District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 **Page 1 of 177**

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2322645119
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380
Contact Name Garrett Green	Contact Telephone 575-200-0729
Contact email garrett.green@exxonmobil.com	Incident # (assigned by OCD)
Contact mailing address 3104 E. Greene Street, Carlsbad, New Mexico, 88220	

Location of Release Source

Latitude 32.33342

Site Name Hudson 1 Fed Com 9H	Site Type Production Well
Date Release Discovered 07/31/2023	API# (if applicable)

Unit Letter	Section	Township	Range	County
J	01	238	30E	Eddy

Surface Owner: State 🗵 Federal 🗌 Tribal 🗌 Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

▼ Crude Oil	Volume Released (bbls) 1.13	Volume Recovered (bbls) 1.02
▼ Produced Water Volume Released (bbls) 15.46		Volume Recovered (bbls) 13.98
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	X Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release External corrosion caused a flowline to release fluids to pad. All free fluids were recovered. A third-party contractor has been retained for remediation purposes.		

Zoho Sign Document ID: 316041F4-GPEVSVE	AJYBB7OZFTMWZ922FZD87C_AVKL7SR5QG00U
<i>Received by OCD: 10/27/2023 1:00:47</i>	AJYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U
Form C-141	State of New Mexico

Page 2 of 177

5.	ale	011		11102	100	
Oil 0	Con	serv	vatio	n Di	ivisi	on

Incident ID	NAPP2322645119
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?		
19.15.29.7(A) NMAC?	N/A		
Yes 🗶 No			
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?		
N/A			

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

Page 2

NA

★ The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

▲ All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: Satt Sum	Date:
email: garrett.green@exxonmobil.com	Telephone:
OCD Only	
Received by: <u>Shelly Wells</u>	Date: <u>8/14/2023</u>

Location:	Hudson 1 Fed Com 9H		
Spill Date:	7/31/2023		
	Area 1		
Approximate A	rea =	2336.70	sq. ft.
Average Satura	tion (or depth) of spill =	1.50	inches
Average Porosi	ty Factor =	0.03	
	VOLUME OF LEAK		
Total Crude Oil	=	1.13	bbls
Total Produced Water = 15.46 bbls		bbls	
	TOTAL VOLUME OF LEAK		
Total Crude Oi	Total Crude Oil = 1.13 bbls		
Total Produced	Total Produced Water = 15.46 bbls		
	TOTAL VOLUME RECOVERED		
Total Crude Oi	=	1.02	bbls
Total Produced	otal Produced Water = 13.98 bbls		

Zoho Sign Document ID: 316041F4-GPEVSVEAJYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U *Received by OCD: 10/27/2023 1:00:47 PM* Form C-141 State of New Mexico

Oil Conservation Division

	1 450 7 0/ 1
Incident ID	NAPP2322645119
District RP	
Facility ID	
Application ID	

Page 4 of 177

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🛛 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖂 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- \boxtimes Field data

Page 3

- \boxtimes Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- \boxtimes Photographs including date and GIS information
- \boxtimes Topographic/Aerial maps
- \boxtimes Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

ho Sign Document ID: 31604 Received by OCD: 10/27	2023 1:00:47 PM State of New Mexic	7C_AVKL7SR5QG00U		Page 5 of 1
Form C-141			Incident ID	NAPP2322645119
Page 4	Oil Conservation Divis	sion	District RP	
			Facility ID	
			Application ID	
public health or the environ failed to adequately invest	te required to report and/or file certain releat onment. The acceptance of a C-141 report by tigate and remediate contamination that pose e of a C-141 report does not relieve the opera	y the OCD does not relieve e a threat to groundwater, su	the operator of liability sh Irface water, human health npliance with any other fe ordinator	ould their operations have or the environment. In
email: <u>garrett.green@</u>	exxonmobil.com	Telephone:5	75-200-0729	
OCD Only Received by: <u>Shelly</u>	Wells	Date: <u>10</u> /	/27/2023	

Zoho Sign Document ID: 316041F4-GPEVSVEAJYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM Form C-141 State of New Mexico

Page 6

Oil Conservation Division

	1 450 0 0/ 1
Incident ID	NAPP2322645119
District RP	
Facility ID	
Application ID	

Page 6 of 177

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Garrett Green Title: SSHE Coordinator Signature: Date: Oct 27 2023 email: garrett.green@exxonmobil.com Telephone: 575-200-0729 **OCD** Only Received by: <u>Shelly Wells</u> Date: 10/27/2023 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Ashley Maxwell Date: 11/28/2023 Title: Environmental Specialist Printed Name: Ashley Maxwell

October 27, 2023

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Hudson 1 Fed Com 9H Incident Number NAPP2322645119 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum) on behalf of XTO Energy, Inc. (XTO), has prepared this *Closure Request* to document assessment, excavation, and soil sampling activities performed at the Hudson 1 Fed Com 9H (Site). The purpose of the Site assessment, excavation, and soil sampling activities was to address impacts to soil following a release of crude oil and produced water at the Site. Based on the excavation activities and soil sample laboratory analytical results, XTO is submitting this Closure Request, describing remediation that has occurred and requesting closure for Incident Number NAPP2322645119.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit J, Section 01, Township 23 South, Range 30 East, in Eddy County, New Mexico (32.33342°, -103.83142°) and is associated with oil and gas exploration and production operations on federal land managed by the Bureau of Land Management (BLM).

On July 31, 2023, external corrosion on a flowline resulted in the release of approximately 1.13 barrels (bbls) of crude oil and 15.46 bbls of produced water onto the surface of the well pad. A vacuum truck was immediately dispatched to the Site and recovered approximately 1.02 bbls of crude oil and 13.98 bbls of produced water. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on August 14, 2023. The release was assigned Incident Number nAPP2322645119.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on a recent soil boring drilled for determination of regional groundwater depth. On June 4, 2019, soil boring C-04325, permitted by New Mexico Office of the State Engineer (NMOSE), was drilled approximately 0.25 miles northeast of the Site. Soil boring C-04325 was drilled to a depth of 150 feet

XTO Energy, Inc. Closure Request Hudson 1 Fed Com 9H

bgs. A field geologist logged and described soils continuously. No moisture or groundwater was encountered during drilling activities. The borehole was left open for over 72 hours to allow for potential slow infill of groundwater. After the 72-hour waiting period without observing groundwater, it was confirmed that groundwater beneath the Site is greater than 150 feet bgs. The borehole was properly abandoned with drill cuttings and hydrated bentonite chips. Soil borings C-03559 POD-1 through POD-4 were drilled approximately 830 feet northwest of the Site during 2012. The deepest soil boring, C-03559 POD-1, was drilled to 50 feet bgs and no groundwater was encountered. The soil borings were subsequently plugged. All wells used to determine depth to groundwater are depicted on Figure 1 and the referenced well records are included in Appendix A.

The closest continuously flowing or significant watercourse is located greater than 300 feet from the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is underlain by unstable geology (high potential karst designation area). Site receptors are identified on Figure 1.

Based on high potential karst underlying the Site, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES

On August 17, 2023, Ensolum personnel were at the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. Assessment soil samples SS01 through SS03 were collected within the visible release extent at a depth of 0.5 feet bgs to assess surficial soil within the release. Assessment soil samples SS04 through SS07 were collected around the visible release extent at a depth of 0.5 feet bgs to confirm the lateral extent of the release. The soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included as Appendix B.

The assessment soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain of custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following constituents of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for assessment soil samples SS01 through SS03, collected within the release extent, indicated TPH and chloride concentrations exceeded the Site Closure Criteria. Laboratory analytical results for assessment soil samples SS04 through SS07, collected around the release extent, indicated all COC concentrations were compliant with the Site Closure Criteria and

XTO Energy, Inc. Closure Request Hudson 1 Fed Com 9H

successfully defined the lateral extent of the release. Based on the laboratory analytical results, additional assessment activities were warranted to delineate the vertical extent of the release. The laboratory analytical results are summarized on the attached Table 1.

DELINEATION ACTIVITIES

On September 7, 2023, Ensolum personnel returned to the Site to delineate the vertical extent of impacted soil within the release extent. Potholes PH01 through PH03 were advanced via backhoe at the location of assessment samples SS01 through SS03. The potholes were advanced to a depth of 2 feet bgs. Soil from the potholes was field screened at 1-foot intervals for VOCs and chloride. Field screening results and observations for the potholes were logged on lithologic/soil sampling logs, which are included in Appendix C. Discrete delineation soil samples were collected from each pothole at a depth of 2 feet bgs. The delineation soil samples were collected, handled, and analyzed following the same procedures described above. The delineation soil sample locations were mapped utilizing a handheld GPS unit and are depicted on Figure 2.

Laboratory analytical results for the delineation soil sample collected from pothole PH01 indicated that chloride concentrations exceeded the Site Closure Criteria at a depth of 2 feet bgs. Laboratory analytical results for the delineation soil samples collected from potholes PH02 and PH03 indicated that all COC concentrations were compliant with the Site Closure Criteria at a depth of 2 feet bgs. Laboratory analytical results are summarized in Table 1 and the complete analytical reports are included as Appendix D. Based on visible staining in the release area and laboratory analytical results for the assessment and delineation soil samples, excavation activities were warranted.

EXCAVATION ACTIVITIES

Between September 8, 2023, and September 15, 2023, Ensolum personnel were at the Site to oversee excavation of impacted soil as indicated by laboratory analytical results for assessment samples SS01 through SS03 and delineation samples from potholes PH01 through PH03. Excavation activities were completed utilizing a hydrovac, backhoe, and transport vehicles. To direct excavation activities, soil was field screened for VOCs and chloride. The excavation was completed to depths ranging from 2 feet to 2.5 feet bgs.

Following removal of the impacted soil, 5-point composite soil samples were collected at least every 200 square feet from the floor and sidewalls of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS13, and FS01A were collected from the floor of the excavation at depths ranging from 2 feet to 2.5 feet bgs. Composite soil samples SW01 through SW04 were collected from the sidewalls of the excavation at depths ranging from the ground surface to 2.5 feet bgs. The excavation soil samples were handled and analyzed following the same procedures described above. The excavation extent and excavation soil sample locations are presented on Figure 3. Photographic documentation was completed during the excavation activities and a photographic log is included in Appendix B.

Laboratory analytical results for excavation floor samples FS01A, FS02 through FS13 and excavation sidewall samples SW01 through SW04, collected from the final excavation extent, indicated all COC concentrations were compliant with the Site Closure Criteria. Laboratory analytical results for excavation floor sample FS01 initially exceeded the Site Closure Criteria for chloride; additional soil was removed from the area around floor sample FS01 and subsequent floor sample FS01A was compliant. The laboratory analytical results are summarized on Table 1 and the complete laboratory analytical reports are included in Appendix D.

XTO Energy, Inc. Closure Request Hudson 1 Fed Com 9H

The final excavation measured approximately 2,525 square feet. A total of approximately 240 cubic yards of impacted soil was removed during the excavation activities. The impacted soil was properly disposed on at the R360 Landfill Facility in Hobbs, New Mexico.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the July 31, 2023, release of crude oil and produced water. Laboratory analytical results for the excavation soil samples, collected from the final excavation extent, indicated all COC concentrations were compliant with the Site Closure Criteria. Additionally, the release was laterally and vertically delineated to below the most stringent Table I Closure Criteria. Based on the soil sample analytical results, no further remediation is required. XTO backfilled the excavation with material purchased locally and recontoured the Site to match pre-existing Site conditions.

Initial response efforts and excavation of impacted soil have mitigated impacts at this Site. Depth to groundwater is greater than 100 feet bgs and no sensitive receptors were identified near the release extent. XTO believes the remedial actions completed at the Site are protective of human health, the environment, and groundwater. As such, XTO respectfully requests closure for Incident Number nAPP2322645119. NMOCD notifications are included in Appendix E.

