: 4-Bromofluorobenzene      | 197        | 80-120 | S    | %Rec  | 20  | 5/3/2018 12:15:25 PM | 37890 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1805017

| Hall Environmental Analysis Laboratory, Inc. | Dat |
|----------------------------------------------|-----|
|                                              |     |

Lab Order **1805017** Date Reported: **5/10/2018** 

| CLIENT: Souder, Miller & Associates |             | Client Sample ID: L2-3"<br>Collection Date: 4/26/2018 2:38:00 PM |      |            |     |                     |        |  |  |  |  |
|-------------------------------------|-------------|------------------------------------------------------------------|------|------------|-----|---------------------|--------|--|--|--|--|
| Project: Tonto                      |             |                                                                  |      |            |     |                     |        |  |  |  |  |
| Lab ID: 1805017-002                 | Matrix:     | SOIL                                                             |      | Received I |     |                     |        |  |  |  |  |
| Analyses                            | Result      | PQL                                                              | Qual | Units      | DF  | Date Analyzed       | Batch  |  |  |  |  |
| EPA METHOD 300.0: ANIONS            |             |                                                                  |      |            |     | Analys              | t: MRA |  |  |  |  |
| Chloride                            | 210         | 30                                                               |      | mg/Kg      | 20  | 5/7/2018 1:55:39 PM | 37967  |  |  |  |  |
| EPA METHOD 8015M/D: DIESEL RANG     | GE ORGANICS | 5                                                                |      |            |     | Analys              | t: TOM |  |  |  |  |
| Diesel Range Organics (DRO)         | 17000       | 940                                                              |      | mg/Kg      | 100 | 5/4/2018 3:27:39 AM | 37916  |  |  |  |  |
| Motor Oil Range Organics (MRO)      | 7900        | 4700                                                             |      | mg/Kg      | 100 | 5/4/2018 3:27:39 AM | 37916  |  |  |  |  |
| Surr: DNOP                          | 0           | 70-130                                                           | S    | %Rec       | 100 | 5/4/2018 3:27:39 AM | 37916  |  |  |  |  |
| EPA METHOD 8015D: GASOLINE RAM      | IGE         |                                                                  |      |            |     | Analys              | t: NSB |  |  |  |  |
| Gasoline Range Organics (GRO)       | 480         | 92                                                               |      | mg/Kg      | 20  | 5/3/2018 1:02:06 PM | 37890  |  |  |  |  |
| Surr: BFB                           | 314         | 15-316                                                           |      | %Rec       | 20  | 5/3/2018 1:02:06 PM | 37890  |  |  |  |  |
| EPA METHOD 8021B: VOLATILES         |             |                                                                  |      |            |     | Analys              | t: NSB |  |  |  |  |
| Methyl tert-butyl ether (MTBE)      | ND          | 1.8                                                              |      | mg/Kg      | 20  | 5/3/2018 1:02:06 PM | 37890  |  |  |  |  |
| Benzene                             | ND          | 0.46                                                             |      | mg/Kg      | 20  | 5/3/2018 1:02:06 PM | 37890  |  |  |  |  |
| Toluene                             | 4.9         | 0.92                                                             |      | mg/Kg      | 20  | 5/3/2018 1:02:06 PM | 37890  |  |  |  |  |
| Ethylbenzene                        | 16          | 0.92                                                             |      | mg/Kg      | 20  | 5/3/2018 1:02:06 PM | 37890  |  |  |  |  |
| Xylenes, Total                      | 29          | 1.8                                                              |      | mg/Kg      | 20  | 5/3/2018 1:02:06 PM | 37890  |  |  |  |  |
| Surr: 4-Bromofluorobenzene          | 148         | 80-120                                                           | S    | %Rec       | 20  | 5/3/2018 1:02:06 PM | 37890  |  |  |  |  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

| Qualifiers: |
|-------------|
|-------------|

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

**Project:** 

Lab ID:

**CLIENT:** Souder, Miller & Associates

1805017-003

Tonto

Analytical Report
Lab Order 1805017

| Hall Environmental Analysis Laboratory, Inc. | Date Report |
|----------------------------------------------|-------------|
|                                              |             |

Matrix: SOIL

Date Reported: 5/10/2018
Client Sample ID: L3-3"

Collection Date: 4/26/2018 2:30:00 PM Received Date: 5/1/2018 9:15:00 AM

| Analyses                       | Result       | PQL    | Qual | Units | DF  | Date Analyzed       | Batch  |
|--------------------------------|--------------|--------|------|-------|-----|---------------------|--------|
| EPA METHOD 300.0: ANIONS       |              |        |      |       |     | Analys              | t: MRA |
| Chloride                       | 250          | 30     |      | mg/Kg | 20  | 5/7/2018 2:32:54 PM | 37967  |
| EPA METHOD 8015M/D: DIESEL RA  | NGE ORGANICS | i      |      |       |     | Analys              | t: TOM |
| Diesel Range Organics (DRO)    | 17000        | 960    |      | mg/Kg | 100 | 5/4/2018 4:14:34 AM | 37916  |
| Motor Oil Range Organics (MRO) | 6200         | 4800   |      | mg/Kg | 100 | 5/4/2018 4:14:34 AM | 37916  |
| Surr: DNOP                     | 0            | 70-130 | S    | %Rec  | 100 | 5/4/2018 4:14:34 AM | 37916  |
| EPA METHOD 8015D: GASOLINE RA  | ANGE         |        |      |       |     | Analys              | t: NSB |
| Gasoline Range Organics (GRO)  | 970          | 99     |      | mg/Kg | 20  | 5/3/2018 1:49:06 PM | 37890  |
| Surr: BFB                      | 495          | 15-316 | S    | %Rec  | 20  | 5/3/2018 1:49:06 PM | 37890  |
| EPA METHOD 8021B: VOLATILES    |              |        |      |       |     | Analys              | t: NSB |
| Methyl tert-butyl ether (MTBE) | ND           | 2.0    |      | mg/Kg | 20  | 5/3/2018 1:49:06 PM | 37890  |
| Benzene                        | ND           | 0.50   |      | mg/Kg | 20  | 5/3/2018 1:49:06 PM | 37890  |
| Toluene                        | 14           | 0.99   |      | mg/Kg | 20  | 5/3/2018 1:49:06 PM | 37890  |
| Ethylbenzene                   | 41           | 0.99   |      | mg/Kg | 20  | 5/3/2018 1:49:06 PM | 37890  |
| Xylenes, Total                 | 65           | 2.0    |      | mg/Kg | 20  | 5/3/2018 1:49:06 PM | 37890  |
| Surr: 4-Bromofluorobenzene     | 192          | 80-120 | S    | %Rec  | 20  | 5/3/2018 1:49:06 PM | 37890  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- \* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- D Sample Difuted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

**Analytical Report** Lab Order 1805017

| Hall Environmental Analysis Laboratory, Inc. | Da |
|----------------------------------------------|----|
|                                              | -  |

51

81

220

ate Reported: 5/10/2018

| <b>CLIENT:</b> Souder, Miller & Associates <b>Project:</b> Tonto | Client Sample ID: L4-3"<br>Collection Date: 4/26/2018 2:23:00 PM |        |      |            |                 |                     |       |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------|--------|------|------------|-----------------|---------------------|-------|--|--|--|
| Lab ID: 1805017-004                                              | Matrix: SOIL                                                     |        |      | Received l | 2018 9:15:00 AM |                     |       |  |  |  |
| Analyses                                                         | Result                                                           | PQL (  | )ual | Units      | DF              | Date Analyzed       | Batch |  |  |  |
| EPA METHOD 300.0: ANIONS                                         |                                                                  |        |      |            |                 | Analysi             | MRA   |  |  |  |
| Chloride                                                         | 300                                                              | 30     |      | mg/Kg      | 20              | 5/7/2018 2:45:18 PM | 37967 |  |  |  |
| EPA METHOD 8015M/D: DIESEL RANG                                  | E ORGANICS                                                       | 5      |      |            |                 | Analyst             | : том |  |  |  |
| Diesel Range Organics (DRO)                                      | 17000                                                            | 990    |      | mg/Kg      | 100             | 5/4/2018 5:01:31 AM | 37916 |  |  |  |
| Motor Oil Range Organics (MRO)                                   | 5900                                                             | 5000   |      | mg/Kg      | 100             | 5/4/2018 5:01:31 AM | 37916 |  |  |  |
| Surr: DNOP                                                       | 0                                                                | 70-130 | S    | %Rec       | 100             | 5/4/2018 5:01:31 AM | 37916 |  |  |  |
| EPA METHOD 8015D: GASOLINE RAN                                   | GE                                                               |        |      |            |                 | Analyst             | : NSB |  |  |  |
| Gasoline Range Organics (GRO)                                    | 1400                                                             | 97     |      | mg/Kg      | 20              | 5/4/2018 1:19:53 PM | 37890 |  |  |  |
| Surr: BFB                                                        | 684                                                              | 15-316 | S    | %Rec       | 20              | 5/4/2018 1:19:53 PM | 37890 |  |  |  |
| EPA METHOD 8021B: VOLATILES                                      |                                                                  |        |      |            |                 | Analyst             | : NSB |  |  |  |
| Methyl tert-butyl ether (MTBE)                                   | ND                                                               | 1.9    |      | mg/Kg      | 20              | 5/3/2018 5:44:20 PM | 37890 |  |  |  |
| Benzene                                                          | ND                                                               | 0.48   |      | mg/Kg      | 20              | 5/3/2018 5:44:20 PM | 37890 |  |  |  |
| Toluene                                                          | 15                                                               | 0.97   |      | mg/Kg      | 20              | 5/3/2018 5:44:20 PM | 37890 |  |  |  |

0.97

80-120

1.9

S

mg/Kg

mg/Kg

%Rec

20

20

20

5/3/2018 5:44:20 PM

5/3/2018 5:44:20 PM

5/3/2018 5:44:20 PM

37890

37890

37890

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Ethylbenzene

Xylenes, Total

Surr: 4-Bromofluorobenzene

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 4 of 10 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

\*

Analytical Report
Lab Order 1805017

| Hall Environmental Analysis Laboratory, Inc. |
|----------------------------------------------|
|----------------------------------------------|

Lab Order 1805017 Date Reported: 5/10/2018

| CLIENT: Souder, Miller & Associates | Client Sample ID: L5-1                |        |      |                                            |    |                      |        |  |  |  |
|-------------------------------------|---------------------------------------|--------|------|--------------------------------------------|----|----------------------|--------|--|--|--|
| Project: Tonto                      | Collection Date: 4/26/2018 2:56:00 PM |        |      |                                            |    |                      |        |  |  |  |
| Lab ID: 1805017-005                 | Matrix: SOIL                          |        |      | <b>Received Date: 5</b> /1/2018 9:15:00 AM |    |                      |        |  |  |  |
| Analyses                            | Result                                | PQL (  | )ual | Units                                      | DF | Date Analyzed        | Batch  |  |  |  |
| EPA METHOD 300.0: ANIONS            |                                       |        |      |                                            |    | Analys               | t: MRA |  |  |  |
| Chloride                            | 920                                   | 30     |      | mg/Kg                                      | 20 | 5/7/2018 3:22:33 PM  | 37967  |  |  |  |
| EPA METHOD 8015M/D: DIESEL RANG     |                                       | 5      |      |                                            |    | Analys               | t: TOM |  |  |  |
| Diesel Range Organics (DRO)         | 6100                                  | 98     |      | mg/Kg                                      | 10 | 5/5/2018 12:12:43 AM | 37916  |  |  |  |
| Motor Oil Range Organics (MRO)      | 3800                                  | 490    |      | mg/Kg                                      | 10 | 5/5/2018 12:12:43 AM | 37916  |  |  |  |
| Surr: DNOP                          | 0                                     | 70-130 | S    | %Rec                                       | 10 | 5/5/2018 12:12:43 AM | 37916  |  |  |  |
| EPA METHOD 8015D: GASOLINE RANG     | GE                                    |        |      |                                            |    | Analys               | t: NSB |  |  |  |
| Gasoline Range Organics (GRO)       | 31                                    | 25     |      | mg/Kg                                      | 5  | 5/4/2018 2:06:30 PM  | 37890  |  |  |  |
| Surr: BFB                           | 129                                   | 15-316 |      | %Rec                                       | 5  | 5/4/2018 2:06:30 PM  | 37890  |  |  |  |
| EPA METHOD 8021B: VOLATILES         |                                       |        |      |                                            |    | Analys               | t: NSB |  |  |  |
| Methyl tert-butyl ether (MTBE)      | ND                                    | 0.49   |      | mg/Kg                                      | 5  | 5/3/2018 6:31:19 PM  | 37890  |  |  |  |
| Benzene                             | ND                                    | 0.12   |      | mg/Kg                                      | 5  | 5/3/2018 6:31:19 PM  | 37890  |  |  |  |
| Toluene                             | 0.49                                  | 0.25   |      | mg/Kg                                      | 5  | 5/3/2018 6:31:19 PM  | 37890  |  |  |  |
| Ethylbenzene                        | 0.86                                  | 0.25   |      | mg/Kg                                      | 5  | 5/3/2018 6:31:19 PM  | 37890  |  |  |  |
| Xylenes, Total                      | 1.4                                   | 0.49   |      | mg/Kg                                      | 5  | 5/3/2018 6:31:19 PM  | 37890  |  |  |  |

80-120

%Rec

5

5/3/2018 6:31:19 PM

37890

103

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- \* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- D Sample Diluted Due to Maurix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Surr: 4-Bromofluorobenzene

**Project:** 

Lab ID:

**CLIENT:** Souder, Miller & Associates

1805017-006

Tonto

Analytical Report
Lab Order 1805017

Lab Order **1805017** Date Reported: **5/10/2018** 

| Client Sample ID: SP                  |
|---------------------------------------|
| Collection Date: 4/26/2018 2:47:00 PM |
|                                       |

Received Date: 5/1/2018 9:15:00 AM

| Analyses                       | Result       | PQL Q  | )ual | Units | DF | Date Analyzed        | Batch |
|--------------------------------|--------------|--------|------|-------|----|----------------------|-------|
| EPA METHOD 300.0: ANIONS       |              |        |      |       |    | Analyst              | smb   |
| Chloride                       | 1500         | 75     |      | mg/Kg | 50 | 5/8/2018 11:55:09 PM | 37967 |
| EPA METHOD 8015M/D: DIESEL RAN | IGE ORGANICS | i      |      |       |    | Analyst              | том   |
| Diesel Range Organics (DRO)    | 7400         | 96     |      | mg/Kg | 10 | 5/5/2018 12:56:40 AM | 37916 |
| Motor Oil Range Organics (MRO) | 5300         | 480    |      | mg/Kg | 10 | 5/5/2018 12:56:40 AM | 37916 |
| Surr: DNOP                     | 0            | 70-130 | S    | %Rec  | 10 | 5/5/2018 12:56:40 AM | 37916 |
| EPA METHOD 8015D: GASOLINE RA  | NGE          |        |      |       |    | Analyst              | : NSB |
| Gasoline Range Organics (GRO)  | 94           | 23     |      | mg/Kg | 5  | 5/4/2018 2:53:24 PM  | 37890 |
| Surr: BFB                      | 207          | 15-316 |      | %Rec  | 5  | 5/4/2018 2:53:24 PM  | 37890 |
| EPA METHOD 8021B: VOLATILES    |              |        |      |       |    | Analyst              | : NSB |
| Methyl tert-butyl ether (MTBE) | ND           | 0.47   |      | mg/Kg | 5  | 5/3/2018 6:54:47 PM  | 37890 |
| Benzene                        | ND           | 0.12   |      | mg/Kg | 5  | 5/3/2018 6:54:47 PM  | 37890 |
| Toluene                        | 2.5          | 0.23   |      | mg/Kg | 5  | 5/3/2018 6:54:47 PM  | 37890 |
| Ethylbenzene                   | 4.2          | 0.23   |      | mg/Kg | 5  | 5/3/2018 6:54:47 PM  | 37890 |
| Xylenes, Total                 | 6.4          | 0.47   |      | mg/Kg | 5  | 5/3/2018 6:54:47 PM  | 37890 |
| Surr: 4-Bromofluorobenzene     | 119          | 80-120 |      | %Rec  | 5  | 5/3/2018 6:54:47 PM  | 37890 |

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- \* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

| Client:<br>Project: | Souder,<br>Tonto | Miller & Associat                                | es        |                |              |         |              |      |          |      |  |
|---------------------|------------------|--------------------------------------------------|-----------|----------------|--------------|---------|--------------|------|----------|------|--|
| Sample ID           | MB-37967         | SampType: mblk TestCode: EPA Method              |           |                | 300.0: Anion | s       |              |      |          |      |  |
| Client ID:          | PBS              | Batch ID: 37                                     | 967       | RunNo: 51083   |              |         |              |      |          |      |  |
| Prep Date:          | 5/7/2018         | Analysis Date: 5                                 | /7/2018   | S              | SeqNo: 1659  | 9638    | Units: mg/K  | g    |          |      |  |
| Analyte             |                  | Result PQL                                       | SPK value | SPK Ref Val    | %REC L       | owLimit | HighLimit    | %RPD | RPDLimit | Qual |  |
| Chloride            |                  | ND 1.5                                           |           |                |              |         |              |      |          |      |  |
| Sample ID           | LCS-37967        | SampType: Ics TestCode: EPA Method 300.0: Anions |           |                |              |         |              |      |          |      |  |
| Client ID:          | LCSS             | Batch ID: 37                                     | 7967      | RunNo: 51083   |              |         |              |      |          |      |  |
| Prep Date:          | 5/7/2018         | Analysis Date: 5                                 | /7/2018   | SeqNo: 1659639 |              |         | Units: mg/Kg |      |          |      |  |
| Analyte             |                  | Result PQL                                       | SPK value | SPK Ref Val    | %REC L       | owLimit | HighLimit    | %RPD | RPDLimit | Qual |  |
| Chloride            |                  | 14 1.5                                           | 15.00     | 0              | 95.0         | 90      | 110          |      |          |      |  |

#### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1805017

10-May-18

WO#:

Page 7 of 10
| Client:Souder,Project:Tonto    | Miller & A                                                        | ssociate                     | es        |             |                       |           |                    |           |            |      |
|--------------------------------|-------------------------------------------------------------------|------------------------------|-----------|-------------|-----------------------|-----------|--------------------|-----------|------------|------|
| Sample ID LCS-37916            | SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics |                              |           |             |                       |           |                    |           |            |      |
| Client ID: LCSS                | Batch                                                             | Batch ID: 37916 RunNo: 51013 |           |             |                       |           |                    |           |            |      |
| Prep Date: 5/2/2018            | Analysis D                                                        | ate: 5/                      | 3/2018    | S           | SeqNo: 1              | 657153    | Units: <b>mg/k</b> | ٢g        |            |      |
| Analyte                        | Result                                                            | PQL                          | SPK value | SPK Ref Val | %REC                  | LowLimit  | HighLimit          | %RPD      | RPDLimit   | Qual |
| Diesel Range Organics (DRO)    | 41                                                                | 10                           | 50.00     | 0           | 82.6                  | 70        | 130                |           |            |      |
| Surr: DNOP                     | 3.5                                                               |                              | 5.000     |             | 70.7                  | 70        | 130                |           |            |      |
| Sample ID MB-37916             | SampT                                                             | ype: ME                      | BLK       | Tes         | tCode: El             | PA Method | 8015M/D: Di        | esel Rang | e Organics |      |
| Client ID: PBS                 | Batch                                                             | n ID: 37                     | 916       | F           | RunNo: 5 <sup>,</sup> | 1013      |                    |           |            |      |
| Prep Date: 5/2/2018            | Analysis D                                                        | ate: 5/                      | 3/2018    | S           | SeqNo: 1              | 657154    | Units: mg/H        | ٢g        |            |      |
| Analyte                        | Result                                                            | PQL                          | SPK value | SPK Ref Val | %REC                  | LowLimit  | HighLimit          | %RPD      | RPDLimit   | Qual |
| Diesel Range Organics (DRO)    | ND                                                                | 10                           |           |             |                       |           |                    |           |            |      |
| Motor Oil Range Organics (MRO) | ND                                                                | 50                           |           |             |                       |           |                    |           |            |      |
| Surr: DNOP                     | 7.8                                                               |                              | 10.00     |             | 78.3                  | 70        | 130                |           |            |      |

### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1805017

10-May-18

WO#:

Page 8 of 10

| Client:<br>Project: | Souder,<br>Tonto | Miller & A                   | ssociate | es        |             |           |           |                    |           |          |      |
|---------------------|------------------|------------------------------|----------|-----------|-------------|-----------|-----------|--------------------|-----------|----------|------|
| Sample ID           | MB-37890         | SampT                        | ype: ME  | BLK       | Tes         | tCode: El | PA Method | 8015D: Gaso        | line Rang | e        |      |
| Client ID: F        | PBS              | Batch ID: 37890 RunNo: 50982 |          |           | 0982        |           |           |                    |           |          |      |
| Prep Date:          | 5/1/2018         | Analysis D                   | ate: 5/  | 2/2018    | S           | SeqNo: 1  | 655670    | Units: <b>mg/k</b> | g         |          |      |
| Analyte             |                  | Result                       | PQL      | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD      | RPDLimit | Qual |
| Gasoline Range      | Organics (GRO)   | ND                           | 5.0      |           |             |           |           |                    |           |          |      |
| Surr: BFB           |                  | 910                          |          | 1000      |             | 91.2      | 15        | 316                |           |          |      |
| Sample ID           | _CS-37890        | SampT                        | ype: LC  | S         | Tes         | tCode: El | PA Method | 8015D: Gasc        | line Rang | e        |      |
| Client ID:          | CSS              | Batch                        | n ID: 37 | 890       | F           | anNo: 5   | 0982      |                    |           |          |      |
| Prep Date:          | 5/1/2018         | Analysis D                   | ate: 5/  | 2/2018    | S           | SeqNo: 1  | 655671    | Units: <b>mg/K</b> | g         |          |      |
| Analyte             |                  | Result                       | PQL      | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD      | RPDLimit | Qual |
| Gasoline Range      | Organics (GRO)   | 26                           | 5.0      | 25.00     | 0           | 104       | 75.9      | 131                |           |          |      |
| Surr: BFB           |                  | 1000                         |          | 1000      |             | 102       | 15        | 316                |           |          |      |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1805017

10-May-18

WO#:

Page 9 of 10

| Client:                                                                         | Souder, M | liller & A                                   | ssociate                                  | es                                             |                            |                                          |                                            |                                 |                   |          |      |
|---------------------------------------------------------------------------------|-----------|----------------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------|------------------------------------------|--------------------------------------------|---------------------------------|-------------------|----------|------|
| Project:                                                                        | Tonto     |                                              |                                           |                                                |                            |                                          |                                            |                                 |                   |          |      |
| Sample ID MB-37                                                                 | 7890      | SampT                                        | ype: ME                                   | BLK                                            | Test                       | TestCode: EPA Method 8021B: Volatiles    |                                            |                                 |                   |          |      |
| Client ID: PBS                                                                  |           | Batch                                        | h ID: 37                                  | 890                                            | R                          | unNo: 5                                  | 0982                                       |                                 |                   |          |      |
| Prep Date: 5/1/2                                                                | 2018      | Analysis D                                   | )ate: 5/                                  | 2/2018                                         | S                          | eqNo: 1                                  | 655710                                     | Units: mg/K                     | ίg                |          |      |
| Analyte                                                                         |           | Result                                       | PQL                                       | SPK value                                      | SPK Ref Val                | %REC                                     | LowLimit                                   | HighLimit                       | %RPD              | RPDLimit | Qual |
| Methyl tert-butyl ether (                                                       | MTBE)     | ND                                           | 0.10                                      |                                                |                            |                                          |                                            |                                 |                   |          |      |
| Benzene                                                                         |           | ND                                           | 0.025                                     |                                                |                            |                                          |                                            |                                 |                   |          |      |
| Toluene                                                                         |           | ND                                           | 0.050                                     |                                                |                            |                                          |                                            |                                 |                   |          |      |
| Ethylbenzene                                                                    |           | ND                                           | 0.050                                     |                                                |                            |                                          |                                            |                                 |                   |          |      |
| Xylenes, Total                                                                  |           | ND                                           | 0.10                                      |                                                |                            |                                          |                                            |                                 |                   |          |      |
| Surr: 4-Bromofluorob                                                            | oenzene   | 1.0                                          |                                           | 1.000                                          |                            | 104                                      | 80                                         | 120                             |                   |          |      |
| Sample ID LCS-3                                                                 | 37890     | SampT                                        | ype: LC                                   | S                                              | Test                       | Code: El                                 | PA Method                                  | 8021B: Volat                    | tiles             |          |      |
|                                                                                 |           | Batch ID: <b>37890</b> RunNo: <b>50982</b>   |                                           |                                                |                            |                                          |                                            |                                 |                   |          |      |
| Client ID: LCSS                                                                 |           | Batch                                        | ו ID: <b>37</b> 8                         | 890                                            | R                          | unNo: 5                                  | 0982                                       |                                 |                   |          |      |
| Client ID: LCSS<br>Prep Date: 5/1/2                                             |           | Batch<br>Analysis D                          |                                           |                                                |                            | unNo: 50                                 |                                            | Units: <b>mg/K</b>              | ζg                |          |      |
|                                                                                 |           |                                              |                                           | 2/2018                                         |                            | -                                        |                                            | Units: <b>mg/K</b><br>HighLimit | <b>′g</b><br>%RPD | RPDLimit | Qual |
| Prep Date: 5/1/2<br>Analyte                                                     | 018       | Analysis D                                   | Date: 5/                                  | 2/2018                                         | S                          | eqNo: 1                                  | 655711                                     | •                               | •                 | RPDLimit | Qual |
| Prep Date: 5/1/2<br>Analyte<br>Methyl tert-butyl ether (i                       | 018       | Analysis D<br>Result                         | Date: <b>5/</b><br>PQL                    | <b>2/2018</b><br>SPK value                     | S<br>SPK Ref Val           | eqNo: 1                                  | 655711<br>LowLimit                         | HighLimit                       | •                 | RPDLimit | Qual |
| Prep Date: 5/1/2<br>Analyte<br>Methyl tert-butyl ether (i<br>Benzene            | 018       | Analysis D<br>Result<br>0.96                 | Date: <b>5/</b><br>PQL<br>0.10            | 2/2018<br>SPK value<br>1.000                   | SPK Ref Val                | eqNo: 10<br>%REC<br>95.5                 | 655711<br>LowLimit<br>70.1                 | HighLimit<br>121                | •                 | RPDLimit | Qual |
| Prep Date: 5/1/2<br>Analyte<br>Methyl tert-butyl ether (i<br>Benzene<br>Toluene | 018       | Analysis D<br>Result<br>0.96<br>0.98         | Date: <b>5/</b><br>PQL<br>0.10<br>0.025   | 2/2018<br>SPK value<br>1.000<br>1.000          | SPK Ref Val<br>0<br>0      | eqNo: 10<br>%REC<br>95.5<br>97.9         | 655711<br>LowLimit<br>70.1<br>77.3         | HighLimit<br>121<br>128         | •                 | RPDLimit | Qual |
| Prep Date: 5/1/2                                                                | 018       | Analysis D<br>Result<br>0.96<br>0.98<br>0.99 | Date: 5/<br>PQL<br>0.10<br>0.025<br>0.050 | 2/2018<br>SPK value<br>1.000<br>1.000<br>1.000 | SPK Ref Val<br>0<br>0<br>0 | eqNo: 10<br>%REC<br>95.5<br>97.9<br>99.4 | 555711<br>LowLimit<br>70.1<br>77.3<br>79.2 | HighLimit<br>121<br>128<br>125  | •                 | RPDLimit | Qual |

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1805017

10-May-18

WO#:

- Page 10 of 10

.

| HALL<br>ENVIRONMENTAL<br>ANALYSIS<br>LABORATORY                                                 | Hall Environmental Analysis Labı<br>4901 Hawk<br>Albuquerque, NM<br>TEL: 505-345-3975 FAX: 505-34<br>Website: www.hallenvironment | kins NE<br>187109 Sample Log-In Check List<br>15-4107 |       |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|
| Client Name: SMA-CARLSBAD V                                                                     | Vork Order Number: 1805017                                                                                                        | RcptNo: 1                                             |       |
| Received By: Isaiah Ortiz 5/1                                                                   | /2018 9:15:00 AM                                                                                                                  | I Cal                                                 |       |
|                                                                                                 | 2018 11:44:20 AM                                                                                                                  | A                                                     |       |
| Reviewed By: ENM 5/                                                                             | Vis Labe                                                                                                                          | led by: <u>Stro</u>                                   |       |
| Chain of Custody                                                                                |                                                                                                                                   |                                                       |       |
| 1. Is Chain of Custody complete?                                                                | Yes 🔽                                                                                                                             | No 🔲 Not Present 🗔                                    |       |
| 2. How was the sample delivered?                                                                | Courier                                                                                                                           |                                                       |       |
| Log In                                                                                          |                                                                                                                                   |                                                       |       |
| 3. Was an attempt made to cool the samples?                                                     | Yes 🗹                                                                                                                             | No NA NA                                              | · . : |
| 4. Were all samples received at a temperature of >0                                             | °C to 6.0°C Yes 🗹                                                                                                                 |                                                       |       |
| 5. Sample(s) in proper container(s)?                                                            | Yes 🔽                                                                                                                             | No 🗔                                                  | :     |
| 6. Sufficient sample volume for indicated test(s)?                                              | Yes 🔽                                                                                                                             | No 🗍                                                  |       |
| 7. Are samples (except VOA and ONG) properly pres                                               | erved? Yes 🗹                                                                                                                      | No 🗔                                                  |       |
| 8. Was preservative added to bottles?                                                           | Yes                                                                                                                               |                                                       | r -   |
| 9. VOA vials have zero headspace?                                                               | Yes 🗌                                                                                                                             | No 🗌 No VOA Vials 🗹                                   |       |
| 10. Were any sample containers received broken?                                                 | Yes                                                                                                                               | No 🗹                                                  | ]     |
| 11. Does paperwork match bottle labels?<br>(Note discrepancies on chain of custody)             | Yes 🗹                                                                                                                             | No D                                                  |       |
| 12, Are matrices correctly identified on Chain of Custon                                        | dy? Yes 🗹                                                                                                                         | No Adjusted                                           |       |
| 13. Is it clear what analyses were requested?                                                   | Yes 🗹                                                                                                                             |                                                       |       |
| 14. Were all holding times able to be met?<br>(If no, notify customer for authorization.)       | Yes 🔽                                                                                                                             | No Checked by:                                        |       |
| Special Handling (if applicable)                                                                |                                                                                                                                   |                                                       |       |
| 15. Was client notified of all discrepancies with this or                                       | der? Yes                                                                                                                          | No 🗌 NA 🗹                                             |       |
| Person Notified:<br>By Whom:<br>Regarding:                                                      | Date Date Via: eMail D                                                                                                            | Phone 🗌 Fax 🔄 In Person                               |       |
| Client Instructions:                                                                            | ·····                                                                                                                             |                                                       |       |
| 16. Additional remarks:                                                                         |                                                                                                                                   |                                                       |       |
| 17. <u>Cooler Information</u><br><u>Cooler No</u> Temp °C Condition Seal Inta<br>1 0.8 Good Yes | act Seal No Seal Date                                                                                                             | Signed By                                             |       |
| Page 1 of 1                                                                                     |                                                                                                                                   |                                                       |       |

| HALL ENVIRONMENTAL<br>ANALYSIS LABORATORY<br>www.hallenvironmental.com<br>kins NE - Albuquerque, NM 87109<br>445-3975 Fax 505-345-4107                  | 8500B (VOV)<br>(AOV-ime)<br>(AOV-ime)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| HALL ENVIRONME         ANALYSIS LABOR/         www.hallenvironmental.com         ins NE - Albuquerque, NM 87109         45-3975        Fax 505-345-4107 | Analysis Requested or 8270 SIMS) Analysis Requested by Metals (8310 or 8270 SIMS) Analysis Request Analysis |                                                                                                                   | - Vant                                                     |
| ANAL<br>ANAL<br>www.ha<br>4901 Hawkins NE<br>Tel. 505-345-3975                                                                                          | EDB (Method 504.1)<br>TPH 8015B (GRO / DRO / MRO)<br>TPH 8015B (GRO / DRO / MRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\times \times \times \times \times$                                                                              | Remarks:<br>M BWW                                          |
| 5 des hun                                                                                                                                               | BODDI-1<br>180501-1<br>180501-1<br>180501-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   | Date Time<br><b>Under Time</b><br>Date Time                |
| Ime:                                                                                                                                                    | Iger:<br>M<br><i>W</i><br><i>W</i><br><i>W</i><br><i>W</i><br><i>W</i><br><i>W</i><br><i>W</i><br><i>W</i><br><i>W</i><br><i>W</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   | Courte                                                     |
| Turn-Around <sup>7</sup><br><u>     Standard</u><br>Project Name<br>Project #:                                                                          | Project Manager:<br>Project Manager:<br>Sampler: HUU<br>On Ice: Content<br>Sample Tempera<br>Container Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                          | Received                                                   |
| Chain-of-Custody Record<br>うん                                                                                                                           | <ul> <li>Level 4 (Full Validation)</li> <li>Sample Request ID</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{22}$ $\frac{1}{31}$<br>$\frac{1}{22}$ $\frac{1}{31}$<br>$\frac{1}{22}$ $\frac{1}{31}$<br>$\frac{1}{52}$ | July                                                       |
| ain-of-Cu                                                                                                                                               | Fax#:<br>ackage:<br>ard<br>ard<br>Type)<br>Time Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.43 Soil                                                                                                         | Time: Relinquished by<br>OS36 Avy<br>Time: Relinquished by |
| Client: Chain-<br>Client: M<br>Mailing Address:                                                                                                         | Phone #:<br>email or Fax#:<br>QA/QC Package:<br>XStandard<br>Accreditation<br>D NELAP<br>D EDD (Type)<br>Date<br>Date<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12012 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                           | Ipate: Time:<br>Edits 099<br>Date: Time:                   |

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.



June 01, 2018

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

RE: Tonto 15-1

OrderNo.: 1805B66

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 6 sample(s) on 5/22/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Lab Order 1805B66

Date Reported: 6/1/2018

|                                     |              |        |                                      |           | Date Reported. 0/1/201 | 0       |
|-------------------------------------|--------------|--------|--------------------------------------|-----------|------------------------|---------|
| CLIENT: Souder, Miller & Associates |              |        | Client Sampl                         | e ID: L1  | -2.5                   |         |
| Project: Tonto 15-1                 |              |        | Collection 1                         | Date: 5/1 | 7/2018 12:23:00 PM     |         |
| Lab ID: 1805B66-001                 | Matrix:      | SOLID  | Received Date: 5/22/2018 10:05:00 AM |           |                        |         |
| Analyses                            | Result       | PQL Qu | al Units                             | DF        | Date Analyzed          | Batch   |
| EPA METHOD 300.0: ANIONS            |              |        |                                      |           | Analys                 | t: CJS  |
| Chloride                            | 490          | 30     | mg/Kg                                | 20        | 5/25/2018 3:16:03 PM   | 38333   |
| EPA METHOD 8015M/D: DIESEL RAN      | IGE ORGANICS | 6      |                                      |           | Analys                 | t: TOM  |
| Diesel Range Organics (DRO)         | 45           | 10     | mg/Kg                                | 1         | 5/24/2018 12:25:34 AN  | / 38269 |
| Motor Oil Range Organics (MRO)      | 55           | 51     | mg/Kg                                | 1         | 5/24/2018 12:25:34 AN  | / 38269 |
| Surr: DNOP                          | 114          | 70-130 | %Rec                                 | 1         | 5/24/2018 12:25:34 AN  | 1 38269 |
| EPA METHOD 8015D: GASOLINE RA       | NGE          |        |                                      |           | Analys                 | t: NSB  |
| Gasoline Range Organics (GRO)       | ND           | 5.0    | mg/Kg                                | 1         | 5/24/2018 1:30:37 AM   | 38263   |
| Surr: BFB                           | 89.5         | 15-316 | %Rec                                 | 1         | 5/24/2018 1:30:37 AM   | 38263   |
| FPA METHOD 8021B: VOLATILES         |              |        |                                      |           | Analys                 | t. NSB  |

| Surr: BFB                   | 89.5 | 15-316 | %Rec  | 1 | 5/24/2018 1:30:37 AM | 38263 |
|-----------------------------|------|--------|-------|---|----------------------|-------|
| EPA METHOD 8021B: VOLATILES |      |        |       |   | Analyst:             | NSB   |
| Benzene                     | ND   | 0.025  | mg/Kg | 1 | 5/24/2018 1:30:37 AM | 38263 |
| Toluene                     | ND   | 0.050  | mg/Kg | 1 | 5/24/2018 1:30:37 AM | 38263 |
| Ethylbenzene                | ND   | 0.050  | mg/Kg | 1 | 5/24/2018 1:30:37 AM | 38263 |
| Xylenes, Total              | ND   | 0.099  | mg/Kg | 1 | 5/24/2018 1:30:37 AM | 38263 |
| Surr: 4-Bromofluorobenzene  | 99.7 | 80-120 | %Rec  | 1 | 5/24/2018 1:30:37 AM | 38263 |

- \* Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 10 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1805B66

Date Reported: 6/1/2018

|                                     |             |         |                                      |                             | Date Reported. 0/1/201 | 10      |  |
|-------------------------------------|-------------|---------|--------------------------------------|-----------------------------|------------------------|---------|--|
| CLIENT: Souder, Miller & Associates |             |         | Client Sampl                         | le ID: L2                   | -1                     |         |  |
| Project: Tonto 15-1                 |             |         | Collection 1                         | Date: 5/17/2018 12:36:00 PM |                        |         |  |
| Lab ID: 1805B66-002                 | Matrix:     | SOIL    | Received Date: 5/22/2018 10:05:00 AM |                             |                        |         |  |
| Analyses                            | Result      | PQL Qua | d Units                              | DF                          | Date Analyzed          | Batch   |  |
| EPA METHOD 300.0: ANIONS            |             |         |                                      |                             | Analys                 | t: CJS  |  |
| Chloride                            | 860         | 30      | mg/Kg                                | 20                          | 5/25/2018 3:28:28 PM   | 38333   |  |
| EPA METHOD 8015M/D: DIESEL RANG     | GE ORGANICS | 6       |                                      |                             | Analys                 | t: TOM  |  |
| Diesel Range Organics (DRO)         | 66          | 9.9     | mg/Kg                                | 1                           | 5/24/2018 12:49:38 AM  | / 38269 |  |
| Motor Oil Range Organics (MRO)      | 53          | 50      | mg/Kg                                | 1                           | 5/24/2018 12:49:38 AN  | / 38269 |  |
| Surr: DNOP                          | 108         | 70-130  | %Rec                                 | 1                           | 5/24/2018 12:49:38 AN  | / 38269 |  |
| EPA METHOD 8015D: GASOLINE RAN      | IGE         |         |                                      |                             | Analys                 | t: NSB  |  |
| Gasoline Range Organics (GRO)       | ND          | 4.7     | mg/Kg                                | 1                           | 5/24/2018 1:54:09 AM   | 38263   |  |
| Surr: BFB                           | 91.2        | 15-316  | %Rec                                 | 1                           | 5/24/2018 1:54:09 AM   | 38263   |  |
| EPA METHOD 8021B: VOLATILES         |             |         |                                      |                             | Analys                 | t: NSB  |  |
|                                     |             |         |                                      |                             |                        |         |  |

| Surr: BFB                   | 91.2 | 15-316 | %Rec  | 1 | 5/24/2018 1:54:09 AM | 38263 |
|-----------------------------|------|--------|-------|---|----------------------|-------|
| EPA METHOD 8021B: VOLATILES |      |        |       |   | Analyst:             | NSB   |
| Benzene                     | ND   | 0.023  | mg/Kg | 1 | 5/24/2018 1:54:09 AM | 38263 |
| Toluene                     | ND   | 0.047  | mg/Kg | 1 | 5/24/2018 1:54:09 AM | 38263 |
| Ethylbenzene                | ND   | 0.047  | mg/Kg | 1 | 5/24/2018 1:54:09 AM | 38263 |
| Xylenes, Total              | ND   | 0.094  | mg/Kg | 1 | 5/24/2018 1:54:09 AM | 38263 |
| Surr: 4-Bromofluorobenzene  | 102  | 80-120 | %Rec  | 1 | 5/24/2018 1:54:09 AM | 38263 |

- \* Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 10 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Surr: 4-Bromofluorobenzene

**Analytical Report** 

Lab Order 1805B66

Date Reported: 6/1/2018

| <b>CLIENT:</b> Souder, Miller & Associates <b>Project:</b> Tonto 15-1 <b>Lab ID:</b> 1805B66-003 | Matrix:     | Client Sample ID: L3-1           Collection Date: 5/17/2018 12:45:00 PM           Matrix: SOIL         Received Date: 5/22/2018 10:05:00 AM |      |       |    |                      |       |  |
|--------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----|----------------------|-------|--|
| Analyses                                                                                         | Result      | PQL (                                                                                                                                       | Qual | Units | DF | Date Analyzed        | Batch |  |
| EPA METHOD 300.0: ANIONS                                                                         |             |                                                                                                                                             |      |       |    | Analyst              | MRA   |  |
| Chloride                                                                                         | 2100        | 75                                                                                                                                          |      | mg/Kg | 50 | 5/29/2018 2:27:39 PM | 38333 |  |
| EPA METHOD 8015M/D: DIESEL RAN                                                                   | GE ORGANICS | 6                                                                                                                                           |      |       |    | Analyst              | : TOM |  |
| Diesel Range Organics (DRO)                                                                      | 2000        | 99                                                                                                                                          |      | mg/Kg | 10 | 5/24/2018 1:13:50 AM | 38269 |  |
| Motor Oil Range Organics (MRO)                                                                   | 1200        | 500                                                                                                                                         |      | mg/Kg | 10 | 5/24/2018 1:13:50 AM | 38269 |  |
| Surr: DNOP                                                                                       | 0           | 70-130                                                                                                                                      | S    | %Rec  | 10 | 5/24/2018 1:13:50 AM | 38269 |  |
| EPA METHOD 8015D: GASOLINE RAI                                                                   | NGE         |                                                                                                                                             |      |       |    | Analyst              | : NSB |  |
| Gasoline Range Organics (GRO)                                                                    | 9.8         | 4.9                                                                                                                                         |      | mg/Kg | 1  | 5/24/2018 3:00:21 PM | 38263 |  |
| Surr: BFB                                                                                        | 181         | 15-316                                                                                                                                      |      | %Rec  | 1  | 5/24/2018 3:00:21 PM | 38263 |  |
| EPA METHOD 8021B: VOLATILES                                                                      |             |                                                                                                                                             |      |       |    | Analyst              | : NSB |  |
| Benzene                                                                                          | ND          | 0.024                                                                                                                                       |      | mg/Kg | 1  | 5/24/2018 3:00:21 PM | 38263 |  |
| Toluene                                                                                          | ND          | 0.049                                                                                                                                       |      | mg/Kg | 1  | 5/24/2018 3:00:21 PM | 38263 |  |
| Ethylbenzene                                                                                     | 0.12        | 0.049                                                                                                                                       |      | mg/Kg | 1  | 5/24/2018 3:00:21 PM | 38263 |  |
| Xylenes, Total                                                                                   | 0.38        | 0.097                                                                                                                                       |      | mg/Kg | 1  | 5/24/2018 3:00:21 PM | 38263 |  |

80-120

%Rec

1

5/24/2018 3:00:21 PM

38263

117

- \* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 3 of 10 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Lab Order 1805B66

Date Reported: 6/1/2018

5/24/2018 2:41:07 AM

5/24/2018 2:41:07 AM

1

1

38263

38263

| v                                                                                 |                                                                                                                       | Č /      |       |    | 1                    |       |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------|-------|----|----------------------|-------|--|
| CLIENT: Souder, Miller & Associates<br>Project: Tonto 15-1<br>Lab ID: 1805B66-004 | Client Sample ID: L4-1<br>Collection Date: 5/17/2018 1:01:00 PM<br>Matrix: SOLID Received Date: 5/22/2018 10:05:00 AM |          |       |    |                      |       |  |
|                                                                                   |                                                                                                                       |          |       |    |                      |       |  |
| Analyses                                                                          | Result                                                                                                                | PQL Qual | Units | DF | Date Analyzed        | Batch |  |
| EPA METHOD 300.0: ANIONS                                                          |                                                                                                                       |          |       |    | Analyst              | : CJS |  |
| Chloride                                                                          | 530                                                                                                                   | 30       | mg/Kg | 20 | 5/25/2018 4:42:53 PM | 38333 |  |
| EPA METHOD 8015M/D: DIESEL RANG                                                   | E ORGANICS                                                                                                            | 5        |       |    | Analyst              | : том |  |
| Diesel Range Organics (DRO)                                                       | 23                                                                                                                    | 10       | mg/Kg | 1  | 5/24/2018 2:02:17 AM | 38269 |  |
| Motor Oil Range Organics (MRO)                                                    | ND                                                                                                                    | 50       | mg/Kg | 1  | 5/24/2018 2:02:17 AM | 38269 |  |
| Surr: DNOP                                                                        | 111                                                                                                                   | 70-130   | %Rec  | 1  | 5/24/2018 2:02:17 AM | 38269 |  |
| EPA METHOD 8015D: GASOLINE RANG                                                   | GE                                                                                                                    |          |       |    | Analyst              | : NSB |  |
| Gasoline Range Organics (GRO)                                                     | ND                                                                                                                    | 5.0      | mg/Kg | 1  | 5/24/2018 2:41:07 AM | 38263 |  |
| Surr: BFB                                                                         | 90.4                                                                                                                  | 15-316   | %Rec  | 1  | 5/24/2018 2:41:07 AM | 38263 |  |
| EPA METHOD 8021B: VOLATILES                                                       |                                                                                                                       |          |       |    | Analyst              | : NSB |  |
| Benzene                                                                           | ND                                                                                                                    | 0.025    | mg/Kg | 1  | 5/24/2018 2:41:07 AM | 38263 |  |
| Toluene                                                                           | ND                                                                                                                    | 0.050    | mg/Kg | 1  | 5/24/2018 2:41:07 AM | 38263 |  |
| Ethylbenzene                                                                      | ND                                                                                                                    | 0.050    | mg/Kg | 1  | 5/24/2018 2:41:07 AM | 38263 |  |
|                                                                                   |                                                                                                                       |          |       |    |                      |       |  |

0.099

80-120

mg/Kg

%Rec

ND

102

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Xylenes, Total

Surr: 4-Bromofluorobenzene

- \* Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 4 of 10 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Surr: 4-Bromofluorobenzene

**Analytical Report** 

Lab Order 1805B66

Date Reported: 6/1/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto 15-1 | Client Sample ID: L5-2<br>Collection Date: 5/17/2018 1:18:00 PM |         |                 |    |                      |       |  |
|------------------------------------------------------------|-----------------------------------------------------------------|---------|-----------------|----|----------------------|-------|--|
| Lab ID: 1805B66-005                                        | Matrix: SOLID                                                   |         | <b>Received</b> |    |                      |       |  |
| Analyses                                                   | Result                                                          | PQL Qua | al Units        | DF | Date Analyzed        | Batch |  |
| EPA METHOD 300.0: ANIONS                                   |                                                                 |         |                 |    | Analyst              | MRA   |  |
| Chloride                                                   | 250                                                             | 30      | mg/Kg           | 20 | 5/29/2018 1:16:27 PM | 38357 |  |
| EPA METHOD 8015M/D: DIESEL RANG                            | E ORGANICS                                                      | 5       |                 |    | Analyst              | том   |  |
| Diesel Range Organics (DRO)                                | 22                                                              | 10      | mg/Kg           | 1  | 5/24/2018 2:26:28 AM | 38269 |  |
| Motor Oil Range Organics (MRO)                             | ND                                                              | 50      | mg/Kg           | 1  | 5/24/2018 2:26:28 AM | 38269 |  |
| Surr: DNOP                                                 | 105                                                             | 70-130  | %Rec            | 1  | 5/24/2018 2:26:28 AM | 38269 |  |
| EPA METHOD 8015D: GASOLINE RANG                            | GE                                                              |         |                 |    | Analyst              | : NSB |  |
| Gasoline Range Organics (GRO)                              | ND                                                              | 4.9     | mg/Kg           | 1  | 5/24/2018 3:04:37 AM | 38263 |  |
| Surr: BFB                                                  | 88.6                                                            | 15-316  | %Rec            | 1  | 5/24/2018 3:04:37 AM | 38263 |  |
| EPA METHOD 8021B: VOLATILES                                |                                                                 |         |                 |    | Analyst              | : NSB |  |
| Benzene                                                    | ND                                                              | 0.024   | mg/Kg           | 1  | 5/24/2018 3:04:37 AM | 38263 |  |
| Toluene                                                    | ND                                                              | 0.049   | mg/Kg           | 1  | 5/24/2018 3:04:37 AM | 38263 |  |
| Ethylbenzene                                               | ND                                                              | 0.049   | mg/Kg           | 1  | 5/24/2018 3:04:37 AM | 38263 |  |
| Xylenes, Total                                             | ND                                                              | 0.097   | mg/Kg           | 1  | 5/24/2018 3:04:37 AM | 38263 |  |

80-120

%Rec

98.8

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- \* Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank

1

5/24/2018 3:04:37 AM

38263

- Е Value above quantitation range
- Analyte detected below quantitation limits Page 5 of 10 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Lab Order 1805B66

Date Reported: 6/1/2018

| CLIENT:Souder, Miller & AssociatesProject:Tonto 15-1Lab ID:1805B66-006 | Client Sample ID: L5-1           Collection Date: 5/17/2018 1:12:00 PM           Matrix: SOIL         Received Date: 5/22/2018 10:05:00 AM |          |       |    |                      |       |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----|----------------------|-------|--|--|
| Analyses                                                               | Result                                                                                                                                     | PQL Qual | Units | DF | Date Analyzed        | Batch |  |  |
| EPA METHOD 300.0: ANIONS                                               |                                                                                                                                            |          |       |    | Analyst              | : MRA |  |  |
| Chloride                                                               | 1200                                                                                                                                       | 75       | mg/Kg | 50 | 5/29/2018 3:54:31 PM | 38357 |  |  |
| EPA METHOD 8015M/D: DIESEL RANG                                        | GE ORGANICS                                                                                                                                | 3        |       |    | Analyst              | : TOM |  |  |
| Diesel Range Organics (DRO)                                            | 690                                                                                                                                        | 10       | mg/Kg | 1  | 5/24/2018 2:20:30 PM | 38269 |  |  |
| Motor Oil Range Organics (MRO)                                         | 470                                                                                                                                        | 50       | mg/Kg | 1  | 5/24/2018 2:20:30 PM | 38269 |  |  |
| Surr: DNOP                                                             | 126                                                                                                                                        | 70-130   | %Rec  | 1  | 5/24/2018 2:20:30 PM | 38269 |  |  |
| EPA METHOD 8015D: GASOLINE RAN                                         | IGE                                                                                                                                        |          |       |    | Analyst              | : NSB |  |  |
| Gasoline Range Organics (GRO)                                          | ND                                                                                                                                         | 4.8      | mg/Kg | 1  | 5/24/2018 3:47:11 PM | 38263 |  |  |
| Surr: BFB                                                              | 104                                                                                                                                        | 15-316   | %Rec  | 1  | 5/24/2018 3:47:11 PM | 38263 |  |  |
| EPA METHOD 8021B: VOLATILES                                            |                                                                                                                                            |          |       |    | Analyst              | : NSB |  |  |
| Benzene                                                                | ND                                                                                                                                         | 0.024    | mg/Kg | 1  | 5/24/2018 3:47:11 PM | 38263 |  |  |

| Benzene                    | ND  | 0.024  | mg/Kg | 1 | 5/24/2018 3:47:11 PM | 38263 |
|----------------------------|-----|--------|-------|---|----------------------|-------|
| Toluene                    | ND  | 0.048  | mg/Kg | 1 | 5/24/2018 3:47:11 PM | 38263 |
| Ethylbenzene               | ND  | 0.048  | mg/Kg | 1 | 5/24/2018 3:47:11 PM | 38263 |
| Xylenes, Total             | ND  | 0.096  | mg/Kg | 1 | 5/24/2018 3:47:11 PM | 38263 |
| Surr: 4-Bromofluorobenzene | 104 | 80-120 | %Rec  | 1 | 5/24/2018 3:47:11 PM | 38263 |

| Qualifiers: |  |
|-------------|--|
|-------------|--|

- \* Value exceeds Maximum Contaminant Level. D
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 6 of 10 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

| Client:<br>Project: | Souder,<br>Tonto 1 | Miller & Associate<br>5-1 | es        |             |                 |          |                    |      |          |      |
|---------------------|--------------------|---------------------------|-----------|-------------|-----------------|----------|--------------------|------|----------|------|
| Sample ID           | MB-38333           | SampType: <b>ml</b>       | olk       | Test        | tCode: EP       | A Method | 300.0: Anion       | s    |          |      |
| Client ID:          | PBS                | Batch ID: 38              | 333       | R           | unNo: <b>51</b> | 542      |                    |      |          |      |
| Prep Date:          | 5/25/2018          | Analysis Date: 5/         | 25/2018   | S           | eqNo: 16        | 79970    | Units: mg/K        | g    |          |      |
| Analyte<br>Chloride |                    | Result PQL<br>ND 1.5      | SPK value | SPK Ref Val | %REC            | LowLimit | HighLimit          | %RPD | RPDLimit | Qual |
| Sample ID           | LCS-38333          | SampType: Ics             | 5         | Test        | tCode: EP       | A Method | 300.0: Anion       | s    |          |      |
| Client ID:          | LCSS               | Batch ID: 38              | 333       | R           | unNo: <b>51</b> | 542      |                    |      |          |      |
| Prep Date:          | 5/25/2018          | Analysis Date: 5/         | 25/2018   | S           | eqNo: 16        | 79971    | Units: mg/K        | ģ    |          |      |
| Analyte             |                    | Result PQL                | SPK value | SPK Ref Val | %REC            | LowLimit | HighLimit          | %RPD | RPDLimit | Qual |
| Chloride            |                    | 14 1.5                    | 15.00     | 0           | 94.5            | 90       | 110                |      |          |      |
| Sample ID           | MB-38357           | SampType: ml              | olk       | Test        | tCode: EP       | A Method | 300.0: Anion       | s    |          |      |
| Client ID:          | PBS                | Batch ID: 38              | 357       | R           | unNo: <b>51</b> | 572      |                    |      |          |      |
| Prep Date:          | 5/29/2018          | Analysis Date: 5/         | 29/2018   | S           | eqNo: 16        | 82543    | Units: mg/K        | g    |          |      |
| Analyte             |                    | Result PQL                | SPK value | SPK Ref Val | %REC            | LowLimit | HighLimit          | %RPD | RPDLimit | Qual |
| Chloride            |                    | ND 1.5                    |           |             |                 |          |                    |      |          |      |
| Sample ID           | LCS-38357          | SampType: Ics             | 5         | Test        | Code: EP        | A Method | 300.0: Anion       | s    |          |      |
| Client ID:          | LCSS               | Batch ID: 38              | 357       | R           | unNo: <b>51</b> | 572      |                    |      |          |      |
| Prep Date:          | 5/29/2018          | Analysis Date: 5/         | 29/2018   | S           | eqNo: 16        | 82544    | Units: <b>mg/K</b> | g    |          |      |
| Analyte             |                    | Result PQL                | SPK value | SPK Ref Val | %REC            | LowLimit | HighLimit          | %RPD | RPDLimit | Qual |
| Chloride            |                    | 14 1.5                    | 15.00     | 0           | 93.5            | 90       | 110                |      |          |      |

### **Qualifiers:**

- Value exceeds Maximum Contaminant Level. \*
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

1805B66

01-Jun-18

WO#:

Page 7 of 10

| Client: Souder,<br>Project: Tonto 1 | Miller & A<br>5-1 | ssociate | 28        |             |           |           |                    |           |            |      |
|-------------------------------------|-------------------|----------|-----------|-------------|-----------|-----------|--------------------|-----------|------------|------|
| Sample ID LCS-38269                 | SampT             | ype: LC  | s         | Tes         | tCode: El | PA Method | 8015M/D: Di        | esel Rang | e Organics |      |
| Client ID: LCSS                     | Batch             | n ID: 38 | 269       | F           | RunNo: 5  | 1394      |                    |           |            |      |
| Prep Date: 5/22/2018                | Analysis D        | ate: 5/  | 23/2018   | S           | SeqNo: 1  | 676949    | Units: <b>mg/k</b> | ٢g        |            |      |
| Analyte                             | Result            | PQL      | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD      | RPDLimit   | Qual |
| Diesel Range Organics (DRO)         | 48                | 10       | 50.00     | 0           | 96.2      | 70        | 130                |           |            |      |
| Surr: DNOP                          | 5.3               |          | 5.000     |             | 105       | 70        | 130                |           |            |      |
| Sample ID MB-38269                  | SampT             | ype: ME  | BLK       | Tes         | tCode: El | PA Method | 8015M/D: Di        | esel Rang | e Organics |      |
| Client ID: PBS                      | Batch             | n ID: 38 | 269       | F           | tunNo: 5  | 1394      |                    |           |            |      |
| Prep Date: 5/22/2018                | Analysis D        | ate: 5/  | 23/2018   | S           | SeqNo: 1  | 676950    | Units: <b>mg/k</b> | ٢g        |            |      |
| Analyte                             | Result            | PQL      | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD      | RPDLimit   | Qual |
| Diesel Range Organics (DRO)         | ND                | 10       |           |             |           |           |                    |           |            |      |
| Notor Oil Range Organics (MRO)      | ND                | 50       |           |             |           |           |                    |           |            |      |
| Surr: DNOP                          | 12                |          | 10.00     |             | 116       | 70        | 130                |           |            |      |

### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1805B66

01-Jun-18

WO#:

Page 8 of 10

| Client: Souder,<br>Project: Tonto 1 | Miller & Assoc<br>5-1 | viates       |             |           |           |             |           |          |      |
|-------------------------------------|-----------------------|--------------|-------------|-----------|-----------|-------------|-----------|----------|------|
| Sample ID MB-38263                  | SampType:             | MBLK         | Tes         | tCode: EF | PA Method | 8015D: Gaso | line Rang | e        |      |
| Client ID: PBS                      | Batch ID:             | 38263        | R           | RunNo: 51 | 480       |             |           |          |      |
| Prep Date: 5/22/2018                | Analysis Date:        | 5/23/2018    | S           | SeqNo: 16 | 676698    | Units: mg/K | g         |          |      |
| Analyte                             | Result PC             | QL SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Gasoline Range Organics (GRO)       | ND                    | 5.0          |             |           |           |             |           |          |      |
| Surr: BFB                           | 910                   | 1000         |             | 91.4      | 15        | 316         |           |          |      |
| Sample ID LCS-38263                 | SampType:             | LCS          | Tes         | tCode: EF | PA Method | 8015D: Gaso | line Rang | e        |      |
| Client ID: LCSS                     | Batch ID:             | 38263        | R           | RunNo: 51 | 480       |             |           |          |      |
| Prep Date: 5/22/2018                | Analysis Date:        | 5/23/2018    | S           | SeqNo: 16 | 676699    | Units: mg/K | g         |          |      |
| Analyte                             | Result PC             | QL SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit | Qual |
| Gasoline Range Organics (GRO)       | 28                    | 5.0 25.00    | 0           | 114       | 75.9      | 131         |           |          |      |
| Surr: BFB                           | 1000                  | 1000         |             | 105       | 15        | 316         |           |          |      |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1805B66

01-Jun-18

WO#:

Page 9 of 10

| Client:SouderProject:Tonto | r, Miller & A<br>15-1 | ssociate | es        |             |          |           |                    |       |          |      |
|----------------------------|-----------------------|----------|-----------|-------------|----------|-----------|--------------------|-------|----------|------|
| Sample ID MB-38263         | SampT                 | Гуре: МЕ | BLK       | Tes         | tCode: E | PA Method | 8021B: Vola        | tiles |          |      |
| Client ID: PBS             | Batcl                 | h ID: 38 | 263       | F           | unNo: 5  | 1480      |                    |       |          |      |
| Prep Date: 5/22/2018       | Analysis D            | Date: 5/ | 23/2018   | S           | SeqNo: 1 | 676739    | Units: <b>mg/k</b> | ٢g    |          |      |
| Analyte                    | Result                | PQL      | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit          | %RPD  | RPDLimit | Qual |
| Benzene                    | ND                    | 0.025    |           |             |          |           |                    |       |          |      |
| Toluene                    | ND                    | 0.050    |           |             |          |           |                    |       |          |      |
| Ethylbenzene               | ND                    | 0.050    |           |             |          |           |                    |       |          |      |
| Xylenes, Total             | ND                    | 0.10     |           |             |          |           |                    |       |          |      |
| Surr: 4-Bromofluorobenzene | 1.0                   |          | 1.000     |             | 102      | 80        | 120                |       |          |      |
| Sample ID LCS-38263        | SampT                 | Type: LC | s         | Tes         | tCode: E | PA Method | 8021B: Vola        | tiles |          |      |
| Client ID: LCSS            | Batcl                 | h ID: 38 | 263       | F           | lunNo: 5 | 1480      |                    |       |          |      |
| Prep Date: 5/22/2018       | Analysis E            | Date: 5/ | 23/2018   | S           | SeqNo: 1 | 676740    | Units: mg/k        | ٢g    |          |      |
| Analyte                    | Result                | PQL      | SPK value | SPK Ref Val | %REC     | LowLimit  | HighLimit          | %RPD  | RPDLimit | Qual |
| Benzene                    | 0.95                  | 0.025    | 1.000     | 0           | 94.8     | 77.3      | 128                |       |          |      |
| Toluene                    | 0.97                  | 0.050    | 1.000     | 0           | 97.0     | 79.2      | 125                |       |          |      |
| Ethylbenzene               | 0.95                  | 0.050    | 1.000     | 0           | 95.2     | 80.7      | 127                |       |          |      |
| Xylenes, Total             | 2.9                   | 0.10     | 3.000     | 0           | 97.7     | 81.6      | 129                |       |          |      |
| Surr: 4-Bromofluorobenzene | 1.0                   |          | 1.000     |             | 103      | 80        | 120                |       |          |      |

### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1805B66

01-Jun-18

WO#:

Released to Imaging: 11/6/2023 11:57:53 AM

| HALL<br>ENVIRON<br>ANALYSI<br>LABORAT    |                                                                                                                | TEL: 505-345                                                                                                                                                                                                                       | ntal Analysis Lab<br>4901 Haw<br>Albuquerque, NM<br>3975 FAX: 505-34<br>w.hallenvironmen | kins NE<br>(87109 Sai<br>(5-4107 | mple Log-In Check List            |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|
| Client Name: SM                          | A-CARLSBAD                                                                                                     | Work Order Num                                                                                                                                                                                                                     | ber: 1805B66                                                                             |                                  | RoptNo: 1                         |
| Received By: E                           | rin Melendrez                                                                                                  | 5/22/2018 10:05:00                                                                                                                                                                                                                 | AM                                                                                       | Ma                               | 5                                 |
| Completed By: M                          | ichelle Garcia                                                                                                 | 5/22/2018 11:00:13                                                                                                                                                                                                                 | 3 AM                                                                                     | minus (                          | (Durine)                          |
| Reviewed By:                             | IND                                                                                                            | 5 22/18                                                                                                                                                                                                                            |                                                                                          |                                  | <i>p</i>                          |
| LB: ENN                                  | 1                                                                                                              |                                                                                                                                                                                                                                    |                                                                                          |                                  |                                   |
| Chain of Custod                          |                                                                                                                |                                                                                                                                                                                                                                    |                                                                                          |                                  |                                   |
| 1 Is Chain of Custo                      |                                                                                                                |                                                                                                                                                                                                                                    | Yes 🖌                                                                                    | No 🗌                             | Not Present                       |
| 2. How was the sam                       |                                                                                                                |                                                                                                                                                                                                                                    | Courier                                                                                  |                                  |                                   |
| ••• • • • • • • • • • • • • • • • • •    |                                                                                                                |                                                                                                                                                                                                                                    | Control                                                                                  |                                  |                                   |
| Log In                                   |                                                                                                                |                                                                                                                                                                                                                                    |                                                                                          |                                  |                                   |
| <ol><li>Was an attempt m</li></ol>       | ade to cool the sam                                                                                            | ples?                                                                                                                                                                                                                              | Yes 🗸                                                                                    | No 🗌                             | NA 🗌                              |
| 4. Were all samples                      | received at a temper                                                                                           | rature of ≥0° C to 6.0°C                                                                                                                                                                                                           | Yes 🔽                                                                                    | No 🗌                             | NA 🗌                              |
| 5. Sample(s) in prop                     | er container(s)?                                                                                               |                                                                                                                                                                                                                                    | Yes 🔽                                                                                    | No 🗌                             |                                   |
| 6. Sufficient sample v                   | volume for indicated                                                                                           | test(s)?                                                                                                                                                                                                                           | Yes 🔽                                                                                    | No 🗌                             |                                   |
| 7. Are samples (exce                     | pt VOA and ONG) p                                                                                              | roperly preserved?                                                                                                                                                                                                                 | Yes 🔽                                                                                    | No 🗆                             |                                   |
| 8. Was preservative a                    | added to bottles?                                                                                              |                                                                                                                                                                                                                                    | Yes 🗌                                                                                    | No 🗹                             | NA 🗌                              |
| 9. VOA vials have ze                     | ro headspace?                                                                                                  |                                                                                                                                                                                                                                    | Yes 🗌                                                                                    | No 🗌                             | No VOA Vials 🗹                    |
| 0. Were any sample                       | containers received                                                                                            | broken?                                                                                                                                                                                                                            | Үөв 🗆                                                                                    | No 🗸                             | 18                                |
|                                          |                                                                                                                |                                                                                                                                                                                                                                    |                                                                                          |                                  | # of preserved<br>bottles checked |
| 1. Does paperwork m                      |                                                                                                                |                                                                                                                                                                                                                                    | Yes 🗹                                                                                    | No 🗌                             |                                   |
| 2. Are matrices correl                   | s on chain of custod                                                                                           |                                                                                                                                                                                                                                    | Yes 🔽                                                                                    | No 🗆                             | Adjusted?                         |
| <ol> <li>Is it clear what ana</li> </ol> | Sterne an amanage of St                                                                                        | 1999 - 1997 - 1997 - 1997 - 1998 - 1998 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | Yes ⊻<br>Yes ⊻                                                                           |                                  | 15/                               |
| 4. Were all holding tin                  |                                                                                                                |                                                                                                                                                                                                                                    | Yes 🗹                                                                                    | No 🗌                             | Checked by:                       |
|                                          | ner for authorization.                                                                                         | )                                                                                                                                                                                                                                  | 1014 0001                                                                                |                                  | /                                 |
| pecial Handling                          | (if applicable)                                                                                                |                                                                                                                                                                                                                                    |                                                                                          | 10                               |                                   |
| 15. Was client notified                  |                                                                                                                | with this order?                                                                                                                                                                                                                   | Yes                                                                                      | No 🗌                             | NA 🔽                              |
|                                          |                                                                                                                |                                                                                                                                                                                                                                    |                                                                                          |                                  |                                   |
| Person Notif                             | lea;                                                                                                           | Date:                                                                                                                                                                                                                              | Second Second Second                                                                     | D                                |                                   |
| By Whom:<br>Regarding                    |                                                                                                                | Via;                                                                                                                                                                                                                               | 🗌 eMail 📋                                                                                | Phone 🔄 Fax                      | In Person                         |
| Client Instruc                           | tions:                                                                                                         |                                                                                                                                                                                                                                    |                                                                                          |                                  |                                   |
|                                          |                                                                                                                |                                                                                                                                                                                                                                    |                                                                                          |                                  |                                   |
| <ol> <li>Additional remark:</li> </ol>   | 5                                                                                                              |                                                                                                                                                                                                                                    |                                                                                          |                                  |                                   |
| 17. Cooler Informatio                    | the second s |                                                                                                                                                                                                                                    |                                                                                          |                                  |                                   |
| Cooler No Te<br>1 4.8                    | Good Condition                                                                                                 | Yes Seal Intact Seal No                                                                                                                                                                                                            | Seal Date                                                                                | Signed By                        |                                   |

Page 1 of 1

| ANALYSIS LABORATORY<br>www.hallenvironmental.com<br>kins NE - Albuquerque, NM 87109<br>45-3975 Fax 505-345-4107<br>Analysis Request | ۲۹۲۹۲۶ ۲۹۹۹<br>۱۹۹۹ (۲۹۹۹)<br>۱۹۹۹ (۲۹۹۹)<br>۱۹۹۹ (۲۹۹۹)<br>۱۹۹۹ (۲۰۹۸)<br>۱۹۹۹ (۲۰۹۲)<br>۱۹۹۹ (۲۰۹۲)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | ×          | ×          | ×      | ×      |           | Verified analysis + 12/1                                                |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|------------|--------|--------|-----------|-------------------------------------------------------------------------|
| Hawki<br>505-34                                                                                                                     | PH 80156 (GRO / DRO / MPO)<br>PH (Method 504.1)<br>GB (Method 504.1)<br>CPH's (8310 or 8270 SIMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | X          | X          | X      | X      |           | M Guard                                                                 |
| 4901<br>Tel.                                                                                                                        | SIEX + WIBE + ILH (Cas OUI))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | X          | X          | ~      | 1      |           | Remarks:                                                                |
| me:<br>me:<br>157<br>Toto                                                                                                           | Project Manager:<br>Hustin Wegant<br>Sampler: Headur Rahassn<br>On los: Syes DNo<br>Sample Temperature: U-3<br>Container Preservative HEAL No.<br>Type and # Type 1 on 21 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 'S         | 0          |        |        | 000       | Date Time Date Time                                                     |
| Distandard<br>Project Name:                                                                                                         | Project Manag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qt buy | Yor        | yor        | Qt buy | at bay | 201       | Received by:                                                            |
|                                                                                                                                     | <ul> <li>Level 4 (Full Validation)</li> <li>Sample Request ID</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21-2.5 | 1-27       |            | 1-17   | 2-51   | 13-1      | a for the                                                               |
| Client: SMA<br>Mailing Address:<br>Phone #:                                                                                         | ernail or Fax#:<br>QA/GC Package:<br>Astandard<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacreditation<br>Cacredi | 12:23  | 12:36 Soll | 12:45 So.1 |        |        | 1:00 21:1 | Time: Relification by Office by Define the Time: Relinquighted by Time: |
| Client:<br>Mailing A                                                                                                                | ermail or Fax#:<br>QA/QC Package<br>Astandard<br>Accreditation<br>DELAP<br>Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2/1X  | -          | 1          | 1      | -      |           | Pate;<br>M/K                                                            |



June 22, 2018

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

RE: Tonto

OrderNo.: 1806638

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 9 sample(s) on 6/12/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Lab Order 1806638

Date Reported: 6/22/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto |              | Client Sample ID: SW1<br>Collection Date: 6/7/2018 1:05:00 PM |                      |        |                      |       |  |  |  |  |  |
|-------------------------------------------------------|--------------|---------------------------------------------------------------|----------------------|--------|----------------------|-------|--|--|--|--|--|
| Lab ID: 1806638-001                                   | Matrix: SOIL |                                                               | <b>Received Date</b> | e: 6/1 | 2/2018 9:43:00 AM    |       |  |  |  |  |  |
| Analyses                                              | Result       | PQL                                                           | Qual Units           | DF     | Date Analyzed        | Batch |  |  |  |  |  |
| EPA METHOD 300.0: ANIONS                              |              |                                                               |                      |        | Analyst              | MRA   |  |  |  |  |  |
| Chloride                                              | 180          | 30                                                            | mg/Kg                | 20     | 6/18/2018 4:31:03 PM | 38725 |  |  |  |  |  |
| EPA METHOD 8015M/D: DIESEL RANGE                      | ORGANICS     |                                                               |                      |        | Analyst              | том   |  |  |  |  |  |
| Diesel Range Organics (DRO)                           | 60           | 10                                                            | mg/Kg                | 1      | 6/16/2018 5:02:56 AM | 38667 |  |  |  |  |  |
| Motor Oil Range Organics (MRO)                        | 61           | 50                                                            | mg/Kg                | 1      | 6/16/2018 5:02:56 AM | 38667 |  |  |  |  |  |
| Surr: DNOP                                            | 115          | 70-130                                                        | %Rec                 | 1      | 6/16/2018 5:02:56 AM | 38667 |  |  |  |  |  |
| EPA METHOD 8015D: GASOLINE RANGE                      | E            |                                                               |                      |        | Analyst              | NSB   |  |  |  |  |  |
| Gasoline Range Organics (GRO)                         | ND           | 4.8                                                           | mg/Kg                | 1      | 6/13/2018 2:45:19 PM | 38635 |  |  |  |  |  |
| Surr: BFB                                             | 87.1         | 15-316                                                        | %Rec                 | 1      | 6/13/2018 2:45:19 PM | 38635 |  |  |  |  |  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

| Qualifiers: | * |
|-------------|---|
|             |   |

- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

Value exceeds Maximum Contaminant Level.

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1806638

Date Reported: 6/22/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto | Client Sample ID: SW2<br>Collection Date: 6/7/2018 1:15:00 PM |                                            |            |    |                      |       |
|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|------------|----|----------------------|-------|
| Lab ID: 1806638-002                                   | Matrix: SOIL                                                  | <b>Received Date:</b> 6/12/2018 9:43:00 AM |            |    |                      |       |
| Analyses                                              | Result                                                        | PQL                                        | Qual Units | DF | Date Analyzed        | Batch |
| EPA METHOD 300.0: ANIONS                              |                                                               |                                            |            |    | Analyst              | MRA   |
| Chloride                                              | 610                                                           | 30                                         | mg/Kg      | 20 | 6/18/2018 5:08:16 PM | 38725 |
| EPA METHOD 8015M/D: DIESEL RANGE                      | ORGANICS                                                      |                                            |            |    | Analyst              | : том |
| Diesel Range Organics (DRO)                           | 110                                                           | 10                                         | mg/Kg      | 1  | 6/16/2018 5:51:29 AM | 38667 |
| Motor Oil Range Organics (MRO)                        | 210                                                           | 50                                         | mg/Kg      | 1  | 6/16/2018 5:51:29 AM | 38667 |
| Surr: DNOP                                            | 124                                                           | 70-130                                     | %Rec       | 1  | 6/16/2018 5:51:29 AM | 38667 |
| EPA METHOD 8015D: GASOLINE RANG                       | E                                                             |                                            |            |    | Analyst              | : NSB |
| Gasoline Range Organics (GRO)                         | ND                                                            | 4.7                                        | mg/Kg      | 1  | 6/13/2018 3:08:57 PM | 38635 |
| Surr: BFB                                             | 80.7                                                          | 15-316                                     | %Rec       | 1  | 6/13/2018 3:08:57 PM | 38635 |

| Q | ualifiers: | * |
|---|------------|---|
|   |            |   |

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1806638

Date Reported: 6/22/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto | Client Sample ID: SW3<br>Collection Date: 6/7/2018 1:20:00 PM |                                            |            |    |                      |       |
|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|------------|----|----------------------|-------|
| Lab ID: 1806638-003                                   | Matrix: SOIL                                                  | <b>Received Date:</b> 6/12/2018 9:43:00 AM |            |    |                      |       |
| Analyses                                              | Result                                                        | PQL                                        | Qual Units | DF | Date Analyzed        | Batch |
| EPA METHOD 300.0: ANIONS                              |                                                               |                                            |            |    | Analyst              | MRA   |
| Chloride                                              | 480                                                           | 30                                         | mg/Kg      | 20 | 6/18/2018 6:47:34 PM | 38733 |
| EPA METHOD 8015M/D: DIESEL RANGI                      | E ORGANICS                                                    |                                            |            |    | Analyst              | TOM   |
| Diesel Range Organics (DRO)                           | ND                                                            | 9.9                                        | mg/Kg      | 1  | 6/15/2018 1:26:54 AM | 38667 |
| Motor Oil Range Organics (MRO)                        | ND                                                            | 50                                         | mg/Kg      | 1  | 6/15/2018 1:26:54 AM | 38667 |
| Surr: DNOP                                            | 116                                                           | 70-130                                     | %Rec       | 1  | 6/15/2018 1:26:54 AM | 38667 |
| EPA METHOD 8015D: GASOLINE RANG                       | θE                                                            |                                            |            |    | Analyst              | : NSB |
| Gasoline Range Organics (GRO)                         | ND                                                            | 4.8                                        | mg/Kg      | 1  | 6/13/2018 3:32:39 PM | 38635 |
| Surr: BFB                                             | 79.9                                                          | 15-316                                     | %Rec       | 1  | 6/13/2018 3:32:39 PM | 38635 |

| Qualifiers: | * |
|-------------|---|
|-------------|---|

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 3 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

**Analytical Report** Lab Order 1806638

Date Reported: 6/22/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto | Client Sample ID: SW4<br>Collection Date: 6/7/2018 1:25:00 PM |                                            |            |    |                      |       |
|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|------------|----|----------------------|-------|
| Lab ID: 1806638-004                                   | Matrix: SOIL                                                  | <b>Received Date:</b> 6/12/2018 9:43:00 AM |            |    |                      |       |
| Analyses                                              | Result                                                        | PQL                                        | Qual Units | DF | Date Analyzed        | Batch |
| EPA METHOD 300.0: ANIONS                              |                                                               |                                            |            |    | Analyst              | MRA   |
| Chloride                                              | 57                                                            | 30                                         | mg/Kg      | 20 | 6/18/2018 6:59:58 PM | 38733 |
| EPA METHOD 8015M/D: DIESEL RANGE                      | ORGANICS                                                      |                                            |            |    | Analyst              | том   |
| Diesel Range Organics (DRO)                           | 550                                                           | 9.3                                        | mg/Kg      | 1  | 6/18/2018 5:05:12 PM | 38685 |
| Motor Oil Range Organics (MRO)                        | 390                                                           | 47                                         | mg/Kg      | 1  | 6/18/2018 5:05:12 PM | 38685 |
| Surr: DNOP                                            | 108                                                           | 70-130                                     | %Rec       | 1  | 6/18/2018 5:05:12 PM | 38685 |
| EPA METHOD 8015D: GASOLINE RANGE                      | i i                                                           |                                            |            |    | Analyst              | : NSB |
| Gasoline Range Organics (GRO)                         | ND                                                            | 4.9                                        | mg/Kg      | 1  | 6/14/2018 9:56:52 AM | 38669 |
| Surr: BFB                                             | 91.6                                                          | 15-316                                     | %Rec       | 1  | 6/14/2018 9:56:52 AM | 38669 |

| Qualifiers: | * |
|-------------|---|
|-------------|---|

- Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 4 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

**Analytical Report** Lab Order 1806638

Date Reported: 6/22/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto | Client Sample ID: SW5<br>Collection Date: 6/7/2018 1:35:00 PM |                                            |            |    |                       |       |
|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|------------|----|-----------------------|-------|
| Lab ID: 1806638-005                                   | Matrix: SOIL                                                  | <b>Received Date:</b> 6/12/2018 9:43:00 AM |            |    |                       |       |
| Analyses                                              | Result                                                        | PQL                                        | Qual Units | DF | Date Analyzed         | Batch |
| EPA METHOD 300.0: ANIONS                              |                                                               |                                            |            |    | Analyst               | MRA   |
| Chloride                                              | 120                                                           | 30                                         | mg/Kg      | 20 | 6/18/2018 7:37:11 PM  | 38733 |
| EPA METHOD 8015M/D: DIESEL RANGE                      | ORGANICS                                                      |                                            |            |    | Analyst               | том   |
| Diesel Range Organics (DRO)                           | 160                                                           | 9.9                                        | mg/Kg      | 1  | 6/18/2018 5:49:29 PM  | 38685 |
| Motor Oil Range Organics (MRO)                        | 350                                                           | 49                                         | mg/Kg      | 1  | 6/18/2018 5:49:29 PM  | 38685 |
| Surr: DNOP                                            | 107                                                           | 70-130                                     | %Rec       | 1  | 6/18/2018 5:49:29 PM  | 38685 |
| EPA METHOD 8015D: GASOLINE RANG                       | E                                                             |                                            |            |    | Analyst               | : NSB |
| Gasoline Range Organics (GRO)                         | ND                                                            | 4.7                                        | mg/Kg      | 1  | 6/14/2018 12:17:20 PM | 38669 |
| Surr: BFB                                             | 88.5                                                          | 15-316                                     | %Rec       | 1  | 6/14/2018 12:17:20 PM | 38669 |

| Qualifiers: | * |
|-------------|---|
|-------------|---|

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 5 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1806638

Date Reported: 6/22/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto | Client Sample ID: SW6<br>Collection Date: 6/7/2018 1:40:00 PM |                                     |            |    |                       |         |  |
|-------------------------------------------------------|---------------------------------------------------------------|-------------------------------------|------------|----|-----------------------|---------|--|
| Lab ID: 1806638-006                                   | Matrix: SOIL                                                  | Received Date: 6/12/2018 9:43:00 AM |            |    |                       |         |  |
| Analyses                                              | Result                                                        | PQL                                 | Qual Units | DF | Date Analyzed         | Batch   |  |
| EPA METHOD 300.0: ANIONS                              |                                                               |                                     |            |    | Analys                | t: MRA  |  |
| Chloride                                              | 1200                                                          | 75                                  | mg/Kg      | 50 | 6/20/2018 5:28:55 AM  | 38733   |  |
| EPA METHOD 8015M/D: DIESEL RANG                       | GE ORGANICS                                                   |                                     |            |    | Analys                | t: TOM  |  |
| Diesel Range Organics (DRO)                           | 35                                                            | 9.6                                 | mg/Kg      | 1  | 6/18/2018 6:34:24 PM  | 38685   |  |
| Motor Oil Range Organics (MRO)                        | 60                                                            | 48                                  | mg/Kg      | 1  | 6/18/2018 6:34:24 PM  | 38685   |  |
| Surr: DNOP                                            | 85.0                                                          | 70-130                              | %Rec       | 1  | 6/18/2018 6:34:24 PM  | 38685   |  |
| EPA METHOD 8015D: GASOLINE RAN                        | IGE                                                           |                                     |            |    | Analys                | t: NSB  |  |
| Gasoline Range Organics (GRO)                         | ND                                                            | 4.8                                 | mg/Kg      | 1  | 6/14/2018 12:40:50 PM | 1 38669 |  |
| Surr: BFB                                             | 83.8                                                          | 15-316                              | %Rec       | 1  | 6/14/2018 12:40:50 PM | 1 38669 |  |

| Qualifiers: | k |
|-------------|---|
|-------------|---|

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 6 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Lab Order 1806638

Date Reported: 6/22/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto | Client Sample ID: SW7<br>Collection Date: 6/7/2018 1:45:00 PM |                                     |            |    |                      |       |  |
|-------------------------------------------------------|---------------------------------------------------------------|-------------------------------------|------------|----|----------------------|-------|--|
| Lab ID: 1806638-007                                   | Matrix: SOIL                                                  | Received Date: 6/12/2018 9:43:00 AM |            |    |                      |       |  |
| Analyses                                              | Result                                                        | PQL                                 | Qual Units | DF | Date Analyzed        | Batch |  |
| EPA METHOD 300.0: ANIONS                              |                                                               |                                     |            |    | Analysi              | : MRA |  |
| Chloride                                              | 380                                                           | 30                                  | mg/Kg      | 20 | 6/18/2018 8:02:00 PM | 38733 |  |
| EPA METHOD 8015M/D: DIESEL RANG                       | E ORGANICS                                                    |                                     |            |    | Analyst              | TOM   |  |
| Diesel Range Organics (DRO)                           | 20                                                            | 9.4                                 | mg/Kg      | 1  | 6/18/2018 7:18:45 PM | 38685 |  |
| Motor Oil Range Organics (MRO)                        | ND                                                            | 47                                  | mg/Kg      | 1  | 6/18/2018 7:18:45 PM | 38685 |  |
| Surr: DNOP                                            | 89.4                                                          | 70-130                              | %Rec       | 1  | 6/18/2018 7:18:45 PM | 38685 |  |
| EPA METHOD 8015D: GASOLINE RANG                       | <b>GE</b>                                                     |                                     |            |    | Analyst              | : NSB |  |
| Gasoline Range Organics (GRO)                         | ND                                                            | 4.8                                 | mg/Kg      | 1  | 6/14/2018 1:04:21 PM | 38669 |  |
| Surr: BFB                                             | 85.3                                                          | 15-316                              | %Rec       | 1  | 6/14/2018 1:04:21 PM | 38669 |  |

| Qualifiers: | * |
|-------------|---|
|-------------|---|

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 7 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Lab Order 1806638

Date Reported: 6/22/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto | Client Sample ID: L2-1.5<br>Collection Date: 6/7/2018 2:00:00 PM |        |        |       |    |                      |       |
|-------------------------------------------------------|------------------------------------------------------------------|--------|--------|-------|----|----------------------|-------|
| Lab ID: 1806638-008                                   | Matrix: SOLID         Received Date: 6/12/2018 9:43:00 AM        |        |        |       |    |                      |       |
| Analyses                                              | Result                                                           | PQL    | Qual U | Units | DF | Date Analyzed        | Batch |
| EPA METHOD 300.0: ANIONS                              |                                                                  |        |        |       |    | Analyst              | MRA   |
| Chloride                                              | 770                                                              | 30     | r      | ng/Kg | 20 | 6/18/2018 8:14:25 PM | 38733 |
| EPA METHOD 8015M/D: DIESEL RANGE                      | ORGANICS                                                         |        |        |       |    | Analyst              | TOM   |
| Diesel Range Organics (DRO)                           | 500                                                              | 9.4    | r      | ng/Kg | 1  | 6/18/2018 8:03:06 PM | 38685 |
| Motor Oil Range Organics (MRO)                        | 420                                                              | 47     | r      | ng/Kg | 1  | 6/18/2018 8:03:06 PM | 38685 |
| Surr: DNOP                                            | 85.1                                                             | 70-130 | Q      | %Rec  | 1  | 6/18/2018 8:03:06 PM | 38685 |
| EPA METHOD 8015D: GASOLINE RANGI                      | E                                                                |        |        |       |    | Analyst              | NSB   |
| Gasoline Range Organics (GRO)                         | ND                                                               | 4.8    | r      | ng/Kg | 1  | 6/14/2018 1:27:53 PM | 38669 |
| Surr: BFB                                             | 92.5                                                             | 15-316 | Q      | %Rec  | 1  | 6/14/2018 1:27:53 PM | 38669 |

| Qualifiers: | k |
|-------------|---|
|-------------|---|

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 8 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Surr: BFB

**Analytical Report** 

Lab Order 1806638

| Date Reported: 6 | 5/22/2018 |
|------------------|-----------|
|------------------|-----------|

6/14/2018 1:51:29 PM

38669

| CLIENT: Souder, Miller & Associates   | Client Sample ID: L3-1.5                                                                                 |        |            |    |                      |       |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|--------|------------|----|----------------------|-------|--|
| Project: Tonto<br>Lab ID: 1806638-009 | Collection Date: 6/7/2018 2:15:00 PM           Matrix: SOLID         Received Date: 6/12/2018 9:43:00 AM |        |            |    |                      |       |  |
| Analyses                              | Result                                                                                                   | PQL    | Qual Units | DF | Date Analyzed        | Batch |  |
| EPA METHOD 300.0: ANIONS              |                                                                                                          |        |            |    | Analyst              | MRA   |  |
| Chloride                              | 1900                                                                                                     | 75     | mg/Kg      | 50 | 6/20/2018 6:06:09 AM | 38733 |  |
| EPA METHOD 8015M/D: DIESEL RANGE      | ORGANICS                                                                                                 |        |            |    | Analyst              | : том |  |
| Diesel Range Organics (DRO)           | 680                                                                                                      | 9.7    | mg/Kg      | 1  | 6/18/2018 8:47:31 PM | 38685 |  |
| Motor Oil Range Organics (MRO)        | 640                                                                                                      | 48     | mg/Kg      | 1  | 6/18/2018 8:47:31 PM | 38685 |  |
| Surr: DNOP                            | 94.9                                                                                                     | 70-130 | %Rec       | 1  | 6/18/2018 8:47:31 PM | 38685 |  |
| EPA METHOD 8015D: GASOLINE RANG       | E                                                                                                        |        |            |    | Analyst              | : NSB |  |
| Gasoline Range Organics (GRO)         | 5.2                                                                                                      | 4.9    | mg/Kg      | 1  | 6/14/2018 1:51:29 PM | 38669 |  |

142

15-316

%Rec

1

| Qualifiers: | * |
|-------------|---|
|-------------|---|

- Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix D
- Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 9 of 14 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

| Client:<br>Project: | Souder, I<br>Tonto | Miller & Associate  | es        |                                    |          |              |              |      |          |      |  |  |  |  |
|---------------------|--------------------|---------------------|-----------|------------------------------------|----------|--------------|--------------|------|----------|------|--|--|--|--|
| Sample ID           | MB-38725           | SampType: ME        | SI K      | Test                               | Code: FP | PA Method    | 300.0: Anion | s    |          |      |  |  |  |  |
| Client ID:          |                    | Batch ID: 38        |           |                                    | unNo: 52 |              |              |      |          |      |  |  |  |  |
| Prep Date:          | 6/18/2018          | Analysis Date: 6/   | -         |                                    | eqNo: 17 |              | Units: mg/K  | a    |          |      |  |  |  |  |
|                     | 0/10/2010          |                     |           |                                    | ·        |              | •            | •    |          |      |  |  |  |  |
| Analyte             |                    | Result PQL          | SPK value | SPK Ref Val                        | %REC     | LowLimit     | HighLimit    | %RPD | RPDLimit | Qual |  |  |  |  |
| Chloride            |                    | ND 1.5              |           |                                    |          |              |              |      |          |      |  |  |  |  |
| Sample ID           | LCS-38725          | SampType: LC        | S         | TestCode: EPA Method 300.0: Anions |          |              |              |      |          |      |  |  |  |  |
| Client ID:          | LCSS               | Batch ID: 38        | 725       | RunNo: <b>52050</b>                |          |              |              |      |          |      |  |  |  |  |
| Prep Date:          | 6/18/2018          | Analysis Date: 6/   | S         | eqNo: 17                           | 03854    | Units: mg/Kg |              |      |          |      |  |  |  |  |
| Analyte             |                    | Result PQL          | SPK value | SPK Ref Val                        | %REC     | LowLimit     | HighLimit    | %RPD | RPDLimit | Qual |  |  |  |  |
| Chloride            |                    | 14 1.5              | 15.00     | 0                                  | 94.0     | 90           | 110          |      |          |      |  |  |  |  |
| Sample ID           | MB-38733           | SampType: <b>ME</b> | BLK       | Test                               | Code: EP | A Method     | 300.0: Anion | s    |          |      |  |  |  |  |
| Client ID:          | PBS                | Batch ID: 38        | 733       | R                                  | unNo: 52 | 2050         |              |      |          |      |  |  |  |  |
| Prep Date:          | 6/18/2018          | Analysis Date: 6/   | 18/2018   | S                                  | eqNo: 17 | 03885        | Units: mg/Kg |      |          |      |  |  |  |  |
| Analyte             |                    | Result PQL          | SPK value | SPK Ref Val                        | %REC     | LowLimit     | HighLimit    | %RPD | RPDLimit | Qual |  |  |  |  |
| Chloride            |                    | ND 1.5              |           |                                    |          |              |              |      |          |      |  |  |  |  |
| Sample ID           | LCS-38733          | SampType: LC        | S         | Test                               | Code: EP | A Method     | 300.0: Anion | s    |          |      |  |  |  |  |
| Client ID:          | LCSS               | Batch ID: 38        | 733       | R                                  | unNo: 52 | 2050         |              |      |          |      |  |  |  |  |
| Prep Date:          | 6/18/2018          | Analysis Date: 6/   | 18/2018   | S                                  | eqNo: 17 | 03886        | Units: mg/K  | g    |          |      |  |  |  |  |
| Analyte             |                    | Result PQL          | SPK value | SPK Ref Val                        | %REC     | LowLimit     | HighLimit    | %RPD | RPDLimit | Qual |  |  |  |  |
| Chloride            |                    | 14 1.5              | 15.00     | 0                                  | 94.9     | 90           | 110          |      |          |      |  |  |  |  |

### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1806638

22-Jun-18

WO#:

Page 10 of 14

| Client: Souder, Project: Tonto | Miller & Associates      |                                                     |                                |  |  |  |  |  |  |  |
|--------------------------------|--------------------------|-----------------------------------------------------|--------------------------------|--|--|--|--|--|--|--|
| •                              |                          |                                                     |                                |  |  |  |  |  |  |  |
| Sample ID LCS-38667            | SampType: LCS            |                                                     | 8015M/D: Diesel Range Organics |  |  |  |  |  |  |  |
| Client ID: LCSS                | Batch ID: 38667          | RunNo: <b>51922</b>                                 |                                |  |  |  |  |  |  |  |
| Prep Date: 6/13/2018           | Analysis Date: 6/14/2018 | SeqNo: 1700099                                      | Units: <b>mg/Kg</b>            |  |  |  |  |  |  |  |
| Analyte                        |                          | SPK Ref Val %REC LowLimit                           | HighLimit %RPD RPDLimit Qual   |  |  |  |  |  |  |  |
| Diesel Range Organics (DRO)    | 48 10 50.00              | 0 96.2 70                                           | 130                            |  |  |  |  |  |  |  |
| Surr: DNOP                     | 4.9 5.000                | 97.7 70                                             | 130                            |  |  |  |  |  |  |  |
| Sample ID MB-38667             | SampType: MBLK           | TestCode: EPA Method                                | 8015M/D: Diesel Range Organics |  |  |  |  |  |  |  |
| Client ID: PBS                 | Batch ID: 38667          | RunNo: 51922                                        |                                |  |  |  |  |  |  |  |
| Prep Date: 6/13/2018           | Analysis Date: 6/14/2018 | SeqNo: 1700100                                      | Units: mg/Kg                   |  |  |  |  |  |  |  |
| Analyte                        | Result PQL SPK value     | SPK Ref Val %REC LowLimit                           | HighLimit %RPD RPDLimit Qual   |  |  |  |  |  |  |  |
| Diesel Range Organics (DRO)    | ND 10                    |                                                     |                                |  |  |  |  |  |  |  |
| Motor Oil Range Organics (MRO) | ND 50                    |                                                     |                                |  |  |  |  |  |  |  |
| Surr: DNOP                     | 11 10.00                 | 108 70                                              | 130                            |  |  |  |  |  |  |  |
| Sample ID LCS-38685            | SampType: LCS            | TestCode: EPA Method                                | 8015M/D: Diesel Range Organics |  |  |  |  |  |  |  |
| Client ID: LCSS                | Batch ID: 38685          | RunNo: 52007                                        |                                |  |  |  |  |  |  |  |
| Prep Date: 6/14/2018           | Analysis Date: 6/15/2018 | SeqNo: 1701649                                      | Units: mg/Kg                   |  |  |  |  |  |  |  |
| Analyte                        | Result PQL SPK value     | SPK Ref Val %REC LowLimit                           | HighLimit %RPD RPDLimit Qual   |  |  |  |  |  |  |  |
| Diesel Range Organics (DRO)    | 46 10 50.00              | 0 92.4 70                                           | 130                            |  |  |  |  |  |  |  |
| Surr: DNOP                     | 4.9 5.000                | 98.4 70                                             | 130                            |  |  |  |  |  |  |  |
| Sample ID MB-38685             | SampType: MBLK           | TestCode: EPA Method 8015M/D: Diesel Range Organics |                                |  |  |  |  |  |  |  |
| Client ID: PBS                 | Batch ID: 38685          | RunNo: 52007                                        |                                |  |  |  |  |  |  |  |
| Prep Date: 6/14/2018           | Analysis Date: 6/15/2018 | SeqNo: 1701650                                      | Units: mg/Kg                   |  |  |  |  |  |  |  |
| Analyte                        | Result PQL SPK value     | SPK Ref Val %REC LowLimit                           | HighLimit %RPD RPDLimit Qual   |  |  |  |  |  |  |  |
| Diesel Range Organics (DRO)    | ND 10                    |                                                     |                                |  |  |  |  |  |  |  |
| Motor Oil Range Organics (MRO) | ND 50                    |                                                     |                                |  |  |  |  |  |  |  |
| Surr: DNOP                     | 9.9 10.00                | 99.1 70                                             | 130                            |  |  |  |  |  |  |  |
| Sample ID LCS-38702            | SampType: LCS            | TestCode: EPA Method                                | 8015M/D: Diesel Range Organics |  |  |  |  |  |  |  |
| Client ID: LCSS                | Batch ID: 38702          | RunNo: 52041                                        |                                |  |  |  |  |  |  |  |
| Prep Date: 6/15/2018           | Analysis Date: 6/18/2018 | SeqNo: 1702706                                      | Units: %Rec                    |  |  |  |  |  |  |  |
|                                |                          |                                                     |                                |  |  |  |  |  |  |  |
| Analyte                        | Result PQL SPK value     | SPK Ref Val %REC LowLimit                           | HighLimit %RPD RPDLimit Qual   |  |  |  |  |  |  |  |

### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1806638

22-Jun-18

WO#:

Page 11 of 14

| Client:    | Souder, Miller & Associates |            |        |           |             |           |           |              |            |            |      |  |  |  |
|------------|-----------------------------|------------|--------|-----------|-------------|-----------|-----------|--------------|------------|------------|------|--|--|--|
| Project:   | Tonto                       |            |        |           |             |           |           |              |            |            |      |  |  |  |
| Sample ID  | MB-38702                    | SampT      | уре: М | BLK       | Tes         | tCode: El | PA Method | 8015M/D: Die | esel Range | e Organics |      |  |  |  |
| Client ID: | PBS                         | Batch      | ID: 38 | 3702      | R           | RunNo: 5  | 2041      |              |            |            |      |  |  |  |
| Prep Date: | 6/15/2018                   | Analysis D | ate: 6 | /18/2018  | S           | SeqNo: 1  | 702707    | Units: %Red  | •          |            |      |  |  |  |
| Analyte    |                             | Result     | PQL    | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit    | %RPD       | RPDLimit   | Qual |  |  |  |
| Surr: DNOP |                             | 10         |        | 10.00     |             | 102       | 70        | 130          |            |            |      |  |  |  |

### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1806638

22-Jun-18

WO#:

Page 12 of 14

| Client:                    | Souder, N        | Ailler & Assoc | ciates       |                                                            |           |           |                    |            |          |      |  |  |  |  |  |  |
|----------------------------|------------------|----------------|--------------|------------------------------------------------------------|-----------|-----------|--------------------|------------|----------|------|--|--|--|--|--|--|
| Project:                   | Tonto            |                |              |                                                            |           |           |                    |            |          |      |  |  |  |  |  |  |
| O a marke JD               | ND 00005         | 0T             |              | <b></b>                                                    |           |           | 00150 0            |            |          |      |  |  |  |  |  |  |
|                            | MB-38635         | SampType:      |              | TestCode: EPA Method 8015D: Gasoline Range<br>RunNo: 51956 |           |           |                    |            |          |      |  |  |  |  |  |  |
| Client ID:                 | -                | Batch ID:      |              |                                                            |           |           | linite. menuli     |            |          |      |  |  |  |  |  |  |
| Prep Date:                 | 6/12/2018        | Analysis Date: | 6/13/2018    | 2                                                          | SeqNo: 16 | 98126     | Units: mg/k        | g          |          |      |  |  |  |  |  |  |
| Analyte                    |                  |                | QL SPK value | SPK Ref Val                                                | %REC      | LowLimit  | HighLimit          | %RPD       | RPDLimit | Qual |  |  |  |  |  |  |
| Gasoline Rang<br>Surr: BFB | e Organics (GRO) | ND<br>890      | 5.0 1000     |                                                            | 88.8      | 15        | 316                |            |          |      |  |  |  |  |  |  |
| Sample ID                  | LCS-38635        | SampType:      | LCS          | Tes                                                        | tCode: EF | PA Method | 8015D: Gaso        | oline Rang | e        |      |  |  |  |  |  |  |
| Client ID:                 | LCSS             | Batch ID:      | 38635        | F                                                          | RunNo: 51 | 1956      |                    |            |          |      |  |  |  |  |  |  |
| Prep Date:                 | 6/12/2018        | Analysis Date: | 6/13/2018    | 5                                                          | SeqNo: 16 | 698127    | Units: <b>mg/k</b> | ٢g         |          |      |  |  |  |  |  |  |
| Analyte                    |                  | Result PC      | QL SPK value | SPK Ref Val                                                | %REC      | LowLimit  | HighLimit          | %RPD       | RPDLimit | Qual |  |  |  |  |  |  |
|                            | e Organics (GRO) |                | 5.0 25.00    | 0                                                          | 110       | 75.9      | 131                |            |          |      |  |  |  |  |  |  |
| Surr: BFB                  |                  | 980            | 1000         |                                                            | 97.6      | 15        | 316                |            |          |      |  |  |  |  |  |  |
| Sample ID                  | MB-38669         | SampType:      | MBLK         | Tes                                                        | tCode: EF | PA Method | 8015D: Gaso        | oline Rang | e        |      |  |  |  |  |  |  |
| Client ID:                 | PBS              | Batch ID:      | 38669        | F                                                          | RunNo: 51 | 1984      |                    |            |          |      |  |  |  |  |  |  |
| Prep Date:                 | 6/13/2018        | Analysis Date: | 6/14/2018    | 5                                                          | SeqNo: 17 | 700018    | Units: <b>mg/k</b> | ٢g         |          |      |  |  |  |  |  |  |
| Analyte                    |                  | Result PC      | QL SPK value | SPK Ref Val                                                | %REC      | LowLimit  | HighLimit          | %RPD       | RPDLimit | Qual |  |  |  |  |  |  |
| Gasoline Rang<br>Surr: BFB | e Organics (GRO) | ND<br>870      | 5.0<br>1000  |                                                            | 86.8      | 15        | 316                |            |          |      |  |  |  |  |  |  |
| Sample ID                  | LCS-38669        | SampType:      | LCS          | Tes                                                        | tCode: EF | PA Method | 8015D: Gaso        | oline Rang | e        |      |  |  |  |  |  |  |
| Client ID:                 | LCSS             | Batch ID:      | 38669        | F                                                          | RunNo: 51 | 1984      |                    |            |          |      |  |  |  |  |  |  |
| Prep Date:                 | 6/13/2018        | Analysis Date: | 6/14/2018    | 5                                                          | SeqNo: 17 | 700019    | Units: mg/k        | ٢g         |          |      |  |  |  |  |  |  |
| Analyte                    |                  | Result PC      | QL SPK value | SPK Ref Val                                                | %REC      | LowLimit  | HighLimit          | %RPD       | RPDLimit | Qual |  |  |  |  |  |  |
| Gasoline Rang              | e Organics (GRO) | 28             | 5.0 25.00    | 0                                                          | 112       | 75.9      | 131                |            |          |      |  |  |  |  |  |  |
| Surr: BFB                  |                  | 1000           | 1000         |                                                            | 101       | 15        | 316                |            |          |      |  |  |  |  |  |  |
| Sample ID                  | 1806638-004AMS   | SampType:      | MS           | Tes                                                        | tCode: EF | PA Method | 8015D: Gaso        | oline Rang | e        |      |  |  |  |  |  |  |
| Client ID:                 | SW4              | Batch ID:      | 38669        | F                                                          | RunNo: 51 | 1984      |                    |            |          |      |  |  |  |  |  |  |
| Prep Date:                 | 6/13/2018        | Analysis Date: | 6/14/2018    | 5                                                          | SeqNo: 17 | 700021    | Units: mg/k        | ٢g         |          |      |  |  |  |  |  |  |
| Analyte                    |                  | Result PC      | QL SPK value | SPK Ref Val                                                | %REC      | LowLimit  | HighLimit          | %RPD       | RPDLimit | Qual |  |  |  |  |  |  |
| Gasoline Rang              | e Organics (GRO) | 30             | 5.0 24.85    | 0                                                          | 119       | 77.8      | 128                |            |          |      |  |  |  |  |  |  |
| Surr: BFB                  |                  | 1000           | 994.0        |                                                            | 102       | 15        | 316                |            |          |      |  |  |  |  |  |  |
| Sample ID                  | 1806638-004AMSI  | D SampType:    | MSD          | Tes                                                        | tCode: EF | PA Method | 8015D: Gaso        | oline Rang | e        |      |  |  |  |  |  |  |
| Client ID:                 | SW4              | Batch ID:      | 38669        | F                                                          | RunNo: 51 | 1984      |                    | -          |          |      |  |  |  |  |  |  |
| Prep Date:                 | 6/13/2018        | Analysis Date: | 6/14/2018    | S                                                          | SeqNo: 17 | 700022    | Units: mg/k        | ٢g         |          |      |  |  |  |  |  |  |
| Analyte                    |                  | Result PC      | QL SPK value | SPK Ref Val                                                | %REC      | LowLimit  | HighLimit          | %RPD       | RPDLimit | Qual |  |  |  |  |  |  |
|                            |                  |                |              |                                                            |           |           |                    |            |          |      |  |  |  |  |  |  |

### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1806638

22-Jun-18

WO#:

Page 13 of 14

| Released to Imaging: 11/6/2023 11:57:53 AM |  |
|--------------------------------------------|--|
|--------------------------------------------|--|

| Client:              | Souder, N        | filler & As | sociate          | es        |             |           |           |                    |            |          |      |
|----------------------|------------------|-------------|------------------|-----------|-------------|-----------|-----------|--------------------|------------|----------|------|
| Project:             | Tonto            |             |                  |           |             |           |           |                    |            |          |      |
| Sample ID            | 1806638-004AMSE  | SampT       | /pe: <b>M</b> \$ | SD        | Tes         | tCode: El | PA Method | 8015D: Gaso        | oline Rang | e        |      |
| Client ID:           | SW4              | Batch       | ID: 38           | 669       | F           | RunNo: 5  | 1984      |                    |            |          |      |
| Prep Date: 6/13/2018 |                  | Analysis D  | ate: 6/          | 14/2018   | S           | SeqNo: 1  | 700022    | Units: <b>mg/k</b> | ٢g         |          |      |
| Analyte              |                  | Result      | PQL              | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD       | RPDLimit | Qual |
| Gasoline Rang        | e Organics (GRO) | 26          | 5.0              | 24.95     | 0           | 103       | 77.8      | 128                | 13.5       | 20       |      |
| Surr: BFB            |                  | 1100        |                  | 998.0     |             | 107       | 15        | 316                | 0          | 0        |      |

### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1806638

22-Jun-18

WO#:

.

| HALL<br>ENVIRONMENTAL<br>ANALYSIS<br>LABORATORY                                          | TEL: 505-345-3                                                   | ntal Analysis Labord<br>4901 Hawkin<br>Albuquerque, NM 8<br>1975 FAX: 505-345<br>v.hallenvironmental | ns NE<br>7109 <b>San</b><br>4107 | nple Log-In Ch             | ieck List        |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|------------------|
| Client Name: SMA-CARLSBAD                                                                | Work Order Num                                                   | ber: 1806638                                                                                         |                                  | RcptNo:                    | 1                |
| Received By: Erin Melendrez<br>Completed By: Erin Melendrez<br>Reviewed By:<br>CB:CO[]]] | 6/12/2018 9:43:00↓<br>6/12/2018 10:06:28<br>○ 𝒴 \ [ Ə \ \ S<br>& |                                                                                                      | IL NA<br>IL NA                   | 7                          |                  |
| Chain of Custody                                                                         |                                                                  |                                                                                                      |                                  |                            |                  |
| 1. Is Chain of Custody complete?                                                         |                                                                  | Yes 🔽                                                                                                | No 🗌                             | Not Present                |                  |
| 2. How was the sample delivered?                                                         |                                                                  | Courier                                                                                              |                                  |                            |                  |
| Log In<br>3. Was an attempt made to cool the sar                                         | nples?                                                           | Yes 🗹                                                                                                | No 🗌                             | NA 🗆                       |                  |
| 4. Were all samples received at a tempe                                                  | erature of >0" C to 6.0°C                                        | Yes 🔽                                                                                                | No 🗌                             | NA 🗌                       |                  |
| 5. Sample(s) in proper container(s)?                                                     |                                                                  | Yes 🗹                                                                                                | No 🗌                             |                            |                  |
| 6. Sufficient sample volume for indicated                                                | test(s)?                                                         | Yes 🗹                                                                                                | No 🗌                             |                            |                  |
| 7. Are samples (except VOA and ONG)                                                      | properly preserved?                                              | Yes 🗹                                                                                                | No 🗌                             |                            |                  |
| 8. Was preservative added to bottles?                                                    |                                                                  | Yes 🗍                                                                                                | No 🗹                             | NA 🗆                       | Xid              |
| 9. VOA vials have zero headspace?                                                        |                                                                  | Yes                                                                                                  | No 🗌                             | No VOA Vials 🗹             |                  |
| 10. Were any sample containers received                                                  | broken?                                                          | Yes 🗌                                                                                                | No 🗹 🛛                           | # of preserved             |                  |
| 11. Does paperwork match bottle labels?<br>(Note discrepancies on chain of custo         | dy)                                                              | Yes 🔽                                                                                                | No 🗌                             | bottles checked<br>for pH: | 12 unless noted) |
| 12. Are matrices correctly identified on Ch                                              | ain of Custody?                                                  | Yes 🗹                                                                                                | No 🗌                             | Adjusted?                  |                  |
| 13. Is it clear what analyses were request                                               | ed?                                                              | Yes 🗹                                                                                                | No 🗌                             | $/ < \mathbb{N}$           |                  |
| 14. Were all holding times able to be met'<br>(If no, notify customer for authorization  |                                                                  | Yes 🗹                                                                                                | Νο                               | checked by                 |                  |
| Special Handling (if applicable)                                                         |                                                                  |                                                                                                      |                                  |                            |                  |
| 15. Was client notified of all discrepancie                                              | s with this order?                                               | Yes 🗌                                                                                                | No 🗌                             | NA 🗹                       |                  |
| Person Notified:                                                                         | Date:                                                            |                                                                                                      |                                  |                            |                  |
| By Whom:                                                                                 | Via:                                                             | eMail P                                                                                              | hone 🗌 Fax                       | In Person                  |                  |
| Regarding:                                                                               |                                                                  |                                                                                                      | _                                |                            |                  |
| Client Instructions:                                                                     |                                                                  |                                                                                                      |                                  |                            |                  |
| 16. Additional remarks:                                                                  |                                                                  |                                                                                                      |                                  |                            |                  |
| 17. <u>Cooler Information</u><br>Cooler No.   Temp <sup>o</sup> C   Conditio             | n Seal Intact Seal No                                            | Seal Date                                                                                            |                                  |                            |                  |
| 1 0.1 Good                                                                               | Yes                                                              |                                                                                                      | Signed By                        |                            |                  |

Page 1 of 1

| Istody Record Turn-Around Time: 5 der hourd | Standard Bush | ] |                    | 4901 Hawkins NE - Albuquerque, NM 87109 | Project #:<br>Tel. 505-345-315 Fax 505-345-4107 | Analvsis | (C             |                | 5 <sup>47</sup> 00 | Sampler: Hentler (2, Hender 1) 2002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 1002 1 | <br>BE<br>(G<br>0 0<br>10 0<br>10 0<br>10 0<br>10 0<br>10 0<br>10 0<br>10 0 | Sample Request ID<br>Type and #<br>Type |  | , ×          |               | X          | Swee / -One × × |     |             |       |  |                              | My Construction Date Time Remarks: | d by Received by Date when Link |
|---------------------------------------------|---------------|---|--------------------|-----------------------------------------|-------------------------------------------------|----------|----------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------|---------------|------------|-----------------|-----|-------------|-------|--|------------------------------|------------------------------------|---------------------------------|
| F-Custody Record                            | Client: SM A  |   | , Mailing Address: |                                         |                                                 | Phone #: | email or Fax#: | QA/QC Package: |                    | Accreditation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  | 1;10  $ 5w3$ | / 1776 / 5 wy | (1:35) Sw5 | $\prec$         | SWO | Pock 12-1.5 | 13-15 |  | Timo: Dout of isboard in the | 142 Mar and                        | Date: Time: Relinquished by:    |

Released to Imaging: 11/6/2023 11:57:53 AM



July 03, 2018

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Tonto

OrderNo.: 1806E47

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 3 sample(s) on 6/23/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109
**Analytical Report** 

Lab Order 1806E47

Date Reported: 7/3/2018

| CLIENT: Souder, Miller & Associates<br>Project: Tonto | Client Sample ID: L2-1.8<br>Collection Date: 6/20/2018 9:00:00 AM |        |                     |               |                      |       |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------|--------|---------------------|---------------|----------------------|-------|--|--|--|--|
| Lab ID: 1806E47-001                                   | Matrix: SOLID                                                     |        | <b>Received Dat</b> | <b>e:</b> 6/2 | 23/2018 10:40:00 AM  |       |  |  |  |  |
| Analyses                                              | Result                                                            | PQL    | Qual Units          | DF            | Date Analyzed        | Batch |  |  |  |  |
| EPA METHOD 300.0: ANIONS                              |                                                                   |        |                     |               | Analyst              | MRA   |  |  |  |  |
| Chloride                                              | 120                                                               | 30     | mg/Kg               | 20            | 6/29/2018 5:40:20 PM | 38971 |  |  |  |  |
| EPA METHOD 8015M/D: DIESEL RANG                       | E ORGANICS                                                        |        |                     |               | Analyst              | ТОМ   |  |  |  |  |
| Diesel Range Organics (DRO)                           | 12                                                                | 9.4    | mg/Kg               | 1             | 6/26/2018 6:05:49 PM | 38862 |  |  |  |  |
| Motor Oil Range Organics (MRO)                        | ND                                                                | 47     | mg/Kg               | 1             | 6/26/2018 6:05:49 PM | 38862 |  |  |  |  |
| Surr: DNOP                                            | 83.5                                                              | 70-130 | %Rec                | 1             | 6/26/2018 6:05:49 PM | 38862 |  |  |  |  |
| EPA METHOD 8015D: GASOLINE RANG                       | θE                                                                |        |                     |               | Analyst              | : NSB |  |  |  |  |
| Gasoline Range Organics (GRO)                         | ND                                                                | 4.7    | mg/Kg               | 1             | 6/26/2018 8:06:38 PM | 38869 |  |  |  |  |
| Surr: BFB                                             | 82.2                                                              | 15-316 | %Rec                | 1             | 6/26/2018 8:06:38 PM | 38869 |  |  |  |  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

| Qualifiers: | * |
|-------------|---|
|             | - |

- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 6 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

**Analytical Report** 

Lab Order 1806E47

Date Reported: 7/3/2018

| CLIENT: Souder, Miller & Associates |               | Client Sample ID: L3-1.8                    |       |    |                      |       |  |  |  |  |  |  |
|-------------------------------------|---------------|---------------------------------------------|-------|----|----------------------|-------|--|--|--|--|--|--|
| Project: Tonto                      |               | Collection Date: 6/20/2018 9:10:00 AM       |       |    |                      |       |  |  |  |  |  |  |
| Lab ID: 1806E47-002                 | Matrix: SOLID | <b>Received Date:</b> 6/23/2018 10:40:00 AM |       |    |                      |       |  |  |  |  |  |  |
| Analyses                            | Result        | Result PQL Qual Units                       |       |    |                      | Batch |  |  |  |  |  |  |
| EPA METHOD 300.0: ANIONS            |               |                                             |       |    | Analyst              | MRA   |  |  |  |  |  |  |
| Chloride                            | 160           | 30                                          | mg/Kg | 20 | 6/29/2018 5:52:44 PM | 38971 |  |  |  |  |  |  |
| EPA METHOD 8015M/D: DIESEL RAM      | IGE ORGANICS  |                                             |       |    | Analyst              | : ТОМ |  |  |  |  |  |  |
| Diesel Range Organics (DRO)         | 180           | 9.6                                         | mg/Kg | 1  | 6/26/2018 6:28:18 PM | 38862 |  |  |  |  |  |  |
| Motor Oil Range Organics (MRO)      | ND            | 48                                          | mg/Kg | 1  | 6/26/2018 6:28:18 PM | 38862 |  |  |  |  |  |  |
| Surr: DNOP                          | 95.7          | 70-130                                      | %Rec  | 1  | 6/26/2018 6:28:18 PM | 38862 |  |  |  |  |  |  |
| EPA METHOD 8015D: GASOLINE RA       | NGE           |                                             |       |    | Analyst              | : NSB |  |  |  |  |  |  |
| Gasoline Range Organics (GRO)       | ND            | 4.6                                         | mg/Kg | 1  | 6/26/2018 8:30:18 PM | 38869 |  |  |  |  |  |  |
| Surr: BFB                           | 81.5          | 15-316                                      | %Rec  | 1  | 6/26/2018 8:30:18 PM | 38869 |  |  |  |  |  |  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

| Qualifiers: | * |
|-------------|---|
|             | Б |

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 6 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

| Hall Environmental Analysis                                                  | s Laboratory, I                                                                                                     | nc.    |          | Analytical Repor<br>Lab Order 1806E47<br>Date Reported: 7/3/ | ,                             |  |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------|----------|--------------------------------------------------------------|-------------------------------|--|--|
| CLIENT: Souder, Miller & Associates<br>Project: Tonto<br>Lab ID: 1806E47-003 | Client Sample ID: SW6<br>Collection Date: 6/20/2018 9:20:00 AM<br>Matrix: SOIL Received Date: 6/23/2018 10:40:00 AM |        |          |                                                              |                               |  |  |
| Analyses                                                                     | Result                                                                                                              | PQL Qu | al Units | DF Date Analyzed                                             | Batch                         |  |  |
| EPA METHOD 300.0: ANIONS<br>Chloride                                         | 550                                                                                                                 | 30     | mg/Kg    | Ana<br>20 6/29/2018 6:05:08 I                                | alyst: <b>MRA</b><br>PM 38971 |  |  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 6
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

# **QC SUMMARY REPORT** Hall Environmental Analysis Laboratory, Inc.

| Client:    | Souder    | , Miller & Associ | ates        |             |                     |        |                    |      |          |      |
|------------|-----------|-------------------|-------------|-------------|---------------------|--------|--------------------|------|----------|------|
| Project:   | Tonto     |                   |             |             |                     |        |                    |      |          |      |
| Sample ID  | MB-38971  | SampType:         | mblk        | Tes         | tCode: EPA N        | lethod | 300.0: Anion       | s    |          |      |
| Client ID: | PBS       | Batch ID:         | 38971       | F           | RunNo: <b>52369</b> | )      |                    |      |          |      |
| Prep Date: | 6/29/2018 | Analysis Date:    | 6/29/2018   | 5           | SeqNo: 17172        | 33     | Units: <b>mg/K</b> | g    |          |      |
| Analyte    |           | Result PQ         | L SPK value | SPK Ref Val | %REC Lov            | wLimit | HighLimit          | %RPD | RPDLimit | Qual |
| Chloride   |           | ND 1              | .5          |             |                     |        |                    |      |          |      |
| Sample ID  | LCS-38971 | SampType:         | lcs         | Tes         | tCode: EPA N        | lethod | 300.0: Anion       | s    |          |      |
| Client ID: | LCSS      | Batch ID:         | 38971       | F           | RunNo: <b>52369</b> | )      |                    |      |          |      |
| Prep Date: | 6/29/2018 | Analysis Date:    | 6/29/2018   | 5           | SeqNo: <b>17172</b> | 34     | Units: mg/K        | g    |          |      |
| Analyte    |           | Result PQ         | L SPK value | SPK Ref Val | %REC Lov            | wLimit | HighLimit          | %RPD | RPDLimit | Qual |
| Chloride   |           | 15 1              | .5 15.00    | 0           | 97.2                | 90     | 110                |      |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1806E47

03-Jul-18

WO#:

Page 4 of 6

# **QC SUMMARY REPORT** Hall Environmental Analysis Laboratory, Inc.

| Client:Souder,Project:Tonto    | Miller & As                                                                   | ssociate | es                                         |             |           |           |             |           |            |      |
|--------------------------------|-------------------------------------------------------------------------------|----------|--------------------------------------------|-------------|-----------|-----------|-------------|-----------|------------|------|
| Sample ID LCS-38862            | D LCS-38862 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics |          |                                            |             |           |           |             |           |            |      |
| Client ID: LCSS                | Batch                                                                         | n ID: 38 | 862                                        | F           | anNo: 52  | 2229      |             |           |            |      |
| Prep Date: 6/25/2018           | Analysis D                                                                    | ate: 6/  | ate: 6/26/2018 SeqNo: 1711929 Units: mg/Kg |             |           |           |             |           |            |      |
| Analyte                        | Result                                                                        | PQL      | SPK value                                  | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit   | Qual |
| Diesel Range Organics (DRO)    | 41                                                                            | 10       | 50.00                                      | 0           | 82.7      | 70        | 130         |           |            |      |
| Surr: DNOP                     | 4.2                                                                           |          | 5.000                                      |             | 83.9      | 70        | 130         |           |            |      |
| Sample ID MB-38862             | SampT                                                                         | ype: ME  | BLK                                        | Tes         | tCode: EF | PA Method | 8015M/D: Di | esel Rang | e Organics |      |
| Client ID: PBS                 | Batch                                                                         | n ID: 38 | 862                                        | F           | unNo: 52  | 2229      |             |           |            |      |
| Prep Date: 6/25/2018           | Analysis D                                                                    | ate: 6/  | 26/2018                                    | S           | SeqNo: 17 | 711930    | Units: mg/k | ζg        |            |      |
| Analyte                        | Result                                                                        | PQL      | SPK value                                  | SPK Ref Val | %REC      | LowLimit  | HighLimit   | %RPD      | RPDLimit   | Qual |
| Diesel Range Organics (DRO)    | ND                                                                            | 10       |                                            |             |           |           |             |           |            |      |
| Motor Oil Range Organics (MRO) | ND                                                                            | 50       |                                            |             |           |           |             |           |            |      |
| Surr: DNOP                     | 9.3                                                                           |          | 10.00                                      |             | 93.1      | 70        | 130         |           |            |      |

#### **Qualifiers:**

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1806E47

03-Jul-18

WO#:

Page 5 of 6

# **QC SUMMARY REPORT** Hall Environmental Analysis Laboratory, Inc.

| Client:<br>Project: | Souder,<br>Tonto | Miller & A | ssociate                     | es        |                             |           |           |                    |           |          |      |
|---------------------|------------------|------------|------------------------------|-----------|-----------------------------|-----------|-----------|--------------------|-----------|----------|------|
| Sample ID           | MB-38869         | SampT      | ype: M                       | BLK       | Tes                         | tCode: El | PA Method | 8015D: Gaso        | line Rang | e        |      |
| Client ID:          | PBS              | Batch      | Batch ID: 38869 RunNo: 52243 |           |                             | 2243      |           |                    |           |          |      |
| Prep Date:          | 6/25/2018        | Analysis D | oate: 6/                     | 26/2018   | SeqNo: 1712088 Units: mg/Kg |           |           |                    |           |          |      |
| Analyte             |                  | Result     | PQL                          | SPK value | SPK Ref Val                 | %REC      | LowLimit  | HighLimit          | %RPD      | RPDLimit | Qual |
| Gasoline Range      | e Organics (GRO) | ND         | 5.0                          |           |                             |           |           |                    |           |          |      |
| Surr: BFB           |                  | 850        |                              | 1000      |                             | 85.4      | 15        | 316                |           |          |      |
| Sample ID           | LCS-38869        | SampT      | ype: LC                      | s         | Tes                         | tCode: El | PA Method | 8015D: Gasc        | line Rang | e        |      |
| Client ID:          | LCSS             | Batch      | n ID: 38                     | 869       | F                           | anNo: 5   | 2243      |                    |           |          |      |
| Prep Date:          | 6/25/2018        | Analysis D | ate: 6/                      | 26/2018   | S                           | SeqNo: 1  | 712089    | Units: <b>mg/K</b> | ģ         |          |      |
| Analyte             |                  | Result     | PQL                          | SPK value | SPK Ref Val                 | %REC      | LowLimit  | HighLimit          | %RPD      | RPDLimit | Qual |
| Gasoline Range      | e Organics (GRO) | 23         | 5.0                          | 25.00     | 0                           | 92.6      | 75.9      | 131                |           |          |      |
| Surr: BFB           |                  | 980        |                              | 1000      |                             | 98.4      | 15        | 316                |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1806E47

03-Jul-18

WO#:

Page 6 of 6

----

.

| HALL<br>ENVIRONMENTAL<br>ANALYSIS<br>LABORATORY                                                         | TEL: 505-345-3      | ttal Analysis Labord<br>4901 Hawkin<br>Albuquerque, NM 8<br>975 FAX: 505-345-<br>Nallenvironmental | s NE<br>7109 <b>San</b><br>4107 | Sample Log-In Check List   |                  |  |  |  |
|---------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|------------------|--|--|--|
| Client Name: SMA-CARLSBAD                                                                               | Work Order Numb     | per: 1806E47                                                                                       |                                 | RcptNo                     | : 1              |  |  |  |
| Received By: Andy Freeman                                                                               | 6/23/2018 10:40:00  | АМ                                                                                                 | and                             |                            |                  |  |  |  |
| Completed By: Isaiah Ortiz                                                                              | 6/25/2018 7:38:58 / | M                                                                                                  | IG                              | -                          |                  |  |  |  |
| Reviewed By: ENM<br>LB:MW UZS/18<br><u>Chain of Custody</u>                                             | 6125/18             |                                                                                                    | _                               |                            |                  |  |  |  |
| 1. Is Chain of Custody complete?                                                                        |                     | Yes 🗹                                                                                              | No 🗌                            | Not Present                |                  |  |  |  |
| 2. How was the sample delivered?                                                                        |                     | Courier                                                                                            |                                 |                            |                  |  |  |  |
| Log In<br>3. Was an attempt made to cool the samples?                                                   |                     | Yes 🗹                                                                                              | No 🗌                            |                            |                  |  |  |  |
| 4. Were all samples received at a temperature                                                           | of >0° C to 6.0°C   | Yes 🗹                                                                                              | No 🗌                            | NA 🗆                       |                  |  |  |  |
| 5. Sample(s) in proper container(s)?                                                                    |                     | Yes 🗹                                                                                              | No 🗌                            |                            |                  |  |  |  |
| 6. Sufficient sample volume for indicated test(s                                                        | )?                  | Yes 🗹                                                                                              | No 🗌                            |                            |                  |  |  |  |
| 7. Are samples (except VOA and ONG) proper                                                              | y preserved?        | Yes 🗹                                                                                              | No 🗌                            |                            |                  |  |  |  |
| 8. Was preservative added to bottles?                                                                   |                     | Yes                                                                                                | No 🔽                            | NA 🗌                       |                  |  |  |  |
| 9. VOA vials have zero headspace?                                                                       |                     | Yes                                                                                                | No 🗌                            | No VOA Vials 🔽             |                  |  |  |  |
| 10. Were any sample containers received broke                                                           | n?                  | Yes                                                                                                | No 🔽                            | # of preserved             | 118/             |  |  |  |
| 11. Does paperwork match bottle labels?<br>(Note discrepancies on chain of custody)                     |                     | Yes 🗹                                                                                              | No 🗌                            | bottles checked<br>for pH: | 12 unless noted) |  |  |  |
| 12. Are matrices correctly identified on Chain of                                                       | Custody?            | Yes 🗹                                                                                              | No 🗌                            | Adjuster                   |                  |  |  |  |
| 13. Is it clear what analyses were requested?                                                           |                     | Yes 🗹                                                                                              | No 🗌                            | ND                         |                  |  |  |  |
| 14. Were all holding times able to be met?<br>(If no, notify customer for authorization.)               |                     | Yes 🗹                                                                                              | No 🗌                            | Checked by:                |                  |  |  |  |
| Special Handling (if applicable)                                                                        |                     |                                                                                                    |                                 |                            |                  |  |  |  |
| 15. Was client notified of all discrepancies with t                                                     | his order?          | Yes 🗌                                                                                              | No 🗌                            | NA 🗹                       |                  |  |  |  |
| Person Notified:                                                                                        | Date:               |                                                                                                    |                                 | <u>.</u>                   | -                |  |  |  |
| By Whom:                                                                                                | <br>Via:            | eMail 🗍 Pl                                                                                         | ione 🗌 Fax                      | In Person                  |                  |  |  |  |
| Regarding:                                                                                              |                     |                                                                                                    |                                 |                            |                  |  |  |  |
| Client Instructions:                                                                                    |                     |                                                                                                    |                                 |                            |                  |  |  |  |
| 16. Additional remarks:                                                                                 |                     |                                                                                                    |                                 |                            | -                |  |  |  |
| 17. <u>Cooler Information</u>                                                                           | <b>,</b> .          |                                                                                                    |                                 |                            |                  |  |  |  |
| Cooler No         Temp ℃         Condition         Set           1         3.8         Good         Yes | al Intact Seal No   | Seal Date                                                                                          | Signed By                       |                            |                  |  |  |  |

| HALL ENVIRONMENTAL<br>ANALYSIS LABORATORY<br>www.hallenvironmental.com<br>4901 Hawkins NE - Albuquerque, NM 87109<br>Tel. 505-345-375 Fax 505-345-4107<br>Analysis Request | TPH (Method 504.1)<br>EDB (Method 504.1)<br>PAH's (8310 or 8270 SIMS)<br>RCRA 8 Metals<br>Anions (F, OVO <sub>3</sub> , NO <sub>3</sub> , NO <sub>2</sub> , PO <sub>4</sub> , SO <sub>4</sub> )<br>8081 Pesticides / 8082 PCB's<br>8081 Pesticides / 8082 PCB's<br>8081 Pesticides / 8082 PCB's<br>8270 (Semi-VOA)<br>8270 (Semi-VOA) |                                                      | Date Time Remarks:<br>Date Time Remarks:<br>$\delta/23/18$ / $0$ 4 $c$<br>$\delta/23/18$ / $0$ 4 $c$<br>This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4901 H                                                                                                                                                                     | ВТЕХ + МТВЕ + ТРН (Gas only)<br>ТРН 8015В (GRO / DRO / MRO)                                                                                                                                                                                                                                                                           |                                                      | Remarks:                                                                                                                                                                                                                     |
| I urn-Around Time: See how<br>Candard Rush<br>Project Name:<br>Project #:                                                                                                  |                                                                                                                                                                                                                                                                                                                                       |                                                      | dited laboratiories.                                                                                                                                                                                                         |
| Client: Custody Record         Client: SMA         Mailing Address:         Phone #:         email or Fax#:                                                                | QA/QC Package:                                                                                                                                                                                                                                                                                                                        | 0/4/am kavk L2-1,8<br>9/40 11 L3-1,8<br>9/10 3: 5ule | Pate: Time: Relinquished by: Received by: Date: Time: Relinquished by: Received by: Date: Time: Relinquished by: Regiver by: If necessary, samples submitted to Hall Environmental may be subcontracted to other acce        |

# **APPENDIX** A

# CARMONA RESOURCES



August 29, 2023

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Amendment to Closure Report Tonto 15 State #1 Marathon Oil Corporation 1RP-4869 & 1RP-5003 Site Location: Unit I, S15, T18S, R34E (Lat 32.7459831°, Long -103.5429764°) Lea County, New Mexico

To whom it may concern:

On behalf of Marathon Oil Corporation (Marathon), Carmona Resource, LLC has prepared this letter to document additional site activities for the Tonto 15 State #1. The site is located at the GPS 32.7459831°, - 103.5429764° within Unit I, S15, T18S, R34E in Lea County, New Mexico.

#### **1.0 Site Information and Background**

#### 1RP-4868 & 1RP-5003

On July 25, 2018 the New Mexico OCD denied the closure report for the following reason: Please be advised that any deferral of a portion of the release area, even if the majority of the impacted area has been remediated, will not require a final C-141. Please note that under the new NMAC 19.15.29, to be in effect in August 2018, there will be no adjustment to the permissible levels left in place. For example, if  $\leq 600 \text{ mg/kg}$  chloride level is not obtained (+ 5% standard deviation or standard error not accepted), the excavated area must be laterally or vertically extended. In assessing depth to groundwater, please check USGS database. NMOCD will agree that delineation has been completed for 1RP-4869 & 1RP-5003. However, several concerns regarding the remediation process: 1. Please demarcated clearly the areas represented by each of the delineation sample locations. Where are the borders among the differing depths of excavation? For example, the area represented by L1 is proposed for deferral, while the L2/L3 area has 1.75 ft removed. The transition edge/sidewall should confirmatory soil samples taken. 2. Was the elevated BTEX, TPH extended, and chlorides at 0.5 ft in the area represented by L1, at least surficially addressed through non-mechanical methods? Any areas to be deferred must be explicitly outlined on a scaled map for documentation.

#### 2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water features are within a 0.50-mile radius of the location. The nearest identified well is approximately 0.28 miles Southeast of the site in S15, T18S, R34E and was drilled in 1996. The well has a reported depth to groundwater of 114.50 feet below the ground surface (ft bgs). A copy of the associated Summary Report is attached in Appendix D of the amended report.

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992



## **3.0 NMAC Regulatory Criteria**

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

## 4.0 Site Assessment Activities

On July 25, and September 7, 2023, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. To assess the vertical extent, seven (7) sample points (S-1 through S-7) were advanced to depths ranging from surface to 3' bgs inside the release area at the previous sample locations (L1, SW1, SW2, SW4, SW5, SW6, and L3). See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The sample points S-1, and S-7 were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The sample points S-2, S-3, S-4, S-5, and S-6 were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, and modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E of the amended report.

All samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 1. All sample points have undergone attenuation from precipitation and weather events that occurred from the sampling events April 26, May 17, and June 7, 2018 to the present.

## 5.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site as any remaining impact was addressed during final reclamation. The final C-141 is attached, and Marathon formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

Sincerely,

Mike Carmona Environmental Manager

Clinton Merritt Sr. Project Manager





Released to Imaging: 11/6/2023 11:57:53 AM









# **APPENDIX B**

# CARMONA RESOURCES

### Table 1 Marathon Oil Tonto 15 State #1 Lea County, New Mexico

| Sample ID |                           | _          | TPH (mg/kg) |       |       | Benzene   | Toluene  | Ethlybenzene | Xylene   | Total BTEX | Chloride  |           |
|-----------|---------------------------|------------|-------------|-------|-------|-----------|----------|--------------|----------|------------|-----------|-----------|
| Sample ID | Date                      | Depth (ft) | GRO         | DRO   | MRO   | Total     | (mg/kg)  | (mg/kg)      | (mg/kg)  | (mg/kg)    | (mg/kg)   | (mg/kg)   |
|           | 9/7/2023                  | 0-1        | <49.8       | 54.4  | <49.8 | 54.4      | <0.00200 | <0.00200     | <0.00200 | <0.00401   | <0.00401  | 96.0      |
| S-1       | "                         | 1.5        | <49.6       | 60.5  | <49.6 | 60.5      | <0.00201 | <0.00201     | <0.00201 | <0.00402   | <0.00402  | 38.0      |
| 5-1       | "                         | 2.0        | <50.0       | <50.0 | <50.0 | <50.0     | <0.00200 | <0.00200     | <0.00200 | <0.00399   | <0.00399  | 30.1      |
|           | "                         | 3.0        | <49.6       | <49.6 | <49.6 | <49.6     | <0.00199 | <0.00199     | <0.00199 | <0.00398   | <0.00398  | 78.8      |
|           | 7/25/2023                 | 0-1        | <49.6       | <49.6 | <49.6 | <49.6     | <0.00199 | <0.00199     | <0.00199 | <0.00398   | <0.00398  | -         |
| S-2       | "                         | 2.0        | <49.7       | <49.7 | <49.7 | <49.7     | <0.00199 | <0.00199     | <0.00199 | <0.00398   | <0.00398  | -         |
|           | "                         | 3.0        | <50.0       | <50.0 | <50.0 | <50.0     | <0.00201 | <0.00201     | <0.00201 | <0.00402   | <0.00402  | -         |
|           | 7/25/2023                 | 0-1        | <49.6       | <49.6 | <49.6 | <49.6     | <0.00202 | <0.00202     | <0.00202 | <0.00404   | <0.00404  | -         |
| S-3       | "                         | 2.0        | <49.6       | <49.6 | <49.6 | <49.6     | <0.00201 | <0.00201     | <0.00201 | <0.00402   | <0.00402  | -         |
|           | "                         | 3.0        | <50.2       | <50.2 | <50.2 | <50.2     | <0.00202 | <0.00202     | <0.00202 | <0.00403   | <0.00403  | -         |
|           | 7/25/2023                 | 0-1        | <49.8       | <49.8 | <49.8 | <49.8     | <0.00200 | <0.00200     | <0.00200 | <0.00400   | <0.00400  | -         |
| S-4       | "                         | 2.0        | <50.5       | <50.5 | <50.5 | <50.5     | <0.00200 | <0.00200     | <0.00200 | <0.00399   | <0.00399  | -         |
|           | "                         | 3.0        | <49.8       | <49.8 | <49.8 | <49.8     | <0.00200 | <0.00200     | <0.00200 | <0.00400   | <0.00400  | -         |
|           | 7/25/2023                 | 0-1        | <50.0       | <50.0 | <50.0 | <50.0     | <0.00198 | <0.00198     | <0.00198 | <0.00396   | <0.00396  | -         |
| S-5       | "                         | 2.0        | <50.3       | <50.3 | <50.3 | <50.3     | <0.00198 | <0.00198     | <0.00198 | < 0.00396  | < 0.00396 | -         |
|           | "                         | 3.0        | <50.4       | <50.4 | <50.4 | <50.4     | <0.00199 | <0.00199     | <0.00199 | <0.00398   | <0.00398  | -         |
|           | 7/25/2023                 | 0-1        | <50.3       | <50.3 | <50.3 | <50.3     | <0.00201 | <0.00201     | <0.00201 | <0.00402   | <0.00402  | -         |
| S-6       | "                         | 2.0        | <50.3       | <50.3 | <50.3 | <50.3     | <0.00200 | <0.00200     | <0.00200 | <0.00401   | < 0.00401 | -         |
|           | "                         | 3.0        | <50.5       | <50.5 | <50.5 | <50.5     | <0.00202 | <0.00202     | <0.00202 | <0.00403   | <0.00403  | -         |
|           | 9/7/2023                  | 0-1        | <50.2       | <50.2 | <50.2 | <50.2     | <0.00200 | <0.00200     | <0.00200 | <0.00400   | <0.00400  | 97.0      |
| S-7       | "                         | 1.5        | <50.1       | <50.1 | <50.1 | <50.1     | <0.00198 | <0.00198     | <0.00198 | <0.00397   | <0.00397  | 67.6      |
|           | "                         | 2.0        | <50.5       | <50.5 | <50.5 | <50.5     | <0.00201 | <0.00201     | <0.00201 | <0.00402   | <0.00402  | 86.4      |
|           | ory Criteria <sup>A</sup> |            |             |       |       | 100 mg/kg | 10 mg/kg |              |          |            | 50 mg/kg  | 600 mg/kg |

(-) Not Analyzed

<sup>A</sup> – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons

ft-feet

(S) Sample Point

# **APPENDIX C**

# CARMONA RESOURCES

# **PHOTOGRAPHIC LOG**

## **Marathon Oil Corporation**

| Photograph N                          | lo. 1                               | E <b>S</b> SV <b>W</b> NV                                                  |
|---------------------------------------|-------------------------------------|----------------------------------------------------------------------------|
| Facility:                             | Tonto 15 State #1                   | © 226°SW (T) LAT: 32.746094 LON: -103.542713 ±16ft ▲ 4017ft                |
| County:                               | Lea County, New Mexico              | +                                                                          |
| Description:<br>View Southwest        | of sample points S-1, S-2, and S-3. | 25 Jul 2023 10:2421 AM                                                     |
| Photograph N                          | lo. 2                               | NE E S S<br>60 90 120 150 180 210<br>•   •   •   •   •   •   •   •   •   • |
| Facility:                             | Tonto 15 State #1                   | © 124°SE (T) LAT: 32.745744 LON: -103.542718 ±13ft ▲ 4026ft                |
| County:                               | Lea County, New Mexico              |                                                                            |
| <b>Description:</b><br>View Southeast | of sample points S-3, S-4, and S-5. | 25 Jul 2023, 10:25:44 AM                                                   |
| Photograph N                          | lo. 3                               | SW W NW N<br>210 240 270 300 330 0                                         |
| Facility:                             | Tonto 15 State #1                   | © 297°NW (T) LAT: 32.745612 LON: -103.542437 ±13ft ▲ 4025ft                |
| County:                               | Lea County, New Mexico              |                                                                            |
| Description:<br>View Northwest        | of sample points S-5, S-6, and S-7. | 25 Jul 2023, 1026, 21 AM                                                   |

# **APPENDIX D**

# CARMONA RESOURCES

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

#### Page 93 of 406

**ANALYTICAL REPORT** 

# PREPARED FOR

Attn: Clint Merritt **Carmona Resources** 310 W Wall St Ste 500 Midland, Texas 79701 Generated 9/14/2023 11:15:47 AM

# **JOB DESCRIPTION**

Tonto 15 State #1 SDG NUMBER Lea County NM

# **JOB NUMBER**

880-33031-1

**Eurofins Midland** 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information.



# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 9/14/2023 11:15:47 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-33031-1 SDG: Lea County NM

Page 95 of 406

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 9  |
| QC Sample Results      | 10 |
| QC Association Summary | 14 |
| Lab Chronicle          | 16 |
| Certification Summary  | 18 |
| Method Summary         | 19 |
| Sample Summary         | 20 |
| Chain of Custody       | 21 |
| Receipt Checklists     | 22 |
|                        |    |

# **Definitions/Glossary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-33031-1 SDG: Lea County NM

|          | rc |
|----------|----|
| Qualifie | 13 |

| Quaimers     |                                                                                            | 3   |
|--------------|--------------------------------------------------------------------------------------------|-----|
| GC VOA       |                                                                                            |     |
| Qualifier    | Qualifier Description                                                                      |     |
| S1-          | Surrogate recovery exceeds control limits, low biased.                                     |     |
| U            | Indicates the analyte was analyzed for but not detected.                                   | 5   |
| GC Semi VO   | Α                                                                                          |     |
| Qualifier    | Qualifier Description                                                                      |     |
| F2           | MS/MSD RPD exceeds control limits                                                          |     |
| S1+          | Surrogate recovery exceeds control limits, high biased.                                    |     |
| U            | Indicates the analyte was analyzed for but not detected.                                   |     |
| HPLC/IC      |                                                                                            | 8   |
| Qualifier    | Qualifier Description                                                                      |     |
| F1           | MS and/or MSD recovery exceeds control limits.                                             | 9   |
| U            | Indicates the analyte was analyzed for but not detected.                                   |     |
| Glossary     |                                                                                            |     |
| Abbreviation | These commonly used abbreviations may or may not be present in this report.                |     |
| ¤            | Listed under the "D" column to designate that the result is reported on a dry weight basis |     |
| %R           | Percent Recovery                                                                           |     |
| CFL          | Contains Free Liquid                                                                       |     |
| CFU          | Colony Forming Unit                                                                        | 4.0 |
| CNF          | Contains No Free Liquid                                                                    | 13  |
| DER          | Duplicate Error Ratio (normalized absolute difference)                                     |     |
|              |                                                                                            |     |

| CNF     | Contains No Free Liquid    |
|---------|----------------------------|
| DER     | Duplicate Error Ratio (nor |
| Dil Fac | Dilution Factor            |

| DL             | Detection Limit (DoD/DOE)                                                                                   |
|----------------|-------------------------------------------------------------------------------------------------------------|
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
|                |                                                                                                             |

| LOD | Limit of Detection (DoD/DOE)    |
|-----|---------------------------------|
| LOQ | Limit of Quantitation (DoD/DOE) |

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

| MDL | Method Detection Limit    |
|-----|---------------------------|
| ML  | Minimum Level (Dioxin)    |
| MPN | Most Probable Number      |
| MQL | Method Quantitation Limit |

NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

Positive / Present POS PQL Practical Quantitation Limit Presumptive PRES

Quality Control QC RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

- RPD Relative Percent Difference, a measure of the relative difference between two points
- Toxicity Equivalent Factor (Dioxin) TEF
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

#### Job ID: 880-33031-1 SDG: Lea County NM

#### Job ID: 880-33031-1

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-33031-1

#### Receipt

The samples were received on 9/8/2023 1:34 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -2.7°C

#### GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-62082 and analytical batch 880-62040 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (890-5210-A-1-C) and (880-32833-A-8-A MB). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-62041/5-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 880-62103 and analytical batch 880-62118 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: S-1 (0-1') (880-33031-1), S-1 (1.5') (880-33031-2), S-1 (2') (880-33031-3), S-1 (3') (880-33031-4) and (880-33016-A-1-D). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300\_ORGFM\_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-62152 and analytical batch 880-62392 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

# **Client Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Client Sample ID: S-1 (0-1') Date Collected: 09/07/23 00:00

Date Received: 09/08/23 13:34

| Analyte                                                       | Result         | Qualifier    | RL       | MDL | Unit          | D        | Prepared       | Analyzed                   | Dil Fac  |
|---------------------------------------------------------------|----------------|--------------|----------|-----|---------------|----------|----------------|----------------------------|----------|
| Benzene                                                       | <0.00200       | U            | 0.00200  |     | mg/Kg         |          | 09/08/23 13:56 | 09/09/23 03:52             | 1        |
| Toluene                                                       | <0.00200       | U            | 0.00200  |     | mg/Kg         |          | 09/08/23 13:56 | 09/09/23 03:52             | 1        |
| Ethylbenzene                                                  | <0.00200       | U            | 0.00200  |     | mg/Kg         |          | 09/08/23 13:56 | 09/09/23 03:52             | 1        |
| n-Xylene & p-Xylene                                           | <0.00401       | U            | 0.00401  |     | mg/Kg         |          | 09/08/23 13:56 | 09/09/23 03:52             | 1        |
| o-Xylene                                                      | <0.00200       | U            | 0.00200  |     | mg/Kg         |          | 09/08/23 13:56 | 09/09/23 03:52             | 1        |
| Kylenes, Total                                                | <0.00401       | U            | 0.00401  |     | mg/Kg         |          | 09/08/23 13:56 | 09/09/23 03:52             | 1        |
| Surrogate                                                     | %Recovery      | Qualifier    | Limits   |     |               |          | Prepared       | Analyzed                   | Dil Fa   |
| 4-Bromofluorobenzene (Surr)                                   | 79             |              | 70 - 130 |     |               |          | 09/08/23 13:56 | 09/09/23 03:52             | 1        |
| 1,4-Difluorobenzene (Surr)                                    | 86             |              | 70 - 130 |     |               |          | 09/08/23 13:56 | 09/09/23 03:52             | 1        |
| Method: TAL SOP Total BTEX - To                               |                |              |          |     |               |          |                |                            |          |
| Analyte                                                       |                | Qualifier    | RL       | MDL | Unit          | D        | Prepared       | Analyzed                   | Dil Fac  |
| Total BTEX                                                    | <0.00401       | U            | 0.00401  |     | mg/Kg         |          |                | 09/11/23 13:03             | 1        |
| Method: SW846 8015 NM - Diesel                                |                |              |          |     |               |          |                |                            |          |
| Analyte<br>Fotal TPH                                          | Result<br>54.4 | Qualifier    |          | MDL | Unit<br>mg/Kg | D        | Prepared       | Analyzed<br>09/12/23 09:16 | Dil Fa   |
| Nethod: SW846 8015B NM - Diese<br>malyte                      | Result         | Qualifier    |          | MDL | Unit          | D        | Prepared       | Analyzed                   | Dil Fa   |
| Analyte                                                       | Result         | Qualifier    |          | MDL |               | <u>D</u> |                |                            | Dil Fac  |
| Gasoline Range Organics<br>GRO)-C6-C10                        | <49.8          | 0            | 49.8     |     | mg/Kg         |          | 09/08/23 15:14 | 09/11/23 18:04             |          |
| Diesel Range Organics (Over<br>C10-C28)                       | 54.4           |              | 49.8     |     | mg/Kg         |          | 09/08/23 15:14 | 09/11/23 18:04             |          |
| Oll Range Organics (Over C28-C36)                             | <49.8          | U            | 49.8     |     | mg/Kg         |          | 09/08/23 15:14 | 09/11/23 18:04             | 1        |
| Surrogate                                                     | %Recovery      | Qualifier    | Limits   |     |               |          | Prepared       | Analyzed                   | Dil Fa   |
| -Chlorooctane                                                 | 145            | S1+          | 70 - 130 |     |               |          | 09/08/23 15:14 | 09/11/23 18:04             |          |
| p-Terphenyl                                                   | 152            | S1+          | 70 - 130 |     |               |          | 09/08/23 15:14 | 09/11/23 18:04             | 1        |
| Method: EPA 300.0 - Anions, Ion C                             | Chromatograp   | hy - Soluble | e        |     |               |          |                |                            |          |
| Analyte                                                       | Result         | Qualifier    | RL       | MDL | Unit          | D        | Prepared       | Analyzed                   | Dil Fac  |
| Chloride                                                      | 96.0           |              | 5.03     |     | mg/Kg         |          |                | 09/14/23 02:20             | 1        |
| lient Sample ID: S-1 (1.5')                                   |                |              |          |     |               |          | Lab Sam        | ple ID: 880-3              | 3031-2   |
| ate Collected: 09/07/23 00:00<br>ate Received: 09/08/23 13:34 |                |              |          |     |               |          |                | Matri                      | x: Solic |
|                                                               |                |              |          |     |               |          |                |                            |          |
| Method: SW846 8021B - Volatile C                              | raanic Come    | ounds (CC)   |          |     |               |          |                |                            |          |

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:13 | 1       |
| Toluene                     | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:13 | 1       |
| Ethylbenzene                | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:13 | 1       |
| m-Xylene & p-Xylene         | <0.00402  | U         | 0.00402  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:13 | 1       |
| o-Xylene                    | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:13 | 1       |
| Xylenes, Total              | <0.00402  | U         | 0.00402  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:13 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 96        |           | 70 - 130 |     |       |   | 09/08/23 13:56 | 09/09/23 04:13 | 1       |
| 1,4-Difluorobenzene (Surr)  | 73        |           | 70 - 130 |     |       |   | 09/08/23 13:56 | 09/09/23 04:13 | 1       |

Job ID: 880-33031-1 SDG: Lea County NM

# Lab Sample ID: 880-33031-1

Matrix: Solid

5

# **Client Sample Results**

Job ID: 880-33031-1 SDG: Lea County NM

Lab Sample ID: 880-33031-2

# Client Sample ID: S-1 (1.5')

Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

Client: Carmona Resources

Project/Site: Tonto 15 State #1

| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                        | <0.00402      | U           | 0.00402  |     | mg/Kg |   |                | 09/11/23 13:03 |         |
| Method: SW846 8015 NM - Diese     | Range Organ   | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | 60.5          |             | 49.6     |     | mg/Kg |   |                | 09/12/23 09:16 |         |
| Method: SW846 8015B NM - Dies     | el Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <49.6         | U           | 49.6     |     | mg/Kg |   | 09/08/23 15:14 | 09/11/23 18:26 | ·       |
| (GRO)-C6-C10                      |               |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | 60.5          |             | 49.6     |     | mg/Kg |   | 09/08/23 15:14 | 09/11/23 18:26 |         |
| C10-C28)                          |               |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.6         | U           | 49.6     |     | mg/Kg |   | 09/08/23 15:14 | 09/11/23 18:26 |         |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                    | 138           | S1+         | 70 - 130 |     |       |   | 09/08/23 15:14 | 09/11/23 18:26 |         |
| o-Terphenyl                       | 143           | S1+         | 70 - 130 |     |       |   | 09/08/23 15:14 | 09/11/23 18:26 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | hy - Solubl | e        |     |       |   |                |                |         |
| Analyte                           |               | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 38.0          |             | 5.01     |     | mg/Kg |   |                | 09/14/23 02:27 |         |

## Client Sample ID: S-1 (2')

Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

## Lab Sample ID: 880-33031-3 Matrix: Solid

# Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:33 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:33 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:33 | 1       |
| m-Xylene & p-Xylene         | <0.00399  | U         | 0.00399  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:33 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:33 | 1       |
| Xylenes, Total              | <0.00399  | U         | 0.00399  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 04:33 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 80        |           | 70 - 130 |     |       |   | 09/08/23 13:56 | 09/09/23 04:33 | 1       |
| 1,4-Difluorobenzene (Surr)  | 72        |           | 70 - 130 |     |       |   | 09/08/23 13:56 | 09/09/23 04:33 | 1       |

| Analyte                                 | Result            | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-------------------|--------------|---------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                              | <0.00399          | U            | 0.00399 |     | mg/Kg |   |                | 09/11/23 13:03 | 1       |
| -<br>Method: SW846 8015 NM - Die        | esel Range Organ  | ics (DRO) (C | GC)     |     |       |   |                |                |         |
| Analyte                                 | Result            | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | <50.0             | U            | 50.0    |     | mg/Kg |   |                | 09/12/23 09:16 | 1       |
| <br>Method: SW846 8015B NM - D          | )iesel Range Orga | nics (DRO)   | (GC)    |     |       |   |                |                |         |
| Analyte                                 | Result            | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0             | U            | 50.0    |     | mg/Kg |   | 09/08/23 15:14 | 09/11/23 18:48 | 1       |

09/11/23 18:48

09/08/23 15:14

Matrix: Solid

5

Diesel Range Organics (Over

C10-C28)

50.0

mg/Kg

<50.0 U

1

Matrix: Solid

5

Job ID: 880-33031-1 SDG: Lea County NM

Lab Sample ID: 880-33031-3

### Client Sample ID: S-1 (2') Date Collected: 09/07/23 00:00

Project/Site: Tonto 15 State #1

Date Received: 09/08/23 13:34

Client: Carmona Resources

|                                               |               |              |            | <b>.</b> |        |          |                            |                            |          |
|-----------------------------------------------|---------------|--------------|------------|----------|--------|----------|----------------------------|----------------------------|----------|
| Method: SW846 8015B NM - Dies                 |               |              |            |          | 11     |          | Dremered                   | Amelyined                  |          |
| Analyte Oll Range Organics (Over C28-C36)     |               | Qualifier    | RL<br>50.0 | MDL      | mg/Kg  | <u>D</u> | Prepared<br>09/08/23 15:14 | Analyzed<br>09/11/23 18:48 | Dil Fac  |
| On Mange Organics (Over 020-030)              | <50.0         | 0            | 50.0       |          | mg/rtg |          | 09/00/23 13.14             | 09/11/23 10:40             |          |
| Surrogate                                     | %Recovery     | Qualifier    | Limits     |          |        |          | Prepared                   | Analyzed                   | Dil Fa   |
| 1-Chlorooctane                                | 138           | S1+          | 70 - 130   |          |        |          | 09/08/23 15:14             | 09/11/23 18:48             |          |
| o-Terphenyl                                   | 146           | S1+          | 70 - 130   |          |        |          | 09/08/23 15:14             | 09/11/23 18:48             | -        |
| -<br>Method: EPA 300.0 - Anions, Ion          | Chromatograp  | ohy - Solubl | e          |          |        |          |                            |                            |          |
| Analyte                                       | Result        | Qualifier    | RL         | MDL      | Unit   | D        | Prepared                   | Analyzed                   | Dil Fac  |
| Chloride                                      | 30.1          |              | 5.02       |          | mg/Kg  |          |                            | 09/14/23 02:33             |          |
| Client Sample ID: S-1 (3')                    |               |              |            |          |        |          | Lab Sam                    | ple ID: 880-3              | 3031-4   |
| Date Collected: 09/07/23 00:00                |               |              |            |          |        |          |                            | Matri                      | x: Solic |
| Date Received: 09/08/23 13:34                 |               |              |            |          |        |          |                            |                            |          |
| Method: SW846 8021B - Volatile                | Organic Comp  | ounds (GC    | )          |          |        |          |                            |                            |          |
| Analyte                                       |               | Qualifier    | RL         | MDL      |        | D        | Prepared                   | Analyzed                   | Dil Fac  |
| Benzene                                       | <0.00199      | U            | 0.00199    |          | mg/Kg  |          | 09/08/23 13:56             | 09/09/23 04:54             |          |
| Toluene                                       | <0.00199      |              | 0.00199    |          | mg/Kg  |          | 09/08/23 13:56             | 09/09/23 04:54             |          |
| Ethylbenzene                                  | <0.00199      | U            | 0.00199    |          | mg/Kg  |          | 09/08/23 13:56             | 09/09/23 04:54             |          |
| m-Xylene & p-Xylene                           | <0.00398      | U            | 0.00398    |          | mg/Kg  |          | 09/08/23 13:56             | 09/09/23 04:54             |          |
| o-Xylene                                      | <0.00199      | U            | 0.00199    |          | mg/Kg  |          | 09/08/23 13:56             | 09/09/23 04:54             |          |
| Xylenes, Total                                | <0.00398      | U            | 0.00398    |          | mg/Kg  |          | 09/08/23 13:56             | 09/09/23 04:54             |          |
| Surrogate                                     | %Recovery     | Qualifier    | Limits     |          |        |          | Prepared                   | Analyzed                   | Dil Fa   |
| 4-Bromofluorobenzene (Surr)                   | 80            |              | 70 - 130   |          |        |          | 09/08/23 13:56             | 09/09/23 04:54             | 1        |
| 1,4-Difluorobenzene (Surr)<br>                | 79            |              | 70 - 130   |          |        |          | 09/08/23 13:56             | 09/09/23 04:54             | -        |
| Method: TAL SOP Total BTEX - T                | otal BTEX Cal | culation     |            |          |        |          |                            |                            |          |
| Analyte                                       | Result        | Qualifier    | RL         | MDL      | Unit   | D        | Prepared                   | Analyzed                   | Dil Fac  |
| Total BTEX                                    | <0.00398      | U            | 0.00398    |          | mg/Kg  |          |                            | 09/11/23 13:03             |          |
| <br>Method: SW846 8015 NM - Diese             | I Range Organ | ics (DRO) (  | GC)        |          |        |          |                            |                            |          |
| Analyte                                       | Result        | Qualifier    | RL         | MDL      | Unit   | D        | Prepared                   | Analyzed                   | Dil Fac  |
| Total TPH                                     | <49.6         | U            | 49.6       |          | mg/Kg  |          |                            | 09/12/23 09:16             |          |
| <br>Method: SW846 8015B NM - Dies             | el Range Orga | nics (DRO)   | (GC)       |          |        |          |                            |                            |          |
| Analyte                                       | Result        | Qualifier    | RL         | MDL      | Unit   | D        | Prepared                   | Analyzed                   | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10       | <49.6         | U            | 49.6       |          | mg/Kg  |          | 09/08/23 15:14             | 09/11/23 19:09             |          |
| Diesel Range Organics (Over                   | <49.6         | U            | 49.6       |          | mg/Kg  |          | 09/08/23 15:14             | 09/11/23 19:09             |          |
| C10-C28)<br>Oll Range Organics (Over C28-C36) | <49.6         | U            | 49.6       |          | mg/Kg  |          | 09/08/23 15:14             | 09/11/23 19:09             |          |
| Surrogate                                     | %Recovery     | Qualifier    | Limits     |          |        |          | Prepared                   | Analyzed                   | Dil Fa   |
| 1-Chlorooctane                                | 135           | S1+          | 70 - 130   |          |        |          | 09/08/23 15:14             | 09/11/23 19:09             |          |
| o-Terphenyl                                   | 140           | S1+          | 70 - 130   |          |        |          | 09/08/23 15:14             | 09/11/23 19:09             | -        |
| _<br>Method: EPA 300.0 - Anions, Ion          | Chromatogram  | ohy - Solubl | e          |          |        |          |                            |                            |          |
| Analyte                                       |               | Qualifier    | RL         | MDL      | Unit   | D        | Prepared                   | Analyzed                   | Dil Fac  |
|                                               |               |              |            |          |        |          |                            | -                          |          |

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits |
|---------------|------------------------|----------|----------|-----------------------------------------------|
|               |                        | BFB1     | DFBZ1    |                                               |
| Sample ID     | Client Sample ID       | (70-130) | (70-130) |                                               |
| 2833-A-8-A MB | Method Blank           | 65 S1-   | 101      |                                               |
| 031-1         | S-1 (0-1')             | 79       | 86       |                                               |
| 3031-2        | S-1 (1.5')             | 96       | 73       |                                               |
| 3031-3        | S-1 (2')               | 80       | 72       |                                               |
| 3031-4        | S-1 (3')               | 80       | 79       |                                               |
| 10-A-1-A MS   | Matrix Spike           | 113      | 113      |                                               |
| 10-A-1-B MSD  | Matrix Spike Duplicate | 110      | 96       |                                               |
| 0-62082/1-A   | Lab Control Sample     | 122      | 111      |                                               |
| 880-62082/2-A | Lab Control Sample Dup | 110      | 113      |                                               |
| 0-62082/5-A   | Method Blank           | 62 S1-   | 99       |                                               |

#### Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

| Ma | TLX | SOI | α |
|----|-----|-----|---|
|    |     |     |   |

|                     |                        |          |          | Percent Surrogate Recovery |
|---------------------|------------------------|----------|----------|----------------------------|
|                     |                        | 1CO1     | OTPH1    |                            |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                            |
| 880-33016-A-1-E MS  | Matrix Spike           | 120      | 116      |                            |
| 880-33016-A-1-F MSD | Matrix Spike Duplicate | 128      | 124      |                            |
| 880-33031-1         | S-1 (0-1')             | 145 S1+  | 152 S1+  |                            |
| 880-33031-2         | S-1 (1.5')             | 138 S1+  | 143 S1+  |                            |
| 880-33031-3         | S-1 (2')               | 138 S1+  | 146 S1+  |                            |
| 880-33031-4         | S-1 (3')               | 135 S1+  | 140 S1+  |                            |
| LCS 880-62103/2-A   | Lab Control Sample     | 98       | 109      |                            |
| LCSD 880-62103/3-A  | Lab Control Sample Dup | 94       | 108      |                            |
| MB 880-62103/1-A    | Method Blank           | 110      | 119      |                            |

#### Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl 5

6

Prep Type: Total/NA

Prep Type: Total/NA

# Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: 880-32833-A-8- |                    |           |               |         |     |               |       |          |       |                       | mple ID: Metho          |          |
|-------------------------------|--------------------|-----------|---------------|---------|-----|---------------|-------|----------|-------|-----------------------|-------------------------|----------|
| Matrix: Solid                 |                    |           |               |         |     |               |       |          |       |                       | Prep Type:              |          |
| Analysis Batch: 62040         |                    |           |               |         |     |               |       |          |       |                       | Prep Batc               | h: 62041 |
| Awahata                       |                    | MB        |               |         |     | 11            |       | -        | _     |                       | A                       | D!!      |
| Analyte                       |                    | Qualifier |               |         | MDL | Unit          |       | <u>D</u> |       | repared               | Analyzed                | Dil Fac  |
| Benzene                       | < 0.00200          |           | 0.00200       |         |     | mg/Kg         |       |          |       | 8/23 08:55            | 09/08/23 17:11          | 1        |
|                               | <0.00200           |           | 0.00200       |         |     | mg/Kg         |       |          |       | 8/23 08:55            | 09/08/23 17:11          | 1        |
| Ethylbenzene                  | <0.00200           |           | 0.00200       |         |     | mg/Kg         |       |          |       | 8/23 08:55            | 09/08/23 17:11          | 1        |
| m-Xylene & p-Xylene           | <0.00400           | U         | 0.00400       |         |     | mg/Kg         |       |          | 09/0  | 8/23 08:55            | 09/08/23 17:11          | 1        |
| o-Xylene                      | <0.00200           | U         | 0.00200       |         |     | mg/Kg         |       |          | 09/0  | 8/23 08:55            | 09/08/23 17:11          | 1        |
| Xylenes, Total                | <0.00400           | U         | 0.00400       |         |     | mg/Kg         |       |          | 09/0  | 8/23 08:55            | 09/08/23 17:11          | 1        |
|                               | MB                 | МВ        |               |         |     |               |       |          |       |                       |                         |          |
| Surrogate                     | %Recovery          | Qualifier | Limits        |         |     |               |       |          | P     | repared               | Analyzed                | Dil Fac  |
| 4-Bromofluorobenzene (Surr)   | 65                 | S1-       | 70 - 130      |         |     |               |       |          | 09/0  | 8/23 08:55            | 09/08/23 17:11          | 1        |
| 1,4-Difluorobenzene (Surr)    | 101                |           | 70 - 130      |         |     |               |       |          | 09/0  | 8/23 08:55            | 09/08/23 17:11          | 1        |
|                               |                    |           |               |         |     |               |       |          |       |                       |                         |          |
| Lab Sample ID: MB 880-62082/  | 5-A                |           |               |         |     |               |       |          |       | Client Sa             | mple ID: Metho          |          |
| Matrix: Solid                 |                    |           |               |         |     |               |       |          |       |                       | Prep Type:              |          |
| Analysis Batch: 62040         |                    |           |               |         |     |               |       |          |       |                       | Prep Batc               | h: 62082 |
| A h da                        |                    | MB        |               |         |     | 11            |       | -        | _     |                       | <b>A</b>                | D!!      |
| Analyte<br>Benzene            | Result<br><0.00200 |           | RL<br>0.00200 |         | MDL | Unit<br>mg/Kg |       | <u>D</u> |       | repared<br>8/23 11:01 | Analyzed 09/08/23 22:40 | Dil Fac  |
| Toluene                       | <0.00200           |           | 0.00200       |         |     |               |       |          |       | 8/23 11:01            | 09/08/23 22:40          | 1        |
|                               |                    |           |               |         |     | mg/Kg         |       |          |       |                       |                         |          |
| Ethylbenzene                  | < 0.00200          |           | 0.00200       |         |     | mg/Kg         |       |          |       | 8/23 11:01            | 09/08/23 22:40          | 1        |
| m-Xylene & p-Xylene           | < 0.00400          |           | 0.00400       |         |     | mg/Kg         |       |          |       | 8/23 11:01            | 09/08/23 22:40          | 1        |
| o-Xylene                      | <0.00200           |           | 0.00200       |         |     | mg/Kg         |       |          |       | 8/23 11:01            | 09/08/23 22:40          | 1        |
| Xylenes, Total                | <0.00400           | U         | 0.00400       |         |     | mg/Kg         |       |          | 09/0  | 8/23 11:01            | 09/08/23 22:40          | 1        |
|                               | МВ                 | МВ        |               |         |     |               |       |          |       |                       |                         |          |
| Surrogate                     | %Recovery          | Qualifier | Limits        |         |     |               |       |          | P     | repared               | Analyzed                | Dil Fac  |
| 4-Bromofluorobenzene (Surr)   | 62                 | S1-       | 70 - 130      |         |     |               |       |          | 09/0  | 8/23 11:01            | 09/08/23 22:40          | 1        |
| 1,4-Difluorobenzene (Surr)    | 99                 |           | 70 - 130      |         |     |               |       |          | 09/0  | 8/23 11:01            | 09/08/23 22:40          | 1        |
| Lab Sample ID: LCS 890 62092  | N/4 A              |           |               |         |     |               |       | <b>C</b> | liont | Sampla                | D: Lab Control          | Comple   |
| Lab Sample ID: LCS 880-62082  | ./ <b>I-A</b>      |           |               |         |     |               |       |          | nem   | Sample                |                         |          |
| Matrix: Solid                 |                    |           |               |         |     |               |       |          |       |                       | Prep Type:              |          |
| Analysis Batch: 62040         |                    |           | <b>o</b> "    |         |     |               |       |          |       |                       | Prep Batc               | n: 62082 |
|                               |                    |           | Spike         |         | LCS |               |       |          | _     | ~ <b>-</b>            | %Rec                    |          |
| Analyte                       |                    |           | Added         | Result  | Qua |               | Jnit  |          | D     | %Rec                  | Limits                  |          |
| Benzene                       |                    |           | 0.100         | 0.09941 |     |               | ng/Kg |          |       | 99                    | 70 - 130                |          |
| Toluene                       |                    |           | 0.100         | 0.1014  |     |               | ng/Kg |          |       | 101                   | 70 - 130                |          |
| Ethylbenzene                  |                    |           | 0.100         | 0.1016  |     | r             | ng/Kg |          |       | 102                   | 70 - 130                |          |
| m-Xylene & p-Xylene           |                    |           | 0.200         | 0.2210  |     | r             | ng/Kg |          |       | 111                   | 70 - 130                |          |
| o-Xylene                      |                    |           | 0.100         | 0.1157  |     | r             | ng/Kg |          |       | 116                   | 70 - 130                |          |
|                               | LCS LCS            | ;         |               |         |     |               |       |          |       |                       |                         |          |
| Surrogate                     | %Recovery Qua      | lifier    | Limits        |         |     |               |       |          |       |                       |                         |          |
| 4-Bromofluorobenzene (Surr)   | 122                |           | 70 - 130      |         |     |               |       |          |       |                       |                         |          |
| 1,4-Difluorobenzene (Surr)    | 111                |           | 70 - 130      |         |     |               |       |          |       |                       |                         |          |
|                               |                    |           |               |         |     |               | •     |          | •     |                       |                         |          |
| Lab Sample ID: LCSD 880-6208  | 52/2-A             |           |               |         |     |               | Cli   | ent      | Sam   | ipie ID: La           | ab Control San          |          |
| Matrix: Solid                 |                    |           |               |         |     |               |       |          |       |                       | Prep Type:              |          |
| Analysis Batch: 62040         |                    |           |               |         |     |               |       |          |       |                       | Prep Batc               |          |
|                               |                    |           | Spike         | LCSD    | LCS | D             |       |          |       |                       | %Rec                    | RPD      |
|                               |                    |           | •             |         |     |               |       |          |       | %Rec                  |                         |          |

| 0     | 4       | 35    |
|-------|---------|-------|
| Eurof | ins Mic | lland |

5

7 8

Job ID: 880-33031-1

SDG: Lea County NM

Benzene

0.09561

mg/Kg

96

70 - 130

0.100

35

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-33031-1 SDG: Lea County NM

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCSD 880-6   | 2082/2-A  |           |          |         |           | Clie  | nt Sam  | ple ID: I | Lab Contro   |          |         |
|-----------------------------|-----------|-----------|----------|---------|-----------|-------|---------|-----------|--------------|----------|---------|
| Matrix: Solid               |           |           |          |         |           |       |         |           | Prep 1       | Гуре: То | tal/NA  |
| Analysis Batch: 62040       |           |           |          |         |           |       |         |           | Prep         | Batch:   | 62082   |
|                             |           |           | Spike    | LCSD    | LCSD      |       |         |           | %Rec         |          | RPD     |
| Analyte                     |           |           | Added    | Result  | Qualifier | Unit  | D       | %Rec      | Limits       | RPD      | Limi    |
| Toluene                     |           |           | 0.100    | 0.09614 |           | mg/Kg |         | 96        | 70 - 130     | 5        | 35      |
| Ethylbenzene                |           |           | 0.100    | 0.09614 |           | mg/Kg |         | 96        | 70 - 130     | 6        | 35      |
| m-Xylene & p-Xylene         |           |           | 0.200    | 0.2067  |           | mg/Kg |         | 103       | 70 - 130     | 7        | 3       |
| o-Xylene                    |           |           | 0.100    | 0.1039  |           | mg/Kg |         | 104       | 70 - 130     | 11       | 35      |
|                             | LCSD      | LCSD      |          |         |           |       |         |           |              |          |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |         |           |       |         |           |              |          |         |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |         |           |       |         |           |              |          |         |
| 1,4-Difluorobenzene (Surr)  | 113       |           | 70 - 130 |         |           |       |         |           |              |          |         |
| Lab Sample ID: 890-5210-A-  | 1-A MS    |           |          |         |           |       |         | Client    | Sample ID    | • Matrix | Spike   |
| Matrix: Solid               |           |           |          |         |           |       |         | onem      |              | Гуре: То |         |
| Analysis Batch: 62040       |           |           |          |         |           |       |         |           |              | Batch:   |         |
|                             | Sample    | Sample    | Spike    | MS      | MS        |       |         |           | %Rec         | 201011   |         |
| Analyte                     | •         | Qualifier | Added    |         | Qualifier | Unit  | D       | %Rec      | Limits       |          |         |
| Benzene                     | < 0.00199 | U         | 0.0998   | 0.08017 |           | mg/Kg |         | 80        | 70 - 130     |          |         |
| Toluene                     | <0.00199  |           | 0.0998   | 0.08157 |           | mg/Kg |         | 82        | 70 - 130     |          |         |
| Ethylbenzene                | <0.00199  | U         | 0.0998   | 0.08150 |           | mg/Kg |         | 82        | 70 - 130     |          |         |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.200    | 0.1714  |           | mg/Kg |         | 86        | 70 - 130     |          |         |
| o-Xylene                    | <0.00199  | U         | 0.0998   | 0.08588 |           | mg/Kg |         | 86        | 70 - 130     |          |         |
|                             | MS        | MS        |          |         |           |       |         |           |              |          |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |         |           |       |         |           |              |          |         |
| 4-Bromofluorobenzene (Surr) | 113       |           | 70 - 130 |         |           |       |         |           |              |          |         |
| 1,4-Difluorobenzene (Surr)  | 113       |           | 70 - 130 |         |           |       |         |           |              |          |         |
| Lab Sample ID: 890-5210-A-  | 1-B MSD   |           |          |         |           | CI    | ient Sa | ample ID  | ): Matrix Sp | oike Dup | olicate |
| Matrix: Solid               |           |           |          |         |           |       |         |           | Prep 1       | Гуре: То | tal/NA  |
| Analysis Batch: 62040       |           |           |          |         |           |       |         |           | Prep         | Batch:   | 62082   |
|                             | Sample    | Sample    | Spike    | MSD     | MSD       |       |         |           | %Rec         |          | RPD     |
|                             |           | •         | •        |         |           |       |         |           |              |          |         |

|                             | Sample    | Sample    | Spike    | MSD     | MSD       |       |   |      | %Rec     |     | RPD   |
|-----------------------------|-----------|-----------|----------|---------|-----------|-------|---|------|----------|-----|-------|
| Analyte                     | Result    | Qualifier | Added    | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene                     | <0.00199  | U         | 0.100    | 0.08514 |           | mg/Kg |   | 85   | 70 - 130 | 6   | 35    |
| Toluene                     | <0.00199  | U         | 0.100    | 0.08931 |           | mg/Kg |   | 89   | 70 - 130 | 9   | 35    |
| Ethylbenzene                | <0.00199  | U         | 0.100    | 0.08778 |           | mg/Kg |   | 88   | 70 - 130 | 7   | 35    |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.200    | 0.1806  |           | mg/Kg |   | 90   | 70 - 130 | 5   | 35    |
| o-Xylene                    | <0.00199  | U         | 0.100    | 0.09035 |           | mg/Kg |   | 90   | 70 - 130 | 5   | 35    |
|                             | MSD       | MSD       |          |         |           |       |   |      |          |     |       |
| Surrogate                   | %Recovery | Qualifier | Limits   |         |           |       |   |      |          |     |       |
| 4-Bromofluorobenzene (Surr) | 110       |           | 70 - 130 |         |           |       |   |      |          |     |       |

## Method: 8015B NM - Diesel Range Organics (DRO) (GC)

96

| Lab Sample ID: MB 880-62103/1-A<br>Matrix: Solid<br>Analysis Batch: 62118 |        |           |      |     |       | Client Sa | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA       |         |
|---------------------------------------------------------------------------|--------|-----------|------|-----|-------|-----------|---------------------------------------------------------|----------------|---------|
|                                                                           | MB     | MB        |      |     |       |           |                                                         |                |         |
| Analyte                                                                   | Result | Qualifier | RL   | MDL | Unit  | D         | Prepared                                                | Analyzed       | Dil Fac |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 |     | mg/Kg |           | 09/08/23 15:14                                          | 09/11/23 08:30 | 1       |
| (GRO)-C6-C10                                                              |        |           |      |     |       |           |                                                         |                |         |

70 - 130

Eurofins Midland

Page 103 of 406

1,4-Difluorobenzene (Surr)

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Job ID: 880-33031-1 SDG: Lea County NM

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-62103/                  | /1 <b>-A</b> |       |           |          |        |     |        |       |          |      | Client Sa   | mple ID: N             |        |              |
|-----------------------------------------------|--------------|-------|-----------|----------|--------|-----|--------|-------|----------|------|-------------|------------------------|--------|--------------|
| Matrix: Solid                                 |              |       |           |          |        |     |        |       |          |      |             | Prep T                 | ype: T | otal/NA      |
| Analysis Batch: 62118                         |              |       |           |          |        |     |        |       |          |      |             | Prep                   | Batch  | : 62103      |
|                                               |              | МВ    |           |          |        |     |        |       |          |      |             |                        |        |              |
| Analyte                                       |              |       | Qualifier | RL       |        | MDL | Unit   |       | <u>D</u> |      | repared     | Analyze                |        | Dil Fac      |
| Diesel Range Organics (Over                   | <            | 50.0  | U         | 50.0     | )      |     | mg/K   | g     |          | 09/0 | 8/23 15:14  | 09/11/23 0             | 08:30  |              |
| C10-C28)<br>Oll Range Organics (Over C28-C36) | _            | 50.0  |           | 50.0     | h      |     | mg/K   | a     |          | 00/0 | 8/23 15:14  | 09/11/23 0             | 18.30  |              |
| On Range Organics (Over C20-C30)              |              | 50.0  | 0         | 50.0     | )      |     | my/K   | g     |          | 09/0 | 10/23 13.14 | 09/11/23 0             | 0.30   |              |
|                                               |              | MB    | МВ        |          |        |     |        |       |          |      |             |                        |        |              |
| Surrogate                                     | %Reco        | very  | Qualifier | Limits   | _      |     |        |       |          | P    | repared     | Analyz                 | ed     | Dil Fa       |
| 1-Chlorooctane                                |              | 110   |           | 70 - 130 |        |     |        |       |          | 09/0 | 08/23 15:14 | 09/11/23 0             | 08:30  |              |
| o-Terphenyl                                   |              | 119   |           | 70 - 130 |        |     |        |       |          | 09/0 | 08/23 15:14 | 09/11/23 0             | 08:30  |              |
| Lab Sample ID: LCS 880-62103                  | 3/2-4        |       |           |          |        |     |        |       | CI       | ient | Sample      | ID: Lab Co             | ntrol  | Sample       |
| Matrix: Solid                                 | ~~~~         |       |           |          |        |     |        |       | 0.       | icin | Campie      | Prep T                 |        |              |
| Analysis Batch: 62118                         |              |       |           |          |        |     |        |       |          |      |             |                        |        | : 62103      |
| Analysis Baten. 02110                         |              |       |           | Spike    | LCS    | LCS |        |       |          |      |             | %Rec                   | Batten | . 02100      |
| Analyte                                       |              |       |           | Added    | Result |     |        | Unit  |          | D    | %Rec        | Limits                 |        |              |
| Gasoline Range Organics                       |              |       |           | 1000     | 955.3  |     |        | mg/Kg |          | _    | 96          | 70 - 130               |        |              |
| (GRO)-C6-C10                                  |              |       |           |          | 200.0  |     |        |       |          |      | 20          |                        |        |              |
| Diesel Range Organics (Over                   |              |       |           | 1000     | 964.0  |     |        | mg/Kg |          |      | 96          | 70 - 130               |        |              |
| C10-C28)                                      |              |       |           |          |        |     |        |       |          |      |             |                        |        |              |
|                                               | LCS          | LCS   |           |          |        |     |        |       |          |      |             |                        |        |              |
| Surrogate                                     | %Recovery    | Quali | ifier     | Limits   |        |     |        |       |          |      |             |                        |        |              |
| 1-Chlorooctane                                | 98           |       |           | 70 - 130 |        |     |        |       |          |      |             |                        |        |              |
| o-Terphenyl                                   | 109          |       |           | 70 - 130 |        |     |        |       |          |      |             |                        |        |              |
| Matrix: Solid<br>Analysis Batch: 62118        |              |       |           | Spike    | LCSD   | LCS | :D     |       |          |      |             | Prep T<br>Prep<br>%Rec |        | : 6210<br>RP |
| Analyte                                       |              |       |           | Added    | Result |     |        | Unit  |          | D    | %Rec        | Limits                 | RPD    |              |
| Gasoline Range Organics                       |              |       |           | 1000     | 925.0  |     |        | mg/Kg |          | _    | 92          | 70 - 130               | 3      |              |
| (GRO)-C6-C10                                  |              |       |           |          |        |     |        | 0 0   |          |      |             |                        |        |              |
| Diesel Range Organics (Over                   |              |       |           | 1000     | 970.3  |     |        | mg/Kg |          |      | 97          | 70 - 130               | 1      | 20           |
| C10-C28)                                      |              |       |           |          |        |     |        |       |          |      |             |                        |        |              |
|                                               | LCSD         | LCSE  | )         |          |        |     |        |       |          |      |             |                        |        |              |
| Surrogate                                     | %Recovery    | Quali | ifier     | Limits   |        |     |        |       |          |      |             |                        |        |              |
| 1-Chlorooctane                                | 94           |       |           | 70 - 130 |        |     |        |       |          |      |             |                        |        |              |
| o-Terphenyl                                   | 108          |       |           | 70 - 130 |        |     |        |       |          |      |             |                        |        |              |
| Lab Sample ID: 880-33016-A-1                  | -E MS        |       |           |          |        |     |        |       |          |      | Client 9    | Sample ID:             | Matri  | v Snike      |
| Matrix: Solid                                 |              |       |           |          |        |     |        |       |          |      | onent c     | Prep T                 |        |              |
| Analysis Batch: 62118                         |              |       |           |          |        |     |        |       |          |      |             |                        |        | : 6210       |
| Analysis Baten. 02110                         | Sample       | Samn  | ble       | Spike    | MS     | MS  |        |       |          |      |             | %Rec                   | Batten | . 02100      |
| Analyte                                       | Result       | -     |           | Added    | Result |     | lifier | Unit  |          | D    | %Rec        | Limits                 |        |              |
| Gasoline Range Organics                       | <50.1        |       |           | 997      | 955.7  |     |        | mg/Kg |          | _    | 96          | 70 - 130               |        |              |
| (GRO)-C6-C10                                  |              | -     |           |          |        |     |        | 5. 5  |          |      |             |                        |        |              |
| Diesel Range Organics (Over<br>C10-C28)       | <50.1        | U     |           | 997      | 1098   |     |        | mg/Kg |          |      | 106         | 70 - 130               |        |              |
|                                               | MS           | мs    |           |          |        |     |        |       |          |      |             |                        |        |              |
| Surrogate                                     |              | Quali | ifier     | Limits   |        |     |        |       |          |      |             |                        |        |              |
| 1-Chlorooctane                                | 120          |       |           | 70 - 130 |        |     |        |       |          |      |             |                        |        |              |
|                                               |              |       |           |          |        |     |        |       |          |      |             |                        |        |              |

116

o-Terphenyl

70 - 130

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-33031-1 SDG: Lea County NM

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Matrix: Solid                                                                                                                                                                                                                                                                                                | -1-F MSD                                                              |                     |                                                                |                                                                     |                                                         |                              | ient 30          |                                                                                                         | ): Matrix Sp                                                                                                                                              | ріке Бир<br>Гуре: То                                                                        |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------|----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------|------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                                                                                                                                                                                                                              |                                                                       |                     |                                                                |                                                                     |                                                         |                              |                  |                                                                                                         |                                                                                                                                                           |                                                                                             |                                                   |
| Analysis Batch: 62118                                                                                                                                                                                                                                                                                        | Commis                                                                | Commis              | Cuilta                                                         | MCD                                                                 | MOD                                                     |                              |                  |                                                                                                         |                                                                                                                                                           | Batch:                                                                                      | RPE                                               |
| Analyta                                                                                                                                                                                                                                                                                                      |                                                                       | Sample              | Spike                                                          |                                                                     | MSD<br>Qualifian                                        | 11                           |                  | % Dee                                                                                                   | %Rec                                                                                                                                                      | 000                                                                                         |                                                   |
| Analyte                                                                                                                                                                                                                                                                                                      |                                                                       | Qualifier           | Added                                                          |                                                                     | Qualifier                                               | Unit                         | D                | %Rec                                                                                                    | Limits                                                                                                                                                    | RPD                                                                                         | Limi                                              |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                      | <50.1                                                                 | U F2                | 997                                                            | 1180                                                                | F2                                                      | mg/Kg                        |                  | 118                                                                                                     | 70 - 130                                                                                                                                                  | 21                                                                                          | 20                                                |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                      | <50.1                                                                 | U                   | 997                                                            | 1185                                                                |                                                         | mg/Kg                        |                  | 115                                                                                                     | 70 - 130                                                                                                                                                  | 8                                                                                           | 2                                                 |
|                                                                                                                                                                                                                                                                                                              | MSD                                                                   | MSD                 |                                                                |                                                                     |                                                         |                              |                  |                                                                                                         |                                                                                                                                                           |                                                                                             |                                                   |
| Surrogate                                                                                                                                                                                                                                                                                                    | %Recovery                                                             | Qualifier           | Limits                                                         |                                                                     |                                                         |                              |                  |                                                                                                         |                                                                                                                                                           |                                                                                             |                                                   |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                               | 128                                                                   |                     | 70 - 130                                                       |                                                                     |                                                         |                              |                  |                                                                                                         |                                                                                                                                                           |                                                                                             |                                                   |
| o-Terphenyl                                                                                                                                                                                                                                                                                                  | 124                                                                   |                     | 70 - 130                                                       |                                                                     |                                                         |                              |                  |                                                                                                         |                                                                                                                                                           |                                                                                             |                                                   |
| Lab Sample ID: MB 880-6215<br>Matrix: Solid<br>Analysis Batch: 62392                                                                                                                                                                                                                                         | 2/1-A                                                                 |                     |                                                                |                                                                     |                                                         |                              |                  | Client S                                                                                                | ample ID:<br>Prep                                                                                                                                         | Method<br>Type: So                                                                          |                                                   |
| Amaluta                                                                                                                                                                                                                                                                                                      |                                                                       | MB MB               |                                                                | ы                                                                   |                                                         |                              |                  |                                                                                                         | Analu                                                                                                                                                     | na d                                                                                        |                                                   |
| Analyte                                                                                                                                                                                                                                                                                                      |                                                                       | esult Qualifier     |                                                                |                                                                     | MDL Unit                                                |                              | D P              | repared                                                                                                 | Analyz                                                                                                                                                    |                                                                                             | Dil Fa                                            |
| Chloride                                                                                                                                                                                                                                                                                                     |                                                                       | <5.00 U             |                                                                | 5.00                                                                | mg/K                                                    | g                            |                  |                                                                                                         | 09/13/23                                                                                                                                                  | 23.20                                                                                       |                                                   |
|                                                                                                                                                                                                                                                                                                              | 32/2-A                                                                |                     |                                                                |                                                                     |                                                         |                              | Cilent           | Sample                                                                                                  | ; ID. Lab C                                                                                                                                               | ontrol Sa                                                                                   | annu                                              |
| Matrix: Solid                                                                                                                                                                                                                                                                                                |                                                                       |                     |                                                                |                                                                     |                                                         |                              |                  |                                                                                                         |                                                                                                                                                           | Type: So                                                                                    |                                                   |
| Matrix: Solid                                                                                                                                                                                                                                                                                                |                                                                       |                     | Spike                                                          | LCS                                                                 | LCS                                                     |                              |                  |                                                                                                         |                                                                                                                                                           |                                                                                             |                                                   |
| Matrix: Solid<br>Analysis Batch: 62392                                                                                                                                                                                                                                                                       |                                                                       |                     | Spike<br>Added                                                 |                                                                     | LCS<br>Qualifier                                        | Unit                         | D                | %Rec                                                                                                    | Prep                                                                                                                                                      |                                                                                             |                                                   |
| Matrix: Solid<br>Analysis Batch: 62392<br><sup>Analyte</sup>                                                                                                                                                                                                                                                 |                                                                       |                     |                                                                |                                                                     |                                                         | - <mark>Unit</mark><br>mg/Kg |                  | -                                                                                                       | Prep<br>%Rec                                                                                                                                              |                                                                                             |                                                   |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride                                                                                                                                                                                                                                                |                                                                       |                     | Added                                                          | Result                                                              |                                                         | mg/Kg                        | D                | <b>%Rec</b><br>99                                                                                       | Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                        | Type: So                                                                                    | olub                                              |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62                                                                                                                                                                                                                  |                                                                       |                     | Added                                                          | Result                                                              |                                                         | mg/Kg                        | D                | <b>%Rec</b><br>99                                                                                       | Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                        | Type: So                                                                                    | olubl                                             |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid                                                                                                                                                                                                 |                                                                       |                     | Added                                                          | Result                                                              |                                                         | mg/Kg                        | D                | <b>%Rec</b><br>99                                                                                       | Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                        | Type: So                                                                                    | e Du                                              |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid                                                                                                                                                                                                 |                                                                       |                     | Added<br>250                                                   | Result<br>246.8                                                     | Qualifier                                               | mg/Kg                        | D                | <b>%Rec</b><br>99                                                                                       | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep                                                                                                  | Type: So                                                                                    | e Du<br>olubi                                     |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392                                                                                                                                                                        |                                                                       |                     | Added<br>250<br>Spike                                          | Result<br>246.8<br>LCSD                                             | Qualifier                                               | mg/Kg<br>Clie                | D                | %Rec<br>99                                                                                              | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec                                                                                          | Type: So<br><br>ol Sampl<br>Type: So                                                        | e Du<br>olubi<br>RP                               |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte                                                                                                                                                             |                                                                       |                     | Added<br>250<br>Spike<br>Added                                 | Result<br>246.8<br>LCSD<br>Result                                   | Qualifier                                               | mg/Kg<br>Clie<br>Unit        | D                | %Rec<br>99<br>ple ID: I                                                                                 | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits                                                                                | Type: So<br>DI Sampl<br>Type: So<br>                                                        | e Du<br>olubi<br>olubi<br>RP<br>Lim               |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte                                                                                                                                                             |                                                                       |                     | Added<br>250<br>Spike                                          | Result<br>246.8<br>LCSD                                             | Qualifier                                               | mg/Kg<br>Clie                | D                | %Rec<br>99                                                                                              | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec                                                                                          | Type: So<br><br>ol Sampl<br>Type: So                                                        | e Du<br>olubi<br>olubi<br>RP<br>Lim               |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride                                                                                                                                                 | 152/3-A                                                               |                     | Added<br>250<br>Spike<br>Added                                 | Result<br>246.8<br>LCSD<br>Result                                   | Qualifier                                               | mg/Kg<br>Clie<br>Unit        | D                | %Rec           99           ple ID: I           %Rec           98                                       | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110                                                                    | Type: So<br>DI Sampl<br>Type: So<br><u>RPD</u><br>1                                         | e Du<br>olubi<br>olubi<br>RP<br>Lim<br>2          |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-                                                                                                                  | 152/3-A                                                               |                     | Added<br>250<br>Spike<br>Added                                 | Result<br>246.8<br>LCSD<br>Result                                   | Qualifier                                               | mg/Kg<br>Clie<br>Unit        | D                | %Rec           99           ple ID: I           %Rec           98                                       | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID                                                       | Type: So<br>ol Sampl<br>Type: So<br><u></u><br>1<br>: Matrix                                | e Du<br>olubi<br>RP<br>Lim<br>2<br>Spik           |
| Lab Sample ID: LCS 880-621<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-<br>Matrix: Solid<br>Analysis Batch: 62392                                          | 152/3-A                                                               |                     | Added<br>250<br>Spike<br>Added                                 | Result<br>246.8<br>LCSD<br>Result                                   | Qualifier                                               | mg/Kg<br>Clie<br>Unit        | D                | %Rec           99           ple ID: I           %Rec           98                                       | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID                                                       | Type: So<br>DI Sampl<br>Type: So<br><u>RPD</u><br>1                                         | e Du<br>olubi<br>RP<br>Lim<br>2<br>Spik           |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-                                                                                                                  |                                                                       |                     | Added<br>250<br>Spike<br>Added<br>250                          | Result<br>246.8<br>LCSD<br>Result<br>243.8                          | Qualifier<br>LCSD<br>Qualifier                          | mg/Kg<br>Clie<br>Unit        | D                | %Rec           99           ple ID: I           %Rec           98                                       | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep                                               | Type: So<br>ol Sampl<br>Type: So<br><u></u><br>1<br>: Matrix                                | e Du<br>olubi<br>olubi<br>RP<br>Lim<br>2<br>Spik  |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-<br>Matrix: Solid<br>Analysis Batch: 62392                                                                        | 2152/3-A<br>                                                          | Sample<br>Qualifier | Added<br>250<br>Spike<br>Added<br>250<br>Spike                 | Result<br>246.8<br>LCSD<br>Result<br>243.8                          | Qualifier<br>LCSD<br>Qualifier<br>MS                    | Unit<br>mg/Kg                | D<br>nt Sam<br>D | %Rec<br>99<br>ple ID: I<br>%Rec<br>98<br>Client                                                         | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec                                       | Type: So<br>ol Sampl<br>Type: So<br><u></u><br>1<br>: Matrix                                | e Du<br>olubi<br>RP<br>Lim<br>2<br>Spik           |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte                                                             | 2152/3-A<br>                                                          | Qualifier           | Added<br>250<br>Spike<br>Added<br>250                          | Result<br>246.8<br>LCSD<br>Result<br>243.8                          | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | mg/Kg<br>Clie<br>Unit        | D                | %Rec           99           ple ID: I           %Rec           98                                       | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep                                               | Type: So<br>ol Sampl<br>Type: So<br><u></u><br>1<br>: Matrix                                | e Du<br>olubi<br>RP<br>Lim<br>2<br>Spik           |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-<br>Matrix: Solid | 2152/3-A<br>-1-F MS<br>Sample<br>Result<br>40.4                       | Qualifier           | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | Result<br>246.8<br>LCSD<br>Result<br>243.8<br>MS<br>Result          | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg                | D                | %Rec         99           ple ID: I         %Rec           98         Client           %Rec         122 | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110                 | Type: So<br>DI Sampl<br>Type: So<br><u>RPD</u><br>1<br>2: Matrix<br>Type: So                | e Du<br>olubi<br>RP<br>Lim<br>2<br>Spik<br>olubi  |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-<br>Matrix: Solid | -1-F MS<br>                                                           | Qualifier<br>F1     | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added<br>251 | Result<br>246.8<br>LCSD<br>Result<br>243.8<br>MS<br>Result<br>345.3 | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier<br>F1 | Unit<br>mg/Kg                | D                | %Rec         99           ple ID: I         %Rec           98         Client           %Rec         122 | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>0: Matrix Sp | Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>1<br>: Matrix<br>Type: So<br><br>pike Dup | e Du<br>olubl<br>RP<br>Lim<br>2<br>Spik<br>olubl  |
| Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62392<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33029-A-<br>Matrix: Solid                                                                                                 | 2152/3-A<br>-1-F MS<br>Sample<br>Result<br>40.4<br>-1-G MSD<br>Sample | Qualifier           | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | Result<br>246.8<br>LCSD<br>Result<br>243.8<br>MS<br>Result<br>345.3 | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg                | D                | %Rec         99           ple ID: I         %Rec           98         Client           %Rec         122 | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110                 | Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>1<br>: Matrix<br>Type: So<br><br>pike Dup | e Du<br>olubi<br>RPI<br>Lim<br>2<br>Spik<br>olubi |

Page 105 of 406

# **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

5

Job ID: 880-33031-1 SDG: Lea County NM

## **GC VOA**

#### Analysis Batch: 62040

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-33031-1        | S-1 (0-1')             | Total/NA  | Solid  | 8021B  | 62082      |
| 880-33031-2        | S-1 (1.5')             | Total/NA  | Solid  | 8021B  | 62082      |
| 880-33031-3        | S-1 (2')               | Total/NA  | Solid  | 8021B  | 62082      |
| 880-33031-4        | S-1 (3')               | Total/NA  | Solid  | 8021B  | 62082      |
| 880-32833-A-8-A MB | Method Blank           | Total/NA  | Solid  | 8021B  | 62041      |
| MB 880-62082/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 62082      |
| LCS 880-62082/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 62082      |
| LCSD 880-62082/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 62082      |
| 890-5210-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 62082      |
| 890-5210-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 62082      |

| Lab Sample ID      | Client Sample ID | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------|-----------|--------|--------|------------|
| 880-32833-A-8-A MB | Method Blank     | Total/NA  | Solid  | 5030B  |            |

#### Prep Batch: 62082

| LCS 880-62082/1-A                       | Lab Control Sample                     | Iotal/NA  | Solid  | 8021B  | 62082      |     |
|-----------------------------------------|----------------------------------------|-----------|--------|--------|------------|-----|
| LCSD 880-62082/2-A                      | Lab Control Sample Dup                 | Total/NA  | Solid  | 8021B  | 62082      | 8   |
| 890-5210-A-1-A MS                       | Matrix Spike                           | Total/NA  | Solid  | 8021B  | 62082      |     |
| 890-5210-A-1-B MSD                      | Matrix Spike Duplicate                 | Total/NA  | Solid  | 8021B  | 62082      | 9   |
| Prep Batch: 62041                       |                                        |           |        |        |            | 10  |
| Lab Sample ID                           | Client Sample ID                       | Prep Type | Matrix | Method | Prep Batch |     |
| 880-32833-A-8-A MB                      | Method Blank                           | Total/NA  | Solid  | 5030B  |            | 11  |
| Prep Batch: 62082                       |                                        |           |        |        |            | 4.0 |
| Lab Sample ID                           | Client Sample ID                       | Prep Type | Matrix | Method | Prep Batch | 12  |
| 880-33031-1                             | S-1 (0-1')                             | Total/NA  | Solid  | 5035   |            | 40  |
| 880-33031-2                             | S-1 (1.5')                             | Total/NA  | Solid  | 5035   |            | 13  |
| 880-33031-3                             | S-1 (2')                               | Total/NA  | Solid  | 5035   |            |     |
| 880-33031-4                             | S-1 (3')                               | Total/NA  | Solid  | 5035   |            | 14  |
| MB 880-62082/5-A                        | Method Blank                           | Total/NA  | Solid  | 5035   |            |     |
| LCS 880-62082/1-A                       | Lab Control Sample                     | Total/NA  | Solid  | 5035   |            |     |
| LCSD 880-62082/2-A                      | Lab Control Sample Dup                 | Total/NA  | Solid  | 5035   |            |     |
| 000 5040 4 4 4 40                       |                                        | Total/NA  | Solid  | 5035   |            |     |
| 890-5210-A-1-A MS                       | Matrix Spike                           | TOtal/INA | 30110  | 5055   |            |     |
| 890-5210-A-1-A MS<br>890-5210-A-1-B MSD | Matrix Spike<br>Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |     |

#### Analysis Batch: 62184

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-33031-1   | S-1 (0-1')       | Total/NA  | Solid  | Total BTEX |            |
| 880-33031-2   | S-1 (1.5')       | Total/NA  | Solid  | Total BTEX |            |
| 880-33031-3   | S-1 (2')         | Total/NA  | Solid  | Total BTEX |            |
| 880-33031-4   | S-1 (3')         | Total/NA  | Solid  | Total BTEX |            |

## GC Semi VOA

#### Prep Batch: 62103

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|-----------------------|------------------------|-----------|--------|-------------|------------|
| 880-33031-1           | S-1 (0-1')             | Total/NA  | Solid  | 8015NM Prep |            |
| 880-33031-2           | S-1 (1.5')             | Total/NA  | Solid  | 8015NM Prep |            |
| 880-33031-3           | S-1 (2')               | Total/NA  | Solid  | 8015NM Prep |            |
| 880-33031-4           | S-1 (3')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-62103/1-A      | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-62103/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-62103/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-33016-A-1-E MS    | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-33016-A-1-F MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |
| Analysis Batch: 62118 |                        |           |        |             |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
| 880-33031-1           | S-1 (0-1')             | Total/NA  | Solid  | 8015B NM    | 62103      |

Eurofins Midland

Page 106 of 406

# **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

## GC Semi VOA (Continued)

## Analysis Batch: 62118 (Continued)

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-33031-2           | S-1 (1.5')             | Total/NA  | Solid  | 8015B NM | 62103      |
| 880-33031-3           | S-1 (2')               | Total/NA  | Solid  | 8015B NM | 62103      |
| 880-33031-4           | S-1 (3')               | Total/NA  | Solid  | 8015B NM | 62103      |
| MB 880-62103/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 62103      |
| LCS 880-62103/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 62103      |
| LCSD 880-62103/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 62103      |
| 880-33016-A-1-E MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 62103      |
| 880-33016-A-1-F MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 62103      |
| Analysis Batch: 62244 |                        |           |        |          |            |
|                       |                        |           |        |          |            |

| _ab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 380-33031-1   | S-1 (0-1')       | Total/NA  | Solid  | 8015 NM |            |
| 380-33031-2   | S-1 (1.5')       | Total/NA  | Solid  | 8015 NM |            |
| 380-33031-3   | S-1 (2')         | Total/NA  | Solid  | 8015 NM |            |
| 380-33031-4   | S-1 (3')         | Total/NA  | Solid  | 8015 NM |            |

### HPLC/IC

### Leach Batch: 62152

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|---------------------|------------------------|-----------|--------|----------|------------|
| 880-33031-1         | S-1 (0-1')             | Soluble   | Solid  | DI Leach |            |
| 380-33031-2         | S-1 (1.5')             | Soluble   | Solid  | DI Leach |            |
| 380-33031-3         | S-1 (2')               | Soluble   | Solid  | DI Leach |            |
| 380-33031-4         | S-1 (3')               | Soluble   | Solid  | DI Leach |            |
| MB 880-62152/1-A    | Method Blank           | Soluble   | Solid  | DI Leach |            |
| _CS 880-62152/2-A   | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| _CSD 880-62152/3-A  | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 380-33029-A-1-F MS  | Matrix Spike           | Soluble   | Solid  | DI Leach |            |
| 880-33029-A-1-G MSD | Matrix Spike Duplicate | Soluble   | Solid  | DI Leach |            |

#### Analysis Batch: 62392

| Lab Sample ID       | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-33031-1         | S-1 (0-1')             | Soluble   | Solid  | 300.0  | 62152      |
| 880-33031-2         | S-1 (1.5')             | Soluble   | Solid  | 300.0  | 62152      |
| 880-33031-3         | S-1 (2')               | Soluble   | Solid  | 300.0  | 62152      |
| 880-33031-4         | S-1 (3')               | Soluble   | Solid  | 300.0  | 62152      |
| MB 880-62152/1-A    | Method Blank           | Soluble   | Solid  | 300.0  | 62152      |
| LCS 880-62152/2-A   | Lab Control Sample     | Soluble   | Solid  | 300.0  | 62152      |
| LCSD 880-62152/3-A  | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 62152      |
| 880-33029-A-1-F MS  | Matrix Spike           | Soluble   | Solid  | 300.0  | 62152      |
| 880-33029-A-1-G MSD | Matrix Spike Duplicate | Soluble   | Solid  | 300.0  | 62152      |

Job ID: 880-33031-1 SDG: Lea County NM

# Lab Sample ID: 880-33031-1

Matrix: Solid

5

9

Client Sample ID: S-1 (0-1') Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

Client: Carmona Resources

Project/Site: Tonto 15 State #1

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 62082  | 09/08/23 13:56 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 62040  | 09/09/23 03:52 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 62184  | 09/11/23 13:03 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 62244  | 09/12/23 09:16 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.05 g | 10 mL  | 62103  | 09/08/23 15:14 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 62118  | 09/11/23 18:04 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.97 g  | 50 mL  | 62152  | 09/11/23 10:16 | AG      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 62392  | 09/14/23 02:20 | СН      | EET MID |

# Lab Sample ID: 880-33031-2

Lab Sample ID: 880-33031-3

Lab Sample ID: 880-33031-4

Matrix: Solid

Matrix: Solid

#### Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

Client Sample ID: S-1 (1.5')

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 62082  | 09/08/23 13:56 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 62040  | 09/09/23 04:13 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 62184  | 09/11/23 13:03 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 62244  | 09/12/23 09:16 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.08 g | 10 mL  | 62103  | 09/08/23 15:14 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 62118  | 09/11/23 18:26 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 62152  | 09/11/23 10:16 | AG      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 62392  | 09/14/23 02:27 | СН      | EET MID |

### Client Sample ID: S-1 (2') Date Collected: 09/07/23 00:00

#### Date Received: 09/08/23 13:34

| Ргер Туре | Batch<br>Type | Batch<br>Method | Run | Dil<br>Factor | Initial<br>Amount | Final<br>Amount | Batch<br>Number | Prepared<br>or Analyzed | Analyst | Lab     |
|-----------|---------------|-----------------|-----|---------------|-------------------|-----------------|-----------------|-------------------------|---------|---------|
|           |               |                 |     |               |                   |                 |                 |                         |         |         |
| Total/NA  | Analysis      | 8021B           |     | 1             | 5 mL              | 5 mL            | 62040           | 09/09/23 04:33          | MNR     | EET MID |
| Total/NA  | Analysis      | Total BTEX      |     | 1             |                   |                 | 62184           | 09/11/23 13:03          | SM      | EET MID |
| Total/NA  | Analysis      | 8015 NM         |     | 1             |                   |                 | 62244           | 09/12/23 09:16          | AJ      | EET MID |
| Total/NA  | Prep          | 8015NM Prep     |     |               | 10.01 g           | 10 mL           | 62103           | 09/08/23 15:14          | ткс     | EET MID |
| Total/NA  | Analysis      | 8015B NM        |     | 1             | 1 uL              | 1 uL            | 62118           | 09/11/23 18:48          | AJ      | EET MID |
| Soluble   | Leach         | DI Leach        |     |               | 4.98 g            | 50 mL           | 62152           | 09/11/23 10:16          | AG      | EET MID |
| Soluble   | Analysis      | 300.0           |     | 1             |                   |                 | 62392           | 09/14/23 02:33          | СН      | EET MID |

#### Client Sample ID: S-1 (3') Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.03 g  | 5 mL   | 62082  | 09/08/23 13:56 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 62040  | 09/09/23 04:54 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 62184  | 09/11/23 13:03 | SM      | EET MID |

**Eurofins Midland** 

Matrix: Solid

Page 108 of 406

# Released to Imaging: 11/6/2023 11:57:53 AM
Job ID: 880-33031-1

SDG: Lea County NM

Matrix: Solid

Lab Sample ID: 880-33031-4

### Lab Chronicle

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Client Sample ID: S-1 (3') Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 62244  | 09/12/23 09:16 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.08 g | 10 mL  | 62103  | 09/08/23 15:14 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 62118  | 09/11/23 19:09 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 62152  | 09/11/23 10:16 | AG      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 62392  | 09/14/23 02:40 | СН      | EET MID |

### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

10

### Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-33031-1 SDG: Lea County NM

### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                  |                                | rogram                           | Identification Number                        | Expiration Date          |
|-------------------------------------------|--------------------------------|----------------------------------|----------------------------------------------|--------------------------|
| exas                                      | N                              | ELAP                             | T104704400-23-26                             | 06-30-24                 |
| The following analytes                    | are included in this report by | ut the laboratory is not certifi | ied by the governing authority. This list ma | v include analytes for w |
| the agency does not of                    | fer certification.             | ·                                |                                              | ,                        |
| the agency does not of<br>Analysis Method | • •                            | Matrix                           | Analyte                                      |                          |
| the agency does not of                    | fer certification.             | ·                                |                                              |                          |

Eurofins Midland

### **Method Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-33031-1 SDG: Lea County NM

| Method        | Method Description                                                                                                                        | Protocol                               | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                           | SW846                                  | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                    | TAL SOP                                | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                  | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                  | EET MID    |
| 300.0         | Anions, Ion Chromatography                                                                                                                | EPA                                    | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                              | SW846                                  | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                           | SW846                                  | EET MID    |
| DI Leach      | Deionized Water Leaching Procedure                                                                                                        | ASTM                                   | EET MID    |
| EPA = US      | STM International<br>Environmental Protection Agency                                                                                      |                                        |            |
|               | "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E<br>= TestAmerica Laboratories, Standard Operating Procedure | dition, November 1986 And Its Updates. |            |
| Laboratory Re |                                                                                                                                           |                                        |            |
| EET MID =     | = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440                                                             | J                                      |            |
|               |                                                                                                                                           |                                        |            |
|               |                                                                                                                                           |                                        |            |
|               |                                                                                                                                           |                                        |            |

### Laboratory References:

Eurofins Midland

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-33031-1 SDG: Lea County NM

| ab Sample ID. | Client Sample ID | Matrix | Collected      | Received       |  |
|---------------|------------------|--------|----------------|----------------|--|
| 80-33031-1    | S-1 (0-1')       | Solid  | 09/07/23 00:00 | 09/08/23 13:34 |  |
| 80-33031-2    | S-1 (1.5')       | Solid  | 09/07/23 00:00 | 09/08/23 13:34 |  |
| 80-33031-3    | S-1 (2')         | Solid  | 09/07/23 00:00 | 09/08/23 13:34 |  |
| 80-33031-4    | S-1 (3')         | Solid  | 09/07/23 00:00 | 09/08/23 13:34 |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |
|               |                  |        |                |                |  |

Received by OCD: 9/21/2023 6:16:51 AM

| arritt<br>Resources<br>all St Site 500<br>IX 79701<br>Tonto 15 State #1<br>2089<br>CCM<br>Temp Blank<br>Ves No<br>Ves No<br>No<br>Themometer ID<br>Ves No<br>NiA<br>Temperature Reading<br>Corrected Temperature.                                                                                                                                                                                                                                                     | Email<br>Email<br>Turn<br>Routine<br>Due Date<br>Due Date<br>Due Date<br>nometer ID<br>nometer ID<br>toometer ID<br>toometer ID<br>toometer ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Email<br>Email<br>Email<br>Curn<br>Factor<br>Erature Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bill to:     Bill to:       Company Name     Company Name       Address.     Address.       Email     Insanjari@marathonoil.c.       Furn Around     Pres.       Oue Date     5 day       Due Date     5 day       Onometer ID     Ut ce.       Vet ice.     Cies No       Parameters     Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bill to:     Bill to:     Bill to:     Bill to:     Bill to:     Gompany Name       Company Name     Address.     City, State ZIP:     City, State ZIP:       Email     Insanjari@marathonol.c.       Furn Around     Rush     Code       Oue Date     5 day     Pres.       Due Date     5 day     Code       Oumeter ID     Wet Ice.     V.G. No       Parameters     Oue Date     5 day | Bill for (if different)    Melodie Sanjari       Company Name     Marathon Oil Corporation       Address.     990 Town and Country Blvd       City, State ZIP     Houston, TX 77024       Email     msanjari@marathonoil.com       Finali     msanjari@marathonoil.com       Under Date     5 day       Due Date     5 day       Parameters     5 day       Parameters     5 day | Hill to: (if different)     Melodie Sanjari       Company Name     Marathon Oil Corporation       Address.     990 Town and Country Blvd       City, State ZIP:     Houston, TX 77024       Email     Insanjari@marathonol.com       Email     Insanjari@marathonol.com       Vet Ice     5 day       Parameters     BTEX \$8021B       It (GR0 + DR0 + MR0)       It or ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hill for (if different)     Melodie Sanjari       Company Name     Marathon Oil Corporation       Address.     990 Town and Country Blvd       City, State ZIP     Houston, TX 77024       Email     Insanjari@marathonol.com       Email     Insanjari@marathonol.com       Vet Ice     5 day       Parameters     BTEX 8021B       It (GRO + DRO + MRO)     It (GRO + DRO + MRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bill to: (if different)<br>Company Name<br>Address.<br>City, State ZIP<br>City, State ZIP<br>Rush<br>Pres.<br>5 day<br>Parameters<br>Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bill to: (if different)       Company Name       Address.       City, State ZIP       City, State ZIP       Rush       Pres.       State Zip       No       Pres.       Turn Around       Pres.       City, State Zip       City, State Zip       City, State Zip       Rush       Code       Staty       Turn Around       Pres.       Staty       Parameters                             | u     Bill t0:-(fr different)     Image: Company Name     Marathon Oil Corporation       Address.     990 Town and Country Blvd       City, State ZIP     Houston, TX 77024       mail     msanlari@marathonol.com       5 day     Pres.       SR0 + DR0 + MR0)     ride 300.0                                                                                                   | Bill to: (fr different)     Melodie Sanjari       Company Name     Marathon Oil Corporation       Address.     990 Town and Country Blvd       City, State ZIP     Houston, TX 77024       mail     msanjari@marathonoil.com       S day     Pres.       Parameters     BTEX 8021B       tr (GRO + DRO + MRO)     I       hloride 300.0     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turn Around     Pres.       State ZIP     Houston, TX 77024       City, State ZIP     Houston, TX 77024       Bill to: (tritterem)     S day       Parameters     Pres.       BTEX 8021B     City GRO + DRO + MRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Parameters Code GRO + DRO + MRO) Itoride 300.0                                                                                                                                                                                                                                                                                                                                                                                                                        | In control (Comporation)<br>Trathon Oil Corporation<br>Trathon Oil Corporation<br>TX 77024<br>Inoride 300.0<br>Inoride 30 | ANALYSIS REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANALYSIS REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | erables. EDD                                                                                                                                                                                                                                                                                                                                                                               | of Project:<br>erables. EDD                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Parameters       Melodie Sanjari       Work Order Comm         Parameters       990 Town and Country Blvd       990 Town and Country Blvd       Program: UST/PST PRP Irownfields         State of Project:       Reporting Level II       ILevel III       IST/UST         A ( GRO + DRO + MRO)       ANALYSIS REQUEST       Deliverables. EDD       ADaPT         Intoride 300.0       Intoride 300.0       Intoride 300.0       Intoride 300.0       Intoride 300.0 | Interview of the second                                                                                                                                                                                                                                                                             | Importation       Work Order Comm         State of Project:       None         ANALYSIS REQUEST       Peliverables. EDD       ADaPT         Importation       Importation       None         Importation       Importation       Program: UST/PST         Importation       Importation       Importation         Importation       Importation       Importati | ANALYSIS REQUEST ANALYS | Work Order Comm       of Project:       erables.       EDD       ADaPT       Cool       HCL       H2,S0       None       H2,S0       H2,S0       Na+3                                                                                                                                                                                                                                      | Work Order Comm       ram: UST/PST       PRP       infing Level II       Cool       erables.       EDD       ADaPT       Cool       H1_2S0       H2_S0       H3_PC       H3_PC       H3_PC                                                                                                                                                                                       | Work Order Comm       ST     PRP       Image: Distribution of the state of the | Pa<br>Prownfields<br>DST/UST<br>ADaPT<br>ADaPT<br>ADaPT<br>Cool 0<br>HCL F<br>H2S04<br>H3P04<br>Na2S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Parameters     Code       BTEX 8021B     Houston, TX 77024       015M (GRO + DRO + MRO)     ANALYSIS REQU                                                                                                                                                                                                                                                                                                                                                             | Iodie Sanjari       Page1         Irathon Oil Corporation       Vork Order Comments         D Town and Country Blvd       Program: UST/PST □PRP □rownfields □RRP         Uston, TX 77024       Program: UST/PST □PRP □rownfields □RRP         Deliverables. EDD □       ADaPT □         Deliverables. EDD □       ADaPT □         Othoride 300.0       Image: Cool in the structure of the str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page_1         WorkOrder Comments         State of Project:         Reporting Level II       Level III       Strust       Preservati         ANALYSIS REQUEST       Preservati       Preservati         ANALYSIS REQUEST       Preservati       None NO         Cool       Cool       Cool       Cool         Mone NO       Cool       Cool       H2         Mone NO       Cool Cool       H2       H3PO4       H2         MatSo4       NABIS       NaBIS       NaEso4       NaEso4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page1         Work Order Comments         Program: UST/PST       PRP       Prownfields       & Rc         State of Project:       Reporting Level III       Istr/UST       PRP         Deliverables.       EDD       ADaPT       Other         Mone <no< th="">       Cool       Cool       Cool         Hold       Hold       Hold       Hold       Hold         ANALYSIS REQUEST       Preservati       Preservati         Hold       Hold       None NO       Cool       Cool         Hold       Hold       Hold       Hold       Hold       Hold         Naleso,       Naleso,       Naleso,       Nacetate+NaO</no<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page1                                                                                                                                                                                                                                                                                                                                                                                      | Page1                                                                                                                                                                                                                                                                                                                                                                            | Page_1<br>Work Order Comments<br>ST PRP Prownfields RRC<br>Level III DST/UST RRP<br>D ADaPT D Other<br>D ADaPT D Other<br>Preservati<br>None NO<br>Cool Cool<br>HCL. HC<br>H <sub>2</sub> S04 H <sub>2</sub><br>H <sub>3</sub> PO4 HP<br>Na <sub>2</sub> S2O3 NaSO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ents<br>ents<br>RRP<br>Other<br>Other<br>Other<br>H₂<br>H₂<br>H₂<br>NO<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Othas<br>Oth |

9/14/2023

Job Number: 880-33031-1 SDG Number: Lea County NM

List Source: Eurofins Midland

### Login Sample Receipt Checklist

Client: Carmona Resources

### Login Number: 33031 List Number: 1

<6mm (1/4").