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Sincerely, Ensolum, LLC

Lake

Meredith Roberts Staff Geologist

Ashley L. ager

Ashley L. Ager, M.S., P.G. Program Director

cc: Garrett Green, XTO Tommee Lambert, XTO Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Lithologic / Soil Sampling Logs
- Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix E NMOCD Sample Notification

FIGURES

Zoho Sign Document ID: 316041F4-GPEVSVEA JYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U

Zoho Sign Document ID: 316041F4-GPEVSVEA IYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U

Page 14 of 177

TABLES

E N S O L U M

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Hudson 1 Fed Com 9H XTO Energy, Inc. Eddy County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I C	losure Criteria (NMAC 19.15.29)	10	50	NE	NE	NE	NE	100	600
				Assessment	and Delineatio	n Soil Samples				
SS01	08/17/2023	0.5	<0.00202	<0.00404	<50.1	2,290	<50.1	2,290	2,290	49,400
PH01	09/07/2023	2	<0.00201	<0.00402	<50.5	<50.5	0<50.5	<50.5	<50.5	713
\$\$02	08/17/2023	0.5	<0.00199	<0.00398	<50.2	512	<50.2	512	512	6 4,700
PH02	09/07/2023	2	<0.00202	<0.00404	<50.1	<50.1	<50.1	<50.1	<50.1	57.9
SS03	08/17/2023	0.5	<0.00199	<0.00398	<49.8	3,880	<49.8	3,880	3,880	40,400
PH03	09/07/2023	2	<0.00199	<0.00398	<50.5	<50.5	<50.5	<50.5	<50.5	131
SS04	08/17/2023	0.5	<0.00200	<0.00400	<49.6	90.3	<49.6	90.3	90.3	573
SS05	08/17/2023	0.5	<0.00198	<0.00396	<50.5	68.3	<50.5	68.3	68.3	521
SS06	08/17/2023	0.5	<0.00200	<0.00400	<50.5	<50.5	<50.5	<50.5	<50.5	112
SS07	08/17/2023	0.5	<0.00199	<0.00398	<50.2	71.3	<50.2	71.3	71.3	146
	•			Excava	tion Floor Soil	Samples				•
FS01	09/08/2023	2	<0.00200	<0.00401	<50.4	54.6	<50.4	54.6	54.6	895
FS01A	09/15/2023	2.5	<0.00200	<0.00400	<50.5	<50.5	<50.5	<50.5	<50.5	50.5
FS02	09/08/2023	2	<0.00199	<0.00398	<50.5	<50.5	<50.5	<50.5	<50.5	498
FS03	09/08/2023	2	<0.00199	<0.00398	<49.7	<49.7	<49.7	<49.7	<49.7	212
FS04	09/08/2023	2	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	114
FS05	09/08/2023	2	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	158
FS06	09/08/2023	2	<0.00200	<0.00401	<49.6	<49.6	<49.6	<49.6	<49.6	268
FS07	09/08/2023	2	<0.00199	<0.00398	<49.5	<49.5	<49.5	<49.5	<49.5	354
FS08	09/08/2023	2	<0.00199	<0.00398	<50.3	<50.3	<50.3	<50.3	<50.3	146
FS09	09/08/2023	2	<0.00200	<0.00399	<50.2	<50.2	<50.2	<50.2	<50.2	126
FS10	09/08/2023	2	<0.00201	<0.00402	<50.1	<50.1	<50.1	<50.1	<50.1	184
FS11	09/08/2023	2	<0.00199	<0.00398	<50.5	<50.5	<50.5	<50.5	<50.5	121
FS12	09/15/2023	2	<0.00200	<0.00401	<49.6	<49.6	<49.6	<49.6	<49.6	42.8
FS13	09/15/2023	2.5	<0.00199	<0.00398	<50.3	<50.3	<50.3	<50.3	<50.3	187

.

E N S O L U M

				Hud	TABLE 1 LE ANALYTIC Ison 1 Fed Co (TO Energy, Ir County, New	m 9H Ic.				
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I C	losure Criteria (NMAC 19.15.29)	10	50	NE	NE	NE	NE	100	600
				Excavati	on Sidewall So	il Samples		I		
SW01	09/08/2023	0 - 2	<0.00199	<0.00398	<50.0	71.1	<50.0	71.1	71.1	245
SW02	09/08/2023	0 - 2	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	208
SW03	09/14/2023	0 - 2.5	<0.00199	<0.00398	<50.1	96.6	<49.6	96.6	96.6	539
SW04	09/15/2023	0 - 2.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	50.4

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

TPH: Total Petroleum Hydrocarbon

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics Grey text indicates soil sample removed during excavation activities Concentrations in **bold** exceed the NMOCD Table I Closure Criteria

.

APPENDIX A

Referenced Well Records

			Ca	508 Wes rlsbad, N	ronmenta t Stevens lew Mexic ngineering	Street			Identifier: MWO Project Name: JRU 10	/C-0432	Date: 5/22/19 RP Number: 2RP-3404, 2RP-346 2RP-3179
	1	LITHOI	LOGI		SAMPI				Logged By: BEN BE	ELILL	Method: Lonic
at/Long: 32	3353	39,703.	827	697	GRO, DRC	-		PH, BIEX,	Hole Diameter: 6.15"		Total Depth: 150'
omment	All Chlo	ride test in	clude a 6	0% error fa	actor.						
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		L	ithology/Re	marks
D	(11 Z	0.5	N	Awal		- - 1	(SP-SM	silt	y 5 AND, of ded, t, -m.	y, bra, some	loud, poorly vegetation.
D	2112	0.4	٢	piwoi A	2	2'					
A	Kuz	6.1	Ν	Mwoi rs	3	3'					
D	612	0.3	R	MUDIC	4	9-	CALICHE	CAL pily	ICHE w/ 5.	end, day	, It ban / Africa ton, id soud, noodor
P	Ku2	0.1	N	MUID	5	5'		1	Í		
n	412	0.5	2	MWDIE	6	6'					
D	4.12	0.4	Ν	muoi f	7	7'					
Ø	KIIZ	0.3	٢	MUDIG	8	8					
0	403	0.1	r	MUDIH	0	G	SP	SA F	ND W/ Ca	lithe, o	by, Itbra/bra
D	345	0.8	N	Muci I	10	10'		54	1 polog g	redied 1	10 odor
9	345	3,1	N	MW (5	11	ur-	SP-SM	Silty	TSTUDT, de	y, bin, pour si	ity priz graded
				MUNTE	-12	1.5/		f	mil no o	der	() card

				Ca	508 Wes rlsbad, N	r onmenta t Stevens lew Mexic ngineering	Street co 88220		Identifier	1wo	Date 5/22/9 RP Number 2RP-3464, 2RP-31 2RP-3243
			LITH	DLOG		IL BOR			Logged By: Bl		Method
	Lat/Long.		_			GRO, MRO			BTEX, Hole Diameter		Total Depth:
ſ	Comment	All Chlo	oride test in	clude a 6	0% error fa	actor.		1.00			
	Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithology	/Remarks
ŀ	D	<112	1,6	N	MWDIK	12	12'	SP-SM)	STA		
	0	5112	3.8	Μ	Mwo(L	13	13'				
	D	<11Z	4,9	N	multin	14	41				
	Ŋ	C112	4.8	N	MWOIN	15	15'				
	0	KUZ	1.1	N	mwoid	16	16"				
	D	くいこ	0	N	Muolip	17	- 17'				
İ	P	lin	4,1	N	muoiQ	18	18'	ML	SILT, din, t	penlind,	nun plastic, no
	0	lin	6.5	N	MWOJR	19	1 (9'		o do r		
	р	180	1.3	N	mwols	20	20'				
		1.1				21	1				
						22					
5	0	412	5,1	N	Muloiv	23	23'				
						-	H				

UTER				508 Wes	ronment at Stevens	s Street			Identifier MWD	Date: 5/22/9
	25			Carlsbad, I					Project Name: JRU 10	RP Number 2RP-3464, 2RP-3174 2RP-3243
				npliance · E						
Lat/Lo	10.0°	LITH	IOLO	GIC / SO				PH BTEX	Logged By: BEN BELILL Hole Diameter	Method Total Depth
	ient All Chl	and down and it	a shule a	600/ array f	GRO, MR				(1997) (1997)	
Comm	ient Au Chi	onue lesi i	include a	100% entor 1	actor					
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)		Soil/Rock Type		Lithology	/Remarks
Ø	KIIZ	6.5	N	MWS M	24	124	ML	544		
Ð	Cur	4.6	N	Mwoi X	25	251				
p	KIN	5.1	N	muci ¥	26	26'				
D	lin	9.4	N	MWOI Z	27	27'				
0	e li t	0.8	N	onuo 1 AA	28	er				
D	2112	1.2	N	mua AB	29	29				
٥	5112	39	N	mwo lAc	30	70				
D	<112	0.6	N	MUDIAC	31	31				
Þ	<112	50	N	MWSI, AE	32	32				
P	L 112	5.3	Ń	MWOIAF	33	33				
D	(112	0.0	N	MW0145	34	34				
	61120	. 0	\sim	mwoi Att	35	35				
					36	₿¥.	11		7	

-	rreental, Inc.		Ca	508 Wes Insbad, N	ronmenta t Stevens lew Mexic ingineering	Street		Identifier: MWD Project Name: JRU 10	Date 5/22/4 - 5/23/ RP Number 2RP-3464, 2RP-317 2RP-3243
		LITH	DLOG	IC / SO	IL BOR	and the second second		Logged By: BEN BELILL Hole Diameter: 6.15"	Method. Total Depth:
Lat/Long		oride test in	clude a f	50% error f	GRO, MRO			Hole Diameter 6.13	
1.0	1		-	1					
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Litholog	y/Remarks
0	(172	1.0	Ν	puel A	F 36	36	CL 5:14	CLAY, dry, red	Ibra, low plasticity
0	4112	0.0	N	MUDI A	5'37	37	15	0 000-	
Ø	6112	1.5	N	MUDIA	<i>4</i> K 38 .	38			
D	2112	6.0	N	mwold	LL 39	38			
D	2112	0.0	N	muol	fm 40	40			
a	KIIZ	0-0	N	MwolA	J 41	- 41			
Ø	LIIZ	1.4	N	mwol /	40 42	42			
9	(112	2.8	V	mada()	4 0 43	43			
۵	enz	1.8	N	Muol	AQ 44	44			
ρ	KIIZ	2.5	N	Mubi ,	4R 45	4 >			
0	e.]/2	1.9	N	Musli	45 46	46			
9	5112	2.0	N	mult	4T 47	47			
		5.0	N		48		J	ł	

			Ca	508 Wes arlsbad, N	ronmenta st Stevens New Mexic Engineering	Street		Identifier MW2 Project Name. JRU 10	Date: 5/23/14 RP Number: 2RP-3464, 2RP-317 2RP-3243
-		LITHO	DLOG	IC / SO	IL BORI	NG LOO	3	Logged By: BEN BELILL	Method
at/Long					Field Screen		ORIDES, TPH, BT	EX, Hole Diameter	Total Depth.
Comment	All Chlo	ride test in	clude a (50% error f		, and DRO		6.15"	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Litholo	gy/Remarks
D	Luz	0.3	N	MWOL A	48	1/8	LL Si	ty CLAY, dry, 1	ed /bray low plasticity,
D	(11Z	1.3	Ν	MWOI A	¥ 49 _	44	5:7	ty CLAY W/ Cal	ione, day, red/bray lon prhy considton calche
D	<112	1.2	N	Mus LA	₩ 50	50	\$7	ty CLAY, dry, "	ud/braylow plasticity
0	lin	1.2	N	MUJIA	× 51	51		no odor	
P					× 52	+1			
P	2112	1.5	٨	musli	4 Z 53	53			
D	Kin	0.1	N	palus i (5 A 54	54			
					0 55	1		1	
					BC 56				
>	kur	2.9	Ņ	mwol (SD 57	57			
Q	112	38	N	mwa I (SE 58	58			
Q	4112	2.3	N	m.47] (F 59	59			
-					60	+			