Creator: Kramer, Jessica

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

14



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:34:56 PM

# JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-31275-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701



# **Eurofins Midland**

### Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

### Authorization

AMER

Generated 8/7/2023 12:34:56 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31275-1 SDG: Lea County, New Mexico

Page 117 of 406

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

### Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 118 of 406

| Job ID: 880-31275-1         |
|-----------------------------|
| SDG: Lea County, New Mexico |

|                     |                                                                                                             | 3  |
|---------------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA<br>Qualifier | Qualifier Description                                                                                       |    |
| S1-                 | Surrogate recovery exceeds control limits, low biased.                                                      |    |
| U                   | Indicates the analyte was analyzed for but not detected.                                                    | 5  |
|                     |                                                                                                             | 9  |
| GC Semi VOA         |                                                                                                             |    |
| Qualifier<br>*-     | Qualifier DescriptionLCS and/or LCSD is outside acceptance limits, low biased.                              |    |
| -<br>U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| 0                   | indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary            |                                                                                                             | 0  |
| Abbreviation        | These commonly used abbreviations may or may not be present in this report.                                 | 0  |
| ¤                   | Listed under the "D" column to designate that the result is reported on a dry weight basis                  | Q  |
| %R                  | Percent Recovery                                                                                            | 3  |
| CFL                 | Contains Free Liquid                                                                                        |    |
| CFU                 | Colony Forming Unit                                                                                         |    |
| CNF                 | Contains No Free Liquid                                                                                     |    |
| DER                 | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac             | Dilution Factor                                                                                             |    |
| DL                  | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN      | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC                 | Decision Level Concentration (Radiochemistry)                                                               | 13 |
| EDL                 | Estimated Detection Limit (Dioxin)                                                                          |    |
| LOD                 | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ                 | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL                 | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA                 | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC                 | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL                 | Method Detection Limit                                                                                      |    |
| ML                  | Minimum Level (Dioxin)                                                                                      |    |
| MPN                 | Most Probable Number                                                                                        |    |
| MQL                 | Method Quantitation Limit                                                                                   |    |
| NC                  | Not Calculated                                                                                              |    |
| ND                  | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |    |
| NEG                 | Negative / Absent                                                                                           |    |
| POS                 | Positive / Present                                                                                          |    |
| PQL                 | Practical Quantitation Limit                                                                                |    |
| PRES                | Presumptive                                                                                                 |    |
| QC                  | Quality Control                                                                                             |    |
| RER                 | Relative Error Ratio (Radiochemistry)                                                                       |    |
| RL                  | Reporting Limit or Requested Limit (Radiochemistry)                                                         |    |
| RPD                 | Relative Percent Difference, a measure of the relative difference between two points                        |    |
| TEF                 | Toxicity Equivalent Factor (Dioxin)                                                                         |    |
|                     |                                                                                                             |    |

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

TEQ

TNTC

4

5

Job ID: 880-31275-1 SDG: Lea County, New Mexico

### Job ID: 880-31275-1

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Laboratory: Eurofins Midland

### Narrative

Job Narrative 880-31275-1

### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-31278-A-1-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-31275-1 SDG: Lea County, New Mexico

### Lab Sample ID: 880-31275-1

Matrix: Solid

5

### Client: Carmona Resources Project/Site: Tonto 15 State #1

### Client Sample ID: S-2 (2') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| Analyte                                 | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                                 | <0.00199       | U           | 0.00199  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:48 | 1       |
| Toluene                                 | <0.00199       | U           | 0.00199  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:48 | 1       |
| Ethylbenzene                            | <0.00199       | U           | 0.00199  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:48 | 1       |
| m-Xylene & p-Xylene                     | <0.00398       | U           | 0.00398  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:48 | 1       |
| o-Xylene                                | <0.00199       | U           | 0.00199  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:48 | 1       |
| Xylenes, Total                          | <0.00398       | U           | 0.00398  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:48 | 1       |
| Surrogate                               | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)             | 84             |             | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/04/23 05:48 | 1       |
| 1,4-Difluorobenzene (Surr)              | 70             |             | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/04/23 05:48 | 1       |
| Method: TAL SOP Total BTEX - To         | otal BTEX Calo | culation    |          |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                              | <0.00398       | U           | 0.00398  |     | mg/Kg |   |                | 08/04/23 10:48 | 1       |
| Method: SW846 8015 NM - Diese           | Range Organ    | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | <49.7          | U           | 49.7     |     | mg/Kg |   |                | 08/07/23 10:15 | 1       |
| Method: SW846 8015B NM - Dies           | el Range Orga  | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.7          | U *-        | 49.7     |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 14:07 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <49.7          | U           | 49.7     |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 14:07 | 1       |
| Oll Range Organics (Over C28-C36)       | <49.7          | U           | 49.7     |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 14:07 | 1       |
| Surrogate                               | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 94             |             | 70 - 130 |     |       |   | 08/04/23 17:30 | 08/06/23 14:07 | 1       |
| o-Terphenyl                             | 94             |             | 70 - 130 |     |       |   | 08/04/23 17:30 | 08/06/23 14:07 | 1       |

Job ID: 880-31275-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |  |
|---------------------|------------------------|----------|----------|------------------------------------------------|--|
|                     |                        | BFB1     | DFBZ1    |                                                |  |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |  |
| 880-31275-1         | S-2 (2')               | 84       | 70       |                                                |  |
| 880-31278-A-1-B MS  | Matrix Spike           | 121      | 124      |                                                |  |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | 119      | 91       |                                                |  |
| LCS 880-58969/1-A   | Lab Control Sample     | 115      | 111      |                                                |  |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | 114      | 109      |                                                |  |
| MB 880-58969/5-A    | Method Blank           | 73       | 79       |                                                |  |
| MB 880-59110/5-A    | Method Blank           | 68 S1-   | 100      |                                                |  |
| Surrogate Legend    |                        |          |          |                                                |  |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

### Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| Sample ID     | Client Sample ID       | (70-130) | (70-130) |                                                |
| 275-1         | S-2 (2')               | 94       | 94       |                                                |
| 1664-A-2-F MS | Matrix Spike           | 123      | 104      |                                                |
| 64-A-2-G MSD  | Matrix Spike Duplicate | 128      | 112      |                                                |
| )-59369/2-A   | Lab Control Sample     | 93       | 94       |                                                |
| 80-59369/3-A  | Lab Control Sample Dup | 85       | 82       |                                                |
| 380-59369/1-A | Method Blank           | 88       | 94       |                                                |

### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 121 of 406

### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |  |
|---------------------------------|--|
| Matrix: Solid                   |  |

Analysis Batch: 59172

|                             | MB        | MB        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |

### Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

### Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

### Lab Sample ID: LCSD 880-58969/2-A

### Matrix: Solid

| Analysis Batch: 59172 |       |         |           |       |   |      | Prep     | Batch: | 58969 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08592 |           | mg/Kg |   | 86   | 70 - 130 | 9      | 35    |
| Toluene               | 0.100 | 0.08219 |           | mg/Kg |   | 82   | 70 - 130 | 6      | 35    |
| Ethylbenzene          | 0.100 | 0.08963 |           | mg/Kg |   | 90   | 70 - 130 | 12     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1870  |           | mg/Kg |   | 94   | 70 - 130 | 12     | 35    |
| o-Xylene              | 0.100 | 0.09268 |           | mg/Kg |   | 93   | 70 - 130 | 12     | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

### Lab Sample ID: 880-31278-A-1-B MS

### Matrix: Solid Analysis Retaby 50172

| Analysis Batch: 59172 |          |           |        |         |           |       |   |      | Pre      | Batch: 58969 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |              |

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 58969

13

### Prep Type: Total/NA Prep Batch: 58969

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

**Client Sample ID: Matrix Spike** 

Client: Carmona Resources

Project/Site: Tonto 15 State #1

### Job ID: 880-31275-1 SDG: Lea County, New Mexico

### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-4  | A-1-B MS  |       |           |          |         |     |        |       |       |       | Client S   | Sample ID: | Matrix  | Spike       |
|-----------------------------|-----------|-------|-----------|----------|---------|-----|--------|-------|-------|-------|------------|------------|---------|-------------|
| Matrix: Solid               |           |       |           |          |         |     |        |       |       |       |            | Prep T     | ype: To | otal/NA     |
| Analysis Batch: 59172       |           |       |           |          |         |     |        |       |       |       |            | Prep       | Batch:  | 5896        |
|                             | Sample    | Samp  | ole       | Spike    | MS      | MS  |        |       |       |       |            | %Rec       |         |             |
| Analyte                     | Result    | Quali | fier      | Added    | Result  | Qua | lifier | Unit  |       | D     | %Rec       | Limits     |         |             |
| Ethylbenzene                | <0.00202  | U     |           | 0.0994   | 0.1030  |     |        | mg/Kg |       | _     | 104        | 70 - 130   |         |             |
| m-Xylene & p-Xylene         | <0.00403  | U     |           | 0.199    | 0.2125  |     |        | mg/Kg |       |       | 107        | 70 - 130   |         |             |
| o-Xylene                    | <0.00202  | U     |           | 0.0994   | 0.1040  |     |        | mg/Kg |       |       | 105        | 70 - 130   |         |             |
|                             | MS        | мs    |           |          |         |     |        |       |       |       |            |            |         |             |
| Surrogate                   | %Recovery | Quali | ifier     | Limits   |         |     |        |       |       |       |            |            |         |             |
| 4-Bromofluorobenzene (Surr) | 121       |       |           | 70 - 130 |         |     |        |       |       |       |            |            |         |             |
| 1,4-Difluorobenzene (Surr)  | 124       |       |           | 70 - 130 |         |     |        |       |       |       |            |            |         |             |
| Lab Sample ID: 880-31278-4  | A-1-C MSD |       |           |          |         |     |        |       | Clier | nt Sa | mple ID:   | Matrix Sp  | ike Du  | plicat      |
| Matrix: Solid               |           |       |           |          |         |     |        |       |       |       |            | Prep T     | ype: To | otal/N/     |
| Analysis Batch: 59172       |           |       |           |          |         |     |        |       |       |       |            |            | Batch:  |             |
|                             | Sample    | Samp  | ole       | Spike    | MSD     | MSD | )      |       |       |       |            | %Rec       |         | RPI         |
| Analyte                     | Result    | Quali | fier      | Added    | Result  | Qua | lifier | Unit  |       | D     | %Rec       | Limits     | RPD     | Lim         |
| Benzene                     | <0.00202  | U     |           | 0.0998   | 0.09502 |     |        | mg/Kg |       | _     | 95         | 70 - 130   | 5       | 3           |
| Toluene                     | <0.00202  | U     |           | 0.0998   | 0.09100 |     |        | mg/Kg |       |       | 91         | 70 - 130   | 3       | 3           |
| Ethylbenzene                | <0.00202  | U     |           | 0.0998   | 0.1021  |     |        | mg/Kg |       |       | 102        | 70 - 130   | 1       | 3           |
| m-Xylene & p-Xylene         | <0.00403  | U     |           | 0.200    | 0.2097  |     |        | mg/Kg |       |       | 105        | 70 - 130   | 1       | 3           |
| o-Xylene                    | <0.00202  | U     |           | 0.0998   | 0.1024  |     |        | mg/Kg |       |       | 103        | 70 - 130   | 2       | 3           |
|                             | MSD       | MSD   |           |          |         |     |        |       |       |       |            |            |         |             |
| Surrogate                   | %Recovery | Quali | ifier     | Limits   |         |     |        |       |       |       |            |            |         |             |
| 4-Bromofluorobenzene (Surr) | 119       |       |           | 70 - 130 |         |     |        |       |       |       |            |            |         |             |
| 1,4-Difluorobenzene (Surr)  | 91        |       |           | 70 - 130 |         |     |        |       |       |       |            |            |         |             |
| Lab Sample ID: MB 880-591   | 10/5-A    |       |           |          |         |     |        |       |       |       | Client Sa  | mple ID: M | Nethod  | Blan        |
| Matrix: Solid               |           |       |           |          |         |     |        |       |       |       |            | Prep T     | ype: To | otal/N/     |
| Analysis Batch: 59172       |           |       |           |          |         |     |        |       |       |       |            | Prep       | Batch:  | <b>5911</b> |
|                             |           | MB    | МВ        |          |         |     |        |       |       |       |            |            |         |             |
| Analyte                     | Re        | sult  | Qualifier | R        | L       | MDL | Unit   |       | D     | Pi    | repared    | Analyze    | ed      | Dil Fa      |
| Benzene                     | <0.00     | 200   | U         | 0.0020   | 0       |     | mg/Kg  | ]     |       | 08/0  | 2/23 11:14 | 08/03/23 1 | 11:30   |             |
| Toluene                     | <0.00     | 200   | U         | 0.0020   | 0       |     | mg/Kg  | 9     |       | 08/0  | 2/23 11:14 | 08/03/23 1 | 11:30   |             |
| Ethylbenzene                | <0.00     | 200   | U         | 0.0020   | 0       |     | mg/Kg  | 9     |       | 08/0  | 2/23 11:14 | 08/03/23 1 | 11:30   |             |
| m-Xylene & p-Xylene         | <0.00     | 400   | U         | 0.0040   | 0       |     | mg/Kg  | 9     |       | 08/0  | 2/23 11:14 | 08/03/23 1 | 11:30   |             |
| o-Xylene                    | <0.00     | 200   | U         | 0.0020   | 0       |     | mg/Kg  | 9     |       | 08/0  | 2/23 11:14 | 08/03/23 1 | 11:30   |             |
| Xylenes, Total              | <0.00     | 400   | U         | 0.0040   | 0       |     | mg/Kg  | 9     |       | 08/0  | 2/23 11:14 | 08/03/23 1 | 11:30   |             |
| _                           |           | ΜВ    |           |          |         |     |        |       |       |       |            |            |         |             |
| Surrogate                   | %Recov    |       | Qualifier | Limits   | _       |     |        |       |       |       | repared    | Analyz     |         | Dil Fa      |
| 4-Bromofluorobenzene (Surr) |           | 68    | S1-       | 70 - 130 |         |     |        |       |       |       | 2/23 11:14 | 08/03/23   |         |             |
| 1,4-Difluorobenzene (Surr)  |           | 100   |           | 70 - 130 |         |     |        |       |       | 08/0  | 2/23 11:14 | 08/03/23   | 11:30   |             |

| Lab Sample ID: MB 880-59369/1-A<br>Matrix: Solid<br>Analysis Batch: 59409 |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: ⊺<br>Prep Batcł | Total/NA |
|---------------------------------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------------------------------------|----------|
|                                                                           | MB     | MB        |      |     |       |   |                |                                              |          |
| Analyte                                                                   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                                     | Dil Fac  |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16                               | 1        |
| (GRO)-C6-C10                                                              |        |           |      |     |       |   |                |                                              |          |

Job ID: 880-31275-1 SDG: Lea County, New Mexico

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369                                                                                                                                                                                                                                                                                                                                                                                                      | / <b>1-A</b>                                                                                                               |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            | Client S                                   | ample ID:                                                                                                                                                                           |                                                  |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|----------|------------------------------------------------|----------|------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            | Prep                                                                                                                                                                                | Type: To                                         | otal/NA                                            |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            | Prep                                                                                                                                                                                | Batch:                                           | 59369                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | В МВ                       |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            | t Qualifier                | RL                                                                                                                                                                                               |                                                                                      | MDL        |          |                                                | <u>D</u> |            | epared                                     | Analy                                                                                                                                                                               |                                                  | Dil Fac                                            |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                      | <50.                                                                                                                       | D U                        | 50.0                                                                                                                                                                                             |                                                                                      |            | mg/Kg    |                                                |          | 08/04      | 4/23 17:29                                 | 08/06/23                                                                                                                                                                            | 08:16                                            | 1                                                  |
| C10-C28)<br>Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                    | <50.                                                                                                                       | וו ר                       | 50.0                                                                                                                                                                                             |                                                                                      |            | mg/Kg    |                                                |          | 08/0/      | 1/23 17:29                                 | 08/06/23                                                                                                                                                                            | 08.16                                            | 1                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | -00.                                                                                                                       |                            | 00.0                                                                                                                                                                                             |                                                                                      |            | iiig/itg |                                                |          | 00/0-      | 720 17.20                                  | 00/00/20                                                                                                                                                                            | 00.10                                            |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | M                                                                                                                          | B MB                       |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                        | %Recover                                                                                                                   | Qualifier                  | Limits                                                                                                                                                                                           |                                                                                      |            |          |                                                | _        | Pr         | repared                                    | Analy                                                                                                                                                                               | zed                                              | Dil Fac                                            |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                          |                            | 70 - 130                                                                                                                                                                                         |                                                                                      |            |          |                                                |          | 08/04      | 4/23 17:29                                 | 08/06/23                                                                                                                                                                            | 08:16                                            | 1                                                  |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                          | 4                          | 70 _ 130                                                                                                                                                                                         |                                                                                      |            |          |                                                |          | 08/04      | 4/23 17:29                                 | 08/06/23                                                                                                                                                                            | 08:16                                            | 1                                                  |
| Lab Sample ID: LCS 880-5936                                                                                                                                                                                                                                                                                                                                                                                                      | 9/2-4                                                                                                                      |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                | CI       | ient       | Sample                                     | ID: Lab C                                                                                                                                                                           | ontrol S                                         | amnle                                              |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            | Campio                                     |                                                                                                                                                                                     | Type: To                                         |                                                    |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     | Batch:                                           |                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |                            | Spike                                                                                                                                                                                            | LCS                                                                                  | LCS        |          |                                                |          |            |                                            | %Rec                                                                                                                                                                                |                                                  |                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |                            | Added                                                                                                                                                                                            | Result                                                                               |            |          | Unit                                           |          | D          | %Rec                                       | Limits                                                                                                                                                                              |                                                  |                                                    |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |                            | 1000                                                                                                                                                                                             | 661.8                                                                                |            |          | mg/Kg                                          |          |            | 66                                         | 70 - 130                                                                                                                                                                            |                                                  |                                                    |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                            |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            |                            | 1000                                                                                                                                                                                             | 873.3                                                                                |            |          | mg/Kg                                          |          |            | 87                                         | 70 - 130                                                                                                                                                                            |                                                  |                                                    |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | LCS LC                                                                                                                     | S                          |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                        | %Recovery Qu                                                                                                               | alifier                    | Limits                                                                                                                                                                                           |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
| Surroyate                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |                            |                                                                                                                                                                                                  |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                   | 93                                                                                                                         |                            | 70 - 130                                                                                                                                                                                         |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93<br>94                                                                                                                   |                            | 70 - 130<br>70 - 130                                                                                                                                                                             |                                                                                      |            |          |                                                |          |            |                                            |                                                                                                                                                                                     |                                                  |                                                    |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                         |                            |                                                                                                                                                                                                  |                                                                                      |            |          | Cli                                            | ont      | Sam        |                                            | ab Contre                                                                                                                                                                           | ol Samn                                          |                                                    |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593                                                                                                                                                                                                                                                                                                                                                                     | 94                                                                                                                         |                            |                                                                                                                                                                                                  |                                                                                      |            |          | Cli                                            | ent S    | Sam        | ple ID: L                                  | ab Contro                                                                                                                                                                           | -                                                |                                                    |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                         |                            |                                                                                                                                                                                                  |                                                                                      |            |          | Cli                                            | ent S    | Sam        | ple ID: L                                  | Prep                                                                                                                                                                                | Type: To                                         | otal/NA                                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593                                                                                                                                                                                                                                                                                                                                                                     | 94                                                                                                                         |                            | 70 - 130                                                                                                                                                                                         | LCSD                                                                                 | LCSI       | D        | Cli                                            | ent \$   | Sam        | ple ID: L                                  | Prep<br>Prep                                                                                                                                                                        | -                                                | otal/NA<br>59369                                   |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                           | 94                                                                                                                         |                            |                                                                                                                                                                                                  | LCSD<br>Result                                                                       |            |          | Cli<br>Unit                                    | ent S    | Sam        | ple ID: L<br>%Rec                          | Prep                                                                                                                                                                                | Type: To                                         | otal/NA                                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                         |                            | 70 - 130<br>Spike                                                                                                                                                                                |                                                                                      | Qual       |          | Unit                                           | ent \$   |            | -                                          | Prep<br>Prep<br>%Rec                                                                                                                                                                | Type: To<br>Batch:                               | 59369<br>RPD                                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                                                                                                                                                | 94                                                                                                                         |                            | 70 - 130<br>Spike<br>Added                                                                                                                                                                       | Result                                                                               | Qual       |          |                                                | ent \$   |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits                                                                                                                                                      | Type: To<br>Batch:<br>                           | 59369<br>RPD<br>Limit                              |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                      | 94                                                                                                                         |                            | 70 - 130<br>Spike<br>Added                                                                                                                                                                       | Result                                                                               | Qual       |          | Unit                                           | ent \$   |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits                                                                                                                                                      | Type: To<br>Batch:<br>                           | 59369<br>RPD<br>Limit                              |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                     | 94                                                                                                                         |                            | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                               | <b>Result</b> 660.9                                                                  | Qual       |          | Unit<br>mg/Kg                                  | ent \$   |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                          | Type: To<br>b Batch:<br>RPD<br>0                 | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                      | 94                                                                                                                         |                            | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                               | <b>Result</b> 660.9                                                                  | Qual       |          | Unit<br>mg/Kg                                  | ent \$   |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                          | Type: To<br>b Batch:<br>RPD<br>0                 | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                      | 94<br>69/3-A                                                                                                               |                            | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                               | <b>Result</b> 660.9                                                                  | Qual       |          | Unit<br>mg/Kg                                  | ent \$   |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                          | Type: To<br>b Batch:<br>RPD<br>0                 | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                          | 94<br>69/3-A<br>                                                                                                           |                            | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                               | <b>Result</b> 660.9                                                                  | Qual       |          | Unit<br>mg/Kg                                  | ent S    |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                          | Type: To<br>b Batch:<br>RPD<br>0                 | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                             | 94<br>69/3-A<br>                                                                                                           |                            | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                             | <b>Result</b> 660.9                                                                  | Qual       |          | Unit<br>mg/Kg                                  | ent S    |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                          | Type: To<br>b Batch:<br>RPD<br>0                 | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                            | 94<br>69/3-A<br>                                                                                                           |                            | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                 | <b>Result</b> 660.9                                                                  | Qual       |          | Unit<br>mg/Kg                                  | ent \$   |            | <b>%Rec</b><br>66<br>85                    | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                      | Type: To<br>Batch:<br>RPD<br>0<br>3              | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2                                                                                                                                            | 94<br>69/3-A<br>                                                                                                           |                            | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                 | <b>Result</b> 660.9                                                                  | Qual       |          | Unit<br>mg/Kg                                  | ent {    |            | <b>%Rec</b><br>66<br>85                    | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                      | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid                                                                                                                           | 94<br>69/3-A<br>                                                                                                           |                            | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                 | <b>Result</b> 660.9                                                                  | Qual       |          | Unit<br>mg/Kg                                  | ent \$   |            | <b>%Rec</b><br>66<br>85                    | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                          | Type: To<br>Batch:                               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2                                                                                                                                            | 94<br>69/3-A<br>                                                                                                           | alifier                    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                 | Result<br>660.9<br>845.2                                                             | Qual       |          | Unit<br>mg/Kg                                  | ent \$   |            | <b>%Rec</b><br>66<br>85                    | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                          | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid                                                                                                                           | 94<br>69/3-A<br>                                                                                                           | alifier                    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130                                                                                                                     | Result<br>660.9<br>845.2                                                             | Qual<br>*_ | ifier    | Unit<br>mg/Kg                                  | ent S    |            | <b>%Rec</b><br>66<br>85                    | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IE<br>Prep<br>Prep                                                                                             | Type: To<br>Batch:                               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                            | 94<br>69/3-A<br>                                                                                                           | alifier                    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>Spike                                                                                                            | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>*_ | ifier    | Unit<br>mg/Kg<br>mg/Kg                         | ent \$   | <u>D</u> . | %Rec<br>66<br>85<br>Client                 | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IL<br>Prep<br>%Rec                                                                                             | Type: To<br>Batch:                               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                            | 94<br>69/3-A<br>                                                                                                           | alifier                    | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         Spike         Added         993 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*_ | ifier    | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent \$   | <u>D</u> . | %Rec<br>66<br>85<br>Client 5<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130 | Type: To<br>Batch:                               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                            | 94<br>69/3-A<br>                                                                                                           | alifier                    | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         Spike         Added             | Result           660.9           845.2           MS           Result                 | Qual<br>*_ | ifier    | Unit<br>mg/Kg<br>mg/Kg                         | ent \$   | <u>D</u> . | %Rec<br>66<br>85<br>Client                 | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                     | Type: To<br>Batch:                               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over             | 94<br>69/3-A<br>                                                                                                           | alifier<br>mple<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         Spike         Added         993 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*_ | ifier    | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent \$   | <u>D</u> . | %Rec<br>66<br>85<br>Client 5<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130 | Type: To<br>Batch:                               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over             | 94<br>69/3-A<br><i>LCSD LC</i><br>%Recovery QL<br>85<br>82<br>8-F MS<br>Sample Sa<br><u>Result Qu</u><br><50.3 U           | alifier<br>mple<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         Spike         Added         993 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*_ | ifier    | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent \$   | <u>D</u> . | %Rec<br>66<br>85<br>Client 5<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130 | Type: To<br>Batch:                               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28) | 94<br>69/3-A<br><i>LCSD LC</i><br>%Recovery QL<br>85<br>82<br>2-F MS<br>Sample Sa<br>Result QU<br><50.3 U<br>61.5<br>MS MS | alifier<br>mple<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993         993         993               | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*_ | ifier    | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent \$   | <u>D</u> . | %Rec<br>66<br>85<br>Client 5<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130 | Type: To<br>Batch:                               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |

### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31275-1 SDG: Lea County, New Mexico

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Analysis Batch: 59409                   | <b>.</b> . |           | •        |       |           |       |   |      |          | Batch: |       |   |
|-----------------------------------------|------------|-----------|----------|-------|-----------|-------|---|------|----------|--------|-------|---|
| • • •                                   | -          | Sample    | Spike    |       | MSD       |       | _ |      | %Rec     |        | RPD   |   |
| Analyte                                 |            | Qualifier | Added    |       | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |   |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.3      | U *-      | 992      | 918.4 |           | mg/Kg |   | 91   | 70 - 130 | 5      | 20    |   |
| Diesel Range Organics (Over             | 61.5       |           | 992      | 1254  |           | mg/Kg |   | 120  | 70 - 130 | 6      | 20    |   |
| C10-C28)                                |            |           |          |       |           |       |   |      |          |        |       |   |
|                                         | MSD        | MSD       |          |       |           |       |   |      |          |        |       |   |
| Surrogate                               | %Recovery  | Qualifier | Limits   |       |           |       |   |      |          |        |       | 2 |
| 1-Chlorooctane                          | 128        |           | 70 - 130 |       |           |       |   |      |          |        |       |   |
| o-Terphenyl                             | 112        |           | 70 - 130 |       |           |       |   |      |          |        |       |   |
|                                         |            |           |          |       |           |       |   |      |          |        |       |   |
|                                         |            |           |          |       |           |       |   |      |          |        |       |   |
|                                         |            |           |          |       |           |       |   |      |          |        |       |   |
|                                         |            |           |          |       |           |       |   |      |          |        |       |   |
|                                         |            |           |          |       |           |       |   |      |          |        |       |   |
|                                         |            |           |          |       |           |       |   |      |          |        |       |   |

**Client Sample ID** 

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

**Client Sample ID** 

**Client Sample ID** 

Method Blank

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

S-2 (2')

Method Blank

Method Blank

Matrix Spike

S-2 (2')

### **QC** Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Client: Carmona Resources Project/Site: Tonto 15 State #1

**GC VOA** 

880-31275-1

Prep Batch: 58969 Lab Sample ID

MB 880-58969/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31278-A-1-B MS

880-31278-A-1-C MSD

Prep Batch: 59110

MB 880-59110/5-A

Analysis Batch: 59172

Lab Sample ID

Lab Sample ID

MB 880-58969/5-A

MB 880-59110/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31278-A-1-B MS

880-31278-A-1-C MSD

880-31275-1

Job ID: 880-31275-1 SDG: Lea County, New Mexico

Method

5035

5035

5035

Page 126 of 406

Prep Batch

# 8

Total/NA Solid 5035 Total/NA Solid 5035 Total/NA Solid 5035 Prep Type Matrix Method Prep Batch 5035 Total/NA Solid Prep Type Matrix Method Prep Batch 8021B Total/NA Solid 58969 Total/NA Solid 8021B 58969 Total/NA Solid 8021B 59110 Total/NA Solid 8021B 58969 Total/NA Solid 8021B 58969 Total/NA Solid 8021B 58969 Total/NA Solid 8021B 58969

Matrix

Solid

Solid

Solid

### Analysis Batch: 59323

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31275-1   | S-2 (2')         | Total/NA  | Solid  | Total BTEX |            |

### GC Semi VOA

### Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31275-1         | S-2 (2')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

### Analysis Batch: 59409

| Lab Sample ID         | Client Sample ID       | D Prep Type N |       | Method   | Prep Batch |
|-----------------------|------------------------|---------------|-------|----------|------------|
| 880-31275-1           | S-2 (2')               | Total/NA      | Solid | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA      | Solid | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA      | Solid | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA      | Solid | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA      | Solid | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA      | Solid | 8015B NM | 59369      |
| Analysis Batch: 59477 |                        |               |       |          |            |
|                       |                        |               |       |          |            |

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-31275-1   | S-2 (2')         | Total/NA  | Solid  | 8015 NM |            |

# Client Sample ID: S-2 (2')

Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/04/23 05:48 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59323  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59477  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.06 g | 10 mL  | 59369  | 08/04/23 17:30 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 14:07 | SM      | EET MID |

### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-31275-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31275-1

Matrix: Solid

9

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31275-1 SDG: Lea County, New Mexico

### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                 |                                | rogram                           | Identification Number                        | Expiration Date           |  |  |  |
|-------------------------------------------|--------------------------------|----------------------------------|----------------------------------------------|---------------------------|--|--|--|
| exas                                      |                                | IELAP                            | AP T104704400-23-26 06-30-24                 |                           |  |  |  |
| The following analytes                    | are included in this report, b | out the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for w |  |  |  |
| the agency does not of                    |                                |                                  |                                              |                           |  |  |  |
| the agency does not of<br>Analysis Method | fer certification. Prep Method | Matrix                           | Analyte                                      |                           |  |  |  |
| 0,                                        |                                | Matrix<br>Solid                  | Analyte<br>Total TPH                         |                           |  |  |  |

Eurofins Midland

**Released to Imaging: 11/6/2023 11:57:53 AM** 

10

### **Method Summary**

### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31275-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                        | Protocol                                | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                           | SW846                                   | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                    | TAL SOP                                 | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                              | SW846                                   | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                           | SW846                                   | EET MID    |
| Protocol Refe | rences;                                                                                                                                   |                                         |            |
|               | 'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E<br>= TestAmerica Laboratories, Standard Operating Procedure | Edition, November 1986 And Its Updates. |            |
|               |                                                                                                                                           | a                                       |            |
| EET MID       | = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-544                                                              | 0                                       |            |
|               |                                                                                                                                           |                                         |            |
|               |                                                                                                                                           |                                         |            |
|               |                                                                                                                                           |                                         |            |
|               |                                                                                                                                           |                                         |            |

### Protocol References:

### Laboratory References:

### Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31275-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31275-1   | S-2 (2')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

### Received by OCD: 9/21/2023 6:16:51 AM

| M                           | Comments Email                                                                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S-2 (2') | Sample Identification   | Total Containers        | Sample Custody Seals | Cooler Custody Seals. | Received Intact: | SAMPLE RECEIPT       | P0 #     | Sampler's Name | Project I ocation         | Project Name         |                   | Phone                   | City, State ZIP              | Address                   | Company Name                   | Project Manager        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|-------------------------|----------------------|-----------------------|------------------|----------------------|----------|----------------|---------------------------|----------------------|-------------------|-------------------------|------------------------------|---------------------------|--------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reli                        | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint Merritt MerrittC@carmonaresources com |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2)       | tification              |                         | s Yes No             | . Yes No              |                  | <b>PT</b> Temp Blank |          |                | 1 ea Co                   |                      | Tont              |                         | Midland, TX 79701            | 310 W Wall St Ste 500     | Carmona Resources              | Clinton Merritt        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | armona m                                                                                                                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 25 23  | Date                    |                         | MA                   | Ô                     |                  | 3lank                |          | CCM            | inty New M                | 2000                 | Tonto 15 State #1 |                         |                              | 500                       | xes                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Relinguished by (Signature) | carmona@car                                                                                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Time                    | Corrected Temperature   | Temperature Reading  | Correction Factor     | Thermometer ID   | Yes ho               |          | CARCO          |                           |                      | Ξ                 |                         |                              |                           |                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | monaresource                                                                                                                                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×        | Soil                    | erature                 | ading                |                       |                  | Wet Ice              |          |                |                           | Turn                 | 1                 | Email                   |                              |                           |                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | s com, Cor                                                                                                                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Water G                 |                         | 3.5                  | 55                    | 27.T             | Kee No               | 8        | o uay          |                           | Turn Around          |                   | msanjan@marathonoil.com | City State ZIP               | Address.                  | Company Name                   | Bill to (if different) | Management of the second s |
|                             | nner Moek                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G<br>1   | Grab/ # of<br>Comp Cont |                         | u                    | Pa                    | 1                | eter                 | <br>s    |                | Code                      | Pre                  |                   | marathono               | P                            |                           | Ime                            | ent)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date/Time                   | ring cm                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×        | * *                     | 1                       | BI                   | TEX 8                 | 3021             | в                    |          |                | •                         |                      |                   | Il com                  | Houst                        | 990 To                    | Marath                         | Melod                  | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ime                         | behring(                                                                                                                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×        | ТР                      | H 801                   |                      | GR                    |                  |                      | + MF     | RO)            |                           | -                    |                   |                         | Houston TX 77024             | own and C                 | Marathon Oil Corporation       | Melodie Sanjari        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | ))<br>Joarmor                                                                                                                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |                         |                      |                       |                  |                      |          |                |                           |                      |                   |                         | 024                          | 990 Town and Country Blvd | rporation                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | aresourc                                                                                                                                                 | 880-31275        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                         |                         |                      |                       |                  |                      |          |                |                           | AN                   |                   |                         |                              | đ                         |                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | Jes com,                                                                                                                                                 | 1275 Cha         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |                         |                      |                       |                  |                      |          |                |                           | ALYSIS               |                   |                         |                              |                           |                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Réceived by                 | Clint Me                                                                                                                                                 | Chain of Custody |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>     | ****                    |                         |                      |                       |                  |                      |          |                |                           | ANALYSIS REQUEST     |                   |                         | Rep                          | Sta                       | Pro                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | erritt Mer                                                                                                                                               | tody             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |                         |                      |                       |                  |                      | -,       |                |                           |                      |                   | Deliverables EDD        | Reporting Level II Level III | State of Project.         | gram <sup>.</sup> US           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Signature)                 | nttC@ca                                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |                         |                      |                       |                  |                      |          |                | _                         |                      |                   |                         | el II 🗌 Le                   | ect.                      | T/PST                          | 5                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | rmonare                                                                                                                                                  | ╶┿╸╵<br>┥╴┨╶┨    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |                         |                      |                       |                  |                      |          |                |                           |                      |                   | AD                      |                              |                           |                                | fork Ord               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | sources                                                                                                                                                  |                  | and the second s |          |                         | NaOH                    | Zn Ac                | Na-S-                 | N OSHEN          | H_DO_ HE             |          | Cool Cool      | None NO                   | -                    |                   | ADaPT                   | ST/UST                       |                           | Program UST/PST PRP rownfields | Work Order Comments    | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | com                                                                                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Sample (                | I+Ascorbic              | Zn Acetate+NaOH Zn   | Na-S-O NaSO           |                  |                      |          | Cool           | NO                        | <sup>o</sup> reserva |                   | Other <sup>.</sup>      | RRP                          |                           | RRC                            | ients                  | Page 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date/Time                   |                                                                                                                                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Sample Comments         | NaOH+Ascorbic Acid SAPC | OH Zn                | ~ (                   | n                |                      | HNO3. HN | MeOH Me        | DI Water H <sub>2</sub> O | Preservative Codes   |                   |                         |                              |                           | Diperfund                      |                        | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ñ                           |                                                                                                                                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ts                      | PC                      |                      |                       |                  | Na .                 |          | Me             | у́г Н₂О                   | es                   |                   |                         | <                            |                           | 3                              |                        | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Work Order No:

275

Page 131 of 406

5

13

5

14

Job Number: 880-31275-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

### Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31275 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Eurofins Midland Released to Imaging: 11/6/2023 11:57:53 AM

Containers requiring zero headspace have no headspace or bubble is



**Environment Testing** 

### Page 133 of 406

# ANALYTICAL REPORT

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:35:20 PM

# JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

## **JOB NUMBER**

880-31276-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701







# **Eurofins Midland**

### Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

### Authorization

AMER

Generated 8/7/2023 12:35:20 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31276-1 SDG: Lea County, New Mexico

Page 135 of 406

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

### Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 136 of 406

| Job ID: 880-31276-1         |
|-----------------------------|
| SDG: Lea County, New Mexico |

| Qualifiers               |                                                                                                             | _ 3 |
|--------------------------|-------------------------------------------------------------------------------------------------------------|-----|
| GC VOA                   |                                                                                                             |     |
| Qualifier                | Qualifier Description                                                                                       | 4   |
| S1-                      | Surrogate recovery exceeds control limits, low biased.                                                      |     |
| U                        | Indicates the analyte was analyzed for but not detected.                                                    | 5   |
| GC Semi VOA<br>Qualifier | Qualifier Description                                                                                       | 6   |
| *_                       | LCS and/or LCSD is outside acceptance limits, low biased.                                                   | _   |
| U                        | Indicates the analyte was analyzed for but not detected.                                                    |     |
| Glossary                 |                                                                                                             | •   |
| Abbreviation             | These commonly used abbreviations may or may not be present in this report.                                 | - 0 |
| ¤                        | Listed under the "D" column to designate that the result is reported on a dry weight basis                  | 0   |
| %R                       | Percent Recovery                                                                                            | 3   |
| CFL                      | Contains Free Liquid                                                                                        |     |
| CFU                      | Colony Forming Unit                                                                                         |     |
| CNF                      | Contains No Free Liquid                                                                                     |     |
| DER                      | Duplicate Error Ratio (normalized absolute difference)                                                      |     |
| Dil Fac                  | Dilution Factor                                                                                             |     |
| DL                       | Detection Limit (DoD/DOE)                                                                                   |     |
| DL, RA, RE, IN           | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |     |
| DLC                      | Decision Level Concentration (Radiochemistry)                                                               | 13  |
| EDL                      | Estimated Detection Limit (Dioxin)                                                                          |     |
| LOD                      | Limit of Detection (DoD/DOE)                                                                                |     |
| LOQ                      | Limit of Quantitation (DoD/DOE)                                                                             |     |
| MCL                      | EPA recommended "Maximum Contaminant Level"                                                                 |     |
| MDA                      | Minimum Detectable Activity (Radiochemistry)                                                                |     |
| MDC                      | Minimum Detectable Concentration (Radiochemistry)                                                           |     |
| MDL                      | Method Detection Limit                                                                                      |     |
| ML                       | Minimum Level (Dioxin)                                                                                      |     |
| MPN                      | Most Probable Number                                                                                        |     |
| MQL                      | Method Quantitation Limit                                                                                   |     |
| NC                       | Not Calculated                                                                                              |     |
| ND                       | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |     |
| NEG                      | Negative / Absent                                                                                           |     |
| POS                      | Positive / Present                                                                                          |     |
| PQL                      | Practical Quantitation Limit                                                                                |     |
| PRES                     | Presumptive                                                                                                 |     |
| QC                       | Quality Control                                                                                             |     |
| RER                      | Relative Error Ratio (Radiochemistry)                                                                       |     |
| RL                       | Reporting Limit or Requested Limit (Radiochemistry)                                                         |     |
| RPD                      | Relative Percent Difference, a measure of the relative difference between two points                        |     |
| TEF                      | Toxicity Equivalent Factor (Dioxin)                                                                         |     |
|                          |                                                                                                             |     |

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

TEQ TNTC

Job ID: 880-31276-1 SDG: Lea County, New Mexico

### Job ID: 880-31276-1

### Laboratory: Eurofins Midland

### Narrative

Job Narrative 880-31276-1

### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-2 (3') (880-31276-1).

### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-2 (3') (880-31276-1) and (880-31278-A-1-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

Job ID: 880-31276-1 SDG: Lea County, New Mexico

### Lab Sample ID: 880-31276-1

Matrix: Solid

5

### Client: Carmona Resources Project/Site: Tonto 15 State #1 Client Sample ID: S-2 (3')

Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| Analyte                                                                                                                                                                                                                                     | Result                                                                                                                                         | Qualifier                                                            | RL                                                                 | MDL | Unit                                             | D        | Prepared                                                                   | Analyzed                                                                                                                                                                  | Dil Fac                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----|--------------------------------------------------|----------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Benzene                                                                                                                                                                                                                                     | <0.00201                                                                                                                                       | U                                                                    | 0.00201                                                            |     | mg/Kg                                            |          | 08/01/23 09:01                                                             | 08/04/23 06:09                                                                                                                                                            | 1                       |
| Toluene                                                                                                                                                                                                                                     | <0.00201                                                                                                                                       | U                                                                    | 0.00201                                                            |     | mg/Kg                                            |          | 08/01/23 09:01                                                             | 08/04/23 06:09                                                                                                                                                            | 1                       |
| Ethylbenzene                                                                                                                                                                                                                                | <0.00201                                                                                                                                       | U                                                                    | 0.00201                                                            |     | mg/Kg                                            |          | 08/01/23 09:01                                                             | 08/04/23 06:09                                                                                                                                                            | 1                       |
| m-Xylene & p-Xylene                                                                                                                                                                                                                         | <0.00402                                                                                                                                       | U                                                                    | 0.00402                                                            |     | mg/Kg                                            |          | 08/01/23 09:01                                                             | 08/04/23 06:09                                                                                                                                                            | 1                       |
| o-Xylene                                                                                                                                                                                                                                    | <0.00201                                                                                                                                       | U                                                                    | 0.00201                                                            |     | mg/Kg                                            |          | 08/01/23 09:01                                                             | 08/04/23 06:09                                                                                                                                                            | 1                       |
| Xylenes, Total                                                                                                                                                                                                                              | <0.00402                                                                                                                                       | U                                                                    | 0.00402                                                            |     | mg/Kg                                            |          | 08/01/23 09:01                                                             | 08/04/23 06:09                                                                                                                                                            | 1                       |
| Surrogate                                                                                                                                                                                                                                   | %Recovery                                                                                                                                      | Qualifier                                                            | Limits                                                             |     |                                                  |          | Prepared                                                                   | Analyzed                                                                                                                                                                  | Dil Fac                 |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                 | 87                                                                                                                                             |                                                                      | 70 - 130                                                           |     |                                                  |          | 08/01/23 09:01                                                             | 08/04/23 06:09                                                                                                                                                            | 1                       |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                  | 58                                                                                                                                             | S1-                                                                  | 70 - 130                                                           |     |                                                  |          | 08/01/23 09:01                                                             | 08/04/23 06:09                                                                                                                                                            | 1                       |
| Analyte<br>Total BTEX                                                                                                                                                                                                                       | Result<br><0.00402                                                                                                                             | U                                                                    | RL                                                                 |     | Unit<br>mg/Kg                                    | <u>D</u> | Prepared                                                                   | Analyzed<br>08/04/23 10:48                                                                                                                                                | 1                       |
|                                                                                                                                                                                                                                             | <0.00402                                                                                                                                       | -                                                                    | 0.00402                                                            | MDL | mg/Kg                                            |          | Prepared                                                                   |                                                                                                                                                                           | 1<br>Dil Fac            |
| Total BTEX<br>Method: SW846 8015 NM - Diese                                                                                                                                                                                                 | <0.00402                                                                                                                                       | ics (DRO) (<br>Qualifier                                             | 0.00402                                                            |     | mg/Kg                                            |          | <u>.</u>                                                                   | 08/04/23 10:48                                                                                                                                                            |                         |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                                                        | <0.00402 el Range Organ Result <50.0 sel Range Orga                                                                                            | ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)                          | GC)<br>RL<br>50.0<br>(GC)                                          | MDL | mg/Kg<br>Unit<br>mg/Kg                           | D        | Prepared                                                                   | 08/04/23 10:48 Analyzed 08/07/23 10:15                                                                                                                                    | Dil Fac                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte                                                                                                                            | <0.00402<br>el Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result                                                                      | ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier             | 0.00402<br>GC)<br>RL<br>50.0<br>(GC)<br>RL                         |     | mg/Kg<br>Unit<br>mg/Kg                           |          | Prepared                                                                   | 08/04/23 10:48<br>Analyzed<br>08/07/23 10:15<br>Analyzed                                                                                                                  | Dil Fac                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics                                                                                                 | <0.00402 el Range Organ Result <50.0 sel Range Orga                                                                                            | ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier             | GC)<br>RL<br>50.0<br>(GC)                                          | MDL | mg/Kg<br>Unit<br>mg/Kg                           | D        | Prepared                                                                   | 08/04/23 10:48 Analyzed 08/07/23 10:15                                                                                                                                    | Dil Fac                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                  | <0.00402<br>el Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result                                                                      | ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U *-     | 0.00402<br>GC)<br>RL<br>50.0<br>(GC)<br>RL                         | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit                   | D        | Prepared                                                                   | 08/04/23 10:48<br>Analyzed<br>08/07/23 10:15<br>Analyzed                                                                                                                  | Dil Fac<br>1<br>Dil Fac |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                      | <pre>&lt;0.00402 el Range Organ     Result     </pre> <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> | ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U *-     | 0.00402<br>GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0                 | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg          | D        | Prepared<br>Prepared<br>08/04/23 17:30                                     | O8/04/23         10:48           Analyzed         08/07/23         10:15           Analyzed         08/06/23         14:34                                                | Dil Fac<br>1<br>Dil Fac |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36) | <0.00402 el Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0                                                                         | ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U *-     | 0.00402<br>GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0<br>50.0         | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg | D        | Prepared<br>Prepared<br>08/04/23 17:30<br>08/04/23 17:30                   | O8/04/23         10:48           Analyzed         08/07/23         10:15           Analyzed         08/06/23         14:34           08/06/23         14:34         14:34 | Dil Fac                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                      | <0.00402 el Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0 <50.0                                                                   | ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U*-<br>U | 0.00402<br>GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0<br>50.0<br>50.0 | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg | D        | Prepared<br>Prepared<br>08/04/23 17:30<br>08/04/23 17:30<br>08/04/23 17:30 | 08/04/23 10:48<br>Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 14:34<br>08/06/23 14:34                                                                              | Dil Fac                 |

Eurofins Midland

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31276-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |                  |                   | Percent Surrogate Recovery (Acceptance Limits) |   |
|---------------------|------------------------|------------------|-------------------|------------------------------------------------|---|
| Lab Sample ID       | Client Sample ID       | BFB1<br>(70-130) | DFBZ1<br>(70-130) |                                                |   |
| 880-31276-1         | S-2 (3')               | 87               | 58 S1-            |                                                | 1 |
| 880-31278-A-1-B MS  | Matrix Spike           | 121              | 124               |                                                |   |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | 119              | 91                |                                                |   |
| LCS 880-58969/1-A   | Lab Control Sample     | 115              | 111               |                                                |   |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | 114              | 109               |                                                |   |
| MB 880-58969/5-A    | Method Blank           | 73               | 79                |                                                |   |
| MB 880-59110/5-A    | Method Blank           | 68 S1-           | 100               |                                                |   |
| Surrogate Legend    |                        |                  |                   |                                                |   |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

### Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| o Sample ID   | Client Sample ID       | (70-130) | (70-130) |                                                |
| 31276-1       | S-2 (3')               | 93       | 92       |                                                |
| 664-A-2-F MS  | Matrix Spike           | 123      | 104      |                                                |
| 664-A-2-G MSD | Matrix Spike Duplicate | 128      | 112      |                                                |
| -59369/2-A    | Lab Control Sample     | 93       | 94       |                                                |
| 30-59369/3-A  | Lab Control Sample Dup | 85       | 82       |                                                |
| 880-59369/1-A | Method Blank           | 88       | 94       |                                                |

### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |  |
|---------------------------------|--|
| Matrix: Calid                   |  |

Matrix: Solid Analysis Batch: 59172

|                             | MB        | MB        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | < 0.00200 | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
|                             | MB        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |

### Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

### Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

### Lab Sample ID: LCSD 880-58969/2-A

### Matrix: Solid

| Analysis Batch: 59172 |       |         |           |       |   |      | Prep     | Batch: | 58969 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08592 |           | mg/Kg |   | 86   | 70 - 130 | 9      | 35    |
| Toluene               | 0.100 | 0.08219 |           | mg/Kg |   | 82   | 70 - 130 | 6      | 35    |
| Ethylbenzene          | 0.100 | 0.08963 |           | mg/Kg |   | 90   | 70 - 130 | 12     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1870  |           | mg/Kg |   | 94   | 70 - 130 | 12     | 35    |
| o-Xylene              | 0.100 | 0.09268 |           | mg/Kg |   | 93   | 70 - 130 | 12     | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

### Lab Sample ID: 880-31278-A-1-B MS

### Matrix: Solid Analysis Retaby 50172

| Analysis Batch: 59172 |          |           |        |         |           |       |   |      | Pre      | Batch: 58969 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |              |

**Eurofins Midland** 

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

SDG: Lea County, New Mexico

Job ID: 880-31276-1

Client: Carmona Resources

Project/Site: Tonto 15 State #1

Job ID: 880-31276-1 SDG: Lea County, New Mexico

### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-A  | 4-1-D IVIS       |             |           |                |         |      |       |       |      |          | Client     | Sample ID:     |                |             |
|-----------------------------|------------------|-------------|-----------|----------------|---------|------|-------|-------|------|----------|------------|----------------|----------------|-------------|
| Matrix: Solid               |                  |             |           |                |         |      |       |       |      |          |            | Prep T         |                |             |
| Analysis Batch: 59172       | Comula           | C           | I.a       | Calles         | МС      | ме   |       |       |      |          |            |                | Batch:         | 58965       |
| Analyta                     | Sample<br>Result |             |           | Spike<br>Added |         |      | ifier | Unit  |      | D        | % Bee      | %Rec<br>Limits |                |             |
| Analyte                     | <0.00202         |             |           | 0.0994         | 0.1030  | Quai | mer   |       |      | <u> </u> | %Rec       | 70 - 130       |                |             |
| Ethylbenzene                |                  |             |           |                |         |      |       | mg/Kg |      |          |            |                |                |             |
| m-Xylene & p-Xylene         | < 0.00403        |             |           | 0.199          | 0.2125  |      |       | mg/Kg |      |          | 107        | 70 - 130       |                |             |
| o-Xylene                    | <0.00202         |             |           | 0.0994         | 0.1040  |      |       | mg/Kg |      |          | 105        | 70 - 130       |                |             |
| Surrogate                   | MS<br>%Recovery  | MS<br>Quali | ifior     | Limits         |         |      |       |       |      |          |            |                |                |             |
| 4-Bromofluorobenzene (Surr) |                  | Quan        |           | 70 - 130       |         |      |       |       |      |          |            |                |                |             |
| 1,4-Difluorobenzene (Surr)  | 124              |             |           | 70 - 130       |         |      |       |       |      |          |            |                |                |             |
|                             | 121              |             |           | 101100         |         |      |       |       |      |          |            |                |                |             |
| Lab Sample ID: 880-31278-4  | A-1-C MSD        |             |           |                |         |      |       | •     | Clie | nt Sa    | mple ID    | : Matrix Sp    |                | -           |
| Matrix: Solid               |                  |             |           |                |         |      |       |       |      |          |            | Prep T         |                |             |
| Analysis Batch: 59172       |                  | _           |           | •              |         |      |       |       |      |          |            |                | Batch:         |             |
|                             | Sample           |             |           | Spike          | MSD     |      |       |       |      | _        |            | %Rec           |                | RPD         |
| Analyte                     | Result           |             | fier      | Added          | Result  | Qual | ifier | Unit  |      | <u>D</u> | %Rec       | Limits         | RPD            | Limi        |
| Benzene                     | < 0.00202        |             |           | 0.0998         | 0.09502 |      |       | mg/Kg |      |          | 95         | 70 - 130       | 5              | 3           |
| Toluene                     | < 0.00202        |             |           | 0.0998         | 0.09100 |      |       | mg/Kg |      |          | 91         | 70 - 130       | 3              | 3           |
| Ethylbenzene                | <0.00202         |             |           | 0.0998         | 0.1021  |      |       | mg/Kg |      |          | 102        | 70 - 130       | 1              | 3           |
| m-Xylene & p-Xylene         | <0.00403         |             |           | 0.200          | 0.2097  |      |       | mg/Kg |      |          | 105        | 70 - 130       | 1              | 35          |
| o-Xylene                    | <0.00202         | U           |           | 0.0998         | 0.1024  |      |       | mg/Kg |      |          | 103        | 70 - 130       | 2              | 3           |
|                             | MSD              |             |           |                |         |      |       |       |      |          |            |                |                |             |
| Surrogate                   | %Recovery        | Quali       | fier      | Limits         |         |      |       |       |      |          |            |                |                |             |
| 4-Bromofluorobenzene (Surr) | 119              |             |           | 70 - 130       |         |      |       |       |      |          |            |                |                |             |
| 1,4-Difluorobenzene (Surr)  | 91               |             |           | 70 - 130       |         |      |       |       |      |          |            |                |                |             |
| Lab Sample ID: MB 880-591   | 10/5-A           |             |           |                |         |      |       |       |      |          | Client Sa  | ample ID: M    | <b>/lethod</b> | Blan        |
| Matrix: Solid               |                  |             |           |                |         |      |       |       |      |          |            | Prep T         | ype: To        | otal/N/     |
| Analysis Batch: 59172       |                  |             |           |                |         |      |       |       |      |          |            | Prep           | Batch:         | <b>5911</b> |
|                             |                  | МΒ          | МВ        |                |         |      |       |       |      |          |            |                |                |             |
| Analyte                     | Re               | sult        | Qualifier | RL             |         | MDL  | Unit  |       | D    | P        | repared    | Analyz         | ed             | Dil Fa      |
| Benzene                     | <0.00            | 200         | U         | 0.00200        |         |      | mg/Ko | g     |      | 08/0     | 2/23 11:14 | 08/03/23 1     | 1:30           |             |
| Toluene                     | <0.00            | 200         | U         | 0.00200        |         |      | mg/Ko | g     |      | 08/0     | 2/23 11:14 | 08/03/23 1     | 1:30           |             |
| Ethylbenzene                | <0.00            | 200         | U         | 0.00200        |         |      | mg/Kg | 9     |      | 08/0     | 2/23 11:14 | 08/03/23 1     | 1:30           |             |
| m-Xylene & p-Xylene         | <0.00            | 400         | U         | 0.00400        |         |      | mg/Kg | g     |      | 08/0     | 2/23 11:14 | 08/03/23 1     | 1:30           |             |
| o-Xylene                    | <0.00            | 200         | U         | 0.00200        |         |      | mg/Kg | g     |      | 08/0     | 2/23 11:14 | 08/03/23 1     | 1:30           |             |
| Xylenes, Total              | <0.00            | 400         | U         | 0.00400        |         |      | mg/Kg | g     |      | 08/0     | 2/23 11:14 | 08/03/23 1     | 1:30           |             |
|                             |                  |             | МВ        |                |         |      |       |       |      |          |            |                |                |             |
| Surrogate                   | %Reco            |             | Qualifier | Limits         |         |      |       |       |      |          | repared    | Analyz         |                | Dil Fa      |
| 4-Bromofluorobenzene (Surr) |                  | 68          | S1-       | 70 - 130       |         |      |       |       |      | 08/0     | 2/23 11:14 | 08/03/23       | 11:30          |             |
| 1,4-Difluorobenzene (Surr)  |                  | 100         |           | 70 - 130       |         |      |       |       |      | 08/0     | 2/23 11:14 | 08/03/23       | 11:30          |             |

| Lab Sample ID: MB 880-59369/1-A<br>Matrix: Solid<br>Analysis Batch: 59409 |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA |
|---------------------------------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|---------------------------------------------------------|----------|
|                                                                           | МВ     | МВ        |      |     |       |   |                |                                                         |          |
| Analyte                                                                   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                                                | Dil Fac  |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16                                          | 1        |
| (GRO)-C6-C10                                                              |        |           |      |     |       |   |                |                                                         |          |

Job ID: 880-31276-1 SDG: Lea County, New Mexico

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            | Cheffit 3                                | ample ID:                                                                                                                                                                     |                                  |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|--------|------------------------------------------------|-------|------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               | Type: To                         |                                                             |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             | ИВ МВ                          |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          | Pre                                                                                                                                                                           | o Batch:                         | 59369                                                       |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             | ив мв<br>ult Qualifie          | r RL                                                                                                                                                                                                                       |                                                                                      | мпі        | Unit   |                                                | D     | Pr         | repared                                  | Analy                                                                                                                                                                         | 70d                              | Dil Fac                                                     |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <                                                                                                                                           |                                | 50.0                                                                                                                                                                                                                       |                                                                                      | MDL        | mg/Kg  |                                                |       |            | 4/23 17:29                               |                                                                                                                                                                               |                                  | 1                                                           |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <50                                                                                                                                         | ).0 U                          | 50.0                                                                                                                                                                                                                       |                                                                                      |            | mg/Kg  | I                                              |       | 08/04      | 4/23 17:29                               | 08/06/23                                                                                                                                                                      | 08:16                            | 1                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | л                                                                                                                                           | NB MB                          |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %Recove                                                                                                                                     |                                | r Limits                                                                                                                                                                                                                   |                                                                                      |            |        |                                                |       | Pi         | repared                                  | Analy                                                                                                                                                                         | zed                              | Dil Fac                                                     |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             | 88                             | 70 - 130                                                                                                                                                                                                                   |                                                                                      |            |        |                                                | -     |            | 4/23 17:29                               |                                                                                                                                                                               |                                  | 1                                                           |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             | 94                             | 70 - 130                                                                                                                                                                                                                   |                                                                                      |            |        |                                                |       | 08/04      | 4/23 17:29                               | 08/06/23                                                                                                                                                                      | 8 08:16                          | 1                                                           |
| <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
| Lab Sample ID: LCS 880-59369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/2-A                                                                                                                                       |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                | CI    | ient       | Sample                                   | ID: Lab C                                                                                                                                                                     |                                  |                                                             |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               | Type: To                         |                                                             |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             |                                | Spike                                                                                                                                                                                                                      | 201                                                                                  | LCS        |        |                                                |       |            |                                          | Pre<br>%Rec                                                                                                                                                                   | o Batch:                         | 09369                                                       |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                | Added                                                                                                                                                                                                                      | Result                                                                               |            |        | Unit                                           |       | D          | %Rec                                     | Limits                                                                                                                                                                        |                                  |                                                             |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                | 1000                                                                                                                                                                                                                       | 661.8                                                                                |            |        | mg/Kg                                          |       | _          | 66                                       | 70 - 130                                                                                                                                                                      |                                  |                                                             |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        | 5 5                                            |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |                                | 1000                                                                                                                                                                                                                       | 873.3                                                                                |            |        | mg/Kg                                          |       |            | 87                                       | 70 - 130                                                                                                                                                                      |                                  |                                                             |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCS L                                                                                                                                       | cs                             |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %Recovery G                                                                                                                                 | Qualifier                      | Limits                                                                                                                                                                                                                     |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
| Surrogate<br>1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93                                                                                                                                          |                                | 70 - 130                                                                                                                                                                                                                   |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |                                | 70 - 130<br>70 - 130                                                                                                                                                                                                       |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                  |                                                             |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                    |                                |                                                                                                                                                                                                                            |                                                                                      |            |        | Cli                                            | ent s | Sam        | nle ID: I                                | ab Contro                                                                                                                                                                     | ol Samn                          | le Dun                                                      |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                    |                                |                                                                                                                                                                                                                            |                                                                                      |            |        | Cli                                            | ent   | Sam        | ple ID: L                                | _ab Contro<br>Prep                                                                                                                                                            |                                  |                                                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                    |                                |                                                                                                                                                                                                                            |                                                                                      |            |        | Cli                                            | ent   | Sam        | ple ID: L                                | Prep                                                                                                                                                                          | ol Samp<br>Type: To<br>o Batch:  | otal/NA                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                    |                                |                                                                                                                                                                                                                            | LCSD                                                                                 | LCS        | D      | Cli                                            | ent   | Sam        | ple ID: L                                | Prep                                                                                                                                                                          | Type: To                         | otal/NA<br>59369                                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                    |                                | 70 - 130                                                                                                                                                                                                                   | LCSD<br>Result                                                                       |            |        | Cli                                            | ent   | Sam        | ple ID: L                                | Prep<br>Prej                                                                                                                                                                  | Type: To                         | 59369<br>RPD                                                |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                    |                                | 70 <sub>-</sub> 130<br>Spike                                                                                                                                                                                               |                                                                                      | Qua        |        |                                                | ent s |            | -                                        | Prep<br>Prej<br>%Rec                                                                                                                                                          | Type: To<br>b Batch:             | 59369<br>RPD<br>Limit                                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                    |                                | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                         | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                         | 93<br>94                                                                                                                                    |                                | 70 - 130<br>Spike<br>Added                                                                                                                                                                                                 | Result                                                                               | Qua        |        | Unit                                           | ent : |            | %Rec                                     | Prep<br>Prep<br>%Rec<br>Limits                                                                                                                                                | Type: To<br>b Batch:<br>         | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94<br>69/3-A                                                                                                                          |                                | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                         | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent s |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | stal/NA<br>59369<br>RPD<br>Limit                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                         | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | stal/NA<br>59369<br>RPD<br>Limit                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                                                                                                                                | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                           | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         (GRO)-C6-C10         Diesel Range Organics (Over C10-C28)         Surrogate         1-Chlorooctane                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         (GRO)-C6-C10         Diesel Range Organics (Over C10-C28)         Surrogate         1-Chlorooctane                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                           | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66<br>85                         | Prep<br>976<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                             | Type: To<br>b Batch:             | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20                |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-24<br>Matrix: Solid                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                           | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66<br>85                         | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                            | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>85<br>82<br>-F MS                                                              | Qualifier                      | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                               | Result<br>660.9<br>845.2                                                             | Qual       |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66<br>85                         | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IC<br>Prep<br>Prep                                                                                       | Type: To<br>b Batch:             | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                    | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>G</u><br>85<br>82<br>-F MS<br>Sample S                                                  | Qualifier                      | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                   | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent   | <u>D</u> . | %Rec<br>66<br>85<br>Client               | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IE<br>Prep<br>Prey<br>%Rec                                                                       | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                         | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery G<br>85<br>82<br>-F MS<br>Sample S<br>Result G                                             | Qualifier                      | 70 - 130         Spike         Added         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         70 - 130         70 - 130         Added                                | Result           660.9           845.2           MS           Result                 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : |            | %Rec<br>66<br>85<br>Client               | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                              | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>G</u><br>85<br>82<br>-F MS<br>Sample S                                                  | Qualifier                      | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                   | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client               | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IE<br>Prep<br>Prey<br>%Rec                                                                       | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                         | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery G<br>85<br>82<br>-F MS<br>Sample S<br>Result G                                             | Qualifier                      | 70 - 130         Spike         Added         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         70 - 130         70 - 130         Added                                | Result           660.9           845.2           MS           Result                 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client               | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Type: To<br>batch:               | stal/NA<br>59369<br>RPC<br>Limin<br>20<br>20<br>20<br>Spike |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                              | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>% <i>Recovery G</i><br>85<br>82<br>-F MS<br>Sample S<br><u>Result G</u><br><50.3 U                   | Qualifier                      | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                                 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:               | stal/NA<br>59369<br>RPC<br>Limin<br>20<br>20<br>20<br>Spike |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                               | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>%Recovery 6<br>85<br>82<br>-F MS<br>Sample S<br>Result 6<br><50.3 0<br>61.5                | ample<br>Qualifier<br>Xalifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                                 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                   | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>%Recovery G<br>85<br>82<br>-F MS<br>Sample S<br>Result G<br><50.3 U<br>61.5<br><i>MS M</i> | ample<br>Qualifier<br>Xalifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                                 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:               | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20           |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analysis Batch: 59409         Analyte         Gasoline Range Organics<br>(GRO)-C6-C10         Diesel Range Organics (Over<br>C10-C28)         Surrogate         1-Chlorooctane         o-Terphenyl         Lab Sample ID: 880-31664-A-2:         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics<br>(GRO)-C6-C10         Diesel Range Organics (Over | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>%Recovery G<br>85<br>82<br>-F MS<br>Sample S<br>Result G<br><50.3 U<br>61.5<br><i>MS M</i> | ample<br>audifier<br>Qualifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         70 - 130         993         993         993 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:               | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20           |

### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31276-1 SDG: Lea County, New Mexico

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| SampleSampleSampleSpikeMSDMSD%RecAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDGasoline Range Organics<50.3U *-992918.4mg/Kg9170 - 1305(GRO)-C6-C10Diesel Range Organics (Over61.59921254mg/Kg12070 - 1306Diesel Range Organics (Over61.59921254mg/Kg12070 - 1306C10-C28)MSDMSDSurrogate%RecoveryQualifierLimits<br>70 - 1301-Chlorooctane12870 - 130o-Terphenyl11270 - 130                                   | RalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDLimitsoline Range Organics<50.3U *-992918.4mg/Kg9170 - 130520RO)-C6-C10esel Range Organics (Over61.59921254mg/Kg12070 - 1306200-C28)MSDMSDCualifierLimitsCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifierCualifier                                                                                                                                                                                                                                                                                                                               | Analysis Batch: 59409 | 0         | 0         | 0              | MOD   |         |        |   |      |                | Batch: |              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----------|----------------|-------|---------|--------|---|------|----------------|--------|--------------|--|
| Gasoline Range Organics       <50.3       U*-       992       918.4       mg/Kg       91       70 - 130       5         (GR0)-C6-C10       Diesel Range Organics (Over       61.5       992       1254       mg/Kg       120       70 - 130       6         C10-C28)       MSD       MSD       MSD       120       70 - 130       6         Surrogate       %Recovery       Qualifier       Limits       70 - 130       128 | Isoline Range Organics       <50.3       U*-       992       918.4       mg/Kg       91       70 - 130       5       20         RO)-C6-C10       esel Range Organics (Over       61.5       992       1254       mg/Kg       120       70 - 130       6       20         0-C28)       MSD       MSD       MSD         rrogate       %Recovery       Qualifier       Limits       70 - 130       6       20         Chlorooctane       128       70 - 130       70 - 130       6       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyte               | -         | -         | Spike<br>Added |       |         | Unit   | п | %Rec | %Rec<br>Limits | RPD    | RPD<br>Limit |  |
| (GRO)-C6-C10<br>Diesel Range Organics (Over 61.5 992 1254 mg/Kg 120 70 - 130 6<br>C10-C28)<br>MSD MSD<br>Surrogate <u>%Recovery</u> Qualifier Limits<br>1-Chlorooctane 128 70 - 130                                                                                                                                                                                                                                         | RO)-C6-C10<br>esel Range Organics (Over 61.5 992 1254 mg/Kg 120 70 - 130 6 20<br>0-C28)<br>MSD MSD<br>rrogate <u>%Recovery</u> Qualifier Limits<br>Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                     |           |           |                |       | Quaimer |        |   |      |                |        |              |  |
| Diesel Range Organics (Over         61.5         992         1254         mg/Kg         120         70 - 130         6           C10-C28)         MSD         MSD         MSD         5         992         1254         mg/Kg         120         70 - 130         6           Surrogate         %Recovery         Qualifier         Limits         70 - 130         70 - 130         70 - 130                             | MSD         MSD         MSD         Limits         70 - 130         6         20           Chlorooctane         128         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0 |                       |           | 0         | 002            | 010.1 |         | mg/rtg |   | 01   | 10-100         | 0      | 20           |  |
| MSD MSD<br>Surrogate <u>%Recovery</u> Qualifier Limits<br>1-Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                       | MSDMSDrrogate%RecoveryQualifierLimitsChlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · ·             | 61.5      |           | 992            | 1254  |         | mg/Kg  |   | 120  | 70 - 130       | 6      | 20           |  |
| Surrogate%RecoveryQualifierLimits1-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                                  | rrogate     %Recovery     Qualifier     Limits       Chlorooctane     128     70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C10-C28)              |           |           |                |       |         |        |   |      |                |        |              |  |
| 1-Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                 | Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | MSD       | MSD       |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Surrogate             | %Recovery | Qualifier | Limits         |       |         |        |   |      |                |        |              |  |
| o-Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                    | Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-Chlorooctane        | 128       |           | 70 - 130       |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o-Terphenyl           | 112       |           | 70 - 130       |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |                |       |         |        |   |      |                |        |              |  |

**Client Sample ID** 

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

**Client Sample ID** 

**Client Sample ID** 

Method Blank

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

S-2 (3')

Method Blank

Method Blank

Matrix Spike

S-2 (3')

### **QC** Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Carmona Resources Project/Site: Tonto 15 State #1

**GC VOA** 

Prep Batch: 58969

MB 880-58969/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31278-A-1-B MS

880-31278-A-1-C MSD

Prep Batch: 59110

MB 880-59110/5-A

Analysis Batch: 59172

Lab Sample ID

Lab Sample ID

MB 880-58969/5-A

MB 880-59110/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31276-1

Lab Sample ID

880-31276-1

Job ID: 880-31276-1 SDG: Lea County, New Mexico

Method

5035

5035

5035

5035

5035

5035

Method

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

5035

Prep Batch

Prep Batch

Prep Batch

58969

58969

59110

58969

58969

58969

58969

# 8

### 880-31278-A-1-B MS 880-31278-A-1-C MSD

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 380-31276-1   | S-2 (3')         | Total/NA  | Solid  | Total BTEX |            |

### GC Semi VOA

### Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31276-1         | S-2 (3')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

### Analysis Batch: 59409

880-31276-1

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31276-1           | S-2 (3')               | Total/NA  | Solid  | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59369      |
| Analysis Batch: 59478 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |

Total/NA

8015 NM

Solid

S-2 (3')
#### Client Sample ID: S-2 (3') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| -         | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.98 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/04/23 06:09 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59324  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59478  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 59369  | 08/04/23 17:30 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 14:34 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-31276-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31276-1

Matrix: Solid

5

9

14

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31276-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                      |                   | Program         | Identification Number                        | Expiration Date           |
|-----------------------------------------------|-------------------|-----------------|----------------------------------------------|---------------------------|
| exas                                          |                   | NELAP           | T104704400-23-26                             | 06-30-24                  |
| The following analytes the agency does not of | er certification. | · •             | ied by the governing authority. This list ma | ay include analytes for v |
| Analysis Mathod                               | Dron Mothod       | Matrix          | Apolyto                                      |                           |
| Analysis Method<br>8015 NM                    | Prep Method       | Matrix<br>Solid | Analyte<br>Total TPH                         |                           |

Eurofins Midland

10

# **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31276-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                        | Protocol                                | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                           | SW846                                   | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                    | TAL SOP                                 | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                              | SW846                                   | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                           | SW846                                   | EET MID    |
| Protocol Refe | rences:                                                                                                                                   |                                         |            |
|               | "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E<br>= TestAmerica Laboratories, Standard Operating Procedure | Edition, November 1986 And Its Updates. |            |
| TAL SOP       | - TestAmenca Laboratories, Standard Operating Procedure                                                                                   |                                         |            |
| Laboratory R  | eferences:                                                                                                                                |                                         |            |
| Laboratory R  |                                                                                                                                           | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31276-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31276-1   | S-2 (3')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |
|               |                  |        |                |                |

| MM      |                             |                                                                                                                                                          |                  |  |      | S-2 (3')   | Sample Identification | Total Containers.       | Sample Custody Seals | Cooler Custody Seals | Received Intact: | SAMPLE RECEIPT | PO#              | Sampler's Name | Project Location       | Project Number            | Project Name       | Phone                    | City, State ZIP                 |                           | y Name                         | Project Manager                    |
|---------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|------|------------|-----------------------|-------------------------|----------------------|----------------------|------------------|----------------|------------------|----------------|------------------------|---------------------------|--------------------|--------------------------|---------------------------------|---------------------------|--------------------------------|------------------------------------|
| A MA    | Relinquish                  | resurts to Mike Carmo                                                                                                                                    |                  |  |      | 1) 7 25 23 | ification Date        |                         | s Yes No NA          | Yes No MA            | (es) No          | T Temp Blank   |                  | CCM            | Lea County, New Mexico | 2089                      | Tonto 15 State #1  |                          | Midland, TX 79701               | 310 W Wall St Ste 500     | Carmona Resources              | Clinton Merritt                    |
|         | Relinquished by (Signature) | ₁a mcarmona@carn                                                                                                                                         |                  |  |      | 3          | Time                  | Corrected Temperature   | P                    | Ľ                    | Thermometer ID   | Yes No         | 5                |                |                        | •                         | tate #1            |                          |                                 |                           |                                |                                    |
|         |                             | nonaresourc                                                                                                                                              |                  |  |      | ×          | Soil                  | rature                  | ding                 |                      |                  | Wet Ice        |                  |                | Due Date               | <ul><li>Routine</li></ul> | Turn               | Email                    |                                 |                           |                                |                                    |
|         |                             | es com, Conr                                                                                                                                             |                  |  |      | G          | Water Comp            | 4.8                     | 2                    | 30                   | THE              | Ves No         |                  |                | 5 day                  | 🗌 Rush                    | Turn Around        | msanjari@marathonoil.com | City State ZIP-                 | Address                   | Company Name                   | Bill to (if different)             |
| JA<br>A |                             | ier Moehrin                                                                                                                                              |                  |  | <br> | <br>       | np Cont               |                         |                      | Pa                   | ran              | neter          | rs               |                |                        | Pres,<br>Code             |                    | arathonoil c             |                                 |                           | le                             | æ                                  |
| 1-26-7  | Date/Time                   | ig cmoehrn                                                                                                                                               |                  |  |      | ×<br>×     | TPI                   | H 801                   |                      | GR                   |                  |                | + M              | RO)            |                        |                           |                    | om                       | Houston TX 77024                | 990 Town ar               | Marathon O                     | Melodie Sanjari                    |
| 13      |                             | ng@carmonaresources com, C                                                                                                                               | 880-31276 Chain  |  |      |            |                       |                         | Chl                  | orid                 | e 30             | 00             |                  |                |                        |                           | ANALYSIS REQUEST   |                          | (77024                          | 990 Town and Country Blvd | Marathon Oil Corporation       | yan                                |
|         | Received by: (Signature)    | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint Merritt MerrittC@carmonaresources com | Chain of Custody |  |      |            |                       |                         |                      | ****                 |                  |                |                  |                |                        |                           | EQUEST             | 1                        | Reporting Level II Level III DS | State of Project.         | Program UST/PST PRP rownfields | Work Order                         |
|         | Date/Time                   | ources com                                                                                                                                               |                  |  |      |            | Sample Comments       | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn   | Na S-O- NaSO         | NaHSO NABIS      | 0              | H-SO, H- NaOH Na | н              |                        | CI VUL                    | Preservative Codes | ADaPT  Other             |                                 |                           | wnfields RC perfund [          | Page 1 of 1<br>Work Order Comments |

## Received by OCD: 9/21/2023 6:16:51 AM

## 8/7/2023

Work Order No:

6

Page 149 of 406

**5** 6 13

### Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31276 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

1 Job Number: 880-31276-1 SDG Number: Lea County, New Mexico List Source: Eurofins Midland 5 6 7 8 9 10 11 12

14

Containers requiring zero headspace have no headspace or bubble is



**Environment Testing** 

#### Page 151 of 406

# ANALYTICAL REPORT

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:41:35 PM

# JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-31282-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701







# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 8/7/2023 12:41:35 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31282-1 SDG: Lea County, New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

2

# **Definitions/Glossary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31282-1 SDG: Lea County, New Mexico

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| GC Semi VOA    |                                                                                                             | 5  |
| Qualifier      | Qualifier Description                                                                                       |    |
| *_             | LCS and/or LCSD is outside acceptance limits, low biased.                                                   |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary       |                                                                                                             |    |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | 8  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            | Q  |
| CFL            | Contains Free Liquid                                                                                        | 3  |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          | 13 |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL            | Method Detection Limit                                                                                      |    |
| ML             | Minimum Level (Dioxin)                                                                                      |    |
| MPN            | Most Probable Number                                                                                        |    |
| MQL            | Method Quantitation Limit                                                                                   |    |
| NC             | Not Calculated                                                                                              |    |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |    |
| NEG            | Negative / Absent                                                                                           |    |
| POS            | Positive / Present                                                                                          |    |
| PQL            | Practical Quantitation Limit                                                                                |    |
| PRES           | Presumptive                                                                                                 |    |
| QC             | Quality Control                                                                                             |    |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |    |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |    |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |    |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |    |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |    |
| TNTC           | Too Numerous To Count                                                                                       |    |

4

5

Job ID: 880-31282-1 SDG: Lea County, New Mexico

#### Job ID: 880-31282-1

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31282-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-2 (0-1') (880-31282-1).

#### GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

## Client Sample ID: S-2 (0-1') Date Collected: 07/25/23 00:00

Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

| Analyte                                                                                                                                                                                                                                                                               | Result                                                                          | Qualifier                                                                        | RL                                                               | MDL | Unit                                    | D     | Prepared                                                 | Analyzed                                                                   | Dil Fac      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|-----|-----------------------------------------|-------|----------------------------------------------------------|----------------------------------------------------------------------------|--------------|
| Benzene                                                                                                                                                                                                                                                                               | <0.00199                                                                        | U                                                                                | 0.00199                                                          |     | mg/Kg                                   |       | 08/01/23 09:18                                           | 08/02/23 23:31                                                             | 1            |
| Toluene                                                                                                                                                                                                                                                                               | <0.00199                                                                        | U                                                                                | 0.00199                                                          |     | mg/Kg                                   |       | 08/01/23 09:18                                           | 08/02/23 23:31                                                             | 1            |
| Ethylbenzene                                                                                                                                                                                                                                                                          | <0.00199                                                                        | U                                                                                | 0.00199                                                          |     | mg/Kg                                   |       | 08/01/23 09:18                                           | 08/02/23 23:31                                                             | 1            |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                                                   | <0.00398                                                                        | U                                                                                | 0.00398                                                          |     | mg/Kg                                   |       | 08/01/23 09:18                                           | 08/02/23 23:31                                                             | 1            |
| o-Xylene                                                                                                                                                                                                                                                                              | <0.00199                                                                        | U                                                                                | 0.00199                                                          |     | mg/Kg                                   |       | 08/01/23 09:18                                           | 08/02/23 23:31                                                             | 1            |
| Xylenes, Total                                                                                                                                                                                                                                                                        | <0.00398                                                                        | U                                                                                | 0.00398                                                          |     | mg/Kg                                   |       | 08/01/23 09:18                                           | 08/02/23 23:31                                                             | 1            |
| Surrogate                                                                                                                                                                                                                                                                             | %Recovery                                                                       | Qualifier                                                                        | Limits                                                           |     |                                         |       | Prepared                                                 | Analyzed                                                                   | Dil Fac      |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                           | 105                                                                             |                                                                                  | 70 - 130                                                         |     |                                         |       | 08/01/23 09:18                                           | 08/02/23 23:31                                                             | 1            |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                            | 106                                                                             |                                                                                  | 70 - 130                                                         |     |                                         |       | 08/01/23 09:18                                           | 08/02/23 23:31                                                             | 1            |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                                                                        | otal BTEX Calo                                                                  | culation                                                                         |                                                                  |     |                                         |       |                                                          |                                                                            |              |
| Analyta                                                                                                                                                                                                                                                                               | Rosult                                                                          | Qualifier                                                                        | RL                                                               | MDL | Unit                                    | D     | Prepared                                                 | Analyzed                                                                   | Dil Fac      |
| Analyte                                                                                                                                                                                                                                                                               | Result                                                                          | <b>Q</b> uu                                                                      |                                                                  |     |                                         |       |                                                          | -                                                                          |              |
| •                                                                                                                                                                                                                                                                                     | <0.00398                                                                        | -                                                                                | 0.00398                                                          |     | mg/Kg                                   |       |                                                          | 08/03/23 09:53                                                             | 1            |
| Total BTEX                                                                                                                                                                                                                                                                            | <0.00398                                                                        | U                                                                                | 0.00398                                                          |     | mg/Kg                                   |       |                                                          | 08/03/23 09:53                                                             | 1            |
| Total BTEX<br>Method: SW846 8015 NM - Diese                                                                                                                                                                                                                                           | <pre>&lt;0.00398</pre>                                                          | U                                                                                | 0.00398                                                          | MDL | mg/Kg<br>Unit                           | <br>D | Prepared                                                 | 08/03/23 09:53                                                             | 1<br>Dil Fac |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                                                                | <pre>&lt;0.00398</pre>                                                          | U<br>ics (DRO) (<br>Qualifier                                                    | 0.00398                                                          | MDL |                                         | D     |                                                          |                                                                            |              |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                                                                                                                                                                   | <0.00398<br>I Range Organ<br>Result<br><49.6                                    | U<br>ics (DRO) (<br>Qualifier<br>U                                               | 0.00398<br>GC)<br>RL<br>49.6                                     | MDL | Unit                                    | D     |                                                          | Analyzed                                                                   |              |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                                                                                                  | -0.00398 I Range Organ Result                                                   | U<br>ics (DRO) (<br>Qualifier<br>U                                               | 0.00398<br>GC)<br>RL<br>49.6                                     |     | Unit                                    | D     |                                                          | Analyzed                                                                   |              |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics                                                                                                                                            | -0.00398 I Range Organ Result                                                   | U<br>ics (DRO) (<br>Qualifier<br>U<br>nnics (DRO)<br>Qualifier                   | 0.00398 GC)<br><u>RL</u><br>49.6 (GC)                            |     | Unit<br>mg/Kg                           |       | Prepared                                                 | Analyzed<br>08/07/23 10:15                                                 | Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                            | <0.00398 I Range Organ Result <p>49.6 sel Range Orga Result</p>                 | U<br>ics (DRO) (n<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-           | 0.00398<br>GC)<br>RL<br>49.6<br>(GC)<br>RL                       |     | Unit<br>mg/Kg<br>Unit                   |       | Prepared                                                 | Analyzed<br>08/07/23 10:15<br>Analyzed                                     | Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                             | <0.00398 I Range Organ Result <p>49.6 cel Range Orga Result 49.6</p>            | U<br>ics (DRO) (n<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-           | 0.00398<br>GC)<br><u>RL</u><br>49.6<br>(GC)<br><u>RL</u><br>49.6 |     | Unit<br>mg/Kg<br>Unit<br>mg/Kg          |       | Prepared<br>Prepared<br>08/04/23 17:30                   | Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 17:34                   | Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                | <0.00398 I Range Organ Result <p>49.6 cel Range Orga Result 49.6</p>            | U<br>ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-<br>U       | 0.00398<br>GC)<br><u>RL</u><br>49.6<br>(GC)<br><u>RL</u><br>49.6 |     | Unit<br>mg/Kg<br>Unit<br>mg/Kg          |       | Prepared<br>Prepared<br>08/04/23 17:30                   | Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 17:34                   | Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                                            | <0.00398 I Range Organ Result <49.6 sel Range Orga Result <49.6 <49.6           | U<br>ics (DRO) (r<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-<br>U<br>U | 0.00398<br>GC)<br>RL<br>49.6<br>(GC)<br>RL<br>49.6<br>49.6       |     | Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |       | Prepared<br>Prepared<br>08/04/23 17:30<br>08/04/23 17:30 | Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 17:34<br>08/06/23 17:34 | Dil Fac      |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane | <0.00398 I Range Organ <p>el Range Orga el Range Orga el Range Orga Result </p> |                                                                                  |                                                                  |     |                                         |       |                                                          |                                                                            |              |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

Lab Sample ID: 880-31282-1 Matrix: Solid 5

Prep Type: Total/NA

Prep Type: Total/NA

# Method: 8021B - Volatile Organic Compounds (GC)

| Matrix: Solid |         |       |
|---------------|---------|-------|
|               | Matrix: | Solid |

|                       |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |   |
|-----------------------|------------------------|----------|----------|------------------------------------------------|---|
|                       |                        | BFB1     | DFBZ1    |                                                |   |
| Lab Sample ID         | Client Sample ID       | (70-130) | (70-130) |                                                | 5 |
| 880-31279-A-1-A MS    | Matrix Spike           | 103      | 100      |                                                |   |
| 880-31279-A-1-B MSD   | Matrix Spike Duplicate | 108      | 104      |                                                | 6 |
| 880-31282-1           | S-2 (0-1')             | 105      | 106      |                                                |   |
| LCS 880-58971/1-A     | Lab Control Sample     | 104      | 100      |                                                |   |
| LCSD 880-58971/2-A    | Lab Control Sample Dup | 95       | 103      |                                                |   |
| MB 880-58971/5-A      | Method Blank           | 84       | 89       |                                                | 9 |
| MB 880-58998/5-A      | Method Blank           | 85       | 89       |                                                | U |
| Surrogate Legend      |                        |          |          |                                                | 9 |
| BFB = 4-Bromofluorobe | nzene (Surr)           |          |          |                                                |   |

DFBZ = 1,4-Difluorobenzene (Surr)

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| Sample ID     | Client Sample ID       | (70-130) | (70-130) |                                                |
| 82-1          | S-2 (0-1')             | 97       | 100      |                                                |
| 664-A-2-F MS  | Matrix Spike           | 123      | 104      |                                                |
| 664-A-2-G MSD | Matrix Spike Duplicate | 128      | 112      |                                                |
| 59369/2-A     | Lab Control Sample     | 93       | 94       |                                                |
| -59369/3-A    | Lab Control Sample Dup | 85       | 82       |                                                |
| 80-59369/1-A  | Method Blank           | 88       | 94       |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 157 of 406

## **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

# Lab Sample ID: MB 880-58971/5-A

Matrix: Solid Analysis Batch: 59072

|                             | MB        | МВ        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
|                             | MB        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 84        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| 1,4-Difluorobenzene (Surr)  | 89        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| 4-Bromofluorobenzene (Surr) | 84        | Qualifier | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 |         |

#### Lab Sample ID: LCS 880-58971/1-A Matrix: Solid

#### Analysis Batch: 59072

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.07714 |           | mg/Kg |   | 77   | 70 - 130 |  |
| Toluene             | 0.100 | 0.1014  |           | mg/Kg |   | 101  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08911 |           | mg/Kg |   | 89   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1753  |           | mg/Kg |   | 88   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.08985 |           | mg/Kg |   | 90   | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 104       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 100       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58971/2-A

#### Matrix: Solid

| Analysis Batch: 59072 |       |         |           |       |   |      | Prep     | Batch: | <b>589</b> 71 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|---------------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD           |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit         |
| Benzene               | 0.100 | 0.08576 |           | mg/Kg |   | 86   | 70 - 130 | 11     | 35            |
| Toluene               | 0.100 | 0.1000  |           | mg/Kg |   | 100  | 70 - 130 | 1      | 35            |
| Ethylbenzene          | 0.100 | 0.08572 |           | mg/Kg |   | 86   | 70 - 130 | 4      | 35            |
| m-Xylene & p-Xylene   | 0.200 | 0.1641  |           | mg/Kg |   | 82   | 70 - 130 | 7      | 35            |
| o-Xylene              | 0.100 | 0.08388 |           | mg/Kg |   | 84   | 70 - 130 | 7      | 35            |
|                       |       |         |           |       |   |      |          |        |               |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 95        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

## Lab Sample ID: 880-31279-A-1-A MS

#### Matrix: Solid alveie Ratabi 50070

| Analysis Batch: 59072 |          |           |        |         |           |       |   |      | Prep     | Batch: 58971 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0996 | 0.07513 |           | mg/Kg |   | 75   | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0996 | 0.08995 |           | mg/Kg |   | 90   | 70 - 130 |              |

lland

Prep Type: Total/NA

# **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 58971

SDG: Lea County, New Mexico

Job ID: 880-31282-1

## **Client Sample ID: Lab Control Sample**

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 58971

**Client Sample ID: Matrix Spike** 

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31282-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31279-A                                | A-1-A MS  |      |           |          |         |     |        |       |      |       | Client S   | ample ID:  |         |                   |
|-----------------------------------------------------------|-----------|------|-----------|----------|---------|-----|--------|-------|------|-------|------------|------------|---------|-------------------|
| Matrix: Solid                                             |           |      |           |          |         |     |        |       |      |       |            | Prep T     | ype: To | otal/NA           |
| Analysis Batch: 59072                                     |           |      |           |          |         |     |        |       |      |       |            | Prep       | Batch:  | 5897 <sup>,</sup> |
|                                                           | Sample    | Sam  | ple       | Spike    | MS      | MS  |        |       |      |       |            | %Rec       |         |                   |
| Analyte                                                   | Result    | Qual | ifier     | Added    | Result  | Qua | lifier | Unit  |      | D     | %Rec       | Limits     |         |                   |
| Ethylbenzene                                              | <0.00202  | U    |           | 0.0996   | 0.08100 |     |        | mg/Kg |      |       | 81         | 70 - 130   |         |                   |
| n-Xylene & p-Xylene                                       | <0.00403  | U    |           | 0.199    | 0.1561  |     |        | mg/Kg |      |       | 78         | 70 - 130   |         |                   |
| p-Xylene                                                  | <0.00202  | U    |           | 0.0996   | 0.07987 |     |        | mg/Kg |      |       | 80         | 70 - 130   |         |                   |
|                                                           | MS        | MS   |           |          |         |     |        |       |      |       |            |            |         |                   |
| Surrogate                                                 |           | Qual | ifier     | Limits   |         |     |        |       |      |       |            |            |         |                   |
| 4-Bromofluorobenzene (Surr)                               | 103       |      |           | 70 - 130 |         |     |        |       |      |       |            |            |         |                   |
| 1,4-Difluorobenzene (Surr)                                | 100       |      |           | 70 - 130 |         |     |        |       |      |       |            |            |         |                   |
| Lab Sample ID: 880-31279-A                                | A-1-B MSD |      |           |          |         |     |        |       | Clie | nt Sa | ample ID:  | Matrix Sp  |         | -                 |
| Matrix: Solid                                             |           |      |           |          |         |     |        |       |      |       |            |            | ype: To |                   |
| Analysis Batch: 59072                                     |           |      |           |          |         |     |        |       |      |       |            |            | Batch:  |                   |
|                                                           | Sample    | Sam  | ple       | Spike    | MSD     | MSD | )      |       |      |       |            | %Rec       |         | RPI               |
| Analyte                                                   | Result    | Qual | ifier     | Added    | Result  | Qua | lifier | Unit  |      | D     | %Rec       | Limits     | RPD     | Limi              |
| Benzene                                                   | <0.00202  | U    |           | 0.0994   | 0.07017 |     |        | mg/Kg |      |       | 71         | 70 - 130   | 7       | 3                 |
| Foluene                                                   | <0.00202  | U    |           | 0.0994   | 0.08738 |     |        | mg/Kg |      |       | 88         | 70 - 130   | 3       | 3                 |
| Ethylbenzene                                              | <0.00202  | U    |           | 0.0994   | 0.07772 |     |        | mg/Kg |      |       | 78         | 70 - 130   | 4       | 3                 |
| n-Xylene & p-Xylene                                       | <0.00403  | U    |           | 0.199    | 0.1481  |     |        | mg/Kg |      |       | 75         | 70 - 130   | 5       | 3                 |
| o-Xylene                                                  | <0.00202  | U    |           | 0.0994   | 0.07711 |     |        | mg/Kg |      |       | 78         | 70 - 130   | 4       | 3                 |
|                                                           | MSD       | MSD  |           |          |         |     |        |       |      |       |            |            |         |                   |
| Surrogate                                                 |           | Qual | ifier     | Limits   |         |     |        |       |      |       |            |            |         |                   |
| 4-Bromofluorobenzene (Surr)                               | 108       |      |           | 70 - 130 |         |     |        |       |      |       |            |            |         |                   |
| 1,4-Difluorobenzene (Surr)                                | 104       |      |           | 70 - 130 |         |     |        |       |      |       |            |            |         |                   |
| Lab Sample ID: MB 880-589                                 | 98/5-A    |      |           |          |         |     |        |       |      |       | Client Sa  | mple ID: I | Nethod  | Blan              |
| Matrix: Solid                                             |           |      |           |          |         |     |        |       |      |       |            | Prep T     | ype: To | otal/N/           |
| Analysis Batch: 59072                                     |           |      |           |          |         |     |        |       |      |       |            | Prep       | Batch:  | 5899              |
|                                                           |           | MB   | MB        |          |         |     |        |       |      |       |            |            |         |                   |
| Analyte                                                   | Re        | sult | Qualifier | RL       |         | MDL | Unit   |       | D    | P     | repared    | Analyz     | ed      | Dil Fa            |
| Benzene                                                   | <0.00     | 200  | U         | 0.00200  |         |     | mg/K   | g     | _    | 08/0  | 1/23 10:59 | 08/02/23   | 11:28   |                   |
| Toluene                                                   | <0.00     | 200  | U         | 0.00200  |         |     | mg/K   | g     |      | 08/0  | 1/23 10:59 | 08/02/23   | 11:28   |                   |
| Ethylbenzene                                              | <0.00     | 200  | U         | 0.00200  |         |     | mg/K   | g     |      | 08/0  | 1/23 10:59 | 08/02/23   | 11:28   |                   |
| m-Xylene & p-Xylene                                       | <0.00     | 400  | U         | 0.00400  |         |     | mg/K   |       |      | 08/0  | 1/23 10:59 | 08/02/23   | 11:28   |                   |
| p-Xylene                                                  | <0.00     | 200  | U         | 0.00200  |         |     | mg/K   |       |      |       | 1/23 10:59 | 08/02/23   |         |                   |
| Kylenes, Total                                            | <0.00     | 400  | U         | 0.00400  |         |     | mg/K   |       |      | 08/0  | 1/23 10:59 | 08/02/23   | 11:28   |                   |
|                                                           |           | ΜВ   | МВ        |          |         |     |        |       |      |       |            |            |         |                   |
| Surrogate                                                 | %Recov    | /ery | Qualifier | Limits   |         |     |        |       |      |       | repared    | Analyz     |         | Dil Fa            |
| -                                                         |           | 85   |           | 70 - 130 |         |     |        |       |      |       | 1/23 10:59 | 08/02/23   |         |                   |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr) |           |      |           |          |         |     |        |       |      |       | 1/23 10:59 | 08/02/23   |         |                   |

| Lab Sample ID: MB 880-59369/1-A |        |           |      |     |       |   | Client Sa      | mple ID: Metho | d Blank         |
|---------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|-----------------|
| Matrix: Solid                   |        |           |      |     |       |   |                | Prep Type: 1   | Total/NA        |
| Analysis Batch: 59409           |        |           |      |     |       |   |                | Prep Batch     | n: <b>59369</b> |
|                                 | MB     | МВ        |      |     |       |   |                |                |                 |
| Analyte                         | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac         |
| Gasoline Range Organics         | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16 | 1               |

Eurofins Midland

(GRO)-C6-C10

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-24                                                                                                                                                         |                                  |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            | chefit 3                                                                    | ample ID:                                                                                                                                                                     |                                  |                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|--------|------------------------------------------------|-------|------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                  |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               | Type: To                         |                                                                    |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              | /IB MB                           |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             | Pre                                                                                                                                                                           | o Batch:                         | 59369                                                              |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              | ult Qualifier                    | RL                                                                                                                                                                                     |                                                                                      | мпі        | Unit   |                                                | D     | Pr         | repared                                                                     | Analy                                                                                                                                                                         | baz                              | Dil Fac                                                            |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Kes<br><50                                                                                                                                                  |                                  | 50.0                                                                                                                                                                                   |                                                                                      | MDL        | mg/Kg  |                                                |       |            | 4/23 17:29                                                                  |                                                                                                                                                                               |                                  | 1                                                                  |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                            |                                  |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <50                                                                                                                                                          | ).0 U                            | 50.0                                                                                                                                                                                   |                                                                                      |            | mg/Kg  | I                                              |       | 08/04      | 4/23 17:29                                                                  | 08/06/23                                                                                                                                                                      | 08:16                            | 1                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              | MB MB                            |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %Recove                                                                                                                                                      |                                  | - Limits                                                                                                                                                                               |                                                                                      |            |        |                                                |       | Pi         | repared                                                                     | Analy                                                                                                                                                                         | zed                              | Dil Fac                                                            |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              | 88                               | 70 - 130                                                                                                                                                                               |                                                                                      |            |        |                                                | -     |            | 4/23 17:29                                                                  |                                                                                                                                                                               |                                  | 1                                                                  |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | 94                               | 70 - 130                                                                                                                                                                               |                                                                                      |            |        |                                                |       | 08/04      | 4/23 17:29                                                                  | 08/06/23                                                                                                                                                                      | 8 08:16                          | 1                                                                  |
| <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                  |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
| Lab Sample ID: LCS 880-59369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/2-A                                                                                                                                                        |                                  |                                                                                                                                                                                        |                                                                                      |            |        |                                                | CI    | ient       | Sample                                                                      | ID: Lab C                                                                                                                                                                     |                                  |                                                                    |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                  |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               | Type: To                         |                                                                    |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                  | Spike                                                                                                                                                                                  | 1.05                                                                                 | LCS        |        |                                                |       |            |                                                                             | %Rec                                                                                                                                                                          | o Batch:                         | 59369                                                              |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                                  | Added                                                                                                                                                                                  | Result                                                                               |            |        | Unit                                           |       | D          | %Rec                                                                        | Limits                                                                                                                                                                        |                                  |                                                                    |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                                  | 1000                                                                                                                                                                                   | 661.8                                                                                |            |        | mg/Kg                                          |       | _          | 66                                                                          | 70 - 130                                                                                                                                                                      |                                  |                                                                    |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                  |                                                                                                                                                                                        |                                                                                      |            |        | 5 5                                            |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |                                  | 1000                                                                                                                                                                                   | 873.3                                                                                |            |        | mg/Kg                                          |       |            | 87                                                                          | 70 - 130                                                                                                                                                                      |                                  |                                                                    |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                  |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCS L                                                                                                                                                        | CS                               |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %Recovery C                                                                                                                                                  | Qualifier                        | Limits                                                                                                                                                                                 |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                  |                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
| Surrogate<br>1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93                                                                                                                                                           |                                  | 70 - 130                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                                  | 70 - 130<br>70 - 130                                                                                                                                                                   |                                                                                      |            |        |                                                |       |            |                                                                             |                                                                                                                                                                               |                                  |                                                                    |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                                     |                                  |                                                                                                                                                                                        |                                                                                      |            |        | Cli                                            | ent   | Sam        | nle ID: I                                                                   | ab Contro                                                                                                                                                                     | ol Samn                          | le Dun                                                             |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                                     |                                  |                                                                                                                                                                                        |                                                                                      |            |        | Cli                                            | ent   | Sam        | ple ID: L                                                                   | ab Contro                                                                                                                                                                     |                                  |                                                                    |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                                     |                                  |                                                                                                                                                                                        |                                                                                      |            |        | Cli                                            | ent   | Sam        | ple ID: L                                                                   | Prep                                                                                                                                                                          | ol Samp<br>Type: To<br>o Batch:  | otal/NA                                                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                                     |                                  |                                                                                                                                                                                        | LCSD                                                                                 | LCS        | D      | Cli                                            | ent   | Sam        | ple ID: L                                                                   | Prep                                                                                                                                                                          | Type: To                         | otal/NA<br>: 59369                                                 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                                     |                                  | 70 - 130                                                                                                                                                                               | LCSD<br>Result                                                                       |            |        | Cli                                            | ent   | Sam        | ple ID: L                                                                   | Prep<br>Prej                                                                                                                                                                  | Type: To                         | otal/NA<br>59369<br>RPD                                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                                     |                                  | 70 <sub>-</sub> 130<br>Spike                                                                                                                                                           |                                                                                      | Qua        |        |                                                | ent s |            | -                                                                           | Prep<br>Prej<br>%Rec                                                                                                                                                          | Type: To<br>b Batch:             | 59369<br>RPD                                                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                                     |                                  | 70 - 130  Spike Added 1000                                                                                                                                                             | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                                                                  | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                                    |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                         | 93<br>94                                                                                                                                                     |                                  | 70 - 130<br>Spike<br>Added                                                                                                                                                             | Result                                                                               | Qua        |        | Unit                                           | ent : |            | %Rec                                                                        | Prep<br>Prep<br>%Rec<br>Limits                                                                                                                                                | Type: To<br>b Batch:<br>         | tal/NA<br>59369<br>RPD<br>Limit                                    |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94<br>69/3-A                                                                                                                                           |                                  | 70 - 130  Spike Added 1000                                                                                                                                                             | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent s |            | %Rec<br>66                                                                  | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | <b>btal/NA</b><br><b>59369</b><br><b>RPD</b><br>Limit<br>20        |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                                       |                                  | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                     | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                                                                  | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                                    |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                                                                                                                                | 93<br>94<br>69/3-A<br>                                                                                                                                       |                                  | 70 - 130  Spike Added 1000 1000 Limits                                                                                                                                                 | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                                                                  | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                                    |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                                       |                                  | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                                                                  | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                                    |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         (GRO)-C6-C10         Diesel Range Organics (Over C10-C28)         Surrogate         1-Chlorooctane                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br>                                                                                                                                       |                                  | 70 - 130  Spike Added 1000 1000 Limits                                                                                                                                                 | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                                                                  | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0 | tal/NA<br>59369<br>RPD<br>Limit                                    |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         (GRO)-C6-C10         Diesel Range Organics (Over C10-C28)         Surrogate         1-Chlorooctane                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>% <i>Recovery G</i><br>85<br>82                                                                             |                                  | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | <b>%Rec</b><br>66<br>85                                                     | Prep<br>9// Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                        | Type: To<br>b Batch:             | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-24<br>Matrix: Solid                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>% <i>Recovery G</i><br>85<br>82                                                                             |                                  | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | <b>%Rec</b><br>66<br>85                                                     | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                            | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>85<br>82<br>-F MS                                                                               | Qualifier                        | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130                                                                                                           | Result<br>660.9<br>845.2                                                             | Qual       |        | Unit<br>mg/Kg                                  | ent : |            | <b>%Rec</b><br>66<br>85                                                     | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IC<br>Prep<br>Prey                                                                               | Type: To<br>b Batch:             | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                    | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>82<br>-F MS<br>Sample S                                                                         | Qualifier                        | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                               | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent   | <u>D</u> . | %Rec<br>66<br>85<br>Client                                                  | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>Sample IE<br>Prep<br>Prey<br>%Rec                                                                  | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                         | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>82<br>-F MS<br>Sample S<br>Result <u>6</u>                                                      | Qualifier<br>kample<br>Qualifier | 70 - 130         Spike         Added         1000         1000         1000         000         1000         1000         1000         5pike         Added         Spike         Added | Result<br>660.9<br>845.2<br>MS<br>Result                                             | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : |            | %Rec<br>66<br>85<br>Client                                                  | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                              | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>82<br>-F MS<br>Sample S                                                                         | Qualifier<br>kample<br>Qualifier | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                               | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client                                                  | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>Sample IE<br>Prep<br>Prey<br>%Rec                                                                  | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                         | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>82<br>-F MS<br>Sample S<br>Result <u>6</u>                                                      | Qualifier<br>kample<br>Qualifier | 70 - 130         Spike         Added         1000         1000         1000         000         1000         1000         1000         5pike         Added         Spike         Added | Result<br>660.9<br>845.2<br>MS<br>Result                                             | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client                                                  | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                              | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>% <i>Recovery G</i><br>85<br>82<br>-F MS<br>Sample S<br><u>Result G</u><br><50.3 U                                    | Qualifier<br>kample<br>Qualifier | 70 - 130         Spike         Added         1000         1000         1000         0 - 130         70 - 130         70 - 130         Spike         Added         993                  | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec           66           85           Client           %Rec           86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                               | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>%Recovery 6<br>85<br>82<br>-F MS<br>Sample S<br>Result 6<br><50.3 0<br>61.5                                 | ample<br>aulifier<br>aulifier    | 70 - 130         Spike         Added         1000         1000         1000         0 - 130         70 - 130         70 - 130         Spike         Added         993                  | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec           66           85           Client           %Rec           86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analysis Batch: 59409         Analyte         Gasoline Range Organics<br>(GRO)-C6-C10         Diesel Range Organics (Over<br>C10-C28)         Surrogate         1-Chlorooctane         o-Terphenyl         Lab Sample ID: 880-31664-A-2:         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics<br>(GRO)-C6-C10         Diesel Range Organics (Over | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>85<br>82<br>-F MS<br>Sample S<br><u>Result <u>6</u><br/>&lt;50.3 U<br/>61.5<br/><i>MS M</i></u> | ample<br>aulifier<br>aulifier    | 70 - 130         Spike         Added         1000         1000         1000         0 - 130         70 - 130         70 - 130         Spike         Added         993                  | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec           66           85           Client           %Rec           86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:               | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                   | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>85<br>82<br>-F MS<br>Sample S<br>Result <u>6</u><br><50.3 U<br>61.5                   | ample<br>audifier<br>audifier    | Spike           Added           1000           1000           1000           1000           1000           Spike           Added           993           993                           | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec           66           85           Client           %Rec           86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:               | c Spike                                                            |

Eurofins Midland

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31282-1 SDG: Lea County, New Mexico

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Analysis Batch: 59409                   |           |           | •        |       |           |       |   |      |          | Batch: |       |   |
|-----------------------------------------|-----------|-----------|----------|-------|-----------|-------|---|------|----------|--------|-------|---|
| • • •                                   | -         | Sample    | Spike    |       | MSD       |       | _ |      | %Rec     |        | RPD   |   |
| Analyte                                 |           | Qualifier | Added    |       | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |   |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.3     | U *-      | 992      | 918.4 |           | mg/Kg |   | 91   | 70 - 130 | 5      | 20    |   |
| Diesel Range Organics (Over             | 61.5      |           | 992      | 1254  |           | mg/Kg |   | 120  | 70 - 130 | 6      | 20    |   |
| C10-C28)                                |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         | MSD       | MSD       |          |       |           |       |   |      |          |        |       |   |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |           |       |   |      |          |        |       | 2 |
| 1-Chlorooctane                          | 128       |           | 70 - 130 |       |           |       |   |      |          |        |       |   |
| o-Terphenyl                             | 112       |           | 70 - 130 |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |

**Page 161 of 406** 

# **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31282-1 SDG: Lea County, New Mexico

## **GC VOA**

#### Prep Batch: 58971

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-31282-1         | S-2 (0-1')             | Total/NA  | Solid  | 5035   |            |
| MB 880-58971/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-58971/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-58971/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-31279-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-31279-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |
| Prep Batch: 58998   |                        |           |        |        |            |
| Lab Sample ID       | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
| MB 880-58998/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 59072

| Lab Sample ID                | Client Sample ID               | Prep Type             | Matrix          | Method          | Prep Batch          | _  |
|------------------------------|--------------------------------|-----------------------|-----------------|-----------------|---------------------|----|
| MB 880-58998/5-A             | Method Blank                   | Total/NA              | Solid           | 5035            |                     | 9  |
| Analysis Batch: 59072        |                                |                       |                 |                 |                     |    |
| Lab Sample ID<br>880-31282-1 | Client Sample ID<br>S-2 (0-1') | Prep Type<br>Total/NA | Matrix<br>Solid | Method<br>8021B | Prep Batch<br>58971 |    |
| MB 880-58971/5-A             | Method Blank                   | Total/NA              | Solid           | 8021B           | 58971               |    |
| MB 880-58998/5-A             | Method Blank                   | Total/NA              | Solid           | 8021B           | 58998               |    |
| LCS 880-58971/1-A            | Lab Control Sample             | Total/NA              | Solid           | 8021B           | 58971               |    |
| LCSD 880-58971/2-A           | Lab Control Sample Dup         | Total/NA              | Solid           | 8021B           | 58971               |    |
| 880-31279-A-1-A MS           | Matrix Spike                   | Total/NA              | Solid           | 8021B           | 58971               | 13 |
| 880-31279-A-1-B MSD          | Matrix Spike Duplicate         | Total/NA              | Solid           | 8021B           | 58971               |    |

#### Analysis Batch: 59203

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31282-1   | S-2 (0-1')       | Total/NA  | Solid  | Total BTEX |            |

#### GC Semi VOA

#### Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31282-1         | S-2 (0-1')             | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 59409

880-31282-1

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31282-1           | S-2 (0-1')             | Total/NA  | Solid  | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59369      |
| Analysis Batch: 59484 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |

Total/NA

Solid

8015 NM

S-2 (0-1')

#### Client Sample ID: S-2 (0-1') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| -         | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 58971  | 08/01/23 09:18 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59072  | 08/02/23 23:31 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59203  | 08/03/23 09:53 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59484  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.09 g | 10 mL  | 59369  | 08/04/23 17:30 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 17:34 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-31282-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31282-1

Matrix: Solid

Eurofins Midland

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31282-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| thority                | F                             | Program          | Identification Number                       | Expiration Date           |  |  |
|------------------------|-------------------------------|------------------|---------------------------------------------|---------------------------|--|--|
| exas NELAP             |                               | T104704400-23-26 | 06-30-24                                    |                           |  |  |
| The following englytee | ara included in this report I |                  |                                             |                           |  |  |
| the agency does not of | er certification.             |                  | ed by the governing authority. This list ma | ay include analytes for t |  |  |
| • ,                    |                               | Matrix Solid     | Analyte                                     | ay include analytes for v |  |  |

Eurofins Midland

Page 164 of 406

10

# **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31282-1 SDG: Lea County, New Mexico

| Method       | Method Description                                                                                                                                       | Protocol | Laboratory |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 8021B        | Volatile Organic Compounds (GC)                                                                                                                          | SW846    | EET MID    |
| Total BTEX   | Total BTEX Calculation                                                                                                                                   | TAL SOP  | EET MID    |
| 8015 NM      | Diesel Range Organics (DRO) (GC)                                                                                                                         | SW846    | EET MID    |
| 8015B NM     | Diesel Range Organics (DRO) (GC)                                                                                                                         | SW846    | EET MID    |
| 5035         | Closed System Purge and Trap                                                                                                                             | SW846    | EET MID    |
| 8015NM Prep  | Microextraction                                                                                                                                          | SW846    | EET MID    |
| Laboratory R | = TestAmerica Laboratories, Standard Operating Procedure<br>• ferences:<br>= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 |          |            |
|              |                                                                                                                                                          |          |            |
|              |                                                                                                                                                          |          |            |
|              |                                                                                                                                                          |          |            |
|              |                                                                                                                                                          |          |            |
|              |                                                                                                                                                          |          |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31282-1 SDG: Lea County, New Mexico

| Lab Sample ID         Client Sample ID         Matrix         Collected         Received           880-31282-1         S-2 (0-1')         Solid         07/25/23 00:00         07/26/23 16:45 |               |                  |        |                |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|--------|----------------|----------------|
| 880-31282-1 S-2 (0-1') Solid 07/25/23 00:00 07/26/23 16:45                                                                                                                                    | Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|                                                                                                                                                                                               | 880-31282-1   | S-2 (0-1')       | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

Released to Imaging: 11/6/2023 11:57:53 AM

## Received by OCD: 9/21/2023 6:16:51 AM

| Mont         |                             |                                                                                                                                                 |          |  | U-2 (U-1)  | Sample Identification |                         | Sample Custody Seals | Cooler Custody Seals | Received Intact: | SAMPLE RECEIPT | PO#  | Sampler's Name. | Project Location       | Project Number | Project Name      | Phone                    | City, State ZIP N | Address                   | Company Name (                   | Project Manager (      |
|--------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|------------|-----------------------|-------------------------|----------------------|----------------------|------------------|----------------|------|-----------------|------------------------|----------------|-------------------|--------------------------|-------------------|---------------------------|----------------------------------|------------------------|
| all a        | Relinquish                  | resurts to mike Carmor                                                                                                                          |          |  | 1) / 25 23 |                       |                         | S Yes No N/A         | Yes                  | (Kes) No         | Temp Blank     |      | CCM             | Lea County, New Mexico | 2089           | Tonto 15 State #1 |                          | Midland TX 79701  | 310 W Wall St Ste 500     | Carmona Resources                | Clinton Merritt        |
| Å            | Relinquished by (Signature) | ia mcarmona@carn                                                                                                                                |          |  |            | Time                  | Corrected Lemperature   | K                    | Correction Factor    | Thermometer ID   | Nes No         |      |                 |                        |                | ate #1            |                          |                   |                           |                                  |                        |
|              |                             | ionaresource                                                                                                                                    |          |  | ×          | Soil                  | ature.                  | ding                 |                      |                  | Wet Ice        |      |                 | Due Date               | マ Routine      | Turn              | Email                    |                   |                           |                                  |                        |
|              |                             | es com, Conner                                                                                                                                  |          |  | <u>ଜ</u>   | Water Comp            |                         | di l                 | -30                  | THE              | Kes No         | )    | 1               | 5 dav                  | Rush           | Turn Around       | msanjari@marathonoll.com | City, State ZIP   | Address                   | Company Name                     | Bill to (if different) |
| 7-           | Da                          | Moehring                                                                                                                                        |          |  |            | # of<br>Cont          |                         | J                    |                      |                  | neter          | s    | <b>I</b>        |                        | Pres,          |                   | athonoil con             | H                 | 36                        | M                                | A                      |
| 1045<br>1045 | Date/Time                   | cmoehring@carmonaresour                                                                                                                         |          |  | ×          | TF                    | PH 80                   | 15M                  | ( GR                 | 0 + [            | ORO            | + MF | :0)             |                        |                | AN                | 1                        | Houston TX 77024  | 990 Town and Country Blvd | Marathon Oll Corporation         | Melodie Sanjari        |
|              | Received by (Signature)     | Email resurs to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint MerrittC@carmonaresources com | 90-31100 |  |            |                       |                         |                      |                      |                  |                |      |                 |                        |                | ANALYSIS REQUEST  | Deliverables EDD AD;     |                   | State of Project.         | Program. UST/PST PRP Prownfields | Work Orde              |
|              | Date/Time                   | ssources com                                                                                                                                    |          |  |            | Sample Comments       | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn   | Na S-O, NaSO,        | NaHSO, NARIS     | H DO. HD       |      | 0               |                        | or vari        |                   |                          |                   |                           |                                  | Page1 of1              |

# 8/7/2023

Work Order No:

686

Page 167 of 406

5

13

 $\langle \gamma \rangle$ Ņ

677

(/)

5

14

Job Number: 880-31282-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

## Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31282 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Eurofins Midland Released to Imaging: 11/6/2023 11:57:53 AM

Containers requiring zero headspace have no headspace or bubble is



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Clint Merritt **Carmona Resources** 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:35:20 PM

# **JOB DESCRIPTION**

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-31277-1



Page 169 of 406

# ËOL

See page two for job notes and contact information.

**Eurofins Midland** 1211 W. Florida Ave Midland TX 79701

# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 8/7/2023 12:35:20 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31277-1 SDG: Lea County, New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

Page 171 of 406

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 172 of 406

| Job ID: 880-31277-1         |
|-----------------------------|
| SDG: Lea County, New Mexico |

## Qualifiers

|                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Qualifier Description                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Surrogate recovery exceeds control limits, low biased.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Indicates the analyte was analyzed for but not detected.                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Qualifier Description                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LCS and/or LCSD is outside acceptance limits, low biased.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Indicates the analyte was analyzed for but not detected.                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| These commonly used abbreviations may or may not be present in this report.                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Listed under the "D" column to designate that the result is reported on a dry weight basis                  | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Percent Recovery                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Contains Free Liquid                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Colony Forming Unit                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contains No Free Liquid                                                                                     | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate Error Ratio (normalized absolute difference)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dilution Factor                                                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Detection Limit (DoD/DOE)                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Decision Level Concentration (Radiochemistry)                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Estimated Detection Limit (Dioxin)                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Limit of Detection (DoD/DOE)                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Limit of Quantitation (DoD/DOE)                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EPA recommended "Maximum Contaminant Level"                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Minimum Detectable Activity (Radiochemistry)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _                                                                                                           | Surrogate recovery exceeds control limits, low blased.         Indicates the analyte was analyzed for but not detected.         Qualifier Description         LCS and/or LCSD is outside acceptance limits, low blased.         Indicates the analyte was analyzed for but not detected.         These commonly used abbreviations may or may not be present in this report.         Listed under the "D" column to designate that the result is reported on a dry weight basis         Percent Recovery         Contains Free Liquid         Contains No Free Liquid         Duplicate Error Ratio (normalized absolute difference)         Dilution Factor         Detection Limit (DoD/DOE)         Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample         Decision Level Concentration (Radiochemistry)         Estimated Detection Limit (DioXin)         Limit of Detection (DoD/DOE)         Limit of Outontion (DoD/DOE)         EPA recommended "Maximum Contaminant Level" |

 MDA
 Minimum Detectable Activity (Radiochemistry)

 MDC
 Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin)

MPN Most Probable Number

MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

QCQuality ControlRERRelative Error Ratio (Rad

 RER
 Relative Error Ratio (Radiochemistry)

 RL
 Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

#### Job ID: 880-31277-1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31277-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-3 (2') (880-31277-1).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-3 (2') (880-31277-1) and (880-31278-A-1-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

# Lab Sample ID: 880-31277-1

Matrix: Solid

5

## Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Client Sample ID: S-3 (2') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| Analyte                                               | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared         | Analyzed       | Dil Fac |
|-------------------------------------------------------|---------------------------|------------|----------------|-----|-------|---|------------------|----------------|---------|
| Benzene                                               | <0.00201                  | U          | 0.00201        |     | mg/Kg |   | 08/01/23 09:01   | 08/04/23 06:29 | 1       |
| Toluene                                               | <0.00201                  | U          | 0.00201        |     | mg/Kg |   | 08/01/23 09:01   | 08/04/23 06:29 | 1       |
| Ethylbenzene                                          | <0.00201                  | U          | 0.00201        |     | mg/Kg |   | 08/01/23 09:01   | 08/04/23 06:29 | 1       |
| m-Xylene & p-Xylene                                   | <0.00402                  | U          | 0.00402        |     | mg/Kg |   | 08/01/23 09:01   | 08/04/23 06:29 | 1       |
| o-Xylene                                              | <0.00201                  | U          | 0.00201        |     | mg/Kg |   | 08/01/23 09:01   | 08/04/23 06:29 | 1       |
| Xylenes, Total                                        | <0.00402                  | U          | 0.00402        |     | mg/Kg |   | 08/01/23 09:01   | 08/04/23 06:29 | 1       |
| Surrogate                                             | %Recovery                 | Qualifier  | Limits         |     |       |   | Prepared         | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)                           | 84                        |            | 70 - 130       |     |       |   | 08/01/23 09:01   | 08/04/23 06:29 | 1       |
| 1,4-Difluorobenzene (Surr)                            | 56                        | S1-        | 70 - 130       |     |       |   | 08/01/23 09:01   | 08/04/23 06:29 | 1       |
| Total BTEX<br>-<br>-<br>Method: SW846 8015 NM - Diese | <0.00402<br>I Range Organ |            | 0.00402<br>GC) |     | mg/Kg |   |                  | 08/04/23 10:48 | 1       |
| Analyte                                               | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared         | Analyzed       | Dil Fac |
| Total TPH                                             | <49.6                     | U          | 49.6           |     | mg/Kg |   |                  | 08/07/23 10:15 | 1       |
| Method: SW846 8015B NM - Dies                         | el Range Orga             | nics (DRO) | (GC)           |     |       |   |                  |                |         |
| Analyte                                               | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared         | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10               | <49.6                     | U *-       | 49.6           |     | mg/Kg |   | 08/04/23 17:30   | 08/06/23 14:59 | 1       |
| Diesel Range Organics (Over<br>C10-C28)               | <49.6                     | U          | 49.6           |     | mg/Kg |   | 08/04/23 17:30   | 08/06/23 14:59 | 1       |
| Oll Range Organics (Over C28-C36)                     | <49.6                     | U          | 49.6           |     | mg/Kg |   | 08/04/23 17:30   | 08/06/23 14:59 | 1       |
| Surrogate                                             | %Recovery                 | Qualifier  | Limits         |     |       |   | Prepared         | Analyzed       | Dil Fac |
| 1-Chlorooctane                                        | 88                        |            | 70 - 130       |     |       |   | 08/04/23 17:30   | 08/06/23 14:59 | 1       |
| I-Chioroociane                                        | 00                        |            | 70 = 700       |     |       |   | 00/0 // 20 11:00 | 00,00,20 11.00 |         |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

Prep Type: Total/NA

Prep Type: Total/NA

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------------|------------------------|----------|----------|------------------------------------------------|
|                     |                        | BFB1     | DFBZ1    |                                                |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31277-1         | S-3 (2')               | 84       | 56 S1-   |                                                |
| 880-31278-A-1-B MS  | Matrix Spike           | 121      | 124      |                                                |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | 119      | 91       |                                                |
| LCS 880-58969/1-A   | Lab Control Sample     | 115      | 111      |                                                |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | 114      | 109      |                                                |
| MB 880-58969/5-A    | Method Blank           | 73       | 79       |                                                |
| MB 880-59110/5-A    | Method Blank           | 68 S1-   | 100      |                                                |
| Surrogate Legend    |                        |          |          |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| Sample ID     | Client Sample ID       | (70-130) | (70-130) |                                                |
| 277-1         | S-3 (2')               | 88       | 89       |                                                |
| 1664-A-2-F MS | Matrix Spike           | 123      | 104      |                                                |
| 664-A-2-G MSD | Matrix Spike Duplicate | 128      | 112      |                                                |
| 0-59369/2-A   | Lab Control Sample     | 93       | 94       |                                                |
| 0-59369/3-A   | Lab Control Sample Dup | 85       | 82       |                                                |
| 380-59369/1-A | Method Blank           | 88       | 94       |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 175 of 406

Eurofins Midland

## **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |
|---------------------------------|
| Matrix: Solid                   |

Analysis Batch: 59172

|                             | MB        | MB        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |

#### Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

#### Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58969/2-A

#### Matrix: Solid

| Analysis Batch: 59172 |       |         |           |       |   |      | Prep     | ep Batch: 589 |       |
|-----------------------|-------|---------|-----------|-------|---|------|----------|---------------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |               | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD           | Limit |
| Benzene               | 0.100 | 0.08592 |           | mg/Kg |   | 86   | 70 - 130 | 9             | 35    |
| Toluene               | 0.100 | 0.08219 |           | mg/Kg |   | 82   | 70 - 130 | 6             | 35    |
| Ethylbenzene          | 0.100 | 0.08963 |           | mg/Kg |   | 90   | 70 - 130 | 12            | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1870  |           | mg/Kg |   | 94   | 70 - 130 | 12            | 35    |
| o-Xylene              | 0.100 | 0.09268 |           | mg/Kg |   | 93   | 70 - 130 | 12            | 35    |
|                       |       |         |           |       |   |      |          |               |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

# Lab Sample ID: 880-31278-A-1-B MS

# Matrix: Solid

| Analysis Batch: 59172 |           |           |        |         |           |       |   |      | Pre      | p Batch: 58969 |
|-----------------------|-----------|-----------|--------|---------|-----------|-------|---|------|----------|----------------|
|                       | Sample    | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |                |
| Analyte               | Result    | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |                |
| Benzene               | < 0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |                |
| Toluene               | <0.00202  | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |                |

Eurofins Midland

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

#### Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Batch: 58969

Prep Type: Total/NA

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31277-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-   | A-1-B MS  |       |           |          |         |     |        |       |        | Client        | Sample ID:   |         | -            |
|-----------------------------|-----------|-------|-----------|----------|---------|-----|--------|-------|--------|---------------|--------------|---------|--------------|
| Matrix: Solid               |           |       |           |          |         |     |        |       |        |               | Prep Ty      |         |              |
| Analysis Batch: 59172       | 0         | ••••• |           | 0        |         |     |        |       |        |               |              | Batch:  | 5896         |
|                             | Sample    |       | •         | Spike    |         | MS  |        |       |        |               | %Rec         |         |              |
| Analyte                     | Result    |       | ifier     | Added    | Result  | Qua | litier | Unit  |        | D %Rec _      | Limits       |         |              |
| Ethylbenzene                | <0.00202  |       |           | 0.0994   | 0.1030  |     |        | mg/Kg |        | 104           | 70 - 130     |         |              |
| n-Xylene & p-Xylene         | <0.00403  |       |           | 0.199    | 0.2125  |     |        | mg/Kg |        | 107           | 70 - 130     |         |              |
| -Xylene                     | <0.00202  | U     |           | 0.0994   | 0.1040  |     |        | mg/Kg |        | 105           | 70 - 130     |         |              |
|                             | MS        | MS    |           |          |         |     |        |       |        |               |              |         |              |
| Surrogate                   | %Recovery | Qua   | lifier    | Limits   |         |     |        |       |        |               |              |         |              |
| 4-Bromofluorobenzene (Surr) | 121       |       |           | 70 - 130 |         |     |        |       |        |               |              |         |              |
| ,4-Difluorobenzene (Surr)   | 124       |       |           | 70 - 130 |         |     |        |       |        |               |              |         |              |
| _ab Sample ID: 880-31278-/  | A-1-C MSD |       |           |          |         |     |        | C     | Client | Sample ID     | : Matrix Spi | ke Duj  | plicat       |
| Matrix: Solid               |           |       |           |          |         |     |        |       |        |               | Prep Ty      | vpe: To | otal/N       |
| Analysis Batch: 59172       |           |       |           |          |         |     |        |       |        |               | Prep         | Batch:  | 5896         |
|                             | Sample    | Sam   | ple       | Spike    | MSD     | MSD | )      |       |        |               | %Rec         |         | RF           |
| Analyte                     | Result    | Qual  | ifier     | Added    | Result  | Qua | lifier | Unit  |        | D %Rec        | Limits       | RPD     | Lin          |
| Benzene                     | <0.00202  | U     |           | 0.0998   | 0.09502 |     |        | mg/Kg |        | 95            | 70 - 130     | 5       | ;            |
| oluene                      | <0.00202  | U     |           | 0.0998   | 0.09100 |     |        | mg/Kg |        | 91            | 70 - 130     | 3       | ;            |
| Ethylbenzene                | <0.00202  | U     |           | 0.0998   | 0.1021  |     |        | mg/Kg |        | 102           | 70 - 130     | 1       | :            |
| n-Xylene & p-Xylene         | <0.00403  | U     |           | 0.200    | 0.2097  |     |        | mg/Kg |        | 105           | 70 - 130     | 1       | ;            |
| o-Xylene                    | <0.00202  | U     |           | 0.0998   | 0.1024  |     |        | mg/Kg |        | 103           | 70 - 130     | 2       | :            |
|                             | MSD       | MSD   | 1         |          |         |     |        |       |        |               |              |         |              |
| Surrogate                   | %Recovery | Qual  | lifier    | Limits   |         |     |        |       |        |               |              |         |              |
| 4-Bromofluorobenzene (Surr) | 119       |       |           | 70 - 130 |         |     |        |       |        |               |              |         |              |
| 1,4-Difluorobenzene (Surr)  | 91        |       |           | 70 - 130 |         |     |        |       |        |               |              |         |              |
| _ab Sample ID: MB 880-591   | 10/5-A    |       |           |          |         |     |        |       |        | Client S      | ample ID: N  | lethod  | Blan         |
| Matrix: Solid               |           |       |           |          |         |     |        |       |        |               | Prep Ty      | vpe: To | otal/N       |
| Analysis Batch: 59172       |           |       |           |          |         |     |        |       |        |               | Prep         | Batch:  | <b>591</b> 1 |
|                             |           | MB    | MB        |          |         |     |        |       |        |               |              |         |              |
| Analyte                     | Re        | sult  | Qualifier | RL       |         | MDL | Unit   |       | D      | Prepared      | Analyze      | d       | Dil Fa       |
| Benzene                     | <0.00     | 200   | U         | 0.00200  |         |     | mg/Kg  | 1     | 0      | 8/02/23 11:14 | 08/03/23 1   | 1:30    |              |
| oluene                      | <0.00     | 200   | U         | 0.00200  |         |     | mg/Kg  | I     | 0      | 8/02/23 11:14 | 08/03/23 1   | 1:30    |              |
| thylbenzene                 | <0.00     | 200   | U         | 0.00200  |         |     | mg/Kg  | 1     | 0      | 8/02/23 11:14 | 08/03/23 1   | 1:30    |              |
| n-Xylene & p-Xylene         | <0.00     | 400   | U         | 0.00400  |         |     | mg/Kg  |       | 0      | 8/02/23 11:14 | 08/03/23 1   | 1:30    |              |
| o-Xylene                    | <0.00     | 200   | U         | 0.00200  |         |     | mg/Kg  |       | 0      | 8/02/23 11:14 | 08/03/23 1   | 1:30    |              |
| Kylenes, Total              | <0.00     | 400   | U         | 0.00400  |         |     | mg/Kg  | 1     | 0      | 8/02/23 11:14 | 08/03/23 1   | 1:30    |              |
|                             |           | ΜВ    |           |          |         |     |        |       |        |               |              |         |              |
| Surrogate                   | %Reco     | very  | Qualifier | Limits   |         |     |        |       | _      | Prepared      | Analyze      |         | Dil Fa       |
| 1-Bromofluorobenzene (Surr) |           | 68    | S1-       | 70 - 130 |         |     |        |       | C      | 8/02/23 11:14 | 08/03/23 1   | 1:30    |              |
|                             |           | 100   |           | 70 - 130 |         |     |        |       |        | 8/02/23 11:14 | 08/03/23 1   | 4 00    |              |

| Lab Sample ID: MB 880-59369/1-A<br>Matrix: Solid<br>Analysis Batch: 59409 |        |           |      |     |       | Client Sa | mple ID: Method Blank<br>Prep Type: Total/NA<br>Prep Batch: 59369 |                |         |
|---------------------------------------------------------------------------|--------|-----------|------|-----|-------|-----------|-------------------------------------------------------------------|----------------|---------|
|                                                                           | MB     | MB        |      |     |       |           |                                                                   |                |         |
| Analyte                                                                   | Result | Qualifier | RL   | MDL | Unit  | D         | Prepared                                                          | Analyzed       | Dil Fac |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 |     | mg/Kg |           | 08/04/23 17:29                                                    | 08/06/23 08:16 | 1       |
| (GRO)-C6-C10                                                              |        |           |      |     |       |           |                                                                   |                |         |

Eurofins Midland

Page 178 of 406

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            | Cheffit 3                                | ample ID:                                                                                                                                                                     |                                                           |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|--------|------------------------------------------------|-------|------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               | Type: To                                                  |                                                             |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             | ИВ МВ                          |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          | Pre                                                                                                                                                                           | o Batch:                                                  | 59369                                                       |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             | ив мв<br>ult Qualifie          | r RL                                                                                                                                                                                                                       |                                                                                      | мпі        | Unit   |                                                | D     | Pr         | repared                                  | Analy                                                                                                                                                                         | 70d                                                       | Dil Fac                                                     |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <                                                                                                                                           |                                | 50.0                                                                                                                                                                                                                       | . <u></u>                                                                            | MDL        | mg/Kg  |                                                |       |            | 4/23 17:29                               |                                                                                                                                                                               |                                                           | 1                                                           |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <50                                                                                                                                         | ).0 U                          | 50.0                                                                                                                                                                                                                       |                                                                                      |            | mg/Kg  | I                                              |       | 08/04      | 4/23 17:29                               | 08/06/23                                                                                                                                                                      | 08:16                                                     | 1                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | л                                                                                                                                           | NB MB                          |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %Recove                                                                                                                                     |                                | r Limits                                                                                                                                                                                                                   |                                                                                      |            |        |                                                |       | Pi         | repared                                  | Analy                                                                                                                                                                         | zed                                                       | Dil Fac                                                     |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             | 88                             | 70 - 130                                                                                                                                                                                                                   |                                                                                      |            |        |                                                | -     |            | 4/23 17:29                               |                                                                                                                                                                               |                                                           | 1                                                           |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             | 94                             | 70 - 130                                                                                                                                                                                                                   |                                                                                      |            |        |                                                |       | 08/04      | 4/23 17:29                               | 08/06/23                                                                                                                                                                      | 8 08:16                                                   | 1                                                           |
| <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
| Lab Sample ID: LCS 880-59369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/2-A                                                                                                                                       |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                | CI    | ient       | Sample                                   | ID: Lab C                                                                                                                                                                     |                                                           |                                                             |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               | Type: To                                                  |                                                             |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             |                                | Spike                                                                                                                                                                                                                      | 201                                                                                  | LCS        |        |                                                |       |            |                                          | Pre<br>%Rec                                                                                                                                                                   | o Batch:                                                  | 29368                                                       |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                | Added                                                                                                                                                                                                                      | Result                                                                               |            |        | Unit                                           |       | D          | %Rec                                     | Limits                                                                                                                                                                        |                                                           |                                                             |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                | 1000                                                                                                                                                                                                                       | 661.8                                                                                |            |        | mg/Kg                                          |       | _          | 66                                       | 70 - 130                                                                                                                                                                      |                                                           |                                                             |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        | 5 5                                            |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |                                | 1000                                                                                                                                                                                                                       | 873.3                                                                                |            |        | mg/Kg                                          |       |            | 87                                       | 70 - 130                                                                                                                                                                      |                                                           |                                                             |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCS L                                                                                                                                       | cs                             |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %Recovery G                                                                                                                                 | Qualifier                      | Limits                                                                                                                                                                                                                     |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                |                                                                                                                                                                                                                            |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
| Surrogate<br>1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93                                                                                                                                          |                                | 70 - 130                                                                                                                                                                                                                   |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |                                | 70 - 130<br>70 - 130                                                                                                                                                                                                       |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                               |                                                           |                                                             |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                    |                                |                                                                                                                                                                                                                            |                                                                                      |            |        | Cli                                            | ent   | Sam        | nle ID: I                                | ab Contro                                                                                                                                                                     | ol Samn                                                   | le Dun                                                      |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                    |                                |                                                                                                                                                                                                                            |                                                                                      |            |        | Cli                                            | ent   | Sam        | ple ID: L                                | _ab Contro<br>Prep                                                                                                                                                            |                                                           |                                                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                    |                                |                                                                                                                                                                                                                            |                                                                                      |            |        | Cli                                            | ent   | Sam        | ple ID: L                                | Prep                                                                                                                                                                          | ol Samp<br>Type: To<br>o Batch:                           | otal/NA                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                    |                                |                                                                                                                                                                                                                            | LCSD                                                                                 | LCS        | D      | Cli                                            | ent   | Sam        | ple ID: L                                | Prep                                                                                                                                                                          | Type: To                                                  | otal/NA<br>59369                                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                    |                                | 70 - 130                                                                                                                                                                                                                   | LCSD<br>Result                                                                       |            |        | Cli                                            | ent   | Sam        | ple ID: L                                | Prep<br>Prej                                                                                                                                                                  | Type: To                                                  | 59369<br>RPD                                                |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                    |                                | 70 <sub>-</sub> 130<br>Spike                                                                                                                                                                                               |                                                                                      | Qua        |        |                                                | ent s |            | -                                        | Prep<br>Prej<br>%Rec                                                                                                                                                          | Type: To<br>b Batch:                                      | 59369<br>RPD<br>Limit                                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94                                                                                                                                    |                                | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                         | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0                          | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                         | 93<br>94                                                                                                                                    |                                | 70 - 130<br>Spike<br>Added                                                                                                                                                                                                 | Result                                                                               | Qua        |        | Unit                                           | ent : |            | %Rec                                     | Prep<br>Prep<br>%Rec<br>Limits                                                                                                                                                | Type: To<br>b Batch:<br>                                  | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                        | 93<br>94<br>69/3-A                                                                                                                          |                                | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                         | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent s |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0                          | stal/NA<br>59369<br>RPD<br>Limit                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                         | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0                          | stal/NA<br>59369<br>RPD<br>Limit                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                                                                                                                                | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0                          | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                           | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0                          | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         (GRO)-C6-C10         Diesel Range Organics (Over C10-C28)         Surrogate         1-Chlorooctane                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                    | Type: To<br>b Batch:<br>RPD<br>0                          | tal/NA<br>59369<br>RPD<br>Limit                             |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         (GRO)-C6-C10         Diesel Range Organics (Over C10-C28)         Surrogate         1-Chlorooctane                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                           | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66<br>85                         | Prep<br>976<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                             | Type: To<br>p Batch:<br><u>RPD</u><br>0<br>3<br>2: Matrix | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20                |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-24<br>Matrix: Solid                                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                      |                                | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                           | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66<br>85                         | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                            | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2                                                                                                                                                                                                                                               | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>85<br>82<br>-F MS                                                              | Qualifier                      | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                               | Result<br>660.9<br>845.2                                                             | Qual       |        | Unit<br>mg/Kg                                  | ent : |            | %Rec<br>66<br>85                         | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IC<br>Prep<br>Prep                                                                                       | Type: To<br>p Batch:<br><u>RPD</u><br>0<br>3<br>2: Matrix | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                    | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>82<br>-F MS<br>Sample S                                                        | Qualifier                      | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                   | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent   | <u>D</u> . | %Rec<br>66<br>85<br>Client               | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IE<br>Prep<br>Prey<br>%Rec                                                                       | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                         | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery G<br>85<br>82<br>-F MS<br>Sample S<br>Result G                                             | Qualifier                      | 70 - 130         Spike         Added         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         70 - 130         70 - 130         Added                                | Result           660.9           845.2           MS           Result                 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : |            | %Rec<br>66<br>85<br>Client               | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                              | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery <u>6</u><br>82<br>-F MS<br>Sample S                                                        | Qualifier                      | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                   | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client               | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample IE<br>Prep<br>Prey<br>%Rec                                                                       | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                         | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>%Recovery G<br>85<br>82<br>-F MS<br>Sample S<br>Result G                                             | Qualifier                      | 70 - 130         Spike         Added         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         70 - 130         70 - 130         Added                                | Result           660.9           845.2           MS           Result                 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client               | Prep<br>Prey<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPC<br>Limin<br>20<br>20<br>20<br>Spike |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                              | 93<br>94<br>69/3-A<br><i>LCSD L</i><br>% <i>Recovery G</i><br>85<br>82<br>-F MS<br>Sample S<br><u>Result G</u><br><50.3 U                   | Qualifier                      | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                                 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPC<br>Limin<br>20<br>20<br>20<br>Spike |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                               | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>%Recovery 6<br>85<br>82<br>-F MS<br>Sample S<br>Result 6<br><50.3 0<br>61.5                | ample<br>Qualifier<br>Xalifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                                 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                   | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>%Recovery G<br>85<br>82<br>-F MS<br>Sample S<br>Result G<br><50.3 U<br>61.5<br><i>MS M</i> | ample<br>Qualifier<br>Xalifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                                 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |
| 1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analysis Batch: 59409         Analyte         Gasoline Range Organics<br>(GRO)-C6-C10         Diesel Range Organics (Over<br>C10-C28)         Surrogate         1-Chlorooctane         o-Terphenyl         Lab Sample ID: 880-31664-A-2:         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics<br>(GRO)-C6-C10         Diesel Range Organics (Over | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD L</i><br>%Recovery G<br>85<br>82<br>-F MS<br>Sample S<br>Result G<br><50.3 U<br>61.5<br><i>MS M</i> | ample<br>audifier<br>Qualifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         70 - 130         993         993         993 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>∗- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent : | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample IC           Prep           %Rec           Limits           70 - 130              | Type: To<br>batch:                                        | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20          |

Eurofins Midland

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31277-1 SDG: Lea County, New Mexico

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| _ab Sample ID: 880-31664-A  | -2-G MSD  |           |          |        |           | CI    | ient Sa | ample ID | : Matrix Sp | ike Dup | licate |   |
|-----------------------------|-----------|-----------|----------|--------|-----------|-------|---------|----------|-------------|---------|--------|---|
| Matrix: Solid               |           |           |          |        |           |       |         |          | Prep T      | ype: To | tal/NA |   |
| Analysis Batch: 59409       |           |           |          |        |           |       |         |          | Prep        | Batch:  | 59369  |   |
|                             | Sample    | Sample    | Spike    | MSD    | MSD       |       |         |          | %Rec        |         | RPD    |   |
| Analyte                     | Result    | Qualifier | Added    | Result | Qualifier | Unit  | D       | %Rec     | Limits      | RPD     | Limit  | E |
| Basoline Range Organics     | <50.3     | U *-      | 992      | 918.4  |           | mg/Kg |         | 91       | 70 - 130    | 5       | 20     |   |
| GRO)-C6-C10                 |           |           |          |        |           |       |         |          |             |         |        | ÷ |
| Diesel Range Organics (Over | 61.5      |           | 992      | 1254   |           | mg/Kg |         | 120      | 70 - 130    | 6       | 20     |   |
| C10-C28)                    |           |           |          |        |           |       |         |          |             |         |        | 2 |
|                             | MSD       | MSD       |          |        |           |       |         |          |             |         |        |   |
| Surrogate                   | %Recovery | Qualifier | Limits   |        |           |       |         |          |             |         |        |   |
| -Chlorooctane               | 128       |           | 70 - 130 |        |           |       |         |          |             |         |        |   |
| p-Terphenyl                 | 112       |           | 70 - 130 |        |           |       |         |          |             |         |        |   |
|                             |           |           |          |        |           |       |         |          |             |         |        |   |
|                             |           |           |          |        |           |       |         |          |             |         |        |   |
|                             |           |           |          |        |           |       |         |          |             |         |        |   |
|                             |           |           |          |        |           |       |         |          |             |         |        |   |
|                             |           |           |          |        |           |       |         |          |             |         |        |   |
|                             |           |           |          |        |           |       |         |          |             |         |        |   |
|                             |           |           |          |        |           |       |         |          |             |         |        | i |
|                             |           |           |          |        |           |       |         |          |             |         |        |   |
|                             |           |           |          |        |           |       |         |          |             |         |        |   |

**Client Sample ID** 

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

**Client Sample ID** 

**Client Sample ID** 

Method Blank

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

S-3 (2')

Method Blank

Method Blank

Matrix Spike

S-3 (2')

## **QC** Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Carmona Resources Project/Site: Tonto 15 State #1

**GC VOA** 

880-31277-1

Prep Batch: 58969 Lab Sample ID

MB 880-58969/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31278-A-1-B MS

880-31278-A-1-C MSD

Prep Batch: 59110

MB 880-59110/5-A

Analysis Batch: 59172

Lab Sample ID

Lab Sample ID

MB 880-58969/5-A

MB 880-59110/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31278-A-1-B MS

880-31277-1

Job ID: 880-31277-1 SDG: Lea County, New Mexico

Method

5035

5035

5035

5035

5035

5035

Method

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

5035

Page 180 of 406

Prep Batch

# 8

Prep Batch Prep Batch 58969 58969 59110 58969

58969

58969

58969

880-31278-A-1-C MSD Analysis Batch: 59325

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31277-1   | S-3 (2')         | Total/NA  | Solid  | Total BTEX |            |

#### GC Semi VOA

#### Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31277-1         | S-3 (2')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

Analysis Batch: 59409

| Lab Sample ID         | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31277-1           | S-3 (2')               | Total/NA  | Solid  | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59369      |
| Analysis Batch: 59479 |                        |           |        |          |            |
|                       | Client Comple ID       | Dren Tune | Matrix | Mathad   | Dren Datah |

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-31277-1   | S-3 (2')         | Total/NA  | Solid  | 8015 NM |            |
Job ID: 880-31277-1 SDG: Lea County, New Mexico

## Lab Sample ID: 880-31277-1

Matrix: Solid

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Client Sample ID: S-3 (2') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.98 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/04/23 06:29 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59325  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59479  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.09 g | 10 mL  | 59369  | 08/04/23 17:30 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 14:59 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 182 of 406

10

Job ID: 880-31277-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                  | P                                 | rogram                           | Identification Number                        | Expiration Date            |  |
|-------------------------------------------|-----------------------------------|----------------------------------|----------------------------------------------|----------------------------|--|
| exas                                      |                                   | IELAP                            | T104704400-23-26                             | 06-30-24                   |  |
| • •                                       |                                   | out the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for wh |  |
| the agency does not of                    | ter certification.                |                                  |                                              |                            |  |
| the agency does not of<br>Analysis Method | fer certification.<br>Prep Method | Matrix                           | Analyte                                      |                            |  |
| 0,                                        |                                   | Matrix<br>Solid                  | Analyte<br>Total TPH                         |                            |  |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

#### **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31277-1 SDG: Lea County, New Mexico

| Method       | Method Description                                                                                                                                       | Protocol | Laboratory |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 8021B        | Volatile Organic Compounds (GC)                                                                                                                          | SW846    | EET MID    |
| Total BTEX   | Total BTEX Calculation                                                                                                                                   | TAL SOP  | EET MID    |
| 8015 NM      | Diesel Range Organics (DRO) (GC)                                                                                                                         | SW846    | EET MID    |
| 8015B NM     | Diesel Range Organics (DRO) (GC)                                                                                                                         | SW846    | EET MID    |
| 5035         | Closed System Purge and Trap                                                                                                                             | SW846    | EET MID    |
| 8015NM Prep  | Microextraction                                                                                                                                          | SW846    | EET MID    |
| Laboratory R | = TestAmerica Laboratories, Standard Operating Procedure<br>• ferences:<br>= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 |          |            |
|              |                                                                                                                                                          |          |            |
|              |                                                                                                                                                          |          |            |
|              |                                                                                                                                                          |          |            |
|              |                                                                                                                                                          |          |            |
|              |                                                                                                                                                          |          |            |

#### Protocol References:

#### Laboratory References:

#### Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31277-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31277-1   | S-3 (2')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |
|               |                  |        |                |                |

Released to Imaging: 11/6/2023 11:57:53 AM

# Received by OCD: 9/21/2023 6:16:51 AM SAMPLE F Received Intar Cooler Custod Sample Custo Total Containe Project Name Project Numbe Project Locatic Sampler's Nar Comments PO# 2 Sam

| Mann                         | Comments Email resul                                                                                                                                     |                               |       |      | S-3 (2') | Sample Identification | Total Containers        | Sample Custody Seals | Cooler Custody Seals | Received Intact: | SAMPLE RECEIPT | PO# | Sampler's Name | Project Location       | Project Number | Project Name       | Phone.                  | City, State ZIP Midlar              | Address. 310 V            | Company Name: Carm       | Project Manager Clinto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|------|----------|-----------------------|-------------------------|----------------------|----------------------|------------------|----------------|-----|----------------|------------------------|----------------|--------------------|-------------------------|-------------------------------------|---------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Relinquished                 | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint Merritt MerrittC@carmonaresources com |                               |       |      | 7 25 23  | on Date               |                         | Yes No NA            | Yes No (NA)          | Yes No           | Tepp Blank.    |     | CCM            | Lea County, New Mexico | 2089           | Tonto 15 State #1  |                         | Midland, TX 79701                   | 310 W Wall St Ste 500     | Carmona Resources        | Clinton Merritt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Relinquished by (Signature)  | mcarmona@carm                                                                                                                                            |                               |       |      |          | Time                  | Corrected Temperature   | Temperature Reading  | Correction Factor    | Thermometer ID   | Yes (No)       |     |                |                        |                | e #1               |                         |                                     |                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                              | ionaresources                                                                                                                                            |                               |       |      | ×        | Soil                  | ature                   | ling                 |                      | -                | Wet Ice        |     |                | Due Date               | マ Routine      | Turn /             | Email                   |                                     |                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                              | s com, Conner                                                                                                                                            |                               |       |      | G        | Water Comp            | N.S                     | ()<br>()<br>()       | 1,100                | × 1              | ( No           | •   | <u>, an c</u>  | 5 dav                  | Rush           | Turn Around        | msanjan@marathonoil.com | City, State ZIP                     | Address                   | Company Name             | Bill to. (if different)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 7,0                          | Moehring                                                                                                                                                 |                               |       |      |          | # of<br>Cont          |                         |                      | Pa                   | ram              | eter           | s   |                |                        | Pres,<br>Code  |                    | thonoil co              |                                     |                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Date/Time<br>-76-2<br>1 (0 L | cmoehr                                                                                                                                                   |                               |       |      | <br>××   | TPł                   | 801                     |                      | GRO                  |                  |                | + M | RO)            |                        |                |                    | m                       | Houston TX 77024                    | 990 Town and Country Blvd | Marathon Oil Corporation | Melodie Sanjari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                              | ng@carr                                                                                                                                                  |                               |       |      |          |                       |                         | Chi                  | orid                 | e 301            | 00             |     |                |                        |                |                    |                         | × 77024                             | nd Countr                 | il Corpora               | njan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                              | nonares                                                                                                                                                  |                               |       |      |          |                       |                         |                      |                      |                  |                |     |                |                        |                |                    |                         |                                     | y Blvd                    | tion                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                              | ources c                                                                                                                                                 | 880-3                         |       | +    |          |                       |                         |                      |                      |                  |                |     |                |                        |                | ANALYSIS REQUEST   |                         |                                     |                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Received                     | om, Clin                                                                                                                                                 | 1277 Cha                      |       | -    | <br>     | - <u></u>             |                         |                      |                      |                  |                |     |                | +                      |                | SIS REQU           |                         |                                     |                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| by.                          | t Merritt                                                                                                                                                | 880-31277 Chain of Custody    |       | -    |          |                       |                         |                      |                      |                  |                |     |                |                        |                | JEST               | Deliverab               | Reporting                           | State of Project          | Program                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Signature                    | MerrittC.                                                                                                                                                | stody                         |       | +-+- |          |                       |                         |                      |                      |                  |                |     |                |                        |                |                    | Deliverables EDD        | Level II                            | Project                   | Program, UST/PST PRP     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                              | @carmo                                                                                                                                                   |                               |       | -    |          | in in the second      | ule <del>s</del>        |                      |                      |                  |                |     |                | _                      |                |                    |                         |                                     |                           |                          | Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                              | naresou                                                                                                                                                  | <br><del> </del> <del> </del> | -1-1- |      |          | T                     | 7                       | 7                    | ~ ~ ~                |                  |                |     |                |                        |                |                    | ADaPT                   | Reporting Level II Level III ST/UST |                           | Prownfields              | Order Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                              | .ces com                                                                                                                                                 |                               |       |      |          | Sam                   | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn   | NanS-O NaSO.         | NPHCO N          |                |     | LOOI COOI      |                        | None NO        | Prese              |                         | ST CRRP                             |                           | elds DRC                 | Work Order Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Page |
| Date/Time                    |                                                                                                                                                          |                               |       |      |          | Sample Comments       | orbic Acid              | NaOH 7n              | ASO.                 | 210              | Nac            |     | Mec            |                        |                | Preservative Codes | Other                   |                                     |                           | ñ                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 of |
| Time                         |                                                                                                                                                          |                               |       |      |          | lents                 | SAPC                    |                      |                      |                  | NACT INA       |     | MeOH Me        |                        |                | odes               |                         |                                     | 1                         | perfund                  | A Construction of the second se |      |

#### Page 185 of 406

13

A Reality of the

Work Order No:

Ĵ

14

Job Number: 880-31277-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

#### Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31277 List Number: 1 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
|                                                                                  |        |         |

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").



**Environment Testing** 

#### Page 187 of 406

**ANALYTICAL REPORT** 

## PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:38:46 PM

# JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

#### **JOB NUMBER**

880-31278-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701







### **Eurofins Midland**

#### Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

#### Authorization

AMER

Generated 8/7/2023 12:38:46 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31278-1 SDG: Lea County, New Mexico

Page 189 of 406

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 190 of 406

Job ID: 880-31278-1 SDG: Lea County, New Mexico

ND

NEG

POS

PQL

PRES

QC

RER

RPD

TEF

TEQ TNTC

RL

| Qualifiers     |                                                                                                             | <br>3 |
|----------------|-------------------------------------------------------------------------------------------------------------|-------|
| GC VOA         |                                                                                                             |       |
| Qualifier      | Qualifier Description                                                                                       |       |
| S1-            | Surrogate recovery exceeds control limits, low biased.                                                      |       |
| U              | Indicates the analyte was analyzed for but not detected.                                                    | 5     |
| GC Semi VOA    |                                                                                                             |       |
| Qualifier      | Qualifier Description                                                                                       |       |
| *_             | LCS and/or LCSD is outside acceptance limits, low biased.                                                   |       |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |       |
| Glossary       |                                                                                                             | 0     |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | 0     |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  | Q     |
| %R             | Percent Recovery                                                                                            | 3     |
| CFL            | Contains Free Liquid                                                                                        |       |
| CFU            | Colony Forming Unit                                                                                         |       |
| CNF            | Contains No Free Liquid                                                                                     |       |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |       |
| Dil Fac        | Dilution Factor                                                                                             |       |
| DL             | Detection Limit (DoD/DOE)                                                                                   |       |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |       |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               | 13    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |       |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |       |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |       |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |       |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |       |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |       |
| MDL            | Method Detection Limit                                                                                      |       |
| ML             | Minimum Level (Dioxin)                                                                                      |       |
| MPN            | Most Probable Number                                                                                        |       |
| MQL            | Method Quantitation Limit                                                                                   |       |
| NC             | Not Calculated                                                                                              |       |

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Job ID: 880-31278-1 SDG: Lea County, New Mexico

#### Job ID: 880-31278-1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31278-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-3 (3') (880-31278-1).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: S-3 (3') (880-31278-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

Job ID: 880-31278-1 SDG: Lea County, New Mexico

#### Lab Sample ID: 880-31278-1

Matrix: Solid

5

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Client Sample ID: S-3 (3') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| Analyte                                          | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------------------|---------------------------|------------|----------------|-----|-------|---|----------------|----------------|---------|
| Benzene                                          | <0.00202                  | U          | 0.00202        |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:59 | 1       |
| Toluene                                          | <0.00202                  | U          | 0.00202        |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:59 | 1       |
| Ethylbenzene                                     | <0.00202                  | U          | 0.00202        |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:59 | 1       |
| m-Xylene & p-Xylene                              | <0.00403                  | U          | 0.00403        |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:59 | 1       |
| o-Xylene                                         | <0.00202                  | U          | 0.00202        |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:59 | 1       |
| Xylenes, Total                                   | <0.00403                  | U          | 0.00403        |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:59 | 1       |
| Surrogate                                        | %Recovery                 | Qualifier  | Limits         |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)                      | 86                        |            | 70 - 130       |     |       |   | 08/01/23 09:01 | 08/03/23 22:59 | 1       |
| 1,4-Difluorobenzene (Surr)                       | 57                        | S1-        | 70 - 130       |     |       |   | 08/01/23 09:01 | 08/03/23 22:59 | 1       |
| Total BTEX<br>-<br>Method: SW846 8015 NM - Diese | <0.00403<br>I Range Organ |            | 0.00403<br>GC) |     | mg/Kg |   |                | 08/04/23 10:48 | I       |
| Analyte                                          | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                                        | <50.2                     | U          | 50.2           |     | mg/Kg |   |                | 08/07/23 10:15 | 1       |
| Method: SW846 8015B NM - Dies                    | el Range Orga             | nics (DRO) | (GC)           |     |       |   |                |                |         |
| Analyte                                          | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10          | <50.2                     | U *-       | 50.2           |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 15:26 | 1       |
| Diesel Range Organics (Over<br>C10-C28)          | <50.2                     | U          | 50.2           |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 15:26 | 1       |
| Oll Range Organics (Over C28-C36)                | <50.2                     | U          | 50.2           |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 15:26 | 1       |
| Surrogate                                        | %Recovery                 | Qualifier  | Limits         |     |       |   | Prepared       | Analyzed       | Dil Fac |
| canogato                                         |                           |            |                |     |       |   |                |                |         |
| 1-Chlorooctane                                   | 87                        |            | 70 - 130       |     |       |   | 08/04/23 17:30 | 08/06/23 15:26 | 1       |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31278-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                    |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |   |
|--------------------|------------------------|----------|----------|------------------------------------------------|---|
|                    |                        | BFB1     | DFBZ1    |                                                |   |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |   |
| 880-31278-1        | S-3 (3')               | 86       | 57 S1-   |                                                |   |
| 880-31278-1 MS     | S-3 (3')               | 121      | 124      |                                                | 6 |
| 880-31278-1 MSD    | S-3 (3')               | 119      | 91       |                                                |   |
| LCS 880-58969/1-A  | Lab Control Sample     | 115      | 111      |                                                |   |
| LCSD 880-58969/2-A | Lab Control Sample Dup | 114      | 109      |                                                |   |
| MB 880-58969/5-A   | Method Blank           | 73       | 79       |                                                | 5 |
| MB 880-59110/5-A   | Method Blank           | 68 S1-   | 100      |                                                |   |
| Surrogate Legend   |                        |          |          |                                                | 0 |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|              |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |  |  |
|--------------|------------------------|----------|----------|------------------------------------------------|--|--|
|              |                        | 1CO1     | OTPH1    |                                                |  |  |
| ample ID     | Client Sample ID       | (70-130) | (70-130) |                                                |  |  |
| 78-1         | S-3 (3')               | 87       | 89       |                                                |  |  |
| 664-A-2-F MS | Matrix Spike           | 123      | 104      |                                                |  |  |
| 64-A-2-G MSD | Matrix Spike Duplicate | 128      | 112      |                                                |  |  |
| )-59369/2-A  | Lab Control Sample     | 93       | 94       |                                                |  |  |
| 80-59369/3-A | Lab Control Sample Dup | 85       | 82       |                                                |  |  |
| 80-59369/1-A | Method Blank           | 88       | 94       |                                                |  |  |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 193 of 406

#### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |  |
|---------------------------------|--|
| Matrix: Solid                   |  |

Analysis Batch: 59172

|                             | MB        | MB        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |

#### Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

#### Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58969/2-A

#### Matrix: Solid

|       |                                     |                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      | Prep                                                                                                                                                                                                                                                                                                          | Batch:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58969                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spike | LCSD                                | LCSD                                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      | %Rec                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Added | Result                              | Qualifier                                                                                                                                           | Unit                                                                                                                                                                                                          | D                                                                                                                                                                                                                                          | %Rec                                                                                                                                                                                                                                                 | Limits                                                                                                                                                                                                                                                                                                        | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.100 | 0.08592                             |                                                                                                                                                     | mg/Kg                                                                                                                                                                                                         |                                                                                                                                                                                                                                            | 86                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.100 | 0.08219                             |                                                                                                                                                     | mg/Kg                                                                                                                                                                                                         |                                                                                                                                                                                                                                            | 82                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.100 | 0.08963                             |                                                                                                                                                     | mg/Kg                                                                                                                                                                                                         |                                                                                                                                                                                                                                            | 90                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.200 | 0.1870                              |                                                                                                                                                     | mg/Kg                                                                                                                                                                                                         |                                                                                                                                                                                                                                            | 94                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.100 | 0.09268                             |                                                                                                                                                     | mg/Kg                                                                                                                                                                                                         |                                                                                                                                                                                                                                            | 93                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Added 0.100 0.100 0.100 0.100 0.200 | Added         Result           0.100         0.08592           0.100         0.08219           0.100         0.08963           0.200         0.1870 | Added         Result         Qualifier           0.100         0.08592         -           0.100         0.08219         -           0.100         0.08963         -           0.200         0.1870         - | Added         Result         Qualifier         Unit           0.100         0.08592         mg/Kg           0.100         0.08219         mg/Kg           0.100         0.08963         mg/Kg           0.200         0.1870         mg/Kg | Added         Result         Qualifier         Unit         D           0.100         0.08592         mg/Kg           0.100         0.08219         mg/Kg           0.100         0.08963         mg/Kg           0.200         0.1870         mg/Kg | Added         Result         Qualifier         Unit         D         %Rec           0.100         0.08592         mg/Kg         86           0.100         0.08219         mg/Kg         82           0.100         0.08963         mg/Kg         90           0.200         0.1870         mg/Kg         94 | Spike         LCSD         LCSD         %Rec           Added         Result         Qualifier         Unit         D         %Rec         Limits           0.100         0.08592         mg/Kg         86         70 - 130           0.100         0.08219         mg/Kg         82         70 - 130           0.100         0.08963         mg/Kg         90         70 - 130           0.200         0.1870         mg/Kg         94         70 - 130 | Added         Result         Qualifier         Unit         D         %Rec         Limits         RPD           0.100         0.08592         mg/Kg         86         70 - 130         9           0.100         0.08219         mg/Kg         82         70 - 130         6           0.100         0.08963         mg/Kg         90         70 - 130         12           0.200         0.1870         mg/Kg         94         70 - 130         12 |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

#### Lab Sample ID: 880-31278-1 MS Matrix: Solid

#### Analysis Batch: 59172

| Analysis Batch: 59172 |           |           |        |         |           |       |   |      | Prep     | Batch: 58969 |
|-----------------------|-----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample    | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result    | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | < 0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |              |
| Toluene               | <0.00202  | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |              |

**Eurofins Midland** 

Client Sample ID: S-3 (3')

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 58969

| 0.0      | 0400    | mg/K      | g     | 08/0   | 1/23 09:01 | 08/03/23 22:38                                | 1        |
|----------|---------|-----------|-------|--------|------------|-----------------------------------------------|----------|
| 0.0      | 0200    | mg/K      | g     | 08/0   | 1/23 09:01 | 08/03/23 22:38                                | 1        |
| 0.0      | 0400    | mg/K      | g     | 08/0   | 1/23 09:01 | 08/03/23 22:38                                | 1        |
| Limi     | ts      |           |       | P      | repared    | Analyzed                                      | Dil Fac  |
| 70 - 1   | 130     |           |       | 08/0   | 1/23 09:01 | 08/03/23 22:38                                | 1        |
| 70 - 1   | 130     |           |       | 08/0   | 1/23 09:01 | 08/03/23 22:38                                | 1        |
|          |         |           |       | Client | Sample     | ID: Lab Control<br>Prep Type: 1<br>Prep Batch | Total/NA |
| Spike    | LCS     | LCS       |       |        |            | %Rec                                          |          |
| Added    | Result  | Qualifier | Unit  | D      | %Rec       | Limits                                        |          |
| 0.100    | 0.09442 |           | mg/Kg |        | 94         | 70 - 130                                      |          |
| 0.100    | 0.08693 |           | mg/Kg |        | 87         | 70 - 130                                      |          |
| 0.100    | 0.1010  |           | mg/Kg |        | 101        | 70 - 130                                      |          |
| 0.200    | 0.2099  |           | mg/Kg |        | 105        | 70 - 130                                      |          |
| 0.100    | 0.1041  |           | mg/Kg |        | 104        | 70 - 130                                      |          |
| imits    |         |           |       |        |            |                                               |          |
| 70 - 130 |         |           |       |        |            |                                               |          |

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31278-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-1                                             | CIVI S    |           |            |                      |         |      |        |       |   |       | C          | lient Samp  |        |         |
|------------------------------------------------------------------------|-----------|-----------|------------|----------------------|---------|------|--------|-------|---|-------|------------|-------------|--------|---------|
| Matrix: Solid                                                          |           |           |            |                      |         |      |        |       |   |       |            | Prep Ty     | -      |         |
| Analysis Batch: 59172                                                  | <b>.</b>  | ~         |            | 0.1                  |         |      |        |       |   |       |            |             | Batch: | 5896    |
| A                                                                      | Sample    | •         |            | Spike                | MS      | MS   |        | 1114  |   | -     | 0/ D       | %Rec        |        |         |
| Analyte                                                                | Result    | -         | tier       | Added                | Result  | Qual | lifier | Unit  |   |       | %Rec       | Limits      |        |         |
| Ethylbenzene                                                           |           | U         |            | 0.0994               | 0.1030  |      |        | mg/Kg |   |       | 104        | 70 - 130    |        |         |
| m-Xylene & p-Xylene                                                    | <0.00403  |           |            | 0.199                | 0.2125  |      |        | mg/Kg |   |       | 107        | 70 - 130    |        |         |
| o-Xylene                                                               | <0.00202  | U         |            | 0.0994               | 0.1040  |      |        | mg/Kg |   |       | 105        | 70 - 130    |        |         |
| •                                                                      | MS        |           | <b>e</b> - |                      |         |      |        |       |   |       |            |             |        |         |
| Surrogate                                                              |           | Quali     | tier       | Limits<br>70 - 130   |         |      |        |       |   |       |            |             |        |         |
| 4-Bromofluorobenzene (Surr)                                            | 121       |           |            |                      |         |      |        |       |   |       |            |             |        |         |
| 1,4-Difluorobenzene (Surr)                                             | 124       |           |            | 70 - 130             |         |      |        |       |   |       |            |             |        |         |
| Lab Sample ID: 880-31278-1                                             | MSD       |           |            |                      |         |      |        |       |   |       | С          | lient Samp  |        |         |
| Matrix: Solid                                                          |           |           |            |                      |         |      |        |       |   |       |            | Prep Ty     | -      |         |
| Analysis Batch: 59172                                                  |           |           |            |                      |         |      |        |       |   |       |            | Prep        | Batch: |         |
|                                                                        | Sample    | Samp      | le         | Spike                | MSD     | MSD  | )      |       |   |       |            | %Rec        |        | RPD     |
| Analyte                                                                | Result    | Qualif    | fier       | Added                | Result  | Qua  | lifier | Unit  |   | D     | %Rec       | Limits      | RPD    | Limi    |
| Benzene                                                                | <0.00202  | U         |            | 0.0998               | 0.09502 |      |        | mg/Kg |   |       | 95         | 70 - 130    | 5      | 35      |
| Toluene                                                                | <0.00202  | U         |            | 0.0998               | 0.09100 |      |        | mg/Kg |   |       | 91         | 70 - 130    | 3      | 3       |
| Ethylbenzene                                                           | <0.00202  | U         |            | 0.0998               | 0.1021  |      |        | mg/Kg |   |       | 102        | 70 - 130    | 1      | 3       |
| m-Xylene & p-Xylene                                                    | <0.00403  | U         |            | 0.200                | 0.2097  |      |        | mg/Kg |   |       | 105        | 70 - 130    | 1      | 3       |
| o-Xylene                                                               | <0.00202  | U         |            | 0.0998               | 0.1024  |      |        | mg/Kg |   |       | 103        | 70 - 130    | 2      | 3       |
|                                                                        | MSD       | MSD       |            |                      |         |      |        |       |   |       |            |             |        |         |
| Surrogate                                                              | %Recovery | Qualit    | fier       | Limits               |         |      |        |       |   |       |            |             |        |         |
| 4-Bromofluorobenzene (Surr)                                            | 119       |           |            | 70 - 130             |         |      |        |       |   |       |            |             |        |         |
| 1,4-Difluorobenzene (Surr)                                             | 91        |           |            | 70 - 130             |         |      |        |       |   |       |            |             |        |         |
| Lab Sample ID: MB 880-5911                                             | 10/5-A    |           |            |                      |         |      |        |       |   |       | Client Sa  | ample ID: N | lethod | Blank   |
| Matrix: Solid                                                          |           |           |            |                      |         |      |        |       |   |       |            | Prep Ty     |        |         |
| Analysis Batch: 59172                                                  |           |           |            |                      |         |      |        |       |   |       |            |             | Batch: |         |
|                                                                        |           | MB        | мв         |                      |         |      |        |       |   |       |            |             |        |         |
| Analyte                                                                | Res       | sult      | Qualifier  | RL                   |         | MDL  | Unit   |       | D | Pr    | epared     | Analyze     | d      | Dil Fac |
| Benzene                                                                | <0.002    | 200       | U          | 0.00200              |         |      | mg/K   | g     | _ | 08/02 | 2/23 11:14 | 08/03/23 1  | 1:30   |         |
| Toluene                                                                | <0.002    | 200       | U          | 0.00200              |         |      | mg/K   | -     |   | 08/02 | 2/23 11:14 | 08/03/23 1  | 1:30   |         |
| Ethylbenzene                                                           | <0.00     | 200       | U          | 0.00200              |         |      | mg/K   |       |   | 08/02 | 2/23 11:14 | 08/03/23 1  | 1:30   |         |
| m-Xylene & p-Xylene                                                    | <0.004    | 400       | U          | 0.00400              |         |      | mg/K   |       |   | 08/02 | 2/23 11:14 | 08/03/23 1  | 1:30   | ,       |
| o-Xylene                                                               | <0.00     |           |            | 0.00200              |         |      | mg/K   |       |   |       | 2/23 11:14 | 08/03/23 1  |        |         |
| Xylenes, Total                                                         | <0.004    |           |            | 0.00400              |         |      | mg/K   | -     |   |       | 2/23 11:14 | 08/03/23 1  |        | 1       |
|                                                                        |           | ΜΒ        | МВ         |                      |         |      |        |       |   |       |            |             |        |         |
|                                                                        | % Pocov   | very      | Qualifier  | Limits               |         |      |        |       |   | Pi    | repared    | Analyze     | d      | Dil Fa  |
| Surrogate                                                              | /onecov   |           |            |                      |         |      |        |       |   |       | 2/23 11:14 | 08/03/23 1  |        |         |
|                                                                        |           | 68        | S1-        | 70 - 130             |         |      |        |       |   |       |            | 00,00,20 1  |        |         |
| Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr) |           | 68<br>100 | S1-        | 70 - 130<br>70 - 130 |         |      |        |       |   |       | 2/23 11:14 | 08/03/23 1  |        |         |

| Lab Sample ID: MB 880-59369/1-A<br>Matrix: Solid |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: 1 |                 |
|--------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|--------------------------------|-----------------|
| Analysis Batch: 59409                            |        |           |      |     |       |   |                | Prep Batch                     | n: <b>59369</b> |
|                                                  | MB     | МВ        |      |     |       |   |                |                                |                 |
| Analyte                                          | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                       | Dil Fac         |
| Gasoline Range Organics                          | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16                 | 1               |
| (GRO)-C6-C10                                     |        |           |      |     |       |   |                |                                |                 |

Job ID: 880-31278-1 SDG: Lea County, New Mexico

Page 196 of 406

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369/<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            | Client S                                 | ample ID:                                                                                                                                                                    | Metho<br>Type: 1                                         |                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|--------|------------------------------------------------|-------|------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                              | p Batch                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
| Analysis Batch. 33403                                                                                                                                                                                                                                                                                                                                                                                                              | м                                                                                                                                                                 | в мв             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            |                                          | FIE                                                                                                                                                                          | p Datei                                                  | 1. 5550                                                                                                                                                                                                                                                                                                                                                                  |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   | It Qualifier     | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      | MDL        | Unit   |                                                | D     | Pr         | epared                                   | Analy                                                                                                                                                                        | /zed                                                     | Dil Fa                                                                                                                                                                                                                                                                                                                                                                   |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            | mg/Kg  |                                                | -     |            | 4/23 17:29                               |                                                                                                                                                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            | 0.0    |                                                |       |            |                                          |                                                                                                                                                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                  | <50.                                                                                                                                                              | 0 U              | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |            | mg/Kg  | l                                              |       | 08/04      | 4/23 17:29                               | 08/06/23                                                                                                                                                                     | 8 08:16                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    | М                                                                                                                                                                 | B MB             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                          | %Recover                                                                                                                                                          | y Qualifier      | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |            |        |                                                |       | Pi         | repared                                  | Analy                                                                                                                                                                        | /zed                                                     | Dil Fa                                                                                                                                                                                                                                                                                                                                                                   |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                 | 8                | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |            |        |                                                |       | 08/04      | 4/23 17:29                               | 08/06/23                                                                                                                                                                     | 3 08:16                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                        | S                                                                                                                                                                 | 4                | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |            |        |                                                |       | 08/04      | 4/23 17:29                               | 08/06/23                                                                                                                                                                     | 3 08:16                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
| Lab Sample ID: LCS 880-59369                                                                                                                                                                                                                                                                                                                                                                                                       | 9/2-A                                                                                                                                                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                | C     | lient      | Sample                                   | ID: Lab C                                                                                                                                                                    | Control                                                  | Sample                                                                                                                                                                                                                                                                                                                                                                   |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            | - C                                      |                                                                                                                                                                              | Type: 1                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                              | p Batch                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |                  | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LCS                                                                                  | LCS        |        |                                                |       |            |                                          | %Rec                                                                                                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   |                  | Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result                                                                               | Qua        | lifier | Unit                                           |       | D          | %Rec                                     | Limits                                                                                                                                                                       |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   |                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 661.8                                                                                | *-         |        | mg/Kg                                          |       |            | 66                                       | 70 - 130                                                                                                                                                                     |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                   |                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 070.0                                                                                |            |        |                                                |       |            | 07                                       | 70 400                                                                                                                                                                       |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                   |                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 873.3                                                                                |            |        | mg/Kg                                          |       |            | 87                                       | 70 - 130                                                                                                                                                                     |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    | LCS LC                                                                                                                                                            | s                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                          | %Recovery Q                                                                                                                                                       | alifier          | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                     | 93                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |       |            |                                          |                                                                                                                                                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                |                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |            |        | Cli                                            | ent   | Sam        | nle ID: I                                | ah Contr                                                                                                                                                                     | ol Sam                                                   | nle Dui                                                                                                                                                                                                                                                                                                                                                                  |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                     | 94                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |            |        | Cli                                            | ent   | Sam        | ple ID: L                                | Pre                                                                                                                                                                          | ol Sam<br>Type: 1<br>p Batch                             | otal/N/<br>n: 5936                                                                                                                                                                                                                                                                                                                                                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                            | 94                                                                                                                                                                |                  | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LCSD                                                                                 |            |        |                                                | ent   |            | -                                        | Prep<br>Pre<br>%Rec                                                                                                                                                          | Type: 1<br>p Batch                                       | fotal/N/<br>n: 59369<br>RPI                                                                                                                                                                                                                                                                                                                                              |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                                                                                                                                                 | 94                                                                                                                                                                |                  | Spike<br>Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result                                                                               | Qua        |        | Unit                                           | ent   | Sam        | %Rec                                     | Prep<br>Pre<br>%Rec<br>Limits                                                                                                                                                | Type: 1<br>p Batch                                       | rotal/N/<br>n: 5936<br>RPI<br>Lim                                                                                                                                                                                                                                                                                                                                        |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                                |                  | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      | Qua        |        |                                                | ent   |            | -                                        | Prep<br>Pre<br>%Rec                                                                                                                                                          | Type: 1<br>p Batch                                       | rotal/N/<br>n: 5936<br>RPI<br>Lim                                                                                                                                                                                                                                                                                                                                        |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                       | 94                                                                                                                                                                |                  | Spike<br>Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result                                                                               | Qua        |        | Unit                                           | ent   |            | %Rec                                     | Prep<br>Pre<br>%Rec<br>Limits                                                                                                                                                | Type: 1<br>p Batch                                       | <b>Fotal/N/</b><br><b>1: 5936</b><br><b>RPI</b><br><b>0</b> Lim<br>2                                                                                                                                                                                                                                                                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                       | 94<br>69/3-A                                                                                                                                                      |                  | Spike<br>Added<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result<br>660.9                                                                      | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | ent   |            | %Rec<br>66                               | Prep<br>Prej<br>%Rec<br>Limits<br>70 - 130                                                                                                                                   | Type: 1<br>p Batch<br>RPC                                | <b>Fotal/N/</b><br><b>1: 5936</b><br><b>RPI</b><br><b>0</b> Lim<br>2                                                                                                                                                                                                                                                                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                           | 94<br>69/3-A<br>                                                                                                                                                  |                  | <b>Spike</b><br><b>Added</b><br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result<br>660.9                                                                      | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | ent   |            | %Rec<br>66                               | Prep<br>Prej<br>%Rec<br>Limits<br>70 - 130                                                                                                                                   | Type: 1<br>p Batch<br>RPC                                | <b>Fotal/N/</b><br><b>1: 5936</b><br><b>RPI</b><br><b>0</b> Lim<br>2                                                                                                                                                                                                                                                                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                              | 94<br>69/3-A<br>                                                                                                                                                  |                  | Spike           Added           1000           1000           Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result<br>660.9                                                                      | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | ent   |            | %Rec<br>66                               | Prep<br>Prej<br>%Rec<br>Limits<br>70 - 130                                                                                                                                   | Type: 1<br>p Batch<br>RPC                                | <b>Fotal/N/</b><br><b>1: 5936</b><br><b>RPI</b><br><b>0</b> Lim<br>2                                                                                                                                                                                                                                                                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                            | 94<br>69/3-A<br>                                                                                                                                                  |                  | Spike           Added           1000           1000           Limits           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | ent . |            | %Rec<br>66                               | Prep<br>Prej<br>%Rec<br>Limits<br>70 - 130                                                                                                                                   | Type: 1<br>p Batch<br>RPC                                | <b>Fotal/N/</b><br><b>1: 5936</b><br><b>RPI</b><br><b>0</b> Lim<br>2                                                                                                                                                                                                                                                                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                              | 94<br>69/3-A<br>                                                                                                                                                  |                  | Spike           Added           1000           1000           Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result<br>660.9                                                                      | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | ent   |            | %Rec<br>66                               | Prep<br>Prej<br>%Rec<br>Limits<br>70 - 130                                                                                                                                   | Type: 1<br>p Batch<br>RPC                                | <b>Fotal/N/</b><br><b>1: 5936</b><br><b>RPI</b><br><b>0</b> Lim<br>2                                                                                                                                                                                                                                                                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                            | 94<br>69/3-A<br>                                                                                                                                                  |                  | Spike           Added           1000           1000           Limits           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | ent   |            | <b>%Rec</b><br>66<br>85                  | Prep<br>Prej<br>%Rec<br>Limits<br>70 - 130                                                                                                                                   | Type: 1<br>p Batch<br>RPE                                | <b>otal/N/</b><br><b>i: 5936</b><br><b>RPI</b><br><b>0</b><br><b>1</b><br><b>1</b><br><b>2</b><br><b>3</b><br><b>2</b>                                                                                                                                                                                                                                                   |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                             | 94<br>69/3-A<br>                                                                                                                                                  |                  | Spike           Added           1000           1000           Limits           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | ent   |            | <b>%Rec</b><br>66<br>85                  | Prep           %Rec           Limits           70 - 130           70 - 130           Sample II                                                                               | Type: 1<br>p Batch<br>RPE                                | <b>otal/N/ i: 5936</b><br><b>RPI</b><br><b>0</b><br><b>1</b><br><b>1</b><br><b>2</b><br><b>2</b><br><b>3</b><br><b>2</b><br><b>3</b><br><b>2</b><br><b>3</b><br><b>2</b><br><b>3</b><br><b>2</b><br><b>3</b><br><b>3</b><br><b>3</b><br><b>3</b><br><b>4</b><br><b>5</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-                                                                                                                                            | 94<br>69/3-A<br>                                                                                                                                                  |                  | Spike           Added           1000           1000           Limits           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result<br>660.9                                                                      | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | ent   |            | <b>%Rec</b><br>66<br>85                  | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                            | Type: 1<br>p Batch<br>RPE<br>(<br>3<br>)<br>)<br>: Matri | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid                                                                                                                           | 94<br>69/3-A<br>                                                                                                                                                  | mple             | Spike           Added           1000           1000           Limits           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result<br>660.9<br>845.2                                                             | Qua        |        | <mark>Unit</mark><br>mg/Kg                     | lent  |            | <b>%Rec</b><br>66<br>85                  | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                            | Type: 1<br>p Batch                                       | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                       | 94<br>69/3-A<br>                                                                                                                                                  | mple<br>alifier  | Spike           Added           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           50 - 130           70 - 130           Spike           Added                                                                                                                                                                                                                                                                                                                                                                                                               | Result           660.9           845.2           MS           Result                 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent   |            | %Rec<br>66<br>85<br>Client               | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Type: 1<br>p Batch                                       | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                            | 94<br>69/3-A<br>                                                                                                                                                  | mple<br>alifier  | Spike           Added           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           500           500           Spike                                                                                                                                                                                                                                                                                                                                                                                                                          | Result<br>660.9<br>845.2<br>MS                                                       | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent   | <u>D</u> . | %Rec<br>66<br>85<br>Client               | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample II<br>Prep<br>Pre<br>%Rec                                                                        | Type: 1<br>p Batch                                       | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                            | 94<br>69/3-A<br>                                                                                                                                                  | mple<br>alifier  | Spike           Added           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           500           500           Spike           Added           993                                                                                                                                                                                                                                                                                                                                                                                                                          | Result           660.9           845.2           MS           Result           876.9 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent   | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample II           Prep           %Rec           Limits           70 - 130             | Type: 1<br>p Batch                                       | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over             | 94<br>69/3-A<br>                                                                                                                                                  | mple<br>alifier  | Spike           Added           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           50 - 130           70 - 130           Spike           Added                                                                                                                                                                                                                                                                                                                                                                                                               | Result           660.9           845.2           MS           Result                 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent   | <u>D</u> . | %Rec<br>66<br>85<br>Client               | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Type: 1<br>p Batch                                       | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over             | 94<br>69/3-A<br>                                                                                                                                                  | mple<br>Malifier | Spike           Added           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           500           500           Spike           Added           993                                                                                                                                                                                                                                                                                                                                                                                                                          | Result           660.9           845.2           MS           Result           876.9 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent   | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample II           Prep           %Rec           Limits           70 - 130             | Type: 1<br>p Batch                                       | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate             | 94<br>69/3-A<br><i>LCSD</i> LC<br>%Recovery Qu<br>85<br>82<br>-F MS<br>-F MS<br>Sample Sa<br>Result Qu<br><50.3 U<br>61.5<br><i>MS M.</i><br>% <i>Recovery</i> Qu | mple<br>ialifier | Spike         Added         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000 | Result           660.9           845.2           MS           Result           876.9 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent   | <u>D</u> . | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample II           Prep           %Rec           Limits           70 - 130             | Type: 1<br>p Batch                                       | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |
| 1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28) | 94<br>69/3-A<br>                                                                                                                                                  | mple<br>Malifier | Spike           Added           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           Limits           70 - 130           70 - 130           Spike           Added           993           993                                                                                                                                                                                                                                                                                                                                                   | Result           660.9           845.2           MS           Result           876.9 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent   | <u>D</u>   | %Rec<br>66<br>85<br>Client<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           Sample II           Prep           %Rec           Limits           70 - 130             | Type: 1<br>p Batch                                       | otal/N/<br>1: 59363<br>RPI<br>2<br>3 2<br>3 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5 2<br>5                                                                                                                                                                                                                                                                      |

#### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31278-1 SDG: Lea County, New Mexico

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Analysis Batch: 59409                   |           |           | •        |       |           |       |   |      |          | Batch: |       |   |
|-----------------------------------------|-----------|-----------|----------|-------|-----------|-------|---|------|----------|--------|-------|---|
| • • •                                   | -         | Sample    | Spike    |       | MSD       |       | _ |      | %Rec     |        | RPD   |   |
| Analyte                                 |           | Qualifier | Added    |       | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |   |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.3     | U *-      | 992      | 918.4 |           | mg/Kg |   | 91   | 70 - 130 | 5      | 20    |   |
| Diesel Range Organics (Over             | 61.5      |           | 992      | 1254  |           | mg/Kg |   | 120  | 70 - 130 | 6      | 20    |   |
| C10-C28)                                |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         | MSD       | MSD       |          |       |           |       |   |      |          |        |       |   |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |           |       |   |      |          |        |       | 2 |
| 1-Chlorooctane                          | 128       |           | 70 - 130 |       |           |       |   |      |          |        |       |   |
| o-Terphenyl                             | 112       |           | 70 - 130 |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |
|                                         |           |           |          |       |           |       |   |      |          |        |       |   |

**Client Sample ID** 

Lab Control Sample

**Client Sample ID** 

**Client Sample ID** 

Method Blank

Method Blank

Lab Control Sample

Lab Control Sample Dup

S-3 (3')

S-3 (3')

S-3 (3')

Method Blank

Lab Control Sample Dup

Method Blank

S-3 (3')

S-3 (3')

S-3 (3')

#### **QC** Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Carmona Resources Project/Site: Tonto 15 State #1

**GC VOA** 

Prep Batch: 58969

MB 880-58969/5-A

LCS 880-58969/1-A

880-31278-1 MS

880-31278-1 MSD

Prep Batch: 59110

Lab Sample ID

Lab Sample ID

MB 880-58969/5-A

MB 880-59110/5-A

LCS 880-58969/1-A

880-31278-1 MS

880-31278-1 MSD

LCSD 880-58969/2-A

880-31278-1

MB 880-59110/5-A

Analysis Batch: 59172

LCSD 880-58969/2-A

Lab Sample ID

880-31278-1

Job ID: 880-31278-1 SDG: Lea County, New Mexico

Method

5035

5035

5035

5035

5035

5035

Method

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

8015 NM

5035

Page 198 of 406

Prep Batch

Prep Batch

Prep Batch

58969

58969 59110

58969

58969

58969

58969

# 8

Analysis Batch: 59315

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31278-1   | S-3 (3')         | Total/NA  | Solid  | Total BTEX |            |

#### GC Semi VOA

#### Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31278-1         | S-3 (3')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

Analysis Batch: 59409

880-31278-1

| Lab Sample ID         | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31278-1           | S-3 (3')               | Total/NA  | Solid  | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59369      |
| Analysis Batch: 59480 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |

Total/NA

S-3 (3')

9

Job ID: 880-31278-1 SDG: Lea County, New Mexico

#### Lab Sample ID: 880-31278-1 Matrix: Solid

#### Client Sample ID: S-3 (3') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.96 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/03/23 22:59 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59315  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59480  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.97 g  | 10 mL  | 59369  | 08/04/23 17:30 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 15:26 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31278-1

Page 200 of 406

10

SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                  | Program                           |                                  | Identification Number                        | Expiration Date           |
|-------------------------------------------|-----------------------------------|----------------------------------|----------------------------------------------|---------------------------|
| exas                                      | N                                 | IELAP                            | T104704400-23-26                             | 06-30-24                  |
| The following analytes                    | are included in this report, b    | out the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for w |
| the agency does not of                    | fer certification.                |                                  |                                              |                           |
| the agency does not of<br>Analysis Method | fer certification.<br>Prep Method | Matrix                           | Analyte                                      |                           |
| 0,                                        |                                   | Matrix<br>Solid                  | Analyte<br>Total TPH                         | · · ·                     |

#### **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31278-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                        | Protocol                                | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                           | SW846                                   | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                    | TAL SOP                                 | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                              | SW846                                   | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                           | SW846                                   | EET MID    |
| Protocol Refe | rences:                                                                                                                                   |                                         |            |
|               | "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E<br>= TestAmerica Laboratories, Standard Operating Procedure | Edition, November 1986 And Its Updates. |            |
| TAL SOP       | - TestAmenca Laboratories, Standard Operating Procedure                                                                                   |                                         |            |
| Laboratory R  | eferences:                                                                                                                                |                                         |            |
| Laboratory R  |                                                                                                                                           | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |

#### Protocol References:

#### Laboratory References:

#### Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31278-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31278-1   | S-3 (3')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |
|               |                  |        |                |                |



#### PO # Sampler's Name Phone Comments Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint MerrittC@carmonaresources com SAMPLE RECEIPT Project Location Project Number Project Name City, State ZIP **Fotal Containers** Received Intact: Company Name Project Manager ample Custody Seals Address. poler Custody Seals. Sample Identification E S-3 (3') Carmona Resources Midland, TX 79701 310 W Wall St Ste 500 Clinton Merritt Yes No Yes No ea County New Mexico Temp Blank Kes Tonto 15 State #1 Relinquished by (Signature) 7 25 23 No CCM 2089 Date 係 Ŧ D Corrected Temperature Correction Factor Thermometer ID emperature Reading Yes No Time マ Routine Due Date Wet Ice Soil × Email Turn Around msanjari@marathonoil Address Bill to (if different) City, State ZIP Water Company Name Rush 5 day Comp Grab/ G # of Pres. Code Parameters com Date/Time 16-23 Houston\_TX 77024 990 Town and Country Blvd Marathon Oil Corporation Melodie Sanjari BTEX 8021B × TPH 8015M ( GRO + DRO + MRO) × Chloride 300 0 ANALYSIS REQUEST 880-31278 Chain of Custody Received by (Signature) Reporting Level II Level III ST/UST State of Project Program UST/PST PRP prownfields RC Deliverables EDD Work Order Comments ADaPT H<sub>2</sub>S0<sub>4</sub> H<sub>2</sub> HCT HC NaOH+Ascorbic Acid SAPC Zn Acetate+NaOH Zn Na-S-O3 NaSO3 NaHSO4 NABIS H PO4 HP Cool Cool None NO Page Sample Comments Preservative Codes Other Date/Time HNO3 HN NaOH Na MeOH Me Level IV DI Water H<sub>2</sub>O perfund <u>े</u>

#### Received by OCD: 9/21/2023 6:16:51 AM

#### 8/7/2023

Work Order No:

60

Page 203 of 406

N.

e,

5

Job Number: 880-31278-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

#### Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31278 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Containers requiring zero headspace have no headspace or bubble is

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

### PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:40:43 PM

#### **JOB DESCRIPTION**

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

#### **JOB NUMBER**

880-31281-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information.

### **Eurofins Midland**

#### Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

#### Authorization

AMER

Generated 8/7/2023 12:40:43 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31281-1 SDG: Lea County, New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

#### **Definitions/Glossary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31281-1 SDG: Lea County, New Mexico

| Qual | ifiers |
|------|--------|
|------|--------|

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| GC Semi VOA    |                                                                                                             | 5  |
| Qualifier      | Qualifier Description                                                                                       |    |
| *_             | LCS and/or LCSD is outside acceptance limits, low biased.                                                   |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary       |                                                                                                             |    |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | 8  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            | Q  |
| CFL            | Contains Free Liquid                                                                                        | 3  |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          | 13 |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL            | Method Detection Limit                                                                                      |    |
| ML             | Minimum Level (Dioxin)                                                                                      |    |
| MPN            | Most Probable Number                                                                                        |    |
| MQL            | Method Quantitation Limit                                                                                   |    |
| NC             | Not Calculated                                                                                              |    |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |    |
| NEG            | Negative / Absent                                                                                           |    |
| POS            | Positive / Present                                                                                          |    |
| PQL            | Practical Quantitation Limit                                                                                |    |
| PRES           | Presumptive                                                                                                 |    |
| QC             | Quality Control                                                                                             |    |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |    |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |    |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |    |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |    |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |    |
| TNTC           | Too Numerous To Count                                                                                       |    |

4

5

Job ID: 880-31281-1 SDG: Lea County, New Mexico

#### Job ID: 880-31281-1

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31281-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-3 (0-1') (880-31281-1).

#### GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

5

Job ID: 880-31281-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-31281-1

#### Client Sample ID: S-3 (0-1') Date Collected: 07/25/23 00:00

Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

| Analyte                                | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                                | <0.00202       | U           | 0.00202  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 23:11 | 1       |
| Toluene                                | <0.00202       | U           | 0.00202  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 23:11 | 1       |
| Ethylbenzene                           | <0.00202       | U           | 0.00202  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 23:11 | 1       |
| m-Xylene & p-Xylene                    | <0.00404       | U           | 0.00404  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 23:11 | 1       |
| p-Xylene                               | <0.00202       | U           | 0.00202  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 23:11 | 1       |
| Xylenes, Total                         | <0.00404       | U           | 0.00404  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 23:11 | 1       |
| Surrogate                              | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)            | 107            |             | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 23:11 | 1       |
| 1,4-Difluorobenzene (Surr)             | 105            |             | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 23:11 | 1       |
| Method: TAL SOP Total BTEX - To        | otal BTEX Calo | culation    |          |     |       |   |                |                |         |
| Analyte                                | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                             | <0.00404       | U           | 0.00404  |     | mg/Kg |   |                | 08/03/23 09:53 | 1       |
| Method: SW846 8015 NM - Diese          | I Range Organ  | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                                | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                              | <49.6          | U           | 49.6     |     | mg/Kg |   |                | 08/07/23 10:15 | 1       |
| Method: SW846 8015B NM - Dies          | el Range Orga  | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                                | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>GRO)-C6-C10 | <49.6          | U *-        | 49.6     |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 17:10 |         |
| Diesel Range Organics (Over            | <49.6          | U           | 49.6     |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 17:10 |         |
| C10-C28)                               |                |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)      | <49.6          | U           | 49.6     |     | mg/Kg |   | 08/04/23 17:30 | 08/06/23 17:10 |         |
| Surrogate                              | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                         | 96             |             | 70 - 130 |     |       |   | 08/04/23 17:30 | 08/06/23 17:10 |         |
|                                        | 98             |             | 70 - 130 |     |       |   | 08/04/23 17:30 | 08/06/23 17:10 |         |

**Released to Imaging: 11/6/2023 11:57:53 AM** 

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31281-1 SDG: Lea County, New Mexico

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------------|------------------------|----------|----------|------------------------------------------------|
|                     |                        | BFB1     | DFBZ1    |                                                |
| ab Sample ID        | Client Sample ID       | (70-130) | (70-130) |                                                |
| 380-31279-A-1-A MS  | Matrix Spike           | 103      | 100      |                                                |
| 380-31279-A-1-B MSD | Matrix Spike Duplicate | 108      | 104      |                                                |
| 380-31281-1         | S-3 (0-1')             | 107      | 105      |                                                |
| _CS 880-58971/1-A   | Lab Control Sample     | 104      | 100      |                                                |
| _CSD 880-58971/2-A  | Lab Control Sample Dup | 95       | 103      |                                                |
| MB 880-58971/5-A    | Method Blank           | 84       | 89       |                                                |
|                     | Method Blank           | 85       | 89       |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| ample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |
| 281-1         | S-3 (0-1')             | 96       | 98       |                                                |
| 64-A-2-F MS   | Matrix Spike           | 123      | 104      |                                                |
| 664-A-2-G MSD | Matrix Spike Duplicate | 128      | 112      |                                                |
| 59369/2-A     | Lab Control Sample     | 93       | 94       |                                                |
| )-59369/3-A   | Lab Control Sample Dup | 85       | 82       |                                                |
| )-59369/1-A   | Method Blank           | 88       | 94       |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

nty, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

Page 211 of 406

#### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

#### Lab Sample ID: MB 880-58971/5-A

Matrix: Solid Analysis Batch: 59072

| -                           | МВ        | МВ        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | < 0.00200 | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 84        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| 1,4-Difluorobenzene (Surr)  | 89        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |

#### Lab Sample ID: LCS 880-58971/1-A Matrix: Solid

#### Analysis Batch: 59072

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.07714 |           | mg/Kg |   | 77   | 70 - 130 |  |
| Toluene             | 0.100 | 0.1014  |           | mg/Kg |   | 101  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08911 |           | mg/Kg |   | 89   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1753  |           | mg/Kg |   | 88   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.08985 |           | mg/Kg |   | 90   | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 104       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 100       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58971/2-A

#### Matrix: Solid

| Analysis Batch: 59072 |       |         |           |       |   |      | Prep     | Batch: | 58971 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08576 |           | mg/Kg |   | 86   | 70 - 130 | 11     | 35    |
| Toluene               | 0.100 | 0.1000  |           | mg/Kg |   | 100  | 70 - 130 | 1      | 35    |
| Ethylbenzene          | 0.100 | 0.08572 |           | mg/Kg |   | 86   | 70 - 130 | 4      | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1641  |           | mg/Kg |   | 82   | 70 - 130 | 7      | 35    |
| o-Xylene              | 0.100 | 0.08388 |           | mg/Kg |   | 84   | 70 - 130 | 7      | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 95        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

#### Lab Sample ID: 880-31279-A-1-A MS

#### Matrix: Solid Analysia Rataby 50072

| Analysis Batch: 59072 |           |           |        |         |           |       |   |      | Prep     | o Batch: 589/1 |
|-----------------------|-----------|-----------|--------|---------|-----------|-------|---|------|----------|----------------|
|                       | Sample    | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |                |
| Analyte               | Result    | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |                |
| Benzene               | < 0.00202 | U         | 0.0996 | 0.07513 |           | mg/Kg |   | 75   | 70 - 130 |                |
| Toluene               | <0.00202  | U         | 0.0996 | 0.08995 |           | mg/Kg |   | 90   | 70 - 130 |                |

**Eurofins Midland** 

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 58971

#### Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

#### **Client Sample ID: Matrix Spike** Prep Type: Total/NA Drop Botoby 59074

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31281-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31279-A              | A-1-A MS               |                       |          |         |      |       |       |      |       | Client S                                   | Sample ID                      |          |         |
|-----------------------------------------|------------------------|-----------------------|----------|---------|------|-------|-------|------|-------|--------------------------------------------|--------------------------------|----------|---------|
| Matrix: Solid                           |                        |                       |          |         |      |       |       |      |       |                                            | Prep 1                         | Type: To | otal/NA |
| Analysis Batch: 59072                   |                        |                       |          |         |      |       |       |      |       |                                            | Prep                           | Batch:   | 5897    |
|                                         | Sample S               | ample                 | Spike    | MS      | MS   |       |       |      |       |                                            | %Rec                           |          |         |
| Analyte                                 | Result Q               | ualifier              | Added    | Result  | Qual | ifier | Unit  |      | D     | %Rec                                       | Limits                         |          |         |
| Ethylbenzene                            | <0.00202 U             |                       | 0.0996   | 0.08100 |      |       | mg/Kg |      |       | 81                                         | 70 - 130                       |          |         |
| m-Xylene & p-Xylene                     | <0.00403 U             |                       | 0.199    | 0.1561  |      |       | mg/Kg |      |       | 78                                         | 70 - 130                       |          |         |
| o-Xylene                                | <0.00202 U             |                       | 0.0996   | 0.07987 |      |       | mg/Kg |      |       | 80                                         | 70 - 130                       |          |         |
|                                         | MS M                   | S                     |          |         |      |       |       |      |       |                                            |                                |          |         |
| Surrogate                               |                        | ualifier              | Limits   |         |      |       |       |      |       |                                            |                                |          |         |
| 4-Bromofluorobenzene (Surr)             | 103                    |                       | 70 - 130 |         |      |       |       |      |       |                                            |                                |          |         |
| 1,4-Difluorobenzene (Surr)              | 100                    |                       | 70 - 130 |         |      |       |       |      |       |                                            |                                |          |         |
| Lab Sample ID: 880-31279-A              | -1-B MSD               |                       |          |         |      |       |       | Clie | nt Sa | ample ID:                                  | Matrix Sp                      |          | -       |
| Matrix: Solid                           |                        |                       |          |         |      |       |       |      |       |                                            |                                | Type: To |         |
| Analysis Batch: 59072                   |                        |                       |          |         |      |       |       |      |       |                                            | Prep                           | Batch:   |         |
|                                         | Sample S               | ample                 | Spike    | MSD     | MSD  |       |       |      |       |                                            | %Rec                           |          | RPD     |
| Analyte                                 | Result Q               | ualifier              | Added    | Result  | Qual | ifier | Unit  |      | D     | %Rec                                       | Limits                         | RPD      | Limi    |
| Benzene                                 | <0.00202 U             |                       | 0.0994   | 0.07017 |      |       | mg/Kg |      |       | 71                                         | 70 - 130                       | 7        | 3       |
| Toluene                                 | <0.00202 U             |                       | 0.0994   | 0.08738 |      |       | mg/Kg |      |       | 88                                         | 70 - 130                       | 3        | 3       |
| Ethylbenzene                            | <0.00202 U             |                       | 0.0994   | 0.07772 |      |       | mg/Kg |      |       | 78                                         | 70 - 130                       | 4        | 3       |
| m-Xylene & p-Xylene                     | <0.00403 U             |                       | 0.199    | 0.1481  |      |       | mg/Kg |      |       | 75                                         | 70 - 130                       | 5        | 3       |
| o-Xylene                                | <0.00202 U             |                       | 0.0994   | 0.07711 |      |       | mg/Kg |      |       | 78                                         | 70 - 130                       | 4        | 3       |
|                                         | MSD M                  | SD                    |          |         |      |       |       |      |       |                                            |                                |          |         |
| Surrogate                               |                        | ualifier              | Limits   |         |      |       |       |      |       |                                            |                                |          |         |
| 4-Bromofluorobenzene (Surr)             | 108                    |                       | 70 - 130 |         |      |       |       |      |       |                                            |                                |          |         |
| 1,4-Difluorobenzene (Surr)              | 104                    |                       | 70 - 130 |         |      |       |       |      |       |                                            |                                |          |         |
| Lab Sample ID: MB 880-589               | 98/ <b>5-A</b>         |                       |          |         |      |       |       |      |       | Client Sa                                  | mple ID:                       | Method   | l Blank |
| Matrix: Solid                           |                        |                       |          |         |      |       |       |      |       |                                            | Prep 1                         | Type: To | otal/N/ |
| Analysis Batch: 59072                   |                        |                       |          |         |      |       |       |      |       |                                            | Prep                           | Batch:   | 58998   |
|                                         | N                      | IB MB                 |          |         |      |       |       |      |       |                                            |                                |          |         |
| Analyte                                 | Res                    | ult Qualifier         | RL       | -       | MDL  | Unit  |       | D    | P     | repared                                    | Analyz                         | ed       | Dil Fa  |
| Benzene                                 | <0.002                 | 00 U                  | 0.00200  | )       |      | mg/Kg |       | _    | 08/0  | 1/23 10:59                                 | 08/02/23                       | 11:28    |         |
| Toluene                                 | <0.002                 | 00 U                  | 0.00200  | )       |      | mg/Kg | l     |      | 08/0  | 1/23 10:59                                 | 08/02/23                       | 11:28    |         |
| Ethylbenzene                            | < 0.002                | 00 U                  | 0.00200  | )       |      | mg/Kg | I     |      | 08/0  | 1/23 10:59                                 | 08/02/23                       | 11:28    |         |
|                                         | <0.004                 | 00 U                  | 0.00400  | )       |      | mg/Kg | <br>  |      | 08/0  | 1/23 10:59                                 | 08/02/23                       | 11:28    |         |
| m-Xylene & p-Xylene                     | -0.000                 | 00 U                  | 0.00200  | )       |      | mg/Kg | I     |      | 08/0  | 1/23 10:59                                 | 08/02/23                       | 11:28    |         |
| m-Xylene & p-Xylene<br>p-Xylene         | <0.002                 |                       |          | )       |      | mg/Kg | I     |      | 08/0  | 1/23 10:59                                 | 08/02/23                       | 11:28    |         |
| p-Xylene                                | <0.002                 | 00 U                  | 0.00400  |         |      |       |       |      |       |                                            |                                |          |         |
| o-Xylene<br>Kylenes, Total              | <0.004                 | IB MB                 |          |         |      |       |       |      |       |                                            |                                |          |         |
| o-Xylene<br>Kylenes, Total<br>Surrogate | <0.004<br>M<br>%Recove | IB MB<br>ry Qualifier | Limits   | -       |      |       |       |      |       | repared                                    | Analyz                         |          |         |
|                                         | <0.004<br>M            | IB MB                 |          | -       |      |       |       |      | 08/0  | <b>repared</b><br>1/23 10:59<br>1/23 10:59 | Analyz<br>08/02/23<br>08/02/23 | 11:28    | Dil Fa  |

| Lab Sample ID: MB 880-59369/1-A |        |           |      |     |       |   | Client Sa      | mple ID: Metho | d Blank         |
|---------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|-----------------|
| Matrix: Solid                   |        |           |      |     |       |   |                | Prep Type: 1   | Total/NA        |
| Analysis Batch: 59409           |        |           |      |     |       |   |                | Prep Batch     | n: <b>59369</b> |
|                                 | МВ     | МВ        |      |     |       |   |                |                |                 |
| Analyte                         | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac         |
| Gasoline Range Organics         | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16 | 1               |

Eurofins Midland

(GRO)-C6-C10

Job ID: 880-31281-1 SDG: Lea County, New Mexico

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       |                                     |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                |        | , c      | lient Sa                      | ample ID:<br>Prep                                                                                             | метпос<br>Туре: То                                           |                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|--------|------------------------------------------------|--------|----------|-------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                     |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                |        |          |                               |                                                                                                               | Batch                                                        |                                                                    |
| ,                                                                                                                                                                                                                                                                                                                                                                                     | M                                                                                                                                     | B MB                                |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                |        |          |                               |                                                                                                               |                                                              |                                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                               | Resu                                                                                                                                  | It Qualifie                         | RL                                                                                                                                                                                                                                                                             |                                                                                      | MDL        | Unit   |                                                | D      | Pre      | pared                         | Analy                                                                                                         | zed                                                          | Dil Fac                                                            |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                                               | <50                                                                                                                                   | .0 U                                | 50.0                                                                                                                                                                                                                                                                           |                                                                                      |            | mg/Kg  |                                                |        |          | /23 17:29                     | 08/06/23                                                                                                      |                                                              | 1                                                                  |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                     | <50                                                                                                                                   | .0 U                                | 50.0                                                                                                                                                                                                                                                                           |                                                                                      |            | mg/Kg  |                                                |        | 08/04/   | /23 17:29                     | 08/06/23                                                                                                      | 08:16                                                        | 1                                                                  |
| •                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                       | IB MB                               |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                |        | _        |                               |                                                                                                               |                                                              | <b>5</b>                                                           |
| Surrogate<br>1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                           | %Recove                                                                                                                               | ry Qualifie                         | <u>Limits</u><br>70 - 130                                                                                                                                                                                                                                                      |                                                                                      |            |        |                                                | -      |          | epared                        | Analy                                                                                                         |                                                              | Dil Fac                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                       | 94                                  |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                |        |          | /23 17:29                     | 08/06/23<br>08/06/23                                                                                          |                                                              | 1                                                                  |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                     | 14                                  | 70 - 130                                                                                                                                                                                                                                                                       |                                                                                      |            |        |                                                |        | 00/04/   | /23 17:29                     | 06/06/23                                                                                                      | 06.10                                                        |                                                                    |
| Lab Sample ID: LCS 880-5936                                                                                                                                                                                                                                                                                                                                                           | 9/2-A                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                | Cli    | ient S   | Sample                        | ID: Lab C                                                                                                     |                                                              | -                                                                  |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                     |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                |        |          |                               |                                                                                                               | Type: To                                                     |                                                                    |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                     |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                |        |          |                               |                                                                                                               | Batch                                                        | 59369                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                       |                                     | Spike                                                                                                                                                                                                                                                                          |                                                                                      | LCS        |        |                                                |        |          |                               | %Rec                                                                                                          |                                                              |                                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                     | Added                                                                                                                                                                                                                                                                          | Result                                                                               |            | lifier | Unit                                           |        | <u>D</u> | %Rec                          | Limits                                                                                                        |                                                              |                                                                    |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                     | 1000                                                                                                                                                                                                                                                                           | 661.8                                                                                | *-         |        | mg/Kg                                          |        |          | 66                            | 70 - 130                                                                                                      |                                                              |                                                                    |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                     | 1000                                                                                                                                                                                                                                                                           | 873.3                                                                                |            |        | mg/Kg                                          |        |          | 87                            | 70 - 130                                                                                                      |                                                              |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                       | LCS L                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                |                                                                                      |            |        |                                                |        |          |                               |                                                                                                               |                                                              |                                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       | ualifier                            | Limits                                                                                                                                                                                                                                                                         |                                                                                      |            |        |                                                |        |          |                               |                                                                                                               |                                                              |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                       |                                     | 70 - 130                                                                                                                                                                                                                                                                       |                                                                                      |            |        |                                                |        |          |                               |                                                                                                               |                                                              |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                              |                                     | 70 - 130                                                                                                                                                                                                                                                                       |                                                                                      |            |        |                                                |        |          |                               |                                                                                                               |                                                              |                                                                    |
| o-Terphenyl Lab Sample ID: LCSD 880-593                                                                                                                                                                                                                                                                                                                                               | 94                                                                                                                                    |                                     |                                                                                                                                                                                                                                                                                |                                                                                      |            |        | Cli                                            | ent S  | Samp     | ole ID: L                     | ab Contro<br>Prep <sup>-</sup>                                                                                | ol Samp<br>Type: To                                          |                                                                    |
| o- <i>Terphenyl</i><br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                   | 94                                                                                                                                    |                                     |                                                                                                                                                                                                                                                                                |                                                                                      |            |        | Cli                                            | ent S  | Samp     | ole ID: L                     | Prep <sup>·</sup>                                                                                             | -                                                            | otal/NA                                                            |
| o- <i>Terphenyl</i><br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                   | 94                                                                                                                                    |                                     |                                                                                                                                                                                                                                                                                | LCSD                                                                                 | LCS        | D      | Cli                                            | ent S  | Samp     | ble ID: L                     | Prep <sup>·</sup>                                                                                             | Type: To                                                     | otal/NA<br>59369                                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                                                                                                                  | 94                                                                                                                                    |                                     | 70 - 130                                                                                                                                                                                                                                                                       | LCSD<br>Result                                                                       |            |        | Cli<br>Unit                                    | ient S |          | ole ID: L                     | Prep <sup>-</sup><br>Prep                                                                                     | Type: To                                                     | otal/NA<br>59369<br>RPD                                            |
| o-Terphenyl Lab Sample ID: LCSD 880-593 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics                                                                                                                                                                                                                                                                           | 94                                                                                                                                    |                                     | 70 <sub>-</sub> 130<br>Spike                                                                                                                                                                                                                                                   |                                                                                      | Qua        |        |                                                | ient S |          |                               | Prep<br>Prep<br>%Rec                                                                                          | Type: To<br>Batch                                            | otal/NA<br>59369<br>RPC<br>Limi                                    |
| o-Terphenyl Lab Sample ID: LCSD 880-593 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                                                                                                                                                                                                                  | 94                                                                                                                                    |                                     | 70 <sub>-</sub> 130<br>Spike<br>Added                                                                                                                                                                                                                                          | Result                                                                               | Qua        |        | Unit                                           | ent S  |          | %Rec                          | Prep<br>Prep<br>%Rec<br>Limits                                                                                | Type: To<br>Batch:<br>                                       | <b>59369</b><br><b>RPE</b><br>Limi                                 |
| o-Terpheny/<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                 | 94<br>69/3-A<br>                                                                                                                      |                                     | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                                                                             | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ient S |          | <u>%Rec</u>                   | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                    | Type: To<br>b Batch:<br>RPD<br>0                             | <b>59369</b><br><b>RPE</b><br>Limi                                 |
| o-Terpheny/<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                    | 94<br>69/3-A<br>                                                                                                                      |                                     | 70 - 130  Spike Added  1000  1000  Limits                                                                                                                                                                                                                                      | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent S  |          | <u>%Rec</u>                   | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                    | Type: To<br>b Batch:<br>RPD<br>0                             | <b>59369</b><br><b>RPE</b><br>Limi                                 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                | 94<br>69/3-A<br>                                                                                                                      |                                     | 70 - 130  Spike Added  1000  1000  Limits 70 - 130                                                                                                                                                                                                                             | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ent S  |          | <u>%Rec</u>                   | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                    | Type: To<br>b Batch:<br>RPD<br>0                             | tal/NA<br>59369<br>RPD<br>Limit                                    |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                    | 94<br>69/3-A<br>                                                                                                                      |                                     | 70 - 130  Spike Added  1000  1000  Limits                                                                                                                                                                                                                                      | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ient S |          | <u>%Rec</u>                   | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                    | Type: To<br>b Batch:<br>RPD<br>0                             | <b>59369</b><br><b>RPD</b><br>Limit                                |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2                                                                                                                   | 94<br>69/3-A<br>                                                                                                                      |                                     | 70 - 130  Spike Added  1000  1000  Limits 70 - 130                                                                                                                                                                                                                             | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ient S |          | <mark>%Rec</mark> 66<br>85    | Prep           %Rec           Limits           70 - 130           70 - 130                                    | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix             | c Spike                                                            |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid                                                                                                  | 94<br>69/3-A<br>                                                                                                                      |                                     | 70 - 130  Spike Added  1000  1000  Limits 70 - 130                                                                                                                                                                                                                             | Result<br>660.9                                                                      | Qua        |        | Unit<br>mg/Kg                                  | ient S |          | <mark>%Rec</mark> 66<br>85    | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                            | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix<br>Type: To | c Spike                                                            |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid                                                                                                  | 94<br>69/3-A<br><u>LCSD L0</u><br><u>%Recovery Q</u><br>85<br>82<br>-F MS                                                             | ualifier                            | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130<br>70 - 130                                                                                                                                                                                            | Result<br>660.9<br>845.2                                                             | Qual<br>*- |        | Unit<br>mg/Kg                                  | ient S |          | <mark>%Rec</mark> 66<br>85    | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                    | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix             | c Spike                                                            |
| o-Terpheny/<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409                                                                         | 94<br>69/3-A<br>                                                                                                                      | ualifier                            | 70 - 130  Spike Added  1000  1000  Limits  70 - 130  70 - 130  70 - 130  Spike                                                                                                                                                                                                 | Result<br>660.9<br>845.2<br>MS                                                       | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ient S | <u>D</u> | %Rec<br>66<br>85<br>Client \$ | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep<br>%Rec                       | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix<br>Type: To | c Spike                                                            |
| o-Terpheny/<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analyte                                                                                       | 94<br>69/3-A<br><u>LCSD L0</u><br><u>%Recovery Q</u><br>85<br>82<br>-F MS                                                             | ualifier                            | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130<br>70 - 130                                                                                                                                                                                            | Result<br>660.9<br>845.2                                                             | Quai<br>*- | lifier | Unit<br>mg/Kg                                  | ient S | <u>D</u> | <mark>%Rec</mark> 66<br>85    | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                    | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix<br>Type: To | c Spike                                                            |
| o-Terphenyl Lab Sample ID: LCSD 880-593 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31664-A-2 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics                                                                                   | 94<br>69/3-A<br>                                                                                                                      | ualifier                            | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         Spike         Added                                                                                                                                              | Result           660.9           845.2           MS           Result                 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         |        | <u>D</u> | %Rec                          | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>Prep<br>%Rec<br>Limits              | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix<br>Type: To | c Spike                                                            |
| o-Terphenyl Lab Sample ID: LCSD 880-593 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31664-A-2 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                          | 94<br>69/3-A<br>                                                                                                                      | ualifier                            | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         Spike         Added                                                                                                                                              | Result           660.9           845.2           MS           Result                 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ient S | <u>D</u> | %Rec                          | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>Prep<br>%Rec<br>Limits              | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix<br>Type: To | c Spike                                                            |
| o-Terphenyl Lab Sample ID: LCSD 880-593 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31664-A-2 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                          | 94<br>69/3-A<br>                                                                                                                      | ualifier<br>ample<br>ualifier<br>*- | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         1000         1000         1000         Spike         Added         993                                                                              | Result           660.9           845.2           MS           Result           876.9 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ient S | <u>D</u> | %Rec                          | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix<br>Type: To | c Spike                                                            |
| o-Terphenyl Lab Sample ID: LCSD 880-593 Matrix: Solid Analysis Batch: 59409 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane                                                                                                                                                                                                | 94<br>69/3-A<br><i>LCSD Lt</i><br>%Recovery Q<br>85<br>82<br>-F MS<br>Sample Sa<br>Result Q<br><50.3 U<br>61.5<br><i>MS M</i>         | ualifier<br>ample<br>ualifier<br>*- | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         1000         1000         1000         Spike         Added         993                                                                              | Result           660.9           845.2           MS           Result           876.9 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ient S | <u>D</u> | %Rec                          | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix<br>Type: To | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |
| o-Terpheny/<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28) | 94<br>69/3-A<br><i>LCSD Lt</i><br>% <i>Recovery Q</i><br>85<br>82<br>-F MS<br>Sample Sa<br>Result Q<br><50.3 U<br>61.5<br><i>MS M</i> | ample<br>ualifier<br>*-<br>S        | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         Spike         Added         993         993 | Result           660.9           845.2           MS           Result           876.9 | Quai<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ient S | <u>D</u> | %Rec                          | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: To<br>Batch:<br>RPD<br>0<br>3<br>2: Matrix<br>Type: To | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>stal/NA |

#### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31281-1 SDG: Lea County, New Mexico

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: 880-31664-4<br>Matrix: Solid | A-2-G MSD |           |          |        |           | CI    | ient S | ample IC | ): Matrix Sp<br>Pren T | ike Dup<br>ype: To |       |   |
|---------------------------------------------|-----------|-----------|----------|--------|-----------|-------|--------|----------|------------------------|--------------------|-------|---|
| Analysis Batch: 59409                       |           |           |          |        |           |       |        |          |                        | Batch:             |       |   |
| ,,                                          | Sample    | Sample    | Spike    | MSD    | MSD       |       |        |          | %Rec                   |                    | RPD   |   |
| Analyte                                     | Result    | Qualifier | Added    | Result | Qualifier | Unit  | D      | %Rec     | Limits                 | RPD                | Limit |   |
| Gasoline Range Organics<br>(GRO)-C6-C10     | <50.3     | U *-      | 992      | 918.4  |           | mg/Kg |        | 91       | 70 - 130               | 5                  | 20    |   |
| Diesel Range Organics (Over<br>C10-C28)     | 61.5      |           | 992      | 1254   |           | mg/Kg |        | 120      | 70 - 130               | 6                  | 20    | - |
|                                             | MSD       | MSD       |          |        |           |       |        |          |                        |                    |       |   |
| Surrogate                                   | %Recovery | Qualifier | Limits   |        |           |       |        |          |                        |                    |       |   |
| 1-Chlorooctane                              | 128       |           | 70 - 130 |        |           |       |        |          |                        |                    |       |   |
| o-Terphenyl                                 | 112       |           | 70 - 130 |        |           |       |        |          |                        |                    |       |   |
|                                             |           |           |          |        |           |       |        |          |                        |                    |       |   |
|                                             |           |           |          |        |           |       |        |          |                        |                    |       |   |
|                                             |           |           |          |        |           |       |        |          |                        |                    |       |   |
|                                             |           |           |          |        |           |       |        |          |                        |                    |       | 1 |
|                                             |           |           |          |        |           |       |        |          |                        |                    |       |   |
|                                             |           |           |          |        |           |       |        |          |                        |                    |       |   |

Page 215 of 406

#### **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

**GC VOA** 

Job ID: 880-31281-1 SDG: Lea County, New Mexico

Page 216 of 406

5 6 7

# ea Count

| Lab Sample ID                                                                                                                                                                                                                             | Client Sample ID                                                                                                                                                                                                                             | Ргер Туре                                                                                                        | Matrix                                                                                  | Method                                                                                                                                      | Prep Batc                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 880-31281-1                                                                                                                                                                                                                               | S-3 (0-1')                                                                                                                                                                                                                                   | Total/NA                                                                                                         | Solid                                                                                   | 5035                                                                                                                                        |                                   |
| MB 880-58971/5-A                                                                                                                                                                                                                          | Method Blank                                                                                                                                                                                                                                 | Total/NA                                                                                                         | Solid                                                                                   | 5035                                                                                                                                        |                                   |
| LCS 880-58971/1-A                                                                                                                                                                                                                         | Lab Control Sample                                                                                                                                                                                                                           | Total/NA                                                                                                         | Solid                                                                                   | 5035                                                                                                                                        |                                   |
| LCSD 880-58971/2-A                                                                                                                                                                                                                        | Lab Control Sample Dup                                                                                                                                                                                                                       | Total/NA                                                                                                         | Solid                                                                                   | 5035                                                                                                                                        |                                   |
| 880-31279-A-1-A MS                                                                                                                                                                                                                        | Matrix Spike                                                                                                                                                                                                                                 | Total/NA                                                                                                         | Solid                                                                                   | 5035                                                                                                                                        |                                   |
| 880-31279-A-1-B MSD                                                                                                                                                                                                                       | Matrix Spike Duplicate                                                                                                                                                                                                                       | Total/NA                                                                                                         | Solid                                                                                   | 5035                                                                                                                                        |                                   |
| Prep Batch: 58998                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                         |                                                                                                                                             |                                   |
| Lab Sample ID                                                                                                                                                                                                                             | Client Sample ID                                                                                                                                                                                                                             | Prep Type                                                                                                        | Matrix                                                                                  | Method                                                                                                                                      | Prep Batc                         |
| MB 880-58998/5-A                                                                                                                                                                                                                          | Method Blank                                                                                                                                                                                                                                 | Total/NA                                                                                                         | Solid                                                                                   | 5035                                                                                                                                        |                                   |
| Analysis Batch: 59072                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                         |                                                                                                                                             |                                   |
| Lab Sample ID                                                                                                                                                                                                                             | Client Sample ID                                                                                                                                                                                                                             | Prep Type                                                                                                        | Matrix                                                                                  | Method                                                                                                                                      | Prep Batc                         |
| 880-31281-1                                                                                                                                                                                                                               | S-3 (0-1')                                                                                                                                                                                                                                   | Total/NA                                                                                                         | Solid                                                                                   | 8021B                                                                                                                                       | 5897                              |
| MB 880-58971/5-A                                                                                                                                                                                                                          | Method Blank                                                                                                                                                                                                                                 | Total/NA                                                                                                         | Solid                                                                                   | 8021B                                                                                                                                       | 5897                              |
| MB 880-58998/5-A                                                                                                                                                                                                                          | Method Blank                                                                                                                                                                                                                                 | Total/NA                                                                                                         | Solid                                                                                   | 8021B                                                                                                                                       | 5899                              |
| LCS 880-58971/1-A                                                                                                                                                                                                                         | Lab Control Sample                                                                                                                                                                                                                           | Total/NA                                                                                                         | Solid                                                                                   | 8021B                                                                                                                                       | 5897                              |
| LCSD 880-58971/2-A                                                                                                                                                                                                                        | Lab Control Sample Dup                                                                                                                                                                                                                       | Total/NA                                                                                                         | Solid                                                                                   | 8021B                                                                                                                                       | 5897                              |
| 880-31279-A-1-A MS                                                                                                                                                                                                                        | Matrix Spike                                                                                                                                                                                                                                 | Total/NA                                                                                                         | Solid                                                                                   | 8021B                                                                                                                                       | 5897                              |
| 880-31279-A-1-B MSD                                                                                                                                                                                                                       | Matrix Spike Duplicate                                                                                                                                                                                                                       | Total/NA                                                                                                         | Solid                                                                                   | 8021B                                                                                                                                       | 5897                              |
| Lab Sample ID           880-31281-1                                                                                                                                                                                                       | Client Sample ID<br>S-3 (0-1')                                                                                                                                                                                                               | Prep Type<br>Total/NA                                                                                            | Matrix<br>Solid                                                                         | Method<br>Total BTEX                                                                                                                        | Prep Batc                         |
| SC Semi VOA                                                                                                                                                                                                                               |                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                         |                                                                                                                                             |                                   |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                         |                                                                                                                                             |                                   |
| Prep Batch: 59369                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                         |                                                                                                                                             |                                   |
| Lab Sample ID                                                                                                                                                                                                                             | Client Sample ID                                                                                                                                                                                                                             | Ргер Туре                                                                                                        | Matrix                                                                                  | Method                                                                                                                                      | Prep Batc                         |
| Lab Sample ID                                                                                                                                                                                                                             | Client Sample ID<br>S-3 (0-1')                                                                                                                                                                                                               | Prep Type<br>Total/NA                                                                                            | Matrix<br>Solid                                                                         | Method<br>8015NM Prep                                                                                                                       | Prep Bato                         |
| Lab Sample ID<br>880-31281-1                                                                                                                                                                                                              | • • •                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                         |                                                                                                                                             | Prep Bato                         |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A                                                                                                                                                                                          | S-3 (0-1')                                                                                                                                                                                                                                   | Total/NA                                                                                                         | Solid                                                                                   | 8015NM Prep                                                                                                                                 | Prep Bato                         |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A                                                                                                                                                                     | S-3 (0-1')<br>Method Blank                                                                                                                                                                                                                   | Total/NA<br>Total/NA                                                                                             | Solid<br>Solid                                                                          | 8015NM Prep<br>8015NM Prep                                                                                                                  | Prep Bato                         |
| Batch:         59369           Lab Sample ID         880-31281-1           MB 880-59369/1-A         LCS 880-59369/2-A           LCSD 880-59369/2-A         880-31664-A-2-F MS                                                             | S-3 (0-1')<br>Method Blank<br>Lab Control Sample                                                                                                                                                                                             | Total/NA<br>Total/NA<br>Total/NA                                                                                 | Solid<br>Solid<br>Solid                                                                 | 8015NM Prep<br>8015NM Prep<br>8015NM Prep                                                                                                   | Prep Batc                         |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A<br>LCSD 880-59369/3-A                                                                                                                                               | S-3 (0-1')<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup                                                                                                                                                                   | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                                                     | Solid<br>Solid<br>Solid<br>Solid                                                        | 8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep                                                                                    | Prep Batc                         |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A<br>LCSD 880-59369/3-A<br>880-31664-A-2-F MS<br>880-31664-A-2-G MSD                                                                                                  | S-3 (0-1')<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike                                                                                                                                                   | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                                         | Solid<br>Solid<br>Solid<br>Solid<br>Solid                                               | 8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep                                                                     | Prep Bato                         |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A<br>LCSD 880-59369/3-A<br>880-31664-A-2-F MS<br>880-31664-A-2-G MSD<br>malysis Batch: 59409                                                                          | S-3 (0-1')<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike                                                                                                                                                   | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                                         | Solid<br>Solid<br>Solid<br>Solid<br>Solid                                               | 8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep                                                                     |                                   |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A<br>LCSD 880-59369/3-A<br>880-31664-A-2-F MS<br>880-31664-A-2-G MSD<br>malysis Batch: 59409<br>Lab Sample ID                                                         | S-3 (0-1')<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike<br>Matrix Spike Duplicate                                                                                                                         | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                             | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid                                      | 8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep                                                      | Prep Batc                         |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A<br>LCSD 880-59369/3-A<br>880-31664-A-2-F MS<br>880-31664-A-2-G MSD<br>malysis Batch: 59409<br>Lab Sample ID<br>880-31281-1                                          | S-3 (0-1')<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike<br>Matrix Spike Duplicate<br>Client Sample ID                                                                                                     | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                             | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid                                      | 8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>Method                                            | Prep Bato<br>5936                 |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A<br>LCSD 880-59369/3-A<br>880-31664-A-2-F MS<br>880-31664-A-2-G MSD<br>malysis Batch: 59409<br>Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A                      | S-3 (0-1')<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike<br>Matrix Spike Duplicate<br>Client Sample ID<br>S-3 (0-1')                                                                                       | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br><b>Prep Type</b><br>Total/NA             | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br><b>Matrix</b><br>Solid            | 8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br><b>Method</b><br>8015B NM                         | Prep Bato<br>5936<br>5936         |
| Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A<br>LCSD 880-59369/3-A<br>880-31664-A-2-F MS<br>880-31664-A-2-G MSD<br>malysis Batch: 59409<br>Lab Sample ID<br>880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/1-A | S-3 (0-1')         Method Blank         Lab Control Sample         Lab Control Sample Dup         Matrix Spike         Matrix Spike Duplicate         Client Sample ID         S-3 (0-1')         Method Blank                               | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br><b>Prep Type</b><br>Total/NA<br>Total/NA | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid           | 8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br><b>Method</b><br>8015B NM<br>8015B NM             | Prep Bato<br>5936<br>5936<br>5936 |
| 880-31281-1<br>MB 880-59369/1-A<br>LCS 880-59369/2-A<br>LCSD 880-59369/3-A<br>880-31664-A-2-F MS                                                                                                                                          | S-3 (0-1')         Method Blank         Lab Control Sample         Lab Control Sample Dup         Matrix Spike         Matrix Spike Duplicate         Client Sample ID         S-3 (0-1')         Method Blank         Lab Control Sample ID | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA         | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Matrix<br>Solid<br>Solid<br>Solid | 8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br>8015NM Prep<br><b>Method</b><br>8015B NM<br>8015B NM<br>8015B NM | Prep Batc                         |

Analysis Batch: 59483

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-31281-1   | S-3 (0-1')       | Total/NA  | Solid  | 8015 NM |            |
#### Client Sample ID: S-3 (0-1') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| -         | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.95 g  | 5 mL   | 58971  | 08/01/23 09:18 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59072  | 08/02/23 23:11 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59202  | 08/03/23 09:53 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59483  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.08 g | 10 mL  | 59369  | 08/04/23 17:30 | ТКС     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 17:10 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-31281-1 SDG: Lea County, New Mexico

## Lab Sample ID: 880-31281-1

Matrix: Solid

5

9

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31281-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority<br>Texas                        |                                | rogram                          | Identification Number                        | Expiration Date           |  |
|-------------------------------------------|--------------------------------|---------------------------------|----------------------------------------------|---------------------------|--|
|                                           |                                | ELAP                            | T104704400-23-26                             |                           |  |
| The following analytes                    | are included in this report, b | ut the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for w |  |
| the agency does not of                    |                                |                                 | A 14                                         |                           |  |
| the agency does not of<br>Analysis Method | fer certification. Prep Method | Matrix                          | Analyte                                      |                           |  |
| 0,                                        |                                | Matrix<br>Solid                 | Analyte<br>Total TPH                         |                           |  |

Eurofins Midland

10

### **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31281-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                                                                  | Protocol | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                                                                     | SW846    | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                                                              | TAL SOP  | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                                                                    | SW846    | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                                                                    | SW846    | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                                                                        | SW846    | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                                                                     | SW846    | EET MID    |
| Laboratory Re | <ul> <li>TestAmerica Laboratories, Standard Operating Procedure</li> <li>Iferences:</li> <li>Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440</li> </ul> |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |

#### Protocol References:

#### Laboratory References:

## Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31281-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31281-1   | S-3 (0-1')       | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |
|               |                  |        |                |                |

| Mum                         | Comments Email                                                                                   |                  |  |  | S-3 (0-1')  | Sample Identification | Total Containers.       | Sample Custody Seals  | Cooler Custody Seals. | Received Intact:                 | SAMPLE RECEIPT | PO#              | Sampler's Name | Project Location       | Project Number | Project Name       | Phone                   | ate ZIP                      |                           | y Name                           | Project Manager        |             |
|-----------------------------|--------------------------------------------------------------------------------------------------|------------------|--|--|-------------|-----------------------|-------------------------|-----------------------|-----------------------|----------------------------------|----------------|------------------|----------------|------------------------|----------------|--------------------|-------------------------|------------------------------|---------------------------|----------------------------------|------------------------|-------------|
| Relinquist                  | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonare |                  |  |  | 1') 7 25 23 | ification Date        |                         | S Yes No WA           | Yes No NA             | (Yes) No                         | T Temp Blank   |                  | CCM            | Lea County, New Mexico | 2089           | Tonto 15 State #1  |                         | Midland, 1X 79701            | 310 W Wall St Ste 500     | Carmona Resources                | Clinton Merritt        |             |
| Relinquished by (Signature) | na mcarmona@carr                                                                                 |                  |  |  |             | Time                  | Corrected Temperature   | Z Temperature Reading | Correction Factor     | Thermometer ID                   | Yes No         |                  |                |                        | •              | tate #1            |                         |                              |                           |                                  |                        |             |
|                             | nonaresource                                                                                     |                  |  |  | ×           | Soil                  | rature.                 | ding                  |                       |                                  | Wet Ice        |                  |                | Due Date               | マ Routine      | Turn               | Email                   |                              |                           |                                  |                        |             |
|                             | ₂s com, Conn                                                                                     |                  |  |  | G           | Water Comp            | 16                      | 2 L                   | 1.00                  | 302                              | ( Yes No       |                  |                | 5 dav                  | [] Rush        | Turn Around        | msanjan@marathonoil.com | City, State ZIP              | Address                   | Company Name                     | Bill to (if different) |             |
|                             | er Moehrin                                                                                       | <br>             |  |  |             | p #of                 |                         | <u> </u>              | Pa                    | aran                             | neter          | rs               |                |                        | Pres,<br>Code  |                    | arathonoil c            |                              |                           | ſ                                | )                      |             |
| Date/Time<br>26-23<br>10-45 | g cmoehring@c                                                                                    |                  |  |  | ××          | TP                    | H 801                   | 5M (                  | (GR                   | 802 <sup>-</sup><br>O +<br>le 30 | DRO            | + MI             | २०)            |                        |                |                    | om                      | Houston, TX 77024            | 990 Town and Country Blvd | Marathon Oil Corporation         | Melodie Sanjari        |             |
| R                           | armonaresources com, C                                                                           |                  |  |  |             |                       |                         |                       |                       |                                  |                |                  | ****           |                        |                | ANALYSIS REQUEST   |                         | 4                            | Intry Blvd                | oration                          |                        |             |
| Received by (Signature)     | sources com, Clint Merritt MerrittC@carmonaresources com                                         | Chain of Custody |  |  |             |                       |                         |                       |                       |                                  |                |                  |                |                        |                | EQUEST             | Deliverables EDD AD     | Reporting Level II Level III | State of Project:         | Program. UST/PST PRP Prownfields | Work Ord               |             |
| Date/Time                   | sources com                                                                                      |                  |  |  |             | Sample Comments       | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn    | Na S-O3 NaSO          | NaHSO, NABIS                     | 0              | H-SO, H- N-OH N- | 9              |                        | oci vati       | Preservative Codes | ADaPT Other             | ST/UST RRP Level IV          |                           | ownfields RC perfund             |                        | Page 1 of 1 |

### Received by OCD: 9/21/2023 6:16:51 AM

### 8/7/2023

Work Order No:

Page 221 of 406

5

13

6.2

5

14

Job Number: 880-31281-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

### Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31281 List Number: 1 Creator: Rodriguez, Leticia

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

## **ANALYTICAL REPORT**

## **PREPARED FOR**

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 2:44:42 PM

## **JOB DESCRIPTION**

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

## **JOB NUMBER**

880-31270-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information.



## **Eurofins Midland**

## Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## Authorization

AMER

Generated 8/7/2023 2:44:42 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440 1

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31270-1 SDG: Lea County, New Mexico

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

Page 225 of 406

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 226 of 406

| Job ID: 880-31270-1         |
|-----------------------------|
| SDG: Lea County, New Mexico |

| -   |     | 11.01 |      |
|-----|-----|-------|------|
| ( ) | 112 | 1141  | ers  |
| 9   | ua  |       | ei 3 |
|     |     |       |      |

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| S1-            | Surrogate recovery exceeds control limits, low biased.                                                      |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    | 5  |
| GC Semi VOA    |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| *+             | LCS and/or LCSD is outside acceptance limits, high biased.                                                  |    |
| S1+            | Surrogate recovery exceeds control limits, high biased.                                                     |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary       |                                                                                                             | 8  |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | Q  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            |    |
| CFL            | Contains Free Liquid                                                                                        |    |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | 13 |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |    |
|                |                                                                                                             |    |

| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
|----------------|-------------------------------------------------------------------------------------------------------------|
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| MPN            | Most Probable Number                                                                                        |
| MQL            | Method Quantitation Limit                                                                                   |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| NEG            | Negative / Absent                                                                                           |
| POS            | Positive / Present                                                                                          |
| PQL            | Practical Quantitation Limit                                                                                |
| PRES           | Presumptive                                                                                                 |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |
| TNTC           | Too Numerous To Count                                                                                       |

Job ID: 880-31270-1 SDG: Lea County, New Mexico

#### Job ID: 880-31270-1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31270-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-4 (2') (880-31270-1).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-4 (2') (880-31270-1) and (880-31278-A-1-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-59255 and analytical batch 880-59403 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-59403/20), (CCV 880-59403/31) and (CCV 880-59403/5). Evidence of matrix interferences is not obvious.