	LT Environ	P mental, inc.		Ca	508 Wes rlsbad, N	ronmenta It Stevens New Mexic Ingineering	Street		Identifier MWO Project Name: JRU 10	Date: 5/2.3/19 RP Number: 2RP-3179, 2RP-3464, 2RP-5243
			LITHO	DLOG	IC / SO	IL BORI			Logged By: BEN BELILL	Method:
	Lat/Long	2				Field Screet		ORIDES, TPH, BTEX,	Hole Diameter:	Total Depth:
	Commen	t All Chlo	ride test in	clude a 6	60% error f					
	Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Litholog	y/Remarks
- 6	P	4112	28	N	mwo (d	G 60]	60	CL sil	ty CLAY, day, b astricity, no ad	build tow
	9	4112	Z.9	٢	(nwo) (H 61 _	61		asticity, no od	br.
5845	P	KIIZ	2.8	N	MURI (1 62	62			
	D	2112	3.4	N	WW316	563	63			
	D	LUZ	1.6	N	WM01	SK64	64			
	P		4.7		mwo) (65			
	P	2112	4.5	Ν	mwol 9	▲ 66	66			
0100	P	KINZ	3.7	٢	m49) 1	S N 67	1.7			
	P	< 112	1.9	N	MHOLO	2 68	65			
	0	Zuz	1.)	N	punolo	P 69	69			
						Q 70				
	0	<2	1.7	λ	mulo	g 71	71			
						72	-			

	Presidential, trc.		Ca	508 Wes arlsbad, I	i ronmenta st Stevens New Mexic Engineering	Street			Identifier: MW? \ Project Name: JRU 10	Date 5/ RP Number 2RP-3179, 2F	5/23/19		
		LITH	olog	IC / SO	IL BORI	NG LOO	3		Logged By: BEN BELILL	Method			
Lat/Long					Field Scree GRO, MRC		ORIDES, TPH	, BTEX,	Hole Diameter	Total Depth			
Comment	All Chlo	oride test in	clude a	50% error									
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithol	ogy/Remarks			
\$	2112	3.(ч	invo) (5 72	172	LL	Sith	A				
þ	Khiz	1.0	N	MU01	ST 73	73							
D	KIIZ	Id	2	prus 1 (\$ v 74	74							
D	2112	6.0	N	mwoli	×75	75							
D	2112	5.6	N	umo I	6W 76	76							
D	2112	3.4	1	mboli	\$ ¥ 77								
9	5112	1.1	M	WWD)	β γ 78	78							
Ρ	243	1.2	N	wmall	3₹79	74							
D	6112	2.4	N	MWO1 C	A 80	80							
8	£112	47	N	mw21C	6 81	81							
D	<112	<u>,</u> 7	N	MHIC	L 82	28							
P	<112	37	N	muas (C	0 83	83							
					84	Ŧ			1				

0

	P mental, inc.		Ca		t Stevens lew Mexi		Ident Proje JRU	MW0 \	Date: 5/23/14 RP Number. 2RP-3179, 2RP-3464, 2RP-524	
		LITHO	DLOG	IC / SO		ING LOO			ed By: BEN BELILL	Method
at/Long	\$			1		ning CHLC O, and DRC		BTEX, Hole	Diameter.	Total Depth
ommen	t All Chlo	ride test in	clude a	60% error f		D, and DRC	/.			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Litholog	y/Remarks
0	6112	4.9	N	MWO 1 C	E 1 84	84	LL	SAA		
D	2112	1.5	N	MUOI L	F M 85	85			q'	
D	<112	J.)	N	MWOLL	G 🖿 84	84				
0	112	7.4	N	ww.ol c	H C 97	87				
0	<112	1,6	N	NW31C	1 🗨 84	88				
Ø	6112	1.1	N	mro IC	J 🕊 84	- 				
D	CIR	0.9	N	MWP (C	K @ 10	40				
þ	<11Z	7.6	Ņ	MUDIC	2-91	- - -				It bin fredy low
P	4112	3.8	N	MUDIC	M €92	42		plastic	ity, no odol	
p	5117	1.4	N	mw>1C	N 🗬 93	17				
Ø	112	1.2	M	mwo) C	0 = 44	44				
P	412	0.8	N	MW0) C	P 🖱 15	45			N	

LT Enviro	P nmental, Inc.		~	508 Wes	ronment st Stevens	Street			Identifier. MWb \	Date: 5/23/19
2	51				Vew Mexi				Project Name: JRU 10	RP Number. 2RP-3179, 2RP-3464, 2RP-52
4	A REAL	/2 8			ngineering			- 1		an
Lat/Lon		LITHO	OLOG	SIC / SO	IL BOR			1 BTEX	Logged By: BEN BELILL Hole Diameter:	Method. Total Depth:
	_			CO.0.	GRO, MR			1, 01274	riore Diameter.	Total Depth:
Comme	nt All Chlo	oride test in	clude a	60% error 1	actor.	100				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Litholog	y/Remarks
P	Luz	1-4	Ν	MWO1 C	Q 🏚 96]	96	CL	silty	CLAY Brala	ed, low plasticky,
D	Luz	4.2	N	MWOIC	R 199	47'		A .	- 407.	
0	2112	2.2	v	MWOIC	5 248	18			1	
٥	4117	1.8	N	mwalc	1012	f12				
Ð	Luz	1,1	N	unwol (U 🌰 100	100'				
0	<112	1,5	N	muola	J 🌒 I oj	101				
D	¢1.1	0.4	N	MWDLC	w ® 100	107				
Ø	112	1,4	N	MWOlc	ו103	103				
D	2112	1.6	N	MWHC	Y • 101	134				
ρ	6112	7,0	N	Mrucc	Z @ 105	105				
	<112	1.3	N	MwolD	A \$106	106				
	6112	0.6	٨	mulai)	56107	107				
				6	00108	-	XI			

	P nental, Inc.		Ca	508 Wes rlsbad, N	r onmenta t Stevens lew Mexic	Street			Identifier Project Name: JRU 10	Date: 5 /23 / 9/5/ RP Number 2RP-3179, 2RP-3464, 2RP-5243
4	-	LITHO			ingineering				Logged By: BEN BELILL	~
Lat/Long:		Linic	200		Field Scree	ning: CHLC	DRIDES, TI	PH, BTEX,	Hole Diameter:	Method: Total Depth:
Comment	All Chlo	ride test inc	lude a 6	0% error f	GRO, MRC actor.	D, and DRG	1.	-	-	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithology	/Remarks
D	2112	1.3	N	MUNEID	C 72108	168	LL	SAA		
D	くいて	D.3	Ν	Mue (D	0 73 (J	101		1		
D	5112	0,6	~	nwal (E74 110	110	28			
D	<)\1	0.6	N	Mubli)F75 II]	hu				
D	2117	0.5	N	mwoi ()6 76 (1 <u>7</u>	112				
Ø	KIIZ	3.5	N	mullolp	14 77 (1]	1.3				
		-			J 78 114	+		I		
D	KIIZ	1.3	N	mwol C	5 79	115				
0	<112	3.3	N	mwoi P	₹80	116				
D	5112	2.9	N	mwe(D	L81	117				
D	<11Z	3,3	N	MV01 ()*1 82	118				
Ŋ	LIL	4.8	٢	MUDID	N 83	119				
					84	-	2			

5/2

LT Environ	P mental, Inc.			508 Wes	ronment t Stevens New Mexi	Street)	Identifi	WM01	Date 5/29/19 - 6/3/19 RP Number 2RP-3404, 2RP-34
2	5				ingineering			JRU 10		2RP-3179
		LITHO	LOGI	C / SOI	LSAMP				By BEN BELILL	Method
Lat/Long						oning: CHL	DRIDES, TPH, B D.	TEX, Hole Di 6.15"	ameter	Total Depth
Commen	t All Chlo	ride test in	clude a (50% error f	a second s					
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithology	/Remarks
D	Luz	3.8	M	Mubi DO	120	120	41	SAA		
P	<112	3.1	N	MANDI OF	121	121				
D	5112	12	~	AWO DO	122	222				
Ø	<112	0.4	N	Mws108	123	3				
0	KIIS	0.5	N	M40105	124	124				
- 0	5-2	0.6	Ν	prus 1 D	T125	175				
D	<112	0.8	2	MWOI D	V 126	176				
D	5112	07	Ч	mwul i	√127	- 177				
D	5112	10	N	nwoi D	₩128	- 128				
0	KINZ	0.4	N	MUD) D	x 129	- 125				
D	2112	0.5	N	WYOID	Y130	- 130				
D	5112	L.	N	niuold	₹ 131	- 131				
					132	+				

	Maste	nental, Inc.		Ca	508 Wes risbad, I	i ronment a st Stevens New Mexic Engineering	Street		Identifier MVD Project Name JRU 10	Date: 6/3/19 - 6/4/19 RP Number, 2RP-3404, 2RP-3464 2RP-3179
		1	LITHO	LOGI	C / SOI	L SAMPI	LING LO	G	Logged By: BEN BELILL	Method
	Lat/Long	2				Field Scree		ORIDES, TPH, BTE	X, Hole Diameter: 6.15"	Total Depth:
	Commen	All Chic	oride test in	clude a (0% error		, una tritte	n		
	Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Litholo	ogy/Remarks
	0	(112	0.4	N	MHDI E	A 132	132	4	SAA	
	Ø	4112	٦.0	N	MWOI È	\$133 _	133			
	0	いて	0,4	N	MWOIE	- 	134			
	D	Luc	0.9	Ŋ	MW01 E	0135	135			
	D	112	0.6	N	MWD I	EE136	136			
91	0	5112	0.7	μ	Munite	F 137	,37			
00	D	612	1.D	Ν	MUOIT	5138	138		AY w/ gravel, d esticity, no ocl	or, It bra /red, low
us	D	(112	0.1	N	MUDI	EH139	134			
60	D	<112	3.8	N	Mrol (E I 140	140		ABO Silty CLAY	brown/red, low odur
15	D	112	3.5	N	MWOLE	J141	141			
20	Ø	LIIZ	3.1	N	MWDI E	K 142	142			
25	D	5112	1.8	N	MNOIE	L143	143			
						144	+	V	\mathcal{V}^{2}	

		-	LT Envi 508 Wes	ironment st Steven	tal, Inc. s Street	0		Date 6 / / 9 RP Number 2RP-3404, 2RF
25							Project Name: JRU 10	2RP-3179
	LITHC	logi	C / SOI				Logged By: BEN BELILL	Method.
	hloride test i	nclude a	60% error f	GRO, DR			EX, Hole Diameter. 6.15"	Total Depth:
Content Chloride	(ppm)	Staining	Sample #	Depth (ft. bgs.)		Soil/Rock Type	Lithology	/Remarks
1117	3.5	7	WWIE	M .	144	CL	SANA	
(117	3,2	~	Mudoi E	N • _	145			
<11		٨,	MW01E	0.	146			
<14		N	WWDI E	२ •	- (47			
kir	2 3.0	Ν	WNOIE	Q • _	148			
11-	1.8	Ч	WHOIE	R •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
<11	z 1.5	5	MNOIE	50	150	1	~	
				7	+		EORG	2150
				8	+			
				-	+			
				9 -	+			
				10				
1				-				
				11 _				
			1 1					
		LITHC ong: ment All Chloride test i ment All Chloride (hom) (hom)	Com LITHOLOGI ong: ment All Chloride test include a Mapping Current V X.112 3.5 N V X.112 3.5 N V X.112 3.7 N V X.112 3.7 N V X.112 3.7 N V X.112 3.7 N V X.12 3.1 N V X.12 3.2 N V X.12 X.112 N V X.12 X.12 N V X.12 X.12 N V X.12 X.12 N V X.12 X.12 N V X.112 X.12 N V X.112 X.12 X	Sob West Carlsbad, I Compliance - E LITHOLOGIC / SOI ong: Then All Chloride test include a 60% error 1 (bbm) (the figure of the content stating of the content Sumple # Sumple # Sumple figure of the content Sumple figure	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compliance - Engineering - Remed LITHOLOGIC / SOIL SAMPLINC LG Ong. Field Screening: CHLI GRO, DRO, and MRI nent All Chloride test include a 60% error factor. Yeigen diagenergy Yeigenergy Quite Yeigenergy Yeige	508 West Stevens Street Carlsbad, New Mexico 88220 Compliance - Engineering - Remediation LITHOLOGIC / SOIL SAMPLING LOC Onge: Field Screening: CHLORIDES, TPH, BT GR0, DO, and MR0. nent All Chloride test include a 60% error factor. Image: Source of the state of th	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

<u>www.ose.state.nm.us</u>

STATE FNG

STATE ENGINEER OFFICE

												<u>7012</u>	AUG I	<u>3 P</u>	1:13_
<u>z</u>					 > ^	TERY SB-1 ((POC	. 1)			OSE FILE NUI C-03559	MBER(S)		×,	
ULL I	WELL OW		_			ERT 30-11					PHONE (OPTI	ONAL)		·	
OCA.	ворсс	O OPE	RA	TING CO		•					, i i i i i i i i i i i i i i i i i i i	·			
WELL LOCATION				ADDRESS								- <u></u>	STATE	7(ZIP
D WE	O DESI			SUITE 370		P.O. BOX 27					MIDLANE	, 			9702
INN	WELI LOCATI	- 1			DI	GREES	MIN	20	NOSECON 9	.00 N	• ACCURACY	REQUIRED; ONE TH	TH OF A SE	COND	
GENERAL AND	(FROM C	· }				103		49		.00 W	• DATUM RE	QUIRED: WGS 84			
GEN	DESCRIPT	TION REL	_		ד אסו	STREET ADDRES	SS AND	COMMON LA			<u> </u>				
-	FROM			NER OF H	WY	128 AND W	IPP I	RD GO N	FOF	R 4TH 0	OF MILE T	URN L FOLLO		CHE RD	TO SITE.
	(2.5 AC	RE)		(10 ACRE)		(40 ACRE)		(160 ACRE)SE	CTION			TOWNSHIP		RANGE	EAST
Л ХУГ		4		1/4		- 4		1/4			1	23		30	
OPTIONAL	SUBDIVIS		E							LOT NUM	BEK	BLOCK NUMBER		UNIT/TRA	G
2. 0	HYDROGR	APHIC S	URVE	Y	_							MAP NUMBER		TRACT NU	JMBER
	LICENSEN	UMBER		NAME OF LICE	ENSED	DRILLER						NAME OF WELL DI	ULLING COM	IPANY	
		1478		MARTIN S								STRAUB CO	RPORAT	N	
-	DRILLING	starte 1-12	D	DRILLING END 7-31-12	-	DEPTH OF COMI	PLETED O	WELL (FT)			.e depth (ft) 50'	DEPTH WATER FI	IST ENCOUN		
LION					·							STATIC WATER LE			LL (FT)
RMA	COMPLET	ED WELL	. tS:	ARTESIAN	1	DRY HOLE		SHALLOW (L	UNCON	FINED)			N/A		
INFO	DRILLING	FLUID:						ADDITIVES -	- SPECI		······				
ŊŊ	DRILLING); 	ROTARY	===			CABLE TOOL	L		R - SPECIFY:	<u></u>			
DRILLING INFORMATION	DEPT FROM	TO		BORË HOL DIA. (IN)	1		CASIN ATERI				ECTION (CASING)	INSIDE DIA. CASING (IN)	1 .	G WALL ESS (IN)	SLOT SIZE (IN)
3.1	0	50		5"			N/A			1	N/A	N/A	N	/A	N/A
			-								<u> </u>		<u>}</u>		
	DEPT	Ή (FT)		THICKNES	s	 FC	DRMA	TION DESC	RIPTI	ION OF PI	RINCIPAL W	ATER-BEARING S	TRATA		YIELD
AT A	FROM	то		(FT)								R FRACTURE ZON			(GPM)
BEARING STRATA								<u> </u>			····				
DNI				<u>. </u>											
EAR			-1								···				
WATER	METHOD U	ISED TO	ESTIN	ATE YIELD OF	WATE	R-BEARING STRA	TA					TOTAL ESTIMATED	WELL YIELI	D (GPM)	
4												[. <u>.</u>	

UMBER TRN	NUMBER 507/37
23E. 30E. 1. 234	PAGE 1 OF 2
······································	
-	<u>23E. 30E. I. 234</u>

Ì

MP	TYPE OF	F PUMP:			☐ JET ☐ CYLINDER	□ NO PUMP – WELL NOT EQUIPPED □ OTHER – SPECIFY:						
SEAL AND PUMP	ANN	JLAR	DEPTH FROM	I (FT) TO	BORE HOLE DIA. (IN)							
EAL	SEAL	AND	0	2'	5"	. 5 BAGS OF CEMENT		TOPL	.OAD			
5. S.	GRAVE	LPACK	2'	50'	5*	5" 11BAGS OF 3/8 HOLE PLUG						
'	DEPT	H (FT)	тніск	NESS		COLOR AND TYPE OF MATERIAL ENCOUNTE		WA	-			
	FROM	TÔ	(F1	ĵ)	(INCL)	UDE WATER-BEARING CAVITIES OR FRACTU	IRE ZONES)	BEAR	ING?			
	0	2'	2			TAN FINE SAND - CALICHE		☐ YES	0N 🖸			
	2'	5'	3			BASIN FINE SAND - CALICHE		T YES	DN 🖸			
	5'	8"	3	,		TAN FINE SAND - SANDSTONE		T YES	0N 🖸			
	8'	13'	5	•		RED FINE SAND		☐ YES	ON 🖸			
ΓΓ	13'	15'	2	,		TAN FINE SAND		☐ YES				
GEOLOGIC LOG OF WELL	15'	36'	21	•	RED	FINE SAND (DRK) - SANDSTONE W	ITH CLAY	☐ YES				
: OF	36'	50'	14	۲.		RED SILTY SAND - SILTY CLAY		☐ YES	ØN 🖸			
FOC	TD	50'						C YES				
GIC								☐ YES				
)LO(☐ YES	0 סא			
с£О								T YES	0א 🗆			
6.								□ YES				
								🗆 YES	0א 🗖			
								□ YES	0א 🗆			
								T YES				
								☐ YES				
								T YES				
			АТТАСН	ADDITION	AL PAGES AS NE	EDED TO FULLY DESCRIBE THE GEOLOGIC	LOG OF THE WELL					
			METHOD:	BAILE		AIR LIFT OTHER - SPECIFY:						
NAL INFO	WELL	TEST				DATA COLLECTED DURING WELL TESTING, I AND DRAWDOWN OVER THE TESTING PERIC		IME, END TI	IME,			
ONA	ADDITIONAL STATEMENTS OR EXPLANATIONS:											
ADDITIC				GED AN	D ABANDON	ED UPON COMPLETION OF SAMPL	ING					
ADI	EDDY (
Τ&	EDWARD BRYAN (DRILLING SUPERVISOR)											
TEST												
7.												
URE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 20 DAYS AFTER COMPLETION OF WELL DRILLING:						ND EER AND					
SIGNATURE	0	Mo	I: It	ol,		8-10-12						
8. S	<u>`</u>		SIGNATUR	E OF DRILL	.ER	DATE						
_					<u>.</u>							

FOR OSE INTERNAL USE		WELL RECORD & LOG (Version 6/9/08)
FILE NUMBER - 355	POD NUMBER	TRN NUMBER 507/37
LOCATION		PAGE 2 OF 2
· · · · · · · · · · · · · · · · · · ·	the second se	

APPENDIX B

Photographic Log

APPENDIX C

Lithologic Soil Sampling Logs
•

							Sample Name: PH01	Date: 9/7/2023
		-		C			Site Name: Hudson 1 Fed Com	
				20	LU		Incident Number: nAPP23226	
							Job Number: 03C1558263	
		LITHOL	OGI	C / SOIL SAM	PLING LOG		Logged By: MR	Method: Backhoe
Coordin	ates: 32.3						Hole Diameter: NA	Total Depth: 2'
							or chloride and vapor, respectivn all chloride screenings.	vely. Chloride test performed
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sampl e Depth Depth (ft bgs) (ft bgs)	USCS/Rock Symbol		Descriptions
M M	>37,705 683	37.3 25.2	Y Y N	SS01	0 0.51	CCHE	0-2' CALICHE, medium bi grained, poorly sorted stain/ no odor (past 0	rown, medium to coarse J, sub-rounded grains, no .5'), moist.
М	683	25.2		PH01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>2' SAA, red/orange calich</u> Total Depth @ 2' bgs.	ne.

•

							Sample Name: PH02	Date: 9/7/2023
		-					Site Name: Hudson 1 Fed Com	
		E	N	50			Incident Number: nAPP232264	
							Job Number: 03C1558263	+5115
			061	C / SOIL SAN			Logged By: MR	Method: Backhoe
Coordi	nates: 32.3			-			Hole Diameter: NA	Total Depth: 2'
					`H Chloride Test Strins		or chloride and vapor, respectiv	
							n all chloride screenings.	enview environment
Moisture Content		Vapor (ppm)	Staining	Sample ID	Sampl e Depth Depth (ft bgs)	USCS/Rock Symbol		Descriptions
ΣO	0		Ś	Sa	(ft bgs)	SU		
M	>37,705 392	50.6 0.6	Y Y N	SS02		CCHE	0-2' CALICHE, medium bi grained, poorly sorted stain/ no odor (past 0	rown, medium to coarse l, sub-rounded grains, no .5'), moist.
Μ								
Μ	<162.4	0.5	Ν	PH02	2 <u>2</u> _ TD		2' SAA, red/orange calich Total Depth @ 2' bgs.	ie.

•

-							Sample Name: PH03	Date: 9/7/2023
		-		SC			Site Name: Hudson 1 Fed Com	
		-		20	LU		Incident Number: nAPP232264	
							Job Number: 03C1558263	
		LITHOL	.OGI	C / SOIL SAM	PLING LOG		Logged By: MR	Method: Backhoe
Coordir	nates: 32.3	33412, -1	L03.8	31479			Hole Diameter: NA	Total Depth: 2'
							or chloride and vapor, respectivn all chloride screenings.	vely. Chloride test performed
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sampl e Depth Depth (ft bgs) (ft bgs)	USCS/Rock Symbol	Lithologic	Descriptions
M M	>37,705 <162.4	97.2 0.7	Y Y N	SS03		CCHE	0-2' CALICHE, medium bi grained, poorly sorted stain/ no odor (past 0.	rown, medium to coarse I, sub-rounded grains, no .5'), moist.
М	<162.4	0.3	N	РНОЗ	2 22 		Total Depth @ 2' bgs.	
					- - - - - - - -			
					- - - - - -			
					- - - - -			
					<u> </u>			

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 8/28/2023 9:48:58 PM

JOB DESCRIPTION

Hudson 1 Fed Com 9H SDG NUMBER 03C1558263

JOB NUMBER

890-5121-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 8/28/2023 9:48:58 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440 Page 42 of 177

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Laboratory Job ID: 890-5121-1 SDG: 03C1558263

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	19
Lab Chronicle	22
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	29

Definitions/Glossary

Page 44 of 177

	Definitions/Glossary	
Client: Ensolun Project/Site: Hu	m Job ID: 890-5121-1 Iudson 1 Fed Com 9H SDG: 03C1558263	2
Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	5
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA	x · · · · · · · · · · · · · · · · · · ·	
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	4
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
	Decision Level Concentration (Padiochemistry)	

DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated ND

Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS Practical Quantitation Limit

PQL

PRES Presumptive Quality Control QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF

TEQ Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count TNTC

Case Narrative

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Job ID: 890-5121-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5121-1

Receipt

The samples were received on 8/17/2023 1:43 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-5121-1), SS02 (890-5121-2), SS03 (890-5121-3), SS04 (890-5121-4), SS05 (890-5121-5), SS06 (890-5121-6) and SS07 (890-5121-7).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-61153 and analytical batch 880-61205 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (CCV 880-61199/33) and (LCS 880-61214/1-A). Evidence of matrix interferences is not obvious.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-61199 recovered above the upper control limit for m-Xylene & p-Xylene and o-Xylene. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-61199/33).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-61031 and analytical batch 880-61042 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SS01 (890-5121-1), SS02 (890-5121-2), SS03 (890-5121-3), SS04 (890-5121-4), SS05 (890-5121-5), SS06 (890-5121-6), (890-5113-A-21-B), (890-5113-A-21-C MS) and (890-5113-A-21-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: SS07 (890-5121-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-61042/31), (CCV 880-61042/31), (CCV 880-61042/47), (CCV 880-61042/58), (LCS 880-61031/2-A) and (LCSD 880-61031/3-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Page 46 of 177

5

Job ID: 890-5121-1 SDG: 03C1558263

Client Sample ID: SS01

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 08/17/23 09:50 Date Received: 08/17/23 13:43