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59255 and analytical batch 880-59403 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

Job ID: 880-31270-1 SDG: Lea County, New Mexico

## Lab Sample ID: 880-31270-1

Matrix: Solid

5

# Project/Site: Tonto 15 State #1 Client Sample ID: S-4 (2')

Client: Carmona Resources

Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| Analyte                                                                                                                                                                                                                                                      | Result                                               | Qualifier                                                   | RL                                               | MDL | Unit                            | D        | Prepared                                                       | Analyzed                                                                                                                        | Dil Fac                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----|---------------------------------|----------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Benzene                                                                                                                                                                                                                                                      | <0.00200                                             | U                                                           | 0.00200                                          |     | mg/Kg                           |          | 08/01/23 09:01                                                 | 08/04/23 04:06                                                                                                                  | 1                      |
| Toluene                                                                                                                                                                                                                                                      | <0.00200                                             | U                                                           | 0.00200                                          |     | mg/Kg                           |          | 08/01/23 09:01                                                 | 08/04/23 04:06                                                                                                                  | 1                      |
| Ethylbenzene                                                                                                                                                                                                                                                 | <0.00200                                             | U                                                           | 0.00200                                          |     | mg/Kg                           |          | 08/01/23 09:01                                                 | 08/04/23 04:06                                                                                                                  | 1                      |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                          | <0.00399                                             | U                                                           | 0.00399                                          |     | mg/Kg                           |          | 08/01/23 09:01                                                 | 08/04/23 04:06                                                                                                                  | 1                      |
| o-Xylene                                                                                                                                                                                                                                                     | <0.00200                                             | U                                                           | 0.00200                                          |     | mg/Kg                           |          | 08/01/23 09:01                                                 | 08/04/23 04:06                                                                                                                  | 1                      |
| Xylenes, Total                                                                                                                                                                                                                                               | <0.00399                                             | U                                                           | 0.00399                                          |     | mg/Kg                           |          | 08/01/23 09:01                                                 | 08/04/23 04:06                                                                                                                  | 1                      |
| Surrogate                                                                                                                                                                                                                                                    | %Recovery                                            | Qualifier                                                   | Limits                                           |     |                                 |          | Prepared                                                       | Analyzed                                                                                                                        | Dil Fac                |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                  | 84                                                   |                                                             | 70 - 130                                         |     |                                 |          | 08/01/23 09:01                                                 | 08/04/23 04:06                                                                                                                  | 1                      |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                   | 63                                                   | S1-                                                         | 70 - 130                                         |     |                                 |          | 08/01/23 09:01                                                 | 08/04/23 04:06                                                                                                                  | 1                      |
|                                                                                                                                                                                                                                                              |                                                      |                                                             |                                                  |     |                                 |          |                                                                |                                                                                                                                 |                        |
| Method: SW846 8015 NM - Diese                                                                                                                                                                                                                                |                                                      |                                                             |                                                  | MD  | 11                              |          | Durante                                                        | A                                                                                                                               | D!! 5                  |
| Analyte                                                                                                                                                                                                                                                      |                                                      | Qualifier                                                   | GC)<br>                                          | MDL | Unit<br>mg/Kg                   | D        | Prepared                                                       | Analyzed<br>08/07/23 14:16                                                                                                      |                        |
| Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                                                                                                                        | Result<br><50.5                                      | Qualifier<br>U                                              | <b>RL</b><br>50.5                                | MDL | mg/Kg                           | <u>D</u> | Prepared                                                       |                                                                                                                                 | 1                      |
| Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte                                                                                                                                                                                             | Result<br><50.5                                      | Qualifier<br>U<br>nics (DRO)<br>Qualifier                   | RL<br>50.5                                       |     | mg/Kg                           |          |                                                                | 08/07/23 14:16                                                                                                                  | 1<br>Dil Fac           |
| Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                   | Result<br><50.5<br>sel Range Orga<br>Result          | Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U              | (GC)                                             |     | mg/Kg<br>Unit                   |          | Prepared                                                       | 08/07/23 14:16<br>Analyzed                                                                                                      | 1<br>Dil Fac           |
| Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                       | Result<br><50.5<br>sel Range Orga<br>Result<br><50.5 | Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U<br>U *+      | RL<br>50.5<br>(GC)<br>RL<br>50.5                 |     | mg/Kg<br>Unit<br>mg/Kg          |          | Prepared<br>08/03/23 14:00                                     | 08/07/23 14:16<br>Analyzed<br>08/06/23 16:41                                                                                    | 1<br>Dil Fac           |
| Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                                                                  | Result           <50.5                               | Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U<br>U *+<br>U | RL<br>50.5<br>(GC)<br>RL<br>50.5<br>50.5         |     | mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |          | Prepared<br>08/03/23 14:00<br>08/03/23 14:00                   | 08/07/23 14:16<br>Analyzed<br>08/06/23 16:41<br>08/06/23 16:41                                                                  | Dil Fac                |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane | Result           <50.5                               | Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U<br>U *+<br>U | RL<br>50.5<br>(GC)<br>RL<br>50.5<br>50.5<br>50.5 |     | mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |          | Prepared<br>08/03/23 14:00<br>08/03/23 14:00<br>08/03/23 14:00 | Analyzed           08/07/23 14:16           Analyzed           08/06/23 16:41           08/06/23 16:41           08/06/23 16:41 | 1<br>Dil Fac<br>1<br>1 |

Released to Imaging: 11/6/2023 11:57:53 AM

Job ID: 880-31270-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |  |
|---------------------|------------------------|----------|----------|------------------------------------------------|--|
|                     |                        | BFB1     | DFBZ1    |                                                |  |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |  |
| 880-31270-1         | S-4 (2')               | 84       | 63 S1-   |                                                |  |
| 880-31278-A-1-B MS  | Matrix Spike           | 121      | 124      |                                                |  |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | 119      | 91       |                                                |  |
| LCS 880-58969/1-A   | Lab Control Sample     | 115      | 111      |                                                |  |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | 114      | 109      |                                                |  |
| MB 880-58969/5-A    | Method Blank           | 73       | 79       |                                                |  |
| MB 880-59110/5-A    | Method Blank           | 68 S1-   | 100      |                                                |  |
| Surrogate Legend    |                        |          |          |                                                |  |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| ample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |
| 4-A-1-D MS    | Matrix Spike           | 125      | 98       |                                                |
| 114-A-1-E MSD | Matrix Spike Duplicate | 124      | 99       |                                                |
| 270-1         | S-4 (2')               | 97       | 86       |                                                |
| 30-59255/1-A  | Method Blank           | 156 S1+  | 154 S1+  |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |
|---------------------------------|
| Matrix: Solid                   |

Analysis Batch: 59172

| MB        | MB                        |                                             |                                                        |                                                                    |                                                                                 |                                                                                           |                                                                                                            |                                                                                                                                                     |
|-----------|---------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Result    | Qualifier                 | RL                                          | MDL                                                    | Unit                                                               | D                                                                               | Prepared                                                                                  | Analyzed                                                                                                   | Dil Fac                                                                                                                                             |
| <0.00200  | U                         | 0.00200                                     |                                                        | mg/Kg                                                              |                                                                                 | 08/01/23 09:01                                                                            | 08/03/23 22:38                                                                                             | 1                                                                                                                                                   |
| <0.00200  | U                         | 0.00200                                     |                                                        | mg/Kg                                                              |                                                                                 | 08/01/23 09:01                                                                            | 08/03/23 22:38                                                                                             | 1                                                                                                                                                   |
| <0.00200  | U                         | 0.00200                                     |                                                        | mg/Kg                                                              |                                                                                 | 08/01/23 09:01                                                                            | 08/03/23 22:38                                                                                             | 1                                                                                                                                                   |
| <0.00400  | U                         | 0.00400                                     |                                                        | mg/Kg                                                              |                                                                                 | 08/01/23 09:01                                                                            | 08/03/23 22:38                                                                                             | 1                                                                                                                                                   |
| <0.00200  | U                         | 0.00200                                     |                                                        | mg/Kg                                                              |                                                                                 | 08/01/23 09:01                                                                            | 08/03/23 22:38                                                                                             | 1                                                                                                                                                   |
| <0.00400  | U                         | 0.00400                                     |                                                        | mg/Kg                                                              |                                                                                 | 08/01/23 09:01                                                                            | 08/03/23 22:38                                                                                             | 1                                                                                                                                                   |
| МВ        | МВ                        |                                             |                                                        |                                                                    |                                                                                 |                                                                                           |                                                                                                            |                                                                                                                                                     |
| %Recovery | Qualifier                 | Limits                                      |                                                        |                                                                    |                                                                                 | Prepared                                                                                  | Analyzed                                                                                                   | Dil Fac                                                                                                                                             |
| 73        |                           | 70 - 130                                    |                                                        |                                                                    |                                                                                 | 08/01/23 09:01                                                                            | 08/03/23 22:38                                                                                             | 1                                                                                                                                                   |
| 79        |                           | 70 - 130                                    |                                                        |                                                                    |                                                                                 | 08/01/23 09:01                                                                            | 08/03/23 22:38                                                                                             | 1                                                                                                                                                   |
|           | Result           <0.00200 | Result         Qualifier           <0.00200 | Result         Qualifier         RL           <0.00200 | Result         Qualifier         RL         MDL           <0.00200 | Result         Qualifier         RL         MDL         Unit           <0.00200 | Result         Qualifier         RL         MDL         Unit         D           <0.00200 | Result         Qualifier         RL         MDL         Unit         D         Prepared           <0.00200 | MB         MB           Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           <0.00200 |

#### Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

#### Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58969/2-A

#### Matrix: Solid

| Analysis Batch: 59172 |       |         |           |       |   |      | Prep     | Batch: | 58969 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08592 |           | mg/Kg |   | 86   | 70 - 130 | 9      | 35    |
| Toluene               | 0.100 | 0.08219 |           | mg/Kg |   | 82   | 70 - 130 | 6      | 35    |
| Ethylbenzene          | 0.100 | 0.08963 |           | mg/Kg |   | 90   | 70 - 130 | 12     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1870  |           | mg/Kg |   | 94   | 70 - 130 | 12     | 35    |
| o-Xylene              | 0.100 | 0.09268 |           | mg/Kg |   | 93   | 70 - 130 | 12     | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

## Lab Sample ID: 880-31278-A-1-B MS

## Matrix: Solid

| Analysis Batch: 59172 |          |           |        |         |           |       |   |      | Prep     | Batch: 58969 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |              |

**Eurofins Midland** 

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

13

**Client Sample ID: Method Blank** 

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 58969

Prep Batch: 58969

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31270-1 SDG: Lea County, New Mexico

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-A  | A-1-B MS   |               |          |         |     |        |       |          |       | Client S   | Sample ID: | Matrix  | Spike   |
|-----------------------------|------------|---------------|----------|---------|-----|--------|-------|----------|-------|------------|------------|---------|---------|
| Matrix: Solid               |            |               |          |         |     |        |       |          |       |            | Prep T     | ype: To | otal/N/ |
| Analysis Batch: 59172       |            |               |          |         |     |        |       |          |       |            | Prep       | Batch:  | 5896    |
|                             | Sample S   | ample         | Spike    | MS      | MS  |        |       |          |       |            | %Rec       |         |         |
| Analyte                     | Result Q   | ualifier      | Added    | Result  | Qua | lifier | Unit  |          | D     | %Rec       | Limits     |         |         |
| Ethylbenzene                | <0.00202 U |               | 0.0994   | 0.1030  |     |        | mg/Kg |          |       | 104        | 70 - 130   |         |         |
| n-Xylene & p-Xylene         | <0.00403 U |               | 0.199    | 0.2125  |     |        | mg/Kg |          |       | 107        | 70 - 130   |         |         |
| o-Xylene                    | <0.00202 U |               | 0.0994   | 0.1040  |     |        | mg/Kg |          |       | 105        | 70 - 130   |         |         |
|                             | MS M       |               |          |         |     |        |       |          |       |            |            |         |         |
| Surrogate                   |            | ualifier      | Limits   |         |     |        |       |          |       |            |            |         |         |
| 4-Bromofluorobenzene (Surr) | 121        |               | 70 - 130 |         |     |        |       |          |       |            |            |         |         |
| 1,4-Difluorobenzene (Surr)  | 124        |               | 70 - 130 |         |     |        |       |          |       |            |            |         |         |
| Lab Sample ID: 880-31278-A  | A-1-C MSD  |               |          |         |     |        | (     | Clie     | nt Sa | mple ID:   | Matrix Sp  | ike Du  | plicate |
| Matrix: Solid               |            |               |          |         |     |        |       |          |       |            | Prep T     | ype: To | otal/N/ |
| Analysis Batch: 59172       |            |               |          |         |     |        |       |          |       |            | Prep       | Batch:  | 58969   |
|                             | Sample S   | ample         | Spike    | MSD     | MSD | )      |       |          |       |            | %Rec       |         | RPD     |
| Analyte                     | Result Q   |               | Added    | Result  | Qua | lifier | Unit  |          | D     | %Rec       | Limits     | RPD     | Limi    |
| Benzene                     | <0.00202 U |               | 0.0998   | 0.09502 |     |        | mg/Kg |          |       | 95         | 70 - 130   | 5       | 3       |
| Toluene                     | <0.00202 U |               | 0.0998   | 0.09100 |     |        | mg/Kg |          |       | 91         | 70 - 130   | 3       | 3       |
| Ethylbenzene                | <0.00202 U |               | 0.0998   | 0.1021  |     |        | mg/Kg |          |       | 102        | 70 - 130   | 1       | 3       |
| m-Xylene & p-Xylene         | <0.00403 U |               | 0.200    | 0.2097  |     |        | mg/Kg |          |       | 105        | 70 - 130   | 1       | 35      |
| o-Xylene                    | <0.00202 U |               | 0.0998   | 0.1024  |     |        | mg/Kg |          |       | 103        | 70 - 130   | 2       | 3       |
|                             | MSD M      |               |          |         |     |        |       |          |       |            |            |         |         |
| Surrogate                   |            | ualifier      | Limits   |         |     |        |       |          |       |            |            |         |         |
| 4-Bromofluorobenzene (Surr) | 119        |               | 70 - 130 |         |     |        |       |          |       |            |            |         |         |
| 1,4-Difluorobenzene (Surr)  | 91         |               | 70 - 130 |         |     |        |       |          |       |            |            |         |         |
| Lab Sample ID: MB 880-591   | 10/5-A     |               |          |         |     |        |       |          |       | Client Sa  | mple ID: N |         |         |
| Matrix: Solid               |            |               |          |         |     |        |       |          |       |            | Prep T     |         |         |
| Analysis Batch: 59172       |            |               |          |         |     |        |       |          |       |            | Prep       | Batch:  | 59110   |
|                             |            | IB MB         |          |         |     |        |       |          |       |            |            |         |         |
| Analyte                     |            | ult Qualifier | RL       |         | MDL | Unit   |       | <u>D</u> |       | epared     | Analyze    |         | Dil Fa  |
| Benzene                     | <0.002     |               | 0.00200  |         |     | mg/Kg  |       |          |       | 2/23 11:14 | 08/03/23 1 |         |         |
| Toluene                     | <0.002     |               | 0.00200  |         |     | mg/Kg  |       |          |       | 2/23 11:14 | 08/03/23 1 |         |         |
| Ethylbenzene                | <0.002     |               | 0.00200  |         |     | mg/Kg  |       |          |       | 2/23 11:14 | 08/03/23 1 |         |         |
| m-Xylene & p-Xylene         | <0.004     |               | 0.00400  |         |     | mg/Kg  |       |          | 08/02 | 2/23 11:14 | 08/03/23 1 | 1:30    |         |
| o-Xylene                    | <0.002     | 00 U          | 0.00200  |         |     | mg/Kg  |       |          | 08/02 | 2/23 11:14 | 08/03/23 1 |         |         |
| Kylenes, Total              | <0.004     | 00 U          | 0.00400  |         |     | mg/Kg  |       |          | 08/02 | 2/23 11:14 | 08/03/23 1 | 1:30    |         |
|                             |            | IB MB         | •• •     |         |     |        |       |          | -     |            |            |         |         |
| Surrogate                   |            | ry Qualifier  | Limits   |         |     |        |       |          |       | epared     | Analyze    |         | Dil Fa  |
| 4-Bromofluorobenzene (Surr) |            | 58 S1-        | 70 - 130 |         |     |        |       |          |       | 2/23 11:14 | 08/03/23 1 |         |         |
| 1,4-Difluorobenzene (Surr)  | 1          | 00            | 70 - 130 |         |     |        |       |          | 08/02 | 2/23 11:14 | 08/03/23 1 | 11:30   |         |

| Lab Sample ID: MB 880-59255/1-A<br>Matrix: Solid<br>Analysis Batch: 59403 |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: ⊺<br>Prep Batcł | Total/NA |
|---------------------------------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------------------------------------|----------|
|                                                                           | MB     | MB        |      |     |       |   |                |                                              |          |
| Analyte                                                                   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                                     | Dil Fac  |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/03/23 14:00 | 08/06/23 08:22                               | 1        |
| (GRO)-C6-C10                                                              |        |           |      |     |       |   |                |                                              |          |

Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 232 of 406

#### Job ID: 880-31270-1 SDG: Lea County, New Mexico

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59255/1<br>Matrix: Solid | - <b>A</b> |              |          |        |      |           |      |        | Client S    |             | ype: To  | tal/N  |
|------------------------------------------------|------------|--------------|----------|--------|------|-----------|------|--------|-------------|-------------|----------|--------|
| Analysis Batch: 59403                          |            |              |          |        |      |           |      |        |             | Prep        | Batch:   | 5925   |
|                                                |            | B MB         |          |        |      |           |      |        |             |             |          |        |
| Analyte                                        | Resul      |              |          |        | MDL  |           | [    |        | Prepared    | Analyz      |          | Dil Fa |
| Diesel Range Organics (Over<br>C10-C28)        | <50.0      | 0 0          | 50.0     |        |      | mg/Kg     |      | 08/0   | 03/23 14:00 | 08/06/23 0  | 08:22    |        |
| Oll Range Organics (Over C28-C36)              | <50.0      | ) U          | 50.0     |        |      | mg/Kg     |      | 08/0   | 3/23 14:00  | 08/06/23 0  | )8:22    |        |
|                                                | ME         | 3 <i>MB</i>  |          |        |      |           |      |        |             |             |          |        |
| Surrogate                                      | %Recover   | Qualifier    | Limits   |        |      |           |      | P      | Prepared    | Analyz      | ed       | Dil F  |
| 1-Chlorooctane                                 | 15         | 6 S1+        | 70 - 130 |        |      |           |      | 08/0   | 03/23 14:00 | 08/06/23 (  | 08:22    |        |
| p-Terphenyl                                    | 15         | 4 S1+        | 70 - 130 |        |      |           |      | 08/0   | 03/23 14:00 | 08/06/23 (  | 08:22    |        |
| Lab Sample ID: LCS 880-59255/                  | 2-A        |              |          |        |      |           |      | Client | t Sample    | ID: Lab Co  | ontrol S | amp    |
| Matrix: Solid                                  |            |              |          |        |      |           |      |        |             |             | ype: To  |        |
| Analysis Batch: 59403                          |            |              |          |        |      |           |      |        |             |             | Batch:   |        |
|                                                |            |              | Spike    | LCS    | LCS  |           |      |        |             | %Rec        |          |        |
| Analyte                                        |            |              | Added    | Result | Qual | ifier Uni | t    | D      | %Rec        | Limits      |          |        |
| Gasoline Range Organics                        |            |              | 1000     | 1091   |      | mg/       | Кg   |        | 109         | 70 - 130    |          |        |
| GRO)-C6-C10                                    |            |              | 1005     |        |      |           |      |        |             |             |          |        |
| Diesel Range Organics (Over<br>C10-C28)        |            |              | 1000     | 1432   | *+   | mg/       | Kg   |        | 143         | 70 - 130    |          |        |
| ab Sample ID: LCSD 880-5925                    | 5/3-A      |              |          |        |      |           | Clie | nt San | nole ID: I  | _ab Control | I Samp   | le Di  |
| Aatrix: Solid                                  |            |              |          |        |      |           |      |        |             |             | ype: To  |        |
| Analysis Batch: 59403                          |            |              |          |        |      |           |      |        |             |             | Batch:   |        |
|                                                |            |              | Spike    | LCSD   | LCS  | C         |      |        |             | %Rec        |          | R      |
| Analyte                                        |            |              | Added    | Result | Qual | ifier Uni | t    | D      | %Rec        | Limits      | RPD      | Lir    |
| Basoline Range Organics                        |            |              | 1000     | 1083   |      | mg/       | Кg   |        | 108         | 70 - 130    | 1        |        |
| GRO)-C6-C10<br>Diesel Range Organics (Over     |            |              | 1000     | 1425   | *+   | ma        | Ka   |        | 142         | 70 - 130    | 1        |        |
| 10-C28)                                        |            |              | 1000     | 1425   | т    | mg/       | Ng   |        | 142         | 70 - 150    |          |        |
| .ab Sample ID: 880-31114-A-1-E                 | MS         |              |          |        |      |           |      |        | Client      | Sample ID:  | Matrix   | Spi    |
| Matrix: Solid                                  |            |              |          |        |      |           |      |        |             | Prep T      | ype: To  | tal/N  |
| Analysis Batch: 59403                          |            |              |          |        |      |           |      |        |             | Prep        | Batch:   | 592    |
|                                                | Sample Sa  | mple         | Spike    | MS     | MS   |           |      |        |             | %Rec        |          |        |
| Analyte                                        | Result Qu  | alifier      | Added    | Result | Qual | ifier Uni | t    | D      | %Rec        | Limits      |          |        |
| Gasoline Range Organics<br>GRO)-C6-C10         | <49.8 U    |              | 991      | 822.4  |      | mg/       | Kg   |        | 80          | 70 - 130    |          |        |
| Diesel Range Organics (Over                    | <49.8 U*   | +            | 991      | 1171   |      | mg/       | Kg   |        | 118         | 70 - 130    |          |        |
| C10-C28)                                       | MS MS      |              |          |        |      |           |      |        |             |             |          |        |
| Surrogate                                      |            | ,<br>alifier | Limits   |        |      |           |      |        |             |             |          |        |
| I-Chlorooctane                                 | 125        |              | 70 - 130 |        |      |           |      |        |             |             |          |        |
| p-Terphenyl                                    | 98         |              | 70 - 130 |        |      |           |      |        |             |             |          |        |
| _ab Sample ID: 880-31114-A-1-E                 | MSD        |              |          |        |      |           | CI   | ient S | ample ID    | : Matrix Sp | ike Du   | olica  |
| Matrix: Solid                                  |            |              |          |        |      |           |      |        |             |             | ype: To  |        |
| Analysis Batch: 59403                          |            |              |          |        |      |           |      |        |             |             | Batch:   |        |
|                                                | Sample Sa  | mple         | Spike    | MSD    | MSD  |           |      |        |             | %Rec        |          | R      |
| Analyte                                        | Result Qu  | -            | Added    | Result | Qual | ifier Uni | t    | D      | %Rec        | Limits      | RPD      | Lir    |
| Gasoline Range Organics<br>GRO)-C6-C10         | <49.8 U    |              | 991      | 831.2  |      | mg/       | Кg   |        | 81          | 70 - 130    | 1        |        |
| Diesel Range Organics (Over                    | <49.8 U*   | +            | 991      | 1164   |      |           | Ka   |        | 117         | 70 - 130    | 1        |        |
|                                                |            |              | 331      | 1104   |      | mg/       | ng   |        | 117         | 70 - 130    |          |        |

## **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31270-1 SDG: Lea County, New Mexico

Page 233 of 406

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

|                | MSD       | MSD       |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 124       |           | 70 - 130 |
| o-Terphenyl    | 99        |           | 70 - 130 |

## **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31270-1 SDG: Lea County, New Mexico

5

8

## **GC VOA**

#### Prep Batch: 58969

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-31270-1         | S-4 (2')               | Total/NA  | Solid  | 5035   |            |
| MB 880-58969/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-58969/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-31278-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |
| Prep Batch: 59110   |                        |           |        |        |            |
| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |

Total/NA

Solid

5035

#### Analysis Batch: 59172

Method Blank

MB 880-59110/5-A

| Lab Sample ID             | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |  |
|---------------------------|------------------------|-----------|--------|--------|------------|--|
| 880-31270-1               | S-4 (2')               | Total/NA  | Solid  | 8021B  | 58969      |  |
| MB 880-58969/5-A          | Method Blank           | Total/NA  | Solid  | 8021B  | 58969      |  |
| MB 880-59110/5-A          | Method Blank           | Total/NA  | Solid  | 8021B  | 59110      |  |
| LCS 880-58969/1-A         | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 58969      |  |
| LCSD 880-58969/2-A        | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 58969      |  |
| 880-31278-A-1-B MS        | Matrix Spike           | Total/NA  | Solid  | 8021B  | 58969      |  |
| 880-31278-A-1-C MSD       | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 58969      |  |
| Assolution Defets a 50040 |                        |           |        |        |            |  |

#### Analysis Batch: 59318

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31270-1   | S-4 (2')         | Total/NA  | Solid  | Total BTEX |            |

### GC Semi VOA

#### Prep Batch: 59255

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31270-1         | S-4 (2')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59255/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59255/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59255/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31114-A-1-D MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31114-A-1-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 59403

| Lab Sample ID         | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31270-1           | S-4 (2')               | Total/NA  | Solid  | 8015B NM | 59255      |
| MB 880-59255/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59255      |
| LCS 880-59255/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59255      |
| LCSD 880-59255/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59255      |
| 880-31114-A-1-D MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59255      |
| 880-31114-A-1-E MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59255      |
| Analysis Batch: 59526 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
| 880-31270-1           | <u>S-4 (2')</u>        | Total/NA  | Solid  | 8015 NM  |            |

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Client Sample ID: S-4 (2') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| _         | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/04/23 04:06 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59318  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59526  | 08/07/23 14:16 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.91 g  | 10 mL  | 59255  | 08/03/23 14:00 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59403  | 08/06/23 16:41 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-31270-1 SDG: Lea County, New Mexico

## Lab Sample ID: 880-31270-1

Matrix: Solid

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31270-1

Page 236 of 406

10

SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                 |                                | rogram                          | Identification Number                        | Expiration Date          |
|-------------------------------------------|--------------------------------|---------------------------------|----------------------------------------------|--------------------------|
| xas                                       | N                              | ELAP                            | T104704400-23-26                             | 06-30-24                 |
| The following analytes                    | are included in this report. b | ut the laboratory is not certif | ied by the governing authority. This list ma | y include analytes for w |
| the agency does not of                    | fer certification.             | Na-Arity                        |                                              | , ,                      |
| the agency does not of<br>Analysis Method |                                | Matrix                          | Analyte                                      |                          |
| the agency does not of                    | fer certification.             | Matrix<br>Solid                 |                                              |                          |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

### **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31270-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                                                                  | Protocol | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                                                                     | SW846    | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                                                              | TAL SOP  | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                                                                    | SW846    | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                                                                    | SW846    | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                                                                        | SW846    | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                                                                     | SW846    | EET MID    |
| Laboratory Re | <ul> <li>TestAmerica Laboratories, Standard Operating Procedure</li> <li>Iferences:</li> <li>Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440</li> </ul> |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

Page 15 of 18

## Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31270-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31270-1   | S-4 (2')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

| Project Manager             | Clinton Merritt       |                       |                             |             | Bill to (if different)         |                 | Melodie Saniari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aniari                    |                                                                                                                                                  |                                 | Work        | Work Order Comments                           | nmante                                                          |                            |
|-----------------------------|-----------------------|-----------------------|-----------------------------|-------------|--------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|-----------------------------------------------|-----------------------------------------------------------------|----------------------------|
|                             | Carmona Resources     | Irces                 |                             |             | Company Name                   |                 | Marathon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marathon Oil Corporation  |                                                                                                                                                  | Program UST/PST PRP Prownfields |             |                                               | 5                                                               |                            |
|                             | 310 W Wall St Ste 500 | te 500                |                             |             | Address.                       |                 | 990 Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 990 Town and Country Blvd | Blvd                                                                                                                                             | State of Project                | י<br>ג<br>ג |                                               | _                                                               |                            |
| e ZIP                       | Midland, TX 79701     | 01                    |                             |             | City, State ZIP                |                 | Houston, TX 77024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X 77024                   |                                                                                                                                                  | Reporting Level II Level III    |             | ST/UST                                        |                                                                 |                            |
| Phone                       |                       |                       |                             | Email       | Email msanjari@marathonoil.com | rathonoil co    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                                                                                                                                  | Deliverables EDD                |             |                                               | l :                                                             |                            |
| Project Name                | To                    | Tonto 15 State #1     | #1                          | Turn        | Turn Around                    |                 | and the second se |                           | ANALYSIS REOUEST                                                                                                                                 | DUEST                           |             |                                               | Procorvativo Codor                                              | a Cadar                    |
| Project Number              |                       | 2089                  |                             | マ Routine   | [_] Rush                       | Pres.<br>Code   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                  |                                 |             | None NO                                       |                                                                 | DI Water: H <sub>2</sub> O |
| Project Location            | Lea Co                | Lea County New Mexico | Mexico                      | Due Date    | 5 day                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                  |                                 |             |                                               |                                                                 |                            |
| Sampler's Name              |                       | CCM                   |                             |             |                                | <u> </u>        | IRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                  |                                 |             | HCL HC                                        | 2                                                               | HNO, HN                    |
| PO#                         |                       |                       |                             |             |                                | rs              | ) + N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                                                  |                                 |             | H <sub>2</sub> S0 <sub>4</sub> H <sub>2</sub> |                                                                 | NaOH Na                    |
| SAMPLE RECEIPT              |                       | Temp Blank.           | Yes NG                      | Wet Ice     | Res No                         | ietei           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                       |                                                                                                                                                  |                                 |             | H PO, HP                                      | -                                                               |                            |
| Received Intact:            |                       | No                    | Thermometer ID              |             | ANT -                          | Iran            | 8021<br>O +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le 30                     |                                                                                                                                                  |                                 |             | NaHS                                          | NaHSO4 NABIS                                                    |                            |
| <b>Cooler Custody Seals</b> | ¥                     | NO                    | Correction Factor           | 7           | 1,30                           | Pa              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | orid                      |                                                                                                                                                  |                                 |             | Na-S-                                         | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> NaSO <sub>3</sub> |                            |
| Sample Custody Seals        | -<br>-                | NO NA                 | Temperature Reading         | ading       | 4-8                            | I               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ch                        |                                                                                                                                                  |                                 |             | Zn Ace                                        | Zn Acetate+NaOH Zn                                              | Zn                         |
| I otal Containers.          |                       |                       | Corrected Temperature       | erature     |                                |                 | H 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | *******                                                                                                                                          |                                 |             | NaOH                                          | NaOH+Ascorbic Acid SAPC                                         | oid SAPC                   |
| Sample Identification       | tification            | Date                  | Time                        | Soil        | Water Comp                     | p / #of<br>Cont | TP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                                                                                                                                  |                                 |             | 0                                             | Sample Comments                                                 | mments                     |
| S-4 (2')                    | 2')                   | 7 25 23               |                             | ×           | G                              |                 | ×<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                                                                                                                  |                                 |             |                                               |                                                                 |                            |
|                             |                       |                       |                             |             |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                  |                                 | ,           |                                               |                                                                 |                            |
|                             |                       |                       |                             |             |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                  |                                 |             |                                               |                                                                 |                            |
|                             |                       |                       |                             |             |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                  | oon 31770 Chain of Custody      |             |                                               |                                                                 |                            |
| Comments Email              | results to Mike       | Carmona r             | ncarmona@car                | monaresourc | es com, Conne                  | r Moehrin       | 3 cmoeh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ring@carm                 | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint MerrittC@carmonaresources com | Nint Merritt Merritt            | C@carmo     | naresources                                   | com                                                             |                            |
|                             |                       |                       |                             |             |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                  |                                 |             |                                               |                                                                 |                            |
| X                           | R                     | elinquished           | Relinquished by (Signature) |             |                                |                 | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | R                                                                                                                                                | Referved by (Signature)         | ıre)        |                                               | De                                                              | Date/Time                  |
| Mr M                        | NA H                  | AND.                  | X                           |             |                                | 7-              | 64-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                                  | WA                              |             |                                               |                                                                 |                            |
| <                           |                       |                       |                             |             |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                  |                                 |             |                                               |                                                                 |                            |
|                             |                       |                       |                             |             |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                  |                                 |             |                                               |                                                                 |                            |

### Received by OCD: 9/21/2023 6:16:51 AM

### 8/7/2023

210

Work Order No:

Page 239 of 406

**5** 6

13

Job Number: 880-31270-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

### Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31270 List Number: 1 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

## **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/8/2023 11:28:56 AM

## **JOB DESCRIPTION**

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

## **JOB NUMBER**

880-31271-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information.

## **Eurofins Midland**

## Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## Authorization

AMER

Generated 8/8/2023 11:28:56 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31271-1 SDG: Lea County, New Mexico

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

Duplicate Error Ratio (normalized absolute difference)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

**Dilution Factor** 

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 244 of 406

Job ID: 880-31271-1 SDG: Lea County, New Mexico

| 0 |    | 1:2: |     |
|---|----|------|-----|
| U | ua | ШТІ  | ers |
|   |    |      |     |

DER

DL

DLC

EDL LOD

LOQ

MCL

MDA

MDC

MDL

MPN

MQL

NC

ND NEG

POS

PQL

QC RER

RL RPD

TEF

TEQ

TNTC

PRES

ML

Dil Fac

DL, RA, RE, IN

| Quaimers     |                                                                                            | 3 |
|--------------|--------------------------------------------------------------------------------------------|---|
| GC VOA       |                                                                                            |   |
| Qualifier    | Qualifier Description                                                                      |   |
| S1-          | Surrogate recovery exceeds control limits, low biased.                                     |   |
| U            | Indicates the analyte was analyzed for but not detected.                                   | 5 |
| GC Semi VO   | Α                                                                                          |   |
| Qualifier    | Qualifier Description                                                                      |   |
| *1           | LCS/LCSD RPD exceeds control limits.                                                       |   |
| S1+          | Surrogate recovery exceeds control limits, high biased.                                    |   |
| U            | Indicates the analyte was analyzed for but not detected.                                   |   |
| Glossary     |                                                                                            | 8 |
| Abbreviation | These commonly used abbreviations may or may not be present in this report.                | 0 |
| ¤            | Listed under the "D" column to designate that the result is reported on a dry weight basis | 3 |
| %R           | Percent Recovery                                                                           |   |
| CFL          | Contains Free Liquid                                                                       |   |
| CFU          | Colony Forming Unit                                                                        |   |
| CNF          | Contains No Free Liquid                                                                    |   |
|              |                                                                                            |   |

Job ID: 880-31271-1 SDG: Lea County, New Mexico

#### Job ID: 880-31271-1

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31271-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-4 (3') (880-31271-1).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-31278-A-1-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-59216 and analytical batch 880-59411 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: S-4 (3') (880-31271-1), (CCV 880-59411/20), (CCV 880-59411/5), (LCS 880-59216/2-A), (880-31305-A-35-C), (880-31305-A-35-D MS) and (880-31305-A-35-E MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD\_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-59216 and analytical batch 880-59411 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

5

Job ID: 880-31271-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-31271-1

### Client Sample ID: S-4 (3') Date Collected: 07/25/23 00:00

Client: Carmona Resources Project/Site: Tonto 15 State #1

Date Received: 07/26/23 16:45

| Analyte                                    | Result        | Qualifier             | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------------|---------------|-----------------------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                                    | <0.00200      | U                     | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 04:27 | 1       |
| Toluene                                    | <0.00200      | U                     | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 04:27 | 1       |
| Ethylbenzene                               | <0.00200      | U                     | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 04:27 | 1       |
| m-Xylene & p-Xylene                        | <0.00400      | U                     | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 04:27 | 1       |
| o-Xylene                                   | <0.00200      | U                     | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 04:27 | 1       |
| Xylenes, Total                             | <0.00400      | U                     | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 04:27 | 1       |
| Surrogate                                  | %Recovery     | Qualifier             | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)                | 91            |                       | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/04/23 04:27 |         |
| 1,4-Difluorobenzene (Surr)                 | 82            |                       | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/04/23 04:27 |         |
| Method: TAL SOP Total BTEX - To<br>Analyte |               | culation<br>Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Total BTEX                                 | <0.00400      | U                     | 0.00400  |     | mg/Kg |   |                | 08/04/23 10:48 |         |
| Method: SW846 8015 NM - Diese              | Range Organ   | ics (DRO) (           | GC)      |     |       |   |                |                |         |
| Analyte                                    | Result        | Qualifier             | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                                  | <49.8         | U                     | 49.8     |     | mg/Kg |   |                | 08/08/23 12:15 |         |
| Method: SW846 8015B NM - Dies              | el Range Orga | nics (DRO)            | (GC)     |     |       |   |                |                |         |
| Analyte                                    | Result        | Qualifier             | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Gasoline Range Organics<br>GRO)-C6-C10     | <49.8         | U                     | 49.8     |     | mg/Kg |   | 08/03/23 10:03 | 08/07/23 17:49 |         |
| Diesel Range Organics (Over<br>C10-C28)    | <49.8         | U *1                  | 49.8     |     | mg/Kg |   | 08/03/23 10:03 | 08/07/23 17:49 |         |
| Oll Range Organics (Over C28-C36)          | <49.8         | U                     | 49.8     |     | mg/Kg |   | 08/03/23 10:03 | 08/07/23 17:49 |         |
| Surrogate                                  | %Recovery     | Qualifier             | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                             | 148           | S1+                   | 70 - 130 |     |       |   | 08/03/23 10:03 | 08/07/23 17:49 |         |
|                                            |               | S1+                   | 70 - 130 |     |       |   | 08/03/23 10:03 | 08/07/23 17:49 |         |

Job ID: 880-31271-1

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | •                                              |
|---------------------|------------------------|----------|----------|------------------------------------------------|
|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|                     |                        | BFB1     | DFBZ1    |                                                |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31271-1         | S-4 (3')               | 91       | 82       | ·                                              |
| 880-31278-A-1-B MS  | Matrix Spike           | 121      | 124      |                                                |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | 119      | 91       |                                                |
| LCS 880-58969/1-A   | Lab Control Sample     | 115      | 111      |                                                |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | 114      | 109      |                                                |
| MB 880-58969/5-A    | Method Blank           | 73       | 79       |                                                |
| MB 880-59110/5-A    | Method Blank           | 68 S1-   | 100      |                                                |

#### Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|                      |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|----------------------|------------------------|----------|----------|------------------------------------------------|
|                      |                        | 1CO1     | OTPH1    |                                                |
| Lab Sample ID        | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31271-1          | S-4 (3')               | 148 S1+  | 156 S1+  |                                                |
| 880-31305-A-35-D MS  | Matrix Spike           | 144 S1+  | 154 S1+  |                                                |
| 880-31305-A-35-E MSD | Matrix Spike Duplicate | 163 S1+  | 177 S1+  |                                                |
| LCS 880-59216/2-A    | Lab Control Sample     | 130      | 150 S1+  |                                                |
| LCSD 880-59216/3-A   | Lab Control Sample Dup | 103      | 122      |                                                |
| MB 880-59216/1-A     | Method Blank           | 137 S1+  | 158 S1+  |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

SDG: Lea County, New Mexico

Page 247 of 406

Prep Type: Total/NA

Prep Type: Total/NA

6

### **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |  |
|---------------------------------|--|
| Matrix: Solid                   |  |

Analysis Batch: 59172

|                             | MB        | MB        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |

#### Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

#### Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58969/2-A

#### Matrix: Solid

| Analysis Batch: 59172 |       |         |           |       |   |      | Prep     | Batch: | 58969 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08592 |           | mg/Kg |   | 86   | 70 - 130 | 9      | 35    |
| Toluene               | 0.100 | 0.08219 |           | mg/Kg |   | 82   | 70 - 130 | 6      | 35    |
| Ethylbenzene          | 0.100 | 0.08963 |           | mg/Kg |   | 90   | 70 - 130 | 12     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1870  |           | mg/Kg |   | 94   | 70 - 130 | 12     | 35    |
| o-Xylene              | 0.100 | 0.09268 |           | mg/Kg |   | 93   | 70 - 130 | 12     | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

### Lab Sample ID: 880-31278-A-1-B MS

#### Matrix: Solid Analysis Potoby 50172

| Analysis Batch: 59172 |          |           |        |         |           |       |   |      | Pre      | Batch: 58969 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |              |

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31271-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-A  | A-1-B MS     |              |          |         |     |        |       |       |       | Client S   | Sample ID:  |        |         |
|-----------------------------|--------------|--------------|----------|---------|-----|--------|-------|-------|-------|------------|-------------|--------|---------|
| Matrix: Solid               |              |              |          |         |     |        |       |       |       |            | Prep Ty     |        |         |
| Analysis Batch: 59172       |              |              |          |         |     |        |       |       |       |            | Prep E      | atch:  | 5896    |
|                             | Sample Sa    | mple         | Spike    | MS      | MS  |        |       |       |       |            | %Rec        |        |         |
| Analyte                     | Result Qu    | alifier      | Added    | Result  | Qua | lifier | Unit  |       | D     | %Rec       | Limits      |        |         |
| Ethylbenzene                | <0.00202 U   |              | 0.0994   | 0.1030  |     |        | mg/Kg |       |       | 104        | 70 - 130    |        |         |
| m-Xylene & p-Xylene         | <0.00403 U   |              | 0.199    | 0.2125  |     |        | mg/Kg |       |       | 107        | 70 - 130    |        |         |
| o-Xylene                    | <0.00202 U   |              | 0.0994   | 0.1040  |     |        | mg/Kg |       |       | 105        | 70 - 130    |        |         |
|                             | MS MS        |              |          |         |     |        |       |       |       |            |             |        |         |
| Surrogate                   | %Recovery Qu | alifier      | Limits   |         |     |        |       |       |       |            |             |        |         |
| 4-Bromofluorobenzene (Surr) | 121          |              | 70 - 130 |         |     |        |       |       |       |            |             |        |         |
| 1,4-Difluorobenzene (Surr)  | 124          |              | 70 - 130 |         |     |        |       |       |       |            |             |        |         |
| Lab Sample ID: 880-31278-4  | A-1-C MSD    |              |          |         |     |        |       | Clien | it Sa | mple ID:   | Matrix Spi  | ce Du  | plicate |
| Matrix: Solid               |              |              |          |         |     |        |       |       |       |            | Prep Ty     | pe: To | otal/N/ |
| Analysis Batch: 59172       |              |              |          |         |     |        |       |       |       |            | Prep E      | atch:  |         |
|                             | Sample Sa    | •            | Spike    | MSD     | MSD | )      |       |       |       |            | %Rec        |        | RPI     |
| Analyte                     | Result Qu    | alifier      | Added    | Result  | Qua | lifier | Unit  |       | D     | %Rec       | Limits      | RPD    | Limi    |
| Benzene                     | <0.00202 U   |              | 0.0998   | 0.09502 |     |        | mg/Kg |       |       | 95         | 70 - 130    | 5      | 35      |
| Toluene                     | <0.00202 U   |              | 0.0998   | 0.09100 |     |        | mg/Kg |       |       | 91         | 70 - 130    | 3      | 35      |
| Ethylbenzene                | <0.00202 U   |              | 0.0998   | 0.1021  |     |        | mg/Kg |       |       | 102        | 70 - 130    | 1      | 35      |
| m-Xylene & p-Xylene         | <0.00403 U   |              | 0.200    | 0.2097  |     |        | mg/Kg |       |       | 105        | 70 - 130    | 1      | 3       |
| o-Xylene                    | <0.00202 U   |              | 0.0998   | 0.1024  |     |        | mg/Kg |       |       | 103        | 70 - 130    | 2      | 3       |
|                             | MSD MS       |              |          |         |     |        |       |       |       |            |             |        |         |
| Surrogate                   |              | alifier      | Limits   |         |     |        |       |       |       |            |             |        |         |
| 4-Bromofluorobenzene (Surr) | 119          |              | 70 - 130 |         |     |        |       |       |       |            |             |        |         |
| 1,4-Difluorobenzene (Surr)  | 91           |              | 70 - 130 |         |     |        |       |       |       |            |             |        |         |
| Lab Sample ID: MB 880-591   | 10/5-A       |              |          |         |     |        |       |       |       | Client Sa  | mple ID: M  | ethod  | l Blanl |
| Matrix: Solid               |              |              |          |         |     |        |       |       |       |            | Prep Ty     |        |         |
| Analysis Batch: 59172       |              |              |          |         |     |        |       |       |       |            | Prep E      | Batch: | 59110   |
|                             | М            | B MB         |          |         |     |        |       |       |       |            |             |        |         |
| Analyte                     | Resu         | It Qualifier | RL       |         | MDL | Unit   |       | D     | Pr    | epared     | Analyze     | I      | Dil Fa  |
| Benzene                     | <0.0020      | 0 U          | 0.00200  |         |     | mg/Kg  | g     |       | 08/02 | 2/23 11:14 | 08/03/23 11 | :30    |         |
| Toluene                     | <0.0020      | 0 U          | 0.00200  |         |     | mg/Kg  | g     |       | 08/02 | 2/23 11:14 | 08/03/23 11 | :30    |         |
| Ethylbenzene                | <0.0020      | 0 U          | 0.00200  |         |     | mg/Kg  | g     |       | 08/02 | 2/23 11:14 | 08/03/23 11 | :30    |         |
| m-Xylene & p-Xylene         | <0.0040      | 0 U          | 0.00400  |         |     | mg/Kg  | g     |       | 08/02 | 2/23 11:14 | 08/03/23 11 | :30    |         |
| o-Xylene                    | <0.0020      | 0 U          | 0.00200  |         |     | mg/Kg  | g     |       | 08/02 | 2/23 11:14 | 08/03/23 11 | :30    |         |
| Xylenes, Total              | <0.0040      | 0 U          | 0.00400  |         |     | mg/Ko  | g     |       | 08/02 | 2/23 11:14 | 08/03/23 11 | :30    |         |
|                             | М            | B <i>MB</i>  |          |         |     |        |       |       |       |            |             |        |         |
| Surrogate                   |              | y Qualifier  | Limits   |         |     |        |       | _     |       | epared     | Analyze     |        | Dil Fa  |
| 4-Bromofluorobenzene (Surr) | 6            | 8 S1-        | 70 - 130 |         |     |        |       |       | 08/02 | 2/23 11:14 | 08/03/23 11 | :30    |         |
|                             | 10           | <u>^</u>     | 70 - 130 |         |     |        |       |       | 00/01 | 2/23 11:14 | 08/03/23 11 | .20    |         |

| Lab Sample ID: MB 880-59216/1-A<br>Matrix: Solid<br>Analysis Batch: 59411 |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA   |
|---------------------------------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|---------------------------------------------------------|------------|
| • • •                                                                     |        | MB        |      |     |       | _ | - ·            |                                                         | <b>D E</b> |
| Analyte                                                                   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                                                | Dil Fac    |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/03/23 10:03 | 08/07/23 07:49                                          | 1          |
| (GRO)-C6-C10                                                              |        |           |      |     |       |   |                |                                                         |            |

Job ID: 880-31271-1 SDG: Lea County, New Mexico

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59216<br>Matrix: Solid                                                                                                                                                                                                                                                                                                          | /1 <b>-A</b>                                                                                                                                                             |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                |            |          | Client Sa                                                                                                    | ample ID: I<br>Prop T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|--------|------------------------------------------------|------------|----------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                |            |          |                                                                                                              | Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                           |
| Analysis Batch: 59411                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                |            |          |                                                                                                              | Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Batch                                             | : 59210                                                                   |
| Analysia                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                          | B MB<br>It Qualifier                                        | RL                                                                                                                                                                       |                                                                               |                  | 11     |                                                | ~          | Π.       |                                                                                                              | Analyz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . d                                               |                                                                           |
| Analyte                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                             |                                                                                                                                                                          |                                                                               | MDL              | Unit   |                                                | D          |          | repared                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   | Dil Fa                                                                    |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                               | <50.                                                                                                                                                                     | 0 0                                                         | 50.0                                                                                                                                                                     |                                                                               |                  | mg/K   | 9                                              |            | 08/0     | 3/23 10:03                                                                                                   | 08/07/23 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07:49                                             |                                                                           |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                     | <50.                                                                                                                                                                     | 0 U                                                         | 50.0                                                                                                                                                                     |                                                                               |                  | mg/Kg  | a                                              |            | 08/0     | 3/23 10:03                                                                                                   | 08/07/23 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )7:49                                             |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                             |                                                                                                                                                                          |                                                                               |                  |        | 5                                              |            |          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                       | M                                                                                                                                                                        | B MB                                                        |                                                                                                                                                                          |                                                                               |                  |        |                                                |            |          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
| Surrogate                                                                                                                                                                                                                                                                                                                                             | %Recover                                                                                                                                                                 | <u> </u>                                                    | Limits                                                                                                                                                                   |                                                                               |                  |        |                                                | -          |          | repared                                                                                                      | Analyz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   | Dil Fa                                                                    |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          | 7 S1+                                                       | 70 - 130                                                                                                                                                                 |                                                                               |                  |        |                                                |            |          | 3/23 10:03                                                                                                   | 08/07/23 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                           |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                       | 8 S1+                                                       | 70 - 130                                                                                                                                                                 |                                                                               |                  |        |                                                |            | 08/0     | 3/23 10:03                                                                                                   | 08/07/23 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07:49                                             |                                                                           |
| Lab Sample ID: LCS 880-5921                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                | <b>C</b> 1 | iont     | Sampla                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ntrol 6                                           | Somel                                                                     |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                         | 0/2-A                                                                                                                                                                    |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                | G          | ient     | Sample                                                                                                       | ID: Lab Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                |            |          |                                                                                                              | Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                           |
| Analysis Batch: 59411                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                             | Spike                                                                                                                                                                    | 1.00                                                                          | LCS              |        |                                                |            |          |                                                                                                              | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DatCU                                             | : 59216                                                                   |
| Analyta                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                             | Spike<br>Added                                                                                                                                                           |                                                                               |                  |        | l In it                                        |            | P        | % Dc-                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
| Analyte                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                             | Added                                                                                                                                                                    | Result                                                                        | Qual             | inner  | Unit                                           |            | <u>D</u> | %Rec                                                                                                         | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                           |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                             | 1000                                                                                                                                                                     | 1053                                                                          |                  |        | mg/Kg                                          |            |          | 105                                                                                                          | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                           |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                             | 1000                                                                                                                                                                     | 1214                                                                          |                  |        | mg/Kg                                          |            |          | 121                                                                                                          | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                           |
| C10-C28)                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                          |                                                             | 1000                                                                                                                                                                     | 1214                                                                          |                  |        | iiig/itg                                       |            |          | 121                                                                                                          | 70-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                |            |          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                       | LCS LC                                                                                                                                                                   |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                |            |          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
| Surrogate                                                                                                                                                                                                                                                                                                                                             | %Recovery Qu                                                                                                                                                             | ualifier                                                    | Limits                                                                                                                                                                   |                                                                               |                  |        |                                                |            |          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          |                                                             |                                                                                                                                                                          |                                                                               |                  |        |                                                |            |          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                       | 130                                                                                                                                                                      |                                                             | 70 - 130<br>70 - 130                                                                                                                                                     |                                                                               |                  |        |                                                |            |          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                       | 130<br>150 S1                                                                                                                                                            | +                                                           | 70 - 130<br>70 - 130                                                                                                                                                     |                                                                               |                  |        |                                                |            |          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                           |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                           | 150 S1                                                                                                                                                                   | +                                                           |                                                                                                                                                                          |                                                                               |                  |        | Cli                                            | ient (     | Sam      | ple ID: L                                                                                                    | ab Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l Samo                                            | ole Dur                                                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592                                                                                                                                                                                                                                                                                                            | 150 S1                                                                                                                                                                   | '+                                                          |                                                                                                                                                                          |                                                                               |                  |        | Cli                                            | ient (     | Sam      | ple ID: L                                                                                                    | ab Contro<br>Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                                                                           |
| o- <i>Terphenyl</i><br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid                                                                                                                                                                                                                                                                                   | 150 S1                                                                                                                                                                   | '+                                                          |                                                                                                                                                                          |                                                                               |                  |        | Cli                                            | ient \$    | Sam      | iple ID: Li                                                                                                  | Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ype: To                                           | otal/N/                                                                   |
| o- <i>Terphenyl</i><br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid                                                                                                                                                                                                                                                                                   | 150 S1                                                                                                                                                                   | +                                                           | 70 - 130                                                                                                                                                                 | LCSD                                                                          | LCS              | D      | Cli                                            | ient \$    | Sam      | ple ID: L                                                                                                    | Prep T<br>Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ype: To                                           | otal/NA<br>: 59216                                                        |
| o- <i>Terphenyl</i><br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411                                                                                                                                                                                                                                                          | 150 S1                                                                                                                                                                   | '+                                                          | 70 - 130<br>Spike                                                                                                                                                        | LCSD<br>Result                                                                |                  |        |                                                | ient (     | Sam      | -                                                                                                            | Prep T<br>Prep<br>%Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ype: To<br>Batch                                  | otal/NA<br>: 59216<br>RPC                                                 |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte                                                                                                                                                                                                                                                       | 150 S1                                                                                                                                                                   | '+                                                          | 70 - 130<br>Spike<br>Added                                                                                                                                               | Result                                                                        |                  |        | Unit                                           | ient \$    |          | %Rec                                                                                                         | Prep T<br>Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ype: To<br>Batch<br>RPD                           | otal/NA<br>: 59216<br>RPE<br>Limi                                         |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                            | 150 S1                                                                                                                                                                   | '+<br>                                                      | 70 - 130<br>Spike                                                                                                                                                        |                                                                               |                  |        |                                                | ient (     |          | -                                                                                                            | Prep T<br>Prep<br>%Rec<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ype: To<br>Batch                                  | otal/NA<br>: 59216<br>RPE<br>Limi                                         |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                            | 150 S1                                                                                                                                                                   |                                                             | 70 - 130<br>Spike<br>Added                                                                                                                                               | Result                                                                        | Qual             |        | Unit                                           | ient (     |          | %Rec                                                                                                         | Prep T<br>Prep<br>%Rec<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ype: To<br>Batch<br>RPD                           | otal/NA<br>: 59216<br>RPI<br>Limi<br>20                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                             | 150 S1                                                                                                                                                                   |                                                             | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                       | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient (     |          | % <b>Rec</b>                                                                                                 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: To<br>Batch<br>RPD<br>16                     | otal/NA<br>: 59216<br>RPI<br>Limi<br>20                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                             | 150 St                                                                                                                                                                   |                                                             | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                       | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient (     |          | % <b>Rec</b>                                                                                                 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: To<br>Batch<br>RPD<br>16                     | otal/NA<br>: 59216<br>RPE<br>Limi<br>20                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                 | 150 St<br>16/3-A<br>                                                                                                                                                     |                                                             | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                       | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient s     |          | % <b>Rec</b>                                                                                                 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: To<br>Batch<br>RPD<br>16                     | otal/NA<br>: 59216<br>RPE<br>Limi<br>20                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                    | 150 St<br>16/3-A<br>                                                                                                                                                     |                                                             | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                     | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient s     |          | % <b>Rec</b>                                                                                                 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: To<br>Batch<br>RPD<br>16                     | otal/NA<br>: 59216<br>RPE<br>Limi<br>20                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                  | 150 St<br>16/3-A<br>                                                                                                                                                     |                                                             | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                         | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient (     |          | % <b>Rec</b>                                                                                                 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: To<br>Batch<br>RPD<br>16                     | otal/NA<br>: 59216<br>RPE<br>Limi<br>20                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                    | 150 St<br>16/3-A<br>                                                                                                                                                     |                                                             | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                     | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient (     |          | % <b>Rec</b>                                                                                                 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: To<br>Batch<br>RPD<br>16                     | otal/NA<br>: 59216<br>RPE<br>Limi<br>20                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                                                                                   | 150 St<br>16/3-A<br>LCSD LC<br>%Recovery Qu<br>103<br>122                                                                                                                |                                                             | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                         | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient \$    |          | % <b>Rec</b><br>90<br>97                                                                                     | Prep T           %Rec           Limits           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: To<br>Batch<br>RPD<br>16<br>22               | otal/NA<br>: 59210<br>RPI<br>Limi<br>20                                   |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31305-A-3                                                                                   | 150 St<br>16/3-A<br>LCSD LC<br>%Recovery Qu<br>103<br>122                                                                                                                |                                                             | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                         | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient (     |          | % <b>Rec</b><br>90<br>97                                                                                     | Prep T           %Rec           Limits           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: To<br>Batch<br>RPD<br>16<br>22               | otal/NA<br>: 59210<br>RPI<br>Limi<br>20<br>20                             |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31305-A-3<br>Matrix: Solid                                                                  | 150 St<br>16/3-A<br>LCSD LC<br>%Recovery Qu<br>103<br>122                                                                                                                |                                                             | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                         | Result<br>899.2                                                               | Qual             |        | Unit<br>mg/Kg                                  | ient (     |          | % <b>Rec</b><br>90<br>97                                                                                     | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59210<br>RPr<br>Limi<br>20<br>20<br>x Spike<br>otal/NA       |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31305-A-3<br>Matrix: Solid                                                                  | 150 St<br>16/3-A<br>LCSD LC<br>%Recovery Qu<br>103<br>122<br>35-D MS                                                                                                     | SD<br>valifier                                              | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                         | Result<br>899.2<br>968.7                                                      | Qual             |        | Unit<br>mg/Kg                                  | ient \$    |          | % <b>Rec</b><br>90<br>97                                                                                     | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59210<br>RPI<br>Limi<br>20<br>20<br>x Spike<br>otal/NA       |
| o-Terphenyl Lab Sample ID: LCSD 880-592 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31305-A-3 Matrix: Solid Analysis Batch: 59411                                                                                   | 150 St<br>16/3-A<br>LCSD LC<br>%Recovery Qu<br>103<br>122                                                                                                                | SD<br>valifier                                              | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130                                                                                             | Result<br>899.2<br>968.7                                                      | Qual<br>*1<br>MS | lifier | Unit<br>mg/Kg                                  | ient (     |          | % <b>Rec</b><br>90<br>97                                                                                     | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59210<br>RPI<br>Limi<br>20<br>20<br>x Spike<br>otal/NA       |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31305-A-3<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte                              | 150 St<br>16/3-A<br>LCSD LC<br>%Recovery Qu<br>103<br>122<br>55-D MS<br>Sample Sa<br>Result Qu                                                                           | SD<br>valifier                                              | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         Added             | Result<br>899.2<br>968.7<br>968.7<br>MS<br>Result                             | Qual<br>*1<br>MS | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ient \$    | <u>D</u> | %Rec<br>90<br>97<br>97                                                                                       | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>70 - 1 | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59216<br>RPE<br>Limi<br>20<br>20<br>x Spike<br>otal/NA       |
| o-Terphenyl Lab Sample ID: LCSD 880-592 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31305-A-3 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics                                                   | 150 St<br>16/3-A<br>LCSD LC<br>%Recovery Qu<br>103<br>122<br>55-D MS<br>Sample Sa                                                                                        | SD<br>valifier                                              | 70 - 130  Spike Added 1000 1000  Limits 70 - 130 70 - 130 70 - 130 Spike                                                                                                 | Result<br>899.2<br>968.7<br>MS                                                | Qual<br>*1<br>MS | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ient (     | <u>D</u> | %Rec<br>90<br>97<br>07<br>Client S                                                                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>70 - 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NJ<br>: 5921<br>RPI<br><u>Lim</u><br>2<br>2<br>x Spike<br>otal/NJ    |
| o-Terphenyl Lab Sample ID: LCSD 880-592 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31305-A-3 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10                                      | 150 St<br>16/3-A<br>LCSD LC<br>%Recovery Qu<br>103<br>122<br>55-D MS<br>Sample Sa<br>Result Qu                                                                           | CSD<br>Ialifier                                             | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         Added             | Result<br>899.2<br>968.7<br>968.7<br>MS<br>Result                             | Qual<br>*1<br>MS | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ient (     | <u>D</u> | %Rec<br>90<br>97<br>07<br>Client S                                                                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>70 - 1 | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59210<br>RPI<br>Limi<br>20<br>20<br>x Spike<br>otal/NA       |
| o-Terphenyl Lab Sample ID: LCSD 880-592 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31305-A-3 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over          | 150       Si         LCSD       LC         %Recovery       Qu         103       122         S5-D MS       Sample       Sa         Result       Qu       Su         <50.3 | CSD<br>Ialifier                                             | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         1010              | Result           899.2           968.7           968.7 <b>MS Result</b> 952.4 | Qual<br>*1<br>MS | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ient (     | <u>D</u> | %Rec         90           90         97           97         97           Client S           %Rec         94 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep T<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59216<br>RPE<br>Limi<br>20<br>20<br>x Spike<br>otal/NA       |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-592<br>Matrix: Solid<br>Analysis Batch: 59411<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31305-A-3<br>Matrix: Solid<br>Analysis Batch: 59411                                         | 150       S1         LCSD       LC         %Recovery       Qu         103       122         S5-D       MS         Sample       Sa         Result       Qu         <50.3  | SSD<br>ualifier                                             | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         1010              | Result           899.2           968.7           968.7 <b>MS Result</b> 952.4 | Qual<br>*1<br>MS | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ient (     | <u>D</u> | %Rec         90           90         97           97         97           Client S           %Rec         94 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep T<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59216<br>RPE<br>Limi<br>20<br>20                             |
| o-Terphenyl Lab Sample ID: LCSD 880-592 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31305-A-3 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) | 150       S1         LCSD       LC         %Recovery       Qu         103       122         S5-D MS       Sample         Result       Qu         <50.3                   | SD<br>ualifier<br>imple<br>ualifier<br>*1                   | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         1010         1010 | Result           899.2           968.7           968.7 <b>MS Result</b> 952.4 | Qual<br>*1<br>MS | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ient (     | <u>D</u> | %Rec         90           90         97           97         97           Client S           %Rec         94 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep T<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59216<br>RPE<br>Limi<br>20<br>20<br>20<br>x Spike<br>otal/NA |
| o-Terphenyl Lab Sample ID: LCSD 880-592 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31305-A-3 Matrix: Solid Analysis Batch: 59411 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over          | 150       S1         LCSD       LC         %Recovery       Qu         103       122         S5-D       MS         Sample       Sa         Result       Qu         <50.3  | SD<br>valifier<br>simple<br>valifier<br>*1<br>S<br>valifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         1010              | Result           899.2           968.7           968.7 <b>MS Result</b> 952.4 | Qual<br>*1<br>MS | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ient (     | <u>D</u> | %Rec         90           90         97           97         97           Client S           %Rec         94 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep T<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: To<br>Batch<br>16<br>22<br>Matrix<br>ype: To | otal/NA<br>: 59216<br>RPE<br>Limi<br>20<br>20<br>20<br>x Spike<br>otal/NA |

154 S1+

o-Terphenyl

70 - 130

## **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31271-1 SDG: Lea County, New Mexico

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Matrix: Solid<br>Analysis Batch: 59411     Prep Type: Total/NA<br>Prep Batch: 59216       Sample     Sample     Spike     MSD     MSD     %Rec     RPD       Analyte     Result     Qualifier     Added     Result     Qualifier     Unit     D     %Rec     RPD       Gasoline Range Organics<br>(GRO)-C6-C10     1010     1010     1091     mg/Kg     108     70.130     14     20       Diesel Range Organics (Over<br>C10-C28)     <50.3     U *1     1010     1222     mg/Kg     117     70.130     13     20       Surrogate     %Recovery<br>S1+     Qualifier     Limits<br>1-Chlorooctane     S1+     70.130       o-Terphenyl     177     S1+     70.130     13     20                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lab Sample ID: 880-31305-4 | A-35-E MSD |           |          |        |           | CI    | ient Sa | ample IC | : Matrix Sp | ike Dup | licate |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|-----------|----------|--------|-----------|-------|---------|----------|-------------|---------|--------|---|
| SampleSampleSampleSpikeMSDMSDMSDRecRPDAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDLimitGasoline Range Organics<50.3U10101091mg/KgD%RecLimitsRPDLimit(GRO)-C6-C10<50.3U*110101222mg/Kg11770 - 1301320Diesel Range Organics (Over<br>C10-C28)<50.3U*110101222mg/Kg11770 - 1301320MSD<br>T-ChlorooctaneMSDMSD </th <th>Matrix: Solid</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Prep T</th> <th>ype: To</th> <th>tal/NA</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Matrix: Solid              |            |           |          |        |           |       |         |          | Prep T      | ype: To | tal/NA |   |
| AnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDLimitGasoline Range Organics<50.3U10101091mg/Kg10870 - 1301420(GRO)-C6-C10<50.3U*110101222mg/Kg11770 - 1301320Diesel Range Organics (Over<br>C10-C28)<50.3U*110101222mg/Kg11770 - 1301320MSD<br>Surrogate<br>1-ChlorooctaneMSD<br>163S1+Zimits<br>70 - 130Limits<br>70 - 130Limits<br>70 - 130MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysis Batch: 59411      |            |           |          |        |           |       |         |          | Prep        | Batch:  | 59216  |   |
| Gasoline Range Organics       <50.3       U       1010       1091       mg/Kg       108       70 - 130       14       20         (GR0)-C6-C10       Diesel Range Organics (Over       <50.3       U *1       1010       1222       mg/Kg       117       70 - 130       13       20         C10-C28)       MSD       MSD       MSD       100       1222       mg/Kg       117       70 - 130       13       20         Surrogate       %Recovery       Qualifier       Limits       163       S1+       70 - 130       130       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100 |                            | Sample     | Sample    | Spike    | MSD    | MSD       |       |         |          | %Rec        |         | RPD    |   |
| (GRO)-C6-C10<br>Diesel Range Organics (Over<br><br>C10-C28)<50.3 U *110101222mg/Kg11770 - 1301320MSD MSDSurrogate<br>1-Chlorooctane%Recovery<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyte                    | Result     | Qualifier | Added    | Result | Qualifier | Unit  | D       | %Rec     | Limits      | RPD     | Limit  |   |
| Diesel Range Organics (Over       <50.3       U *1       1010       1222       mg/Kg       117       70 - 130       13       20         C10-C28)       MSD       MSD       MSD       MSD       1010       1222       mg/Kg       117       70 - 130       13       20         Surrogate       %Recovery       Qualifier       Limits       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100             | 0 0                        | <50.3      | U         | 1010     | 1091   |           | mg/Kg |         | 108      | 70 - 130    | 14      | 20     |   |
| C10-C28)<br>MSD MSD<br>Surrogate <u>%Recovery Qualifier</u> Limits<br>1-Chlorooctane <u>163</u> S1+ 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |            |           |          |        |           |       |         |          |             |         |        | ÷ |
| MSDMSDSurrogate%RecoveryQualifierLimits1-Chlorooctane163S1+70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | <50.3      | U *1      | 1010     | 1222   |           | mg/Kg |         | 117      | 70 - 130    | 13      | 20     |   |
| Surrogate%RecoveryQualifierLimits1-Chlorooctane163\$1+70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 010-028)                   |            |           |          |        |           |       |         |          |             |         |        | 1 |
| 1-Chlorooctane 163 S1+ 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | MSD        | MSD       |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate                  | %Recovery  | Qualifier | Limits   |        |           |       |         |          |             |         |        | 2 |
| o-Terphenyl 177 S1+ 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-Chlorooctane             |            |           | 70 - 130 |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o-Terphenyl                | 177        | S1+       | 70 - 130 |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |           |          |        |           |       |         |          |             |         |        |   |

**Client Sample ID** 

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

**Client Sample ID** 

Method Blank

Method Blank

Matrix Spike

S-4 (3')

## **QC Association Summary**

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Client: Carmona Resources Project/Site: Tonto 15 State #1

**GC VOA** 

880-31271-1

Prep Batch: 58969 Lab Sample ID

MB 880-58969/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31278-A-1-B MS

Prep Batch: 59110

Lab Sample ID

MB 880-59110/5-A

880-31278-A-1-C MSD

Job ID: 880-31271-1 SDG: Lea County, New Mexico

Method

5035

5035

5035

5035

5035

5035

Method

5035

Page 252 of 406

Analysis Batch: 59172

| ab Sample ID.      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 80-31271-1         | S-4 (3')               | Total/NA  | Solid  | 8021B  | 58969      |
| /IB 880-58969/5-A  | Method Blank           | Total/NA  | Solid  | 8021B  | 58969      |
| /IB 880-59110/5-A  | Method Blank           | Total/NA  | Solid  | 8021B  | 59110      |
| CS 880-58969/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 58969      |
| CSD 880-58969/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 58969      |
| 80-31278-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 58969      |
| 80-31278-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 58969      |

|                      | Prep Type | Matrix | Method     | Prep Batch |
|----------------------|-----------|--------|------------|------------|
| 880-31271-1 S-4 (3') | Total/NA  | Solid  | Total BTEX |            |

#### GC Semi VOA

#### Prep Batch: 59216

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|----------------------|------------------------|-----------|--------|-------------|------------|
| 880-31271-1          | S-4 (3')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59216/1-A     | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59216/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59216/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31305-A-35-D MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31305-A-35-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 59411

880-31271-1

| Lab Sample ID         | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31271-1           | <u> </u>               | Total/NA  | Solid  | 8015B NM | 59216      |
| MB 880-59216/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59216      |
| LCS 880-59216/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59216      |
| LCSD 880-59216/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59216      |
| 880-31305-A-35-D MS   | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59216      |
| 880-31305-A-35-E MSD  | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59216      |
| Analysis Batch: 59635 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |

Total/NA

Solid

8015 NM

S-4 (3')
Job ID: 880-31271-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31271-1 Matrix: Solid

Client Sample ID: S-4 (3') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.00 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/04/23 04:27 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59319  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59635  | 08/08/23 12:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 59216  | 08/03/23 10:03 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59411  | 08/07/23 17:49 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31271-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority               | P                              | rogram                          | Identification Number                       | Expiration Date          |
|------------------------|--------------------------------|---------------------------------|---------------------------------------------|--------------------------|
| exas                   |                                | IELAP                           | T104704400-23-26                            | 06-30-24                 |
| The following analytes | are included in this report, b | ut the laboratory is not certif | ed by the governing authority. This list ma | w include analytes for w |
| the agency does not of | fer certification.             | ,                               |                                             | , ,                      |
| • •                    |                                | Matrix                          | Analyte                                     |                          |
| the agency does not of | fer certification.             | ,                               |                                             |                          |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

10

# **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31271-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                          | Protocol | Laboratory |
|---------------|-----------------------------------------------------------------------------|----------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                             | SW846    | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                      | TAL SOP  | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                            | SW846    | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                            | SW846    | EET MID    |
| 5035          | Closed System Purge and Trap                                                | SW846    | EET MID    |
| 8015NM Prep   | Microextraction                                                             | SW846    | EET MID    |
| Laboratory Re |                                                                             |          |            |
| EET MID =     | Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31271-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31271-1   | S-4 (3')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

#### PO # Phone Sampler's Name Comments Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint Meri SAMPLE RECEIPT Project Location Project Number Received Intact: Project Name City, State ZIP <sup>2</sup>roject Manager ample Custody Seals. Company Name otal Containers .ddress ooler Custody Seals. Sample Identification $\mathbb{A}$ S-4 (3') Clinton Merritt Midland, TX 79701 Carmona Resources 310 W Wall St Ste 500 Yes Yes No Lea County New Mexico Fepap Blank Tonto 15 State #1 Relinquished by: (Signature) es S No Z No. 7 25 23 CCM 2089 Date MA Corrected Temperature Correction Factor Thermometer ID emperature Reading Yes Time ¥ø ( Due Date ✓ Routine Wet Ice Soil × Email Turn Around msanjan@marathonoil com Bill to (if different) City, State ZIP Company Name Address Water Rush 40 š 5 day z Comp Grab/ G # of Pres. Code Parameters \_ ۱ Date/Time 990 Town and Country Blvd Marathon Oil Corporation Houston TX 77024 Melodie Sanjari BTEX 8021B $\times$ shorts 6-0 TPH 8015M ( GRO + DRO + MRO) $\times$ Chloride 300 0 880-31271 Chain of Custody ANALYSIS REQUEST Received by Reporting Level II Level III ST/UST State of Project Program UST/PST PRP prownfields RC Deliverables EDD (Signature) Work Order Comments monaresources com ADaPT NahSO4 NABIS NahShO3 NaSO3 HCL HC Zn Acetate+NaOH Zn H PO4 HP $H_2SO_4$ $H_2$ Cool Cool None NO NaOH+Ascorbic Acid SAPC Page Preservative Codes Sample Comments RRP Other: Date/Time MeOH Me HNO<sub>3</sub> HN NaOH Na Level IV DI Water: H<sub>2</sub>O Dperfund ्र

#### Received by OCD: 9/21/2023 6:16:51 AM

## 8/8/2023

Work Order No:

Page 257 of 406

14

# Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31271 List Number: 1

<6mm (1/4").

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Job Number: 880-31271-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:40:16 PM

# **JOB DESCRIPTION**

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-31280-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701





# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 8/7/2023 12:40:16 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31280-1 SDG: Lea County, New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

Page 261 of 406

# **Definitions/Glossary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31280-1 SDG: Lea County, New Mexico

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| GC Semi VOA    |                                                                                                             | 5  |
| Qualifier      | Qualifier Description                                                                                       |    |
| *_             | LCS and/or LCSD is outside acceptance limits, low biased.                                                   |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary       |                                                                                                             |    |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | 8  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            | Q  |
| CFL            | Contains Free Liquid                                                                                        | 3  |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          | 13 |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL            | Method Detection Limit                                                                                      |    |
| ML             | Minimum Level (Dioxin)                                                                                      |    |
| MPN            | Most Probable Number                                                                                        |    |
| MQL            | Method Quantitation Limit                                                                                   |    |
| NC             | Not Calculated                                                                                              |    |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |    |
| NEG            | Negative / Absent                                                                                           |    |
| POS            | Positive / Present                                                                                          |    |
| PQL            | Practical Quantitation Limit                                                                                |    |
| PRES           | Presumptive                                                                                                 |    |
| QC             | Quality Control                                                                                             |    |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |    |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |    |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |    |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |    |
|                |                                                                                                             |    |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |    |

4

5

Job ID: 880-31280-1 SDG: Lea County, New Mexico

#### Job ID: 880-31280-1

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31280-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-4 (0-1') (880-31280-1).

#### GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 880-31280-1

## Client Sample ID: S-4 (0-1') Date Collected: 07/25/23 00:00

Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

| Analyte                                    | Result                      | Qualifier             | RL        | MDL | Unit          | D | Prepared       | Analyzed                | Dil Fac |
|--------------------------------------------|-----------------------------|-----------------------|-----------|-----|---------------|---|----------------|-------------------------|---------|
| Benzene                                    | <0.00200                    | U                     | 0.00200   |     | mg/Kg         |   | 08/01/23 09:18 | 08/02/23 22:50          | 1       |
| Toluene                                    | <0.00200                    | U                     | 0.00200   |     | mg/Kg         |   | 08/01/23 09:18 | 08/02/23 22:50          | 1       |
| Ethylbenzene                               | <0.00200                    | U                     | 0.00200   |     | mg/Kg         |   | 08/01/23 09:18 | 08/02/23 22:50          | 1       |
| m-Xylene & p-Xylene                        | <0.00401                    | U                     | 0.00401   |     | mg/Kg         |   | 08/01/23 09:18 | 08/02/23 22:50          | 1       |
| o-Xylene                                   | <0.00200                    | U                     | 0.00200   |     | mg/Kg         |   | 08/01/23 09:18 | 08/02/23 22:50          | 1       |
| Xylenes, Total                             | <0.00401                    | U                     | 0.00401   |     | mg/Kg         |   | 08/01/23 09:18 | 08/02/23 22:50          | 1       |
| Surrogate                                  | %Recovery                   | Qualifier             | Limits    |     |               |   | Prepared       | Analyzed                | Dil Fac |
| 4-Bromofluorobenzene (Surr)                | 106                         |                       | 70 - 130  |     |               |   | 08/01/23 09:18 | 08/02/23 22:50          | 1       |
| 1,4-Difluorobenzene (Surr)                 | 110                         |                       | 70 - 130  |     |               |   | 08/01/23 09:18 | 08/02/23 22:50          | 1       |
| Method: TAL SOP Total BTEX - To            |                             | culation<br>Qualifier | RL        | MDI | 11-14         |   | Drawarad       | Amelyanad               | Dil Fac |
| Analyte<br>Total BTEX                      | - <u>Result</u><br><0.00401 |                       | 0.00401   | MDL | Unit<br>mg/Kg | D | Prepared       | Analyzed 08/03/23 09:53 | DIIFac  |
|                                            |                             |                       |           |     | ing/itg       |   |                | 00/00/20 00:00          |         |
| Method: SW846 8015 NM - Diese<br>Analyte   |                             | Qualifier             | GC)<br>RL | MDL | Unit          | D | Prepared       | Analyzed                | Dil Fac |
| Total TPH                                  | <50.4                       | U                     | 50.4      |     | mg/Kg         |   |                | 08/07/23 10:15          | 1       |
| Method: SW846 8015B NM - Dies              | el Range Orga               | nics (DRO)            | (GC)      |     |               |   |                |                         |         |
| Analyte                                    |                             | Qualifier             | RL        | MDL | Unit          | D | Prepared       | Analyzed                | Dil Fac |
| Gasoline Range Organics                    | <50.4                       | U *-                  | 50.4      |     | mg/Kg         |   | 08/04/23 17:30 | 08/06/23 16:42          | 1       |
| GRO)-C6-C10<br>Diesel Range Organics (Over | <50.4                       | U                     | 50.4      |     | mg/Kg         |   | 08/04/23 17:30 | 08/06/23 16:42          | 1       |
| C10-C28)                                   |                             |                       |           |     |               |   |                |                         |         |
| Oll Range Organics (Over C28-C36)          | <50.4                       | U                     | 50.4      |     | mg/Kg         |   | 08/04/23 17:30 | 08/06/23 16:42          | 1       |
| Surrogate                                  | %Recovery                   | Qualifier             | Limits    |     |               |   | Prepared       | Analyzed                | Dil Fac |
|                                            |                             |                       |           |     |               |   | 00/04/00 47 00 | 00/00/00 10 10          |         |
| 1-Chlorooctane                             | 89                          |                       | 70 - 130  |     |               |   | 08/04/23 17:30 | 08/06/23 16:42          | 1       |

Eurofins Midland

880-31280-1

Matrix: Solid

5

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31280-1 SDG: Lea County, New Mexico

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------------|------------------------|----------|----------|------------------------------------------------|
|                     |                        | BFB1     | DFBZ1    |                                                |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31279-A-1-A MS  | Matrix Spike           | 103      | 100      |                                                |
| 880-31279-A-1-B MSD | Matrix Spike Duplicate | 108      | 104      |                                                |
| 880-31280-1         | S-4 (0-1')             | 106      | 110      |                                                |
| LCS 880-58971/1-A   | Lab Control Sample     | 104      | 100      |                                                |
| LCSD 880-58971/2-A  | Lab Control Sample Dup | 95       | 103      |                                                |
| MB 880-58971/5-A    | Method Blank           | 84       | 89       |                                                |
| MB 880-58998/5-A    | Method Blank           | 85       | 89       |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

## Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|              |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|--------------|------------------------|----------|----------|------------------------------------------------|
|              |                        | 1CO1     | OTPH1    |                                                |
| Sample ID    | Client Sample ID       | (70-130) | (70-130) |                                                |
| 280-1        | S-4 (0-1')             | 89       | 92       |                                                |
| 664-A-2-F MS | Matrix Spike           | 123      | 104      |                                                |
| 64-A-2-G MSD | Matrix Spike Duplicate | 128      | 112      |                                                |
| -59369/2-A   | Lab Control Sample     | 93       | 94       |                                                |
| 30-59369/3-A | Lab Control Sample Dup | 85       | 82       |                                                |
| 80-59369/1-A | Method Blank           | 88       | 94       |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Eurofins Midland

Prep Type: Total/NA

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

# Lab Sample ID: MB 880-58971/5-A

Matrix: Solid Analysis Batch: 59072

| -                           | МВ        | МВ        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | < 0.00200 | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 84        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| 1,4-Difluorobenzene (Surr)  | 89        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |

#### Lab Sample ID: LCS 880-58971/1-A Matrix: Solid

## Analysis Batch: 59072

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.07714 |           | mg/Kg |   | 77   | 70 - 130 |  |
| Toluene             | 0.100 | 0.1014  |           | mg/Kg |   | 101  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08911 |           | mg/Kg |   | 89   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1753  |           | mg/Kg |   | 88   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.08985 |           | mg/Kg |   | 90   | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 104       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 100       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58971/2-A

### Matrix: Solid

| Analysis Batch: 59072 |       |         |           |       |   |      | Prep     | Batch: | 58971 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08576 |           | mg/Kg |   | 86   | 70 - 130 | 11     | 35    |
| Toluene               | 0.100 | 0.1000  |           | mg/Kg |   | 100  | 70 - 130 | 1      | 35    |
| Ethylbenzene          | 0.100 | 0.08572 |           | mg/Kg |   | 86   | 70 - 130 | 4      | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1641  |           | mg/Kg |   | 82   | 70 - 130 | 7      | 35    |
| o-Xylene              | 0.100 | 0.08388 |           | mg/Kg |   | 84   | 70 - 130 | 7      | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 95        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

# Lab Sample ID: 880-31279-A-1-A MS

#### Matrix: Solid Analysia Rataby 50072

| Analysis Batch: 59072 |          |           |        |         |           |       |   |      | Prep     | Batch: 58971 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0996 | 0.07513 |           | mg/Kg |   | 75   | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0996 | 0.08995 |           | mg/Kg |   | 90   | 70 - 130 |              |

**Eurofins Midland** 

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 58971

Prep Type: Total/N Prep Batch: 589

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

| Client | Sample | ID: Lab Co | ontrol Sample |  |
|--------|--------|------------|---------------|--|
|        |        |            | ype: Total/NA |  |
|        |        |            | Batch: 58971  |  |
|        |        | %Rec       |               |  |
| D      | %Rec   | Limits     |               |  |
|        | 77     | 70 - 130   |               |  |
|        | 101    | 70 - 130   |               |  |

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31280-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31279-A                                            | A-1-A MS                |                                 |                     |                    |         |      |        |       |      |                   | Client S   | Sample ID: I            |          |               |
|-----------------------------------------------------------------------|-------------------------|---------------------------------|---------------------|--------------------|---------|------|--------|-------|------|-------------------|------------|-------------------------|----------|---------------|
| Matrix: Solid                                                         |                         |                                 |                     |                    |         |      |        |       |      |                   |            | Prep Ty                 |          |               |
| Analysis Batch: 59072                                                 |                         |                                 |                     |                    |         |      |        |       |      |                   |            | Prep E                  | atch:    | <b>5897</b> 1 |
|                                                                       | Sample                  | Sam                             | ple                 | Spike              | MS      | MS   |        |       |      |                   |            | %Rec                    |          |               |
| Analyte                                                               | Result                  | Qual                            | ifier               | Added              | Result  | Qual | lifier | Unit  |      | D                 | %Rec       | Limits                  |          |               |
| Ethylbenzene                                                          | <0.00202                | U                               |                     | 0.0996             | 0.08100 |      |        | mg/Kg |      |                   | 81         | 70 - 130                |          |               |
| m-Xylene & p-Xylene                                                   | <0.00403                | U                               |                     | 0.199              | 0.1561  |      |        | mg/Kg |      |                   | 78         | 70 - 130                |          |               |
| o-Xylene                                                              | <0.00202                | U                               |                     | 0.0996             | 0.07987 |      |        | mg/Kg |      |                   | 80         | 70 - 130                |          |               |
|                                                                       | MS                      | MS                              |                     |                    |         |      |        |       |      |                   |            |                         |          |               |
| Surrogate                                                             | %Recovery               | Qua                             | lifier              | Limits             |         |      |        |       |      |                   |            |                         |          |               |
| 4-Bromofluorobenzene (Surr)                                           | 103                     |                                 |                     | 70 - 130           |         |      |        |       |      |                   |            |                         |          |               |
| 1,4-Difluorobenzene (Surr)                                            | 100                     |                                 |                     | 70 - 130           |         |      |        |       |      |                   |            |                         |          |               |
| Lab Sample ID: 880-31279-A                                            | A-1-B MSD               |                                 |                     |                    |         |      |        |       | Clie | nt Sa             | mple ID:   | Matrix Spil             | ce Dup   | olicate       |
| Matrix: Solid                                                         |                         |                                 |                     |                    |         |      |        |       |      |                   |            | Prep Ty                 | pe: To   | tal/N/        |
| Analysis Batch: 59072                                                 |                         |                                 |                     |                    |         |      |        |       |      |                   |            | Prep E                  | atch:    | 58971         |
|                                                                       | Sample                  | Sam                             | ple                 | Spike              | MSD     | MSD  | )      |       |      |                   |            | %Rec                    |          | RPD           |
| Analyte                                                               | Result                  | Qual                            | ifier               | Added              | Result  | Qual | lifier | Unit  |      | D                 | %Rec       | Limits                  | RPD      | Limi          |
| Benzene                                                               | <0.00202                | U                               |                     | 0.0994             | 0.07017 |      |        | mg/Kg |      |                   | 71         | 70 - 130                | 7        | 3             |
| Toluene                                                               | <0.00202                | U                               |                     | 0.0994             | 0.08738 |      |        | mg/Kg |      |                   | 88         | 70 - 130                | 3        | 3             |
| Ethylbenzene                                                          | <0.00202                | U                               |                     | 0.0994             | 0.07772 |      |        | mg/Kg |      |                   | 78         | 70 - 130                | 4        | 35            |
| n-Xylene & p-Xylene                                                   | <0.00403                | U                               |                     | 0.199              | 0.1481  |      |        | mg/Kg |      |                   | 75         | 70 - 130                | 5        | 35            |
| o-Xylene                                                              | <0.00202                | U                               |                     | 0.0994             | 0.07711 |      |        | mg/Kg |      |                   | 78         | 70 - 130                | 4        | 35            |
|                                                                       | MSD                     | MSD                             | 1                   |                    |         |      |        |       |      |                   |            |                         |          |               |
| Surrogate                                                             | %Recovery               | Qua                             | lifier              | Limits             |         |      |        |       |      |                   |            |                         |          |               |
| 4-Bromofluorobenzene (Surr)                                           | 108                     |                                 |                     | 70 - 130           |         |      |        |       |      |                   |            |                         |          |               |
| 1,4-Difluorobenzene (Surr)                                            | 104                     |                                 |                     | 70 - 130           |         |      |        |       |      |                   |            |                         |          |               |
| Lab Sample ID: MB 880-589                                             | 98/5-A                  |                                 |                     |                    |         |      |        |       |      |                   | Client Sa  | mple ID: M              | ethod    | Blank         |
| Matrix: Solid                                                         |                         |                                 |                     |                    |         |      |        |       |      |                   |            | Prep Ty                 | pe: To   | tal/NA        |
| Analysis Batch: 59072                                                 |                         |                                 |                     |                    |         |      |        |       |      |                   |            | Prep E                  | atch:    | 58998         |
|                                                                       |                         | ΜВ                              | МВ                  |                    |         |      |        |       |      |                   |            |                         |          |               |
| Analyte                                                               | Re                      | sult                            | Qualifier           | RI                 | L       | MDL  | Unit   |       | D    | Pi                | repared    | Analyzed                | I        | Dil Fac       |
| Benzene                                                               | <0.00                   | 200                             | U                   | 0.00200            | 0       |      | mg/Kg  | 3     | _    | 08/0              | 1/23 10:59 | 08/02/23 11             | :28      | 1             |
| Toluene                                                               | <0.00                   | 200                             | U                   | 0.00200            | D       |      | mg/Kg  |       |      | 08/0              | 1/23 10:59 | 08/02/23 11             | :28      | 1             |
|                                                                       | <0.00                   | 200                             | U                   | 0.00200            | D       |      | mg/Kg  | 3     |      | 08/0              | 1/23 10:59 | 08/02/23 11             | :28      |               |
| Ethylbenzene                                                          | -0.00                   |                                 | U                   | 0.00400            | D       |      | mg/Kg  |       |      | 08/0              | 1/23 10:59 | 08/02/23 11             |          |               |
|                                                                       | <0.00                   | 400                             |                     |                    |         |      | mg/Kg  |       |      |                   | 1/23 10:59 | 08/02/23 11             |          |               |
| m-Xylene & p-Xylene                                                   |                         |                                 |                     | 0.00200            | )       |      | 0.     | -     |      |                   |            |                         |          |               |
|                                                                       | <0.00                   | 200                             | U                   | 0.00200<br>0.00400 |         |      | mg/Kg  | 9     |      | 08/0              | 1/23 10:59 | 08/02/23 11             | 28       |               |
| n-Xylene & p-Xylene<br>o-Xylene                                       | <0.00<br><0.00          | 200                             | U<br>U              |                    |         |      | mg/Ko  | 9     |      | 08/0              | 1/23 10.59 | 08/02/23 11             | .28      |               |
| n-Xylene & p-Xylene<br>o-Xylene                                       | <0.00<br><0.00<br><0.00 | 200<br>400<br><b>MB</b>         | U<br>U              |                    |         |      | mg/Ko  | 9     |      |                   | repared    | 08/02/23 11<br>Analyzed |          | Dil Fa        |
| n-Xylene & p-Xylene<br>o-Xylene<br>Kylenes, Total                     | <0.00<br><0.00<br><0.00 | 200<br>400<br><b>MB</b>         | U<br>U<br><i>MB</i> | 0.00400            |         |      | mg/K   | 3     |      | Pi                |            |                         | I        | Dil Fac       |
| n-Xylene & p-Xylene<br>o-Xylene<br>Kylenes, Total<br><b>Surrogate</b> | <0.00<br><0.00<br><0.00 | 200<br>400<br><i>MB</i><br>/ery | U<br>U<br><i>MB</i> | 0.00400            |         |      | mg/K   | 3     |      | <b>Pi</b><br>08/0 | repared    | Analyzed                | I<br>:28 |               |

| Lab Sample ID: MB 880-59369/1-A<br>Matrix: Solid |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: 1 |                 |
|--------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|--------------------------------|-----------------|
| Analysis Batch: 59409                            |        |           |      |     |       |   |                | Prep Batch                     | n: <b>59369</b> |
|                                                  | МВ     | МВ        |      |     |       |   |                |                                |                 |
| Analyte                                          | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                       | Dil Fac         |
| Gasoline Range Organics                          | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16                 | 1               |

Eurofins Midland

(GRO)-C6-C10

Project/Site: Tonto 15 State #1

Job ID: 880-31280-1 SDG: Lea County, New Mexico

Page 268 of 406

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369                                                                                                                                                                                           | / <b>1-A</b>                                                                                                                                                                        |                                      |           |                                                                               |                                         |            |        |                                        |   |            | <b>Client Sa</b>                   | ample ID: I                                                                                            | Method                          | Blank                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|-------------------------------------------------------------------------------|-----------------------------------------|------------|--------|----------------------------------------|---|------------|------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|
| Matrix: Solid                                                                                                                                                                                                         |                                                                                                                                                                                     |                                      |           |                                                                               |                                         |            |        |                                        |   |            |                                    | Prep T                                                                                                 | ype: To                         | tal/NA                                |
| Analysis Batch: 59409                                                                                                                                                                                                 |                                                                                                                                                                                     |                                      |           |                                                                               |                                         |            |        |                                        |   |            |                                    | Prep                                                                                                   | Batch:                          | 59369                                 |
| -                                                                                                                                                                                                                     |                                                                                                                                                                                     | МВ                                   | МВ        |                                                                               |                                         |            |        |                                        |   |            |                                    |                                                                                                        |                                 |                                       |
| Analyte                                                                                                                                                                                                               | Re                                                                                                                                                                                  | sult                                 | Qualifier | RL                                                                            |                                         | MDL        | Unit   |                                        | D | P          | repared                            | Analyz                                                                                                 | ed                              | Dil Fac                               |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                               |                                                                                                                                                                                     | 50.0                                 | U         | 50.0                                                                          |                                         |            | mg/Kg  |                                        | _ | 08/04      | 4/23 17:29                         | 08/06/23                                                                                               | 08:16                           | 1                                     |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                     | </td <td>50.0</td> <td>U</td> <td>50.0</td> <td></td> <td></td> <td>mg/Kg</td> <td>I</td> <td></td> <td>08/04</td> <td>4/23 17:29</td> <td>08/06/23 (</td> <td>08:16</td> <td></td> | 50.0                                 | U         | 50.0                                                                          |                                         |            | mg/Kg  | I                                      |   | 08/04      | 4/23 17:29                         | 08/06/23 (                                                                                             | 08:16                           |                                       |
|                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                      | МВ        |                                                                               |                                         |            |        |                                        |   |            |                                    |                                                                                                        |                                 |                                       |
| Surrogate                                                                                                                                                                                                             | %Recov                                                                                                                                                                              |                                      | Qualifier | Limits                                                                        |                                         |            |        |                                        |   |            | repared                            | Analyz                                                                                                 |                                 | Dil Fac                               |
| 1-Chlorooctane                                                                                                                                                                                                        |                                                                                                                                                                                     | 88                                   |           | 70 - 130                                                                      |                                         |            |        |                                        |   |            | 4/23 17:29                         |                                                                                                        |                                 | 1                                     |
| o-Terphenyl                                                                                                                                                                                                           |                                                                                                                                                                                     | 94                                   |           | 70 - 130                                                                      |                                         |            |        |                                        |   | 08/0       | 4/23 17:29                         | 08/06/23                                                                                               | 08:16                           | 1                                     |
| Lab Sample ID: LCS 880-5936                                                                                                                                                                                           | 9/2-A                                                                                                                                                                               |                                      |           |                                                                               |                                         |            |        |                                        | С | lient      | Sample                             | ID: Lab Co                                                                                             | ontrol S                        | ample                                 |
| Matrix: Solid                                                                                                                                                                                                         |                                                                                                                                                                                     |                                      |           |                                                                               |                                         |            |        |                                        |   |            |                                    | Prep T                                                                                                 | ype: To                         | tal/NA                                |
| Analysis Batch: 59409                                                                                                                                                                                                 |                                                                                                                                                                                     |                                      |           |                                                                               |                                         |            |        |                                        |   |            |                                    | Prep                                                                                                   | Batch:                          | 59369                                 |
|                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                      |           | Spike                                                                         | LCS                                     | LCS        |        |                                        |   |            |                                    | %Rec                                                                                                   |                                 |                                       |
| Analyte                                                                                                                                                                                                               |                                                                                                                                                                                     |                                      |           | Added                                                                         | Result                                  | Qua        | lifier | Unit                                   |   | D          | %Rec                               | Limits                                                                                                 |                                 |                                       |
| Gasoline Range Organics                                                                                                                                                                                               |                                                                                                                                                                                     |                                      |           | 1000                                                                          | 661.8                                   | *-         |        | mg/Kg                                  |   |            | 66                                 | 70 - 130                                                                                               |                                 |                                       |
| (GRO)-C6-C10                                                                                                                                                                                                          |                                                                                                                                                                                     |                                      |           | 1000                                                                          | 070 -                                   |            |        |                                        |   |            | ~-                                 | 70 100                                                                                                 |                                 |                                       |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                               |                                                                                                                                                                                     |                                      |           | 1000                                                                          | 873.3                                   |            |        | mg/Kg                                  |   |            | 87                                 | 70 - 130                                                                                               |                                 |                                       |
| 010-028)                                                                                                                                                                                                              |                                                                                                                                                                                     |                                      |           |                                                                               |                                         |            |        |                                        |   |            |                                    |                                                                                                        |                                 |                                       |
|                                                                                                                                                                                                                       | LCS                                                                                                                                                                                 |                                      |           |                                                                               |                                         |            |        |                                        |   |            |                                    |                                                                                                        |                                 |                                       |
| Surrogate                                                                                                                                                                                                             |                                                                                                                                                                                     | Quali                                | ifier     | Limits                                                                        |                                         |            |        |                                        |   |            |                                    |                                                                                                        |                                 |                                       |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                         | 93<br>94                                                                                                                                                                            |                                      |           | 70 - 130<br>70 - 130                                                          |                                         |            |        |                                        |   |            |                                    |                                                                                                        |                                 |                                       |
| Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                |                                                                                                                                                                                     |                                      |           |                                                                               |                                         |            |        |                                        |   |            |                                    |                                                                                                        | ype: To<br>Batch:               |                                       |
| -                                                                                                                                                                                                                     |                                                                                                                                                                                     |                                      |           | Spike                                                                         | LCSD                                    | LCS        | D      |                                        |   |            |                                    | %Rec                                                                                                   |                                 | RPD                                   |
| Analyte                                                                                                                                                                                                               |                                                                                                                                                                                     |                                      |           | Added                                                                         | Result                                  | Qua        | lifier | Unit                                   |   |            |                                    |                                                                                                        |                                 |                                       |
| Gasoline Range Organics                                                                                                                                                                                               |                                                                                                                                                                                     |                                      |           |                                                                               |                                         |            |        | •                                      |   | D          | %Rec                               | Limits                                                                                                 | RPD                             | Limit                                 |
| (GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                           |                                                                                                                                                                                     |                                      |           | 1000                                                                          | 660.9                                   | *_         |        | mg/Kg                                  |   | <u>D</u>   | %Rec                               | Limits<br>70 - 130                                                                                     | <b>RPD</b><br>0                 |                                       |
|                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                      |           |                                                                               | 660.9                                   | *-         |        | mg/Kg                                  |   | <u>D</u>   | 66                                 | 70 - 130                                                                                               | 0                               | <b>Limi</b><br>20                     |
|                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                      |           | 1000<br>1000                                                                  |                                         | *-         |        |                                        |   | <u>D</u>   |                                    |                                                                                                        |                                 | Limit                                 |
|                                                                                                                                                                                                                       | LCSD                                                                                                                                                                                | LCSD                                 | )         |                                                                               | 660.9                                   | *_         |        | mg/Kg                                  |   | <u>D</u>   | 66                                 | 70 - 130                                                                                               | 0                               | <b>Limi</b><br>20                     |
|                                                                                                                                                                                                                       | LCSD<br>%Recovery                                                                                                                                                                   |                                      |           |                                                                               | 660.9                                   | *_         |        | mg/Kg                                  |   | <u>D</u>   | 66                                 | 70 - 130                                                                                               | 0                               | <b>Limi</b><br>20                     |
| C10-C28)                                                                                                                                                                                                              |                                                                                                                                                                                     |                                      |           | 1000                                                                          | 660.9                                   | *-         |        | mg/Kg                                  |   | <u>D</u>   | 66                                 | 70 - 130                                                                                               | 0                               | <b>Limi</b><br>20                     |
| C10-C28) Surrogate                                                                                                                                                                                                    | %Recovery                                                                                                                                                                           |                                      |           | 1000<br><i>Limits</i>                                                         | 660.9                                   | *_         |        | mg/Kg                                  |   | <u> </u>   | 66                                 | 70 - 130                                                                                               | 0                               | <b>Limi</b><br>20                     |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                | %Recovery<br>85<br>82                                                                                                                                                               |                                      |           | 1000<br><i>Limits</i><br>70 - 130                                             | 660.9                                   | *_         |        | mg/Kg                                  |   | . <u>D</u> | 85                                 | 70 - 130<br>70 - 130                                                                                   | 3                               | Limit<br>20<br>20                     |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2                                                                                                                                | %Recovery<br>85<br>82                                                                                                                                                               |                                      |           | 1000<br><i>Limits</i><br>70 - 130                                             | 660.9                                   | *_         |        | mg/Kg                                  |   | . <u>D</u> | 85                                 | 70 - 130<br>70 - 130<br>Sample ID                                                                      | 0<br>3                          | Limit<br>20<br>20<br>Spike            |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid                                                                                                               | %Recovery<br>85<br>82                                                                                                                                                               |                                      |           | 1000<br><i>Limits</i><br>70 - 130                                             | 660.9                                   | *_         |        | mg/Kg                                  |   | <u>D</u>   | 85                                 | 70 - 130<br>70 - 130<br>Sample ID:<br>Prep T                                                           | 0<br>3<br>: Matrix<br>: Ype: Tc | Limit<br>20<br>20<br>Spike<br>otal/NA |
| C10-C28)  Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-31664-A-2                                                                                                                                           | %Recovery<br>85<br>82<br>R-F MS                                                                                                                                                     | Quali                                | fier      | 1000<br>Limits<br>70 - 130<br>70 - 130                                        | 660.9<br>845.2                          | * <u>-</u> |        | mg/Kg                                  |   | <u>D</u>   | 85                                 | 70 - 130<br>70 - 130<br>Sample ID:<br>Prep T                                                           | 0<br>3                          | Limit<br>20<br>20<br>Spike<br>otal/NA |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid                                                                                                               | %Recovery<br>85<br>82                                                                                                                                                               | <u>Quali</u><br>Samp                 | ifier     | 1000<br><i>Limits</i><br>70 - 130                                             | 660.9<br>845.2                          | MS         | lifier | mg/Kg                                  |   | D          | 85                                 | 70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep                                                   | 0<br>3<br>: Matrix<br>: Ype: Tc | Limit<br>20<br>20<br>Spike<br>otal/NA |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                      | %Recovery<br>85<br>82<br>P-F MS<br>Sample                                                                                                                                           | <u>Quali</u><br>Samp<br><u>Quali</u> | ifier     | 1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br><b>Spike</b>                 | 660.9<br>845.2<br>MS                    | MS         | lifier | mg/Kg                                  |   |            | 66<br>85<br>Client                 | 70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec                                            | 0<br>3<br>: Matrix<br>: Ype: Tc | Limit<br>20<br>20<br>Spike<br>otal/NA |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                | %Recovery<br>85<br>82<br>P-F MS<br>Sample<br>Result<br><50.3                                                                                                                        | <u>Quali</u><br>Samp<br><u>Quali</u> | ifier     | 1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>993 | 660.9<br>845.2<br>MS<br>Result<br>876.9 | MS         | lifier | mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg |   |            | 66<br>85<br>Client 9<br>%Rec<br>86 | 70 - 130<br>70 - 130<br><b>Sample ID</b><br><b>Prep T</b><br><b>Prep</b><br>%Rec<br>Limits<br>70 - 130 | 0<br>3<br>: Matrix<br>: Ype: Tc | Limit<br>20<br>20<br>Spike<br>otal/NA |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                | %Recovery<br>85<br>82<br>P-F MS<br>Sample<br>Result                                                                                                                                 | <u>Quali</u><br>Samp<br><u>Quali</u> | ifier     | 1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br><b>Spike</b><br>Added        | 660.9<br>845.2<br>MS<br>Result          | MS         | lifier | mg/Kg<br>mg/Kg<br>Unit                 |   |            | 66<br>85<br>Client 9               | 70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec<br>Limits                                  | 0<br>3<br>: Matrix<br>: Ype: Tc | Limit<br>20<br>20<br>Spike<br>otal/NA |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over | %Recovery<br>85<br>82<br>P-F MS<br>Sample<br>Result<br><50.3                                                                                                                        | Quali<br>Samp<br>Quali<br>U *-       | ifier     | 1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>993 | 660.9<br>845.2<br>MS<br>Result<br>876.9 | MS         | lifier | mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg |   |            | 66<br>85<br>Client 9<br>%Rec<br>86 | 70 - 130<br>70 - 130<br><b>Sample ID</b><br><b>Prep T</b><br><b>Prep</b><br>%Rec<br>Limits<br>70 - 130 | 0<br>3<br>: Matrix<br>: Ype: Tc | Limit<br>20<br>20<br>Spike<br>otal/NA |
| C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over | %Recovery         85         82           8-F MS         Sample         Result         <50.3                                                                                        | Quali<br>Samp<br>Quali<br>U *-       | ifier     | 1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>993 | 660.9<br>845.2<br>MS<br>Result<br>876.9 | MS         | lifier | mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg |   |            | 66<br>85<br>Client 9<br>%Rec<br>86 | 70 - 130<br>70 - 130<br><b>Sample ID</b><br><b>Prep T</b><br><b>Prep</b><br>%Rec<br>Limits<br>70 - 130 | 0<br>3<br>: Matrix<br>: Ype: Tc | Limit<br>20<br>20<br>Spike<br>otal/NA |
| C10-C28)  Surrogate  1-Chlorooctane o-Terphenyl  Lab Sample ID: 880-31664-A-2 Matrix: Solid Analysis Batch: 59409  Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)                  | %Recovery         85         82           8-F MS         Sample         Result         <50.3                                                                                        | Quali<br>Samp<br>Quali<br>U *-       | ifier     | 1000<br>Limits<br>70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>993<br>993 | 660.9<br>845.2<br>MS<br>Result<br>876.9 | MS         | lifier | mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg |   |            | 66<br>85<br>Client 9<br>%Rec<br>86 | 70 - 130<br>70 - 130<br><b>Sample ID</b><br><b>Prep T</b><br><b>Prep</b><br>%Rec<br>Limits<br>70 - 130 | 0<br>3<br>: Matrix<br>: Ype: Tc | Limit<br>20<br>20<br>Spike<br>otal/NA |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

104

o-Terphenyl

70 - 130

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31280-1 SDG: Lea County, New Mexico

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| SampleSampleSampleSpikeMSDMSD%RecAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDGasoline Range Organics<50.3U *-992918.4mg/Kg9170 - 1305(GRO)-C6-C10Diesel Range Organics (Over61.59921254mg/Kg12070 - 1306Diesel Range Organics (Over61.59921254mg/Kg12070 - 1306C10-C28)MSDMSDSurrogate%RecoveryQualifierLimits<br>70 - 1301-Chlorooctane12870 - 130o-Terphenyl11270 - 130                                   | alyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDLimitisoline Range Organics<50.3U*-992918.4mg/Kg9170-130520RO)-C6-C10asel Range Organics (Over61.59921254mg/Kg12070-1306200-C28)MSDMSDrrogate%RecoveryQualifierLimits20/chlorooctane12870-13070-13062011270-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysis Batch: 59409 | 0         | 0         | 0              |       |         |        |   |      |                | Batch: |              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----------|----------------|-------|---------|--------|---|------|----------------|--------|--------------|--|
| Gasoline Range Organics       <50.3       U*-       992       918.4       mg/Kg       91       70 - 130       5         (GR0)-C6-C10       Diesel Range Organics (Over       61.5       992       1254       mg/Kg       120       70 - 130       6         C10-C28)       MSD       MSD       MSD       120       70 - 130       6         Surrogate       %Recovery       Qualifier       Limits       70 - 130       128 | isoline Range Organics       <50.3       U*-       992       918.4       mg/Kg       91       70 - 130       5       20         RO)-C6-C10       asel Range Organics (Over       61.5       992       1254       mg/Kg       120       70 - 130       6       20         0-C28)       MSD       MSD       MSD       mg/Kg       120       70 - 130       6       20         Imits         Chlorooctane       128       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130       70 - 130 | Analyta               | -         | -         | Spike<br>Added |       |         | Unit   | п | %Rec | %Rec<br>Limits | RPD    | RPD<br>Limit |  |
| (GRO)-C6-C10<br>Diesel Range Organics (Over 61.5 992 1254 mg/Kg 120 70 - 130 6<br>C10-C28)<br>MSD MSD<br>Surrogate <u>%Recovery</u> Qualifier Limits<br>1-Chlorooctane 128 70 - 130                                                                                                                                                                                                                                         | RO)-C6-C10<br>asel Range Organics (Over 61.5 992 1254 mg/Kg 120 70 - 130 6 20<br>0-C28)<br>MSD MSD<br>rrogate <u>%Recovery</u> Qualifier Limits<br>Chlorooctane 128 70 - 130<br>Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                     |           |           |                |       | Quaimer |        |   |      |                |        |              |  |
| C10-C28)<br>MSD MSD<br>Surrogate <u>%Recovery</u> Qualifier Limits<br>1-Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                           | NSD MSD<br>rrogate <u>%Recovery</u> Qualifier Limits<br>Chlorooctane 128 70 - 130<br>Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |           | 0         | 002            | 010.1 |         | mg/rtg |   | 01   | 10-100         | Ũ      | 20           |  |
| MSDMSDSurrogate%RecoveryQualifierLimits1-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                            | MSDMSDrrogate%RecoveryQualifierLimitsChlorooctane12870 - 130Terphenyl11270 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . ,                   | 61.5      |           | 992            | 1254  |         | mg/Kg  |   | 120  | 70 - 130       | 6      | 20           |  |
| Surrogate%RecoveryQualifierLimits1-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                                  | rrogate%RecoveryQualifierLimitsChlorooctane12870 - 130Terphenyl11270 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C10-C28)              |           |           |                |       |         |        |   |      |                |        |              |  |
| 1-Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                 | Chlorooctane 128 70 - 130<br>Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | MSD       | MSD       |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surrogate             | %Recovery | Qualifier | Limits         |       |         |        |   |      |                |        |              |  |
| o-Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-Chlorooctane        | 128       |           | 70 - 130       |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o-Terphenyl           | 112       |           | 70 - 130       |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |           |                |       |         |        |   |      |                |        |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |           |                |       |         |        |   |      |                |        |              |  |

Page 269 of 406

Released to Imaging: 11/6/2023 11:57:53 AM

# **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31280-1 SDG: Lea County, New Mexico

## **GC VOA**

#### Prep Batch: 58971

| Prep Batch: 58971                 |                                  |                       |                 |                |            |
|-----------------------------------|----------------------------------|-----------------------|-----------------|----------------|------------|
| Lab Sample ID                     | Client Sample ID                 | Prep Type             | Matrix          | Method         | Prep Batch |
| 880-31280-1                       | S-4 (0-1')                       | Total/NA              | Solid           | 5035           |            |
| MB 880-58971/5-A                  | Method Blank                     | Total/NA              | Solid           | 5035           |            |
| LCS 880-58971/1-A                 | Lab Control Sample               | Total/NA              | Solid           | 5035           |            |
| LCSD 880-58971/2-A                | Lab Control Sample Dup           | Total/NA              | Solid           | 5035           |            |
| 880-31279-A-1-A MS                | Matrix Spike                     | Total/NA              | Solid           | 5035           |            |
| 880-31279-A-1-B MSD               | Matrix Spike Duplicate           | Total/NA              | Solid           | 5035           |            |
| Lab Sample ID<br>MB 880-58998/5-A | Client Sample ID<br>Method Blank | Prep Type<br>Total/NA | Matrix<br>Solid | Method<br>5035 | Prep Batch |
| nalysis Batch: 59072              | Client Sample ID                 | Prep Type             | Matrix          | Method         | Prep Batch |
| 880-31280-1                       | S-4 (0-1')                       | Total/NA              | Solid           | 8021B          | 58971      |
| MB 880-58971/5-A                  | Method Blank                     | Total/NA              | Solid           | 8021B          | 58971      |
| VB 880-58998/5-A                  | Method Blank                     | Total/NA              | Solid           | 8021B          | 58998      |
| LCS 880-58971/1-A                 | Lab Control Sample               | Total/NA              | Solid           | 8021B          | 58971      |
| LCSD 880-58971/2-A                | Lab Control Sample Dup           | Total/NA              | Solid           | 8021B          | 58971      |
| 380-31279-A-1-A MS                | Matrix Spike                     | Total/NA              | Solid           | 8021B          | 58971      |
|                                   |                                  | T ( 1/516             |                 |                |            |

#### Analysis Batch: 59072

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-31280-1         | S-4 (0-1')             | Total/NA  | Solid  | 8021B  | 58971      |
| MB 880-58971/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 58971      |
| MB 880-58998/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 58998      |
| LCS 880-58971/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 58971      |
| LCSD 880-58971/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 58971      |
| 880-31279-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 58971      |
| 880-31279-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 58971      |

#### Analysis Batch: 59201

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31280-1   | S-4 (0-1')       | Total/NA  | Solid  | Total BTEX |            |

#### GC Semi VOA

#### Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31280-1         | S-4 (0-1')             | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 59409

| Lab Sample ID         | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31280-1           | S-4 (0-1')             | Total/NA  | Solid  | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59369      |
| Analysis Batch: 59482 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
| 880-31280-1           | S-4 (0-1')             | Total/NA  | Solid  | 8015 NM  |            |

#### Client Sample ID: S-4 (0-1') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| _         | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 58971  | 08/01/23 09:18 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59072  | 08/02/23 22:50 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59201  | 08/03/23 09:53 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59482  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.92 g  | 10 mL  | 59369  | 08/04/23 17:30 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 16:42 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-31280-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31280-1

Matrix: Solid

5

9

Eurofins Midland

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31280-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                      |                   | Program         | Identification Number                        | Expiration Date           |  |
|-----------------------------------------------|-------------------|-----------------|----------------------------------------------|---------------------------|--|
| exas                                          |                   | NELAP           | T104704400-23-26                             | 06-30-24                  |  |
| The following analytes the agency does not of | er certification. | · •             | ied by the governing authority. This list ma | ay include analytes for v |  |
| Analysis Mathod                               | Dron Mothod       | Matrix          | Apolyto                                      |                           |  |
| Analysis Method<br>8015 NM                    | Prep Method       | Matrix<br>Solid | Analyte<br>Total TPH                         |                           |  |

Eurofins Midland

# **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31280-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                                                                  | Protocol | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                                                                     | SW846    | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                                                              | TAL SOP  | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                                                                    | SW846    | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                                                                    | SW846    | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                                                                        | SW846    | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                                                                     | SW846    | EET MID    |
| Laboratory Re | <ul> <li>TestAmerica Laboratories, Standard Operating Procedure</li> <li>Iferences:</li> <li>Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440</li> </ul> |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |
|               |                                                                                                                                                                                     |          |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31280-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31280-1   | S-4 (0-1')       | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |
|               |                  |        |                |                |

| Marg                                  | Comments Email results                                                                                                                         |                            |  | S-4 (0-1') | Sample Identification | Total Containers        | Sample Custody Seals | Cooler Custody Seals. | Received Intact: | SAMPLE RECEIPT                                        | PO # | Project Location       | Project Number                    | Project Name       | Phone                    | ate ZIP                      | Address 310 W             | Company Name Carmor      | Project Manager Clinton Merritt  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|------------|-----------------------|-------------------------|----------------------|-----------------------|------------------|-------------------------------------------------------|------|------------------------|-----------------------------------|--------------------|--------------------------|------------------------------|---------------------------|--------------------------|----------------------------------|
| Relinquished by (Signature)           | to Mike Carmona m                                                                                                                              |                            |  | 7 25 23    | Date                  |                         | NO NA                | IO (NA)               | Mac) No          | Temn Blank                                            | CCM  | Lea County, New Mexico | 2089                              | Tonto 15 State #1  |                          | Midland, TX 79701            | 310 W Wall St Ste 500     | Carmona Resources        | Merritt                          |
| / (Signature)                         | carmona@carm                                                                                                                                   |                            |  |            | Time                  | Corrected Temperature   | Temperature Reading  | Correction Factor     | Thermomotor ID   |                                                       |      |                        |                                   |                    |                          |                              |                           |                          |                                  |
|                                       | onaresources                                                                                                                                   |                            |  | ×          | Soil                  | iture                   | ing                  |                       | VVELICE          | What has                                              |      | Due Date               | ✓ Routine                         | Turn Around        | Email                    |                              |                           |                          | m                                |
|                                       | com, Conner                                                                                                                                    |                            |  | Ð          | Water Grab/<br>Comp   | 5.2                     | 6                    | 11.                   |                  |                                                       |      | 5 day                  | Rush                              | round              | msanjari@marathonoil.com | City State ZIP               | Address                   | Company Name             | Bill to (if different)           |
| Day<br>7 - 7                          | Moehring (                                                                                                                                     |                            |  | 1<br>×     | # of<br>Cont          |                         | BT                   | Para<br>EX 80         |                  |                                                       |      |                        | Code                              |                    | thonoil com              | Н                            | 66                        | Ma                       | Me                               |
| Date/Time<br>- <u>76-23</u><br>1 (0Чら | moehring(                                                                                                                                      |                            |  | ×          | TPI                   | 1 801                   | 5M (                 |                       | + DI             | २० +                                                  | MRC  | ))                     |                                   |                    |                          | Houston TX 77024             | 990 Town and Country Blvd | Marathon Oil Corporation | Melodie Sanjari                  |
| R                                     | ocarmonaresources com, C                                                                                                                       | 880-31280 Chain of Custody |  |            |                       |                         | *****                |                       |                  |                                                       |      |                        |                                   | ANALYSIS REQUEST   |                          | )24                          | ountry Blvd               | rporation                |                                  |
| Received by (Signature)               | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring@carmonaresources com, Clint Merritt MerrittC@carmonaresources com | of Custody                 |  |            |                       |                         |                      |                       |                  |                                                       |      |                        |                                   | EQUEST             | Deliverables EDD AD      | Reporting Level II Level III |                           | Program UST/PST PRP rc   | Work Orde                        |
| Date/Time                             | sources com                                                                                                                                    |                            |  |            | Sample Comments       | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn   | NaHSO4 NABIS          | H PO4 HP         | H <sub>2</sub> S0 <sub>4</sub> H <sub>2</sub> NaOH Na |      |                        | None NO DI Water H <sub>2</sub> O | Preservative Codes | ADaPT  Other             | ST/UST RRP Level IV          |                           | rownfields RC perfund    | Page1of1_<br>Work Order Comments |

8/7/2023

Work Order No:

Page 275 of 406

() ()

## Login Sample Receipt Checklist

Answer

N/A N/A

True

N/A

Comment

Client: Carmona Resources

Login Number: 31280 List Number: 1 Creator: Rodriguez, Leticia

tampered with.