Sample Depth: 0.5

Client: Ensolum

Lab Sample ID: 890-5121-1
Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		08/25/23 15:29	08/28/23 01:11	
Toluene	<0.00202	U	0.00202	mg/Kg		08/25/23 15:29	08/28/23 01:11	
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		08/25/23 15:29	08/28/23 01:11	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		08/25/23 15:29	08/28/23 01:11	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		08/25/23 15:29	08/28/23 01:11	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		08/25/23 15:29	08/28/23 01:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130			08/25/23 15:29	08/28/23 01:11	1
1,4-Difluorobenzene (Surr)	95		70 - 130			08/25/23 15:29	08/28/23 01:11	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			08/28/23 10:04	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	2290		50.1	mg/Kg			08/28/23 22:20	1
				0 0				
-		nics (DRO)	(GC)	0.0				
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO) Qualifier	(GC)	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte	sel Range Orga				<u>D</u>	Prepared 08/24/23 16:34	Analyzed 08/26/23 00:14	
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga	Qualifier	RL	Unit	<u> </u>			Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	sel Range Orga Result <50.1	Qualifier U	RL 50.1	Unit mg/Kg	<u>D</u>	08/24/23 16:34	08/26/23 00:14	
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <50.1 2290	Qualifier U	RL 50.1	Unit mg/Kg mg/Kg	<u>D</u>	08/24/23 16:34 08/24/23 16:34	08/26/23 00:14 08/26/23 00:14	1 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	sel Range Orga Result <50.1 2290 <50.1 %Recovery	Qualifier U	RL 50.1 50.1 50.1	Unit mg/Kg mg/Kg	<u>D</u>	08/24/23 16:34 08/24/23 16:34 08/24/23 16:34	08/26/23 00:14 08/26/23 00:14 08/26/23 00:14	1 1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.1 2290 <50.1 %Recovery	Qualifier U Qualifier	RL 50.1 50.1 50.1 Limits	Unit mg/Kg mg/Kg	<u>D</u>	08/24/23 16:34 08/24/23 16:34 08/24/23 16:34 Prepared	08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 Analyzed	1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	sel Range Orga <u>Result</u> <50.1 2290 <50.1 <u>%Recovery</u> 162 107	Qualifier U Qualifier S1+	RL 50.1 50.1 50.1 50.1 70.130 70.130 70.130	Unit mg/Kg mg/Kg	<u>D</u>	08/24/23 16:34 08/24/23 16:34 08/24/23 16:34 Prepared 08/24/23 16:34	08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	sel Range Orga <u>Result</u> <50.1 2290 <50.1 <u>%Recovery</u> 162 107 Chromatograp	Qualifier U Qualifier S1+	RL 50.1 50.1 50.1 50.1 70.130 70.130 70.130	Unit mg/Kg mg/Kg	<u>D</u>	08/24/23 16:34 08/24/23 16:34 08/24/23 16:34 Prepared 08/24/23 16:34	08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	sel Range Orga <u>Result</u> <50.1 2290 <50.1 <u>%Recovery</u> 162 107 Chromatograp	Qualifier U Qualifier S1+	RL 50.1 50.1 50.1 50.1 70.1 70.130 70.130 8	Unit mg/Kg mg/Kg mg/Kg		08/24/23 16:34 08/24/23 16:34 08/24/23 16:34 Prepared 08/24/23 16:34 08/24/23 16:34	08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	sel Range Orga Result <50.1 2290 <50.1 %Recovery 162 107 Chromatograp Result	Qualifier U Qualifier S1+	RL 50.1 50.1 50.1 50.1 70.1 70.130 70.130 8 RL	Unit mg/Kg mg/Kg mg/Kg		08/24/23 16:34 08/24/23 16:34 08/24/23 16:34 Prepared 08/24/23 16:34 08/24/23 16:34 Prepared	08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	sel Range Orga Result <50.1 2290 <50.1 %Recovery 162 107 Chromatograp Result	Qualifier U Qualifier S1+	RL 50.1 50.1 50.1 50.1 70.1 70.130 70.130 8 RL	Unit mg/Kg mg/Kg mg/Kg		08/24/23 16:34 08/24/23 16:34 08/24/23 16:34 Prepared 08/24/23 16:34 08/24/23 16:34 Prepared	08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/22/23 22:15 nple ID: 890-	Dil Fac Dil Fac 50 5121-2
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: SS02	sel Range Orga Result <50.1 2290 <50.1 %Recovery 162 107 Chromatograp Result	Qualifier U Qualifier S1+	RL 50.1 50.1 50.1 50.1 70.1 70.130 70.130 8 RL	Unit mg/Kg mg/Kg mg/Kg		08/24/23 16:34 08/24/23 16:34 08/24/23 16:34 Prepared 08/24/23 16:34 08/24/23 16:34 Prepared	08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/26/23 00:14 08/22/23 22:15 nple ID: 890-	Dil Fac

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		08/25/23 15:29	08/28/23 01:31	1
Toluene	<0.00199	U	0.00199	mg/Kg		08/25/23 15:29	08/28/23 01:31	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		08/25/23 15:29	08/28/23 01:31	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		08/25/23 15:29	08/28/23 01:31	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		08/25/23 15:29	08/28/23 01:31	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		08/25/23 15:29	08/28/23 01:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			08/25/23 15:29	08/28/23 01:31	1

Page 47 of 177

Client Sample Results

Job ID: 890-5121-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5121-2

Client Sample ID: SS02

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 08/17/23 09:55 Date Received: 08/17/23 13:43

Sample Depth: 0.5

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	102		70 - 130			08/25/23 15:29	08/28/23 01:31	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			08/28/23 10:04	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	512		50.2	mg/Kg			08/28/23 22:20	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	50.2	mg/Kg		08/24/23 16:34	08/26/23 00:35	1
Diesel Range Organics (Over C10-C28)	512		50.2	mg/Kg		08/24/23 16:34	08/26/23 00:35	1
Oll Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		08/24/23 16:34	08/26/23 00:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	152	S1+	70 - 130			08/24/23 16:34	08/26/23 00:35	1
o-Terphenyl	115		70 - 130			08/24/23 16:34	08/26/23 00:35	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	64700		251	mg/Kg			08/22/23 22:21	50
lient Sample ID: SS03						Lab Sar	nple ID: 890-	5121-3

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		08/25/23 15:29	08/28/23 01:51	1
Toluene	<0.00199	U	0.00199	mg/Kg		08/25/23 15:29	08/28/23 01:51	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		08/25/23 15:29	08/28/23 01:51	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		08/25/23 15:29	08/28/23 01:51	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		08/25/23 15:29	08/28/23 01:51	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		08/25/23 15:29	08/28/23 01:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130			08/25/23 15:29	08/28/23 01:51	1
1,4-Difluorobenzene (Surr)	97		70 - 130			08/25/23 15:29	08/28/23 01:51	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			08/28/23 10:04	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	3880		49.8	mg/Kg			08/28/23 22:20	

Page 48 of 177

Client Sample Results

Job ID: 890-5121-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5121-3

Lab Sample ID: 890-5121-4

Matrix: Solid

Client Sample ID: SS03

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 08/17/23 10:00

Date Received: 08/17/23 13:43

Sample Depth: 0.5

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		08/24/23 16:34	08/25/23 23:53	1
(GRO)-C6-C10								
Diesel Range Organics (Over	3880		49.8	mg/Kg		08/24/23 16:34	08/25/23 23:53	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		08/24/23 16:34	08/25/23 23:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	153	S1+	70 - 130			08/24/23 16:34	08/25/23 23:53	1
o-Terphenyl	102		70 - 130			08/24/23 16:34	08/25/23 23:53	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	40400	253	mg/Kg			08/22/23 22:26	50

Client Sample ID: SS04

Date Collected: 08/17/23 10:05

Date Received: 08/17/23 13:43 Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		08/25/23 15:29	08/28/23 02:12	1
Toluene	<0.00200	U	0.00200	mg/Kg		08/25/23 15:29	08/28/23 02:12	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		08/25/23 15:29	08/28/23 02:12	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		08/25/23 15:29	08/28/23 02:12	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		08/25/23 15:29	08/28/23 02:12	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		08/25/23 15:29	08/28/23 02:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			08/25/23 15:29	08/28/23 02:12	1
1,4-Difluorobenzene (Surr)	102		70 - 130			08/25/23 15:29	08/28/23 02:12	1

Method: TAL SOP Total BTEX - Total BTEX Calculation											
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Total BTEX	<0.00400	U	0.00400	mg/Kg			08/28/23 10:04	1			

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	90.3		49.6	mg/Kg			08/28/23 22:20	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6	mg/Kg		08/24/23 16:34	08/26/23 00:56	1
Diesel Range Organics (Over C10-C28)	90.3		49.6	mg/Kg		08/24/23 16:34	08/26/23 00:56	1
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		08/24/23 16:34	08/26/23 00:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	155	S1+	70 - 130			08/24/23 16:34	08/26/23 00:56	1
o-Terphenyl	116		70 - 130			08/24/23 16:34	08/26/23 00:56	1

Zoho Sign Document ID: 316041F4-GPEVSVEA JYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

Page 49 of 177

		Clien	t Sample Re	sults				
Client: Ensolum Project/Site: Hudson 1 Fed Com 9H			-				Job ID: 890 SDG: 03C	
Client Sample ID: SS04 Date Collected: 08/17/23 10:05 Date Received: 08/17/23 13:43 Sample Depth: 0.5						Lab Sar	nple ID: 890- Matri	5121- x: Soli
- Method: EPA 300.0 - Anions, Ion Cl Analyte		o <mark>hy - Solubl</mark> Qualifier	e RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	573		25.2	mg/Kg			08/22/23 22:32	
Client Sample ID: SS05						Lab Sar	nple ID: 890-	5121.
Date Collected: 08/17/23 10:10 Date Received: 08/17/23 13:43 Sample Depth: 0.5								x: Soli
Method: SW846 8021B - Volatile Or Analyte		ounds (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198		0.00198	mg/Kg		08/25/23 15:29	08/28/23 02:32	
Toluene	< 0.00198		0.00198			08/25/23 15:29	08/28/23 02:32	
				mg/Kg				
Ethylbenzene	<0.00198		0.00198	mg/Kg		08/25/23 15:29	08/28/23 02:32	
m-Xylene & p-Xylene	< 0.00396		0.00396	mg/Kg		08/25/23 15:29	08/28/23 02:32	
o-Xylene	<0.00198		0.00198	mg/Kg		08/25/23 15:29	08/28/23 02:32	
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		08/25/23 15:29	08/28/23 02:32	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	89		70 - 130			08/25/23 15:29	08/28/23 02:32	
1,4-Difluorobenzene (Surr)	107		70 - 130			08/25/23 15:29	08/28/23 02:32	
Method: TAL SOP Total BTEX - Tota	al BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00396	U	0.00396	mg/Kg			08/28/23 10:04	
Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	68.3		50.5	mg/Kg			08/28/23 22:20	
Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		08/24/23 16:34	08/26/23 01:17	
Diesel Range Organics (Over C10-C28)	68.3		50.5	mg/Kg		08/24/23 16:34	08/26/23 01:17	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		08/24/23 16:34	08/26/23 01:17	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
1-Chlorooctane	143	S1+	70 - 130			08/24/23 16:34	08/26/23 01:17	
o-Terphenyl	108		70 - 130			08/24/23 16:34	08/26/23 01:17	
Method: EPA 300.0 - Anions, Ion Cl	hromatogra	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Chloride	521		24 9	ma/Ka			08/22/23 22:49	

Eurofins Carlsbad

08/22/23 22:49

Chloride

24.9

mg/Kg

521

5

Result Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00400 U

Method: SW846 8021B - Volatile Organic Compounds (GC)

Client Sample Results

RL

0.00200

0.00200

0.00200

0.00400

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

08/26/23 17:44

08/26/23 17:44

08/26/23 17:44

08/26/23 17:44

Page 50 of 177

Job ID: 890-5121-1 SDG: 03C1558263

Analyzed

08/27/23 20:14

08/27/23 20:14

08/27/23 20:14

08/27/23 20:14

Client Sample ID: SS06

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 08/17/23 10:20 Date Received: 08/17/23 13:43

Sample Depth: 0.5

Client: Ensolum

Analyte

Benzene

Toluene

Ethylbenzene

m-Xylene & p-Xylene

Lab Sample ID:	890-5121-6

Matrix: Solid

Dil Fac

1

1

1

1

Xylenes, Total <0.00400		-0.00100	0	0.00100	ing/itg		00/20/20 11.11	00/21/20 20:11	
Surrogate %Recovery Qualifier Limits Propared Analyzed Dif / 4-Bromofluorobenzene (Surr) 79 70.130 08/28/23 17.44 08/27/23 20.14 08/27/23 11.47 08/27/2	o-Xylene	<0.00200	U	0.00200	mg/Kg		08/26/23 17:44	08/27/23 20:14	1
Hetromofluorobenzene (Surr) 104 70.130 08/26/23 17.44 08/27/23 20.14 1.4-Difluorobenzene (Surr) 79 70.130 08/26/23 17.44 08/27/23 20.14 Analyte Result Qualifier RL 0.0000 mg/Kg D Prepared Analyzed DII F Total BTEX <0.04000	Xylenes, Total	<0.00400	U	0.00400	mg/Kg		08/26/23 17:44	08/27/23 20:14	1
Hetromofluorobenzene (Surr) 104 70.130 08/26/23 17.44 08/27/23 20.14 1.4-Difluorobenzene (Surr) 79 70.130 08/26/23 17.44 08/27/23 20.14 Analyte Result Qualifier RL 0.0000 mg/Kg D Prepared Analyzed DII F Total BTEX <0.04000	Surrogate	%Recoverv	Qualifier	l imits			Prenared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) 79 70. 130 08/26/23 17:44 08/27/23 20:14 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Total BTEX <0.00400			quanter				· ·		1
AnalyteResultQualifierRLUnitDPreparedAnalyzedDil FTotal BTEX<0.00400	1,4-Difluorobenzene (Surr)								1
AnalyteResultQualifierRLUnitDPreparedAnalyzedDil FTotal BTEX<0.00400	Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation						
Total BTEX 0.00400 mg/Kg 08/28/23 11:47 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL Unit D Prepared Analyzed 08/28/23 22:20 Dil F Total TPH <50.5				RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Total TPH < 50.5	Total BTEX	<0.00400	U	0.00400	mg/Kg			08/28/23 11:47	1
Total TPH <50.5 U 50.5 mg/Kg 08/28/23 22:20 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Gasoline Range Organics (GVer <50.5	Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Nuit D Prepared 08/24/23 16:34 Analyzed 08/24/23 16:34 Dil F Gasoline Range Organics (GRO)-C6-C10 <50.5	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Gasoline Range Organics <50.5	Total TPH	<50.5	U	50.5	mg/Kg			08/28/23 22:20	1
Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Gasoline Range Organics <50.5	Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
(GRO)-C6-C10 Diesel Range Organics (Over <50.5	Analyte				Unit	D	Prepared	Analyzed	Dil Fac
Dissel Range Organics (Over C10-C28) 50.5 mg/Kg 08/24/23 16:34 08/26/23 01:38 OII Range Organics (Over C28-C36) <50.5	Gasoline Range Organics	<50.5	U	50.5	mg/Kg		08/24/23 16:34	08/26/23 01:38	1
Oll Range Organics (Over C28-C36) <50.5 U 50.5 mg/Kg 08/24/23 16:34 08/26/23 01:38 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil F 1-Chlorooctane 135 S1+ 70.130 08/24/23 16:34 08/26/23 01:38 Dil F Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Nanalyte Result Qualifier RL Unit D Prepared Analyzed Dil F Chloride 112 4.99 Mg/Kg D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg D Prepared Analyzed Dil F Chloride 101.5 Matrix: Sol State Received: 08/17/23 10:15 Matrix: Sol Matrix: Sol Method: SW846 8021B - Volatile Organic Compounds (GC) <td< td=""><td>Diesel Range Organics (Over</td><td><50.5</td><td>U</td><td>50.5</td><td>mg/Kg</td><td></td><td>08/24/23 16:34</td><td>08/26/23 01:38</td><td>1</td></td<>	Diesel Range Organics (Over	<50.5	U	50.5	mg/Kg		08/24/23 16:34	08/26/23 01:38	1
Surrogate %Recovery Qualifier Limits 1-Chlorooctane 135 S1+ 70.130 08/24/23 16:34 08/26/23 01:38 08/26/23 01:38 0-Terphenyl 101 70.130 08/24/23 16:34 08/26/23 01:38 08/26/23 01:38 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble 08/24/23 16:34 08/26/23 01:38 08/26/23 01:38 Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg 08/22/23 22:55 08/22/23 22:55 Dil F Chloride 112 4.99 mg/Kg 08/22/23 10:15 Matrix: Sol ate Collected: 08/17/23 10:15 Lab Sample ID: 890-5121 Matrix: Sol ample Depth: 0.5 Method: SW846 8021B - Volatile Organic Compounds (GC) Matrix: Sol Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Benzene <0.00199	C10-C28)								
1-Chlorooctane 135 \$1+ 70 - 130 08/24/23 16:34 08/26/23 01:38 0-Terphenyl 101 70 - 130 08/24/23 16:34 08/26/23 01:38 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg 08/22/23 22:55 Image: Compounds (GC) Aller Collected: 08/17/23 10:15 Lab Sample ID: 890-5121 ate Received: 08/17/23 13:43 Matrix: Sol ample Depth: 0.5 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Benzene <0.00199	Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		08/24/23 16:34	08/26/23 01:38	1
o-Terphenyl 101 70 - 130 08/24/23 16:34 08/26/23 01:38 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg D Nethod: S08/22/23 22:55 Dil F Ellient Sample ID: SS07 Lab Sample ID: 890-5121 Matrix: Sol ate Collected: 08/17/23 10:15 Matrix: Sol ate Received: 08/17/23 13:43 Matrix: Sol ample Depth: 0.5 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier Result Qualifier RL Benzene <0.00199	Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg D Prepared Analyzed Dil F Chloride 112 4.99 mg/Kg D Prepared Analyzed Dil F Chloride 08/17/23 10:15 Lab Sample ID: 890-5121 Matrix: Sol ate Collected: 08/17/23 13:43 Matrix: Sol Matrix: Sol ample Depth: 0.5 Method: SW846 8021B - Volatile Organic Compounds (GC) Malyte Prepared Analyzed Dil F Benzene <0.00199 U 0.00199 mg/Kg 08/26/23 17:44 08/27/23 20:35 Dil F Toluene <0.00199 U 0.00199 mg/Kg 08/26/23 17:44 08/27/23 20:35	1-Chlorooctane	135	S1+	70 - 130			08/24/23 16:34	08/26/23 01:38	1
AnalyteResultQualifierRLUnitDPreparedAnalyzedDil FChloride1124.99mg/Kg008/22/23 22:5500Chloride1124.99mg/Kg08/22/23 22:5500Chloride08/17/23 10:15Lab Sample ID: 890-5121Matrix: Solate Collected: 08/17/23 13:43Matrix: SolMatrix: Solample Depth: 0.5Method: SW846 8021B - Volatile Organic Compounds (GC)AnalyteResultQualifierRLUnitDPreparedAnalyzedDil FBenzene<0.00199	o-Terphenyl	101		70 - 130			08/24/23 16:34	08/26/23 01:38	1
Chloride1124.99mg/Kg08/22/23 22:55Chloride1124.99mg/Kg08/22/23 22:55ChlorideSS07Lab Sample ID: 890-5121ate Collected: 08/17/23 10:15Matrix: Solate Received: 08/17/23 13:43Matrix: Solample Depth: 0.5Method: SW846 8021B - Volatile Organic Compounds (GC)AnalyteResultQualifierBenzene<0.00199	Method: EPA 300.0 - Anions, Ion	Chromatogra	ohy - Solubl	le					
Client Sample ID: SS07 Lab Sample ID: 890-5121 ate Collected: 08/17/23 10:15 Matrix: Sol ate Received: 08/17/23 13:43 Matrix: Sol ample Depth: 0.5 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier Benzene <0.00199	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
ate Collected: 08/17/23 10:15 Matrix: Sol ate Received: 08/17/23 13:43 maple Depth: 0.5 Method: SW846 8021B - Volatile Organic Compounds (GC) Matrix: Sol Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Benzene <0.00199	Chloride	112		4.99	mg/Kg			08/22/23 22:55	1
ate Received: 08/17/23 13:43 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Benzene <0.00199	Client Sample ID: SS07						Lab Sar	nple ID: 890-	5121-7
mample Depth: 0.5 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Benzene <0.00199	ate Collected: 08/17/23 10:15							Matri	x: Solid
Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Benzene <0.00199	Date Received: 08/17/23 13:43								
Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Benzene <0.00199	Sample Depth: 0.5								
Analyte Result Qualifier RL Unit D Prepared Analyzed Dil F Benzene <0.00199	Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Benzene <0.00199 U 0.00199 mg/Kg 08/26/23 17:44 08/27/23 20:35 Toluene <0.00199	Analyte			•	Unit	D	Prepared	Analyzed	Dil Fac
Toluene <0.00199 U 0.00199 mg/Kg 08/26/23 17:44 08/27/23 20:35	Benzene				mg/Kg		-		1
	Toluene								1
Etnyidenzene <0.00199 U	Ethylbenzene	<0.00199		0.00199	mg/Kg		08/26/23 17:44	08/27/23 20:35	1

4-Bromofluorobenzene (Surr)	107		70 - 130		08/26/23 17:44	08/27/23 20:35	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00398	U	0.00398	mg/Kg	08/26/23 17:44	08/27/23 20:35	1
o-Xylene	0.00238		0.00199	mg/Kg	08/26/23 17:44	08/27/23 20:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg	08/26/23 17:44	08/27/23 20:35	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg	08/26/23 17:44	08/27/23 20:35	1
				5 5			

Zoho Sign Document ID: 316041F4-GPEVSVEAJYBB7OZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

Page 51 of 177

Client Sample Results

Job ID: 890-5121-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5121-7

Client Sample ID: SS07

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 08/17/23 10:15 Date Received: 08/17/23 13:43

Sample Depth: 0.5

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	94		70 - 130			08/26/23 17:44	08/27/23 20:35	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			08/28/23 11:47	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (3C)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	71.3		50.2	mg/Kg			08/28/23 22:20	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	50.2	mg/Kg		08/24/23 16:34	08/26/23 02:21	1
Diesel Range Organics (Over	71.3		50.2	mg/Kg		08/24/23 16:34	08/26/23 02:21	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		08/24/23 16:34	08/26/23 02:21	1
	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate	%Recovery 139	Qualifier S1+	Limits 70 - 130			Prepared 08/24/23 16:34	Analyzed 08/26/23 02:21	Dil Fac
Surrogate 1-Chlorooctane p-Terphenyl						-		Dil Fac 1 1
Surrogate 1-Chlorooctane p-Terphenyl	139 106	S1+	70 - 130 70 - 130			08/24/23 16:34	08/26/23 02:21	Dil Fac
Surrogate 1-Chlorooctane	139 106 Chromatograp	S1+	70 - 130 70 - 130	Unit	D	08/24/23 16:34	08/26/23 02:21	Dil Fac

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-32215-A-3-E MS	Matrix Spike	122	112		
880-32215-A-3-F MSD	Matrix Spike Duplicate	119	111		6
880-32567-A-1-B MS	Matrix Spike	90	88		
880-32567-A-1-C MSD	Matrix Spike Duplicate	85	95		
890-5121-1	SS01	83	95		
890-5121-2	SS02	92	102		8
890-5121-3	SS03	85	97		
890-5121-4	SS04	89	102		Q
890-5121-5	SS05	89	107		3
890-5121-6	SS06	104	79		
890-5121-7	SS07	107	94		
LCS 880-61153/1-A	Lab Control Sample	80	88		
LCS 880-61214/1-A	Lab Control Sample	132 S1+	107		
LCSD 880-61153/2-A	Lab Control Sample Dup	94	91		
LCSD 880-61214/2-A	Lab Control Sample Dup	119	114		
MB 880-61153/5-A	Method Blank	105	124		
MB 880-61204/5-A	Method Blank	75	77		13
MB 880-61205/39	Method Blank	118	127		
MB 880-61214/5-A	Method Blank	75	98		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-5113-A-21-C MS	Matrix Spike	138 S1+	97
890-5113-A-21-D MSD	Matrix Spike Duplicate	138 S1+	95
890-5121-1	SS01	162 S1+	107
890-5121-2	SS02	152 S1+	115
890-5121-3	SS03	153 S1+	102
890-5121-4	SS04	155 S1+	116
890-5121-5	SS05	143 S1+	108
890-5121-6	SS06	135 S1+	101
890-5121-7	SS07	139 S1+	106
LCS 880-61031/2-A	Lab Control Sample	137 S1+	123
LCSD 880-61031/3-A	Lab Control Sample Dup	143 S1+	115
MB 880-61031/1-A	Method Blank	254 S1+	200 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Job ID: 890-5121-1 SDG: 03C1558263