Question
The cooler's custody seal, if present, is intact.
Sample custody seals, if present, are intact.
The cooler or samples do not appear to have been compromised or

Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is

Containers requiring zero neadspace have no neadspace of bubble is
<6mm (1/4").</p>

Eurofins Midland Released to Imaging: 11/6/2023 11:57:53 AM 14

Job Number: 880-31280-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/8/2023 11:29:37 AM

# **JOB DESCRIPTION**

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-31272-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information.

# **Eurofins Midland**

# **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 8/8/2023 11:29:37 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31272-1 SDG: Lea County, New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

2

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 280 of 406

Job ID: 880-31272-1 SDG: Lea County, New Mexico

# Qualifiers

| Quaimers       |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| S1-            | Surrogate recovery exceeds control limits, low biased.                                                      |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    | 5  |
| GC Semi VOA    |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| *1             | LCS/LCSD RPD exceeds control limits.                                                                        |    |
| S1+            | Surrogate recovery exceeds control limits, high biased.                                                     |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary       |                                                                                                             | 8  |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | Q  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            |    |
| CFL            | Contains Free Liquid                                                                                        |    |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | 13 |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |    |
|                |                                                                                                             |    |

| Appreviation   | These commonly used appreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| MPN            | Most Probable Number                                                                                        |
| MQL            | Method Quantitation Limit                                                                                   |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| NEG            | Negative / Absent                                                                                           |
| POS            | Positive / Present                                                                                          |
| PQL            | Practical Quantitation Limit                                                                                |
| PRES           | Presumptive                                                                                                 |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |
| TNTC           | Too Numerous To Count                                                                                       |

#### Job ID: 880-31272-1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31272-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-5 (2') (880-31272-1).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-5 (2') (880-31272-1) and (880-31278-A-1-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-59216 and analytical batch 880-59411 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: S-5 (2') (880-31272-1), (CCV 880-59411/20), (CCV 880-59411/5), (LCS 880-59216/2-A), (880-31305-A-35-C), (880-31305-A-35-D MS) and (880-31305-A-35-E MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD\_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-59216 and analytical batch 880-59411 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

# Lab Sample ID: 880-31272-1

Matrix: Solid

5

# Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Client Sample ID: S-5 (2') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

Г

|                                                                                                                                                                                                                               | Organic Comp                                                                   |                                                                            |                                                                       |     |                                         |   |                                                                |                                                                            |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----|-----------------------------------------|---|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|
| Analyte                                                                                                                                                                                                                       | Result                                                                         | Qualifier                                                                  | RL                                                                    | MDL | Unit                                    | D | Prepared                                                       | Analyzed                                                                   | Dil Fac                       |
| Benzene                                                                                                                                                                                                                       | <0.00198                                                                       | U                                                                          | 0.00198                                                               |     | mg/Kg                                   |   | 08/01/23 09:01                                                 | 08/04/23 04:47                                                             | 1                             |
| Toluene                                                                                                                                                                                                                       | <0.00198                                                                       | U                                                                          | 0.00198                                                               |     | mg/Kg                                   |   | 08/01/23 09:01                                                 | 08/04/23 04:47                                                             | 1                             |
| Ethylbenzene                                                                                                                                                                                                                  | <0.00198                                                                       | U                                                                          | 0.00198                                                               |     | mg/Kg                                   |   | 08/01/23 09:01                                                 | 08/04/23 04:47                                                             | 1                             |
| m-Xylene & p-Xylene                                                                                                                                                                                                           | <0.00396                                                                       | U                                                                          | 0.00396                                                               |     | mg/Kg                                   |   | 08/01/23 09:01                                                 | 08/04/23 04:47                                                             | 1                             |
| o-Xylene                                                                                                                                                                                                                      | <0.00198                                                                       | U                                                                          | 0.00198                                                               |     | mg/Kg                                   |   | 08/01/23 09:01                                                 | 08/04/23 04:47                                                             | 1                             |
| Xylenes, Total                                                                                                                                                                                                                | <0.00396                                                                       | U                                                                          | 0.00396                                                               |     | mg/Kg                                   |   | 08/01/23 09:01                                                 | 08/04/23 04:47                                                             | 1                             |
| Surrogate                                                                                                                                                                                                                     | %Recovery                                                                      | Qualifier                                                                  | Limits                                                                |     |                                         |   | Prepared                                                       | Analyzed                                                                   | Dil Fac                       |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                   | 105                                                                            |                                                                            | 70 - 130                                                              |     |                                         |   | 08/01/23 09:01                                                 | 08/04/23 04:47                                                             | 1                             |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                    | 69                                                                             | S1-                                                                        | 70 - 130                                                              |     |                                         |   | 08/01/23 09:01                                                 | 08/04/23 04:47                                                             | 1                             |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                | otal BTEX Calo                                                                 | culation                                                                   |                                                                       |     |                                         |   |                                                                |                                                                            |                               |
| Analyte                                                                                                                                                                                                                       | Result                                                                         | Qualifier                                                                  | RL                                                                    | MDL | Unit                                    | D | Prepared                                                       | Analyzed                                                                   | Dil Fac                       |
|                                                                                                                                                                                                                               |                                                                                |                                                                            |                                                                       |     |                                         |   |                                                                |                                                                            |                               |
| Total BTEX                                                                                                                                                                                                                    | <0.00396                                                                       | U                                                                          | 0.00396                                                               |     | mg/Kg                                   |   | ·                                                              | 08/04/23 10:48                                                             | 1                             |
| Total BTEX<br>Method: SW846 8015 NM - Diese                                                                                                                                                                                   |                                                                                |                                                                            |                                                                       |     | mg/Kg                                   |   |                                                                | 08/04/23 10:48                                                             | 1                             |
| -                                                                                                                                                                                                                             | I Range Organ                                                                  |                                                                            |                                                                       | MDL | mg/Kg<br>Unit                           | D | Prepared                                                       | 08/04/23 10:48<br>Analyzed                                                 | 1<br>Dil Fac                  |
| Method: SW846 8015 NM - Diese                                                                                                                                                                                                 | I Range Organ                                                                  | <mark>ics (DRO) (</mark><br>Qualifier                                      | GC)                                                                   | MDL |                                         | D | Prepared                                                       |                                                                            | 1<br>1                        |
| Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                      | I Range Organ<br>Result<br><50.3                                               | ics (DRO) (<br>Qualifier<br>U                                              | GC)<br>                                                               | MDL | Unit                                    | D | Prepared                                                       | Analyzed                                                                   | 1<br>1                        |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                                                        | I Range Organ<br>Result<br><50.3<br>sel Range Orga                             | ics (DRO) (<br>Qualifier<br>U                                              | GC)<br>                                                               |     | Unit                                    | D | Prepared                                                       | Analyzed                                                                   | 1<br>Dil Fac<br>1<br>Dil Fac  |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                                                                                                                         | I Range Organ<br>Result<br><50.3<br>sel Range Orga                             | ics (DRO) (<br>Qualifier<br>U<br>anics (DRO)<br>Qualifier                  | GC)<br><u>RL</u><br>50.3<br>(GC)                                      |     | Unit<br>mg/Kg                           |   |                                                                | Analyzed<br>08/08/23 12:15                                                 | 1                             |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics                                                                                                  | I Range Organ<br>Result<br><50.3<br>sel Range Orga<br>Result                   | ics (DRO) (<br>Qualifier<br>U<br>anics (DRO)<br>Qualifier                  | GC)                                                                   |     | Unit<br>mg/Kg<br>Unit                   |   | Prepared                                                       | Analyzed<br>08/08/23 12:15<br>Analyzed                                     | 1                             |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                  | I Range Organ<br>Result<br><50.3<br>sel Range Orga<br>Result                   | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U              | GC)                                                                   |     | Unit<br>mg/Kg<br>Unit                   |   | Prepared                                                       | Analyzed<br>08/08/23 12:15<br>Analyzed                                     | 1                             |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                       | I Range Organ<br>Result<br><50.3<br>sel Range Orga<br>Result<br><50.3<br><50.3 | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U<br>U *1      | GC)<br><u>RL</u><br>50.3<br>(GC)<br><u>RL</u><br>50.3<br>50.3         |     | Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |   | Prepared<br>08/03/23 10:03<br>08/03/23 10:03                   | Analyzed<br>08/08/23 12:15<br>Analyzed<br>08/07/23 18:11<br>08/07/23 18:11 | 1<br>Dil Fac<br>1             |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                       | I Range Organ<br>Result<br><50.3<br>sel Range Orga<br>Result<br><50.3          | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U<br>U *1      | GC)<br><u>RL</u><br>50.3<br>(GC)<br><u>RL</u><br>50.3                 |     | Unit<br>mg/Kg<br>Unit<br>mg/Kg          |   | Prepared<br>08/03/23 10:03                                     | Analyzed<br>08/08/23 12:15<br>Analyzed<br>08/07/23 18:11                   | 1                             |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36) | I Range Organ<br>Result<br><250.3 Sel Range Orga Result <250.3 <250.3          | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U<br>U *1<br>U | GC)<br><u>RL</u><br>50.3<br>(GC)<br><u>RL</u><br>50.3<br>50.3         |     | Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |   | Prepared<br>08/03/23 10:03<br>08/03/23 10:03                   | Analyzed<br>08/08/23 12:15<br>Analyzed<br>08/07/23 18:11<br>08/07/23 18:11 | <b>Dil Fac</b><br>1<br>1<br>1 |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte                                                                                                                             | I Range Organ<br>Result<br><50.3 sel Range Orga Result <50.3 <50.3 <50.3       | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U<br>U *1<br>U | GC)<br><u>RL</u><br>50.3<br>(GC)<br><u>RL</u><br>50.3<br>50.3<br>50.3 |     | Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |   | Prepared<br>08/03/23 10:03<br>08/03/23 10:03<br>08/03/23 10:03 | Analyzed<br>08/08/23 12:15<br>Analyzed<br>08/07/23 18:11<br>08/07/23 18:11 | 1<br>Dil Fac<br>1             |

Eurofins Midland

**Released to Imaging: 11/6/2023 11:57:53 AM** 

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------------|------------------------|----------|----------|------------------------------------------------|
|                     |                        | BFB1     | DFBZ1    |                                                |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31272-1         | S-5 (2')               | 105      | 69 S1-   |                                                |
| 880-31278-A-1-B MS  | Matrix Spike           | 121      | 124      |                                                |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | 119      | 91       |                                                |
| LCS 880-58969/1-A   | Lab Control Sample     | 115      | 111      |                                                |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | 114      | 109      |                                                |
| MB 880-58969/5-A    | Method Blank           | 73       | 79       |                                                |
| MB 880-59110/5-A    | Method Blank           | 68 S1-   | 100      |                                                |
| Surrogate Legend    |                        |          |          |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|                      |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |    |
|----------------------|------------------------|----------|----------|------------------------------------------------|----|
|                      |                        | 1CO1     | OTPH1    |                                                |    |
| Lab Sample ID        | Client Sample ID       | (70-130) | (70-130) |                                                | 13 |
| 880-31272-1          | S-5 (2')               | 135 S1+  | 134 S1+  |                                                |    |
| 880-31305-A-35-D MS  | Matrix Spike           | 144 S1+  | 154 S1+  |                                                |    |
| 880-31305-A-35-E MSD | Matrix Spike Duplicate | 163 S1+  | 177 S1+  |                                                |    |
| LCS 880-59216/2-A    | Lab Control Sample     | 130      | 150 S1+  |                                                |    |
| LCSD 880-59216/3-A   | Lab Control Sample Dup | 103      | 122      |                                                |    |
| MB 880-59216/1-A     | Method Blank           | 137 S1+  | 158 S1+  |                                                |    |
|                      |                        |          |          |                                                |    |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 283 of 406

# 5: Lea County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

Eurofins Midland

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |
|---------------------------------|
| Matrix: Solid                   |
| Analysis Batch: 59172           |

|                             | MB        | MB        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |

#### Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

#### Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58969/2-A

## Matrix: Solid

| Analysis Batch: 59172 |       |         |           |       |   |      | Prep     | Batch: | 58969 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08592 |           | mg/Kg |   | 86   | 70 - 130 | 9      | 35    |
| Toluene               | 0.100 | 0.08219 |           | mg/Kg |   | 82   | 70 - 130 | 6      | 35    |
| Ethylbenzene          | 0.100 | 0.08963 |           | mg/Kg |   | 90   | 70 - 130 | 12     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1870  |           | mg/Kg |   | 94   | 70 - 130 | 12     | 35    |
| o-Xylene              | 0.100 | 0.09268 |           | mg/Kg |   | 93   | 70 - 130 | 12     | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

# Lab Sample ID: 880-31278-A-1-B MS

# Matrix: Solid

| Analysis Batch: 59172 |          |           |        |         |           |       |   |      | Prep     | Batch: 58969 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |              |

**Eurofins Midland** 

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

5 6 7

Prep Type: Total/NA Prep Batch: 58969

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 58969

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

Client Sample ID: Lab Control Sample Dup

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31272-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-4  | A-1-B MS  |       |           |          |         |     |        |       |          |          | Client S  | Sample ID:  |         |         |
|-----------------------------|-----------|-------|-----------|----------|---------|-----|--------|-------|----------|----------|-----------|-------------|---------|---------|
| Matrix: Solid               |           |       |           |          |         |     |        |       |          |          |           | Prep Ty     | -       |         |
| Analysis Batch: 59172       |           |       |           |          |         |     |        |       |          |          |           |             | Batch:  | 5896    |
|                             | Sample    |       |           | Spike    | MS      | MS  |        |       |          |          |           | %Rec        |         |         |
| Analyte                     | Result    | Quali | fier      | Added    | Result  | Qua | lifier | Unit  |          | D        | %Rec      | Limits      |         |         |
| Ethylbenzene                | <0.00202  | U     |           | 0.0994   | 0.1030  |     |        | mg/Kg |          |          | 104       | 70 - 130    |         |         |
| m-Xylene & p-Xylene         | <0.00403  | U     |           | 0.199    | 0.2125  |     |        | mg/Kg |          |          | 107       | 70 - 130    |         |         |
| o-Xylene                    | <0.00202  | U     |           | 0.0994   | 0.1040  |     |        | mg/Kg |          |          | 105       | 70 - 130    |         |         |
|                             | MS        |       |           |          |         |     |        |       |          |          |           |             |         |         |
| Surrogate                   |           | Qual  | ifier     | Limits   |         |     |        |       |          |          |           |             |         |         |
| 4-Bromofluorobenzene (Surr) | 121       |       |           | 70 - 130 |         |     |        |       |          |          |           |             |         |         |
| 1,4-Difluorobenzene (Surr)  | 124       |       |           | 70 - 130 |         |     |        |       |          |          |           |             |         |         |
| Lab Sample ID: 880-31278-4  | A-1-C MSD |       |           |          |         |     |        | (     | Clien    | t Sa     | mple ID:  | Matrix Spi  | ike Duj | plicate |
| Matrix: Solid               |           |       |           |          |         |     |        |       |          |          |           | Prep Ty     | /pe: To | otal/N/ |
| Analysis Batch: 59172       |           |       |           |          |         |     |        |       |          |          |           | Prep        | Batch:  | 58969   |
|                             | Sample    | Samp  | ble       | Spike    | MSD     | MSD | )      |       |          |          |           | %Rec        |         | RPD     |
| Analyte                     | Result    |       | fier      | Added    | Result  | Qua | lifier | Unit  |          | <u>D</u> | %Rec      | Limits      | RPD     | Limi    |
| Benzene                     | <0.00202  | U     |           | 0.0998   | 0.09502 |     |        | mg/Kg |          |          | 95        | 70 - 130    | 5       | 35      |
| Toluene                     | <0.00202  | U     |           | 0.0998   | 0.09100 |     |        | mg/Kg |          |          | 91        | 70 - 130    | 3       | 35      |
| Ethylbenzene                | <0.00202  | U     |           | 0.0998   | 0.1021  |     |        | mg/Kg |          |          | 102       | 70 - 130    | 1       | 35      |
| m-Xylene & p-Xylene         | <0.00403  | U     |           | 0.200    | 0.2097  |     |        | mg/Kg |          |          | 105       | 70 - 130    | 1       | 35      |
| o-Xylene                    | <0.00202  | U     |           | 0.0998   | 0.1024  |     |        | mg/Kg |          |          | 103       | 70 - 130    | 2       | 3       |
|                             | MSD       |       |           |          |         |     |        |       |          |          |           |             |         |         |
| Surrogate                   |           | Qual  | ifier     | Limits   |         |     |        |       |          |          |           |             |         |         |
| 4-Bromofluorobenzene (Surr) | 119       |       |           | 70 - 130 |         |     |        |       |          |          |           |             |         |         |
| 1,4-Difluorobenzene (Surr)  | 91        |       |           | 70 - 130 |         |     |        |       |          |          |           |             |         |         |
| Lab Sample ID: MB 880-591   | 10/5-A    |       |           |          |         |     |        |       |          | •        | Client Sa | ample ID: N |         |         |
| Matrix: Solid               |           |       |           |          |         |     |        |       |          |          |           | Prep Ty     | -       |         |
| Analysis Batch: 59172       |           |       |           |          |         |     |        |       |          |          |           | Prep        | Batch:  | 59110   |
|                             |           | ΜВ    | MB        |          |         |     |        |       |          |          |           |             |         |         |
| Analyte                     |           |       | Qualifier | RL       |         | MDL | Unit   |       | <u>D</u> | Pr       | epared    | Analyze     |         | Dil Fa  |
| Benzene                     | <0.00     |       | U         | 0.00200  |         |     | mg/Kg  | -     |          |          | /23 11:14 | 08/03/23 1  |         |         |
| Toluene                     | <0.00     | 200   | U         | 0.00200  | )       |     | mg/Kg  | g     |          | 08/02    | /23 11:14 | 08/03/23 1  | 1:30    |         |
| Ethylbenzene                | <0.00     | 200   | U         | 0.00200  | )       |     | mg/Ko  | 9     |          | 08/02    | /23 11:14 | 08/03/23 1  | 1:30    |         |
| m-Xylene & p-Xylene         | <0.00     | 400   | U         | 0.00400  | )       |     | mg/Ko  | g     |          | 08/02    | /23 11:14 | 08/03/23 1  | 1:30    |         |
| o-Xylene                    | <0.00     | 200   | U         | 0.00200  | )       |     | mg/Kg  | 9     |          | 08/02    | /23 11:14 | 08/03/23 1  | 1:30    |         |
| Xylenes, Total              | <0.00     | 400   | U         | 0.00400  |         |     | mg/Kg  | g     |          | 08/02    | /23 11:14 | 08/03/23 1  | 1:30    |         |
|                             |           |       | МВ        |          |         |     |        |       |          |          |           |             |         |         |
| Surrogate                   | %Recov    |       | Qualifier | Limits   | -       |     |        |       | _        |          | epared    | Analyze     |         | Dil Fa  |
| 4-Bromofluorobenzene (Surr) |           |       | S1-       | 70 - 130 |         |     |        |       |          |          | /23 11:14 | 08/03/23 1  |         |         |
| 1,4-Difluorobenzene (Surr)  |           | 100   |           | 70 - 130 |         |     |        |       |          | 08/02    | /23 11:14 | 08/03/23 1  | 1:30    |         |

| Lab Sample ID: MB 880-59216/1-A<br>Matrix: Solid<br>Analysis Batch: 59411 |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA |
|---------------------------------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|---------------------------------------------------------|----------|
|                                                                           | MB     | MB        |      |     |       |   |                |                                                         |          |
| Analyte                                                                   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                                                | Dil Fac  |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/03/23 10:03 | 08/07/23 07:49                                          | 1        |
| (GRO)-C6-C10                                                              |        |           |      |     |       |   |                |                                                         |          |

Eurofins Midland

| Method: 8015B | NM - Diesel    | Range  | Organics | (GC) | (Continued) |
|---------------|----------------|--------|----------|------|-------------|
| Methou. 0013D | ININI - DIESEI | Trange | Organics |      | (Commueu)   |

| Lab Sample ID: MB 880-59216                  | /1 <b>-A</b> |             |          |        |     |        |       |        |       | Client Sa  | ample ID: I          |          |        |
|----------------------------------------------|--------------|-------------|----------|--------|-----|--------|-------|--------|-------|------------|----------------------|----------|--------|
| Matrix: Solid                                |              |             |          |        |     |        |       |        |       |            | Prep T               |          |        |
| Analysis Batch: 59411                        |              |             |          |        |     |        |       |        |       |            | Prep                 | Batch    | : 5921 |
|                                              | ME           |             |          |        |     |        |       |        |       |            |                      |          |        |
| Analyte                                      | Resul        |             |          |        | MDL | Unit   |       | D      | Pi    | repared    | Analyz               |          | Dil Fa |
| Diesel Range Organics (Over<br>C10-C28)      | <50.0        | ) U         | 50.0     |        |     | mg/Kg  |       |        | 08/03 | 3/23 10:03 | 08/07/23 0           | 07:49    |        |
| Oll Range Organics (Over C28-C36)            | <50.0        | ) U         | 50.0     |        |     | mg/Kg  |       |        | 08/03 | 3/23 10:03 | 08/07/23 0           | 07:49    |        |
|                                              | ME           | 3 MB        |          |        |     |        |       |        |       |            |                      |          |        |
| Surrogate                                    | %Recover     | / Qualifier | Limits   |        |     |        |       | _      | PI    | repared    | Analyz               | ed       | Dil Fa |
| 1-Chlorooctane                               | 13           | 7 S1+       | 70 - 130 |        |     |        |       |        | 08/0  | 3/23 10:03 | 08/07/23 (           | 07:49    |        |
| p-Terphenyl                                  | 15           | 3 S1+       | 70 - 130 |        |     |        |       |        | 08/0  | 3/23 10:03 | 08/07/23 (           | 07:49    |        |
| Lab Sample ID: LCS 880-5921                  | 6/2-A        |             |          |        |     |        |       | Cli    | ient  | Sample     | ID: Lab Co           | ontrol s | Sample |
| Matrix: Solid                                |              |             |          |        |     |        |       |        |       |            | Prep T               |          |        |
| Analysis Batch: 59411                        |              |             |          |        |     |        |       |        |       |            |                      | Batch    |        |
| -                                            |              |             | Spike    | LCS    | LCS |        |       |        |       |            | %Rec                 |          |        |
| Analyte                                      |              |             | Added    | Result | Qua | lifier | Unit  |        | D     | %Rec       | Limits               |          |        |
| Gasoline Range Organics                      |              |             | 1000     | 1053   |     |        | mg/Kg |        | _     | 105        | 70 - 130             |          |        |
| GRO)-C6-C10<br>Diesel Range Organics (Over   |              |             | 1000     | 1214   |     |        | mg/Kg |        |       | 121        | 70 - 130             |          |        |
| C10-C28)                                     |              |             |          |        |     |        |       |        |       |            |                      |          |        |
|                                              | LCS LC       |             |          |        |     |        |       |        |       |            |                      |          |        |
| Surrogate                                    | %Recovery Qu | alifier     | Limits   |        |     |        |       |        |       |            |                      |          |        |
| 1-Chlorooctane                               | 130          |             | 70 - 130 |        |     |        |       |        |       |            |                      |          |        |
| p-Terphenyl                                  | 150 S1       | +           | 70 - 130 |        |     |        |       |        |       |            |                      |          |        |
| Lab Sample ID: LCSD 880-592<br>Matrix: Solid | 16/3-A       |             |          |        |     |        | Cli   | ient S | Sam   | ple ID: L  | ab Contro.<br>Prep T |          |        |
| Analysis Batch: 59411                        |              |             |          |        |     |        |       |        |       |            |                      | Batch    |        |
|                                              |              |             | Spike    | LCSD   | LCS | D      |       |        |       |            | %Rec                 |          | RP     |
| Analyte                                      |              |             | Added    | Result | Qua | lifier | Unit  |        | D     | %Rec       | Limits               | RPD      | Lim    |
| Gasoline Range Organics                      |              |             | 1000     | 899.2  |     |        | mg/Kg |        | _     | 90         | 70 - 130             | 16       | 2      |
| (GRO)-C6-C10                                 |              |             |          |        |     |        |       |        |       |            |                      |          |        |
| Diesel Range Organics (Over<br>C10-C28)      |              |             | 1000     | 968.7  | *1  |        | mg/Kg |        |       | 97         | 70 - 130             | 22       | 2      |
|                                              | LCSD LC      | SD          |          |        |     |        |       |        |       |            |                      |          |        |
| Surrogate                                    | %Recovery Qu |             | Limits   |        |     |        |       |        |       |            |                      |          |        |
| 1-Chlorooctane                               | 103          |             | 70 - 130 |        |     |        |       |        |       |            |                      |          |        |
| p-Terphenyl                                  | 122          |             | 70 - 130 |        |     |        |       |        |       |            |                      |          |        |
| Lab Sample ID: 880-31305-A-3                 | 5-D MS       |             |          |        |     |        |       |        |       | Client     | Sample ID:           | Matri    | r Snik |
| Matrix: Solid                                |              |             |          |        |     |        |       |        |       | Gient      | Prep T               |          |        |
| Analysis Batch: 59411                        |              |             |          |        |     |        |       |        |       |            |                      | Batch    |        |
|                                              | Sample Sa    | nple        | Spike    | MS     | MS  |        |       |        |       |            | %Rec                 |          |        |
| Analyte                                      | Result Qu    | alifier     | Added    | Result | Qua | lifier | Unit  |        | D     | %Rec       | Limits               |          |        |
| Gasoline Range Organics<br>GRO)-C6-C10       | <50.3 U      |             | 1010     | 952.4  |     |        | mg/Kg |        | _     | 94         | 70 - 130             |          |        |
| Diesel Range Organics (Over<br>C10-C28)      | <50.3 U*     | 1           | 1010     | 1074   |     |        | mg/Kg |        |       | 102        | 70 - 130             |          |        |
|                                              | MS MS        |             |          |        |     |        |       |        |       |            |                      |          |        |
| Surrogate                                    | %Recovery Qu |             | Limits   |        |     |        |       |        |       |            |                      |          |        |
| 1-Chlorooctane                               | 144 S1       |             | 70 - 130 |        |     |        |       |        |       |            |                      |          |        |
| I-Chlorooclane                               |              |             |          |        |     |        |       |        |       |            |                      |          |        |

Eurofins Midland

154 S1+

o-Terphenyl

70 - 130

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31272-1 SDG: Lea County, New Mexico

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Matrix: Solid<br>Analysis Batch: 59411     Prep Type: Total/NA<br>Prep Batch: 59216       Sample     Sample     Spike     MSD     MSD     %Rec     RPD       Analyte     Result     Qualifier     Added     Result     Qualifier     Unit     D     %Rec     RPD       Gasoline Range Organics<br>(GRO)-C6-C10     1001     1001     1091     mg/Kg     108     70-130     14     20       Diesel Range Organics (Over<br>C10-C28)     <50.3     U *1     1010     1222     mg/Kg     117     70-130     13     20       Surrogate     %Recovery     Qualifier     Limits       1-Chlorooctane     163     S1+     70-130       o-Terphenyl     177     S1+     70-130                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lab Sample ID: 880-31305-/ | A-35-E MSD |           |          |        |           | CI    | ient Sa | ample IC | : Matrix Sp | ike Dup | licate |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|-----------|----------|--------|-----------|-------|---------|----------|-------------|---------|--------|---|
| SampleSampleSampleSpikeMSDMSDMSD%RecRPDAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDLimitGasoline Range Organics<50.3U10101091mg/Kg10870 - 1301420(GRO)-C6-C10<50.3U*110101222mg/Kg11770 - 1301320Diesel Range Organics (Over<br>C10-C28)<50.3U*110101222mg/Kg11770 - 1301320MSD<br>T-ChlorooctaneMSDMSD </th <th>Matrix: Solid</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Prep T</th> <th>ype: To</th> <th>tal/NA</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix: Solid              |            |           |          |        |           |       |         |          | Prep T      | ype: To | tal/NA |   |
| AnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDLimitGasoline Range Organics<50.3U10101091mg/Kg10870 - 1301420(GRO)-C6-C10<50.3U*110101222mg/Kg11770 - 1301320Diesel Range Organics (Over<br>C10-C28)<50.3U*110101222mg/Kg11770 - 1301320MSD<br>C10-C28)MSDMSDMSDMSDConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstraintsConstrai                                                                                           | Analysis Batch: 59411      |            |           |          |        |           |       |         |          | Prep        | Batch:  | 59216  |   |
| Gasoline Range Organics       <50.3       U       1010       1091       mg/Kg       108       70 - 130       14       20         (GR0)-C6-C10       Diesel Range Organics (Over       <50.3       U *1       1010       1222       mg/Kg       117       70 - 130       13       20         C10-C28)       MSD       MSD       MSD       13       20         Surrogate       %Recovery       Qualifier       Limits       100       130       14       20         1-Chlorooctane       163       S1+       70 - 130       130       14       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | Sample     | Sample    | Spike    | MSD    | MSD       |       |         |          | %Rec        |         | RPD    |   |
| (GRO)-C6-C10<br>Diesel Range Organics (Over<br><br>C10-C28)<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                    | Result     | Qualifier | Added    | Result | Qualifier | Unit  | D       | %Rec     | Limits      | RPD     | Limit  |   |
| Diesel Range Organics (Over       <50.3       U *1       1010       1222       mg/Kg       117       70 - 130       13       20         C10-C28)       MSD       MSD       MSD       MSD       1010       1222       mg/Kg       117       70 - 130       13       20         Surrogate       %Recovery       Qualifier       Limits       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100 | 5 5                        | <50.3      | U         | 1010     | 1091   |           | mg/Kg |         | 108      | 70 - 130    | 14      | 20     |   |
| C10-C28)<br>MSD MSD<br>Surrogate <u>%Recovery Qualifier</u> Limits<br>1-Chlorooctane <u>163</u> S1+ 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |            |           |          |        |           |       |         |          |             |         |        | ÷ |
| MSDMSDSurrogate%RecoveryQualifierLimits1-Chlorooctane163\$1+70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | <50.3      | U *1      | 1010     | 1222   |           | mg/Kg |         | 117      | 70 - 130    | 13      | 20     |   |
| Surrogate%RecoveryQualifierLimits1-Chlorooctane163\$1+70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 010-028)                   |            |           |          |        |           |       |         |          |             |         |        | 1 |
| 1-Chlorooctane 163 S1+ 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | MSD        | MSD       |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Surrogate                  | %Recovery  | Qualifier | Limits   |        |           |       |         |          |             |         |        | 2 |
| o-Terphenyl 177 S1+ 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-Chlorooctane             |            |           | 70 - 130 |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o-Terphenyl                | 177        | S1+       | 70 - 130 |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |            |           |          |        |           |       |         |          |             |         |        |   |

Eurofins Midland

**Client Sample ID** 

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

**Client Sample ID** 

**Client Sample ID** 

Method Blank

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

S-5 (2')

Method Blank

Method Blank

Matrix Spike

S-5 (2')

# **QC** Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Carmona Resources Project/Site: Tonto 15 State #1

**GC VOA** 

Prep Batch: 58969

MB 880-58969/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31278-A-1-B MS

880-31278-A-1-C MSD

Prep Batch: 59110

MB 880-59110/5-A

Analysis Batch: 59172

Lab Sample ID

Lab Sample ID

MB 880-58969/5-A

MB 880-59110/5-A

LCS 880-58969/1-A

LCSD 880-58969/2-A

880-31278-A-1-B MS

880-31272-1

Lab Sample ID

880-31272-1

Job ID: 880-31272-1 SDG: Lea County, New Mexico

Method

5035

5035

5035

5035

5035

5035

Method

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

8015 NM

5035

Page 288 of 406

Prep Batch

Prep Batch

Prep Batch

58969

58969

59110

58969

58969

58969

58969

# 8

# 880-31278-A-1-C MSD Analysis Batch: 59320

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31272-1   | S-5 (2')         | Total/NA  | Solid  | Total BTEX |            |

#### GC Semi VOA

#### Prep Batch: 59216

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|----------------------|------------------------|-----------|--------|-------------|------------|
| 880-31272-1          | S-5 (2')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59216/1-A     | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59216/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59216/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31305-A-35-D MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31305-A-35-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 59411

880-31272-1

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31272-1           | S-5 (2')               | Total/NA  | Solid  | 8015B NM | 59216      |
| MB 880-59216/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59216      |
| LCS 880-59216/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59216      |
| LCSD 880-59216/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59216      |
| 880-31305-A-35-D MS   | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59216      |
| 880-31305-A-35-E MSD  | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59216      |
| Analysis Batch: 59636 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |

Total/NA

S-5 (2')
## Lab Chronicle

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Client Sample ID: S-5 (2') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

|          | Job ID: | 880-3 | 1272-1 |
|----------|---------|-------|--------|
| SDG: Lea | County, | New   | Mexico |

### Lab Sample ID: 880-31272-1 Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/04/23 04:47 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59320  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59636  | 08/08/23 12:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.95 g  | 10 mL  | 59216  | 08/03/23 10:03 | ТКС     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59411  | 08/07/23 18:11 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Page 289 of 406

5 6

9

Page 290 of 406

10

| Job ID: 880-31272-1         |
|-----------------------------|
| SDG: Lea County, New Mexico |

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                 | P                              | rogram                           | Identification Number                        | Expiration Date           |
|-------------------------------------------|--------------------------------|----------------------------------|----------------------------------------------|---------------------------|
| Texas                                     |                                | IELAP                            | T104704400-23-26                             | 06-30-24                  |
| The following analytes                    | are included in this report, b | out the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for w |
| the agency does not of                    |                                |                                  |                                              |                           |
| the agency does not of<br>Analysis Method | fer certification. Prep Method | Matrix                           | Analyte                                      |                           |
| 0,                                        |                                | Matrix<br>Solid                  | Analyte<br>Total TPH                         |                           |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

## **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31272-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                        | Protocol                                | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                           | SW846                                   | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                    | TAL SOP                                 | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                              | SW846                                   | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                           | SW846                                   | EET MID    |
| Protocol Refe | rences;                                                                                                                                   |                                         |            |
|               | 'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E<br>= TestAmerica Laboratories, Standard Operating Procedure | Edition, November 1986 And Its Updates. |            |
|               |                                                                                                                                           | a                                       |            |
| EET MID       | = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-544                                                              | 0                                       |            |
|               |                                                                                                                                           |                                         |            |
|               |                                                                                                                                           |                                         |            |
|               |                                                                                                                                           |                                         |            |
|               |                                                                                                                                           |                                         |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

## Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31272-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31272-1   | S-5 (2')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

| Mrdw                        | Comments Email r                                                                                                                                 |                            |  |  | S-5 (2') | Sample Identification | Total Containers        | Sample Custody Seals   | Cooler Custody Seals. | Received Intact: | SAMPLE RECEIPT | PO#      | Sampler's Name | Project Location       | Project Number | Project Name       | Phone                    | ate ZIP                              | Address 3                 | Company Name                   | Project Manager (      |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|----------|-----------------------|-------------------------|------------------------|-----------------------|------------------|----------------|----------|----------------|------------------------|----------------|--------------------|--------------------------|--------------------------------------|---------------------------|--------------------------------|------------------------|
|                             | esults to Mike Carr                                                                                                                              |                            |  |  |          |                       |                         | Yes No                 | Yes No                | ((es) No         | T Temp Blank   |          | 0              | Lea County             | 2              | Tonto 1            |                          | Midland, TX 79701                    | 310 W Wall St Ste 500     | Carmona Resources              | Clinton Merritt        |
| Relinquished by (Signature) | nona mcarmona@c                                                                                                                                  |                            |  |  | 7 25 23  | Date Time             | Corrected Temperature   | VA Temperature Reading | WAS Correction Factor | Thermor          | k Yes (No      |          | CCM            | Lea County, New Mexico | 2089           | Tonto 15 State #1  |                          |                                      | 0                         |                                |                        |
|                             | armonaresource                                                                                                                                   |                            |  |  | ×        | Soil                  | nperature<br>1          | Reading                | ctor                  |                  | Wet Ice        |          |                | Due Date               | ✓ Routine      | Tum                | Email                    |                                      |                           |                                |                        |
|                             | is com, Conner I                                                                                                                                 |                            |  |  | G        | Water Comp            | 4.5                     | 4.8                    | Se': 1                | TRB              | (res) No       |          |                | 5 dav                  | Rush           | Turn Around        | msanjari@marathonoil.com | City State ZIP                       | Address                   | Company Name                   | Bill to (if different) |
| 1-26-2                      | Vloehring cm                                                                                                                                     |                            |  |  | 1<br>×   | #of<br>Cont           |                         | вт                     |                       | 8021             |                | 'S       |                |                        | Pres.<br>Code  |                    | honoil com               | Hous                                 | T 066                     | Mara                           | Melo                   |
| -23<br>04S                  | oehring@c                                                                                                                                        |                            |  |  | ×        | TP                    | H 801                   |                        |                       | 0 + I<br>le 30   |                | + MI     | RO)            |                        |                |                    |                          | Houston TX 77024                     | 990 Town and Country Blvd | Marathon Oil Corporation       | Melodie Sanjari        |
|                             | armonaresources com,                                                                                                                             | -   88 :                   |  |  |          |                       |                         | ***                    |                       |                  |                |          |                |                        |                | ANALYSIS REQUEST   |                          |                                      | ntry Blvd                 | oration                        |                        |
| Received by (Signature)     | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint MerrittC@carmonaresources com | 880-31272 Chain of Custody |  |  |          |                       |                         |                        |                       |                  |                |          |                |                        |                | REQUEST            | Deliverables EDD AC      | Reporting Level II Level III OST/UST | State of Project          | Program UST/PST PRP rownfields | Work Ord               |
|                             | esources com                                                                                                                                     |                            |  |  |          | Samp                  | NaOH+Asc                | Zn Acetate+NaOH Zn     | Na-S-O NaSO           | NaHSO4 NABIS     |                | H-SO, H- |                |                        | None NO        | Prese              | ADaPT D ot               | ST/UST RRP                           | į                         | ownfields RC                   | Work Order Comments    |
| Date/Time                   |                                                                                                                                                  |                            |  |  |          | Sample Comments       | NaOH+Ascorbic Acid SAPC | NaOH Zn                | OSE                   | ABIS             |                |          | UND TW         |                        | DI Water: H.O  | Preservative Codes | Other                    |                                      |                           | RC Diperfund F                 |                        |

### Received by OCD: 9/21/2023 6:16:51 AM

## 8/8/2023

Work Order No:

Page 293 of 406

Job Number: 880-31272-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

## Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31272 List Number: 1 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
|                                                                                  |        |         |

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

## **PREPARED FOR**

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/8/2023 11:30:10 AM

## JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

## **JOB NUMBER**

880-31273-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Page 1 of 18



## **Eurofins Midland**

## Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## Authorization

AMER

Generated 8/8/2023 11:30:10 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31273-1 SDG: Lea County, New Mexico

Page 297 of 406

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 298 of 406

Job ID: 880-31273-1 SDG: Lea County, New Mexico

| -   |      |      |     |
|-----|------|------|-----|
| ()) | lla. | IITI | ers |
| 9   | uu   |      | 013 |

| Quaimers     |                                                                                            | - 3 |
|--------------|--------------------------------------------------------------------------------------------|-----|
| GC VOA       |                                                                                            |     |
| Qualifier    | Qualifier Description                                                                      |     |
| S1-          | Surrogate recovery exceeds control limits, low biased.                                     | _   |
| U            | Indicates the analyte was analyzed for but not detected.                                   | 5   |
| GC Semi VO   | Α                                                                                          |     |
| Qualifier    | Qualifier Description                                                                      |     |
| *1           | LCS/LCSD RPD exceeds control limits.                                                       |     |
| S1+          | Surrogate recovery exceeds control limits, high biased.                                    |     |
| U            | Indicates the analyte was analyzed for but not detected.                                   |     |
| Glossary     |                                                                                            | 8   |
| Abbreviation | These commonly used abbreviations may or may not be present in this report.                | Q   |
| ¤            | Listed under the "D" column to designate that the result is reported on a dry weight basis | 3   |
| %R           | Percent Recovery                                                                           |     |
| CFL          | Contains Free Liquid                                                                       |     |
|              |                                                                                            |     |

| CFU            | Colony Forming Unit                                                                                         |
|----------------|-------------------------------------------------------------------------------------------------------------|
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| MPN            | Most Probable Number                                                                                        |
| MQL            | Method Quantitation Limit                                                                                   |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| NEG            | Negative / Absent                                                                                           |
| POS            | Positive / Present                                                                                          |
| PQL            | Practical Quantitation Limit                                                                                |
| PRES           | Presumptive                                                                                                 |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
|                |                                                                                                             |

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Midland

#### Job ID: 880-31273-1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31273-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-5 (3') (880-31273-1).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-5 (3') (880-31273-1) and (880-31278-A-1-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-59216 and analytical batch 880-59411 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-59411/20), (CCV 880-59411/5), (LCS 880-59216/2-A), (880-31305-A-35-C), (880-31305-A-35-D MS) and (880-31305-A-35-E MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD\_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-59216 and analytical batch 880-59411 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

## Lab Sample ID: 880-31273-1

Matrix: Solid

5

# Project/Site: Tonto 15 State #1 Client Sample ID: S-5 (3')

Client: Carmona Resources

Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

Г

| Analyte                                       | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                                       | < 0.00199      | U           | 0.00199  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:08 | 1       |
| Toluene                                       | <0.00199       | U           | 0.00199  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:08 | 1       |
| Ethylbenzene                                  | <0.00199       | U           | 0.00199  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:08 | 1       |
| m-Xylene & p-Xylene                           | <0.00398       | U           | 0.00398  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:08 | 1       |
| o-Xylene                                      | <0.00199       | U           | 0.00199  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:08 | 1       |
| Xylenes, Total                                | <0.00398       | U           | 0.00398  |     | mg/Kg |   | 08/01/23 09:01 | 08/04/23 05:08 | 1       |
| Surrogate                                     | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)                   | 88             |             | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/04/23 05:08 | 1       |
| 1,4-Difluorobenzene (Surr)                    | 57             | S1-         | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/04/23 05:08 | 1       |
| Method: TAL SOP Total BTEX - T                | otal BTEX Calo | culation    |          |     |       |   |                |                |         |
| Analyte                                       | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                                    | <0.00398       | U           | 0.00398  |     | mg/Kg |   |                | 08/04/23 10:48 | 1       |
| Method: SW846 8015 NM - Diese                 | I Range Organ  | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                                       | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                                     | <50.4          | U           | 50.4     |     | mg/Kg |   |                | 08/08/23 12:15 | 1       |
| Method: SW846 8015B NM - Dies                 | el Range Orga  | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                                       | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10       | <50.4          | U           | 50.4     |     | mg/Kg |   | 08/03/23 10:03 | 08/07/23 18:34 | 1       |
| Diesel Range Organics (Over                   | <50.4          | U *1        | 50.4     |     | mg/Kg |   | 08/03/23 10:03 | 08/07/23 18:34 | 1       |
| C10-C28)<br>Oll Range Organics (Over C28-C36) | <50.4          | U           | 50.4     |     | mg/Kg |   | 08/03/23 10:03 | 08/07/23 18:34 | 1       |
| Surrogate                                     | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                                | 102            |             | 70 - 130 |     |       |   | 08/03/23 10:03 | 08/07/23 18:34 | 1       |
|                                               |                |             |          |     |       |   |                |                |         |

Released to Imaging: 11/6/2023 11:57:53 AM

Prep Type: Total/NA

Prep Type: Total/NA

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |     |
|---------------------|------------------------|----------|----------|------------------------------------------------|-----|
|                     |                        | BFB1     | DFBZ1    |                                                |     |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) | ·                                              |     |
| 880-31273-1         | S-5 (3')               | 88       | 57 S1-   |                                                |     |
| 880-31278-A-1-B MS  | Matrix Spike           | 121      | 124      |                                                |     |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | 119      | 91       |                                                | 17  |
| LCS 880-58969/1-A   | Lab Control Sample     | 115      | 111      |                                                |     |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | 114      | 109      |                                                | - 5 |
| MB 880-58969/5-A    | Method Blank           | 73       | 79       |                                                |     |
| MB 880-59110/5-A    | Method Blank           | 68 S1-   | 100      |                                                |     |
| Surrogate Legend    |                        |          |          |                                                |     |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|                |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|----------------|------------------------|----------|----------|------------------------------------------------|
|                |                        | 1CO1     | OTPH1    |                                                |
| Sample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |
| 273-1          | S-5 (3')               | 102      | 108      |                                                |
| 305-A-35-D MS  | Matrix Spike           | 144 S1+  | 154 S1+  |                                                |
| 305-A-35-E MSD | Matrix Spike Duplicate | 163 S1+  | 177 S1+  |                                                |
| )-59216/2-A    | Lab Control Sample     | 130      | 150 S1+  |                                                |
| 880-59216/3-A  | Lab Control Sample Dup | 103      | 122      |                                                |
| 80-59216/1-A   | Method Blank           | 137 S1+  | 158 S1+  |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 301 of 406

6

Eurofins Midland

## **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |
|---------------------------------|
| Matrix: Solid                   |

Analysis Batch: 59172

|                             | MB        | MB        |          |     |       |   |                |                |                   |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|-------------------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac           |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1                 |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1                 |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1                 |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1                 |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1                 |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1                 |
|                             | МВ        | МВ        |          |     |       |   |                |                |                   |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac           |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1                 |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1                 |
| 4-Bromofluorobenzene (Surr) | 73        | Qualifier | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | Dil Fac<br>1<br>1 |

#### Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

#### Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       |           |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58969/2-A

#### Matrix: Solid

| Analysis Batch: 59172 |       |         |           |       |   |      | Prep     | Batch: | 58969 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08592 |           | mg/Kg |   | 86   | 70 - 130 | 9      | 35    |
| Toluene               | 0.100 | 0.08219 |           | mg/Kg |   | 82   | 70 - 130 | 6      | 35    |
| Ethylbenzene          | 0.100 | 0.08963 |           | mg/Kg |   | 90   | 70 - 130 | 12     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1870  |           | mg/Kg |   | 94   | 70 - 130 | 12     | 35    |
| o-Xylene              | 0.100 | 0.09268 |           | mg/Kg |   | 93   | 70 - 130 | 12     | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

## Lab Sample ID: 880-31278-A-1-B MS

#### Matrix: Solid Analysis Retaby 50172

| Analysis Batch: 59172 |          |           |        |         |           |       |   |      | Prep     | Batch: 58969 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |              |

**Eurofins Midland** 

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

## **Client Sample ID: Method Blank** Prep Type: Total/NA

SDG: Lea County, New Mexico

Job ID: 880-31273-1

Prep Batch: 58969

13

8/8/2023

#### Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 58969

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31273-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-4  | A-1-B MS  |      |           |          |         |     |        |       |      |       | Client S   | Sample ID:  |         |         |
|-----------------------------|-----------|------|-----------|----------|---------|-----|--------|-------|------|-------|------------|-------------|---------|---------|
| Matrix: Solid               |           |      |           |          |         |     |        |       |      |       |            |             | ype: To |         |
| Analysis Batch: 59172       |           |      |           |          |         |     |        |       |      |       |            | Prep        | Batch:  | 5896    |
|                             | Sample    | Sam  | ple       | Spike    | MS      | MS  |        |       |      |       |            | %Rec        |         |         |
| Analyte                     | Result    |      | ifier     | Added    | Result  | Qua | lifier | Unit  |      | D     | %Rec       | Limits      |         |         |
| Ethylbenzene                | <0.00202  | U    |           | 0.0994   | 0.1030  |     |        | mg/Kg |      |       | 104        | 70 - 130    |         |         |
| m-Xylene & p-Xylene         | < 0.00403 | U    |           | 0.199    | 0.2125  |     |        | mg/Kg |      |       | 107        | 70 - 130    |         |         |
| o-Xylene                    | <0.00202  | U    |           | 0.0994   | 0.1040  |     |        | mg/Kg |      |       | 105        | 70 - 130    |         |         |
|                             | MS        | MS   |           |          |         |     |        |       |      |       |            |             |         |         |
| Surrogate                   |           | Qua  | lifier    | Limits   |         |     |        |       |      |       |            |             |         |         |
| 4-Bromofluorobenzene (Surr) | 121       |      |           | 70 - 130 |         |     |        |       |      |       |            |             |         |         |
| 1,4-Difluorobenzene (Surr)  | 124       |      |           | 70 - 130 |         |     |        |       |      |       |            |             |         |         |
| Lab Sample ID: 880-31278-4  | A-1-C MSD |      |           |          |         |     |        | c     | lien | t Sa  | mple ID:   | Matrix Sp   | oike Du | plicate |
| Matrix: Solid               |           |      |           |          |         |     |        |       |      |       |            | Prep T      | ype: To | otal/N/ |
| Analysis Batch: 59172       |           |      |           |          |         |     |        |       |      |       |            | Prep        | Batch:  | 58969   |
|                             | Sample    | Sam  | ple       | Spike    | MSD     | MSD | )      |       |      |       |            | %Rec        |         | RPD     |
| Analyte                     | Result    | Qua  | ifier     | Added    | Result  | Qua | lifier | Unit  |      | D     | %Rec       | Limits      | RPD     | Limi    |
| Benzene                     | <0.00202  | U    |           | 0.0998   | 0.09502 |     |        | mg/Kg |      |       | 95         | 70 - 130    | 5       | 35      |
| Toluene                     | <0.00202  | U    |           | 0.0998   | 0.09100 |     |        | mg/Kg |      |       | 91         | 70 - 130    | 3       | 35      |
| Ethylbenzene                | <0.00202  | U    |           | 0.0998   | 0.1021  |     |        | mg/Kg |      |       | 102        | 70 - 130    | 1       | 35      |
| m-Xylene & p-Xylene         | <0.00403  | U    |           | 0.200    | 0.2097  |     |        | mg/Kg |      |       | 105        | 70 - 130    | 1       | 35      |
| o-Xylene                    | <0.00202  | U    |           | 0.0998   | 0.1024  |     |        | mg/Kg |      |       | 103        | 70 - 130    | 2       | 3       |
|                             | MSD       | MSD  | 1         |          |         |     |        |       |      |       |            |             |         |         |
| Surrogate                   |           | Qua  | lifier    | Limits   |         |     |        |       |      |       |            |             |         |         |
| 4-Bromofluorobenzene (Surr) | 119       |      |           | 70 - 130 |         |     |        |       |      |       |            |             |         |         |
| 1,4-Difluorobenzene (Surr)  | 91        |      |           | 70 - 130 |         |     |        |       |      |       |            |             |         |         |
| Lab Sample ID: MB 880-591   | 10/5-A    |      |           |          |         |     |        |       |      | (     | Client Sa  | ample ID: I | Method  | l Blanl |
| Matrix: Solid               |           |      |           |          |         |     |        |       |      |       |            | Prep T      | ype: To | otal/N/ |
| Analysis Batch: 59172       |           |      |           |          |         |     |        |       |      |       |            | Prep        | Batch:  | 59110   |
|                             |           | MB   | MB        |          |         |     |        |       |      |       |            |             |         |         |
| Analyte                     | Re        | sult | Qualifier | RL       |         | MDL | Unit   |       | D    | Pr    | epared     | Analyz      | ed      | Dil Fac |
| Benzene                     | <0.00     | 200  | U         | 0.00200  |         | _   | mg/Kg  | 3     | _    | 08/02 | /23 11:14  | 08/03/23    | 11:30   |         |
| Toluene                     | <0.00     | 200  | U         | 0.00200  |         |     | mg/Kg  | 9     |      | 08/02 | /23 11:14  | 08/03/23    | 11:30   |         |
| Ethylbenzene                | <0.00     | 200  | U         | 0.00200  |         |     | mg/Kg  | 3     |      | 08/02 | /23 11:14  | 08/03/23    | 11:30   |         |
| m-Xylene & p-Xylene         | <0.00     | 400  | U         | 0.00400  |         |     | mg/Kg  | 9     |      | 08/02 | /23 11:14  | 08/03/23    | 11:30   |         |
| o-Xylene                    | <0.00     | 200  | U         | 0.00200  |         |     | mg/Kg  | 9     |      | 08/02 | /23 11:14  | 08/03/23    | 11:30   |         |
| Xylenes, Total              | <0.00     | 400  | U         | 0.00400  |         |     | mg/Kg  | 9     |      | 08/02 | /23 11:14  | 08/03/23    | 11:30   |         |
|                             |           | ΜВ   |           |          |         |     |        |       |      |       |            |             |         |         |
| Surrogate                   | %Reco     | -    | Qualifier | Limits   |         |     |        |       | -    |       | epared     | Analyz      |         | Dil Fa  |
| 4-Bromofluorobenzene (Surr) |           |      | S1-       | 70 - 130 |         |     |        |       |      |       | 2/23 11:14 | 08/03/23    |         |         |
| 1,4-Difluorobenzene (Surr)  |           | 100  |           | 70 - 130 |         |     |        |       |      | 08/02 | 2/23 11:14 | 08/03/23    | 11:30   |         |

| Lab Sample ID: MB 880-59216/1-A<br>Matrix: Solid<br>Analysis Batch: 59411 |               |      |     |       | Client Sa | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA       |         |
|---------------------------------------------------------------------------|---------------|------|-----|-------|-----------|---------------------------------------------------------|----------------|---------|
|                                                                           | MB MB         |      |     |       |           |                                                         |                |         |
| Analyte Re                                                                | ult Qualifier | RL   | MDL | Unit  | D         | Prepared                                                | Analyzed       | Dil Fac |
| Gasoline Range Organics                                                   | D.0 U         | 50.0 |     | mg/Kg |           | 08/03/23 10:03                                          | 08/07/23 07:49 | 1       |

Eurofins Midland

(GRO)-C6-C10

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59216/1-A               |            |      |           |          |      |      |        |       |     | Client S                                                                                    | ample ID: I | <b>Nethod</b> | Blank   |
|-----------------------------------------------|------------|------|-----------|----------|------|------|--------|-------|-----|---------------------------------------------------------------------------------------------|-------------|---------------|---------|
| Matrix: Solid                                 |            |      |           |          |      |      |        |       |     |                                                                                             |             | ype: To       |         |
| Analysis Batch: 59411                         |            |      |           |          |      |      |        |       |     |                                                                                             |             | Batch:        |         |
|                                               |            | ΜВ   | МВ        |          |      |      |        |       |     |                                                                                             |             |               |         |
| Analyte                                       | Re         | sult | Qualifier |          | RL   | MDL  | Unit   |       | D   | Prepared                                                                                    | Analyz      | ed            | Dil Fac |
| iesel Range Organics (Over                    | <          | 50.0 | U         | 5        | 50.0 |      | mg/Kg  |       | _   | 08/03/23 10:03                                                                              | 08/07/23 (  | 07:49         | 1       |
| C10-C28)<br>DII Range Organics (Over C28-C36) | <          | 50.0 | U         | 5        | 50.0 |      | mg/Kg  | l     |     | 08/03/23 10:03                                                                              | 08/07/23    | 07:49         | 1       |
|                                               |            | ΜВ   | МВ        |          |      |      |        |       |     |                                                                                             |             |               |         |
| Surrogate                                     | %Reco      | very | Qualifier | Limits   | ;    |      |        |       |     | Prepared                                                                                    | Analyz      | ed            | Dil Fac |
| -Chlorooctane                                 |            | 137  | S1+       | 70 - 13  | 30   |      |        |       |     | 08/03/23 10:03                                                                              | 08/07/23    | 07:49         | 1       |
| -Terphenyl                                    |            | 158  | S1+       | 70 - 13  | 30   |      |        |       |     | 08/03/23 10:03                                                                              | 08/07/23    | 07:49         | 1       |
| .ab Sample ID: LCS 880-59216/2-A              |            |      |           |          |      |      |        |       | С   | lient Sample                                                                                | ID: Lab Co  | ontrol S      | ample   |
| Aatrix: Solid                                 |            |      |           |          |      |      |        |       |     |                                                                                             |             | ype: To       |         |
| Analysis Batch: 59411                         |            |      |           |          |      |      |        |       |     |                                                                                             |             | Batch:        |         |
|                                               |            |      |           | Spike    | LC   | LCS  |        |       |     |                                                                                             | %Rec        |               |         |
| nalyte                                        |            |      |           | Added    | Resu | Qua  | lifier | Unit  |     | D %Rec                                                                                      | Limits      |               |         |
| Gasoline Range Organics                       |            |      |           | 1000     | 105  |      |        | mg/Kg |     | 105                                                                                         | 70 - 130    |               |         |
| GRO)-C6-C10                                   |            |      |           |          |      |      |        | 5 5   |     |                                                                                             |             |               |         |
| iesel Range Organics (Over<br>:10-C28)        |            |      |           | 1000     | 121  |      |        | mg/Kg |     | 121                                                                                         | 70 - 130    |               |         |
|                                               | LCS        | LCS  |           |          |      |      |        |       |     |                                                                                             |             |               |         |
| Surrogate %                                   | Recovery   | Qual | ifier     | Limits   |      |      |        |       |     |                                                                                             |             |               |         |
| -Chlorooctane                                 | 130        |      |           | 70 - 130 |      |      |        |       |     |                                                                                             |             |               |         |
| -Terphenyl                                    | 150        | S1+  |           | 70 - 130 |      |      |        |       |     |                                                                                             |             |               |         |
| _ab Sample ID: LCSD 880-59216/3               | - <b>A</b> |      |           |          |      |      |        | Cli   | ent | Sample ID: L                                                                                | ab Contro   | I Samni       | e Dup   |
| Matrix: Solid                                 |            |      |           |          |      |      |        | -     |     |                                                                                             |             | ype: To       |         |
| Analysis Batch: 59411                         |            |      |           |          |      |      |        |       |     |                                                                                             |             | Batch:        |         |
|                                               |            |      |           | Spike    | LCS  | LCS  | D      |       |     |                                                                                             | %Rec        | Batom         | RPD     |
| Analyte                                       |            |      |           | Added    |      | Qual |        | Unit  |     | D %Rec                                                                                      | Limits      | RPD           | Limit   |
| Basoline Range Organics                       |            |      |           | 1000     | 899. |      |        | mg/Kg |     | - <u>-</u> | 70 - 130    | 16            | 20      |
| GRO)-C6-C10                                   |            |      |           |          |      |      |        |       |     |                                                                                             |             |               | 20      |
| viesel Range Organics (Over<br>210-C28)       |            |      |           | 1000     | 968. | '*1  |        | mg/Kg |     | 97                                                                                          | 70 - 130    | 22            | 20      |
|                                               | LCSD       | LCS  | D         |          |      |      |        |       |     |                                                                                             |             |               |         |
| Surrogate %                                   | Recovery   | Qual | ifier     | Limits   |      |      |        |       |     |                                                                                             |             |               |         |
| -Chlorooctane                                 | 103        |      |           | 70 - 130 |      |      |        |       |     |                                                                                             |             |               |         |
| p-Terphenyl                                   | 122        |      |           | 70 - 130 |      |      |        |       |     |                                                                                             |             |               |         |
| _ab Sample ID: 880-31305-A-35-D               | MS         |      |           |          |      |      |        |       |     | Client                                                                                      | Sample ID:  | Matrix        | Spike   |
| Matrix: Solid                                 |            |      |           |          |      |      |        |       |     |                                                                                             |             | ype: To       |         |
| Analysis Batch: 59411                         |            |      |           |          |      |      |        |       |     |                                                                                             | Prep        | Batch:        |         |
|                                               | Sample     |      |           | Spike    |      | MS   |        |       |     |                                                                                             | %Rec        |               |         |
| nalyte                                        | Result     |      | ifier     | Added    |      | Qua  | lifier | Unit  |     | D %Rec                                                                                      | Limits      |               |         |
| Basoline Range Organics                       | <50.3      | U    |           | 1010     | 952. |      | _      | mg/Kg | _   | 94                                                                                          | 70 - 130    |               |         |
| GRO)-C6-C10                                   |            |      |           |          |      |      |        |       |     |                                                                                             |             |               |         |
| Diesel Range Organics (Over<br>C10-C28)       | <50.3      | U *1 |           | 1010     | 107  |      |        | mg/Kg |     | 102                                                                                         | 70 - 130    |               |         |
|                                               | MS         | мs   |           |          |      |      |        |       |     |                                                                                             |             |               |         |
| Surrogate %                                   | Recovery   | Qual | lifier    | Limits   |      |      |        |       |     |                                                                                             |             |               |         |
| -Chlorooctane                                 | 144        |      |           | 70 - 130 |      |      |        |       |     |                                                                                             |             |               |         |
|                                               |            |      |           |          |      |      |        |       |     |                                                                                             |             |               |         |

Eurofins Midland

o-Terphenyl

154 S1+

70 - 130

## **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31273-1 SDG: Lea County, New Mexico

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Analyte     Res       Gasoline Range Organics     <5       (GRO)-C6-C10        Diesel Range Organics (Over     <5       C10-C28)     M       Surrogate     %Recov | ple Sampl<br>sult Qualif<br>0.3 U *1 |      | Spike<br>Added |        | MSD       |       |   |      | Prep     | Satch: | 59216 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|----------------|--------|-----------|-------|---|------|----------|--------|-------|--|
| Analyte Sam<br>Analyte Re:<br>Gasoline Range Organics <5<br>(GRO)-C6-C10<br>Diesel Range Organics (Over <5<br>C10-C28)<br>M<br>Surrogate %Recov                   | <b>Sult</b> Qualif                   |      | Added          |        | MSD       |       |   |      |          | Batch: |       |  |
| Analyte     Res       Gasoline Range Organics     <5       (GRO)-C6-C10        Diesel Range Organics (Over     <5       C10-C28)     M       Surrogate     %Recov | <b>Sult</b> Qualif                   |      | Added          |        | MSD       |       |   |      | 0/ Doo   |        |       |  |
| Gasoline Range Organics <5<br>(GRO)-C6-C10<br>Diesel Range Organics (Over <5<br>C10-C28)<br>Surrogate %Recov                                                      | 0.3 U                                | fier |                | Decult |           |       |   |      | %Rec     |        | RPD   |  |
| (GRO)-C6-C10<br>Diesel Range Organics (Over <5<br>C10-C28)<br>Surrogate %Recov                                                                                    |                                      |      |                |        | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |  |
| Diesel Range Organics (Over <5<br>C10-C28)<br>Surrogate %Recov                                                                                                    | ) 2     *1                           |      | 1010           | 1091   |           | mg/Kg |   | 108  | 70 - 130 | 14     | 20    |  |
| C10-C28)<br>N<br>Surrogate %Recov                                                                                                                                 |                                      |      | 1010           | 1000   |           | malka |   | 117  | 70 120   | 12     | 20    |  |
| N<br>Surrogate %Recov                                                                                                                                             | <i>1.5</i> U I                       |      | 1010           | 1222   |           | mg/Kg |   | 117  | 70 - 130 | 13     | 20    |  |
| Surrogate %Recov                                                                                                                                                  |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   | SD MSD                               |      |                |        |           |       |   |      |          |        |       |  |
| 1-Chlorooctane                                                                                                                                                    | ery Qualif                           | fier | Limits         |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   | 163 S1+                              |      | 70 - 130       |        |           |       |   |      |          |        |       |  |
| o-Terphenyl                                                                                                                                                       | 177 S1+                              |      | 70 - 130       |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |
|                                                                                                                                                                   |                                      |      |                |        |           |       |   |      |          |        |       |  |

Eurofins Midland

## **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31273-1

SDG: Lea County, New Mexico

### **GC VOA**

#### Prep Batch: 58969

| GC VOA                                                 |                                  |                       |                 |                        |                     |
|--------------------------------------------------------|----------------------------------|-----------------------|-----------------|------------------------|---------------------|
| Prep Batch: 58969                                      |                                  |                       |                 |                        |                     |
| Lab Sample ID                                          | Client Sample ID                 | Prep Type             | Matrix          | Method                 | Prep Batch          |
| 880-31273-1                                            | S-5 (3')                         | Total/NA              | Solid           | 5035                   |                     |
| MB 880-58969/5-A                                       | Method Blank                     | Total/NA              | Solid           | 5035                   |                     |
| LCS 880-58969/1-A                                      | Lab Control Sample               | Total/NA              | Solid           | 5035                   |                     |
| LCSD 880-58969/2-A                                     | Lab Control Sample Dup           | Total/NA              | Solid           | 5035                   |                     |
| 880-31278-A-1-B MS                                     | Matrix Spike                     | Total/NA              | Solid           | 5035                   |                     |
| 880-31278-A-1-C MSD                                    | Matrix Spike Duplicate           | Total/NA              | Solid           | 5035                   |                     |
| Prep Batch: 59110<br>Lab Sample ID<br>MB 880-59110/5-A | Client Sample ID<br>Method Blank | Prep Type<br>Total/NA | Matrix<br>Solid | Method 5035            | Prep Batch          |
| analysis Batch: 59172                                  |                                  |                       |                 |                        |                     |
| Lab Sample ID<br>880-31273-1                           | Client Sample ID                 | Prep Type<br>Total/NA | Matrix<br>Solid | <u>Method</u><br>8021B | Prep Batch<br>58969 |
|                                                        | S-5 (3')                         |                       |                 |                        |                     |
| MB 880-58969/5-A                                       | Method Blank                     | Total/NA              | Solid           | 8021B                  | 58969               |
| MB 880-59110/5-A                                       | Method Blank                     | Total/NA              | Solid           | 8021B                  | 59110               |
| LCS 880-58969/1-A                                      | Lab Control Sample               | Total/NA              | Solid           | 8021B                  | 58969               |
| LCSD 880-58969/2-A                                     | Lab Control Sample Dup           | Total/NA              | Solid           | 8021B                  | 58969               |
| 880-31278-A-1-B MS                                     | Matrix Spike                     | Total/NA              | Solid           | 8021B                  | 58969               |
| 000 04070 A 4 C MCD                                    | Matrix Crailes Developts         | Tetel/NIA             | 0 - 11 - 1      | 00040                  | 50000               |

#### Analysis Batch: 59172

| Lab Sample ID              | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|----------------------------|------------------------|-----------|--------|--------|------------|
| 880-31273-1                | S-5 (3')               | Total/NA  | Solid  | 8021B  | 58969      |
| MB 880-58969/5-A           | Method Blank           | Total/NA  | Solid  | 8021B  | 58969      |
| MB 880-59110/5-A           | Method Blank           | Total/NA  | Solid  | 8021B  | 59110      |
| LCS 880-58969/1-A          | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 58969      |
| LCSD 880-58969/2-A         | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 58969      |
| 880-31278-A-1-B MS         | Matrix Spike           | Total/NA  | Solid  | 8021B  | 58969      |
| 880-31278-A-1-C MSD        | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 58969      |
| L<br>Analysis Databy 50224 |                        |           |        |        |            |

#### Analysis Batch: 59321

|                      | Prep Type | Matrix | Method     | Prep Batch |
|----------------------|-----------|--------|------------|------------|
| 880-31273-1 S-5 (3') | Total/NA  | Solid  | Total BTEX |            |

### GC Semi VOA

#### Prep Batch: 59216

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|----------------------|------------------------|-----------|--------|-------------|------------|
| 880-31273-1          | S-5 (3')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59216/1-A     | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59216/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59216/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31305-A-35-D MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31305-A-35-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 59411

880-31273-1

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31273-1           | <u>S-5 (3')</u>        | Total/NA  | Solid  | 8015B NM | 59216      |
| MB 880-59216/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59216      |
| LCS 880-59216/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59216      |
| LCSD 880-59216/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59216      |
| 880-31305-A-35-D MS   | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59216      |
| 880-31305-A-35-E MSD  | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59216      |
| Analysis Batch: 59637 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |

Total/NA

Solid

8015 NM

S-5 (3')

Job ID: 880-31273-1 SDG: Lea County, New Mexico

## Lab Sample ID: 880-31273-1 Matrix: Solid

#### Client Sample ID: S-5 (3') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/04/23 05:08 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59321  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59637  | 08/08/23 12:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.92 g  | 10 mL  | 59216  | 08/03/23 10:03 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59411  | 08/07/23 18:34 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

10

## Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31273-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority               | P                              | Program                           | Identification Number                        | Expiration Date           |
|------------------------|--------------------------------|-----------------------------------|----------------------------------------------|---------------------------|
| exas                   | N                              | IELAP                             | T104704400-23-26                             | 06-30-24                  |
| The following analytes | are included in this report, b | out the laboratory is not certifi | ied by the governing authority. This list ma | ay include analytes for w |
| the agency does not of |                                | Matrix                            | Analyte                                      |                           |
| Analysis Method        | fer certification. Prep Method | Matrix                            | Analyte                                      |                           |
| 0,                     |                                | Matrix<br>Solid                   | Analyte<br>Total TPH                         |                           |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

## **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31273-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                          | Protocol | Laboratory |
|---------------|-----------------------------------------------------------------------------|----------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                             | SW846    | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                      | TAL SOP  | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                            | SW846    | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                            | SW846    | EET MID    |
| 5035          | Closed System Purge and Trap                                                | SW846    | EET MID    |
| 8015NM Prep   | Microextraction                                                             | SW846    | EET MID    |
| Laboratory Re |                                                                             |          |            |
| EET MID =     | Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

## Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31273-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |  |
|---------------|------------------|--------|----------------|----------------|--|
| 880-31273-1   | S-5 (3')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |  |
|               |                  |        |                |                |  |

| M                           | Comments Email                                                                                                                         |                            |       |   | Sample Identification | Total Containers.       | Sample Custody Seals | Cooler Custody Seals | Received Intact: | SAMPLE RECEIPT | PO #:    | Sampler's Name | Project Location      | Project Number | Project Name       | Phone                   | City, State ZIP              | Address                   | Company Name                    | Project Manager        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|---|-----------------------|-------------------------|----------------------|----------------------|------------------|----------------|----------|----------------|-----------------------|----------------|--------------------|-------------------------|------------------------------|---------------------------|---------------------------------|------------------------|
|                             | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring@carmonaresources com, Clint MerrittC@carmonaresources com |                            |       |   |                       |                         | Is Yes No MA         | S Yes No (NIA)       |                  | PT Temp Blank  |          | CCM            | Lea County New Mexico | 2089           | Tonto 15 State #1  |                         | Midland TX 79701             | 310 W Wall St Ste 500     | Carmona Resources               | Clinton Merntt         |
| Relinquished by (Signature) | mcarmona@car                                                                                                                           |                            |       |   | Time                  | Corrected Temperature   | Temperature Reading  | Correction Factor    |                  | Yes (No )      | )        |                | Mexico                |                | e #1               |                         |                              |                           |                                 |                        |
|                             | nonaresource                                                                                                                           |                            |       | > | Soil                  | rature                  | iding                | 1                    |                  | Wet Ice        |          |                | Due Date              | マ Routine      | Turn               | Email                   |                              |                           |                                 |                        |
|                             | s com, Conne                                                                                                                           |                            |       |   | Water Comp            | 1-V-V                   | a h                  | 08                   | JAJ T            | (es) NO        | )        |                | 5 dav                 | Rush           | Turn Around        | msanjan@marathonoil com | City, State ZIP              | Address                   | Company Name                    | Bill to (if different) |
| Date                        | r Moehring cn                                                                                                                          |                            |       |   | Cont                  | -μ                      | в                    |                      | nram<br>8021     |                | 'S       |                |                       | Pres.          |                    | athonoil com            | Hou                          | 066                       | Mara                            | Melo                   |
| Date/Time<br>76-73<br>1604ら | noehring@ca                                                                                                                            |                            |       | > | TT                    | PH 801                  |                      |                      | 0 + C<br>e 30(   |                | + M      | RO)            |                       |                |                    |                         | Houston TX 77024             | 990 Town and Country Blvd | Marathon Oil Corporation        | Melodie Sanjari        |
|                             | rmonaresources                                                                                                                         |                            |       |   |                       |                         |                      |                      |                  |                |          |                |                       |                | ANAL               |                         |                              | try Blvd                  | ation                           |                        |
| Received                    | com, Clint Me                                                                                                                          | 880-31273 Chain of Custody |       |   |                       |                         |                      |                      |                  |                |          |                |                       |                | ANALYSIS REQUEST   | Delr                    | Rep                          | Stat                      | Pro                             |                        |
| Received by (Signature)     | rrtt MerrittC@                                                                                                                         |                            |       |   |                       |                         |                      |                      |                  |                |          |                |                       |                | -                  | Deliverables EDD        | Reporting Level II Level III | State of Project:         | Program UST/PST PRP prownfields |                        |
|                             | )carmonaresc                                                                                                                           | .   🛸                      | <br>- |   |                       |                         |                      |                      |                  |                |          |                |                       |                |                    | ADaPT D                 | Level III ST/UST             |                           |                                 | Work Order Comments    |
|                             | urces com                                                                                                                              |                            |       |   | Sample                | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn   | Na SO NaSO           | NaHSO, NABIS     |                | HaSO, Ha |                |                       | None NO        | Preserv            | T Other                 | 7UST RRP                     |                           | nfields RC                      | Comments               |
| Date/Time                   |                                                                                                                                        |                            |       |   | Sample Comments       | IC ACID SAPC            | iOH Zn               | 0                    | 55               |                |          | INECH ME       |                       | DI Watan II o  | Preservative Codes | ~                       |                              |                           | Cloerfund                       | <u>  0     </u>        |

### Received by OCD: 9/21/2023 6:16:51 AM

### 8/8/2023

Work Order No:

272

Page 311 of 406

5

13

ø

Job Number: 880-31273-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

## Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31273 List Number: 1 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
|                                                                                  |        |         |

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:42:00 PM

## JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

## **JOB NUMBER**

880-31283-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information.

## **Eurofins Midland**

## **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## **Authorization**

AMER

8/7/2023 12:42:00 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Generated

Laboratory Job ID: 880-31283-1 SDG: Lea County, New Mexico

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

Page 315 of 406

## **Definitions/Glossary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31283-1 SDG: Lea County, New Mexico

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       | 4  |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| GC Semi VOA    |                                                                                                             | 5  |
| Qualifier      | Qualifier Description                                                                                       |    |
| *_             | LCS and/or LCSD is outside acceptance limits, low biased.                                                   |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary       |                                                                                                             |    |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | 8  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            | 0  |
| CFL            | Contains Free Liquid                                                                                        | 3  |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          | 13 |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL            | Method Detection Limit                                                                                      |    |
| ML             | Minimum Level (Dioxin)                                                                                      |    |
| MPN            | Most Probable Number                                                                                        |    |
| MQL            | Method Quantitation Limit                                                                                   |    |
| NC             | Not Calculated                                                                                              |    |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |    |
| NEG            | Negative / Absent                                                                                           |    |
| POS            | Positive / Present                                                                                          |    |
| PQL            | Practical Quantitation Limit                                                                                |    |
| PRES           | Presumptive                                                                                                 |    |
| QC             | Quality Control                                                                                             |    |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |    |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |    |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |    |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |    |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |    |
| TNTC           | Too Numerous To Count                                                                                       |    |

4

5

Job ID: 880-31283-1 SDG: Lea County, New Mexico

#### Job ID: 880-31283-1

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31283-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-5 (0-1') (880-31283-1).

#### GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### Client Sample ID: S-5 (0-1') Date Collected: 07/25/23 00:00

Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

| Analyta                                                                                                                                                                                                                                                                               | Decult                                                                                              | Qualifier                                                                       | RL                                                                 | MDL | Unit                                             | D        | Prepared                                                                   | Analyzed                                                                                                                        | Dil Fac                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-----|--------------------------------------------------|----------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Analyte                                                                                                                                                                                                                                                                               |                                                                                                     |                                                                                 |                                                                    | MDL |                                                  |          | ·                                                                          |                                                                                                                                 |                              |
| Benzene                                                                                                                                                                                                                                                                               | <0.00198                                                                                            |                                                                                 | 0.00198                                                            |     | mg/Kg                                            |          | 08/01/23 09:18                                                             | 08/02/23 23:52                                                                                                                  | 1                            |
| Toluene                                                                                                                                                                                                                                                                               | <0.00198                                                                                            |                                                                                 | 0.00198                                                            |     | mg/Kg                                            |          | 08/01/23 09:18                                                             | 08/02/23 23:52                                                                                                                  | 1                            |
| Ethylbenzene                                                                                                                                                                                                                                                                          | <0.00198                                                                                            |                                                                                 | 0.00198                                                            |     | mg/Kg                                            |          | 08/01/23 09:18                                                             | 08/02/23 23:52                                                                                                                  | 1                            |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                                                   | <0.00396                                                                                            | U                                                                               | 0.00396                                                            |     | mg/Kg                                            |          | 08/01/23 09:18                                                             | 08/02/23 23:52                                                                                                                  | 1                            |
| o-Xylene                                                                                                                                                                                                                                                                              | <0.00198                                                                                            | U                                                                               | 0.00198                                                            |     | mg/Kg                                            |          | 08/01/23 09:18                                                             | 08/02/23 23:52                                                                                                                  | 1                            |
| Xylenes, Total                                                                                                                                                                                                                                                                        | <0.00396                                                                                            | U                                                                               | 0.00396                                                            |     | mg/Kg                                            |          | 08/01/23 09:18                                                             | 08/02/23 23:52                                                                                                                  | 1                            |
| Surrogate                                                                                                                                                                                                                                                                             | %Recovery                                                                                           | Qualifier                                                                       | Limits                                                             |     |                                                  |          | Prepared                                                                   | Analyzed                                                                                                                        | Dil Fac                      |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                           | 103                                                                                                 |                                                                                 | 70 - 130                                                           |     |                                                  |          | 08/01/23 09:18                                                             | 08/02/23 23:52                                                                                                                  | 1                            |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                            | 104                                                                                                 |                                                                                 | 70 - 130                                                           |     |                                                  |          | 08/01/23 09:18                                                             | 08/02/23 23:52                                                                                                                  | 1                            |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                                                                        | otal BTEX Calo                                                                                      | culation                                                                        |                                                                    |     |                                                  |          |                                                                            |                                                                                                                                 |                              |
|                                                                                                                                                                                                                                                                                       | Desult                                                                                              | Qualifier                                                                       | RL                                                                 | MDI | Unit                                             | D        | Prepared                                                                   | Analyzed                                                                                                                        | Dil Fac                      |
| Analyte                                                                                                                                                                                                                                                                               | Result                                                                                              | Quaimer                                                                         | RL                                                                 |     | Unit                                             | U        | Flepaleu                                                                   | Analyzou                                                                                                                        |                              |
| •                                                                                                                                                                                                                                                                                     |                                                                                                     |                                                                                 | 0.00396                                                            |     | mg/Kg                                            |          |                                                                            | 08/03/23 09:53                                                                                                                  | 1                            |
| Total BTEX<br>Method: SW846 8015 NM - Diese                                                                                                                                                                                                                                           | <0.00396                                                                                            | U<br>ics (DRO) (                                                                | 0.00396 GC)                                                        |     | mg/Kg                                            |          |                                                                            | 08/03/23 09:53                                                                                                                  |                              |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                                                                | <0.00396                                                                                            | U<br>ics (DRO) (<br>Qualifier                                                   | 0.00396                                                            | MDL | mg/Kg                                            | <u>D</u> | Prepared                                                                   |                                                                                                                                 | Dil Fac                      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                                                                                                                                                                   | <0.00396<br>I Range Organ<br>Result<br><50.0                                                        | U<br>ics (DRO) (<br>Qualifier<br>U                                              | 0.00396<br>GC)<br>RL<br>50.0                                       |     | mg/Kg<br>Unit                                    |          |                                                                            | 08/03/23 09:53<br>Analyzed                                                                                                      | 1<br>Dil Fac                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                                                                                                  | <0.00396<br>I Range Organ<br>Result<br><50.0<br>sel Range Orga                                      | U<br>ics (DRO) (<br>Qualifier<br>U                                              | 0.00396<br>GC)<br>RL<br>50.0                                       |     | mg/Kg<br>Unit<br>mg/Kg                           |          |                                                                            | 08/03/23 09:53<br>Analyzed                                                                                                      | Dil Fac                      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics                                                                                                                                            | <0.00396<br>I Range Organ<br>Result<br><50.0<br>sel Range Orga                                      | U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier                   | GC)<br>RL<br>50.0<br>(GC)                                          | MDL | mg/Kg<br>Unit<br>mg/Kg                           | D        | Prepared                                                                   | 08/03/23 09:53 Analyzed 08/07/23 10:15                                                                                          | Dil Fac                      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                            | <0.00396<br>I Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result                            | U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U *-           | 0.00396<br>GC)<br>RL<br>50.0<br>(GC)<br>RL                         | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg          | D        | Prepared                                                                   | 08/03/23 09:53 Analyzed 08/07/23 10:15 Analyzed                                                                                 | Dil Fac                      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                             | <0.00396<br>I Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result<br><50.0                   | U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U *-           | GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0                            | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit                   | D        | Prepared<br>Prepared<br>08/04/23 17:30                                     | 08/03/23 09:53<br>Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 18:03                                                      | Dil Fac<br>1<br>Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                | <0.00396<br>I Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result<br><50.0                   | U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U *-<br>U      | GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0                            | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg          | D        | Prepared<br>Prepared<br>08/04/23 17:30                                     | 08/03/23 09:53<br>Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 18:03                                                      | Dil Fac<br>1<br>Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                                           | <0.00396<br>I Range Organ<br>Result<br><50.0<br>Sel Range Orga<br>Result<br><50.0<br><50.0          | U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U *-<br>U<br>U | 0.00396<br>GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0<br>50.0         | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg | D        | Prepared<br>Prepared<br>08/04/23 17:30<br>08/04/23 17:30                   | O8/03/23 09:53           Analyzed           08/07/23 10:15           Analyzed           08/06/23 18:03           08/06/23 18:03 | Dil Fac<br>1<br>Dil Fac<br>1 |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane | <0.00396<br>I Range Organ<br>Result<br><50.0<br>Sel Range Orga<br>Result<br><50.0<br><50.0<br><50.0 | U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U *-<br>U<br>U | 0.00396<br>GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0<br>50.0<br>50.0 | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg | D        | Prepared<br>Prepared<br>08/04/23 17:30<br>08/04/23 17:30<br>08/04/23 17:30 | 08/03/23 09:53<br>Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 18:03<br>08/06/23 18:03<br>08/06/23 18:03                  | Dil Fac                      |

Eurofins Midland

Lab Sample ID: 880-31283-1

5

Matrix: Solid

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31283-1 SDG: Lea County, New Mexico

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------------|------------------------|----------|----------|------------------------------------------------|
|                     |                        | BFB1     | DFBZ1    |                                                |
| ab Sample ID        | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31279-A-1-A MS  | Matrix Spike           | 103      | 100      |                                                |
| 880-31279-A-1-B MSD | Matrix Spike Duplicate | 108      | 104      |                                                |
| 880-31283-1         | S-5 (0-1')             | 103      | 104      |                                                |
| LCS 880-58971/1-A   | Lab Control Sample     | 104      | 100      |                                                |
| LCSD 880-58971/2-A  | Lab Control Sample Dup | 95       | 103      |                                                |
| MB 880-58971/5-A    | Method Blank           | 84       | 89       |                                                |
| MB 880-58998/5-A    | Method Blank           | 85       | 89       |                                                |
| Surrogate Legend    |                        | 00       | 00       |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| Sample ID     | Client Sample ID       | (70-130) | (70-130) |                                                |
| 283-1         | S-5 (0-1')             | 83       | 80       |                                                |
| 64-A-2-F MS   | Matrix Spike           | 123      | 104      |                                                |
| 664-A-2-G MSD | Matrix Spike Duplicate | 128      | 112      |                                                |
| 59369/2-A     | Lab Control Sample     | 93       | 94       |                                                |
| 30-59369/3-A  | Lab Control Sample Dup | 85       | 82       |                                                |
| 880-59369/1-A | Method Blank           | 88       | 94       |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

## **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Method: 8021B - Volatile Organic Compounds (GC)

## Lab Sample ID: MB 880-58971/5-A

Matrix: Solid Analysis Batch: 59072

| -                           | МВ        | МВ        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | < 0.00200 | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 84        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| 1,4-Difluorobenzene (Surr)  | 89        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |

#### Lab Sample ID: LCS 880-58971/1-A Matrix: Solid

### Analysis Batch: 59072

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.07714 |           | mg/Kg |   | 77   | 70 - 130 |  |
| Toluene             | 0.100 | 0.1014  |           | mg/Kg |   | 101  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08911 |           | mg/Kg |   | 89   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1753  |           | mg/Kg |   | 88   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.08985 |           | mg/Kg |   | 90   | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 104       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 100       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-58971/2-A

#### Matrix: Solid

| Analysis Batch: 59072 |       |         |           |       |   |      | Prep     | Batch: | 58971 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08576 |           | mg/Kg |   | 86   | 70 - 130 | 11     | 35    |
| Toluene               | 0.100 | 0.1000  |           | mg/Kg |   | 100  | 70 - 130 | 1      | 35    |
| Ethylbenzene          | 0.100 | 0.08572 |           | mg/Kg |   | 86   | 70 - 130 | 4      | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1641  |           | mg/Kg |   | 82   | 70 - 130 | 7      | 35    |
| o-Xylene              | 0.100 | 0.08388 |           | mg/Kg |   | 84   | 70 - 130 | 7      | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 95        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

## Lab Sample ID: 880-31279-A-1-A MS

## Matrix: Solid

| Analysis Batch: 59072 |          |           |        |         |           |       |   |      | Prep     | Batch: 58971 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0996 | 0.07513 |           | mg/Kg |   | 75   | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0996 | 0.08995 |           | mg/Kg |   | 90   | 70 - 130 |              |

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

**Client Sample ID: Method Blank** 

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 58971

Prep Batch: 58971

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Job ID: 880-31283-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31279-A                                             | -1-A MS        |           |         |                      |          |     |        |       |      |          | Client S   | Sample ID |         | -               |
|------------------------------------------------------------------------|----------------|-----------|---------|----------------------|----------|-----|--------|-------|------|----------|------------|-----------|---------|-----------------|
| Matrix: Solid                                                          |                |           |         |                      |          |     |        |       |      |          |            | Prep 1    | ype: To | otal/N/         |
| Analysis Batch: 59072                                                  |                |           |         |                      |          |     |        |       |      |          |            | Prep      | Batch:  | : <b>5897</b> ' |
|                                                                        | Sample S       | Sample    |         | Spike                | MS       | MS  |        |       |      |          |            | %Rec      |         |                 |
| Analyte                                                                | Result 0       | Qualifier | r       | Added                | Result   | Qua | lifier | Unit  |      | D        | %Rec       | Limits    |         |                 |
| Ethylbenzene                                                           | <0.00202       | J         |         | 0.0996               | 0.08100  |     |        | mg/Kg |      |          | 81         | 70 - 130  |         |                 |
| m-Xylene & p-Xylene                                                    | <0.00403 l     | J         |         | 0.199                | 0.1561   |     |        | mg/Kg |      |          | 78         | 70 - 130  |         |                 |
| o-Xylene                                                               | <0.00202 l     | J         |         | 0.0996               | 0.07987  |     |        | mg/Kg |      |          | 80         | 70 - 130  |         |                 |
|                                                                        |                | ИS        |         |                      |          |     |        |       |      |          |            |           |         |                 |
| Surrogate                                                              |                | Qualifie  | r       | Limits               |          |     |        |       |      |          |            |           |         |                 |
| 4-Bromofluorobenzene (Surr)                                            | 103            |           |         | 70 - 130             |          |     |        |       |      |          |            |           |         |                 |
| 1,4-Difluorobenzene (Surr)                                             | 100            |           |         | 70 - 130             |          |     |        |       |      |          |            |           |         |                 |
| Lab Sample ID: 880-31279-A                                             | -1-B MSD       |           |         |                      |          |     |        |       | Clie | nt Sa    | ample ID:  | Matrix Sp |         |                 |
| Matrix: Solid                                                          |                |           |         |                      |          |     |        |       |      |          |            |           | ype: To |                 |
| Analysis Batch: 59072                                                  |                |           |         |                      |          |     |        |       |      |          |            |           | Batch:  |                 |
|                                                                        | Sample S       | •         |         | Spike                | MSD      |     |        |       |      |          |            | %Rec      |         | RPD             |
| Analyte                                                                | Result 0       |           | r       | Added                | Result   | Qua | lifier | Unit  |      | D        | %Rec       | Limits    | RPD     | Limi            |
| Benzene                                                                | <0.00202 l     | J         |         | 0.0994               | 0.07017  |     |        | mg/Kg |      |          | 71         | 70 - 130  | 7       | 35              |
| Toluene                                                                | <0.00202 l     | J         |         | 0.0994               | 0.08738  |     |        | mg/Kg |      |          | 88         | 70 - 130  | 3       | 3               |
| Ethylbenzene                                                           | <0.00202 l     | J         |         | 0.0994               | 0.07772  |     |        | mg/Kg |      |          | 78         | 70 - 130  | 4       | 3               |
| m-Xylene & p-Xylene                                                    | <0.00403 l     | J         |         | 0.199                | 0.1481   |     |        | mg/Kg |      |          | 75         | 70 - 130  | 5       | 35              |
| o-Xylene                                                               | <0.00202 l     | J         |         | 0.0994               | 0.07711  |     |        | mg/Kg |      |          | 78         | 70 - 130  | 4       | 3               |
|                                                                        | MSD I          | NSD       |         |                      |          |     |        |       |      |          |            |           |         |                 |
| Surrogate                                                              | %Recovery      | Qualifier | r       | Limits               |          |     |        |       |      |          |            |           |         |                 |
| 4-Bromofluorobenzene (Surr)                                            | 108            |           |         | 70 - 130             |          |     |        |       |      |          |            |           |         |                 |
| 1,4-Difluorobenzene (Surr)                                             | 104            |           |         | 70 - 130             |          |     |        |       |      |          |            |           |         |                 |
| Lab Sample ID: MB 880-5899                                             | 98/ <b>5-A</b> |           |         |                      |          |     |        |       |      |          | Client Sa  | mple ID:  | Method  | I Blanl         |
| Matrix: Solid                                                          |                |           |         |                      |          |     |        |       |      |          |            | Prep 1    | ype: To | otal/N/         |
| Analysis Batch: 59072                                                  |                |           |         |                      |          |     |        |       |      |          |            | Prep      | Batch:  | : 58998         |
|                                                                        | I              | МВ МВ     | 3       |                      |          |     |        |       |      |          |            |           |         |                 |
| Analyte                                                                | Res            | sult Qu   | alifier | R                    | <u> </u> | MDL | Unit   |       | D    | P        | repared    | Analyz    | ed      | Dil Fa          |
| Benzene                                                                | <0.002         | 200 U     |         | 0.0020               | )        |     | mg/K   | g     |      | 08/0     | 1/23 10:59 | 08/02/23  | 11:28   |                 |
| Toluene                                                                | <0.002         | 200 U     |         | 0.0020               | )        |     | mg/K   | g     |      | 08/0     | 1/23 10:59 | 08/02/23  | 11:28   |                 |
| Ethylbenzene                                                           | <0.002         | 200 U     |         | 0.0020               | D        |     | mg/K   | g     |      | 08/0     | 1/23 10:59 | 08/02/23  | 11:28   |                 |
| m-Xylene & p-Xylene                                                    | <0.004         | 400 U     |         | 0.0040               | )        |     | mg/K   | g     |      | 08/0     | 1/23 10:59 | 08/02/23  | 11:28   | ••••••          |
| o-Xylene                                                               | <0.002         | 200 U     |         | 0.0020               | )        |     | mg/K   |       |      | 08/0     | 1/23 10:59 | 08/02/23  | 11:28   |                 |
| Xylenes, Total                                                         | <0.004         | 400 U     |         | 0.0040               | 0        |     | mg/K   |       |      | 08/0     | 1/23 10:59 | 08/02/23  | 11:28   |                 |
|                                                                        |                | МВ МЕ     |         |                      |          |     |        |       |      |          |            |           |         |                 |
|                                                                        | 0/ 🗖           | ery Qu    | alifier | Limits               | _        |     |        |       |      |          | repared    | Analyz    |         | Dil Fa          |
| Surrogate                                                              | %Recov         |           |         |                      |          |     |        |       |      | <u> </u> | 1/23 10:59 | 08/02/23  | 11.00   |                 |
| Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr) | %Recov         | 85<br>89  |         | 70 - 130<br>70 - 130 |          |     |        |       |      |          | 1/23 10:59 | 08/02/23  |         |                 |

| Lab Sample ID: MB 880-59369/1-A |        |           |      |     |       |   | Client Sa      | mple ID: Metho | d Blank         |
|---------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|-----------------|
| Matrix: Solid                   |        |           |      |     |       |   |                | Prep Type: 1   | Total/NA        |
| Analysis Batch: 59409           |        |           |      |     |       |   |                | Prep Batch     | n: <b>59369</b> |
|                                 | MB     | МВ        |      |     |       |   |                | -              |                 |
| Analyte                         | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac         |
| Gasoline Range Organics         | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16 | 1               |
| (GRO)-C6-C10                    |        |           |      |     |       |   |                |                |                 |

Eurofins Midland

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369/1-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          | Client S                                                                                   | Sample ID                                                                                                                                                                                     | : Method                                                              | Blank                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------|--------------|-----------------------------------------|----------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          |                                                                                            | Prep                                                                                                                                                                                          | Type: To                                                              | otal/NA                                                            |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          |                                                                                            | Pre                                                                                                                                                                                           | p Batch:                                                              | 59369                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         | MB                             |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          |                                                                                            |                                                                                                                                                                                               |                                                                       |                                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                | Qualifier   | RL                                                                                                                                                                                                                  |                                                                                      | MDL         |              |                                         | <u>D</u> | Prepared                                                                                   | Anal                                                                                                                                                                                          |                                                                       | Dil Fac                                                            |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <{                                                                                                      | 50.0                           | U           | 50.0                                                                                                                                                                                                                |                                                                                      |             | mg/Kg        |                                         | 08       | 3/04/23 17:29                                                                              | 9 08/06/23                                                                                                                                                                                    | 3 08:16                                                               | 1                                                                  |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <{                                                                                                      | 50.0                           |             | 50.0                                                                                                                                                                                                                |                                                                                      |             | mg/Kg        |                                         | 80       | 8/04/23 17:2                                                                               | 9 08/06/23                                                                                                                                                                                    | 3 08:16                                                               | 1                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                | MB          |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          | - ·                                                                                        |                                                                                                                                                                                               | -                                                                     |                                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %Recov                                                                                                  | -                              | Qualifier   | Limits                                                                                                                                                                                                              |                                                                                      |             |              |                                         |          | Prepared                                                                                   | Anal                                                                                                                                                                                          |                                                                       | Dil Fac                                                            |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         | 88                             |             | 70 - 130                                                                                                                                                                                                            |                                                                                      |             |              |                                         |          | 3/04/23 17:2                                                                               |                                                                                                                                                                                               |                                                                       | 1                                                                  |
| p-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         | 94                             |             | 70 - 130                                                                                                                                                                                                            |                                                                                      |             |              |                                         | 08       | 3/04/23 17:2                                                                               | 9 08/06/2                                                                                                                                                                                     | 3 08:16                                                               | 1                                                                  |
| ch Comple ID: 1 CS 880 50360/2-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         | Clio     | nt Samal                                                                                   | - ID: Lab (                                                                                                                                                                                   | Control S                                                             | amplo                                                              |
| Lab Sample ID: LCS 880-59369/2-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         | Cile     | At Sampa                                                                                   | e ID: Lab (<br>Bron                                                                                                                                                                           |                                                                       | -                                                                  |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          |                                                                                            |                                                                                                                                                                                               | Type: To                                                              |                                                                    |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                |             | Chika                                                                                                                                                                                                               | 1.09                                                                                 | 1.00        |              |                                         |          |                                                                                            |                                                                                                                                                                                               | p Batch:                                                              | 22302                                                              |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                |             | Spike                                                                                                                                                                                                               |                                                                                      | LCS         | - <b>-</b> . | ·· ·.                                   |          | */ Dop                                                                                     | %Rec                                                                                                                                                                                          |                                                                       |                                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                |             | Added                                                                                                                                                                                                               | Result                                                                               |             |              | Unit                                    | [        |                                                                                            | Limits                                                                                                                                                                                        |                                                                       |                                                                    |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                |             | 1000                                                                                                                                                                                                                | 661.8                                                                                | *-          |              | mg/Kg                                   |          | 66                                                                                         | 70 - 130                                                                                                                                                                                      |                                                                       |                                                                    |
| GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                |             | 1000                                                                                                                                                                                                                | 873.3                                                                                |             |              | mg/Kg                                   |          | 87                                                                                         | 70 - 130                                                                                                                                                                                      |                                                                       |                                                                    |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                |             | 1000                                                                                                                                                                                                                | 010.0                                                                                |             |              | mg/rxg                                  |          | 01                                                                                         | 70 - 100                                                                                                                                                                                      |                                                                       |                                                                    |
| ,10-020;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          |                                                                                            |                                                                                                                                                                                               |                                                                       |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCS                                                                                                     | LCS                            |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          |                                                                                            |                                                                                                                                                                                               |                                                                       |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                |             |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          |                                                                                            |                                                                                                                                                                                               |                                                                       |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recovery                                                                                                | Quali                          | ifier       | Limits                                                                                                                                                                                                              |                                                                                      |             |              |                                         |          |                                                                                            |                                                                                                                                                                                               |                                                                       |                                                                    |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93                                                                                                      | Quali                          | lifier      | 70 - 130                                                                                                                                                                                                            |                                                                                      |             |              |                                         |          |                                                                                            |                                                                                                                                                                                               |                                                                       |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         | Quali                          | lifier      |                                                                                                                                                                                                                     |                                                                                      |             |              |                                         |          |                                                                                            |                                                                                                                                                                                               |                                                                       |                                                                    |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93<br>94                                                                                                | Quali                          | lifier      | 70 - 130                                                                                                                                                                                                            |                                                                                      |             |              | 014                                     |          |                                                                                            |                                                                                                                                                                                               |                                                                       |                                                                    |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93<br>94                                                                                                | Quali                          | lifier      | 70 - 130                                                                                                                                                                                                            |                                                                                      |             |              | Clie                                    | ent Sa   | mple ID:                                                                                   | Lab Contr                                                                                                                                                                                     |                                                                       | -                                                                  |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93<br>94                                                                                                | Quali                          | lifier      | 70 - 130                                                                                                                                                                                                            |                                                                                      |             |              | Clie                                    | ∍nt Sa   | mple ID:                                                                                   | Prep                                                                                                                                                                                          | Type: To                                                              | otal/NA                                                            |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93<br>94                                                                                                | Quali                          | lifier      | 70 - 130<br>70 - 130                                                                                                                                                                                                |                                                                                      |             |              | Clie                                    | ∍nt Sa   | mple ID:                                                                                   | Prep<br>Pre                                                                                                                                                                                   |                                                                       | otal/NA<br>: 59369                                                 |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                          | 93<br>94                                                                                                | Quali                          | ifier       | 70 - 130<br>70 - 130<br><b>Spike</b>                                                                                                                                                                                | LCSD                                                                                 |             |              |                                         |          | -                                                                                          | Prep<br>Pre<br>%Rec                                                                                                                                                                           | Type: To<br>p Batch:                                                  | otal/NA<br>59369<br>RPD                                            |
| d-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                               | 93<br>94                                                                                                | Quali                          |             | 70 - 130<br>70 - 130<br>Spike<br>Added                                                                                                                                                                              | Result                                                                               | Quali       |              | Clie<br>Unit                            | ent Sa   | 0 %Rec                                                                                     | Prep<br>Pre<br>%Rec<br>Limits                                                                                                                                                                 | Type: To<br>p Batch:<br>RPD                                           | 59369<br>RPD                                                       |
| I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                    | 93<br>94                                                                                                | Quali                          | lifier      | 70 - 130<br>70 - 130<br><b>Spike</b>                                                                                                                                                                                |                                                                                      | Quali       |              |                                         |          | -                                                                                          | Prep<br>Pre<br>%Rec                                                                                                                                                                           | Type: To<br>p Batch:                                                  | otal/NA<br>59369<br>RPD                                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                     | 93<br>94                                                                                                | Quali                          | lifier      | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                      | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66                                                                | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                     | Type: To<br>p Batch:<br>                                              | <b>btal/NA</b><br><b>59369</b><br><b>RPD</b><br><u>Limit</u><br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                      | 93<br>94                                                                                                | Quali                          | lifier      | 70 - 130<br>70 - 130<br>Spike<br>Added                                                                                                                                                                              | Result                                                                               | Quali       |              | Unit                                    |          | 0 %Rec                                                                                     | Prep<br>Pre<br>%Rec<br>Limits                                                                                                                                                                 | Type: To<br>p Batch:<br>RPD                                           | <b>btal/NA</b><br><b>59369</b><br><b>RPD</b><br><u>Limit</u><br>20 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                     | 93<br>94                                                                                                | Quali                          | lifier      | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                      | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66                                                                | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                     | Type: To<br>p Batch:<br>                                              | 59369<br>RPD                                                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                      | 93<br>94                                                                                                |                                |             | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                      | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66                                                                | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                     | Type: To<br>p Batch:<br>                                              | <b>btal/NA</b><br><b>59369</b><br><b>RPD</b><br><u>Limit</u><br>20 |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                          | 93<br>94<br>A                                                                                           | LCSE                           |             | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                      | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66                                                                | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                     | Type: To<br>p Batch:<br>                                              | <b>btal/NA</b><br><b>59369</b><br><b>RPD</b><br><u>Limit</u><br>20 |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                          | 93<br>94<br>A                                                                                           | LCSE                           |             | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                      | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66                                                                | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                     | Type: To<br>p Batch:<br>                                              | <b>btal/NA</b><br><b>59369</b><br><b>RPD</b><br><u>Limit</u><br>20 |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate %R                                                                                                                                                                                                                                                                                                          | 93<br>94<br>A<br>LCSD<br>Recovery                                                                       | LCSE                           |             | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000<br>1000                                                                                                                                                              | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66                                                                | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                     | Type: To<br>p Batch:<br>                                              | <b>btal/NA</b><br><b>59369</b><br><b>RPD</b><br><u>Limit</u><br>20 |
| 1-Chlorooctane<br>Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate %R                                                                                                                                                                                                                                                                                                           | 93<br>94<br>A<br>LCSD<br>Recovery<br>85                                                                 | LCSE                           |             | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                        | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66                                                                | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                     | Type: To<br>p Batch:<br>                                              | <b>btal/NA</b><br><b>59369</b><br><b>RPD</b><br><u>Limit</u><br>20 |
| I-Chlorooctane<br>Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate %R<br>I-Chlorooctane<br>Terphenyl                                                                                                                                                                                                                                                                            | 93<br>94<br>A<br><i>LCSD</i><br>Recovery<br>85<br>82                                                    | LCSE                           |             | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                        | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66<br>85                                                          | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                         | Type: To<br>p Batch:<br>- RPD<br>0<br>3                               | stal/NA<br><b>59369</b><br>RPD<br>Limit<br>20<br>20                |
| I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate %R<br>I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 880-31664-A-2-F MS                                                                                                                                                                                                                                    | 93<br>94<br>A<br><i>LCSD</i><br>Recovery<br>85<br>82                                                    | LCSE                           |             | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                        | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66<br>85                                                          | Prep           %Rec           Limits           70 - 130           70 - 130                                                                                                                    | Type: To<br>p Batch:<br>- <u>RPD</u><br>3<br>3<br>D: Matrix           | stal/NA<br><b>59369</b><br>RPD<br>Limit<br>20<br>20<br>c Spike     |
| I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate %R<br>I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 880-31664-A-2-F MS<br>Matrix: Solid                                                                                                                                                                                                                   | 93<br>94<br>A<br>LCSD<br>Recovery<br>85<br>82                                                           | LCSE                           |             | 70 - 130<br>70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                        | <b>Result</b> 660.9                                                                  | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66<br>85                                                          | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                         | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |
| I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-59369/3-/<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate %R<br>I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 880-31664-A-2-F MS                                                                                                                                                                                                                                    | 93<br>94<br>A<br>A<br>Recovery<br>85<br>82<br>S                                                         | LCSE<br>Quali                  | D<br>lifier | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><i>Limits</i><br>70 - 130<br>70 - 130                                                                                                              | Result<br>660.9<br>845.2                                                             | Quali       |              | Unit<br>mg/Kg                           |          | <b>0</b> % <b>Rec</b><br>66<br>85                                                          | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                         | Type: To<br>p Batch:<br>- <u>RPD</u><br>3<br>3<br>D: Matrix           | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |
| I-Chlorooctane         p-Terphenyl         Lab Sample ID: LCSD 880-59369/3-/         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         GRO)-C6-C10         Diesel Range Organics (Over         C10-C28)         Surrogate         p-Terphenyl         Lab Sample ID: 880-31664-A-2-F MS         Matrix: Solid         Analysis Batch: 59409                                                                                                                                         | 93<br>94<br>A<br>A<br>Recovery<br>85<br>82<br>S<br>Sample                                               | LCSE<br>Quali                  | D<br>lifier | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130                                                                                                  | Result<br>660.9<br>845.2<br>MS                                                       | Quali<br>*- | ifier        | Unit<br>mg/Kg<br>mg/Kg                  | <u>[</u> | 0 %Rec<br>66<br>85<br>Client                                                               | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                             | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |
| I-Chlorooctane         p-Terphenyl         Lab Sample ID: LCSD 880-59369/3-/         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         GRO)-C6-C10         Diesel Range Organics (Over         C10-C28)         Surrogate         p-Terphenyl         Lab Sample ID: 880-31664-A-2-F MS         Matrix: Solid         Analysis Batch: 59409                                                                                                                                         | 93<br>94<br>A<br>A<br>Recovery<br>85<br>82<br>S<br>S<br>Sample<br>Result                                | LCSE<br>Quali<br>Samp<br>Quali | D<br>lifier | 70 - 130         70 - 130         Spike         Added         1000         1000         1000         1000         1000         5pike         70 - 130         70 - 130         70 - 130         Spike         Added | Result<br>660.9<br>845.2<br>MS<br>Result                                             | Quali<br>*- | ifier        | Unit<br>mg/Kg<br>mg/Kg                  |          | 0 %Rec<br>66<br>85<br>Client                                                               | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>Prep<br>Pre<br>%Rec<br>Limits                                                                    | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |
| I-Chlorooctane         p-Terphenyl         Lab Sample ID: LCSD 880-59369/3-/         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         GRO)-C6-C10         Diesel Range Organics (Over         C10-C28)         Surrogate         p-Terphenyl         Lab Sample ID: 880-31664-A-2-F MS         Matrix: Solid         Analysis Batch: 59409         Analysis Batch: 59409         Analysis Batch: 59409         Analyte         Gasoline Range Organics                             | 93<br>94<br>A<br>A<br>Recovery<br>85<br>82<br>S<br>Sample                                               | LCSE<br>Quali<br>Samp<br>Quali | D<br>lifier | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130                                                                                                  | Result<br>660.9<br>845.2<br>MS                                                       | Quali<br>*- | ifier        | Unit<br>mg/Kg<br>mg/Kg                  | <u>[</u> | 0 %Rec<br>66<br>85<br>Client                                                               | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                             | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |
| I-Chlorooctane         p-Terphenyl         Lab Sample ID: LCSD 880-59369/3-/         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         GRO)-C6-C10         Diesel Range Organics (Over         C10-C28)         Surrogate         p-Terphenyl         Lab Sample ID: 880-31664-A-2-F MS         Matrix: Solid         Analysis Batch: 59409         Analysis Batch: 59409         Analyte         Gasoline Range Organics         GRO)-C6-C10                                       | 93<br>94<br>A<br>A<br>Recovery<br>85<br>82<br>S<br>S<br>Sample<br>Result                                | LCSE<br>Quali<br>Samp<br>Quali | D<br>lifier | 70 - 130         70 - 130         Spike         Added         1000         1000         1000         1000         1000         5pike         70 - 130         70 - 130         70 - 130         Spike         Added | Result<br>660.9<br>845.2<br>MS<br>Result                                             | Quali<br>*- | ifier        | Unit<br>mg/Kg<br>mg/Kg                  | <u>[</u> | 0 %Rec<br>66<br>85<br>Client                                                               | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>Prep<br>Pre<br>%Rec<br>Limits                                                                    | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |
| I-Chlorooctane         p-Terphenyl         Lab Sample ID: LCSD 880-59369/3-/         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         GRO)-C6-C10         Diesel Range Organics (Over         C10-C28)         Surrogate         p-Terphenyl         Lab Sample ID: 880-31664-A-2-F MS         Matrix: Solid         Analysis Batch: 59409         Analysis Batch: 59409         Analysis Batch: 59409         Analyte         Gasoline Range Organics                             | 93<br>94<br>A<br>A<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | LCSE<br>Quali<br>Samp<br>Quali | D<br>lifier | 70 - 130         70 - 130         Spike         Added         1000         1000         1000         1000         1000         5pike         70 - 130         70 - 130         70 - 130         993                 | Result           660.9           845.2           MS           Result           876.9 | Quali<br>*- | ifier        | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | <u>[</u> | <ul> <li>%Rec</li> <li>66</li> <li>85</li> <li>Client</li> <li>%Rec</li> <li>86</li> </ul> | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>30<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>70<br>9<br>70<br>9<br>70<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>13 | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>tal/NA   |
| I-Chlorooctane         p-Terphenyl         Lab Sample ID: LCSD 880-59369/3-/         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         GRO)-C6-C10         Diesel Range Organics (Over         C10-C28)         Surrogate         p-Terphenyl         Lab Sample ID: 880-31664-A-2-F MS         Matrix: Solid         Analysis Batch: 59409         Analysis Batch: 59409         Analyte         Gasoline Range Organics (GRO)-C6-C10         Diesel Range Organics (Over          | 93<br>94<br>A<br>A<br>Recovery<br>85<br>82<br>S<br>S<br>S<br>S<br>S<br>ample<br>Result<br><50.3<br>61.5 | LCSE<br>Quali<br>Quali         | D<br>lifier | 70 - 130         70 - 130         Spike         Added         1000         1000         1000         1000         1000         5pike         70 - 130         70 - 130         70 - 130         993                 | Result           660.9           845.2           MS           Result           876.9 | Quali<br>*- | ifier        | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | <u>[</u> | <ul> <li>%Rec</li> <li>66</li> <li>85</li> <li>Client</li> <li>%Rec</li> <li>86</li> </ul> | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>30<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>70<br>9<br>70<br>9<br>70<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>13 | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |
| I-Chlorooctane   p-Terphenyl   Lab Sample ID: LCSD 880-59369/3-/   Matrix: Solid   Analysis Batch: 59409   Analyte   Gasoline Range Organics   (GRO)-C6-C10   Diesel Range Organics (Over   C10-C28)   Surrogate   p-Terphenyl   Lab Sample ID: 880-31664-A-2-F MS   Matrix: Solid   Analysis Batch: 59409   Analyte   Gasoline Range Organics   GRO)-C6-C10   Diesel Range ID: 880-31664-A-2-F MS   Matrix: Solid   Analysis Batch: 59409   Analyte   Gasoline Range Organics   GRO)-C6-C10   Diesel Range Organics (Over   C10-C28) | 93<br>94<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A      | LCSE<br>Quali<br>Quali<br>U *- | D<br>lifier | 70 - 130         70 - 130 <b>Spike</b> Added         1000         1000         1000         1000         1000         5pike         70 - 130         70 - 130         70 - 130         993         993         993  | Result           660.9           845.2           MS           Result           876.9 | Quali<br>*- | ifier        | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | <u>[</u> | <ul> <li>%Rec</li> <li>66</li> <li>85</li> <li>Client</li> <li>%Rec</li> <li>86</li> </ul> | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>30<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>70<br>9<br>70<br>9<br>70<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>13 | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |
| I-Chlorooctane   p-Terphenyl   Lab Sample ID: LCSD 880-59369/3-/   Matrix: Solid   Analysis Batch: 59409   Analyte   Gasoline Range Organics   (GRO)-C6-C10   Diesel Range Organics (Over   C10-C28)   Surrogate   p-Terphenyl   Lab Sample ID: 880-31664-A-2-F MS   Matrix: Solid   Analysis Batch: 59409   Analyte   Gasoline Range Organics   GRO)-C6-C10   Diesel Range ID: 880-31664-A-2-F MS   Matrix: Solid   Analysis Batch: 59409   Analyte   Gasoline Range Organics   GRO)-C6-C10   Diesel Range Organics (Over   C10-C28) | 93<br>94<br>A<br>A<br>Recovery<br>85<br>82<br>S<br>S<br>S<br>S<br>S<br>ample<br>Result<br><50.3<br>61.5 | LCSE<br>Quali<br>Quali<br>U *- | D<br>lifier | 70 - 130         70 - 130         Spike         Added         1000         1000         1000         1000         1000         5pike         70 - 130         70 - 130         70 - 130         993                 | Result           660.9           845.2           MS           Result           876.9 | Quali<br>*- | ifier        | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | <u>[</u> | <ul> <li>%Rec</li> <li>66</li> <li>85</li> <li>Client</li> <li>%Rec</li> <li>86</li> </ul> | Prep<br>Pre<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>30<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>70<br>9<br>70<br>9<br>70<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>13 | Type: To<br>p Batch:<br>- RPD<br>0<br>3<br>3<br>D: Matrix<br>Type: To | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>c Spike<br>otal/NA  |

## **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31283-1 SDG: Lea County, New Mexico

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Analysis Batch: 59409       |           |           |          |       |           |       |   |            |          | Batch: |       |    |
|-----------------------------|-----------|-----------|----------|-------|-----------|-------|---|------------|----------|--------|-------|----|
|                             | -         | Sample    | Spike    |       | MSD       |       | _ | ~ <b>-</b> | %Rec     |        | RPD   |    |
| Analyte                     |           | Qualifier | Added    |       | Qualifier | Unit  | D | %Rec       | Limits   | RPD    | Limit |    |
| Gasoline Range Organics     | <50.3     | U *-      | 992      | 918.4 |           | mg/Kg |   | 91         | 70 - 130 | 5      | 20    |    |
| GRO)-C6-C10                 | 04.5      |           | 000      | 1051  |           | 116   |   | 400        | 70 100   | 0      | 00    | ÷. |
| Diesel Range Organics (Over | 61.5      |           | 992      | 1254  |           | mg/Kg |   | 120        | 70 - 130 | 6      | 20    |    |
| C10-C28)                    |           |           |          |       |           |       |   |            |          |        |       | 2  |
|                             | MSD       | MSD       |          |       |           |       |   |            |          |        |       |    |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |           |       |   |            |          |        |       | 5  |
| -Chlorooctane               | 128       |           | 70 - 130 |       |           |       |   |            |          |        |       |    |
| p-Terphenyl                 | 112       |           | 70 - 130 |       |           |       |   |            |          |        |       |    |
|                             |           |           |          |       |           |       |   |            |          |        |       |    |
|                             |           |           |          |       |           |       |   |            |          |        |       |    |
|                             |           |           |          |       |           |       |   |            |          |        |       |    |
|                             |           |           |          |       |           |       |   |            |          |        |       |    |
|                             |           |           |          |       |           |       |   |            |          |        |       |    |
|                             |           |           |          |       |           |       |   |            |          |        |       |    |
|                             |           |           |          |       |           |       |   |            |          |        |       |    |
|                             |           |           |          |       |           |       |   |            |          |        |       | 4  |

Page 323 of 406

Released to Imaging: 11/6/2023 11:57:53 AM

## **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31283-1 SDG: Lea County, New Mexico

## **GC VOA**

### Prep Batch: 58971

| GC VOA                            |                                  |           |                 |                       |            |
|-----------------------------------|----------------------------------|-----------|-----------------|-----------------------|------------|
| rep Batch: 58971                  |                                  |           |                 |                       |            |
| Lab Sample ID                     | Client Sample ID                 | Prep Type | Matrix          | Method                | Prep Batch |
| 880-31283-1                       | S-5 (0-1')                       | Total/NA  | Solid           | 5035                  |            |
| MB 880-58971/5-A                  | Method Blank                     | Total/NA  | Solid           | 5035                  |            |
| LCS 880-58971/1-A                 | Lab Control Sample               | Total/NA  | Solid           | 5035                  |            |
| LCSD 880-58971/2-A                | Lab Control Sample Dup           | Total/NA  | Solid           | 5035                  |            |
| 880-31279-A-1-A MS                | Matrix Spike                     | Total/NA  | Solid           | 5035                  |            |
| 880-31279-A-1-B MSD               | Matrix Spike Duplicate           | Total/NA  | Solid           | 5035                  |            |
| Lab Sample ID<br>MB 880-58998/5-A | Client Sample ID<br>Method Blank | Total/NA  | Matrix<br>Solid | <u>Method</u><br>5035 | Prep Batch |
|                                   |                                  | Total/INA | 5010            | 5055                  |            |
| nalysis Batch: 59072              | Client Sample ID                 | Prep Type | Matrix          | Method                | Prep Batch |
| 880-31283-1                       | <u>S-5 (0-1')</u>                | Total/NA  | Solid           | 8021B                 | 58971      |
| MB 880-58971/5-A                  | Method Blank                     | Total/NA  | Solid           | 8021B                 | 58971      |
| MB 880-58998/5-A                  | Method Blank                     | Total/NA  | Solid           | 8021B                 | 58998      |
| LCS 880-58971/1-A                 | Lab Control Sample               | Total/NA  | Solid           | 8021B                 | 58971      |
| LCSD 880-58971/2-A                | Lab Control Sample Dup           | Total/NA  | Solid           | 8021B                 | 58971      |
| 880-31279-A-1-A MS                | Matrix Spike                     | Total/NA  | Solid           | 8021B                 | 58971      |
|                                   |                                  | Τ-+-1/ΝΙΛ | 0 " 1           | 0004D                 |            |

#### Analysis Batch: 59072

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-31283-1         | S-5 (0-1')             | Total/NA  | Solid  | 8021B  | 58971      |
| MB 880-58971/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 58971      |
| MB 880-58998/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 58998      |
| LCS 880-58971/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 58971      |
| LCSD 880-58971/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 58971      |
| 880-31279-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 58971      |
| 880-31279-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 58971      |

#### Analysis Batch: 59204

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31283-1   | S-5 (0-1')       | Total/NA  | Solid  | Total BTEX |            |

### GC Semi VOA

#### Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31283-1         | S-5 (0-1')             | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 59409

880-31283-1

| Lab Sample ID         | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31283-1           | S-5 (0-1')             | Total/NA  | Solid  | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59369      |
| Analysis Batch: 59485 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |

Total/NA

Solid

8015 NM

S-5 (0-1')
# Client Sample ID: S-5 (0-1') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| _         | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 58971  | 08/01/23 09:18 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59072  | 08/02/23 23:52 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59204  | 08/03/23 09:53 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59485  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 59369  | 08/04/23 17:30 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 18:03 | SM      | EET MID |

# Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-31283-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31283-1

Matrix: Solid

10

# Job ID: 880-31283-1 SDG: Lea County, New Mexico

# Project/Site: Tonto 15 State #1

Client: Carmona Resources

Laboratory: Eurofins Midland Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                  |                    | rogram                          | Identification Number                                                              | Expiration Date         |  |
|-------------------------------------------|--------------------|---------------------------------|------------------------------------------------------------------------------------|-------------------------|--|
| Texas                                     | N                  | ELAP                            | T104704400-23-26                                                                   | 06-30-24                |  |
| • ,                                       |                    | ut the laboratory is not certif | ied by the governing authority. This list ma                                       | ay include analytes for |  |
| the agency does not of                    | fer certification. |                                 | d by the governing authority. This list may include analytes for Analyte Total TPH |                         |  |
| the agency does not of<br>Analysis Method | Prep Method        | Matrix                          | Analyte                                                                            |                         |  |
| 0,                                        |                    | Matrix<br>Solid                 | Analyte<br>Total TPH                                                               |                         |  |

# **Method Summary**

# Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31283-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                                      | Protocol | Laboratory |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                                         | SW846    | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                                  | TAL SOP  | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                                        | SW846    | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                                        | SW846    | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                                            | SW846    | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                                         | SW846    | EET MID    |
| Laboratory Re | - TestAmerica Laboratories, Standard Operating Procedure<br>•ferences:<br>- Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 |          |            |
|               |                                                                                                                                                         |          |            |
|               |                                                                                                                                                         |          |            |
|               |                                                                                                                                                         |          |            |
|               |                                                                                                                                                         |          |            |
|               |                                                                                                                                                         |          |            |

#### Protocol References:

# Laboratory References:

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31283-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31283-1   | S-5 (0-1')       | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         |        |                         | 880                                 | 880-31283 Chain of Custody | 3 Cha        | lin of    | Custo    |                         |                    | T                          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|--------------|--------------------------|------------|------------------|---------------------------|----------|---------|--------|-------------------------|-------------------------------------|----------------------------|--------------|-----------|----------|-------------------------|--------------------|----------------------------|
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         |        |                         |                                     |                            |              |           |          | Page_                   | <br>               | of 1                       |
| Project Manager       | Clinton Merritt                                                                                                                                  |                             |                       |              | Bill to (if different)   |            | Melodie Sanjari  | ànjari                    |          |         |        |                         | ĺ                                   |                            | Wo           | Ř         | der C    | Work Order Comments     |                    |                            |
|                       | Carmona Resources                                                                                                                                | ces                         |                       |              | Company Name             |            | Marathon         | Marathon Oil Corporation  | ation    |         |        | Prog                    | Program: UST/PST PRP Trownfields    | TIPST                      | <b>_</b>     |           | rown     |                         |                    |                            |
|                       | 310 W Wall St Ste 500                                                                                                                            | e 500                       |                       |              | Address                  |            | 990 Towr         | 990 Town and Country Blvd | trv Blvd |         |        | State                   | State of Project                    | ă i                        | С<br>;       | [         |          |                         |                    |                            |
| City, State ZIP       | Midland, TX 79701                                                                                                                                | -                           |                       |              | City, State ZIP          |            | Houston TX 77024 | TX 77024                  |          |         |        | Repo                    | Reporting Level II Level III ST/UST | e<br>=<br>□                | Leve]        | Ξ         | JST/     | JST RRP                 |                    |                            |
| Phone                 |                                                                                                                                                  |                             |                       | Email        | msanjari@marathonoil.com | athonoil c | om               |                           |          |         |        | Deliv                   | Deliverables EDD                    | EDD                        |              | Þ         | ADaPT    |                         | •                  |                            |
| Project Name          | Tont                                                                                                                                             | Tonto 15 State #1           | <u>ح</u>              | Tum          | Turn Around              |            |                  |                           |          |         |        |                         |                                     |                            |              |           |          |                         |                    |                            |
| Project Number        |                                                                                                                                                  | 2089                        |                       | マ Routine    | [] Rush                  | Pres.      |                  |                           | _        |         |        |                         |                                     | _                          |              |           |          | Pres                    | Preservative Codes | Codes                      |
| Project Location      | Lea Cou                                                                                                                                          | Lea County, New Mexico      | exico                 | Due Date     | 5 dav                    |            | _                |                           |          |         |        | -                       |                                     | _                          |              |           |          | None NO                 | D                  | DI Water: H <sub>2</sub> O |
| Sampler's Name        |                                                                                                                                                  | CCM                         |                       |              |                          |            | 20)              | ,                         |          |         |        |                         |                                     |                            |              |           | uleariae |                         | Me                 | MeOH Me                    |
| PO #                  |                                                                                                                                                  |                             |                       |              |                          | 5          | + MF             |                           |          |         |        |                         |                                     |                            |              |           |          |                         | : Ţ                | HNO <sub>3</sub> HN        |
| SAMPLE RECEIPT        | PT TempeBlank                                                                                                                                    | βlank                       | Yes Ko                | Wet Ice      | Kes No                   | eter       |                  |                           |          |         |        |                         |                                     |                            |              |           |          |                         |                    | NaUH Na                    |
| Received Intact:      | es (es                                                                                                                                           |                             | ~ 1                   |              | 0.27                     | <br>ram    | 8021<br>         | e 30                      |          |         |        |                         |                                     |                            |              |           |          |                         |                    |                            |
| Cooler Custody Seals  | s Yes No                                                                                                                                         | Ð                           | Correction Factor     |              | .!<br>.!                 | Pa         |                  |                           |          |         |        |                         |                                     |                            |              |           |          | USEN USEN               | Naco<br>Sigura     |                            |
| Sample Custody Seals. | ls. Yes No                                                                                                                                       | NA                          | Temperature Reading   | ıding        | 64                       | L          |                  |                           |          |         |        |                         |                                     |                            |              |           |          | Zn Acetate+NaOH Zn      | +NaOH 7            | <b>_</b>                   |
| Total Containers.     |                                                                                                                                                  |                             | Corrected Temperature | rature.      | 2.5                      |            | H 801            |                           |          |         |        |                         |                                     |                            |              |           |          | NaOH+Ascorbic Acid SAPC | orbic Aci          | 1 SAPC                     |
| Sample Identification | tification                                                                                                                                       | Date                        | Time                  | Soil         | Water Comp               | Cont       | TF               |                           |          |         |        |                         |                                     |                            |              |           |          | Sam                     | Sample Comments    | ments                      |
| S-5 (0-1')            | (1)                                                                                                                                              | 7 25 23                     |                       | ×            | G                        | -          | ××               |                           |          |         |        |                         |                                     | <u> </u>                   |              |           |          |                         |                    |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         |        |                         | 1                                   |                            |              |           |          |                         |                    |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         |        |                         |                                     |                            | $\downarrow$ | $\square$ |          |                         |                    |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         |        |                         |                                     |                            |              |           |          |                         |                    |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          | _          |                  |                           |          |         |        |                         |                                     |                            |              |           |          |                         |                    |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           | _        |         |        |                         |                                     |                            |              | _         |          |                         |                    |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         |        |                         |                                     |                            |              |           |          |                         |                    |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         | <br>   | -                       |                                     | L                          |              |           |          |                         |                    |                            |
| Comments Email        | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint MerrittC@carmonaresources com | ,armona me                  | ;armona@can           | nonaresource | is com, Conne            | r Moehrr   | g cmoer          | rmg@ca                    | rmonare  | sources | com, C | Int Men                 | ritt Mer                            | rittC@                     | )carn        | nona      | resol    | Irces com               | aist               |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         |        |                         |                                     |                            |              |           |          |                         |                    | <u>6</u>                   |
| >                     | Rel                                                                                                                                              | Relinquished by (Signature) | (Signature)           |              |                          |            | Date/Time        | Ф<br>—                    |          |         | Rp     | Received by (Signature) | y (Sigr                             | lature                     |              |           |          |                         | Date               | Date/Time                  |
|                       | AN M                                                                                                                                             |                             | M                     |              |                          |            | - The-           | 23                        |          |         |        | A                       | R                                   |                            |              |           |          |                         |                    |                            |
| $\sqrt{1}$            |                                                                                                                                                  |                             | V D                   |              |                          |            | 104              | V                         |          |         |        |                         |                                     |                            |              |           |          |                         |                    |                            |
|                       |                                                                                                                                                  |                             |                       |              |                          |            |                  |                           |          |         |        |                         |                                     |                            |              |           |          |                         |                    |                            |

Page 329 of 406

5 6 13

en y  $\langle n \rangle$ 3 7<sup>684</sup>

5

14

Job Number: 880-31283-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

# Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31283 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Eurofins Midland Released to Imaging: 11/6/2023 11:57:53 AM

Containers requiring zero headspace have no headspace or bubble is

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:33:39 PM

# JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-31274-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information.

# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 8/7/2023 12:33:39 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Laboratory Job ID: 880-31274-1 SDG: Lea County, New Mexico

Page 333 of 406

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

# Client: Carmona Resources Project/Site: Tonto 15 State #1

Page 334 of 406

Job ID: 880-31274-1 SDG: Lea County, New Mexico

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       | 4  |
| S1-            | Surrogate recovery exceeds control limits, low biased.                                                      |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    | 5  |
| GC Semi VOA    | A                                                                                                           | -  |
| Qualifier      | Qualifier Description                                                                                       | 6  |
| *_             | LCS and/or LCSD is outside acceptance limits, low biased.                                                   |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary       |                                                                                                             | 8  |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | 0  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  | 9  |
| %R             | Percent Recovery                                                                                            |    |
| CFL            | Contains Free Liquid                                                                                        |    |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | 10 |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               | 13 |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |    |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL            | Method Detection Limit                                                                                      |    |
| ML             | Minimum Level (Dioxin)                                                                                      |    |
| MPN            | Most Probable Number                                                                                        |    |
| MQL            | Method Quantitation Limit                                                                                   |    |
|                |                                                                                                             |    |

NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown)

- NEG Negative / Absent POS Positive / Present
- PQL Practical Quantitation Limit PRES Presumptive
- QC Quality Control
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- Toxicity Equivalent Quotient (Dioxin) TEQ
- TNTC Too Numerous To Count

4

5

Job ID: 880-31274-1 SDG: Lea County, New Mexico

# Job ID: 880-31274-1

Client: Carmona Resources Project/Site: Tonto 15 State #1

# Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31274-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

# GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59172 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59172/20).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-59110 and analytical batch 880-59172 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-6 (2') (880-31274-1) and (880-31278-A-1-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-31274-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31274-1

Matrix: Solid

5

# Client: Carmona Resources Project/Site: Tonto 15 State #1

# Client Sample ID: S-6 (2') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| Analyte                                                    | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared                | Analyzed                | Dil Fac |
|------------------------------------------------------------|---------------------------|------------|----------------|-----|-------|---|-------------------------|-------------------------|---------|
| Benzene                                                    | <0.00200                  | U          | 0.00200        |     | mg/Kg |   | 08/01/23 09:01          | 08/04/23 05:28          | 1       |
| Toluene                                                    | <0.00200                  | U          | 0.00200        |     | mg/Kg |   | 08/01/23 09:01          | 08/04/23 05:28          | 1       |
| Ethylbenzene                                               | <0.00200                  | U          | 0.00200        |     | mg/Kg |   | 08/01/23 09:01          | 08/04/23 05:28          | 1       |
| m-Xylene & p-Xylene                                        | <0.00401                  | U          | 0.00401        |     | mg/Kg |   | 08/01/23 09:01          | 08/04/23 05:28          | 1       |
| o-Xylene                                                   | <0.00200                  | U          | 0.00200        |     | mg/Kg |   | 08/01/23 09:01          | 08/04/23 05:28          | 1       |
| Xylenes, Total                                             | <0.00401                  | U          | 0.00401        |     | mg/Kg |   | 08/01/23 09:01          | 08/04/23 05:28          | 1       |
| Surrogate                                                  | %Recovery                 | Qualifier  | Limits         |     |       |   | Prepared                | Analyzed                | Dil Fac |
| 4-Bromofluorobenzene (Surr)                                | 87                        |            | 70 - 130       |     |       |   | 08/01/23 09:01          | 08/04/23 05:28          | 1       |
| 1,4-Difluorobenzene (Surr)                                 | 59                        | S1-        | 70 - 130       |     |       |   | 08/01/23 09:01          | 08/04/23 05:28          | 1       |
| Total BTEX<br>:<br>Method: SW846 8015 NM - Diese           | <0.00401<br>I Range Organ |            | 0.00401<br>GC) |     | mg/Kg |   |                         | 08/04/23 10:48          | ·       |
| Analyte                                                    | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared                | Analyzed                | Dil Fac |
| Total TPH                                                  | <50.3                     | U          | 50.3           |     | mg/Kg |   |                         | 08/07/23 10:15          | 1       |
| Method: SW846 8015B NM - Dies                              | el Range Orga             | nics (DRO) | (GC)           |     |       |   |                         |                         |         |
| Analyte                                                    | Result                    | Qualifier  | RL             | MDL | Unit  | D | Prepared                | Analyzed                | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10                    | <50.3                     | U *-       | 50.3           |     | mg/Kg |   | 08/04/23 17:30          | 08/06/23 13:43          | 1       |
| Diesel Range Organics (Over<br>C10-C28)                    | <50.3                     | U          | 50.3           |     | mg/Kg |   | 08/04/23 17:30          | 08/06/23 13:43          | 1       |
|                                                            | <50.3                     | U          | 50.3           |     | mg/Kg |   | 08/04/23 17:30          | 08/06/23 13:43          | 1       |
| Oll Range Organics (Over C28-C36)                          |                           |            |                |     |       |   |                         |                         |         |
|                                                            | %Recovery                 | Qualifier  | Limits         |     |       |   | Prepared                | Analyzed                | Dil Fac |
| Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane | % <b>Recovery</b><br>93   | Qualifier  | Limits         |     |       |   | Prepared 08/04/23 17:30 | Analyzed 08/06/23 13:43 | Dil Fac |

Released to Imaging: 11/6/2023 11:57:53 AM

Job ID: 880-31274-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

# Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |    |
|---------------------|------------------------|----------|----------|------------------------------------------------|----|
|                     |                        | BFB1     | DFBZ1    |                                                |    |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |    |
| 880-31274-1         | S-6 (2')               | 87       | 59 S1-   |                                                | 18 |
| 880-31278-A-1-B MS  | Matrix Spike           | 121      | 124      |                                                |    |
| 880-31278-A-1-C MSD | Matrix Spike Duplicate | 119      | 91       |                                                |    |
| LCS 880-58969/1-A   | Lab Control Sample     | 115      | 111      |                                                |    |
| LCSD 880-58969/2-A  | Lab Control Sample Dup | 114      | 109      |                                                |    |
| MB 880-58969/5-A    | Method Blank           | 73       | 79       |                                                |    |
| MB 880-59110/5-A    | Method Blank           | 68 S1-   | 100      |                                                |    |
| Surrogate Legend    |                        |          |          |                                                |    |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

# Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| ample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |
| 274-1         | S-6 (2')               | 93       | 96       |                                                |
| 664-A-2-F MS  | Matrix Spike           | 123      | 104      |                                                |
| 64-A-2-G MSD  | Matrix Spike Duplicate | 128      | 112      |                                                |
| -59369/2-A    | Lab Control Sample     | 93       | 94       |                                                |
| 880-59369/3-A | Lab Control Sample Dup | 85       | 82       |                                                |
| 80-59369/1-A  | Method Blank           | 88       | 94       |                                                |

### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 337 of 406

# Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM Page 7 of 18

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

# Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-58969/5-A |  |
|---------------------------------|--|
| Matrix: Calid                   |  |

Matrix: Solid Analysis Batch: 59172

|                             | MB        | MB        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |     |       |   | 08/01/23 09:01 | 08/03/23 22:38 | 1       |

# Lab Sample ID: LCS 880-58969/1-A Matrix: Solid

# Analysis Batch: 59172

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09442 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Toluene             | 0.100 | 0.08693 |           | mg/Kg |   | 87   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2099  |           | mg/Kg |   | 105  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1041  |           | mg/Kg |   | 104  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 |

# Lab Sample ID: LCSD 880-58969/2-A

# Matrix: Solid

| Analysis Batch: 59172 |       |         |           |       |   |      | Prep     | Batch: | 58969 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08592 |           | mg/Kg |   | 86   | 70 - 130 | 9      | 35    |
| Toluene               | 0.100 | 0.08219 |           | mg/Kg |   | 82   | 70 - 130 | 6      | 35    |
| Ethylbenzene          | 0.100 | 0.08963 |           | mg/Kg |   | 90   | 70 - 130 | 12     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1870  |           | mg/Kg |   | 94   | 70 - 130 | 12     | 35    |
| o-Xylene              | 0.100 | 0.09268 |           | mg/Kg |   | 93   | 70 - 130 | 12     | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

# Lab Sample ID: 880-31278-A-1-B MS

# Matrix: Solid

| Analysis Batch: 59172 |          |           |        |         |           |       |   |      | Pre      | b Batch: 58969 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|----------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |                |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |                |
| Benzene               | <0.00202 | U         | 0.0994 | 0.1002  |           | mg/Kg |   | 101  | 70 - 130 |                |
| Toluene               | <0.00202 | U         | 0.0994 | 0.09371 |           | mg/Kg |   | 94   | 70 - 130 |                |

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

**Client Sample ID: Lab Control Sample** 

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 58969

Client: Carmona Resources

Project/Site: Tonto 15 State #1

# Job ID: 880-31274-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31278-/                                             | A-1-B MS  |      |           |                      |         |     |        |       |        | Clie                                               | ent Sa | ample ID:                |         | -           |
|------------------------------------------------------------------------|-----------|------|-----------|----------------------|---------|-----|--------|-------|--------|----------------------------------------------------|--------|--------------------------|---------|-------------|
| Matrix: Solid                                                          |           |      |           |                      |         |     |        |       |        |                                                    |        | Prep Ty                  | -       |             |
| Analysis Batch: 59172                                                  |           |      |           |                      |         |     |        |       |        |                                                    |        | Prep l                   | Batch:  | 5896        |
|                                                                        | Sample    | Sam  | ple       | Spike                | MS      | MS  |        |       |        |                                                    |        | %Rec                     |         |             |
| Analyte                                                                | Result    | Qual | ifier     | Added                | Result  | Qua | lifier | Unit  |        | D %Re                                              | c l    | Limits                   |         |             |
| Ethylbenzene                                                           | < 0.00202 | U    |           | 0.0994               | 0.1030  |     |        | mg/Kg |        | 10                                                 | 4 7    | 70 - 130                 |         |             |
| n-Xylene & p-Xylene                                                    | <0.00403  | U    |           | 0.199                | 0.2125  |     |        | mg/Kg |        | 10                                                 | 7 7    | 70 - 130                 |         |             |
| p-Xylene                                                               | <0.00202  | U    |           | 0.0994               | 0.1040  |     |        | mg/Kg |        | 10                                                 | 5 7    | 70 - 130                 |         |             |
|                                                                        | MS        | MS   |           |                      |         |     |        |       |        |                                                    |        |                          |         |             |
| Surrogate                                                              | %Recovery | Qual | lifier    | Limits               |         |     |        |       |        |                                                    |        |                          |         |             |
| 4-Bromofluorobenzene (Surr)                                            | 121       |      |           | 70 - 130             |         |     |        |       |        |                                                    |        |                          |         |             |
| 1,4-Difluorobenzene (Surr)                                             | 124       |      |           | 70 - 130             |         |     |        |       |        |                                                    |        |                          |         |             |
| Lab Sample ID: 880-31278-/                                             | A-1-C MSD |      |           |                      |         |     |        |       | Client | t Sample                                           | D: N   | Matrix Spi               | ike Duj | plicat      |
| Matrix: Solid                                                          |           |      |           |                      |         |     |        |       |        |                                                    |        | Prep Ty                  | /pe: To | otal/N/     |
| Analysis Batch: 59172                                                  |           |      |           |                      |         |     |        |       |        |                                                    |        | Prep l                   | Batch:  | <b>5896</b> |
|                                                                        | Sample    | Sam  | ple       | Spike                | MSD     | MSD | )      |       |        |                                                    |        | %Rec                     |         | RPI         |
| Analyte                                                                | Result    | Qual | ifier     | Added                | Result  | Qua | lifier | Unit  |        | D %Re                                              | c      | Limits                   | RPD     | Lim         |
| Benzene                                                                | <0.00202  | U    |           | 0.0998               | 0.09502 |     |        | mg/Kg |        | 9                                                  | 5 7    | 70 - 130                 | 5       | 3           |
| Toluene                                                                | <0.00202  | U    |           | 0.0998               | 0.09100 |     |        | mg/Kg |        | 9                                                  | 1 7    | 70 - 130                 | 3       | 3           |
| Ethylbenzene                                                           | <0.00202  | U    |           | 0.0998               | 0.1021  |     |        | mg/Kg |        | 10                                                 | 2 7    | 70 - 130                 | 1       | 3           |
| m-Xylene & p-Xylene                                                    | <0.00403  | U    |           | 0.200                | 0.2097  |     |        | mg/Kg |        | 10                                                 | 5 7    | 70 - 130                 | 1       | 3           |
| p-Xylene                                                               | <0.00202  | U    |           | 0.0998               | 0.1024  |     |        | mg/Kg |        | 10                                                 | 3 7    | 70 - 130                 | 2       | 3           |
|                                                                        | MSD       | MSD  | 1         |                      |         |     |        |       |        |                                                    |        |                          |         |             |
| Surrogate                                                              | %Recovery | Qual | lifier    | Limits               |         |     |        |       |        |                                                    |        |                          |         |             |
| 4-Bromofluorobenzene (Surr)                                            | 119       |      |           | 70 - 130             |         |     |        |       |        |                                                    |        |                          |         |             |
| 1,4-Difluorobenzene (Surr)                                             | 91        |      |           | 70 - 130             |         |     |        |       |        |                                                    |        |                          |         |             |
| Lab Sample ID: MB 880-591                                              | 110/5-A   |      |           |                      |         |     |        |       |        | Clien                                              | nt San | nple ID: N               | lethod  | Blan        |
| Matrix: Solid                                                          |           |      |           |                      |         |     |        |       |        |                                                    |        | Prep Ty                  | -       |             |
| Analysis Batch: 59172                                                  |           |      |           |                      |         |     |        |       |        |                                                    |        | Prep                     | Batch:  | 5911        |
|                                                                        |           | ΜВ   | MB        |                      |         |     |        |       |        |                                                    |        |                          |         |             |
| Analyte                                                                | Re        | sult | Qualifier | RL                   |         | MDL | Unit   |       | D      | Prepare                                            | d      | Analyze                  | d       | Dil Fa      |
| Benzene                                                                | <0.00     | 200  | U         | 0.00200              |         | -   | mg/Kg  | _     | (      | 08/02/23 11                                        | 1:14   | 08/03/23 1               | 1:30    |             |
| Toluene                                                                | <0.00     | 200  | U         | 0.00200              |         |     | mg/Kg  |       | (      | 08/02/23 11                                        | 1:14   | 08/03/23 1               | 1:30    |             |
| Ethylbenzene                                                           | <0.00     | 200  | U         | 0.00200              |         |     | mg/Kg  |       | (      | 08/02/23 11                                        | 1:14   | 08/03/23 1               | 1:30    |             |
| m-Xylene & p-Xylene                                                    | <0.00     | 400  | U         | 0.00400              |         |     | mg/Kg  |       | (      | 08/02/23 11                                        | 1:14   | 08/03/23 1               | 1:30    |             |
| o-Xylene                                                               | <0.00     | 200  | U         | 0.00200              |         |     | mg/Kg  |       | (      | 08/02/23 12                                        | 1:14   | 08/03/23 1               | 1:30    |             |
| Xylenes, Total                                                         | <0.00     | 400  | U         | 0.00400              |         |     | mg/Kg  |       | (      | 08/02/23 11                                        | 1:14   | 08/03/23 1               | 1:30    |             |
|                                                                        |           | ΜВ   |           |                      |         |     |        |       |        | _                                                  |        |                          |         |             |
|                                                                        |           | VOrV | Qualifier | Limits               |         |     |        |       |        | Prepare                                            |        | Analyze                  | ed      | Dil Fa      |
| -                                                                      | %Reco     | -    |           |                      |         |     |        |       |        |                                                    |        |                          | 1 00    |             |
| Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr) | %Reco     | -    | S1-       | 70 - 130<br>70 - 130 |         |     |        |       |        | 08/02/23 1 <sup>.</sup><br>08/02/23 1 <sup>.</sup> |        | 08/03/23 1<br>08/03/23 1 |         |             |

| Lab Sample ID: MB 880-59369/1-A<br>Matrix: Solid<br>Analysis Batch: 59409 |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: ∃<br>Prep Batcł | Total/NA |
|---------------------------------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------------------------------------|----------|
|                                                                           | MB     | MB        |      |     |       |   |                |                                              |          |
| Analyte                                                                   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                                     | Dil Fac  |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16                               | 1        |
| (GRO)-C6-C10                                                              |        |           |      |     |       |   |                |                                              |          |

Job ID: 880-31274-1 SDG: Lea County, New Mexico

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369/                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                | ample ID:                                                                                                                                                                                 |                                                      |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|--------|------------------------------------------------|------------|----------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           | ype: To                                              |                                   |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                | Prep                                                                                                                                                                                      | Batch:                                               | 59369                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MB            |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifier     | RL                                                                                                                                                                                                                                                                                            |                                                                                      | MDL        | Unit   |                                                | D          | Pr       | repared                                        | Analyz                                                                                                                                                                                    | ed                                                   | Dil Fac                           |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                     | <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U             | 50.0                                                                                                                                                                                                                                                                                          |                                                                                      |            | mg/Kg  |                                                |            | 08/04    | 4/23 17:29                                     | 08/06/23                                                                                                                                                                                  | 08:16                                                |                                   |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                               | <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U             | 50.0                                                                                                                                                                                                                                                                                          |                                                                                      |            | mg/Kg  |                                                |            | 08/04    | 4/23 17:29                                     | 08/06/23                                                                                                                                                                                  | 08:16                                                |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | МВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MB            |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                       | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | Limits                                                                                                                                                                                                                                                                                        |                                                                                      |            |        |                                                |            | Pi       | repared                                        | Analyz                                                                                                                                                                                    | ed                                                   | Dil Fa                            |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 70 - 130                                                                                                                                                                                                                                                                                      |                                                                                      |            |        |                                                | -          |          | 4/23 17:29                                     | 08/06/23                                                                                                                                                                                  |                                                      | -                                 |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 70 - 130                                                                                                                                                                                                                                                                                      |                                                                                      |            |        |                                                |            |          | 4/23 17:29                                     |                                                                                                                                                                                           |                                                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
| Lab Sample ID: LCS 880-59369                                                                                                                                                                                                                                                                                                                                                                                                                    | )/2-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                | Cli        | ient     | Sample                                         | ID: Lab Co                                                                                                                                                                                | ontrol S                                             | ampl                              |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          | - C.                                           |                                                                                                                                                                                           | ype: To                                              |                                   |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           | Batch:                                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Spike                                                                                                                                                                                                                                                                                         | LCS                                                                                  | LCS        |        |                                                |            |          |                                                | %Rec                                                                                                                                                                                      |                                                      |                                   |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Added                                                                                                                                                                                                                                                                                         | Result                                                                               | Qual       | lifier | Unit                                           |            | D        | %Rec                                           | Limits                                                                                                                                                                                    |                                                      |                                   |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 1000                                                                                                                                                                                                                                                                                          | 661.8                                                                                | *_         |        | mg/Kg                                          |            | _        | 66                                             | 70 - 130                                                                                                                                                                                  |                                                      |                                   |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        | 5.1.5                                          |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 1000                                                                                                                                                                                                                                                                                          | 873.3                                                                                |            |        | mg/Kg                                          |            |          | 87                                             | 70 - 130                                                                                                                                                                                  |                                                      |                                   |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LCS LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5             |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Limits                                                                                                                                                                                                                                                                                        |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
| Surrogato                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | LIIIIIIIS                                                                                                                                                                                                                                                                                     |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %Recovery Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 70 130                                                                                                                                                                                                                                                                                        |                                                                                      |            |        |                                                |            |          |                                                |                                                                                                                                                                                           |                                                      |                                   |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936                                                                                                                                                                                                                                                                                                                                                                                   | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 70 - 130<br>70 - 130                                                                                                                                                                                                                                                                          |                                                                                      |            |        | Cli                                            | ent S      | Sam      | ple ID: L                                      | ab Contro.<br>Prep T                                                                                                                                                                      | l Samp<br>ype: To                                    |                                   |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                  | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                                                                                                                                                                                               |                                                                                      |            |        | Cli                                            | ent S      | Sam      | ple ID: L                                      | Prep T<br>Prep                                                                                                                                                                            |                                                      | tal/N<br>5936                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                         | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 70 - 130<br>Spike                                                                                                                                                                                                                                                                             | LCSD                                                                                 |            |        |                                                | ent {      |          | -                                              | Prep T<br>Prep<br>%Rec                                                                                                                                                                    | ype: To<br>Batch:                                    | tal/N<br>5936<br>RP               |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                                                                                                                                                              | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 70 - 130<br>Spike<br>Added                                                                                                                                                                                                                                                                    | Result                                                                               | Qual       |        | Unit                                           | ent {      | Sam      | %Rec                                           | Prep 1<br>Prep<br>%Rec<br>Limits                                                                                                                                                          | Batch:                                               | 5936<br>RP                        |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                   | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 70 - 130<br>Spike                                                                                                                                                                                                                                                                             |                                                                                      |            |        |                                                | ent {      |          | -                                              | Prep T<br>Prep<br>%Rec                                                                                                                                                                    | ype: To<br>Batch:                                    | 5936<br>RP                        |
| Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Discel Range Organics (Over                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                                                                                            | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent \$     |          | %Rec                                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                              | Type: To       Batch:       RPD       0              | <b>5936</b><br><b>RPI</b><br>Lim  |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                    | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 70 - 130<br>Spike<br>Added                                                                                                                                                                                                                                                                    | Result                                                                               | Qual       |        | Unit                                           | ent {      |          | %Rec                                           | Prep 1<br>Prep<br>%Rec<br>Limits                                                                                                                                                          | Batch:                                               | <b>5936</b><br><b>RP</b><br>Lim   |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                    | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                                                                                            | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent \$<br> |          | %Rec                                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                              | Type: To       Batch:       RPD       0              | <b>5936</b><br><b>RP</b><br>Lim   |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                        | 93<br>94<br>69/3-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                                                                                            | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent \$     |          | %Rec                                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                              | Type: To       Batch:       RPD       0              | <b>5936</b><br><b>RP</b><br>Lim   |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                                           | 93<br>94<br>69/3-A<br>LCSD LCS<br>%Recovery Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                                                                                                                          | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent {      |          | %Rec                                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                              | Type: To       Batch:       RPD       0              | <b>5936</b><br><b>RP</b><br>Lim   |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                                         | 93<br>94<br>69/3-A<br><i>LCSD</i> LCS<br>%Recovery Qua<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                                                                                              | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent {      |          | %Rec                                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                              | Type: To       Batch:       RPD       0              | <b>5936</b><br><b>RPI</b><br>Lim  |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                   | 93<br>94<br>69/3-A<br>LCSD LCS<br>%Recovery Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                                                                                                                          | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent {      |          | %Rec                                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                              | Type: To       Batch:       RPD       0              | tal/N/                            |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                          | 93<br>94<br>69/3-A<br><i>LCSD</i><br>%Recovery<br>85<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                                                                                              | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent {      |          | <b>%Rec</b><br>66<br>85                        | Prep 1<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                  | Type: To<br>Batch:<br>RPD<br>0<br>3                  | 2<br>5936<br>RPI<br>Lim<br>2<br>2 |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-                                                                                                                                                         | 93<br>94<br>69/3-A<br><i>LCSD</i><br>%Recovery<br>85<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                                                                                              | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent \$     |          | <b>%Rec</b><br>66<br>85                        | Prep 1           %Rec           Limits           70 - 130           70 - 130                                                                                                              | Type: To<br>Batch:                                   | Spik                              |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid                                                                                                                                        | 93<br>94<br>69/3-A<br><i>LCSD</i><br>%Recovery<br>85<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                                                                                              | Result<br>660.9                                                                      | Qual       |        | Unit<br>mg/Kg                                  | ent {      |          | <b>%Rec</b><br>66<br>85                        | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                      | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | spik                              |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-                                                                                                                                                         | 93<br>94<br>59/3-A<br><i>LCSD LCS</i><br>%Recovery Qua<br>85<br>82<br>•F MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SD<br>alifier | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                                                                                                  | Result<br>660.9<br>845.2                                                             | Qual<br>*- |        | Unit<br>mg/Kg                                  | ent {      |          | <b>%Rec</b><br>66<br>85                        | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep                                                                                       | Type: To<br>Batch:                                   | Spikotal/NJ                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                               | 93<br>94<br>59/3-A<br><i>LCSD LCS</i><br>%Recovery Qua<br>85<br>82<br>•F MS<br>Sample Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SD<br>alifier | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>Spike                                                                                                                                                                                                         | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent {      | <u>D</u> | %Rec<br>66<br>85<br>Client                     | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec                                                                               | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | Spikotal/NJ                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                    | 93<br>94<br>59/3-A<br><i>LCSD LCS</i><br>%Recovery Qua<br>85<br>82<br>F MS<br>Sample San<br>Result Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SD<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         Spike         Added                                                                                                                    | Result<br>660.9<br>845.2<br>MS<br>Result                                             | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent {      |          | %Rec<br>66<br>85<br>Client                     | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>8<br>8<br>9<br>7<br>9<br>7<br>9<br>9<br>9<br>8<br>9<br>9<br>9<br>9 | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | Spikotal/NJ                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                         | 93<br>94<br>59/3-A<br><i>LCSD LCS</i><br>%Recovery Qua<br>85<br>82<br>•F MS<br>Sample Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SD<br>alifier | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>Spike                                                                                                                                                                                                         | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent {      | <u>D</u> | %Rec<br>66<br>85<br>Client                     | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec                                                                               | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | spik                              |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                         | 93<br>94<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>50/5<br>50/5<br>50/5<br>50/5<br>50/5<br>50/5<br>50/5<br>50/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SD<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                                                                                                    | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent {      | <u>D</u> | %Rec<br>66<br>85<br>Client<br>85<br>%Rec<br>86 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                         | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | spik                              |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                          | 93<br>94<br>59/3-A<br><i>LCSD LCS</i><br>%Recovery Qua<br>85<br>82<br>F MS<br>Sample San<br>Result Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SD<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         Spike         Added                                                                                                                    | Result<br>660.9<br>845.2<br>MS<br>Result                                             | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg                         | ent {<br>  | <u>D</u> | %Rec<br>66<br>85<br>Client                     | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>8<br>8<br>9<br>7<br>9<br>7<br>9<br>9<br>9<br>8<br>9<br>9<br>9<br>9 | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | Spikotal/NJ                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                         | 93<br>94<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/ | SD<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                                                                                                    | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent {      | <u>D</u> | %Rec<br>66<br>85<br>Client<br>85<br>%Rec<br>86 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                         | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | Spikotal/NJ                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)              | 93<br>94<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/5 | SD<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993         993                                                                                                                        | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent {      | <u>D</u> | %Rec<br>66<br>85<br>Client<br>85<br>%Rec<br>86 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                         | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | Spikotal/NJ                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate | 93<br>94<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>50/3<br>82<br>50/3<br>82<br>50/3<br>82<br>50/3<br>50/3<br>50/3<br>50/3<br>50/3<br>50/3<br>50/3<br>50/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SD<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         Spike         Added         993         993         Limits | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent {      | <u>D</u> | %Rec<br>66<br>85<br>Client<br>85<br>%Rec<br>86 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                         | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | Spikotal/NJ                       |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-5936<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 880-31664-A-2-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)              | 93<br>94<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>59/3-A<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/3-<br>50/5 | SD<br>alifier | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993         993                                                                                                                        | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier | Unit<br>mg/Kg<br>mg/Kg<br><u>Unit</u><br>mg/Kg | ent {      | <u>D</u> | %Rec<br>66<br>85<br>Client<br>85<br>%Rec<br>86 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                         | Type: To<br>Batch:<br>0<br>3<br>: Matrix<br>Type: To | Spikotal/NJ                       |

Eurofins Midland

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31274-1 SDG: Lea County, New Mexico

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Matrix: Solid         Analysis Batch: 59409         Sample       Sample       Spike         Analyte       Result       Qualifier       Added         Gasoline Range Organics       <50.3       U*-       992         (GRO)-C6-C10       0       0*-       992         Diesel Range Organics (Over       61.5       992         C10-C28)       MSD       MSD         Surrogate       %Recovery       Qualifier       Limits         1-Chlorooctane       128       70 - 130         o-Terphenyl       112       70 - 130 | <b>MSD</b><br><b>Result</b><br>918.4<br>1254 | MSD<br>Qualifier | <mark>Unit</mark><br>mg/Kg<br>mg/Kg | <u>D</u> | %Rec<br>91<br>120 |                            | ype: To<br>Batch:<br><u>RPD</u><br>5 |                    |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|-------------------------------------|----------|-------------------|----------------------------|--------------------------------------|--------------------|---|
| SampleSampleSpikeAnalyteResultQualifierAddedGasoline Range Organics<50.3U *-992(GRO)-C6-C100<61.5992Diesel Range Organics (Over<br>C10-C28)61.5992MSDMSDSurrogate%Recovery<br>128QualifierLimits<br>70 - 130                                                                                                                                                                                                                                                                                                            | <b>Result</b><br>918.4                       |                  | mg/Kg                               | <u>D</u> | 91                | %Rec<br>Limits<br>70 - 130 | <b>RPD</b><br>5                      | RPD<br>Limit<br>20 | 2 |
| AnalyteResultQualifierAddedGasoline Range Organics<50.3U *-992(GRO)-C6-C10U *-992Diesel Range Organics (Over61.5992C10-C28)MSDMSDSurrogate%RecoveryQualifierLimits1-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                             | <b>Result</b><br>918.4                       |                  | mg/Kg                               | <u> </u> | 91                | Limits<br>70 - 130         | 5                                    | Limit<br>20        |   |
| Gasoline Range Organics       <50.3       U *-       992         (GRO)-C6-C10       Diesel Range Organics (Over       61.5       992         C10-C28)       MSD       MSD         Surrogate       %Recovery       Qualifier       Limits         1-Chlorooctane       128       70 - 130                                                                                                                                                                                                                                | 918.4                                        | Qualifier        | mg/Kg                               | <u>D</u> | 91                | 70 - 130                   | 5                                    | 20                 |   |
| (GRO)-C6-C10<br>Diesel Range Organics (Over 61.5 992<br>C10-C28)<br>MSD MSD<br>Surrogate <u>%Recovery</u> Qualifier Limits<br>1-Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                                               |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| Diesel Range Organics (Over 61.5 992<br>C10-C28)  MSD MSD  Surrogate %Recovery Qualifier Limits 128 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                            | 1254                                         |                  | mg/Kg                               |          | 120               | 70 - 130                   | 6                                    | 20                 | ļ |
| MSD       MSD         Surrogate       %Recovery       Qualifier       Limits         -Chlorooctane       128       70 - 130                                                                                                                                                                                                                                                                                                                                                                                             | 1254                                         |                  | mg/Kg                               |          | 120               | 70 - 130                   | 6                                    | 20                 |   |
| MSDMSDSurrogate%RecoveryQualifierLimits-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| Surrogate%RecoveryQualifierLimits1-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| -Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| Tembenyl 112 70 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| -Telphenyi 112 10-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    | i |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |

# QC Association Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31274-1 SDG: Lea County, New Mexico

Page 342 of 406

# 8

**GC VOA** Prep Batch: 58969

#### **Client Sample ID** Lab Sample ID Prep Type Matrix Method Prep Batch 880-31274-1 S-6 (2') Total/NA Solid 5035 MB 880-58969/5-A Method Blank Total/NA Solid 5035 Total/NA LCS 880-58969/1-A Solid 5035 Lab Control Sample LCSD 880-58969/2-A Lab Control Sample Dup Total/NA Solid 5035 Matrix Spike Total/NA Solid 5035 880-31278-A-1-B MS 880-31278-A-1-C MSD Matrix Spike Duplicate Total/NA Solid 5035 Prep Batch: 59110 Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch MB 880-59110/5-A Method Blank Total/NA Solid 5035 Analysis Batch: 59172 Lab Sample ID **Client Sample ID** Method Matrix Prep Batch Prep Type 880-31274-1 S-6 (2') Total/NA Solid 8021B 58969 MB 880-58969/5-A Method Blank Total/NA Solid 8021B 58969 Solid 8021B MB 880-59110/5-A Method Blank Total/NA 59110 LCS 880-58969/1-A Lab Control Sample Total/NA Solid 8021B 58969 LCSD 880-58969/2-A Lab Control Sample Dup Total/NA Solid 8021B 58969 880-31278-A-1-B MS Matrix Spike Total/NA Solid 8021B 58969 880-31278-A-1-C MSD Matrix Spike Duplicate Total/NA Solid 8021B 58969 Analysis Batch: 59322 Prep Type Lab Sample ID **Client Sample ID** Matrix Method Prep Batch 880-31274-1 S-6 (2') Total/NA Solid Total BTEX GC Semi VOA Prep Batch: 59369 **Client Sample ID** Lab Sample ID Prep Type Matrix Method Prep Batch S-6 (2') 880-31274-1 Total/NA Solid 8015NM Prep Total/NA MB 880-59369/1-A Method Blank Solid 8015NM Prep Total/NA LCS 880-59369/2-A Lab Control Sample Solid 8015NM Prep LCSD 880-59369/3-A Lab Control Sample Dup Total/NA Solid 8015NM Prep Total/NA Solid 880-31664-A-2-F MS Matrix Spike 8015NM Prep 880-31664-A-2-G MSD Total/NA Solid Matrix Spike Duplicate 8015NM Prep Analysis Batch: 59409 Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 880-31274-1 S-6 (2') Total/NA Solid 8015B NM 59369 MB 880-59369/1-A Method Blank Total/NA Solid 8015B NM 59369 LCS 880-59369/2-A Lab Control Sample Total/NA Solid 8015B NM 59369 Lab Control Sample Dup LCSD 880-59369/3-A Total/NA Solid 8015B NM 59369

# Analysis Batch: 59476

880-31664-A-2-F MS

880-31664-A-2-G MSD

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-31274-1   | S-6 (2')         | Total/NA  | Solid  | 8015 NM |            |

Total/NA

Total/NA

Solid

Solid

8015B NM

8015B NM

Released to Imaging: 11/6/2023 11:57:53 AM

Matrix Spike

Matrix Spike Duplicate

59369

Job ID: 880-31274-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31274-1 Matrix: Solid

Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

Client Sample ID: S-6 (2')

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 58969  | 08/01/23 09:01 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59172  | 08/04/23 05:28 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59322  | 08/04/23 10:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59476  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.95 g  | 10 mL  | 59369  | 08/04/23 17:30 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 13:43 | SM      | EET MID |

# Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31274-1 SDG: Lea County, New Mexico

# Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                             | F                               | Program                           | Identification Number                        | Expiration Date           |
|------------------------------------------------------|---------------------------------|-----------------------------------|----------------------------------------------|---------------------------|
| exas                                                 | 1                               | NELAP                             | T104704400-23-26                             | 06-30-24                  |
| The following analytes                               | are included in this report, I  | out the laboratory is not certifi | ied by the governing authority. This list ma | ay include analytes for w |
| the agency does not of                               |                                 | Matrix                            | Analyte                                      |                           |
| the agency does not of<br>Analysis Method<br>8015 NM | fer certification . Prep Method | Matrix<br>Solid                   | Analyte<br>Total TPH                         |                           |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

# **Method Summary**

# Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31274-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                        | Protocol                                | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                           | SW846                                   | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                    | TAL SOP                                 | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                              | SW846                                   | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                           | SW846                                   | EET MID    |
| Protocol Refe | rences:                                                                                                                                   |                                         |            |
|               | "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E<br>= TestAmerica Laboratories, Standard Operating Procedure | Edition, November 1986 And Its Updates. |            |
| TAL SOP       | - TestAmenca Laboratories, Standard Operating Procedure                                                                                   |                                         |            |
| Laboratory R  | eferences:                                                                                                                                |                                         |            |
| Laboratory R  |                                                                                                                                           | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |

#### Protocol References:

# Laboratory References:

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31274-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31274-1   | S-6 (2')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

| MMM            | Comments Email                                                                                                                         |                           |          |      |   |      | S-6 (2')    | Sample Identification | Total Containers        | Sample Custody Seals | Cooler Custody Seals. | Received Intact: | SAMPLE RECEIPT | PO#      | Sampler's Name | Project Location      | Project Number             | Project Name        |               | Phone                    | City, State ZIP              | Address                   | Company Name             | Project Manager        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|------|---|------|-------------|-----------------------|-------------------------|----------------------|-----------------------|------------------|----------------|----------|----------------|-----------------------|----------------------------|---------------------|---------------|--------------------------|------------------------------|---------------------------|--------------------------|------------------------|
|                | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring@carmonaresources com, Clint MerrittC@carmonaresources com |                           |          |      |   |      | 2') 7 25 23 | tification Date       |                         | S. Yes No NA         |                       | Ve<br>Ve         | PT Femp Blank  |          | CCM            | Lea County New Mexico | 2089                       | 1 VIIIO 10 VIALE #1 | Tonto 1E Ctot |                          | Midland TX 79701             | 310 W Wall St Ste 500     | Carmona Resources        | Clinton Merntt         |
|                | mcarmona@carm                                                                                                                          |                           |          |      |   |      |             | Time                  | Corrected Temperature   | Temperature Reading  | Correction Factor     | Thermometer ID   | Yes No         |          |                |                       |                            | 4<br>+              | *             |                          |                              |                           |                          |                        |
|                | onaresources                                                                                                                           |                           |          |      |   |      | ×           | Soil                  | ture                    | ng                   |                       |                  | Wet Ice        |          |                | Due Date              | Routine                    | Turn /              |               | Email                    |                              |                           |                          |                        |
|                | s com, Conne                                                                                                                           |                           |          |      |   |      | G           | Water Comp            | 2:P                     | 19                   | 0                     | JUZ<br>BUT       | Kes No         |          |                | 5 day                 | Rush                       | Turn Around         |               | msanjari@marathonoil.com | City, State ZIP              | Address.                  | Company Name             | Bill to (if different) |
| 7-             | ar Moehring                                                                                                                            | <br>                      |          |      |   |      |             | p # of<br>Cont        |                         | I                    | Pa                    | aran             | nete           | rs       | I              |                       | Pres.<br>Code              |                     |               | rathonoil co             |                              |                           |                          |                        |
| Date/Time      | ) cmoehrir                                                                                                                             |                           |          |      |   |      | ×<br>×      | TP                    | H 801                   |                      |                       | 802<br>0 +       |                | + M      | IRO)           |                       |                            |                     |               | m                        | Houston TX 77024             | 990 Town and Country Blvd | Marathon Oil Corporation | Melodie Sanjari        |
|                | ig@carmo                                                                                                                               |                           |          | <br> |   |      |             |                       |                         | Ch                   | loric                 | le 30            | 0 0            |          |                |                       |                            |                     |               |                          | 77024                        | d Country E               | Corporation              | an                     |
|                | naresourc                                                                                                                              | 880-31                    |          |      | ` |      |             |                       |                         |                      |                       |                  |                |          |                |                       |                            | AN                  |               |                          |                              | Ivd                       | 1                        |                        |
| <u>م</u>       | ies com, C                                                                                                                             | 274 Chain                 |          |      |   | <br> |             |                       |                         |                      |                       |                  |                |          |                |                       |                            | ANALYSIS REQUEST    |               |                          |                              |                           |                          |                        |
| Received by (S | Clint Merritt W                                                                                                                        | 80-31274 Chain of Custody |          |      | i |      |             |                       |                         |                      |                       |                  |                |          |                |                       |                            | EQUEST              |               | Deliverables EDD         | Reporting I                  | State of Project.         | Program.                 |                        |
| Signature)     | lernttC@c                                                                                                                              |                           |          |      |   |      |             |                       |                         |                      |                       |                  |                |          | dannar dir ar  |                       |                            |                     |               | S EDD                    | Reporting Level II Level III | roject.                   | Program. UST/PST PRP     | ~                      |
|                | armonares                                                                                                                              | <br><del>  </del>         | <u> </u> |      |   |      |             |                       |                         |                      |                       |                  |                |          |                |                       |                            |                     |               | ] ADa                    |                              |                           |                          | Vork Orde              |
|                | iources con                                                                                                                            |                           |          |      |   |      |             | Sam                   | NaOH+Asc                | Zn Acetate           | Na-S-O- NaSO          | NaHSO4 NABIS     | H PO, HP       | H-S0, H- | HOL HC         |                       | None NO                    | Pres                |               | ADaPT C C                | ST/UST                       | [                         | Frownfields RRC          | Work Order Comments    |
| Date/Time      | E                                                                                                                                      |                           |          |      |   |      |             | Sample Comments       | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn   | VaSO,                 | VABIS            |                | 10eN     |                |                       | DIW                        | Preservative Codes  |               | Other                    |                              |                           | ິ                        | s                      |
| lime           |                                                                                                                                        |                           |          |      |   |      |             | ents                  | SAPC                    |                      |                       |                  |                | NaOH Na  | HNO, HN        |                       | DI Water: H <sub>-</sub> O | odes                |               |                          |                              | -<br>-                    |                          |                        |

# Received by OCD: 9/21/2023 6:16:51 AM

Work Order No:

S ٢

# Page 347 of 406

5 13

Ô

Job Number: 880-31274-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

# Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31274 List Number: 1

<6mm (1/4").

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:40:16 PM

# JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-31279-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701





# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 8/7/2023 12:40:16 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31279-1 SDG: Lea County, New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

Page 351 of 406

Eurofins Midland 8/7/2023

# **Definitions/Glossary**

# Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31279-1 SDG: Lea County, New Mexico

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| GC Semi VOA    |                                                                                                             | 5  |
| Qualifier      | Qualifier Description                                                                                       |    |
| *_             | LCS and/or LCSD is outside acceptance limits, low biased.                                                   |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary       |                                                                                                             |    |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | 8  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  | 0  |
| %R             | Percent Recovery                                                                                            | 0  |
| CFL            | Contains Free Liquid                                                                                        | 3  |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          | 13 |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL            | Method Detection Limit                                                                                      |    |
| ML             | Minimum Level (Dioxin)                                                                                      |    |
| MPN            | Most Probable Number                                                                                        |    |
| MQL            | Method Quantitation Limit                                                                                   |    |
| NC             | Not Calculated                                                                                              |    |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |    |
| NEG            | Negative / Absent                                                                                           |    |
| POS            | Positive / Present                                                                                          |    |
| PQL            | Practical Quantitation Limit                                                                                |    |
| PRES           | Presumptive                                                                                                 |    |
| QC             | Quality Control                                                                                             |    |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |    |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |    |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |    |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |    |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |    |
| TNTC           | Too Numerous To Count                                                                                       |    |

4

5

# Job ID: 880-31279-1 SDG: Lea County, New Mexico

# Job ID: 880-31279-1

Client: Carmona Resources

Project/Site: Tonto 15 State #1

# Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31279-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

# **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-6 (3') (880-31279-1).

#### GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-31279-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-31279-1

# Client Sample ID: S-6 (3') Date Collected: 07/25/23 00:00

Client: Carmona Resources

Project/Site: Tonto 15 State #1

Date Received: 07/26/23 16:45

| Analyte                                                                                                                                                                                                                                     | Result                                                                                                                                                                                  | Qualifier                                                                        | RL                                                                 | MDL | Unit                                             | D | Prepared                                                                   | Analyzed                                                                   | Dil Fac                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|-----|--------------------------------------------------|---|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|
| Benzene                                                                                                                                                                                                                                     | <0.00202                                                                                                                                                                                | U                                                                                | 0.00202                                                            |     | mg/Kg                                            |   | 08/01/23 09:18                                                             | 08/02/23 22:30                                                             | 1                            |
| Toluene                                                                                                                                                                                                                                     | <0.00202                                                                                                                                                                                | U                                                                                | 0.00202                                                            |     | mg/Kg                                            |   | 08/01/23 09:18                                                             | 08/02/23 22:30                                                             | 1                            |
| Ethylbenzene                                                                                                                                                                                                                                | <0.00202                                                                                                                                                                                | U                                                                                | 0.00202                                                            |     | mg/Kg                                            |   | 08/01/23 09:18                                                             | 08/02/23 22:30                                                             | 1                            |
| m-Xylene & p-Xylene                                                                                                                                                                                                                         | <0.00403                                                                                                                                                                                | U                                                                                | 0.00403                                                            |     | mg/Kg                                            |   | 08/01/23 09:18                                                             | 08/02/23 22:30                                                             | 1                            |
| o-Xylene                                                                                                                                                                                                                                    | <0.00202                                                                                                                                                                                | U                                                                                | 0.00202                                                            |     | mg/Kg                                            |   | 08/01/23 09:18                                                             | 08/02/23 22:30                                                             | 1                            |
| Xylenes, Total                                                                                                                                                                                                                              | <0.00403                                                                                                                                                                                | U                                                                                | 0.00403                                                            |     | mg/Kg                                            |   | 08/01/23 09:18                                                             | 08/02/23 22:30                                                             | 1                            |
| Surrogate                                                                                                                                                                                                                                   | %Recovery                                                                                                                                                                               | Qualifier                                                                        | Limits                                                             |     |                                                  |   | Prepared                                                                   | Analyzed                                                                   | Dil Fac                      |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                 | 96                                                                                                                                                                                      |                                                                                  | 70 - 130                                                           |     |                                                  |   | 08/01/23 09:18                                                             | 08/02/23 22:30                                                             | 1                            |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                  | 97                                                                                                                                                                                      |                                                                                  | 70 - 130                                                           |     |                                                  |   | 08/01/23 09:18                                                             | 08/02/23 22:30                                                             | 1                            |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                              | Total BTEX Cald                                                                                                                                                                         | culation                                                                         |                                                                    |     |                                                  |   |                                                                            |                                                                            |                              |
| A                                                                                                                                                                                                                                           | Posult                                                                                                                                                                                  | Qualifier                                                                        | RL                                                                 | MDL | Unit                                             | D | Prepared                                                                   | Analyzed                                                                   | Dil Fac                      |
| Analyte                                                                                                                                                                                                                                     | Result                                                                                                                                                                                  | Quanner                                                                          |                                                                    |     | onne                                             |   |                                                                            |                                                                            |                              |
| Analyte<br>Total BTEX                                                                                                                                                                                                                       | <0.00403                                                                                                                                                                                |                                                                                  | 0.00403                                                            |     | mg/Kg                                            |   |                                                                            | 08/03/23 09:53                                                             | 1                            |
| Total BTEX<br>Method: SW846 8015 NM - Diese                                                                                                                                                                                                 | <pre>&lt;0.00403</pre>                                                                                                                                                                  | U<br>ics (DRO) (                                                                 | 0.00403                                                            |     | mg/Kg                                            |   |                                                                            |                                                                            |                              |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                      | <0.00403<br>I Range Organ<br>Result                                                                                                                                                     | U<br><mark>ics (DRO) (</mark><br>Qualifier                                       | 0.00403                                                            |     | mg/Kg<br>Unit                                    | D | Prepared                                                                   | Analyzed                                                                   | 1<br>Dil Fac                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                      | <pre>&lt;0.00403</pre>                                                                                                                                                                  | U<br><mark>ics (DRO) (</mark><br>Qualifier                                       | 0.00403                                                            |     | mg/Kg                                            | D |                                                                            |                                                                            |                              |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                                                                                                                         | <0.00403<br>el Range Organ<br>Result<br><50.5                                                                                                                                           | U<br>ics (DRO) (<br>Qualifier<br>U                                               | 0.00403 GC) RL 50.5                                                |     | mg/Kg<br>Unit                                    | D |                                                                            | Analyzed                                                                   |                              |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                                                        | <0.00403 el Range Organ Result <50.5 sel Range Orga                                                                                                                                     | U<br>ics (DRO) (<br>Qualifier<br>U                                               | 0.00403 GC) RL 50.5                                                | MDL | mg/Kg<br>Unit                                    | D |                                                                            | Analyzed                                                                   |                              |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics                                                                                                 | <0.00403 el Range Organ Result <50.5 sel Range Orga                                                                                                                                     | U<br>ics (DRO) (<br>Qualifier<br>U<br>nnics (DRO)<br>Qualifier                   | GC)<br><u>RL</u><br><u>50.5</u><br>(GC)                            | MDL | mg/Kg<br>Unit<br>mg/Kg                           |   | Prepared                                                                   | Analyzed<br>08/07/23 10:15                                                 | Dil Fac                      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                 | cl.00403 el Range Organ Result <50.5 sel Range Orga Result                                                                                                                              | U<br>ics (DRO) (r<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-           | 0.00403<br>GC)<br>RL<br>50.5<br>(GC)<br>RL                         | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg          |   | Prepared                                                                   | Analyzed<br>08/07/23 10:15<br>Analyzed                                     | Dil Fac                      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                  | el Range Organ<br>Result<br><50.5<br>Sel Range Orga<br>Result<br><50.5                                                                                                                  | U<br>ics (DRO) (r<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-           | 0.00403<br>GC)<br>RL<br>50.5<br>(GC)<br>RL<br>50.5                 | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit                   |   | Prepared<br>Prepared<br>08/04/23 17:30                                     | Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 16:18                   | Dil Fac<br>1<br>Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                      | el Range Organ<br>Result<br><50.5<br>Sel Range Orga<br>Result<br><50.5                                                                                                                  | U<br>ics (DRO) (r<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-<br>U      | 0.00403<br>GC)<br>RL<br>50.5<br>(GC)<br>RL<br>50.5                 | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg          |   | Prepared<br>Prepared<br>08/04/23 17:30                                     | Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 16:18                   | Dil Fac<br>1<br>Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36) | <0.00403 el Range Organ Result <50.5 sel Range Orga Result <50.5 <50.5                                                                                                                  | U<br>ics (DRO) (r<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-<br>U<br>U | 0.00403<br>GC)<br>RL<br>50.5<br>(GC)<br>RL<br>50.5<br>50.5         | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |   | Prepared<br>Prepared<br>08/04/23 17:30<br>08/04/23 17:30                   | Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 16:18<br>08/06/23 16:18 | Dil Fac<br>1<br>Dil Fac<br>1 |
| Total BTEX                                                                                                                                                                                                                                  | <ul> <li>&lt;0.00403</li> <li>el Range Organ</li> <li>Result</li> <li>&lt;50.5</li> <li>sel Range Orga</li> <li>Result</li> <li>&lt;50.5</li> <li>&lt;50.5</li> <li>&lt;50.5</li> </ul> | U<br>ics (DRO) (r<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U *-<br>U<br>U | 0.00403<br>GC)<br>RL<br>50.5<br>(GC)<br>RL<br>50.5<br>50.5<br>50.5 | MDL | mg/Kg<br>Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |   | Prepared<br>Prepared<br>08/04/23 17:30<br>08/04/23 17:30<br>08/04/23 17:30 | Analyzed<br>08/07/23 10:15<br>Analyzed<br>08/06/23 16:18<br>08/06/23 16:18 | Dil Fac                      |

Eurofins Midland

): 880-31279-1

Matrix: Solid

Job ID: 880-31279-1

# Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                    |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|--------------------|------------------------|----------|----------|------------------------------------------------|
|                    |                        | BFB1     | DFBZ1    |                                                |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31279-1        | S-6 (3')               | 96       | 97       |                                                |
| 880-31279-1 MS     | S-6 (3')               | 103      | 100      |                                                |
| 880-31279-1 MSD    | S-6 (3')               | 108      | 104      |                                                |
| LCS 880-58971/1-A  | Lab Control Sample     | 104      | 100      |                                                |
| LCSD 880-58971/2-A | Lab Control Sample Dup | 95       | 103      |                                                |
| MB 880-58971/5-A   | Method Blank           | 84       | 89       |                                                |
| MB 880-58998/5-A   | Method Blank           | 85       | 89       |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

# Matrix: Solid

|                              |                        |              |                | Percent Surrogate Recovery (Acceptance Limits) |
|------------------------------|------------------------|--------------|----------------|------------------------------------------------|
|                              |                        | 1CO1         | OTPH1          |                                                |
| -ab Sample ID<br>380-31279-1 | Client Sample ID       | (70-130)<br> | (70-130)<br>95 |                                                |
| 380-31664-A-2-F MS           | Matrix Spike           | 123          | 104            |                                                |
| 880-31664-A-2-G MSD          | Matrix Spike Duplicate | 128          | 112            |                                                |
| LCS 880-59369/2-A            | Lab Control Sample     | 93           | 94             |                                                |
| LCSD 880-59369/3-A           | Lab Control Sample Dup | 85           | 82             |                                                |
| MB 880-59369/1-A             | Method Blank           | 88           | 94             |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

SDG: Lea County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

# **QC Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

# Method: 8021B - Volatile Organic Compounds (GC)

# Lab Sample ID: MB 880-58971/5-A

Matrix: Solid Analysis Batch: 59072

| -                           | МВ        | МВ        |          |     |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | < 0.00200 | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
|                             | МВ        | МВ        |          |     |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 84        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |
| 1,4-Difluorobenzene (Surr)  | 89        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1       |

# Lab Sample ID: LCS 880-58971/1-A Matrix: Solid

# Analysis Batch: 59072

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.07714 |           | mg/Kg |   | 77   | 70 - 130 |  |
| Toluene             | 0.100 | 0.1014  |           | mg/Kg |   | 101  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08911 |           | mg/Kg |   | 89   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1753  |           | mg/Kg |   | 88   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.08985 |           | mg/Kg |   | 90   | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 104       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 100       |           | 70 - 130 |

# Lab Sample ID: LCSD 880-58971/2-A

# Matrix: Solid

| Analysis Batch: 59072 |       |         |           |       |   |      | Prep     | Batch: | 58971 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.08576 |           | mg/Kg |   | 86   | 70 - 130 | 11     | 35    |
| Toluene               | 0.100 | 0.1000  |           | mg/Kg |   | 100  | 70 - 130 | 1      | 35    |
| Ethylbenzene          | 0.100 | 0.08572 |           | mg/Kg |   | 86   | 70 - 130 | 4      | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1641  |           | mg/Kg |   | 82   | 70 - 130 | 7      | 35    |
| o-Xylene              | 0.100 | 0.08388 |           | mg/Kg |   | 84   | 70 - 130 | 7      | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 95        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

# Lab Sample ID: 880-31279-1 MS

#### Matrix: Solid nalvaia Ratahi 50072

| Analysis Batch: 59072 |          |           |        |         |           |       |   |      | Prep     | Batch: 58971 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00202 | U         | 0.0996 | 0.07513 |           | mg/Kg |   | 75   | 70 - 130 |              |
| Toluene               | <0.00202 | U         | 0.0996 | 0.08995 |           | mg/Kg |   | 90   | 70 - 130 |              |

Eurofins Midland

# **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 58971

SDG: Lea County, New Mexico

Job ID: 880-31279-1

# **Client Sample ID: Lab Control Sample**

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 58971

Client Sample ID: S-6 (3')

Prep Type: Total/NA

Released to Imaging: 11/6/2023 11:57:53 AM

Client: Carmona Resources

Project/Site: Tonto 15 State #1

# Job ID: 880-31279-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31279-1 M             | NS              |            |                 |                      |         |     |        |       |   |          | С                    | lient Samp               |          |         |
|------------------------------------------|-----------------|------------|-----------------|----------------------|---------|-----|--------|-------|---|----------|----------------------|--------------------------|----------|---------|
| Matrix: Solid                            |                 |            |                 |                      |         |     |        |       |   |          |                      | Prep Ty                  | -        |         |
| Analysis Batch: 59072                    |                 |            |                 |                      |         |     |        |       |   |          |                      |                          | Batch:   | 5897    |
|                                          | Sample          |            |                 | Spike                | MS      |     |        |       |   |          |                      | %Rec                     |          |         |
| Analyte                                  | Result          |            | lifier          | Added                | Result  |     | lifier | Unit  |   | <u> </u> | %Rec                 | Limits                   |          |         |
| Ethylbenzene                             | <0.00202        | U          |                 | 0.0996               | 0.08100 |     |        | mg/Kg |   |          | 81                   | 70 - 130                 |          |         |
| m-Xylene & p-Xylene                      | <0.00403        | U          |                 | 0.199                | 0.1561  |     |        | mg/Kg |   |          | 78                   | 70 - 130                 |          |         |
| o-Xylene                                 | <0.00202        | U          |                 | 0.0996               | 0.07987 |     |        | mg/Kg |   |          | 80                   | 70 - 130                 |          |         |
| Surrogate                                | MS<br>%Recovery | MS<br>Qual | lifior          | Limits               |         |     |        |       |   |          |                      |                          |          |         |
| 4-Bromofluorobenzene (Surr)              | 103             | Qua        |                 | 70 - 130             |         |     |        |       |   |          |                      |                          |          |         |
| 1,4-Difluorobenzene (Surr)               | 100             |            |                 | 70 - 130<br>70 - 130 |         |     |        |       |   |          |                      |                          |          |         |
| Lab Sample ID: 880-31279-1 M             | ASD             |            |                 |                      |         |     |        |       |   |          | с                    | lient Samp               | le ID: S | 5-6 (3' |
| Matrix: Solid                            |                 |            |                 |                      |         |     |        |       |   |          | •                    | Prep Ty                  |          |         |
| Analysis Batch: 59072                    |                 |            |                 |                      |         |     |        |       |   |          |                      |                          | Batch:   |         |
| Analysis Baten. 00012                    | Sample          | Sam        | ple             | Spike                | MSD     | MSD | )      |       |   |          |                      | %Rec                     | Jaton.   | RPE     |
| Analyte                                  | Result          |            |                 | Added                | Result  |     |        | Unit  |   | D        | %Rec                 | Limits                   | RPD      | Limi    |
| Benzene                                  | <0.00202        |            |                 | 0.0994               | 0.07017 |     |        | mg/Kg |   |          | 71                   | 70 - 130                 | 7        | 3       |
| Toluene                                  | < 0.00202       |            |                 | 0.0994               | 0.08738 |     |        | mg/Kg |   |          | 88                   | 70 - 130                 | 3        | 35      |
| Ethylbenzene                             | < 0.00202       |            |                 | 0.0994               | 0.07772 |     |        | mg/Kg |   |          | 78                   | 70 - 130                 | 4        | 35      |
| m-Xylene & p-Xylene                      | < 0.00403       |            |                 | 0.199                | 0.1481  |     |        | mg/Kg |   |          | 75                   | 70 - 130                 | 5        | 35      |
| o-Xylene                                 | <0.00202        |            |                 | 0.0994               | 0.07711 |     |        | mg/Kg |   |          | 78                   | 70 - 130                 | 4        | 3       |
| Surrogate<br>4-Bromofluorobenzene (Surr) | 108             | Qual       | lifier          | Limits<br>70 - 130   |         |     |        |       |   |          |                      |                          |          |         |
| 1,4-Difluorobenzene (Surr)               | 104             |            |                 | 70 - 130             |         |     |        |       |   |          |                      |                          |          |         |
| Lab Sample ID: MB 880-58998              | 3/ <b>5-A</b>   |            |                 |                      |         |     |        |       |   | С        | lient Sa             | ample ID: N              | lethod   | Blan    |
| Matrix: Solid                            |                 |            |                 |                      |         |     |        |       |   |          |                      | Prep Ty                  | vpe: To  | otal/N/ |
| Analysis Batch: 59072                    |                 |            |                 |                      |         |     |        |       |   |          |                      | Prep l                   | Batch:   | 58998   |
|                                          |                 | MB         | MB              |                      |         |     |        |       |   |          |                      |                          |          |         |
| Analyte                                  | Re              | sult       | Qualifier       | R                    | L       | MDL | Unit   |       | D | Pre      | pared                | Analyze                  | d        | Dil Fa  |
| Benzene                                  | <0.00           |            | U               | 0.0020               |         |     | mg/K   | -     |   |          | 23 10:59             | 08/02/23 1               |          |         |
| Toluene                                  | <0.00           | 0200       | U               | 0.0020               | 0       |     | mg/K   | g     |   | 08/01/2  | 23 10:59             | 08/02/23 1               | 1:28     |         |
| Ethylbenzene                             | <0.00           | )200       | U               | 0.0020               | 0       |     | mg/K   | g     |   | 08/01/2  | 23 10:59             | 08/02/23 1               | 1:28     |         |
| m-Xylene & p-Xylene                      | <0.00           | 0400       | U               | 0.0040               | 0       |     | mg/K   | g     |   | 08/01/2  | 23 10:59             | 08/02/23 1               | 1:28     |         |
| o-Xylene                                 | <0.00           | )200       | U               | 0.0020               | 0       |     | mg/K   | g     |   | 08/01/2  | 23 10:59             | 08/02/23 1               | 1:28     |         |
| Xylenes, Total                           | <0.00           | )400       | U               | 0.0040               | 0       |     | mg/K   | g     |   | 08/01/2  | 23 10:59             | 08/02/23 1               | 1:28     |         |
|                                          |                 |            | MB<br>Qualifier | Limits               |         |     |        |       |   | Pro      | pared                | Analyze                  | d        | Dil Fa  |
|                                          | %Reco           |            |                 |                      | _       |     |        |       |   |          |                      |                          |          | Dirru   |
| Surrogate 4-Bromofluorobenzene (Surr)    | %Reco           | -          | quanner         | 70 - 1.30            |         |     |        |       |   |          | 23 10:59             | 08/02/23 1               | 1:28     |         |
| Surrogate                                | %Reco           | 85<br>89   | quanner         | 70 - 130<br>70 - 130 |         |     |        |       |   |          | 23 10:59<br>23 10:59 | 08/02/23 1<br>08/02/23 1 |          |         |

| Lab Sample ID: MB 880-59369/1-A<br>Matrix: Solid |        |           |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: 1 |                 |
|--------------------------------------------------|--------|-----------|------|-----|-------|---|----------------|--------------------------------|-----------------|
| Analysis Batch: 59409                            |        |           |      |     |       |   |                | Prep Batch                     | h: <b>59369</b> |
|                                                  | МВ     | МВ        |      |     |       |   |                | -                              |                 |
| Analyte                                          | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                       | Dil Fac         |
| Gasoline Range Organics                          | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16                 | 1               |

Eurofins Midland

(GRO)-C6-C10

# Job ID: 880-31279-1 SDG: Lea County, New Mexico

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| _ab Sample ID: MB 880-59369/1-A                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       | CI                | ient Sa               | ample ID:                                                                                                                   | Method                                          | l Blank                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------|-------|-----------------------------------------|-------|-------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       |                   |                       | Prep 1                                                                                                                      | Гуре: То                                        | otal/NA                                            |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       |                   |                       | Prep                                                                                                                        | Batch:                                          | 59369                                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     | МВ МВ                                    | 3       |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             |                                                 |                                                    |
| nalyte                                                                                                                                                                                                                                                                                                                                                                                                                          | Re                                                                                                  | sult Qu                                  | alifier | RL                                                                                                                                                                                    |                                                                                                      | MDL         | Unit  |                                         | D     | Prep              | ared                  | Analyz                                                                                                                      | zed                                             | Dil Fac                                            |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                     | <5                                                                                                  | 50.0 U                                   |         | 50.0                                                                                                                                                                                  |                                                                                                      |             | mg/Kg |                                         | 0     | 8/04/2            | 3 17:29               | 08/06/23                                                                                                                    | 08:16                                           | 1                                                  |
| C10-C28)<br>NI Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                    | <5                                                                                                  | 50.0 U                                   |         | 50.0                                                                                                                                                                                  |                                                                                                      |             | mg/Kg |                                         | 0     | 8/04/2            | 3 17:29               | 08/06/23                                                                                                                    | 08:16                                           | 1                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     | MB ME                                    | 3       |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             |                                                 |                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                       | %Recov                                                                                              |                                          | alifier | Limits                                                                                                                                                                                |                                                                                                      |             |       |                                         |       | Prep              | ared                  | Analyz                                                                                                                      | zed                                             | Dil Fac                                            |
| -Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     | 88                                       |         | 70 - 130                                                                                                                                                                              |                                                                                                      |             |       |                                         | 0     | 8/04/2            | 3 17:29               | 08/06/23                                                                                                                    | 08:16                                           | 1                                                  |
| -Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     | 94                                       |         | 70 - 130                                                                                                                                                                              |                                                                                                      |             |       |                                         | 0     | 8/04/2            | 3 17:29               | 08/06/23                                                                                                                    | 08:16                                           | 1                                                  |
| _ab Sample ID: LCS 880-59369/2-A                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         | Clie  | ent Sa            | ample                 | ID: Lab C                                                                                                                   | ontrol S                                        | Sample                                             |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             | Гуре: То                                        |                                                    |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             | Batch:                                          |                                                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     |                                          |         | Spike                                                                                                                                                                                 | LCS                                                                                                  | LCS         |       |                                         |       |                   |                       | %Rec                                                                                                                        |                                                 |                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                          |         | Added                                                                                                                                                                                 | Result                                                                                               | Quali       | ifier | Unit                                    |       | D %               | %Rec                  | Limits                                                                                                                      |                                                 |                                                    |
| Basoline Range Organics GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                          |         | 1000                                                                                                                                                                                  | 661.8                                                                                                | *_          |       | mg/Kg                                   |       | _                 | 66                    | 70 - 130                                                                                                                    |                                                 |                                                    |
| viesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                     |                                          |         | 1000                                                                                                                                                                                  | 873.3                                                                                                |             |       | mg/Kg                                   |       |                   | 87                    | 70 - 130                                                                                                                    |                                                 |                                                    |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                | 1.00                                     |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             |                                                 |                                                    |
| Surrogate %                                                                                                                                                                                                                                                                                                                                                                                                                     | LCS<br>Recovery                                                                                     | LCS<br>Qualifier                         | r       | Limits                                                                                                                                                                                |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             |                                                 |                                                    |
| -Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                   | 93                                                                                                  | Quaimer                                  |         | 70 - 130                                                                                                                                                                              |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             |                                                 |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             |                                                 |                                                    |
| -Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                  |                                          |         | 70 - 130<br>70 - 130                                                                                                                                                                  |                                                                                                      |             |       |                                         |       |                   |                       |                                                                                                                             |                                                 |                                                    |
| -Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                  |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       |                                         | ant C | omol              |                       | ah Cantra                                                                                                                   | l Comm                                          | lo Dun                                             |
| -Terphenyl<br>.ab Sample ID: LCSD 880-59369/3-                                                                                                                                                                                                                                                                                                                                                                                  | 94                                                                                                  |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       | Clie                                    | ent S | ampl              | e ID: L               | ab Contro                                                                                                                   | -                                               |                                                    |
| - <i>Terphenyl</i><br>Lab Sample ID: LCSD 880-59369/3-<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                         | 94                                                                                                  |                                          |         |                                                                                                                                                                                       |                                                                                                      |             |       | Clie                                    | ent S | ampl              | e ID: L               | Prep 1                                                                                                                      | Type: To                                        | otal/NA                                            |
| -Terphenyl<br>.ab Sample ID: LCSD 880-59369/3-                                                                                                                                                                                                                                                                                                                                                                                  | 94                                                                                                  |                                          |         | 70 - 130                                                                                                                                                                              | LCSD                                                                                                 | LCSI        | 1     | Clie                                    | ent S | ampl              | e ID: L               | Prep T<br>Prep                                                                                                              | -                                               | otal/NA<br>59369                                   |
| - <i>Terphenyl</i><br>.ab Sample ID: LCSD 880-59369/3-<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                | 94                                                                                                  |                                          |         | 70 <sub>-</sub> 130<br>Spike                                                                                                                                                          | LCSD                                                                                                 |             |       |                                         |       | -                 |                       | Prep<br>Prep<br>%Rec                                                                                                        | Type: To<br>Batch:                              | otal/NA<br>59369<br>RPD                            |
| - <i>Terphenyl</i><br>.ab Sample ID: LCSD 880-59369/3-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Malyte                                                                                                                                                                                                                                                                                                                      | 94                                                                                                  |                                          |         | 70 - 130<br>Spike<br>Added                                                                                                                                                            | Result                                                                                               | Qual        |       | Unit                                    |       | -                 | 6Rec                  | Prep<br>Prep<br>%Rec<br>Limits                                                                                              | Type: To                                        | 59369<br>RPD<br>Limit                              |
| - <i>Terphenyl</i><br>.ab Sample ID: LCSD 880-59369/3-<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                | 94                                                                                                  |                                          |         | 70 <sub>-</sub> 130<br>Spike                                                                                                                                                          |                                                                                                      | Qual        |       |                                         |       | -                 |                       | Prep<br>Prep<br>%Rec                                                                                                        | RPD                                             | otal/NA<br>59369<br>RPD                            |
| - <i>Terphenyl</i><br>Lab Sample ID: LCSD 880-59369/3-<br>Matrix: Solid<br>Analysis Batch: 59409<br>Malyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                           | 94                                                                                                  |                                          |         | 70 - 130<br>Spike<br>Added                                                                                                                                                            | Result                                                                                               | Qual        |       | Unit                                    |       | -                 | 6Rec                  | Prep<br>Prep<br>%Rec<br>Limits                                                                                              | RPD                                             | 59369<br>RPD<br>Limit                              |
| - <i>Terphenyl</i> Lab Sample ID: LCSD 880-59369/3- Matrix: Solid Analysis Batch: 59409 Malyte Basoline Range Organics GRO)-C6-C10                                                                                                                                                                                                                                                                                              | 94                                                                                                  |                                          |         | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                    | <b>Result</b> 660.9                                                                                  | Qual        |       | Unit<br>mg/Kg                           |       | -                 | 66                    | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                  | Type: To<br>Batch:<br>RPD<br>0                  | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| - <i>Terphenyl</i> -ab Sample ID: LCSD 880-59369/3- Matrix: Solid Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                         | 94                                                                                                  | LCSD                                     |         | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                    | <b>Result</b> 660.9                                                                                  | Qual        |       | Unit<br>mg/Kg                           |       | -                 | 66                    | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                  | Type: To<br>Batch:<br>RPD<br>0                  | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                  | 94<br>A                                                                                             |                                          |         | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                    | <b>Result</b> 660.9                                                                                  | Qual        |       | Unit<br>mg/Kg                           |       | -                 | 66                    | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                  | Type: To<br>Batch:<br>RPD<br>0                  | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                  | 94<br>A                                                                                             |                                          |         | 70 - 130<br>Spike<br>Added<br>1000<br>1000                                                                                                                                            | <b>Result</b> 660.9                                                                                  | Qual        |       | Unit<br>mg/Kg                           |       | -                 | 66                    | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                  | Type: To<br>Batch:<br>RPD<br>0                  | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                  | 94<br>A<br>LCSD<br>Recovery                                                                         |                                          | r       | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                  | <b>Result</b> 660.9                                                                                  | Qual        |       | Unit<br>mg/Kg                           |       | -                 | 66                    | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                  | Type: To<br>Batch:<br>RPD<br>0                  | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>210-C28)<br>Surrogate %/<br>-Chlorooctane<br>-Terphenyl                                                                                                                                                                                                          | 94<br>A<br>LCSD<br>Recovery<br>85<br>82                                                             |                                          | r       | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                      | <b>Result</b> 660.9                                                                                  | Qual        |       | Unit<br>mg/Kg                           |       | <u>D</u> <u>%</u> | 66 –                  | Prep 7<br>Prep %<br>Rec<br>Limits<br>70 - 130<br>70 - 130                                                                   | Type: To<br>Batch:<br>RPD<br>0<br>3             | <b>59369</b><br><b>RPD</b><br>Limit<br>20          |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>210-C28)<br>Analyte<br>Chlorooctane<br>-Terphenyl<br>Lab Sample ID: 880-31664-A-2-F Mathematical States (Construction)                                                                                                                                           | 94<br>A<br>LCSD<br>Recovery<br>85<br>82                                                             |                                          | r       | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                      | <b>Result</b> 660.9                                                                                  | Qual        |       | Unit<br>mg/Kg                           |       | <u>D</u> <u>%</u> | 66 –                  | Prep 7<br>Prep %Rec<br>Limits<br>70 - 130<br>70 - 130<br>Sample ID                                                          | Type: To<br>Batch:<br>RPD<br>0<br>3<br>: Matrix | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20       |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Analyte<br>Chlorooctane<br>- Terphenyl<br>Lab Sample ID: 880-31664-A-2-F Ma<br>Matrix: Solid                                                                                                                                                         | 94<br>A<br>LCSD<br>Recovery<br>85<br>82                                                             |                                          | r       | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                      | <b>Result</b> 660.9                                                                                  | Qual        |       | Unit<br>mg/Kg                           |       | <u>D</u> <u>%</u> | 66 –                  | Prep 7<br>Prep %Rec<br>Limits<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep 7                                                | Type: To<br>Batch:                              | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20        |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>210-C28)<br>Analyte<br>Chlorooctane<br>-Terphenyl<br>Lab Sample ID: 880-31664-A-2-F Mathematical States (Construction)                                                                                                                                           | 94<br>A<br>LCSD<br>Recovery<br>85<br>82<br>S                                                        | Qualifier                                | r       | 70 - 130  Spike Added 1000 1000  Limits 70 - 130 70 - 130                                                                                                                             | Result<br>660.9<br>845.2                                                                             | Qual        |       | Unit<br>mg/Kg                           |       | <u>D</u> <u>%</u> | 66 –                  | Prep 7<br>Prep %Rec<br>Limits<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep 7                                                | Type: To<br>Batch:<br>RPD<br>0<br>3<br>: Matrix | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20        |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Analyte<br>Chlorooctane<br>- Terphenyl<br>Lab Sample ID: 880-31664-A-2-F Ma<br>Matrix: Solid                                                                                                                                                         | 94<br>A<br>LCSD<br>Recovery<br>85<br>82                                                             | Qualifier<br>Sample                      | <br>r   | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                      | Result<br>660.9<br>845.2                                                                             | Quali<br>*_ | ifier | Unit<br>mg/Kg                           |       | <u>D</u> <u>9</u> | 66 –                  | Prep 7<br>Prep %Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep 7<br>Prep                            | Type: To<br>Batch:                              | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20        |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>- Chlorooctane<br>- Terphenyl<br>Lab Sample ID: 880-31664-A-2-F Mi<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                             | 94<br>A<br>LCSD<br>Recovery<br>85<br>82<br>S<br>Sample                                              | Qualifier<br>Sample<br>Qualifier         | <br>r   | 70 - 130  Spike Added 1000  Limits 70 - 130 70 - 130 70 - 130 Spike                                                                                                                   | Result<br>660.9<br>845.2<br>MS                                                                       | Quali<br>*_ | ifier | Unit<br>mg/Kg<br>mg/Kg                  |       | <u>D</u> <u>9</u> | 6<br>66<br>85         | Prep 7<br>Prep %<br>Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep 7<br>Prep 7<br>%Rec              | Type: To<br>Batch:                              | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20        |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>- Chlorooctane<br>- Terphenyl<br>Lab Sample ID: 880-31664-A-2-F Mis<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over              | 94<br>A<br>LCSD<br>Recovery<br>85<br>82<br>S<br>S<br>Sample<br>Result                               | Qualifier<br>Sample<br>Qualifier         | <br>r   | Spike           Added           1000           1000           1000           1000           1000           Spike           Added           Spike           Added                      | Result           660.9           845.2           MS           Result                                 | Quali<br>*_ | ifier | Unit<br>mg/Kg<br>mg/Kg                  |       | <u>D</u> <u>9</u> | 66<br>85<br>Client \$ | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>Prep<br>%Rec<br>Limits                            | Type: To<br>Batch:                              | tal/NA<br>59369<br>RPD<br>Limit<br>20<br>20        |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>- Chlorooctane<br>- Terphenyl<br>Lab Sample ID: 880-31664-A-2-F Mis<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10                                                                      | 94<br>A<br>LCSD<br>Recovery<br>85<br>82<br>S<br>S<br>Sample<br>Result<br><50.3<br>61.5              | Qualifier<br>Sample<br>Qualifier<br>U *- | <br>r   | Spike           Added           1000           1000           1000           1000           Spike           70 - 130           70 - 130           Spike           Added           993 | Result           660.9           845.2           State           MS           Result           876.9 | Quali<br>*_ | ifier | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg |       | <u>D</u> <u>9</u> | 66                    | Prep 7<br>Prep 7<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep 7<br>%Rec<br>Limits<br>70 - 130 | Type: To<br>Batch:                              | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>210-C28)<br>Surrogate %/<br>C-Chlorooctane<br>-Terphenyl<br>Lab Sample ID: 880-31664-A-2-F M:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>210-C28) | 94<br>A<br><i>LCSD</i><br>Recovery<br>85<br>82<br>S<br>S<br>Sample<br>Result<br><50.3<br>61.5<br>MS | Qualifier<br>Sample<br>Qualifier<br>U *- |         | 70 - 130         Spike         Added         1000         1000         1000         1000         0.130         70 - 130         70 - 130         993         993         993          | Result           660.9           845.2           State           MS           Result           876.9 | Quali<br>*_ | ifier | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg |       | <u>D</u> <u>9</u> | 66                    | Prep 7<br>Prep 7<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep 7<br>%Rec<br>Limits<br>70 - 130 | Type: To<br>Batch:                              | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |
| Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>210-C28)<br>Surrogate %/<br>C-Chlorooctane<br>-Terphenyl<br>Lab Sample ID: 880-31664-A-2-F M:<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>210-C28) | 94<br>A<br>LCSD<br>Recovery<br>85<br>82<br>S<br>S<br>Sample<br>Result<br><50.3<br>61.5              | Qualifier<br>Sample<br>Qualifier<br>U *- |         | Spike           Added           1000           1000           1000           1000           Spike           70 - 130           70 - 130           Spike           Added           993 | Result           660.9           845.2           State           MS           Result           876.9 | Quali<br>*_ | ifier | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg |       | <u>D</u> <u>9</u> | 66                    | Prep 7<br>Prep 7<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep 7<br>%Rec<br>Limits<br>70 - 130 | Type: To<br>Batch:                              | stal/NA<br>59369<br>RPD<br>Limit<br>20<br>20<br>20 |

Client: Carmona Resources

Project/Site: Tonto 15 State #1

# Job ID: 880-31279-1 SDG: Lea County, New Mexico

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| SampleSampleSpikeMSDMSD%RecRPDAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDLimitGasoline Range Organics<50.3U*-992918.4mg/Kg9170-130520(GRO)-C6-C10Disele Range Organics (Over61.59921254mg/Kg12070-130620Disele Range Organics (Over61.59921254mg/Kg12070-130620C10-C28)MSDMSDSurrogate%Recovery<br>1/2QualifierLimits<br>70-13070-130620o-Terphenyl11270-13070-130620                                                                                                                                                                    | Analysis Batch: 59409   | Comula    | Comula    | Calka          | MOD  | MOD |       |   |      |                | Batch: |              |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-----------|----------------|------|-----|-------|---|------|----------------|--------|--------------|---|
| Gasoline Range Organics       <50.3       U*-       992       918.4       mg/Kg       91       70 - 130       5       20         (GRO)-C6-C10       Diesel Range Organics (Over       61.5       992       1254       mg/Kg       120       70 - 130       6       20         C10-C28)       MSD       MSD       MSD       Surrogate       %Recovery       Qualifier       Limits         1-Chlorooctane       128       70 - 130       0       70 - 130       0       0         o-Terphenyl       112       70 - 130       10       10       10       10 | nalvte                  |           | -         | Spike<br>Added |      |     | Unit  | D | %Rec | %Rec<br>Limits | RPD    | RPD<br>Limit | 5 |
| C10-C28)<br>MSD MSD<br>Surrogate <u>%Recovery</u> Qualifier Limits<br>1-Chlorooctane 128 70 - 130<br>o-Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                             | Basoline Range Organics |           |           |                |      |     |       |   |      |                |        |              |   |
| Surrogate%RecoveryQualifierLimits1-Chlorooctane12870 - 130o-Terphenyl11270 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 61.5      |           | 992            | 1254 |     | mg/Kg |   | 120  | 70 - 130       | 6      | 20           |   |
| 1-Chlorooctane 128 70 - 130<br>o-Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | MSD       | MSD       |                |      |     |       |   |      |                |        |              |   |
| o-Terphenyl 112 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Surrogate               | %Recovery | Qualifier | Limits         |      |     |       |   |      |                |        |              | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -Chlorooctane           | 128       |           | 70 - 130       |      |     |       |   |      |                |        |              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p-Terphenyl             | 112       |           | 70 - 130       |      |     |       |   |      |                |        |              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |           |           |                |      |     |       |   |      |                |        |              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |           |           |                |      |     |       |   |      |                |        |              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |           |           |                |      |     |       |   |      |                |        |              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |           |           |                |      |     |       |   |      |                |        |              |   |

Released to Imaging: 11/6/2023 11:57:53 AM

# **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31279-1 SDG: Lea County, New Mexico

# Page 360 of 406

# Prep Batch: 58971

**GC VOA** 

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-31279-1        | S-6 (3')               | Total/NA  | Solid  | 5035   |            |
| MB 880-58971/5-A   | Method Blank           | Total/NA  | Solid  | 5035   | 5          |
| LCS 880-58971/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-58971/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-31279-1 MS     | S-6 (3')               | Total/NA  | Solid  | 5035   |            |
| 880-31279-1 MSD    | S-6 (3')               | Total/NA  | Solid  | 5035   |            |
| Prep Batch: 58998  |                        |           |        |        | 8          |
| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method | Pre |
|------------------|------------------|-----------|--------|--------|-----|
| MB 880-58998/5-A | Method Blank     | Total/NA  | Solid  | 5035   |     |

# Analysis Batch: 59072

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |  |
|--------------------|------------------------|-----------|--------|--------|------------|--|
| 880-31279-1        | S-6 (3')               | Total/NA  | Solid  | 8021B  | 58971      |  |
| MB 880-58971/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 58971      |  |
| MB 880-58998/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 58998      |  |
| LCS 880-58971/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 58971      |  |
| LCSD 880-58971/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 58971      |  |
| 880-31279-1 MS     | S-6 (3')               | Total/NA  | Solid  | 8021B  | 58971      |  |
| 880-31279-1 MSD    | S-6 (3')               | Total/NA  | Solid  | 8021B  | 58971      |  |
|                    |                        |           |        |        |            |  |

# Analysis Batch: 59200

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31279-1   | S-6 (3')         | Total/NA  | Solid  | Total BTEX |            |

# GC Semi VOA

# Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31279-1         | S-6 (3')               | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

# Analysis Batch: 59409

880-31279-1

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31279-1           | S-6 (3')               | Total/NA  | Solid  | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59369      |
| Analysis Batch: 59481 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |

Total/NA

Solid

8015 NM

S-6 (3')
Job ID: 880-31279-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31279-1 Matrix: Solid

Client Sample ID: S-6 (3') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.96 g  | 5 mL   | 58971  | 08/01/23 09:18 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59072  | 08/02/23 22:30 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59200  | 08/03/23 09:53 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59481  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.91 g  | 10 mL  | 59369  | 08/04/23 17:30 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 16:18 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

10

# Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31279-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority              | Pr                              | rogram                          | Identification Number                        | Expiration Date           |  |
|------------------------|---------------------------------|---------------------------------|----------------------------------------------|---------------------------|--|
| exas                   |                                 | ELAP                            | T104704400-23-26                             | 06-30-24                  |  |
| The following analytes | are included in this report, bu | ut the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for v |  |
| the agency does not of |                                 |                                 |                                              |                           |  |
| 0,                     | fer certification. Prep Method  | Matrix                          | Analyte                                      |                           |  |
| the agency does not of |                                 | Matrix<br>Solid                 | Analyte<br>Total TPH                         |                           |  |

Eurofins Midland

# **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31279-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                          | Protocol | Laboratory |
|---------------|-----------------------------------------------------------------------------|----------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                             | SW846    | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                      | TAL SOP  | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                            | SW846    | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                            | SW846    | EET MID    |
| 5035          | Closed System Purge and Trap                                                | SW846    | EET MID    |
| 8015NM Prep   | Microextraction                                                             | SW846    | EET MID    |
| Laboratory Re |                                                                             |          |            |
| EET MID =     | Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |
|               |                                                                             |          |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31279-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31279-1   | S-6 (3')         | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

# Received by OCD: 9/21/2023 6:16:51 AM

| MM                               | Comments Email                                                                                                                                 | S-6 (3)    | Sample Identification | Total Containers        | Sample Custody Seals | Cooler Custody Seals. | Received Intact:        | SAMPLE RECEIPT | PO#    | Sampler's Name | Project Location          | Project Number      | Project Name      | Phone                       | City, State ZIP                         | Address                   | Company Name                       | Project Manager         |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------------------------|----------------------|-----------------------|-------------------------|----------------|--------|----------------|---------------------------|---------------------|-------------------|-----------------------------|-----------------------------------------|---------------------------|------------------------------------|-------------------------|
|                                  | results to Wike Carmo                                                                                                                          | r) 7 25 23 |                       |                         |                      | Yes No                |                         | >T Temp Blank  |        | CCM            | Lea County New Mexico     | 6806                | Tonto 15 State #1 |                             | Midland, TX 79701                       | 310 W Wall St Ste 500     | Carmona Resources                  | Clinton Merritt         |
| Relinquished by (Signature)      | na mcarmona@carr                                                                                                                               | 23         | eTime                 | Corrected Temperature   |                      |                       | Thermometer ID          | Yes (No)       |        |                |                           | 9                   | State #1          |                             |                                         |                           |                                    |                         |
|                                  | nonaresource                                                                                                                                   | ×          | Soil                  | rature                  | ding                 |                       |                         | Wet Ice        |        |                |                           | マ Routine           | Tum               | Email                       |                                         |                           |                                    |                         |
|                                  | ss com, Conne                                                                                                                                  |            | Water Grab/<br>Comp   | L U.S                   | 9<br>9               | -:30                  | $\sim$                  | Kee No         | ١      |                | лер 4                     | [] Rush             | Turn Around       | msanjan@marathonoil.com     | City State ZIP                          | Address                   | Company Name                       | Bill to. (if different) |
| 7, 0                             | r Moehring                                                                                                                                     |            | / #of<br>Cont         |                         |                      | Pa                    | ramo                    | eter           | s      |                | Code                      | Pres.               |                   | rathonoil co                |                                         |                           |                                    |                         |
| Date/Time Re<br>26-23 Re<br>1045 | g cmoehring@carmonaresources com, Clint Merritt                                                                                                |            | TPH                   | 1 801                   | 5M (                 | GRC                   | 30211<br>) + D<br>> 300 | RO             | + MR   | 20)            |                           |                     | ANALYSIS REOLIEST | m                           | Houston TX 77024                        | 990 Town and Country Blvd | Marathon Oil Corporation           | Melodie Sanjari         |
| Received by (Signature)          | Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring@carmonaresources com, Clint Merritt MerrittC@carmonaresources com |            | Samp                  | NaOH+Asc                | Zn Acetate+NaOH Zn   |                       |                         |                | HCL HC | Cool Cool      | None NO                   |                     | -                 | Deliverables EDD ADaPT D ot | Reporting Level II Level III ST/UST RRP | ľ                         | Program UST/PST PRP Irownfields RC | Work Order Comments     |
| Date/Time                        |                                                                                                                                                |            | Sample Comments       | NaOH+Ascorbic Acid SAPC | NaOH Zh              | ,00<br>4812           |                         | NACH NA        |        | MeOH Me        | DI Water H <sub>2</sub> O | r reservative Codes |                   | 2                           |                                         |                           | RC Dnerfund                        |                         |

Work Order No:

Page 365 of 406

5

13

ø

Ŋ

5

Job Number: 880-31279-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

## Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31279 List Number: 1 Creator: Rodriguez, Leticia

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

<6mm (1/4").

Containers requiring zero headspace have no headspace or bubble is

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/7/2023 12:42:46 PM

# JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-31284-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701



# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 8/7/2023 12:42:46 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-31284-1 SDG: Lea County, New Mexico

Page 369 of 406

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 12 |
| Lab Chronicle          | 13 |
| Certification Summary  | 14 |
| Method Summary         | 15 |
| Sample Summary         | 16 |
| Chain of Custody       | 17 |
| Receipt Checklists     | 18 |
|                        |    |

# **Definitions/Glossary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31284-1 SDG: Lea County, New Mexico

| Qualifiers     |                                                                                                             | - 3 |
|----------------|-------------------------------------------------------------------------------------------------------------|-----|
| GC VOA         |                                                                                                             |     |
| Qualifier      | Qualifier Description                                                                                       | _ 4 |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |     |
| GC Semi VOA    |                                                                                                             | 5   |
| Qualifier      | Qualifier Description                                                                                       | _   |
| *_             | LCS and/or LCSD is outside acceptance limits, low biased.                                                   |     |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |     |
| Glossary       |                                                                                                             |     |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 | 8   |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |     |
| %R             | Percent Recovery                                                                                            | Q   |
| CFL            | Contains Free Liquid                                                                                        |     |
| CFU            | Colony Forming Unit                                                                                         |     |
| CNF            | Contains No Free Liquid                                                                                     |     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |     |
| Dil Fac        | Dilution Factor                                                                                             |     |
| DL             | Detection Limit (DoD/DOE)                                                                                   |     |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |     |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |     |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |     |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |     |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |     |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |     |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |     |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |     |
| MDL            | Method Detection Limit                                                                                      |     |
| ML             | Minimum Level (Dioxin)                                                                                      |     |
| MPN            | Most Probable Number                                                                                        |     |
| MQL            | Method Quantitation Limit                                                                                   |     |
| NC             | Not Calculated                                                                                              |     |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |     |
| NEG            | Negative / Absent                                                                                           |     |
| POS            | Positive / Present                                                                                          |     |
| PQL            | Practical Quantitation Limit                                                                                |     |
| PRES           | Presumptive                                                                                                 |     |
| QC             | Quality Control                                                                                             |     |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |     |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |     |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |     |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |     |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |     |
| TNTC           | Too Numerous To Count                                                                                       |     |

4

5

Job ID: 880-31284-1 SDG: Lea County, New Mexico

#### Job ID: 880-31284-1

Client: Carmona Resources

Project/Site: Tonto 15 State #1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-31284-1

#### Receipt

The sample was received on 7/26/2023 4:45 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **Receipt Exceptions**

The following sample was received and analyzed from an unpreserved bulk soil jar: S-6 (0-1') (880-31284-1).

#### GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The laboratory control sample (LCS) associated with preparation batch 880-59369 and analytical batch 880-59409 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Job ID: 880-31284-1 SDG: Lea County, New Mexico

## Client Sample ID: S-6 (0-1') Date Collected: 07/25/23 00:00

Date Received: 07/26/23 16:45

Client: Carmona Resources

Project/Site: Tonto 15 State #1

| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit    | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|----------------|-------------|----------|-----|---------|---|----------------|----------------|---------|
| Benzene                           | <0.00201       | U           | 0.00201  |     | mg/Kg   |   | 08/01/23 09:18 | 08/03/23 00:13 |         |
| Toluene                           | <0.00201       | U           | 0.00201  |     | mg/Kg   |   | 08/01/23 09:18 | 08/03/23 00:13 |         |
| Ethylbenzene                      | <0.00201       | U           | 0.00201  |     | mg/Kg   |   | 08/01/23 09:18 | 08/03/23 00:13 |         |
| m-Xylene & p-Xylene               | <0.00402       | U           | 0.00402  |     | mg/Kg   |   | 08/01/23 09:18 | 08/03/23 00:13 |         |
| o-Xylene                          | <0.00201       | U           | 0.00201  |     | mg/Kg   |   | 08/01/23 09:18 | 08/03/23 00:13 |         |
| Xylenes, Total                    | <0.00402       | U           | 0.00402  |     | mg/Kg   |   | 08/01/23 09:18 | 08/03/23 00:13 |         |
| Surrogate                         | %Recovery      | Qualifier   | Limits   |     |         |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)       | 120            |             | 70 - 130 |     |         |   | 08/01/23 09:18 | 08/03/23 00:13 |         |
| 1,4-Difluorobenzene (Surr)        | 105            |             | 70 - 130 |     |         |   | 08/01/23 09:18 | 08/03/23 00:13 | -       |
| Method: TAL SOP Total BTEX - T    | otal BTEX Calo | culation    |          |     |         |   |                |                |         |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit    | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                        | <0.00402       | U           | 0.00402  |     | mg/Kg   |   |                | 08/03/23 09:53 |         |
| Method: SW846 8015 NM - Diese     | I Range Organ  | ics (DRO) ( | GC)      |     |         |   |                |                |         |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit    | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <50.3          | U           | 50.3     |     | mg/Kg   |   |                | 08/07/23 10:15 | 1       |
| Method: SW846 8015B NM - Dies     | el Range Orga  | nics (DRO)  | (GC)     |     |         |   |                |                |         |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit    | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <50.3          | U *-        | 50.3     |     | mg/Kg   |   | 08/04/23 17:30 | 08/06/23 18:26 | 1       |
| (GRO)-C6-C10                      |                |             |          |     |         |   |                |                |         |
| Diesel Range Organics (Over       | <50.3          | U           | 50.3     |     | mg/Kg   |   | 08/04/23 17:30 | 08/06/23 18:26 |         |
| C10-C28)                          | ~50.0          |             | 50.2     |     | m all a |   | 00/04/00 17:00 | 08/06/23 18:26 | 1       |
| Oll Range Organics (Over C28-C36) | <50.3          | U           | 50.3     |     | mg/Kg   |   | 08/04/23 17:30 | 00/00/23 18:26 |         |
|                                   | 0/ Decessory   | Qualifier   | Limits   |     |         |   | Prepared       | Analyzed       | Dil Fa  |
| Surrogate                         | %Recovery      | quanner     |          |     |         |   |                |                |         |
| Surrogate<br>1-Chlorooctane       |                | quanter     | 70 - 130 |     |         |   | 08/04/23 17:30 | 08/06/23 18:26 |         |

**Released to Imaging: 11/6/2023 11:57:53 AM** 

Lab Sample ID: 880-31284-1

5

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31284-1 SDG: Lea County, New Mexico

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

| 380-31279-A-1-A MS       Matrix Spike       103       100         380-31279-A-1-B MSD       Matrix Spike Duplicate       108       104         380-31284-1       S-6 (0-1')       120       105         LCS 880-58971/1-A       Lab Control Sample       104       100         LCSD 880-58971/2-A       Lab Control Sample Dup       95       103 | Percent Surro                         | gate Recovery (Acceptance Limits) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|
| 880-31279-A-1-A MS       Matrix Spike       103       100         880-31279-A-1-B MSD       Matrix Spike Duplicate       108       104         880-31284-1       S-6 (0-1')       120       105         LCS 880-58971/1-A       Lab Control Sample       104       100         LCSD 880-58971/2-A       Lab Control Sample Dup       95       103 | BFB1 DFBZ1                            |                                   |
| 380-31279-A-1-B MSD     Matrix Spike Duplicate     108     104       380-31284-1     S-6 (0-1')     120     105       LCS 880-58971/1-A     Lab Control Sample     104     100       LCSD 880-58971/2-A     Lab Control Sample Dup     95     103                                                                                                 | Client Sample ID (70-130) (70-130)    |                                   |
| 880-31284-1         S-6 (0-1')         120         105           LCS 880-58971/1-A         Lab Control Sample         104         100           LCSD 880-58971/2-A         Lab Control Sample Dup         95         103                                                                                                                          | -A MS Matrix Spike 103 100            |                                   |
| LCS 880-58971/1-A         Lab Control Sample         104         100           LCSD 880-58971/2-A         Lab Control Sample Dup         95         103                                                                                                                                                                                           | -B MSD Matrix Spike Duplicate 108 104 |                                   |
| LCSD 880-58971/2-A Lab Control Sample Dup 95 103                                                                                                                                                                                                                                                                                                  | S-6 (0-1') 120 105                    |                                   |
|                                                                                                                                                                                                                                                                                                                                                   | 1/1-A Lab Control Sample 104 100      |                                   |
| MP 990 F9071/F A Mothed Plank 94 90                                                                                                                                                                                                                                                                                                               | 171/2-A Lab Control Sample Dup 95 103 |                                   |
| MB 660-5697 1/5-A Method Blank 64 69                                                                                                                                                                                                                                                                                                              | /5-A Method Blank 84 89               |                                   |
| MB 880-58998/5-A Method Blank 85 89                                                                                                                                                                                                                                                                                                               | i/5-A Method Blank 85 89              |                                   |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

#### Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| ample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |
| 284-1         | S-6 (0-1')             | 94       | 95       |                                                |
| 64-A-2-F MS   | Matrix Spike           | 123      | 104      |                                                |
| 664-A-2-G MSD | Matrix Spike Duplicate | 128      | 112      |                                                |
| -59369/2-A    | Lab Control Sample     | 93       | 94       |                                                |
| 0-59369/3-A   | Lab Control Sample Dup | 85       | 82       |                                                |
| 80-59369/1-A  | Method Blank           | 88       | 94       |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Page 373 of 406

Eurofins Midland

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Method: 8021B - Volatile Organic Compounds (GC)

# Lab Sample ID: MB 880-58971/5-A

Matrix: Solid Analysis Batch: 59072

| Analysis Batch: 59072       |           |           |          |     |       |   |                | Prep Batch     | n: 58971 |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|----------|
|                             | MB        | MB        |          |     |       |   |                |                |          |
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1        |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1        |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1        |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1        |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1        |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 08/01/23 09:18 | 08/02/23 22:08 | 1        |
|                             | МВ        | МВ        |          |     |       |   |                |                |          |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac  |
| 4-Bromofluorobenzene (Surr) | 84        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1        |
| 1,4-Difluorobenzene (Surr)  | 89        |           | 70 - 130 |     |       |   | 08/01/23 09:18 | 08/02/23 22:08 | 1        |

#### Lab Sample ID: LCS 880-58971/1-A Matrix: Solid

### Analysis Batch: 59072

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.07714 |           | mg/Kg |   | 77   | 70 - 130 |  |
| Toluene             | 0.100 | 0.1014  |           | mg/Kg |   | 101  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08911 |           | mg/Kg |   | 89   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1753  |           | mg/Kg |   | 88   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.08985 |           | mg/Kg |   | 90   | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 104       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 100       |           | 70 - 130 |

### Lab Sample ID: LCSD 880-58971/2-A

### Matrix: Solid

| Analysis Batch: 59072 |       |         |           |       |   |      | Prep     | Batch: | <b>58971</b> |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|--------------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD          |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit        |
| Benzene               | 0.100 | 0.08576 |           | mg/Kg |   | 86   | 70 - 130 | 11     | 35           |
| Toluene               | 0.100 | 0.1000  |           | mg/Kg |   | 100  | 70 - 130 | 1      | 35           |
| Ethylbenzene          | 0.100 | 0.08572 |           | mg/Kg |   | 86   | 70 - 130 | 4      | 35           |
| m-Xylene & p-Xylene   | 0.200 | 0.1641  |           | mg/Kg |   | 82   | 70 - 130 | 7      | 35           |
| o-Xylene              | 0.100 | 0.08388 |           | mg/Kg |   | 84   | 70 - 130 | 7      | 35           |
|                       |       |         |           |       |   |      |          |        |              |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 95        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

# Lab Sample ID: 880-31279-A-1-A MS

#### Matrix: Solid alveie Potek

| Analysis Batch: 59072 |          |           |        |         |           |       |   |      | Pre      | b Batch: 58971 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|----------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |                |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |                |
| Benzene               | <0.00202 | U         | 0.0996 | 0.07513 |           | mg/Kg |   | 75   | 70 - 130 |                |
| Toluene               | <0.00202 | U         | 0.0996 | 0.08995 |           | mg/Kg |   | 90   | 70 - 130 |                |

**Eurofins Midland** 

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

# **Client Sample ID: Method Blank**

SDG: Lea County, New Mexico

Job ID: 880-31284-1

Prep Type: Total/NA

# **Client Sample ID: Lab Control Sample**

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 58971

Prep Type: Total/NA

Client: Carmona Resources

Project/Site: Tonto 15 State #1

### Job ID: 880-31284-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-31279-4               | A-1-A MS  |            |           |          |         |      |        |       |       |       | Client S                 | Sample ID:               |         |                   |
|------------------------------------------|-----------|------------|-----------|----------|---------|------|--------|-------|-------|-------|--------------------------|--------------------------|---------|-------------------|
| Matrix: Solid                            |           |            |           |          |         |      |        |       |       |       |                          | Prep Ty                  | -       |                   |
| Analysis Batch: 59072                    |           |            |           |          |         |      |        |       |       |       |                          | Prep                     | Batch:  | 5897 <sup>°</sup> |
|                                          | Sample    | Sam        | ple       | Spike    | MS      | MS   |        |       |       |       |                          | %Rec                     |         |                   |
| Analyte                                  | Result    |            | lifier    | Added    | Result  | Qual | lifier | Unit  |       | D     | %Rec                     | Limits                   |         |                   |
| Ethylbenzene                             | <0.00202  | U          |           | 0.0996   | 0.08100 |      |        | mg/Kg |       |       | 81                       | 70 - 130                 |         |                   |
| n-Xylene & p-Xylene                      | <0.00403  | U          |           | 0.199    | 0.1561  |      |        | mg/Kg |       |       | 78                       | 70 - 130                 |         |                   |
| o-Xylene                                 | <0.00202  | U          |           | 0.0996   | 0.07987 |      |        | mg/Kg |       |       | 80                       | 70 - 130                 |         |                   |
|                                          |           | MS         |           |          |         |      |        |       |       |       |                          |                          |         |                   |
| Surrogate                                |           | Qual       | lifier    | Limits   |         |      |        |       |       |       |                          |                          |         |                   |
| 4-Bromofluorobenzene (Surr)              | 103       |            |           | 70 - 130 |         |      |        |       |       |       |                          |                          |         |                   |
| 1,4-Difluorobenzene (Surr)               | 100       |            |           | 70 - 130 |         |      |        |       |       |       |                          |                          |         |                   |
| Lab Sample ID: 880-31279-4               | A-1-B MSD |            |           |          |         |      |        | C     | Clier | nt Sa | mple ID:                 | Matrix Spi               |         |                   |
| Matrix: Solid                            |           |            |           |          |         |      |        |       |       |       |                          | Prep Ty                  | -       |                   |
| Analysis Batch: 59072                    |           |            |           |          |         |      |        |       |       |       |                          | Prep                     | Batch:  | 5897              |
|                                          | Sample    | Sam        | ple       | Spike    | MSD     | MSD  | )      |       |       |       |                          | %Rec                     |         | RPI               |
| Analyte                                  | Result    | Qual       | lifier    | Added    | Result  | Qual | lifier | Unit  |       | D     | %Rec                     | Limits                   | RPD     | Lim               |
| Benzene                                  | <0.00202  | U          |           | 0.0994   | 0.07017 |      |        | mg/Kg |       |       | 71                       | 70 - 130                 | 7       | 3                 |
| Toluene                                  | <0.00202  | U          |           | 0.0994   | 0.08738 |      |        | mg/Kg |       |       | 88                       | 70 - 130                 | 3       | 3                 |
| Ethylbenzene                             | <0.00202  | U          |           | 0.0994   | 0.07772 |      |        | mg/Kg |       |       | 78                       | 70 - 130                 | 4       | 3                 |
| m-Xylene & p-Xylene                      | <0.00403  | U          |           | 0.199    | 0.1481  |      |        | mg/Kg |       |       | 75                       | 70 - 130                 | 5       | 3                 |
| o-Xylene                                 | <0.00202  | U          |           | 0.0994   | 0.07711 |      |        | mg/Kg |       |       | 78                       | 70 - 130                 | 4       | 3                 |
|                                          | MSD       | MSD        | )         |          |         |      |        |       |       |       |                          |                          |         |                   |
| Surrogate                                | %Recovery | Qual       | lifier    | Limits   |         |      |        |       |       |       |                          |                          |         |                   |
| 4-Bromofluorobenzene (Surr)              | 108       |            |           | 70 - 130 |         |      |        |       |       |       |                          |                          |         |                   |
| 1,4-Difluorobenzene (Surr)               | 104       |            |           | 70 - 130 |         |      |        |       |       |       |                          |                          |         |                   |
| Lab Sample ID: MB 880-589                | 98/5-A    |            |           |          |         |      |        |       |       |       | Client Sa                | mple ID: N               | lethod  | Blan              |
| Matrix: Solid                            |           |            |           |          |         |      |        |       |       |       |                          | Prep Ty                  | vpe: To | tal/N/            |
| Analysis Batch: 59072                    |           |            |           |          |         |      |        |       |       |       |                          | Prep                     | Batch:  | <b>5899</b>       |
|                                          |           | ΜВ         | МВ        |          |         |      |        |       |       |       |                          |                          |         |                   |
| Analyte                                  | Re        | sult       | Qualifier | R        | L       | MDL  | Unit   |       | D     | Pi    | repared                  | Analyze                  | d       | Dil Fa            |
| Benzene                                  | <0.00     | 0200       | U         | 0.0020   | 00      |      | mg/K   | g     | _     | 08/0  | 1/23 10:59               | 08/02/23 1               | 1:28    |                   |
| Toluene                                  | <0.00     | 0200       | U         | 0.0020   | D       |      | mg/K   | g     |       | 08/0  | 1/23 10:59               | 08/02/23 1               | 1:28    |                   |
| Ethylbenzene                             | <0.00     | 0200       | U         | 0.0020   | D       |      | mg/K   | g     |       | 08/0  | 1/23 10:59               | 08/02/23 1               | 1:28    |                   |
| m-Xylene & p-Xylene                      | <0.00     | 0400       | U         | 0.0040   | D       |      | mg/K   | g     |       | 08/0  | 1/23 10:59               | 08/02/23 1               | 1:28    |                   |
| p-Xylene                                 | <0.00     | 0200       | U         | 0.0020   | D       |      | mg/K   |       |       | 08/0  | 1/23 10:59               | 08/02/23 1               | 1:28    |                   |
| Vidence Tetel                            | <0.00     | 0400       | U         | 0.0040   | D       |      | mg/K   | -     |       | 08/0  | 1/23 10:59               | 08/02/23 1               | 1:28    |                   |
| Kylenes, Total                           |           | ΜВ         | МВ        |          |         |      |        |       |       |       |                          |                          |         |                   |
| kylenes, lotal                           |           |            |           | Limits   |         |      |        |       |       | PI    | repared                  | Analyze                  | d       | Dil Fa            |
|                                          | %Reco     | very       | Quaimer   |          |         |      |        |       |       |       | -                        |                          |         |                   |
| Surrogate<br>4-Bromofluorobenzene (Surr) | %Reco     | very<br>85 | Quaimer   | 70 - 130 | -       |      |        |       |       | 08/0  | 1/23 10:59               | 08/02/23 1               | 1:28    |                   |
| Surrogate                                | %Reco     |            | Quaimer   |          | _       |      |        |       |       |       | 1/23 10:59<br>1/23 10:59 | 08/02/23 1<br>08/02/23 1 |         |                   |

| Lab Sample ID: MB 880-59369/1-A<br>Matrix: Solid<br>Analysis Batch: 59409 |               |      |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA |
|---------------------------------------------------------------------------|---------------|------|-----|-------|---|----------------|---------------------------------------------------------|----------|
| I                                                                         | IB MB         |      |     |       |   |                |                                                         |          |
| Analyte Res                                                               | ult Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed                                                | Dil Fac  |
| Gasoline Range Organics <50                                               | .0 U          | 50.0 |     | mg/Kg |   | 08/04/23 17:29 | 08/06/23 08:16                                          | 1        |

Eurofins Midland

80-31284-1 Jew Mexico

(GRO)-C6-C10

#### Job ID: 880-31284-1 SDG: Lea County, New Mexico

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-59369/                                                                                                                                                                                                                                                                                                                                                                                                      | A-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            | Client Sa                                  | ample ID:                                                                                                                                                                                                  |                                                                |                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|---------|-----------------------------------------|------------|------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            | Type: T                                                        |                                                                             |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | в мв                               |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            | Prep                                                                                                                                                                                                       | Batch                                                          | : 59369                                                                     |
| Analyta                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b MB<br>It Qualifier               | RL                                                                                                                                                                                                                   |                                                                                      | мы         | Unit    |                                         | D          | Dr         | epared                                     | Analyr                                                                                                                                                                                                     | rod .                                                          | Dil Fac                                                                     |
| Analyte<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                            | Kesu<br><50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | KL<br>50.0                                                                                                                                                                                                           |                                                                                      |            | mg/Kg   |                                         |            |            | 4/23 17:29                                 | Analyz<br>08/06/23                                                                                                                                                                                         |                                                                |                                                                             |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                          | -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0                                | 30.0                                                                                                                                                                                                                 |                                                                                      |            | ing/itg |                                         |            | 00/0-      | +/20 11.29                                 | 00/00/20                                                                                                                                                                                                   | 00.10                                                          |                                                                             |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                 | <50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 U                                | 50.0                                                                                                                                                                                                                 |                                                                                      |            | mg/Kg   |                                         |            | 08/04      | 4/23 17:29                                 | 08/06/23                                                                                                                                                                                                   | 08:16                                                          | 1                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            |                                                                |                                                                             |
| <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                          | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            | _          |                                            |                                                                                                                                                                                                            |                                                                |                                                                             |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                         | %Recover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y Qualifier<br>8                   | <u>Limits</u><br>70 - 130                                                                                                                                                                                            |                                                                                      |            |         |                                         | -          |            | repared<br>4/23 17:29                      | Analyz                                                                                                                                                                                                     |                                                                | Dil Fac                                                                     |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o<br>4                             | 70 - 130<br>70 - 130                                                                                                                                                                                                 |                                                                                      |            |         |                                         |            |            | 4/23 17.29<br>4/23 17:29                   |                                                                                                                                                                                                            |                                                                |                                                                             |
| o-rerprienyi                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                  | 70 - 730                                                                                                                                                                                                             |                                                                                      |            |         |                                         |            | 00/04      | +/23 11.29                                 | 00/00/23                                                                                                                                                                                                   | 00.70                                                          |                                                                             |
| Lab Sample ID: LCS 880-59369                                                                                                                                                                                                                                                                                                                                                                                                      | 9/2-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         | Cli        | ient       | Sample                                     | ID: Lab C                                                                                                                                                                                                  | ontrol                                                         | Sample                                                                      |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            | Type: T                                                        |                                                                             |
| Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            | Batch                                                          |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | Spike                                                                                                                                                                                                                | LCS                                                                                  | LCS        |         |                                         |            |            |                                            | %Rec                                                                                                                                                                                                       |                                                                |                                                                             |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | Added                                                                                                                                                                                                                | Result                                                                               | Qual       | lifier  | Unit                                    |            | D          | %Rec                                       | Limits                                                                                                                                                                                                     |                                                                |                                                                             |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | 1000                                                                                                                                                                                                                 | 661.8                                                                                | *-         |         | mg/Kg                                   |            |            | 66                                         | 70 - 130                                                                                                                                                                                                   |                                                                |                                                                             |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            |                                                                |                                                                             |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | 1000                                                                                                                                                                                                                 | 873.3                                                                                |            |         | mg/Kg                                   |            |            | 87                                         | 70 - 130                                                                                                                                                                                                   |                                                                |                                                                             |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            |                                                                |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | LCS LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s                                  |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            |                                                                |                                                                             |
| Surragata                                                                                                                                                                                                                                                                                                                                                                                                                         | %Recovery Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıalifier                           | Limits                                                                                                                                                                                                               |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            |                                                                |                                                                             |
| Surroyale                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                                                                                                                                      |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            |                                                                |                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | 70 - 130                                                                                                                                                                                                             |                                                                                      |            |         |                                         |            |            |                                            |                                                                                                                                                                                                            |                                                                |                                                                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593                                                                                                                                                                                                                                                                                                                                                                      | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 70 - 130<br>70 - 130                                                                                                                                                                                                 |                                                                                      |            |         | Cli                                     | ent S      | Sam        | ple ID: L                                  | _ab Contro                                                                                                                                                                                                 | -                                                              |                                                                             |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-593<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                     | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 70 - 130                                                                                                                                                                                                             |                                                                                      |            |         | Cli                                     | ent S      | Sam        | ple ID: L                                  | Prep<br>Prep                                                                                                                                                                                               | ol Samı<br>Type: T<br>o Batch                                  | otal/NA<br>: 59369                                                          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                                                                                                                                                                                                                                           | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 70 - 130<br>Spike                                                                                                                                                                                                    | LCSD                                                                                 |            |         |                                         | ent S      |            | -                                          | Prep 1<br>Prep<br>%Rec                                                                                                                                                                                     | Type: T<br>Batch                                               | otal/NA<br>: 59369<br>RPE                                                   |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                                                                                                                                                                                                                                                | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 70 - 130<br>Spike<br>Added                                                                                                                                                                                           | Result                                                                               | Qual       |         | Unit                                    | ent S      | Sam        | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits                                                                                                                                                                             | Type: T<br>Batch                                               | otal/NA<br>: 59369<br>RPE<br>Limi                                           |
| o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                       | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 70 - 130<br>Spike                                                                                                                                                                                                    |                                                                                      | Qual       |         |                                         | ent S      |            | -                                          | Prep 1<br>Prep<br>%Rec                                                                                                                                                                                     | Type: T<br>Batch                                               | otal/NA<br>: 59369<br>RPE<br>Limi                                           |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                     | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 70 - 130<br>Spike<br>Added                                                                                                                                                                                           | Result                                                                               | Qual       |         | Unit                                    | ent S      |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits                                                                                                                                                                             | Type: T<br>Batch                                               | otal/NA<br>: 59369<br>RPE<br>Limi<br>20                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                      | 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                   | Result<br>660.9                                                                      | Qual       |         | <mark>Unit</mark><br>mg/Kg              | ent S      |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                 | Type: T<br>b Batch<br>RPD<br>0                                 | otal/N/<br>: 59369<br>RPI<br>Limi<br>20                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                      | 93<br>94<br>69/3-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                   | Result<br>660.9                                                                      | Qual       |         | <mark>Unit</mark><br>mg/Kg              | ent S      |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                 | Type: T<br>b Batch<br>RPD<br>0                                 | otal/NA<br>: 59369<br>RPE<br>Limi<br>20                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                          | 93<br>94<br>69/3-A<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                   | Result<br>660.9                                                                      | Qual       |         | <mark>Unit</mark><br>mg/Kg              | ent S      |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                 | Type: T<br>b Batch<br>RPD<br>0                                 | otal/NA<br>: 59369<br>RPE<br>Limi<br>20                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                             | 93<br>94<br>69/3-A<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                                                 | Result<br>660.9                                                                      | Qual       |         | <mark>Unit</mark><br>mg/Kg              | ent \$     |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                 | Type: T<br>b Batch<br>RPD<br>0                                 | otal/NA<br>: 59369<br>RPD<br>Limit                                          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                           | 93<br>94<br>69/3-A<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                                   | Result<br>660.9                                                                      | Qual       |         | <mark>Unit</mark><br>mg/Kg              | ent S      |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                 | Type: T<br>b Batch<br>RPD<br>0                                 | otal/NA<br>: 59369<br>RPE<br>Limi<br>20                                     |
| Surrogate         1-Chlorooctane         o-Terphenyl         Lab Sample ID: LCSD 880-5930         Matrix: Solid         Analysis Batch: 59409         Analyte         Gasoline Range Organics         (GRO)-C6-C10         Diesel Range Organics (Over         C10-C28)         Surrogate         1-Chlorooctane         o-Terphenyl                                                                                              | 93<br>94<br>69/3-A<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                     | Result<br>660.9                                                                      | Qual       |         | <mark>Unit</mark><br>mg/Kg              | ent \$     |            | %Rec                                       | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                 | Type: T<br>b Batch<br>RPD<br>0                                 | otal/NA<br>: 59369<br>RPD<br>Limit                                          |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                            | 93<br>94<br>69/3-A<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                     | Result<br>660.9                                                                      | Qual       |         | <mark>Unit</mark><br>mg/Kg              | ent 5      |            | <b>%Rec</b><br>66<br>85                    | Prep 7<br>Prep %Rec<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                                      | Type: T<br>Batch<br>RPD<br>0<br>3<br>2: Matri:                 | otal/N/<br>: 59365<br>RPE<br>Limi<br>20<br>20                               |
| 1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid                                                                                                                           | 93<br>94<br>69/3-A<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                                     | Result<br>660.9                                                                      | Qual       |         | <mark>Unit</mark><br>mg/Kg              | ent 5      |            | <b>%Rec</b><br>66<br>85                    | Prep           %Rec           Limits           70 - 130           70 - 130           Sample ID           Prep                                                                                              | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | total/NA<br>: 59365<br>RPI<br>Limi<br>20<br>20<br>x Spike<br>otal/NA        |
| 1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid                                                                                                                           | 93<br>94<br>69/3-A<br><i>LCSD LC</i><br>%Recovery Q4<br>85<br>82<br>-F MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ualifier                           | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                         | Result<br>660.9<br>845.2                                                             | Qual<br>*_ |         | <mark>Unit</mark><br>mg/Kg              | ent \$     |            | <b>%Rec</b><br>66<br>85                    | Prep 7<br>Prep %Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep 7<br>Prep                                                                                                           | Type: T<br>Batch<br>RPD<br>0<br>3<br>2: Matri:                 | total/NA<br>: 59365<br>RPE<br>Limi<br>20<br>20<br>20<br>x Spike<br>otal/NA  |
| 1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409                                                                                                  | 93<br>94<br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-<br>69/3<br>69/3<br>69/3<br>69/3<br>69/3<br>69/3<br>69/3<br>69/3                                                                                                                                                                                                                                                                                                                                                                                                                                            | nalifier                           | 70 - 130  Spike Added 1000 1000  Limits 70 - 130 70 - 130 70 - 130 Spike                                                                                                                                             | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>*- | lifier  | Unit<br>mg/Kg<br>mg/Kg                  | ent \$     | <u>D</u> . | %Rec<br>66<br>85<br>Client 5               | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep<br>%Rec                                                                                                                    | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | total/NA<br>: 59365<br>RPI<br>Limi<br>20<br>20<br>x Spike<br>otal/NA        |
| 1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte                                                                                       | 93<br>94<br>69/3-A<br>69/3-A<br><u><i>LCSD</i></u><br>69/3-A<br><u><i>CCSD</i></u><br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-<br>82<br>69/3-<br>82<br>69/3-<br>82<br>69/3-<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82 | mple                               | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         Added                                                         | Result           660.9           845.2           MS           Result                 | Qual<br>*- | lifier  | Unit<br>mg/Kg<br>mg/Kg                  | ent \$     |            | %Rec<br>66<br>85<br>Client \$              | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>970 - 130<br>Prep<br>%Rec<br>Limits                                                                                              | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | total/NA<br>: 59365<br>RPE<br>Limi<br>20<br>20<br>20<br>x Spike<br>otal/NA  |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics                                                            | 93<br>94<br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-A<br><br>69/3-<br>69/3<br>69/3<br>69/3<br>69/3<br>69/3<br>69/3<br>69/3<br>69/3                                                                                                                                                                                                                                                                                                                                                                                                                                            | mple                               | 70 - 130  Spike Added 1000 1000  Limits 70 - 130 70 - 130 70 - 130 Spike                                                                                                                                             | Result<br>660.9<br>845.2<br>MS                                                       | Qual<br>*- | lifier  | Unit<br>mg/Kg<br>mg/Kg                  | ent 5      | <u>D</u> . | %Rec<br>66<br>85<br>Client 5               | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep<br>%Rec                                                                                                                    | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | total/NA<br>: 59365<br>RPI<br>Limi<br>20<br>20<br>x Spike<br>otal/NA        |
| 1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                            | 93<br>94<br>69/3-A<br><i>LCSD LC</i><br><i>%Recovery Qu</i><br>85<br>82<br>-F MS<br>-F MS<br>Sample Sa<br><u>Result Qu</u><br><50.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mple                               | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                           | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier  | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | ent 5      | <u>D</u> . | %Rec<br>66<br>85<br>Client 5<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           %Rec           Use           %Rec           Use           %Rec           Limits           70 - 130 | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | total/NA<br>: 59365<br>RPI<br>Limi<br>20<br>20<br>x Spike<br>otal/NA        |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over             | 93<br>94<br>69/3-A<br>69/3-A<br><u><i>LCSD</i></u><br>69/3-A<br><u><i>CCSD</i></u><br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-<br>82<br>69/3-<br>82<br>69/3-<br>82<br>69/3-<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82 | mple                               | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         Added                                                         | Result           660.9           845.2           MS           Result                 | Qual<br>*- | lifier  | Unit<br>mg/Kg<br>mg/Kg                  | ent \$<br> | <u>D</u> . | %Rec<br>66<br>85<br>Client \$              | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>970 - 130<br>Prep<br>%Rec<br>Limits                                                                                              | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | total/NA<br>: 5936<br>RPI<br>Limi<br>2<br>2<br>2<br>x Spike<br>otal/NA      |
| 1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terpheny/<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over             | 93<br>94<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalifier<br>mple<br>nalifier       | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                           | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier  | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | ent 5      | <u>D</u> . | %Rec<br>66<br>85<br>Client 5<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           %Rec           Use           %Rec           Use           %Rec           Limits           70 - 130 | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | total/NA<br>: 59365<br>RPE<br>Limi<br>20<br>20<br>20<br>x Spike<br>otal/NA  |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 880-31664-A-2<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28) | 93<br>94<br>69/3-A<br>69/3-A<br><i>LCSD LC</i><br>% <i>Recovery</i> Qi<br>85<br>82<br>-F MS<br>-F MS<br>Sample Sa<br><u>Result</u> Qi<br><50.3 U<br>61.5<br><i>MS M</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nalifier<br>mple<br>nalifier<br>*- | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         50         70 - 130         70 - 130         70 - 130         993         993         993 | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier  | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | ent \$     | <u>D</u> . | %Rec<br>66<br>85<br>Client 5<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           %Rec           Use           %Rec           Use           %Rec           Limits           70 - 130 | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | total/NA<br>: 59369<br>RPD<br>Limin<br>20<br>20<br>20<br>x Spike<br>otal/NA |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-5930<br>Matrix: Solid<br>Analysis Batch: 59409<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                           | 93<br>94<br>69/3-A<br>69/3-A<br>69/3-A<br>69/3-A<br>61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalifier<br>mple<br>nalifier<br>*- | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         5pike         Added         993                                                           | Result           660.9           845.2           MS           Result           876.9 | Qual<br>*- | lifier  | Unit<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | ent \$     | <u>D</u> . | %Rec<br>66<br>85<br>Client 5<br>%Rec<br>86 | Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           %Rec           Use           %Rec           Use           %Rec           Limits           70 - 130 | Type: T<br>Batch<br>RPD<br>0<br>3<br>3<br>9: Matri:<br>Type: T | otal/NA<br>: 59369<br>RPD<br>Limit<br>20<br>20<br>x Spike<br>otal/NA        |

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31284-1 SDG: Lea County, New Mexico

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Matrix: Solid         Analysis Batch: 59409         Sample       Sample       Spike         Analyte       Result       Qualifier       Added         Gasoline Range Organics       <50.3       U*-       992         (GRO)-C6-C10       0       0*-       992         Diesel Range Organics (Over       61.5       992         C10-C28)       MSD       MSD         Surrogate       %Recovery       Qualifier       Limits         1-Chlorooctane       128       70 - 130         o-Terphenyl       112       70 - 130 | <b>MSD</b><br><b>Result</b><br>918.4<br>1254 | MSD<br>Qualifier | <mark>Unit</mark><br>mg/Kg<br>mg/Kg | <u>D</u> | %Rec<br>91<br>120 |                            | ype: To<br>Batch:<br><u>RPD</u><br>5 |                    |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|-------------------------------------|----------|-------------------|----------------------------|--------------------------------------|--------------------|---|
| SampleSampleSpikeAnalyteResultQualifierAddedGasoline Range Organics<50.3U *-992(GRO)-C6-C100<61.5992Diesel Range Organics (Over<br>C10-C28)61.5992MSDMSDSurrogate%Recovery<br>128QualifierLimits<br>70 - 130                                                                                                                                                                                                                                                                                                            | <b>Result</b><br>918.4                       |                  | mg/Kg                               | <u>D</u> | 91                | %Rec<br>Limits<br>70 - 130 | <b>RPD</b><br>5                      | RPD<br>Limit<br>20 | 2 |
| AnalyteResultQualifierAddedGasoline Range Organics<50.3U *-992(GRO)-C6-C10U *-992Diesel Range Organics (Over61.5992C10-C28)MSDMSDSurrogate%RecoveryQualifierLimits1-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                             | <b>Result</b><br>918.4                       |                  | mg/Kg                               | <u> </u> | 91                | Limits<br>70 - 130         | 5                                    | Limit<br>20        |   |
| Gasoline Range Organics       <50.3       U *-       992         (GRO)-C6-C10       Diesel Range Organics (Over       61.5       992         C10-C28)       MSD       MSD         Surrogate       %Recovery       Qualifier       Limits         1-Chlorooctane       128       70 - 130                                                                                                                                                                                                                                | 918.4                                        | Qualifier        | mg/Kg                               | <u>D</u> | 91                | 70 - 130                   | 5                                    | 20                 |   |
| (GRO)-C6-C10<br>Diesel Range Organics (Over 61.5 992<br>C10-C28)<br>MSD MSD<br>Surrogate <u>%Recovery</u> Qualifier Limits<br>1-Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                                               |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| Diesel Range Organics (Over 61.5 992<br>C10-C28)  MSD MSD  Surrogate %Recovery Qualifier Limits 128 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                            | 1254                                         |                  | mg/Kg                               |          | 120               | 70 - 130                   | 6                                    | 20                 | ļ |
| MSDMSDSurrogate%RecoveryQualifierLimits-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1254                                         |                  | mg/Kg                               |          | 120               | 70 - 130                   | 6                                    | 20                 |   |
| MSDMSDSurrogate%RecoveryQualifierLimits-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| Surrogate%RecoveryQualifierLimits1-Chlorooctane12870 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| -Chlorooctane 128 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| Tembenyl 112 70 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
| -Telphenyi 112 10-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    | i |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                                     |          |                   |                            |                                      |                    |   |

Released to Imaging: 11/6/2023 11:57:53 AM

**Client Sample ID** 

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

**Client Sample ID** 

Method Blank

S-6 (0-1')

Method Blank

Matrix Spike

# **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

**GC VOA** 

Prep Batch: 58971

MB 880-58971/5-A

LCS 880-58971/1-A

LCSD 880-58971/2-A

880-31279-A-1-A MS

880-31279-A-1-B MSD

Prep Batch: 58998

MB 880-58998/5-A

Lab Sample ID

Lab Sample ID

880-31284-1

Job ID: 880-31284-1 SDG: Lea County, New Mexico

8

#### Prep Batch Matrix Method Prep Type Total/NA Solid 5035 Prep Batch Prep Type Matrix Method 5035 Total/NA Solid

#### Analysis Batch: 59072

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-31284-1         | S-6 (0-1')             | Total/NA  | Solid  | 8021B  | 58971      |
| MB 880-58971/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 58971      |
| MB 880-58998/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 58998      |
| _CS 880-58971/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 58971      |
| LCSD 880-58971/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 58971      |
| 880-31279-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 58971      |
| 880-31279-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 58971      |

#### atch: 592

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31284-1   | S-6 (0-1')       | Total/NA  | Solid  | Total BTEX |            |

#### GC Semi VOA

#### Prep Batch: 59369

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31284-1         | S-6 (0-1')             | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59369/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59369/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59369/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31664-A-2-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 59409

880-31284-1

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 880-31284-1           | S-6 (0-1')             | Total/NA  | Solid  | 8015B NM | 59369      |
| MB 880-59369/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 59369      |
| LCS 880-59369/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59369      |
| LCSD 880-59369/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-F MS    | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59369      |
| 880-31664-A-2-G MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59369      |
| Analysis Batch: 59486 |                        |           |        |          |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |

Total/NA

Solid

8015 NM

S-6 (0-1')

#### Client Sample ID: S-6 (0-1') Date Collected: 07/25/23 00:00 Date Received: 07/26/23 16:45

| _         | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 58971  | 08/01/23 09:18 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59072  | 08/03/23 00:13 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59205  | 08/03/23 09:53 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59486  | 08/07/23 10:15 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.94 g  | 10 mL  | 59369  | 08/04/23 17:30 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59409  | 08/06/23 18:26 | SM      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-31284-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-31284-1

Matrix: Solid

Eurofins Midland

# Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31284-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| thority                | P                              | rogram                           | Identification Number                        | Expiration Date           |
|------------------------|--------------------------------|----------------------------------|----------------------------------------------|---------------------------|
| xas                    | N                              | IELAP                            | T104704400-23-26                             | 06-30-24                  |
| The following analytes | are included in this report, b | out the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for w |
| the agency does not of |                                | Matrix                           | Analyta                                      |                           |
| Analysis Method        | fer certification Prep Method  | Matrix                           | Analyte                                      |                           |
| 6 ,                    |                                | Matrix<br>Solid                  | Analyte<br>Total TPH                         |                           |

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

10

# **Method Summary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-31284-1 SDG: Lea County, New Mexico

| Method        | Method Description                                                                                                                        | Protocol                                | Laboratory |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                                                                           | SW846                                   | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                                                                                    | TAL SOP                                 | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                                                                          | SW846                                   | EET MID    |
| 5035          | Closed System Purge and Trap                                                                                                              | SW846                                   | EET MID    |
| 8015NM Prep   | Microextraction                                                                                                                           | SW846                                   | EET MID    |
| Protocol Refe | rences:                                                                                                                                   |                                         |            |
|               | "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E<br>= TestAmerica Laboratories, Standard Operating Procedure | Edition, November 1986 And Its Updates. |            |
| TAL SOP       | - TestAmenca Laboratories, Standard Operating Procedure                                                                                   |                                         |            |
| Laboratory R  | eferences:                                                                                                                                |                                         |            |
| Laboratory R  |                                                                                                                                           | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |
| Laboratory R  | eferences:                                                                                                                                | 0                                       |            |

#### Protocol References:

#### Laboratory References:

Eurofins Midland

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-31284-1 SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31284-1   | S-6 (0-1')       | Solid  | 07/25/23 00:00 | 07/26/23 16:45 |

Released to Imaging: 11/6/2023 11:57:53 AM

|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         | 880-3                                                                                                           | 1284 CI | 880-31284 Chain of Custody | Justody        |                         |                     |                            |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|--------------|--------------------------|--------------|---------------------------|--------------------------|-----------|---------|-----------|-------------------------|-----------------------------------------------------------------------------------------------------------------|---------|----------------------------|----------------|-------------------------|---------------------|----------------------------|----------|
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           | ]                       |                                                                                                                 |         |                            |                | Page_                   |                     | of1                        | Ľ        |
|                                                                                                                                                        | -                           |                          |              | Bill to (if different)   | )            | Melodie Sanjari           | banjari                  |           |         |           |                         | an in the second se  |         | Vork Or                    | der Cor        | Work Order Comments     |                     |                            | أستسامله |
| Company Name Carmona Resources                                                                                                                         | Se                          |                          |              | Company Name             | æ            | Marathon                  | Marathon Oil Corporation | ration    |         |           | Prog                    | Program. UST/PST PRP                                                                                            | /PST    |                            | rownfields     | ldsRC                   | ~                   | Dperfund [                 | أساست    |
|                                                                                                                                                        | 500                         |                          |              | Address                  |              | 990 Town and Country Blvd | and Cour                 | itry Blvd |         |           | State                   | State of Project.                                                                                               | at.     |                            |                |                         |                     |                            |          |
| City, State ZIP Midland, TX 79701                                                                                                                      |                             |                          |              | City, State ZIP          |              | Houston TX 77024          | TX 77024                 |           |         |           | Repo                    | Reporting Level II Level III                                                                                    |         |                            | □st/ust        |                         |                     |                            |          |
|                                                                                                                                                        |                             |                          | Email        | msanjari@marathonoil.com | irathonoil.c | om                        |                          |           |         |           | Delive                  | Deliverables EDD                                                                                                |         |                            | ADaPT          |                         | :                   |                            |          |
| Tont                                                                                                                                                   | Tonto 15 State #1           |                          | Turn         | Turn Around              |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            |                | ,                       |                     |                            | I        |
| Project Number                                                                                                                                         | 2089                        |                          | マ Routine    | [ ] Rush                 | Pres,        |                           |                          | _         |         |           |                         |                                                                                                                 | _       |                            |                | rrese                   | r reservative Codes | Codes                      | 1        |
|                                                                                                                                                        | Lea County, New Mexico      |                          | Due Date     | 5 dav                    |              |                           |                          | _         |         |           | -                       | _                                                                                                               | -       |                            |                | NOTE NO                 | C                   | DI Water: H <sub>2</sub> O |          |
|                                                                                                                                                        | CCM                         |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            | 5 2            |                         | Me                  | MeOH Me                    |          |
|                                                                                                                                                        |                             |                          |              |                          | 5            | + MF                      |                          |           |         |           |                         |                                                                                                                 |         |                            | : ፲            |                         | I,                  | HNC3 HN                    |          |
| SAMPLE RECEIPT Temp Blank                                                                                                                              | lank                        | Yes No                   | Wet Ice      | Res No                   | eter         |                           |                          |           |         |           |                         |                                                                                                                 |         |                            | П <sub>2</sub> |                         | Na                  | NaOH Na                    |          |
| Received Intact: (Fes)                                                                                                                                 | )                           | 21                       |              | $(\mathcal{O})$          | ram          | 3021<br>) + E             | e 30(                    |           |         |           |                         |                                                                                                                 |         |                            | 2 3            |                         | 20                  |                            |          |
| Seals Ye                                                                                                                                               | NAL CO                      | <b>Correction Factor</b> |              | 065                      | Pa           |                           |                          |           |         |           |                         |                                                                                                                 |         |                            | Z              | Nanson Nason            |                     |                            |          |
| Sample Custody Seals Yes No                                                                                                                            | NUA Ter                     | Temperature Reading      | ding         | Q.Y                      |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            | Zn             | Zn Acetate+NaOH Zn      | Z HUEN              | ב                          |          |
| Total Containers.                                                                                                                                      | Co                          | Corrected Temperature    | ature        | N-S                      | 1            | 1 801                     |                          |           |         |           |                         |                                                                                                                 |         |                            | Na             | NaOH+Ascorbic Acid SAPC | orbic Acio          | 1 SAPC                     |          |
| Sample Identification                                                                                                                                  | Date                        | Time                     | Soil         | Water Comp               | p Cont       | TP                        |                          |           |         |           |                         |                                                                                                                 |         |                            |                | Samp                    | Sample Comments     | ments                      |          |
| S-6 (0-1')                                                                                                                                             | 7 25 23                     |                          | ×            | G                        |              | ×                         |                          |           |         |           |                         |                                                                                                                 |         |                            | +              |                         |                     |                            |          |
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 | -       |                            | _              |                         |                     |                            |          |
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            |                |                         |                     |                            |          |
|                                                                                                                                                        |                             |                          |              |                          |              | <b> </b>                  |                          |           |         |           |                         |                                                                                                                 |         |                            |                |                         |                     |                            | L        |
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            |                |                         |                     |                            |          |
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 | _       |                            | _              |                         |                     |                            |          |
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            |                |                         |                     |                            | i        |
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            |                |                         |                     |                            |          |
| Email results to Mike Carmona mcarmona@carmonaresources com, Conner Moehring cmoehring@carmonaresources com, Clint Merntt MernttC@carmonaresources com | irmona mcar                 | mona@carm                | ionaresource | is com, Conne            | er Moehrir   | lg cmoeh                  | tring@ca                 | rmonare   | sources | com, C    | Int Meri                | tt Merr                                                                                                         | ttC@c:  | rmona                      | resourc        | es com                  |                     |                            | 1        |
|                                                                                                                                                        |                             | (                        |              |                          |              |                           | (i<br>(i                 |           |         | , coll, c |                         | in the second |         | a morid                    | resourc        | Sec com                 |                     |                            |          |
| Reli                                                                                                                                                   | Relinquished by (Signature) | Signature)               |              |                          |              | Date/Time                 | Ф<br>                    |           |         | Re        | Received by (Signature) | Y (Signa                                                                                                        | ature)  |                            |                |                         | Date                | Date/Time                  |          |
|                                                                                                                                                        |                             |                          |              |                          | 7            | -26-                      | 3                        |           |         |           | 1                       | A                                                                                                               | N.      | 1                          |                |                         |                     |                            |          |
| MVWI JA                                                                                                                                                | LAN                         |                          |              |                          |              | 160                       | R                        |           |         |           |                         |                                                                                                                 |         |                            |                |                         |                     |                            |          |
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            |                |                         |                     |                            | L        |
|                                                                                                                                                        |                             |                          |              |                          |              |                           |                          |           |         |           |                         |                                                                                                                 |         |                            |                |                         |                     |                            |          |

# Received by OCD: 9/21/2023 6:16:51 AM

# 8/7/2023

Page 383 of 406

13

 $\bigcirc$ 

3

Job Number: 880-31284-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

# Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 31284 List Number: 1

<6mm (1/4").

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

14

Received by OCD: 9/21/2023 6:16:51 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Clint Merritt Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 9/13/2023 1:05:06 PM

# JOB DESCRIPTION

Tonto 15 State #1 SDG NUMBER Lea County NM

# **JOB NUMBER**

880-33030-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information.



# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 9/13/2023 1:05:06 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 387 of 406

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 9  |
| QC Sample Results      | 10 |
| QC Association Summary | 14 |
| Lab Chronicle          | 16 |
| Certification Summary  | 17 |
| Method Summary         | 18 |
| Sample Summary         | 19 |
| Chain of Custody       | 20 |
| Receipt Checklists     | 21 |
|                        |    |

# **Definitions/Glossary**

#### Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-33030-1 SDG: Lea County NM

| Q | ua | lifi | e | rs |
|---|----|------|---|----|
| - |    |      | - | -  |

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| S1-            | Surrogate recovery exceeds control limits, low biased.                                                      |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    | 5  |
| GC Semi VOA    |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| S1+            | Surrogate recovery exceeds control limits, high biased.                                                     |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| HPLC/IC        |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       | 8  |
| F1             | MS and/or MSD recovery exceeds control limits.                                                              |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    | 9  |
| Glossary       |                                                                                                             | 10 |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |    |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            |    |
| CFL            | Contains Free Liquid                                                                                        |    |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     | 10 |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      | 13 |
| Dil Fac        | Dilution Factor                                                                                             |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |    |

| LOD | Limit of Detection (DoD/DOE)                |
|-----|---------------------------------------------|
| LOQ | Limit of Quantitation (DoD/DOE)             |
| MCL | EPA recommended "Maximum Contaminant Level" |

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL PRES Presumptive

QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count

**Eurofins Midland** 

Job ID: 880-33030-1 SDG: Lea County NM

#### Job ID: 880-33030-1

Client: Carmona Resources Project/Site: Tonto 15 State #1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-33030-1

#### Receipt

The samples were received on 9/8/2023 1:34 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -2.7°C

#### GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-62082 and analytical batch 880-62040 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-7 (0-1') (880-33030-1), S-7 (1.5') (880-33030-2), (890-5210-A-1-C) and (880-32833-A-8-A MB). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-62041/5-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-62105 and analytical batch 880-62028 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (890-5212-A-1-B), (890-5212-A-1-C MS) and (890-5212-A-1-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: S-7 (0-1') (880-33030-1), S-7 (1.5') (880-33030-2) and S-7 (2') (880-33030-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: The method blank for preparation batch 880-62105 and analytical batch 880-62028 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-62154 and 880-62154 and analytical batch 880-62337 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

# **Client Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Client Sample ID: S-7 (0-1') Date Collected: 09/07/23 00:00

Date Received: 09/08/23 13:34

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result                                                                                | Qualifier                                                            | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MDL | Unit                                     | D        | Prepared                                                                                                                                | Analyzed                                                                                                                                                                                   | Dil Fac                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00200                                                                              | U                                                                    | 0.00200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mg/Kg                                    |          | 09/08/23 13:56                                                                                                                          | 09/09/23 01:47                                                                                                                                                                             |                                                                                             |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00200                                                                              | U                                                                    | 0.00200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mg/Kg                                    |          | 09/08/23 13:56                                                                                                                          | 09/09/23 01:47                                                                                                                                                                             | 1                                                                                           |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.00200                                                                              | U                                                                    | 0.00200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mg/Kg                                    |          | 09/08/23 13:56                                                                                                                          | 09/09/23 01:47                                                                                                                                                                             | 1                                                                                           |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.00400                                                                              | U                                                                    | 0.00400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mg/Kg                                    |          | 09/08/23 13:56                                                                                                                          | 09/09/23 01:47                                                                                                                                                                             | 1                                                                                           |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00200                                                                              | U                                                                    | 0.00200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mg/Kg                                    |          | 09/08/23 13:56                                                                                                                          | 09/09/23 01:47                                                                                                                                                                             | 1                                                                                           |
| Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00400                                                                              | U                                                                    | 0.00400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mg/Kg                                    |          | 09/08/23 13:56                                                                                                                          | 09/09/23 01:47                                                                                                                                                                             | 1                                                                                           |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %Recovery                                                                             | Qualifier                                                            | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                          |          | Prepared                                                                                                                                | Analyzed                                                                                                                                                                                   | Dil Fac                                                                                     |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58                                                                                    | S1-                                                                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                          |          | 09/08/23 13:56                                                                                                                          | 09/09/23 01:47                                                                                                                                                                             | 1                                                                                           |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88                                                                                    |                                                                      | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                          |          | 09/08/23 13:56                                                                                                                          | 09/09/23 01:47                                                                                                                                                                             | 1                                                                                           |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | otal BTEX Calo                                                                        | ulation                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                          |          |                                                                                                                                         |                                                                                                                                                                                            |                                                                                             |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result                                                                                | Qualifier                                                            | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MDL | Unit                                     | D        | Prepared                                                                                                                                | Analyzed                                                                                                                                                                                   | Dil Fac                                                                                     |
| Total BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00400                                                                              | U                                                                    | 0.00400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mg/Kg                                    |          |                                                                                                                                         | 09/11/23 13:03                                                                                                                                                                             | 1                                                                                           |
| Method: SW846 8015 NM - Diese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l Range Organ                                                                         | ics (DRO) (G                                                         | C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                                          |          |                                                                                                                                         |                                                                                                                                                                                            |                                                                                             |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •                                                                                   | Qualifier                                                            | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MDL | Unit                                     | D        | Prepared                                                                                                                                | Analyzed                                                                                                                                                                                   | Dil Fac                                                                                     |
| Total TPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <50.2                                                                                 | <u> </u>                                                             | 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | mg/Kg                                    |          | · · ·                                                                                                                                   | 09/11/23 10:03                                                                                                                                                                             | 1                                                                                           |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result                                                                                | Qualifier                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MDL | Unit                                     | D        | Prepared                                                                                                                                | Analyzed                                                                                                                                                                                   |                                                                                             |
| Method: SW846 8015B NM - Dies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | el Range Orga                                                                         | nics (DRO) (                                                         | GC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                          |          |                                                                                                                                         |                                                                                                                                                                                            |                                                                                             |
| Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       | Qualifier                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MDL | Unit<br>mg/Kg                            | D        | Prepared<br>09/08/23 15:26                                                                                                              | Analyzed                                                                                                                                                                                   | Dil Fac                                                                                     |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Result</b><br><50.2                                                                | Qualifier<br>U                                                       | RL<br>50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MDL | mg/Kg                                    | <u> </u> | 09/08/23 15:26                                                                                                                          | 09/09/23 04:47                                                                                                                                                                             |                                                                                             |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result                                                                                | Qualifier<br>U                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MDL |                                          | <u>D</u> |                                                                                                                                         |                                                                                                                                                                                            | 1                                                                                           |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Result</b><br><50.2                                                                | Qualifier<br>U<br>U                                                  | RL<br>50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MDL | mg/Kg                                    | <u> </u> | 09/08/23 15:26                                                                                                                          | 09/09/23 04:47                                                                                                                                                                             | 1                                                                                           |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result<br><50.2<br><50.2                                                              | Qualifier<br>U<br>U                                                  | RL<br>50.2<br>50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MDL | mg/Kg<br>mg/Kg                           | <u> </u> | 09/08/23 15:26<br>09/08/23 15:26                                                                                                        | 09/09/23 04:47<br>09/09/23 04:47                                                                                                                                                           | 1<br>1<br>1                                                                                 |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result<br><50.2<br><50.2<br><50.2                                                     | Qualifier<br>U<br>U<br>U                                             | RL<br>50.2<br>50.2<br>50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MDL | mg/Kg<br>mg/Kg                           | <u> </u> | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26                                                                                      | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47                                                                                                                                         | 1                                                                                           |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result           <50.2                                                                | Qualifier<br>U<br>U<br>U                                             | RL<br>50.2<br>50.2<br>50.2<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MDL | mg/Kg<br>mg/Kg                           | <u>D</u> | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b>                                                                   | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br>Analyzed                                                                                                           | 1<br>1<br>1<br><b>Dil Fac</b>                                                               |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result           <50.2                                                                | Qualifier<br>U<br>U<br>Qualifier<br>S1+                              | RL           50.2           50.2           50.2           50.2           50.2           50.2           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MDL | mg/Kg<br>mg/Kg                           | <u>D</u> | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26                                                 | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><u>Analyzed</u><br>09/09/23 04:47                                                                                  | 1<br>1<br>1<br><b>Dil Fac</b><br>1                                                          |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result<br><50.2<br><50.2<br><50.2<br><50.2<br>%Recovery<br>127<br>136<br>Chromatograp | Qualifier<br>U<br>U<br>Qualifier<br>S1+                              | RL           50.2           50.2           50.2           50.2           50.2           50.2           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | mg/Kg<br>mg/Kg                           | <u>D</u> | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26                                                 | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><u>Analyzed</u><br>09/09/23 04:47                                                                                  | 1<br>1<br>1<br><b>Dil Fac</b><br>1                                                          |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result<br><50.2<br><50.2<br><50.2<br><50.2<br>%Recovery<br>127<br>136<br>Chromatograp | Qualifier<br>U<br>U<br>Qualifier<br>S1+<br>hy - Soluble              | RL         50.2         50.2         50.2         50.2         50.2         50.2         70.130         70.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | mg/Kg<br>mg/Kg<br>mg/Kg                  |          | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26<br>09/08/23 15:26                               | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47                                                                                   | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                             |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result           <50.2                                                                | Qualifier<br>U<br>U<br>Qualifier<br>S1+<br>hy - Soluble              | RL           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           70.2           70.2 </td <td></td> <td>mg/Kg<br/>mg/Kg<br/>mg/Kg<br/>Unit</td> <td></td> <td>09/08/23 15:26<br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b><br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b></td> <td>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b></td> <td>1<br/>1<br/><i>Dil Fac</i><br/>1<br/>1<br/>1<br/>Dil Fac</td>                                                                                                                     |     | mg/Kg<br>mg/Kg<br>mg/Kg<br>Unit          |          | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b>            | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b>                                                               | 1<br>1<br><i>Dil Fac</i><br>1<br>1<br>1<br>Dil Fac                                          |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte<br>Chloride<br>Elient Sample ID: S-7 (1.5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result           <50.2                                                                | Qualifier<br>U<br>U<br>Qualifier<br>S1+<br>hy - Soluble              | RL           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           70.2           70.2 </td <td></td> <td>mg/Kg<br/>mg/Kg<br/>mg/Kg<br/>Unit</td> <td></td> <td>09/08/23 15:26<br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b><br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b></td> <td>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/13/23 07:12<br/><b>ple ID: 880-3</b></td> <td>1<br/>1<br/><i>Dil Fac</i><br/>1<br/>Dil Fac<br/>1<br/>3030-2</td>                                                 |     | mg/Kg<br>mg/Kg<br>mg/Kg<br>Unit          |          | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b>            | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/13/23 07:12<br><b>ple ID: 880-3</b>   | 1<br>1<br><i>Dil Fac</i><br>1<br>Dil Fac<br>1<br>3030-2                                     |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte<br>Chloride<br>Hient Sample ID: S-7 (1.5')<br>ate Collected: 09/07/23 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result           <50.2                                                                | Qualifier<br>U<br>U<br>Qualifier<br>S1+<br>hy - Soluble              | RL           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           70.2           70.2 </td <td></td> <td>mg/Kg<br/>mg/Kg<br/>mg/Kg<br/>Unit</td> <td></td> <td>09/08/23 15:26<br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b><br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b></td> <td>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/13/23 07:12<br/><b>ple ID: 880-3</b></td> <td>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1</td> |     | mg/Kg<br>mg/Kg<br>mg/Kg<br>Unit          |          | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b>            | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/13/23 07:12<br><b>ple ID: 880-3</b>   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride 1D: S-7 (1.5')<br>ate Collected: 09/07/23 00:00<br>ate Received: 09/08/23 13:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result           <50.2                                                                | Qualifier<br>U<br>U<br>Qualifier<br>S1+<br>C<br>Qualifier            | RL           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           70.2           70.2 </td <td></td> <td>mg/Kg<br/>mg/Kg<br/>mg/Kg<br/>Unit</td> <td></td> <td>09/08/23 15:26<br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b><br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b></td> <td>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/13/23 07:12<br/><b>ple ID: 880-3</b></td> <td>1<br/>1<br/><i>Dil Fac</i><br/>1<br/>Dil Fac<br/>1<br/>3030-2</td>                                                 |     | mg/Kg<br>mg/Kg<br>mg/Kg<br>Unit          |          | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b>            | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/13/23 07:12<br><b>ple ID: 880-3</b>   | 1<br>1<br><i>Dil Fac</i><br>1<br>Dil Fac<br>1<br>3030-2                                     |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Ch | Result           <50.2                                                                | Qualifier<br>U<br>U<br>Qualifier<br>S1+<br>C<br>Qualifier            | RL           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           50.2           70.2           70.2 </td <td></td> <td>mg/Kg<br/>mg/Kg<br/>mg/Kg<br/>Unit<br/>mg/Kg</td> <td></td> <td>09/08/23 15:26<br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b><br/>09/08/23 15:26<br/>09/08/23 15:26<br/><b>Prepared</b></td> <td>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/09/23 04:47<br/>09/09/23 04:47<br/>09/09/23 04:47<br/><b>Analyzed</b><br/>09/13/23 07:12<br/><b>ple ID: 880-3</b></td> <td>1<br/>1<br/><i>Dil Fac</i><br/>1<br/>1<br/>1<br/>Dil Fac</td>                                            |     | mg/Kg<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg |          | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b>            | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><b>Analyzed</b><br>09/13/23 07:12<br><b>ple ID: 880-3</b>   | 1<br>1<br><i>Dil Fac</i><br>1<br>1<br>1<br>Dil Fac                                          |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte<br>Chloride<br>Client Sample ID: S-7 (1.5')<br>Pate Collected: 09/07/23 00:00<br>Pate Received: 09/08/23 13:34<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result           <50.2                                                                | Qualifier<br>U<br>U<br>Qualifier<br>S1+<br>hy - Soluble<br>Qualifier | RL         50.2         50.2         50.2         50.2         0.2         100         70 - 130         70 - 130         70 - 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MDL | mg/Kg<br>mg/Kg<br>mg/Kg<br>Unit<br>mg/Kg | <u>D</u> | 09/08/23 15:26<br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>09/08/23 15:26<br>09/08/23 15:26<br><b>Prepared</b><br>Lab Sam | 09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><i>Analyzed</i><br>09/09/23 04:47<br>09/09/23 04:47<br>09/09/23 04:47<br><u>Analyzed</u><br>09/13/23 07:12<br>ple ID: 880-3<br>Matri | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3030-2<br>x: Solid                                  |

| m-Xylene & p-Xylene                   | <0.00397  | U                | 0.00397 | mg/Kg | 09/08/23 13:56          | 09/09/23 02:07          | 1                        |
|---------------------------------------|-----------|------------------|---------|-------|-------------------------|-------------------------|--------------------------|
| o-Xylene                              | <0.00198  | U                | 0.00198 | mg/Kg | 09/08/23 13:56          | 09/09/23 02:07          | 1                        |
| Xylenes, Total                        | <0.00397  | U                | 0.00397 | mg/Kg | 09/08/23 13:56          | 09/09/23 02:07          | 1                        |
|                                       |           |                  |         |       |                         |                         |                          |
|                                       |           |                  |         |       |                         |                         |                          |
| Surrogate                             | %Recovery | Qualifier        | Limits  |       | Prepared                | Analyzed                | Dil Fac                  |
| Surrogate 4-Bromofluorobenzene (Surr) |           | Qualifier<br>S1- | Limits  |       | Prepared 09/08/23 13:56 | Analyzed 09/09/23 02:07 | Dil Fac                  |
|                                       |           |                  |         |       |                         |                         | <b>Dil Fac</b><br>1<br>1 |

0.00198

mg/Kg

09/08/23 13:56

<0.00198 U

Eurofins Midland

09/09/23 02:07

Page 390 of 406

Job ID: 880-33030-1 SDG: Lea County NM

# Lab Sample ID: 880-33030-1

Matrix: Solid

5

9/13/2023

Ethylbenzene

1

Matrix: Solid

5

# **Client Sample Results**

Job ID: 880-33030-1 SDG: Lea County NM

Lab Sample ID: 880-33030-2

# Client Sample ID: S-7 (1.5')

Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

Client: Carmona Resources

Project/Site: Tonto 15 State #1

| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                        | <0.00397      | U           | 0.00397  |     | mg/Kg |   |                | 09/11/23 13:03 | 1       |
| Method: SW846 8015 NM - Diesel    | Range Organ   | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <50.1         | U           | 50.1     |     | mg/Kg |   |                | 09/11/23 10:03 | 1       |
| Method: SW846 8015B NM - Dies     | el Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <50.1         | U           | 50.1     |     | mg/Kg |   | 09/08/23 15:26 | 09/09/23 05:08 | 1       |
| (GRO)-C6-C10                      |               |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.1         | U           | 50.1     |     | mg/Kg |   | 09/08/23 15:26 | 09/09/23 05:08 | 1       |
| C10-C28)                          |               |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.1         | U           | 50.1     |     | mg/Kg |   | 09/08/23 15:26 | 09/09/23 05:08 | 1       |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 129           |             | 70 - 130 |     |       |   | 09/08/23 15:26 | 09/09/23 05:08 | 1       |
| o-Terphenyl                       | 141           | S1+         | 70 - 130 |     |       |   | 09/08/23 15:26 | 09/09/23 05:08 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | hy - Solubl | e        |     |       |   |                |                |         |
| Analyte                           | • •           | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 67.6          |             | 4.99     |     | mg/Kg |   |                | 09/13/23 07:18 | 1       |

# Client Sample ID: S-7 (2')

Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

### Lab Sample ID: 880-33030-3 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 03:32 | 1       |
| Toluene                     | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 03:32 | 1       |
| Ethylbenzene                | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 03:32 | 1       |
| m-Xylene & p-Xylene         | <0.00402  | U         | 0.00402  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 03:32 | 1       |
| o-Xylene                    | <0.00201  | U         | 0.00201  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 03:32 | 1       |
| Xylenes, Total              | <0.00402  | U         | 0.00402  |     | mg/Kg |   | 09/08/23 13:56 | 09/09/23 03:32 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 73        |           | 70 - 130 |     |       |   | 09/08/23 13:56 | 09/09/23 03:32 | 1       |
| 1,4-Difluorobenzene (Surr)  | 97        |           | 70 - 130 |     |       |   | 09/08/23 13:56 | 09/09/23 03:32 | 1       |

| Analyte                                                                  | Result          | Qualifier    | RL      | MDL | Unit           | D | Prepared                         | Analyzed                         | Dil Fac |
|--------------------------------------------------------------------------|-----------------|--------------|---------|-----|----------------|---|----------------------------------|----------------------------------|---------|
| Total BTEX                                                               | <0.00402        | U            | 0.00402 |     | mg/Kg          |   |                                  | 09/11/23 13:03                   | 1       |
| Method: SW846 8015 NM - Dies                                             | el Range Organ  | ics (DRO) (G | SC)     |     |                |   |                                  |                                  |         |
| Analyte                                                                  | Result          | Qualifier    | RL      | MDL | Unit           | D | Prepared                         | Analyzed                         | Dil Fac |
| Total TPH                                                                | <50.5           | U            | 50.5    |     | mg/Kg          |   |                                  | 09/11/23 10:03                   | 1       |
| Method: SW846 8015B NM - Die                                             | esel Range Orga | nics (DRO)   | (GC)    |     |                |   |                                  |                                  |         |
|                                                                          | Beault          | Qualifier    | RL      | MDL | Unit           | D | Prepared                         | Analyzed                         | Dil Fac |
| Analyte                                                                  | Result          | quannor      |         |     |                |   |                                  |                                  |         |
| Analyte<br>Gasoline Range Organics                                       | Kesuit<br><50.5 |              | 50.5    |     | mg/Kg          |   | 09/08/23 15:26                   | 09/09/23 05:29                   | 1       |
| Gasoline Range Organics                                                  |                 |              |         |     | mg/Kg          |   | 09/08/23 15:26                   | 09/09/23 05:29                   | 1       |
| Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over |                 | U            |         |     | mg/Kg<br>mg/Kg |   | 09/08/23 15:26<br>09/08/23 15:26 | 09/09/23 05:29<br>09/09/23 05:29 | 1       |

**Eurofins Midland** 

# Released to Imaging: 11/6/2023 11:57:53 AM

# **Client Sample Results**

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Client Sample ID: S-7 (2') Date Collected: 09/07/23 00:00

Date Received: 09/08/23 13:34

# Job ID: 880-33030-1 SDG: Lea County NM

# Lab Sample ID: 880-33030-3

Matrix: Solid

5

| Analyte                           | Result       | Qualifier    | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|--------------|----------|-----|-------|---|----------------|----------------|---------|
| Oll Range Organics (Over C28-C36) | <50.5        | U            | 50.5     |     | mg/Kg |   | 09/08/23 15:26 | 09/09/23 05:29 | 1       |
| Surrogate                         | %Recovery    | Qualifier    | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 125          |              | 70 - 130 |     |       |   | 09/08/23 15:26 | 09/09/23 05:29 | 1       |
| o-Terphenyl                       | 131          | S1+          | 70 - 130 |     |       |   | 09/08/23 15:26 | 09/09/23 05:29 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | ohy - Solubl | e        |     |       |   |                |                |         |
| Analyte                           | Result       | Qualifier    | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 86.4         |              | 4.99     |     | mg/Kg |   |                | 09/13/23 07:38 | 1       |

Eurofins Midland

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Job ID: 880-33030-1 SDG: Lea County NM

Prep Type: Total/NA

# Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

|                                     |                               |                    |                   | Percent Surrogate Recovery (Acceptance Limits) |    |
|-------------------------------------|-------------------------------|--------------------|-------------------|------------------------------------------------|----|
|                                     |                               | BFB1<br>(70-130)   | DFBZ1<br>(70-130) |                                                | Ĩ  |
| Lab Sample ID<br>880-32833-A-8-A MB | Client Sample ID Method Blank | (70-130)<br>65 S1- | 101               |                                                | 4  |
| 880-33030-1                         | S-7 (0-1')                    | 58 S1-             | 88                |                                                |    |
| 880-33030-2                         | S-7 (1.5')                    | 68 S1-             | 100               |                                                | 17 |
| 880-33030-3                         | S-7 (2')                      | 73                 | 97                |                                                |    |
| 890-5210-A-1-A MS                   | Matrix Spike                  | 113                | 113               |                                                |    |
| 890-5210-A-1-B MSD                  | Matrix Spike Duplicate        | 110                | 96                |                                                |    |
| LCS 880-62082/1-A                   | Lab Control Sample            | 122                | 111               |                                                |    |
| LCSD 880-62082/2-A                  | Lab Control Sample Dup        | 110                | 113               |                                                |    |
| MB 880-62082/5-A                    | Method Blank                  | 62 S1-             | 99                |                                                |    |
| Ourse sector Language               |                               |                    |                   |                                                |    |

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

|               |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------------|----------|----------|------------------------------------------------|
|               |                        | 1CO1     | OTPH1    |                                                |
| Sample ID     | Client Sample ID       | (70-130) | (70-130) |                                                |
| 30-1          | S-7 (0-1')             | 127      | 136 S1+  |                                                |
| 3030-2        | S-7 (1.5')             | 129      | 141 S1+  |                                                |
| 3030-3        | S-7 (2')               | 125      | 131 S1+  |                                                |
| 12-A-1-C MS   | Matrix Spike           | 134 S1+  | 133 S1+  |                                                |
| 12-A-1-D MSD  | Matrix Spike Duplicate | 133 S1+  | 130      |                                                |
| 30-62105/2-A  | Lab Control Sample     | 91       | 103      |                                                |
| 880-62105/3-A | Lab Control Sample Dup | 89       | 101      |                                                |
| 80-62105/1-A  | Method Blank           | 145 S1+  | 161 S1+  |                                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

3

Prep Type: Total/NA

Page 393 of 406

# Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: 880-32833-A-8-A                   | МВ           |           |          |          |     |            |       |       | Client Sa               | mple ID: Metho          |                 |
|--------------------------------------------------|--------------|-----------|----------|----------|-----|------------|-------|-------|-------------------------|-------------------------|-----------------|
| Matrix: Solid                                    |              |           |          |          |     |            |       |       |                         | Prep Type:              |                 |
| Analysis Batch: 62040                            | ME           | B MB      |          |          |     |            |       |       |                         | Prep Batc               | n: 62041        |
| Analyte                                          | Resul        |           | RL       | м        | IDL | Unit       | D     | P     | Prepared                | Analyzed                | Dil Fac         |
| Benzene                                          | <0.00200     |           | 0.00200  |          |     | mg/Kg      |       |       | 08/23 08:55             | 09/08/23 17:11          | 1               |
| Toluene                                          | <0.00200     |           | 0.00200  |          |     | mg/Kg      |       |       | 08/23 08:55             | 09/08/23 17:11          | 1               |
| Ethylbenzene                                     | <0.00200     |           | 0.00200  |          |     | mg/Kg      |       |       | 08/23 08:55             | 09/08/23 17:11          | 1               |
| m-Xylene & p-Xylene                              | <0.00400     |           | 0.00400  |          |     | mg/Kg      |       |       | 08/23 08:55             | 09/08/23 17:11          | 1               |
| o-Xylene                                         | <0.00200     |           | 0.00200  |          |     | mg/Kg      |       |       | 08/23 08:55             | 09/08/23 17:11          | 1               |
| Xylenes, Total                                   | < 0.00400    |           | 0.00400  |          |     | mg/Kg      |       |       | 08/23 08:55             | 09/08/23 17:11          | 1               |
|                                                  | -0.00100     |           | 0.00100  |          |     | ing/itg    |       | 00/0  | 0,20 00.00              | 00/00/20 11:11          |                 |
|                                                  | ME           | B MB      |          |          |     |            |       |       |                         |                         |                 |
| Surrogate                                        | %Recovery    | -         | Limits   |          |     |            |       | F     | Prepared                | Analyzed                | Dil Fac         |
| 4-Bromofluorobenzene (Surr)                      | 68           | 5 S1-     | 70 - 130 |          |     |            |       | 09/0  | 08/23 08:55             | 09/08/23 17:11          | 1               |
| 1,4-Difluorobenzene (Surr)                       | 101          | 1         | 70 - 130 |          |     |            |       | 09/0  | 08/23 08:55             | 09/08/23 17:11          | 1               |
| -<br>Lab Sample ID: MR 990 62092/5 /             |              |           |          |          |     |            |       |       | Client Se               | male ID: Meth           | ad Blank        |
| Lab Sample ID: MB 880-62082/5-/<br>Matrix: Solid | •            |           |          |          |     |            |       |       | Client Sa               | mple ID: Metho          |                 |
|                                                  |              |           |          |          |     |            |       |       |                         | Prep Type:              |                 |
| Analysis Batch: 62040                            | ME           | 8 MB      |          |          |     |            |       |       |                         | Prep Batc               | n: 62062        |
| Analyta                                          |              |           | RL       |          | IDL | Unit       | D     |       | ronorod                 | Apolyzod                | Dil Fac         |
| Analyte<br>Benzene                               | Resul        |           | 0.00200  |          | IDL | Unit       |       |       | Prepared<br>08/23 11:01 | Analyzed 09/08/23 22:40 | 1               |
|                                                  |              |           |          |          |     | mg/Kg      |       |       |                         |                         | 1               |
|                                                  | < 0.00200    |           | 0.00200  |          |     | mg/Kg      |       |       | 08/23 11:01             | 09/08/23 22:40          | 1               |
| Ethylbenzene                                     | < 0.00200    |           |          |          |     | mg/Kg      |       |       | 08/23 11:01             | 09/08/23 22:40          | · · · · · · · · |
| m-Xylene & p-Xylene                              | < 0.00400    |           | 0.00400  |          |     | mg/Kg      |       |       | 08/23 11:01             | 09/08/23 22:40          | 1               |
| o-Xylene                                         | < 0.00200    |           | 0.00200  |          |     | mg/Kg      |       |       | 08/23 11:01             | 09/08/23 22:40          | 1               |
| Xylenes, Total                                   | <0.00400     | 0         | 0.00400  |          |     | mg/Kg      |       | 09/0  | 08/23 11:01             | 09/08/23 22:40          | I               |
|                                                  | ME           | B MB      |          |          |     |            |       |       |                         |                         |                 |
| Surrogate                                        | %Recovery    | Qualifier | Limits   |          |     |            |       | F     | Prepared                | Analyzed                | Dil Fac         |
| 4-Bromofluorobenzene (Surr)                      | 62           | 2 S1-     | 70 - 130 |          |     |            |       | 09/0  | 08/23 11:01             | 09/08/23 22:40          | 1               |
| 1,4-Difluorobenzene (Surr)                       | 99           | 9         | 70 - 130 |          |     |            |       | 09/0  | 08/23 11:01             | 09/08/23 22:40          | 1               |
| <br>Lab Sample ID: LCS 880-62082/14              |              |           |          |          |     |            |       | lion  | t Samnle                | ID: Lab Control         | Sample          |
| Matrix: Solid                                    | ~            |           |          |          |     |            |       |       | Compie                  | Prep Type:              |                 |
| Analysis Batch: 62040                            |              |           |          |          |     |            |       |       |                         | Prep Batc               |                 |
| Analysis Baton. 62040                            |              |           | Spike    | LCS L    | LCS |            |       |       |                         | %Rec                    |                 |
| Analyte                                          |              |           | Added    | Result C |     | ifier Unit |       | D     | %Rec                    | Limits                  |                 |
| Benzene                                          |              |           | 0.100    | 0.09941  |     | mg/K       | a     |       | 99                      | 70 - 130                |                 |
| Toluene                                          |              |           | 0.100    | 0.1014   |     | mg/K       |       |       | 101                     | 70 - 130                |                 |
| Ethylbenzene                                     |              |           | 0.100    | 0.1016   |     | mg/K       |       |       | 102                     | 70 - 130                |                 |
| m-Xylene & p-Xylene                              |              |           | 0.200    | 0.2210   |     | mg/K       |       |       | 111                     | 70 - 130                |                 |
| o-Xylene                                         |              |           | 0.100    | 0.1157   |     | mg/K       |       |       | 116                     | 70 - 130                |                 |
| 0-Xylene                                         |              |           | 0.100    | 0.1107   |     | ing/it     | 9     |       | 110                     | 10-100                  |                 |
|                                                  | LCS LC       | s         |          |          |     |            |       |       |                         |                         |                 |
| Surrogate                                        | %Recovery Qu | alifier   | Limits   |          |     |            |       |       |                         |                         |                 |
| 4-Bromofluorobenzene (Surr)                      | 122          |           | 70 - 130 |          |     |            |       |       |                         |                         |                 |
| 1,4-Difluorobenzene (Surr)                       | 111          |           | 70 - 130 |          |     |            |       |       |                         |                         |                 |
| _<br>Lab Sample ID: LCSD 880-62082/              | 2-0          |           |          |          |     |            | Clien | t San |                         | ab Control Sam          |                 |
| Matrix: Solid                                    | 2-M          |           |          |          |     |            | onen  | Jan   | ipie iD. L              | Prep Type:              |                 |
|                                                  |              |           |          |          |     |            |       |       |                         |                         |                 |
| Analysis Batch: 62040                            |              |           | Sniko    | LCSD L   |     | n          |       |       |                         | Prep Batc<br>%Rec       | n: 62082<br>RPD |
| Analyta                                          |              |           | Spike    | Beault ( |     |            |       | -     | % Baa                   | %Rec                    |                 |

5

7 8

Eurofins Midland

4

RPD

Analyte

Benzene

Result Qualifier

0.09561

Unit

mg/Kg

D

%Rec

96

Limits

70 - 130

Added

0.100

Limit

35

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-33030-1 SDG: Lea County NM

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCSD 880-6                                                                                             | 2082/2-A                                                   |                 |                                |         |                  | Clie   | nt Sam   | ple ID: I       | Lab Contro                     |          |                 |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------|--------------------------------|---------|------------------|--------|----------|-----------------|--------------------------------|----------|-----------------|
| Matrix: Solid                                                                                                         |                                                            |                 |                                |         |                  |        |          |                 |                                | Type: To |                 |
| Analysis Batch: 62040                                                                                                 |                                                            |                 | • "                            |         |                  |        |          |                 |                                | Batch:   |                 |
| Analista                                                                                                              |                                                            |                 | Spike                          |         | LCSD             | 1114   |          | 0/ <b>D</b> = = | %Rec                           |          | RPD             |
| Analyte                                                                                                               |                                                            |                 | Added                          |         | Qualifier        | Unit   | D        | %Rec            | Limits                         | RPD      | Limi            |
| Toluene                                                                                                               |                                                            |                 | 0.100                          | 0.09614 |                  | mg/Kg  |          | 96              | 70 - 130                       | 5        | 35              |
| Ethylbenzene                                                                                                          |                                                            |                 | 0.100                          | 0.09614 |                  | mg/Kg  |          | 96              | 70 - 130                       | 6        | 35              |
| m-Xylene & p-Xylene                                                                                                   |                                                            |                 | 0.200                          | 0.2067  |                  | mg/Kg  |          | 103             | 70 - 130                       | 7        | 35              |
| o-Xylene                                                                                                              |                                                            |                 | 0.100                          | 0.1039  |                  | mg/Kg  |          | 104             | 70 - 130                       | 11       | 35              |
|                                                                                                                       | LCSD                                                       | LCSD            |                                |         |                  |        |          |                 |                                |          |                 |
| Surrogate                                                                                                             | %Recovery                                                  | Qualifier       | Limits                         |         |                  |        |          |                 |                                |          |                 |
| 4-Bromofluorobenzene (Surr)                                                                                           |                                                            |                 | 70 - 130                       |         |                  |        |          |                 |                                |          |                 |
| 1,4-Difluorobenzene (Surr)                                                                                            | 113                                                        |                 | 70 - 130                       |         |                  |        |          |                 |                                |          |                 |
|                                                                                                                       |                                                            |                 |                                |         |                  |        |          |                 |                                |          |                 |
| Lab Sample ID: 890-5210-A-                                                                                            | ·1-A MS                                                    |                 |                                |         |                  |        |          | Client          | Sample ID                      |          | -               |
| Matrix: Solid                                                                                                         |                                                            |                 |                                |         |                  |        |          |                 | Prep 1                         | Гуре: То | tal/NA          |
| Analysis Batch: 62040                                                                                                 |                                                            |                 |                                |         |                  |        |          |                 | Prep                           | Batch:   | 62082           |
|                                                                                                                       | Sample                                                     | Sample          | Spike                          | MS      | MS               |        |          |                 | %Rec                           |          |                 |
| Analyte                                                                                                               |                                                            | Qualifier       | Added                          | Result  | Qualifier        | Unit   | D        | %Rec            | Limits                         |          |                 |
| Benzene                                                                                                               | <0.00199                                                   | U               | 0.0998                         | 0.08017 |                  | mg/Kg  |          | 80              | 70 - 130                       |          |                 |
| Toluene                                                                                                               | <0.00199                                                   | U               | 0.0998                         | 0.08157 |                  | mg/Kg  |          | 82              | 70 - 130                       |          |                 |
| Ethylbenzene                                                                                                          | <0.00199                                                   | U               | 0.0998                         | 0.08150 |                  | mg/Kg  |          | 82              | 70 - 130                       |          |                 |
| m-Xylene & p-Xylene                                                                                                   | <0.00398                                                   | U               | 0.200                          | 0.1714  |                  | mg/Kg  |          | 86              | 70 - 130                       |          |                 |
|                                                                                                                       |                                                            |                 |                                |         |                  | mg/Kg  |          | 86              | 70 - 130                       |          |                 |
| o-Xylene                                                                                                              | <0.00199                                                   | U               | 0.0998                         | 0.08588 |                  | mg/Kg  |          | 00              | 70 - 130                       |          |                 |
| o-Xylene                                                                                                              |                                                            | U<br><b>MS</b>  | 0.0998                         | 0.08588 |                  | mg/Kg  |          | 00              | 70 - 130                       |          |                 |
| o-Xylene Surrogate                                                                                                    |                                                            | MS              | 0.0998<br><i>Limits</i>        | 0.08588 |                  | ing/Kg |          | 00              | 70 - 130                       |          |                 |
|                                                                                                                       | MS                                                         | MS              |                                | 0.08588 |                  | mg/Kg  |          | 00              | 70 - 130                       |          |                 |
| Surrogate                                                                                                             | MS<br>%Recovery                                            | MS              | Limits                         | 0.08588 |                  | mg/Kg  |          | 00              | 70 - 130                       |          |                 |
| Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)                                                | MS<br>%Recovery<br>                                        | MS              | Limits<br>70 - 130             | 0.08588 |                  |        |          |                 |                                |          |                 |
| Surrogate<br>4-Bromofluorobenzene (Surr)                                                                              | MS<br>%Recovery<br>                                        | MS              | Limits<br>70 - 130             | 0.08588 |                  |        | lient Sa |                 | ): Matrix Sp                   |          |                 |
| Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 890-5210-A-<br>Matrix: Solid | MS<br>%Recovery<br>                                        | MS              | Limits<br>70 - 130             | 0.08588 |                  |        | lient Sa |                 | ): Matrix Sp<br>Prep 1         | Гуре: То | tal/NA          |
| Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 890-5210-A-                  | MS<br><u>%Recovery</u><br>113<br>113<br>-1-B MSD           | MS              | Limits<br>70 - 130             |         | MSD              |        | lient Sa |                 | ): Matrix Sp<br>Prep 1         |          | tal/NA          |
| Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 890-5210-A-<br>Matrix: Solid | MS<br><u>%Recovery</u><br>113<br>113<br>-1-B MSD<br>Sample | MS<br>Qualifier | Limits<br>70 - 130<br>70 - 130 | MSD     | MSD<br>Qualifier |        | lient Sa |                 | ): Matrix Sp<br>Prep 1<br>Prep | Гуре: То | tal/NA<br>62082 |

| Benzene                     | <0.00199  | U         | 0.100    | 0.08514 | mg/Kg | 85 | 70 - 130 | 6 | 35 |
|-----------------------------|-----------|-----------|----------|---------|-------|----|----------|---|----|
| Toluene                     | <0.00199  | U         | 0.100    | 0.08931 | mg/Kg | 89 | 70 - 130 | 9 | 35 |
| Ethylbenzene                | <0.00199  | U         | 0.100    | 0.08778 | mg/Kg | 88 | 70 - 130 | 7 | 35 |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.200    | 0.1806  | mg/Kg | 90 | 70 - 130 | 5 | 35 |
| o-Xylene                    | <0.00199  | U         | 0.100    | 0.09035 | mg/Kg | 90 | 70 - 130 | 5 | 35 |
|                             | MSD       | MSD       |          |         |       |    |          |   |    |
| Surrogate                   | %Recovery | Qualifier | Limits   |         |       |    |          |   |    |
| 4-Bromofluorobenzene (Surr) | 110       |           | 70 - 130 |         |       |    |          |   |    |

70 - 130

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

96

| Lab Sample ID: MB 880-62105/1-A<br>Matrix: Solid<br>Analysis Batch: 62028 |              | мв        |            |     |               |          | Client Sa               | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA |
|---------------------------------------------------------------------------|--------------|-----------|------------|-----|---------------|----------|-------------------------|---------------------------------------------------------|----------|
| Analyte<br>Gasoline Range Organics                                        | Result <50.0 | Qualifier | RL<br>50.0 | MDL | Unit<br>mg/Kg | <u> </u> | Prepared 09/08/23 15:26 | Analyzed                                                | Dil Fac  |
| (GRO)-C6-C10                                                              | -50.0        | 0         | 00.0       |     | iiig/itg      |          | 03/00/23 13.20          | 09/00/23 20:37                                          | 1        |

Eurofins Midland

1,4-Difluorobenzene (Surr)

Client: Carmona Resources Project/Site: Tonto 15 State #1

### Job ID: 880-33030-1 SDG: Lea County NM

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-62105/                  | 1 <b>-A</b> |              |          |        |      |        |       |   |       | Client Sa  | mple ID: M              |       |                           |
|-----------------------------------------------|-------------|--------------|----------|--------|------|--------|-------|---|-------|------------|-------------------------|-------|---------------------------|
| Matrix: Solid                                 |             |              |          |        |      |        |       |   |       |            | Prep Ty                 |       |                           |
| Analysis Batch: 62028                         |             |              |          |        |      |        |       |   |       |            | Prep                    | Batch | : 62105                   |
|                                               |             | BMB          |          |        |      |        |       | _ | _     |            |                         |       |                           |
| Analyte                                       |             | lt Qualifier |          |        | MDL  | Unit   |       | D |       | repared    | Analyze                 |       | Dil Fac                   |
| Diesel Range Organics (Over                   | <50.        | .0 U         | 50.0     |        |      | mg/K   | g     |   | 09/0  | 8/23 15:26 | 09/08/23 2              | 0:37  | 1                         |
| C10-C28)<br>Oll Range Organics (Over C28-C36) | <50         | .0 U         | 50.0     |        |      | mg/K   | a     |   | 00/0  | 8/23 15:26 | 09/08/23 2              | 0.37  | 1                         |
| On Range Organics (Over 020-000)              | -50.        | .0 0         | 50.0     |        |      | ing/it | 9     |   | 03/0  | 0/20 10.20 | 03/00/23 2              | 0.07  | '                         |
|                                               | М           | B MB         |          |        |      |        |       |   |       |            |                         |       |                           |
| Surrogate                                     | %Recover    | ry Qualifier | Limits   |        |      |        |       |   | P     | repared    | Analyze                 | ed    | Dil Fac                   |
| 1-Chlorooctane                                | 14          | 15 S1+       | 70 - 130 |        |      |        |       | - | 09/0  | 8/23 15:26 | 09/08/23 2              | 20:37 | 1                         |
| o-Terphenyl                                   | 16          | 61 S1+       | 70 - 130 |        |      |        |       |   | 09/0  | 8/23 15:26 | 09/08/23 2              | 20:37 | 1                         |
| Lab Sample ID: LCS 880-6210                   | 5/2-A       |              |          |        |      |        |       | С | lient | Sample     | ID: Lab Co              | ntrol | Sample                    |
| Matrix: Solid                                 |             |              |          |        |      |        |       |   |       |            | Prep Ty                 |       |                           |
| Analysis Batch: 62028                         |             |              |          |        |      |        |       |   |       |            |                         |       | : 62105                   |
|                                               |             |              | Spike    | LCS    | LCS  |        |       |   |       |            | %Rec                    |       |                           |
| Analyte                                       |             |              | Added    | Result |      |        | Unit  |   | D     | %Rec       | Limits                  |       |                           |
| Gasoline Range Organics                       |             |              | 1000     | 1157   |      |        | mg/Kg |   | _     | 116        | 70 - 130                |       |                           |
| (GRO)-C6-C10                                  |             |              |          |        |      |        | 5 5   |   |       |            |                         |       |                           |
| Diesel Range Organics (Over                   |             |              | 1000     | 1011   |      |        | mg/Kg |   |       | 101        | 70 - 130                |       |                           |
| C10-C28)                                      |             |              |          |        |      |        |       |   |       |            |                         |       |                           |
|                                               | LCS LC      | cs           |          |        |      |        |       |   |       |            |                         |       |                           |
| Surrogate                                     | %Recovery Q | ualifier     | Limits   |        |      |        |       |   |       |            |                         |       |                           |
| 1-Chlorooctane                                | 91          |              | 70 - 130 |        |      |        |       |   |       |            |                         |       |                           |
| o-Terphenyl                                   | 103         |              | 70 - 130 |        |      |        |       |   |       |            |                         |       |                           |
| Matrix: Solid<br>Analysis Batch: 62028        |             |              | Spike    | LCSD   | LCS  | D      |       |   |       |            | Prep Ty<br>Prep<br>%Rec |       | otal/NA<br>: 62105<br>RPE |
| Analyte                                       |             |              | Added    | Result | Qual | lifier | Unit  |   | D     | %Rec       | Limits                  | RPD   | Limit                     |
| Gasoline Range Organics                       |             |              | 1000     | 1080   |      |        | mg/Kg |   | _     | 108        | 70 - 130                | 7     | 20                        |
| (GRO)-C6-C10                                  |             |              |          |        |      |        |       |   |       |            |                         |       |                           |
| Diesel Range Organics (Over                   |             |              | 1000     | 947.1  |      |        | mg/Kg |   |       | 95         | 70 - 130                | 7     | 20                        |
| C10-C28)                                      |             |              |          |        |      |        |       |   |       |            |                         |       |                           |
|                                               | LCSD LC     | CSD          |          |        |      |        |       |   |       |            |                         |       |                           |
| Surrogate                                     | %Recovery Q | ualifier     | Limits   |        |      |        |       |   |       |            |                         |       |                           |
| 1-Chlorooctane                                | 89          |              | 70 - 130 |        |      |        |       |   |       |            |                         |       |                           |
| o-Terphenyl                                   | 101         |              | 70 - 130 |        |      |        |       |   |       |            |                         |       |                           |
| Lab Sample ID: 890-5212-A-1-0                 | CMS         |              |          |        |      |        |       |   |       | Client 9   | Sample ID:              | Matri | x Snike                   |
| Matrix: Solid                                 |             |              |          |        |      |        |       |   |       | Cheffit C  | Prep Ty                 |       |                           |
| Analysis Batch: 62028                         |             |              |          |        |      |        |       |   |       |            |                         |       | : 62105                   |
| Analysis Buton. 02020                         | Sample Sa   | mple         | Spike    | MS     | MS   |        |       |   |       |            | %Rec                    | Sucon | . 02100                   |
| Analyte                                       | Result Q    | -            | Added    | Result |      | lifier | Unit  |   | D     | %Rec       | Limits                  |       |                           |
| Gasoline Range Organics                       | <49.6 U     |              | 1010     | 971.0  |      |        | mg/Kg |   | _     | 95         | 70 - 130                |       |                           |
| (GRO)-C6-C10                                  |             |              | -        | -      |      |        | 5. 5  |   |       |            |                         |       |                           |
| Diesel Range Organics (Over<br>C10-C28)       | 63.7        |              | 1010     | 1106   |      |        | mg/Kg |   |       | 104        | 70 - 130                |       |                           |
|                                               | MS M        | s            |          |        |      |        |       |   |       |            |                         |       |                           |
| Surrogate                                     | %Recovery Q |              | Limits   |        |      |        |       |   |       |            |                         |       |                           |
| 1-Chlorooctane                                | 134 St      |              | 70 - 130 |        |      |        |       |   |       |            |                         |       |                           |
|                                               |             |              |          |        |      |        |       |   |       |            |                         |       |                           |

Eurofins Midland

o-Terphenyl

70 - 130

133 S1+

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-33030-1 SDG: Lea County NM

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Matrix: Solid                                                                                                                                                                                                                                                                                              | 1-D MSD                                                                    |                     |                                                                |                                                                                                                      |                                                   |                                          |              | - C.                                                                                                             | ): Matrix Sp<br>Prep 1                                                                                                                                            | Гуре: То                                                    | tal/N                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|
| Analysis Batch: 62028                                                                                                                                                                                                                                                                                      |                                                                            |                     |                                                                |                                                                                                                      |                                                   |                                          |              |                                                                                                                  |                                                                                                                                                                   | Batch:                                                      |                                                      |
|                                                                                                                                                                                                                                                                                                            | Sample                                                                     | Sample              | Spike                                                          | MSD                                                                                                                  | MSD                                               |                                          |              |                                                                                                                  | %Rec                                                                                                                                                              | Batom                                                       | RPI                                                  |
| Analyte                                                                                                                                                                                                                                                                                                    | -                                                                          | Qualifier           | Added                                                          |                                                                                                                      | Qualifier                                         | Unit                                     | D            | %Rec                                                                                                             | Limits                                                                                                                                                            | RPD                                                         | Limi                                                 |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                    | <49.6                                                                      |                     | 1010                                                           | 956.7                                                                                                                | duamor                                            | mg/Kg                                    |              | 94                                                                                                               | 70 - 130                                                                                                                                                          | 1                                                           | 2                                                    |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                               | 10.0                                                                       | 0                   | 1010                                                           | 000.1                                                                                                                |                                                   | iiig/itg                                 |              | 01                                                                                                               | 10-100                                                                                                                                                            | •                                                           | -                                                    |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                    | 63.7                                                                       |                     | 1010                                                           | 1099                                                                                                                 |                                                   | mg/Kg                                    |              | 103                                                                                                              | 70 - 130                                                                                                                                                          | 1                                                           | 2                                                    |
|                                                                                                                                                                                                                                                                                                            | MSD                                                                        | MSD                 |                                                                |                                                                                                                      |                                                   |                                          |              |                                                                                                                  |                                                                                                                                                                   |                                                             |                                                      |
| Surrogate                                                                                                                                                                                                                                                                                                  | %Recovery                                                                  | Qualifier           | Limits                                                         |                                                                                                                      |                                                   |                                          |              |                                                                                                                  |                                                                                                                                                                   |                                                             |                                                      |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                             | 133                                                                        | <u>S1+</u>          | 70 - 130                                                       |                                                                                                                      |                                                   |                                          |              |                                                                                                                  |                                                                                                                                                                   |                                                             |                                                      |
| o-Terphenyl                                                                                                                                                                                                                                                                                                | 130                                                                        |                     | 70 - 130                                                       |                                                                                                                      |                                                   |                                          |              |                                                                                                                  |                                                                                                                                                                   |                                                             |                                                      |
| lethod: 300.0 - Anions, I<br>Lab Sample ID: MB 880-6215<br>Matrix: Solid<br>Analysis Batch: 62337                                                                                                                                                                                                          |                                                                            |                     |                                                                |                                                                                                                      |                                                   |                                          |              | Client S                                                                                                         | Sample ID:<br>Prep                                                                                                                                                | Method<br>Type: S                                           |                                                      |
|                                                                                                                                                                                                                                                                                                            | _                                                                          | MB MB               |                                                                |                                                                                                                      |                                                   |                                          | _            |                                                                                                                  |                                                                                                                                                                   | _                                                           |                                                      |
| Analyte                                                                                                                                                                                                                                                                                                    |                                                                            | esult Qualifier     |                                                                |                                                                                                                      | MDL Unit                                          |                                          | р <u>Р</u>   | repared                                                                                                          | Analyz                                                                                                                                                            |                                                             | Dil Fa                                               |
| Chloride                                                                                                                                                                                                                                                                                                   | <                                                                          | 5.00 U              | ł                                                              | 5.00                                                                                                                 | mg/K                                              | g                                        |              |                                                                                                                  | 09/13/23                                                                                                                                                          | 04:58                                                       |                                                      |
|                                                                                                                                                                                                                                                                                                            | 54/2-A                                                                     |                     |                                                                |                                                                                                                      |                                                   |                                          | Client       | Sample                                                                                                           | ID: Lab Co<br>Prep                                                                                                                                                | Type: S                                                     |                                                      |
| Matrix: Solid<br>Analysis Batch: 62337                                                                                                                                                                                                                                                                     | 54/2-A                                                                     |                     | Spike                                                          |                                                                                                                      | LCS                                               | 11-14                                    |              |                                                                                                                  | Prep<br>%Rec                                                                                                                                                      |                                                             |                                                      |
| Matrix: Solid<br>Analysis Batch: 62337<br><sup>Analyte</sup>                                                                                                                                                                                                                                               |                                                                            |                     | Added                                                          | Result                                                                                                               | LCS<br>Qualifier                                  | Unit ma/Ka                               |              | %Rec                                                                                                             | Prep<br>%Rec<br>Limits                                                                                                                                            |                                                             |                                                      |
| Matrix: Solid<br>Analysis Batch: 62337<br><sup>Analyte</sup>                                                                                                                                                                                                                                               |                                                                            |                     |                                                                |                                                                                                                      |                                                   | Unit<br>mg/Kg                            |              |                                                                                                                  | Prep<br>%Rec                                                                                                                                                      |                                                             |                                                      |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride                                                                                                                                                                                                                                              |                                                                            |                     | Added                                                          | Result                                                                                                               |                                                   | mg/Kg                                    | <u>D</u>     | <b>%Rec</b><br>99                                                                                                | Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                                | Type: S                                                     | olub                                                 |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62                                                                                                                                                                                                                |                                                                            |                     | Added                                                          | Result                                                                                                               |                                                   | mg/Kg                                    | <u>D</u>     | <b>%Rec</b><br>99                                                                                                | Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                                | Type: S                                                     | olub<br>le Du                                        |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid                                                                                                                                                                                               |                                                                            |                     | Added                                                          | Result                                                                                                               |                                                   | mg/Kg                                    | <u>D</u>     | <b>%Rec</b><br>99                                                                                                | Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                                | Type: S                                                     | olub<br>le Du                                        |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid                                                                                                                                                                                               |                                                                            |                     | Added                                                          | Result<br>247.0                                                                                                      |                                                   | mg/Kg                                    | <u>D</u>     | <b>%Rec</b><br>99                                                                                                | Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                                | Type: S                                                     | olub<br>le Du<br>olub                                |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62337                                                                                                                                                                      |                                                                            |                     | Added                                                          | Result<br>247.0<br>LCSD                                                                                              | Qualifier                                         | mg/Kg                                    | <u>D</u>     | <b>%Rec</b><br>99                                                                                                | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep                                                                                                          | Type: S                                                     | olub<br>le Du<br>olub<br>RP                          |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte                                                                                                                                                           |                                                                            |                     | Added<br>250<br>Spike                                          | Result<br>247.0<br>LCSD                                                                                              | Qualifier                                         | mg/Kg<br>Clier                           | D_<br>nt Sam | %Rec<br>99                                                                                                       | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec                                                                                                  | Type: S                                                     | olub<br>le Du<br>olub<br>RF<br>Lin                   |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33015-A<br>Matrix: Solid                                                                                                | <br>2154/3-A<br>                                                           |                     | Added<br>250<br>Spike<br>Added                                 | Result<br>247.0<br>LCSD<br>Result                                                                                    | Qualifier                                         | mg/Kg<br>Clier<br>Unit                   | D_<br>nt Sam | %Rec<br>99<br>pple ID: I<br>%Rec<br>99                                                                           | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID                                                               | Type: S<br>                                                 | olub<br>le Du<br>olub<br>RF<br>Lim<br>Spik           |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33015-A<br>Matrix: Solid                                                                                                | <br>2154/3-A<br>                                                           |                     | Added<br>250<br>Spike<br>Added                                 | Result<br>247.0<br>LCSD<br>Result<br>247.1                                                                           | Qualifier                                         | mg/Kg<br>Clier<br>Unit                   | D_<br>nt Sam | %Rec<br>99<br>pple ID: I<br>%Rec<br>99                                                                           | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID                                                               | Type: S Type: S Sampl Type: S RPD 0 : Matrix                | olub<br>le Du<br>olub<br>RF<br>Lim<br>2<br>Spik      |
| Lab Sample ID: LCS 880-621<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33015-A<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte                              | 2154/3-A<br>                                                               | Sample<br>Qualifier | Added<br>250<br>Spike<br>Added<br>250                          | Result<br>247.0<br>LCSD<br>Result<br>247.1                                                                           | Qualifier<br>LCSD<br>Qualifier                    | mg/Kg<br>Clier<br>Unit                   | D_<br>nt Sam | %Rec<br>99<br>pple ID: I<br>%Rec<br>99                                                                           | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep                                                       | Type: S Type: S Sampl Type: S RPD 0 : Matrix                | olubi<br>le Du<br>olubi<br>RP<br>Lim<br>2<br>Spik    |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33015-A<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte                                                            | 2154/3-A<br>                                                               | Qualifier           | Added<br>250<br>Spike<br>Added<br>250<br>Spike                 | Result<br>247.0<br>LCSD<br>Result<br>247.1                                                                           | Qualifier<br>LCSD<br>Qualifier<br>MS              | mg/Kg<br>Clien<br>Unit<br>mg/Kg          | D            | %Rec<br>99<br>mple ID: I<br>%Rec<br>99<br>Client                                                                 | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec                                               | Type: S Type: S Sampl Type: S RPD 0 : Matrix                | olub<br>le Du<br>olub<br>RF<br>Lin<br>Spik           |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33015-A<br>Matrix: Solid<br>Analysis Batch: 62337                                                                       | 2154/3-A<br>-10-D MS<br>                                                   | Qualifier<br>F1     | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added<br>251 | Result           247.0           LCSD           Result           247.1           MS           Result           405.4 | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier | mg/Kg       Clien       Unit       mg/Kg | D            | %Rec           99           ople ID: I           %Rec           99           Client           %Rec           109 | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>0: Matrix Sp<br>Prep | Type: S OI Sampl Type: S RPD 0 : Matrix Type: S             | olub<br>le Du<br>olub<br>Rr<br>Lin<br>Spik<br>olub   |
| Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-62<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33015-A<br>Matrix: Solid<br>Analysis Batch: 62337<br>Analyte<br>Chloride<br>Lab Sample ID: 880-33015-A<br>Matrix: Solid | 2154/3-A<br>-10-D MS<br>- Sample<br>- Result<br>132<br>-10-E MSD<br>Sample | Qualifier<br>F1     | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | Result<br>247.0<br>LCSD<br>Result<br>247.1<br>MS<br>Result<br>405.4                                                  | Qualifier<br>LCSD<br>Qualifier<br>MS              | mg/Kg       Clien       Unit       mg/Kg | D            | %Rec           99           ople ID: I           %Rec           99           Client           %Rec           109 | Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110                         | Type: S Type: S Sampl Type: S RPD 0 Matrix Type: S Dike Dup | elub<br>ele Du<br>olub<br>RP<br>Linr<br>Spik<br>olub |

Page 397 of 406

# **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

5

Job ID: 880-33030-1 SDG: Lea County NM

# **GC VOA**

#### Analysis Batch: 62040

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-33030-1        | S-7 (0-1')             | Total/NA  | Solid  | 8021B  | 62082      |
| 880-33030-2        | S-7 (1.5')             | Total/NA  | Solid  | 8021B  | 62082      |
| 880-33030-3        | S-7 (2')               | Total/NA  | Solid  | 8021B  | 62082      |
| 880-32833-A-8-A MB | Method Blank           | Total/NA  | Solid  | 8021B  | 62041      |
| MB 880-62082/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 62082      |
| LCS 880-62082/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 62082      |
| LCSD 880-62082/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 62082      |
| 890-5210-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 62082      |
| 890-5210-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 62082      |

| Lab Sample ID      | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------|-----------|--------|--------|------------|
| 880-32833-A-8-A MB | Method Blank     | Total/NA  | Solid  | 5030B  |            |

#### Prep Batch: 62082

| LCSD 000-02002/2-A                      | Lab Control Sample Dup                 | TOtal/NA             | 30lid          | 0021B        | 62062      |     |
|-----------------------------------------|----------------------------------------|----------------------|----------------|--------------|------------|-----|
| 890-5210-A-1-A MS                       | Matrix Spike                           | Total/NA             | Solid          | 8021B        | 62082      | 8   |
| 890-5210-A-1-B MSD                      | Matrix Spike Duplicate                 | Total/NA             | Solid          | 8021B        | 62082      |     |
| Prep Batch: 62041                       |                                        |                      |                |              |            | 9   |
| Lab Sample ID                           | Client Sample ID                       | Prep Type            | Matrix         | Method       | Prep Batch | 10  |
| 880-32833-A-8-A MB                      | Method Blank                           | Total/NA             | Solid          | 5030B        |            |     |
| Prep Batch: 62082                       |                                        |                      |                |              |            | 11  |
| Lab Sample ID                           | Client Sample ID                       | Prep Type            | Matrix         | Method       | Prep Batch | 12  |
| 880-33030-1                             | S-7 (0-1')                             | Total/NA             | Solid          | 5035         |            |     |
| 880-33030-2                             | S-7 (1.5')                             | Total/NA             | Solid          | 5035         |            | 4.0 |
| 880-33030-3                             | S-7 (2')                               | Total/NA             | Solid          | 5035         |            | 13  |
| MB 880-62082/5-A                        | Method Blank                           | Total/NA             | Solid          | 5035         |            |     |
| LCS 880-62082/1-A                       | Lab Control Sample                     | Total/NA             | Solid          | 5035         |            | 14  |
|                                         |                                        |                      |                | 5005         |            |     |
| LCSD 880-62082/2-A                      | Lab Control Sample Dup                 | Total/NA             | Solid          | 5035         |            |     |
| LCSD 880-62082/2-A<br>890-5210-A-1-A MS | Lab Control Sample Dup<br>Matrix Spike | Total/NA<br>Total/NA | Solid<br>Solid | 5035<br>5035 |            |     |

#### Analysis Batch: 62183

| Lab Sample ID Client Sample ID Prep Type        | Matrix | Method     | Prep Batch |
|-------------------------------------------------|--------|------------|------------|
| 880-33030-1         S-7 (0-1')         Total/NA | Solid  | Total BTEX |            |
| 880-33030-2 S-7 (1.5') Total/NA                 | Solid  | Total BTEX |            |
| 880-33030-3 S-7 (2') Total/NA                   | Solid  | Total BTEX |            |

### GC Semi VOA

#### Analysis Batch: 62028

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-33030-1        | S-7 (0-1')             | Total/NA  | Solid  | 8015B NM | 62105      |
| 880-33030-2        | S-7 (1.5')             | Total/NA  | Solid  | 8015B NM | 62105      |
| 880-33030-3        | S-7 (2')               | Total/NA  | Solid  | 8015B NM | 62105      |
| MB 880-62105/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 62105      |
| LCS 880-62105/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 62105      |
| LCSD 880-62105/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 62105      |
| 890-5212-A-1-C MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 62105      |
| 890-5212-A-1-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 62105      |

#### Prep Batch: 62105

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method      | Prep Batch |
|-------------------|--------------------|-----------|--------|-------------|------------|
| 880-33030-1       | S-7 (0-1')         | Total/NA  | Solid  | 8015NM Prep |            |
| 880-33030-2       | S-7 (1.5')         | Total/NA  | Solid  | 8015NM Prep |            |
| 880-33030-3       | S-7 (2')           | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-62105/1-A  | Method Blank       | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-62105/2-A | Lab Control Sample | Total/NA  | Solid  | 8015NM Prep |            |

Eurofins Midland

# **QC Association Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

# GC Semi VOA (Continued)

### Prep Batch: 62105 (Continued)

| Lab Sample ID<br>LCSD 880-62105/3-A | Client Sample ID<br>Lab Control Sample Dup | Prep Type<br>Total/NA | Matrix<br>Solid | Method<br>8015NM Prep | Prep Batch |
|-------------------------------------|--------------------------------------------|-----------------------|-----------------|-----------------------|------------|
| 890-5212-A-1-C MS                   | Matrix Spike                               | Total/NA              | Solid           | 8015NM Prep           |            |
| 890-5212-A-1-D MSD                  | Matrix Spike Duplicate                     | Total/NA              | Solid           | 8015NM Prep           |            |
| Analysis Batch: 62149               |                                            |                       |                 |                       |            |
|                                     |                                            |                       |                 |                       |            |

| Lab Sample ID<br>880-33030-1 | Client Sample ID<br>S-7 (0-1') | Prep Type<br>Total/NA | Matrix<br>Solid | Method<br>8015 NM | Prep Batch |
|------------------------------|--------------------------------|-----------------------|-----------------|-------------------|------------|
| 880-33030-2                  | S-7 (1.5')                     | Total/NA              | Solid           | 8015 NM           |            |
| 880-33030-3                  | S-7 (2')                       | Total/NA              | Solid           | 8015 NM           |            |

#### HPLC/IC

#### Leach Batch: 62154

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|----------------------|------------------------|-----------|--------|----------|------------|
| 880-33030-1          | S-7 (0-1')             | Soluble   | Solid  | DI Leach |            |
| 880-33030-2          | S-7 (1.5')             | Soluble   | Solid  | DI Leach |            |
| 880-33030-3          | S-7 (2')               | Soluble   | Solid  | DI Leach |            |
| MB 880-62154/1-A     | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-62154/2-A    | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| _CSD 880-62154/3-A   | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-33015-A-10-D MS  | Matrix Spike           | Soluble   | Solid  | DI Leach |            |
| 880-33015-A-10-E MSD | Matrix Spike Duplicate | Soluble   | Solid  | DI Leach |            |

#### Analysis Batch: 62337

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 880-33030-1          | S-7 (0-1')             | Soluble   | Solid  | 300.0  | 62154      |
| 880-33030-2          | S-7 (1.5')             | Soluble   | Solid  | 300.0  | 62154      |
| 880-33030-3          | S-7 (2')               | Soluble   | Solid  | 300.0  | 62154      |
| MB 880-62154/1-A     | Method Blank           | Soluble   | Solid  | 300.0  | 62154      |
| LCS 880-62154/2-A    | Lab Control Sample     | Soluble   | Solid  | 300.0  | 62154      |
| LCSD 880-62154/3-A   | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 62154      |
| 880-33015-A-10-D MS  | Matrix Spike           | Soluble   | Solid  | 300.0  | 62154      |
| 880-33015-A-10-E MSD | Matrix Spike Duplicate | Soluble   | Solid  | 300.0  | 62154      |

Page 399 of 406

5

8

Job ID: 880-33030-1

SDG: Lea County NM

Client: Carmona Resources Project/Site: Tonto 15 State #1

Client Sample ID: S-7 (0-1')

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Date Collected: 09/07/23 00:00

Date Received: 09/08/23 13:34

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

5.00 g

5 mL

9.97 g

1 uL

4.98 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

62082

62040

62183

62149

62105

62028

62154

62337

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 880-33030-1 SDG: Lea County NM

# Lab Sample ID: 880-33030-1

Analyst

MNR

MNR

SM

SM

ткс

SM

AG

СН

Prepared

or Analyzed

09/08/23 13:56

09/09/23 01:47

09/11/23 13:03

09/11/23 10:03

09/08/23 15:26

09/09/23 04:47

09/11/23 10:21

09/13/23 07:12

Matrix: Solid

Lab

EET MID

EET MID

EET MID

EET MID

EET MID

EET MID

FFT MID

EET MID

Matrix: Solid

#### Lab Sample ID: 880-33030-2 Matrix: Solid

Lab Sample ID: 880-33030-3

rix: Solid

#### Client Sample ID: S-7 (1.5') Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.04 g  | 5 mL   | 62082  | 09/08/23 13:56 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 62040  | 09/09/23 02:07 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 62183  | 09/11/23 13:03 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 62149  | 09/11/23 10:03 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.98 g  | 10 mL  | 62105  | 09/08/23 15:26 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 62028  | 09/09/23 05:08 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 62154  | 09/11/23 10:21 | AG      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 62337  | 09/13/23 07:18 | СН      | EET MID |

#### Client Sample ID: S-7 (2') Date Collected: 09/07/23 00:00 Date Received: 09/08/23 13:34

#### Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep Total/NA 5035 4.98 g 5 mL 62082 09/08/23 13:56 MNR EET MID Total/NA Analysis 8021B 5 mL 5 mL 62040 09/09/23 03:32 MNR EET MID 1 Total/NA Total BTEX 62183 09/11/23 13:03 SM EET MID Analysis 1 Total/NA Analysis 8015 NM 1 62149 09/11/23 10:03 SM EET MID 9.91 g EET MID Total/NA Prep 8015NM Prep 10 ml 62105 09/08/23 15:26 TKC Total/NA 8015B NM 62028 09/09/23 05:29 EET MID Analysis 1 1 uL 1 uL SM Soluble **DI Leach** 5.01 g 50 mL 62154 09/11/23 10:21 AG EET MID Leach Soluble Analysis 300.0 62337 09/13/23 07:38 СН EET MID 1

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

10

# Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-33030-1 SDG: Lea County NM

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Ithority                                             | Pi                              | rogram                          | Identification Number                        | Expiration Date           |
|------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------|---------------------------|
| xas                                                  | N                               | ELAP                            | T104704400-23-26                             | 06-30-24                  |
| The following analytes                               | are included in this report, bi | ut the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for v |
| the agency does not o                                |                                 | Matrix                          | Δnalvte                                      |                           |
| the agency does not of<br>Analysis Method<br>8015 NM | fer certification. Prep Method  | Matrix<br>Solid                 | Analyte<br>Total TPH                         |                           |

Eurofins Midland

# **Method Summary**

Client: Carmona Resources Project/Site: Tonto 15 State #1

Job ID: 880-33030-1 SDG: Lea County NM

| Method        | Method Description                                                             | Protocol                              | Laboratory |
|---------------|--------------------------------------------------------------------------------|---------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                | SW846                                 | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                         | TAL SOP                               | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                               | SW846                                 | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                               | SW846                                 | EET MID    |
| 300.0         | Anions, Ion Chromatography                                                     | EPA                                   | EET MID    |
| 5035          | Closed System Purge and Trap                                                   | SW846                                 | EET MID    |
| 8015NM Prep   | Microextraction                                                                | SW846                                 | EET MID    |
| DI Leach      | Deionized Water Leaching Procedure                                             | ASTM                                  | EET MID    |
| Protocol Refe | rences:                                                                        |                                       |            |
| ASTM = A      | STM International                                                              |                                       |            |
| EPA = US      | Environmental Protection Agency                                                |                                       |            |
| SW846 =       | "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed | ition, November 1986 And Its Updates. |            |
| TAL SOP       | = TestAmerica Laboratories, Standard Operating Procedure                       |                                       |            |
| Laboratory R  | eferences:                                                                     |                                       |            |
| EET MID :     | = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440  |                                       |            |
|               |                                                                                |                                       |            |
|               |                                                                                |                                       |            |
|               |                                                                                |                                       |            |
|               |                                                                                |                                       |            |

#### Laboratory References:

Eurofins Midland

Released to Imaging: 11/6/2023 11:57:53 AM

# Sample Summary

Client: Carmona Resources Project/Site: Tonto 15 State #1 Job ID: 880-33030-1 SDG: Lea County NM

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-33030-1   | S-7 (0-1')       | Solid  | 09/07/23 00:00 | 09/08/23 13:34 |
| 880-33030-2   | S-7 (1.5')       | Solid  | 09/07/23 00:00 | 09/08/23 13:34 |
| 880-33030-3   | S-7 (2')         | Solid  | 09/07/23 00:00 | 09/08/23 13:34 |

| ٢           | Real Proved |          |            |                                 |   |         | Comments: Email results to Mike Carmona mcarmona@carmonaresources.com, Conner Moehring cmoehring@carmonaresources.com, Clint Merritt MerrittC@carmonaresources.com |      |      |      |   | S-7 (2') | S-7 (1 5) | S-7 (0-1') | Sample Identification | Total Containers.        | Sample Custody Seals. | Cooler Custody Seals.                                           | Received Intact: | SAMPLE RECEIPT                    | PO#      | Sampler's Name: | Project Location       | Project Number             | Project Name:      | Phone.                         | City, State ZIP    | Address.                  | Company Name                    | Project Manager (       |      |
|-------------|-------------|----------|------------|---------------------------------|---|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|---|----------|-----------|------------|-----------------------|--------------------------|-----------------------|-----------------------------------------------------------------|------------------|-----------------------------------|----------|-----------------|------------------------|----------------------------|--------------------|--------------------------------|--------------------|---------------------------|---------------------------------|-------------------------|------|
|             |             |          |            | Re                              |   |         | results to Mike                                                                                                                                                    |      |      |      |   | )        | 5,        | [])        | fication              |                          | Yes No                | Yes No                                                          | tes No           | T Temp Blank.                     |          |                 | Lea Co                 |                            | Ton                |                                | Midland, TX 79701  | 310 W Wall St Ste 500     | Carmona Resources               | Clinton Merritt         |      |
|             |             |          |            | Relinquished by                 |   |         | Carmona mo                                                                                                                                                         |      |      |      |   | 9/7/2023 | 9/7/2023  | 9/7/2023   | Date                  |                          | ( N/A )               | MIA                                                             |                  | Blank.                            |          | CCM             | Lea County, New Mexico | 2089                       | Tonto 15 State #1  |                                | Ē                  | e 500                     | ces                             |                         |      |
|             |             |          |            | <ul> <li>(Signature)</li> </ul> |   |         | carmona@car                                                                                                                                                        |      |      |      |   |          |           |            | Time                  | Corrected Temperature    | Temperature Reading   | Correction Factor                                               | Thermometer ID   | Yes No                            |          |                 | exico                  |                            |                    |                                |                    |                           |                                 |                         |      |
|             |             |          |            |                                 |   |         | monaresourc                                                                                                                                                        |      |      |      |   | ×        | ×         | ×          | Soil                  | erature                  | ading                 | -                                                               |                  | Wet Ice                           |          |                 | Due Date               | ✓ Routine                  | Turn               | Email                          |                    |                           |                                 |                         |      |
|             |             |          |            |                                 |   |         | es.com, Con                                                                                                                                                        |      |      |      |   | 9        | G         | 9          | Water Comp            | 1-27                     | - 2 H                 | 0.                                                              | 124              |                                   |          |                 | 5 day                  | Rush                       | Turn Around        | Email msanjari@marathonoil.com | City, State ZIP    | Address.                  | Company Name                    | Bill to: (if different) |      |
|             |             | 4-8-     |            |                                 |   |         | ner Moehrii                                                                                                                                                        |      |      | <br> |   | -1       | -         | 3 1        | ab/#of<br>mpCont      |                          |                       | Pi                                                              | P                | nete                              | rs       |                 |                        | Pres.<br>Code              |                    | arathonoil.c                   |                    |                           | ne                              | (11                     |      |
|             |             | P-23     |            | Date/Time                       |   |         | ng cmoe                                                                                                                                                            |      |      | <br> |   | ×        | ×         | ×          |                       |                          |                       |                                                                 | 802              |                                   |          |                 |                        |                            |                    | Î                              | Houston            | 990 Tow                   | Marathor                        | Melodie Sanjari         |      |
|             |             |          |            | ne                              |   |         | hring@                                                                                                                                                             |      |      |      | _ | ×<br>×   | ×         | ×          | IPr                   | 1801                     |                       |                                                                 | de 30            | DRO<br>                           | + M      | KO)             |                        |                            |                    |                                | Houston TX 77024   | n and Co                  | Marathon Oil Corporation        | Sanjari                 |      |
|             | 1           |          |            |                                 |   |         | carmona                                                                                                                                                            |      |      |      |   |          |           |            |                       |                          |                       |                                                                 |                  |                                   |          |                 |                        |                            |                    |                                | 4                  | 990 Town and Country Blvd | oration                         |                         |      |
| $\subseteq$ |             |          |            | >                               |   |         | resourc                                                                                                                                                            | <br> |      |      |   | _        |           |            |                       |                          |                       |                                                                 |                  |                                   |          |                 |                        |                            | ANA                |                                |                    |                           |                                 |                         |      |
|             | R           |          | 1          |                                 |   |         | es.com,                                                                                                                                                            |      |      |      |   |          |           |            |                       |                          |                       |                                                                 |                  |                                   |          |                 |                        |                            | LYSIS F            |                                |                    |                           |                                 |                         |      |
|             | 4<br>4      | <u>A</u> |            | Received by: (Signature)        |   |         | Clint Me                                                                                                                                                           |      | <br> |      |   |          |           |            |                       |                          |                       |                                                                 |                  |                                   |          |                 |                        |                            | ANALYSIS REQUEST   | Deli                           | Rep                | Stat                      | Pro                             | L<br>                   | ]    |
|             |             | 2        |            | by (Sig                         |   |         | erritt Me                                                                                                                                                          |      |      |      |   |          |           |            |                       |                          |                       |                                                                 |                  |                                   |          |                 |                        |                            | -                  | Deliverables                   | Reporting Level II | State of Project:         | Program: UST/PST PRP rownfields | Survius,                |      |
|             |             |          | <u>ا</u> د | nature)                         |   |         | rrittC@c                                                                                                                                                           | <br> |      |      |   |          |           | _          |                       |                          |                       |                                                                 |                  |                                   |          |                 |                        |                            |                    | EDD                            |                    | ect:                      | T/PST [                         |                         |      |
|             |             |          |            |                                 |   |         | armona                                                                                                                                                             |      |      |      |   |          |           |            |                       |                          |                       |                                                                 |                  |                                   |          |                 |                        |                            |                    |                                |                    |                           |                                 | Work Order Comments     |      |
|             |             |          |            |                                 |   |         | resourc                                                                                                                                                            | <br> |      | <br> |   | _        |           |            |                       | Na                       | Z                     | Na                                                              | Na               | H.                                | H.       | H               |                        | No                         |                    | ADaPT                          | ST/UST             |                           | rownfiel                        | der Con                 |      |
|             |             | 4        |            |                                 |   |         | es.com                                                                                                                                                             |      |      |      |   |          |           |            | Sample                | OH+Ascort                | Zn Acetate+NaOH Zn    | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> NaSO <sub>3</sub> | NaHSO4 NABIS     | H <sub>3</sub> PO <sub>4</sub> HP | H,S0, H, | HCL. HC         | Cool Cool              | None NO                    | Preserv            | l Other                        |                    |                           | ds RRC                          | iments                  | Page |
|             | 1-1-2       | CION     |            | Date/Time                       |   |         |                                                                                                                                                                    |      |      |      |   |          |           |            | Sample Comments       | NaOH+Ascorbic Acid. SAPC | aOH Zn                | ö                                                               | SIS              |                                   | NaOH Na  | HNO, HN         | MeOH Me                | DI Water: H <sub>2</sub> O | Preservative Codes | 1                              |                    |                           | Ciperfund                       |                         | 1    |
| 9           | 5/          | 4V       |            |                                 | L | <br>110 | /202                                                                                                                                                               |      |      |      |   |          |           |            | Page                  |                          | of                    | 21                                                              |                  |                                   |          |                 | r                      | Υ,0<br>Υ                   |                    |                                |                    |                           |                                 | - f                     |      |

# Received by OCD: 9/21/2023 6:16:51 AM

Page 404 of 406

5 6 13

en. J

٧o



9/13/2023



Job Number: 880-33030-1 SDG Number: Lea County NM

List Source: Eurofins Midland

# Login Sample Receipt Checklist

Client: Carmona Resources

# Login Number: 33030 List Number: 1

<6mm (1/4").

| Creator: | Kramer, J | lessica |
|----------|-----------|---------|
|----------|-----------|---------|

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

14

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:                | OGRID:                                    |
|--------------------------|-------------------------------------------|
| MARATHON OIL PERMIAN LLC | 372098                                    |
| 990 Town & Country Blvd. | Action Number:                            |
| Houston, TX 77024        | 267580                                    |
|                          | Action Type:                              |
|                          | [C-141] Release Corrective Action (C-141) |

CONDITIONS

| Created<br>By |                                                                               | Condition<br>Date |
|---------------|-------------------------------------------------------------------------------|-------------------|
| bhall         | Closure approved per conditions of the remediation report approved 7/25/2018. | 11/6/2023         |

Action 267580