Prep Type: Total/NA

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-61153/5-A

Matrix: Solid Analysis Batch: 61205

	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		08/25/23 15:29	08/27/23 18:03	1
Toluene	<0.00200	U	0.00200	mg/Kg		08/25/23 15:29	08/27/23 18:03	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		08/25/23 15:29	08/27/23 18:03	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		08/25/23 15:29	08/27/23 18:03	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		08/25/23 15:29	08/27/23 18:03	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		08/25/23 15:29	08/27/23 18:03	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			08/25/23 15:29	08/27/23 18:03	1
1,4-Difluorobenzene (Surr)	124		70 - 130			08/25/23 15:29	08/27/23 18:03	1

Lab Sample ID: LCS 880-61153/1-A Matrix: Solid

Analysis Batch: 61205

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08666		mg/Kg		87	70 - 130	
Toluene	0.100	0.08832		mg/Kg		88	70 - 130	
Ethylbenzene	0.100	0.07736		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene	0.200	0.1456		mg/Kg		73	70 - 130	
o-Xylene	0.100	0.07144		mg/Kg		71	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	80		70 - 130
1,4-Difluorobenzene (Surr)	88		70 - 130

Lab Sample ID: LCSD 880-61153/2-A

Matrix: Solid

Prep Batch:	61153
ec	RPD
its RPD	Limit
130 15	35
130 7	35
130 15	35
130 22	35
130 22	35
n - -	Rec RPD - 130 15 - 130 7 - 130 15 - 130 22

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130
1,4-Difluorobenzene (Surr)	91		70 - 130

Lab Sample ID: 880-32567-A-1-B MS

Matrix: Solid

Analysis Batch: 61205									Prep B	atch: 61153
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1	0.0996	0.03351	F1	mg/Kg		34	70 - 130	
Toluene	<0.00200	U F1	0.0996	0.009561	F1	mg/Kg		10	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Page 53 of 177

Job ID: 890-5121-1 SDG: 03C1558263

Released to	Imaging:	11/28/2023	10:28:31 A	М	

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Batch: 61153

Prep Type: Total/NA

Zoho Sign Document ID: 316041E4-GPEVSVEA JYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Method: 0021D - Volatile	organic ool	npounus		inueu)						
Lab Sample ID: 880-32567-A-	1-B MS							Client	Sample ID: Matrix S	Spike
Matrix: Solid									Prep Type: Tota	al/NA
Analysis Batch: 61205									Prep Batch: 6	61153
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U F1 F2	0.0996	0.009198	F1	mg/Kg		9	70 - 130	
m-Xylene & p-Xylene	<0.00399	U F1	0.199	0.004127	F1	mg/Kg		2	70 - 130	
o-Xylene	<0.00200	U F1	0.0996	0.01405	F1	mg/Kg		13	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	88		70 - 130

Lab Sample ID: 880-32567-A-1-C MSD Matrix: Solid

Α

Analysis Batch: 61205									Prep	Batch:	61153	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00200	U F1	0.101	0.03953	F1	mg/Kg		39	70 - 130	16	35	
Toluene	<0.00200	U F1	0.101	0.01275	F1	mg/Kg		13	70 - 130	29	35	ī
Ethylbenzene	<0.00200	U F1 F2	0.101	0.005503	F1 F2	mg/Kg		5	70 - 130	50	35	
m-Xylene & p-Xylene	<0.00399	U F1	0.202	<0.00403	U F1	mg/Kg		0	70 - 130	NC	35	F
o-Xylene	<0.00200	U F1	0.101	0.01175	F1	mg/Kg		11	70 - 130	18	35	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	85		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: MB 880-61204/5-A Matrix: Solid Analysis Batch: 61199

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		08/26/23 14:36	08/27/23 03:05	1
Toluene	<0.00200	U	0.00200	mg/Kg		08/26/23 14:36	08/27/23 03:05	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		08/26/23 14:36	08/27/23 03:05	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		08/26/23 14:36	08/27/23 03:05	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		08/26/23 14:36	08/27/23 03:05	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		08/26/23 14:36	08/27/23 03:05	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

75

77

4-Bromofluorobenzene (Surr)	
1,4-Difluorobenzene (Surr)	

Lab Sample ID: MB 880-61205/39 Matrix: Solid Analysis Batch: 61205

МВ МВ Analyte Result Qualifier Unit D Prepared Dil Fac RL Analyzed Benzene <0.00200 U 0.00200 mg/Kg 08/27/23 06:25 1 Toluene <0.00200 U 0.00200 mg/Kg 08/27/23 06:25 1 Ethylbenzene <0.00200 U 0.00200 mg/Kg 08/27/23 06:25 1 <0.00400 U 0.00400 08/27/23 06:25 m-Xylene & p-Xylene mg/Kg 1

Eurofins Carlsbad

Prep Type: Total/NA

Page 54 of 177

Job ID: 890-5121-1 SDG: 03C1558263

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 61204

08/27/23 03:05

08/27/23 03:05

Client Sample ID: Method Blank

08/26/23 14:36

08/26/23 14:36

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Released to Imaging: 11/28/2023 10:28:31 AM

8/28/2023

1

1

Zoho Sign Document ID: 316041F4-GPEVSVEA JYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-61205/39									Client Sa	ample ID: Met	hod l	Blank
Matrix: Solid										Prep Type	: Tot	al/NA
Analysis Batch: 61205												
	ME	MB										
Analyte	Resul	Qualifier	RL		Unit		D	Р	repared	Analyzed		Dil Fac
o-Xylene	<0.00200	U	0.00200		mg/K	g	_			08/27/23 06:25	5	1
Xylenes, Total	<0.00400	U	0.00400		mg/K	g				08/27/23 06:25	5	1
	ME											
Surrogate	%Recovery		Limits					P	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)	118	3	70 - 130							08/27/23 06:2	5	1
1,4-Difluorobenzene (Surr)	127	7	70 - 130							08/27/23 06:2	5	1
Lab Sample ID: MB 880-61214/5-A									Client Sa	ample ID: Met	hod l	Blank
Matrix: Solid										Prep Type		
Analysis Batch: 61199										Prep Ba		
	МЕ	MB										
Analyte	Resul	Qualifier	RL		Unit		D	Р	repared	Analyzed		Dil Fac
Benzene	<0.00200		0.00200		mg/K	a	_		6/23 17:44	08/27/23 13:42		1
Toluene	< 0.00200		0.00200		mg/K	-			6/23 17:44	08/27/23 13:4		1
Ethylbenzene	< 0.00200		0.00200		mg/K	-			6/23 17:44	08/27/23 13:4		1
m-Xylene & p-Xylene	< 0.00400		0.00400		mg/K				6/23 17:44	08/27/23 13:4		
o-Xylene	<0.00200		0.00200		mg/K				6/23 17:44	08/27/23 13:4		1
Xylenes, Total	<0.00200		0.00200		mg/K				6/23 17:44	08/27/23 13:4		1
Ayieries, total	~0.00400	0	0.00400		iiig/N	g		00/2	.0/23 17.44	00/21/23 13.4		1
•	ME							_				
Surrogate	%Recovery		Limits					-	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)	75		70 - 130						26/23 17:44	08/27/23 13:4		1
1,4-Difluorobenzene (Surr)	98	\$	70 - 130					08/2	26/23 17:44	08/27/23 13:4		1
Lab Sample ID: LCS 880-61214/1-A							С	lient	Sample	ID: Lab Contr	ol Sa	ample
Matrix: Solid										Prep Type	: Tot	al/NA
Analysis Batch: 61199										Prep Bat	ch: (61214
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Benzene			0.100	0.09989		mg/Kg			100	70 - 130		
Toluene			0.100	0.1127		mg/Kg			113	70 - 130		
Ethylbenzene			0.100	0.1141		mg/Kg			114	70 - 130		
m-Xylene & p-Xylene			0.200	0.2457		mg/Kg			123	70 - 130		
o-Xylene			0.100	0.1298		mg/Kg			130	70 - 130		
	LCS LC	s										
Surrogate %I	Recovery Qu		Limits									
4-Bromofluorobenzene (Surr)	132 S1·	+	70 - 130									
1,4-Difluorobenzene (Surr)	107		70 - 130									
_ Lab Sample ID: LCSD 880-61214/2-	۸					C	ont	Sam		ab Control Sa	mple	
Matrix: Solid	•						ent	Jail	ipie iD. L			
										Prep Type		
Analysis Batch: 61199			0	1.005	1.005					Prep Bat	cn: (
• • •			Spike		LCSD			_	~ -	%Rec		RPD
Analyte			Added	Result 0.08897	Qualifier	Unit			89	Limits F 70 - 130	2 PD 12	Limit 35
Benzene						mg/Kg						

Page 55 of 177

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09989		mg/Kg		100	70 - 130	
Toluene	0.100	0.1127		mg/Kg		113	70 - 130	
Ethylbenzene	0.100	0.1141		mg/Kg		114	70 - 130	
m-Xylene & p-Xylene	0.200	0.2457		mg/Kg		123	70 - 130	
o-Xylene	0.100	0.1298		mg/Kg		130	70 - 130	

Toluene 0.100 0.1019 102 35 70 - 130 10 mg/Kg Ethylbenzene 0.100 0.09976 mg/Kg 100 70 - 130 13 35 m-Xylene & p-Xylene 0.200 0.2196 mg/Kg 110 70 - 130 11 35 o-Xylene 0.100 0.1129 mg/Kg 113 70 - 130 14 35

Eurofins Carlsbad

Released to Imaging: 11/28/2023 10:28:31 AM

Zoho Sign Document ID: 316041F4-GPEVSVEA JYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

122

112

111

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: 880-32215-A-3-E MS

Matrix: Solid

Ana	lysis	Batch:	61199	

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.09008		mg/Kg		90	70 - 130	
Toluene	<0.00199	U	0.0996	0.09930		mg/Kg		100	70 - 130	
Ethylbenzene	<0.00199	U	0.0996	0.1003		mg/Kg		101	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.199	0.2177		mg/Kg		109	70 - 130	
o-Xylene	<0.00199	U	0.0996	0.1117		mg/Kg		112	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

70 - 130

70 - 130

70 - 130

-
Lab Sample ID: 880-32215-A-3-F MSD
Matrix: Solid
Analysis Batch: 61199

Analysis Batch: 61199									Prep	Batch:	61214
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.100	0.08934		mg/Kg		89	70 - 130	1	35
Toluene	<0.00199	U	0.100	0.1012		mg/Kg		101	70 - 130	2	35
Ethylbenzene	<0.00199	U	0.100	0.1001		mg/Kg		100	70 - 130	0	35
m-Xylene & p-Xylene	<0.00398	U	0.200	0.2209		mg/Kg		110	70 - 130	1	35
o-Xylene	<0.00199	U	0.100	0.1133		mg/Kg		113	70 - 130	1	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	119		70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-61031/1- Matrix: Solid Analysis Batch: 61042	A					Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
	MB							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		08/24/23 16:34	08/25/23 20:41	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		08/24/23 16:34	08/25/23 20:41	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		08/24/23 16:34	08/25/23 20:41	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	254	S1+	70 - 130			08/24/23 16:34	08/25/23 20:41	1
o-Terphenyl	200	S1+	70 - 130			08/24/23 16:34	08/25/23 20:41	1

Job ID: 890-5121-1 SDG: 03C1558263

Prep Type: Total/NA

Prep Batch: 61214

Client Sample ID: Matrix Spike

Page 56 of 177

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Job ID: 890-5121-1 SDG: 03C1558263

Lab Sample ID: LCS 880-61	031/2-A						Client	Sample	ID: Lab Co	ontrol Sa	ample
Matrix: Solid										ype: To	
Analysis Batch: 61042										Batch:	
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics			1000	1036		mg/Kg		104	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)			1000	1045		mg/Kg		104	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane		S1+	70 - 130								
o-Terphenyl	123		70 - 130								
Lab Sample ID: LCSD 880-6	1021/2 A					Clie	at San		Lab Contro	l Samal	
Matrix: Solid	1031/3-A					Cilei	it Sali	ipie iD. i		ype: To	
Analysis Batch: 61042										Batch:	
Analysis Datch. 01042			Spike	LCSD					%Rec	Datch.	RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1045	quantor	mg/Kg		104	70 - 130	1	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	1019		mg/Kg		102	70 - 130	3	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	143	S1+	70 - 130								
o-Terphenyl	115		70 _ 130								
Lab Sample ID: 890-5113-A-	21-C MS							Client	Sample ID:	Matrix	Snike
Matrix: Solid	2. 0							Cheff		ype: To	
Analysis Batch: 61042										Batch:	
Analysis Batch. 01042	Sample	Sample	Spike	MS	MS				%Rec	Baten.	01001
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
	<50.2	U	1010	954.4		mg/Kg		90	70 - 130		
Gasoline Range Organics (GRO)-C6-C10											

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	138	S1+	70 - 130
o-Terphenyl	97		70 - 130

Lab Sample ID: 890-5113-A-21-D MSD Matrix: Solid

Analysis	s Batch: 61042									Prep	Batch:	61031
		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte		Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline F (GRO)-C6-	Range Organics -C10	<50.2	U	1010	968.6		mg/Kg		92	70 - 130	1	20
Diesel Rar C10-C28)	nge Organics (Over	<50.2	U	1010	1119		mg/Kg		109	70 - 130	0	20
		MSD	MSD									
Surrogate		%Recovery	Qualifier	Limits								

ourrogate	/maccovery	Quanner	Ennits
1-Chlorooctane	138	S1+	70 - 130

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Zoho Sign Document ID: 316041F4-GPEVSVEA JYBB7OZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

Job ID: 890-5121-1

SDG: 03C1558263

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-5113-A-21- Matrix: Solid								C	Client	Sai	mple IC	D: Matrix Sp	oike Dup Type: To	
Analysis Batch: 61042													Batch:	
Analysis Batch. 01042												Ticp	Baten.	0100
	MSD	MSD)											
Surrogate	%Recovery	Qua	lifier	Limits	_									
o-Terphenyl	95			70 - 130										
lethod: 300.0 - Anions, Ior	n Chromat	ogra	aphy											
Lab Sample ID: MB 880-60728/	1-A									c	Client S	Sample ID:	Method	Blan
Matrix: Solid												-	Type: S	
Analysis Batch: 60835														
-		ΜВ	MB											
Analyte	R	esult	Qualifier		RL	I	Unit		D	Pre	epared	Analyz	ed	Dil Fa
Chloride	<	\$.00	U		5.00	1	mg/Kg					08/22/23	20:56	
Lab Sample ID: LCS 880-60728	R/2-A								Clie	nt s	Sample	e ID: Lab C	ontrol S	amnl
Matrix: Solid	// _ ~								one		Jampie		Type: S	
Analysis Batch: 60835												Пер	Type. O	orubi
				Spike	LCS	LCS						%Rec		
Analyte				Added	Resul		ier I	Unit	0)	%Rec	Limits		
Chloride				250	253.0			ng/Kg			101	90 - 110		
									_					_
Lab Sample ID: LCSD 880-6072	28/3- A							Clie	ent Sa	ımp	ole ID:	Lab Contro		
Matrix: Solid	28/3-A							Clie	ent Sa	ımp	ole ID:		ol Sampl Type: S	
Matrix: Solid	28/3-A			0.1				Clie	ent Sa	ımp	ole ID:	Prep		olubl
Matrix: Solid Analysis Batch: 60835	28/3 -A			Spike						-		Prep %Rec	Type: S	oluble RPI
Matrix: Solid Analysis Batch: 60835 ^{Analyte}	28/3- A			Added	Resul	t Qualif	ier l	Unit	ent Sa	-	%Rec	Prep %Rec Limits	Type: So	olubl RPI Lim
Matrix: Solid Analysis Batch: 60835 ^{Analyte}	28/3-A					t Qualif	ier l			-		Prep %Rec	Type: S	olubl RPI Lim
Matrix: Solid Analysis Batch: 60835 Analyte Chloride				Added	Resul	t Qualif	ier l	Unit		-	%Rec	Prep %Rec Limits 90 - 110	Type: So	olubi RP Lim 2
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS				Added	Resul	t Qualif	ier l	Unit		-	%Rec	Prep %Rec Limits 90 - 110 Client Sat	Type: So RPD 2 mple ID:	Olubi RP Lim 2 SSO
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid				Added	Resul	t Qualif	ier l	Unit		-	%Rec	Prep %Rec Limits 90 - 110 Client Sat	Type: So	Olubi RP Lim 2 SSO
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid		Sam		Added	Resul	t Qualif	ier l	Unit		-	%Rec	Prep %Rec Limits 90 - 110 Client Sat	Type: So RPD 2 mple ID:	RPI Limi 2 SS04
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid Analysis Batch: 60835			•	Added 250	Resul 257.4	t Qualif	ier l	Unit)	%Rec	Prep %Rec Limits 90 - 110 Client Sat Prep	Type: So RPD 2 mple ID:	oluble RPI Limi 20 SS04
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid Analysis Batch: 60835 Analyte	Sample		•	Added 250 Spike	Resul 257.4	t Qualif	ier l	<mark>Unit</mark> mg/Kg	<u> </u>)	%Rec 103	Prep %Rec Limits 90 - 110 Client Sau Prep %Rec	Type: So RPD 2 mple ID:	RPI Limi 2 SS04
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid Analysis Batch: 60835 Analyte Chloride	Sample Result 573		•	Added 250 Spike Added	Resul 257.4 M: Resul	t Qualif	ier l	Unit mg/Kg Unit	<u> </u>)	%Rec 103 %Rec	Prep %Rec Limits 90 - 110 Client Sau Prep %Rec Limits 90 - 110	Type: So <u>RPD</u> 2 mple ID: Type: So	olubi RPI Lim 2 SS04 olubi
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS	Sample Result 573		•	Added 250 Spike Added	Resul 257.4 M: Resul	t Qualif	ier l	Unit mg/Kg Unit	<u> </u>)	%Rec 103 %Rec	Prep %Rec Limits 90 - 110 Client Sau Prep %Rec Limits 90 - 110 Client Sau	Type: So <u>RPD</u> 2 mple ID: Type: So mple ID:	olubi RP Lim 2 SS0 olubi
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid	Sample Result 573		•	Added 250 Spike Added	Resul 257.4 M: Resul	t Qualif	ier l	Unit mg/Kg Unit	<u> </u>)	%Rec 103 %Rec	Prep %Rec Limits 90 - 110 Client Sau Prep %Rec Limits 90 - 110 Client Sau	Type: So <u>RPD</u> 2 mple ID: Type: So	SS04
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS	Sample Result 573	Qual	lifier	Added 250 Spike Added	Resul 257.4 M: Resul	t Qualif	ier l	Unit mg/Kg Unit	<u> </u>)	%Rec 103 %Rec	Prep %Rec Limits 90 - 110 Client Sau Prep %Rec Limits 90 - 110 Client Sau	Type: So <u>RPD</u> 2 mple ID: Type: So mple ID:	SS04
Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid Analysis Batch: 60835 Analyte Chloride Lab Sample ID: 890-5121-4 MS Matrix: Solid	Sample Result 573 D	Qual	ifier	Added 250 Spike Added 1260	Resul 257.3 MS Resul 1792	t Qualif MS t Qualif	ier l	Unit mg/Kg Unit	<u> </u>)	%Rec 103 %Rec	Prep %Rec Limits 90 - 110 Client Sau Prep %Rec Limits 90 - 110 Client Sau Prep	Type: So <u>RPD</u> 2 mple ID: Type: So mple ID:	SS04

QC Association Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5121-1 SDG: 03C1558263

GC VOA

Prep Batch: 61153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5121-1	SS01	Total/NA	Solid	5035	
890-5121-2	SS02	Total/NA	Solid	5035	
890-5121-3	SS03	Total/NA	Solid	5035	
890-5121-4	SS04	Total/NA	Solid	5035	
890-5121-5	SS05	Total/NA	Solid	5035	
MB 880-61153/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-61153/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-61153/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-32567-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
880-32567-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 61199

Lab Control Sample	Iotal/NA	Solid	5035		1.00
Lab Control Sample Dup	Total/NA	Solid	5035		8
Matrix Spike	Total/NA	Solid	5035		
Matrix Spike Duplicate	Total/NA	Solid	5035		9
					10
Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
SS06	Total/NA	Solid	8021B	61214	
SS07	Total/NA	Solid	8021B	61214	
Method Blank	Total/NA	Solid	8021B	61204	
Method Blank	Total/NA	Solid	8021B	61214	
Lab Control Sample	Total/NA	Solid	8021B	61214	10
Lab Control Sample Dup	Total/NA	Solid	8021B	61214	13
Matrix Spike	Total/NA	Solid	8021B	61214	
Matrix Spike Duplicate	Total/NA	Solid	8021B	61214	
	Lab Control Sample Dup Matrix Spike Matrix Spike Duplicate Client Sample ID SS06 SS07 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike	Lab Control Sample Dup Total/NA Matrix Spike Total/NA Matrix Spike Duplicate Total/NA Client Sample ID Prep Type SS06 Total/NA SS07 Total/NA Method Blank Total/NA Method Blank Total/NA Lab Control Sample Dup Total/NA Lab Control Sample Dup Total/NA Matrix Spike Total/NA	Lab Control Sample DupTotal/NASolidMatrix SpikeTotal/NASolidMatrix Spike DuplicateTotal/NASolidClient Sample IDPrep TypeMatrixSS06Total/NASolidSS07Total/NASolidMethod BlankTotal/NASolidMethod BlankTotal/NASolidMethod BlankTotal/NASolidLab Control SampleTotal/NASolidLab Control Sample DupTotal/NASolidMatrix SpikeTotal/NASolid	Lab Control Sample DupTotal/NASolid5035Matrix SpikeTotal/NASolid5035Matrix Spike DuplicateTotal/NASolid5035Client Sample IDPrep TypeMatrixMethodSS06Total/NASolid8021BSS07Total/NASolid8021BMethod BlankTotal/NASolid8021BMethod BlankTotal/NASolid8021BMethod BlankTotal/NASolid8021BMethod BlankTotal/NASolid8021BMethod BlankTotal/NASolid8021BMethod BlankTotal/NASolid8021BMethod BlankTotal/NASolid8021BMethod BlankTotal/NASolid8021BMatrix SpikeTotal/NASolid8021B	Lab Control Sample DupTotal/NASolid5035Matrix SpikeTotal/NASolid5035Matrix Spike DuplicateTotal/NASolid5035Client Sample IDPrep TypeMatrixMethodPrep BatchSS06Total/NASolid8021B61214SS07Total/NASolid8021B61214Method BlankTotal/NASolid8021B61204Method BlankTotal/NASolid8021B61214Lab Control SampleTotal/NASolid8021B61214Lab Control Sample DupTotal/NASolid8021B61214Matrix SpikeTotal/NASolid8021B61214Lab Control Sample DupTotal/NASolid8021B61214Matrix SpikeTotal/NASolid8021B61214Matrix SpikeTotal/NASolid8021B61214

Prep Batch: 61204

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-61204/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 61205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5121-1	SS01	Total/NA	Solid	8021B	61153
890-5121-2	SS02	Total/NA	Solid	8021B	61153
890-5121-3	SS03	Total/NA	Solid	8021B	61153
890-5121-4	SS04	Total/NA	Solid	8021B	61153
890-5121-5	SS05	Total/NA	Solid	8021B	61153
MB 880-61153/5-A	Method Blank	Total/NA	Solid	8021B	61153
MB 880-61205/39	Method Blank	Total/NA	Solid	8021B	
LCS 880-61153/1-A	Lab Control Sample	Total/NA	Solid	8021B	61153
LCSD 880-61153/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	61153
880-32567-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	61153
880-32567-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	61153

Prep Batch: 61214

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5121-6	SS06	Total/NA	Solid	5035	
890-5121-7	SS07	Total/NA	Solid	5035	
MB 880-61214/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-61214/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-61214/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-32215-A-3-E MS	Matrix Spike	Total/NA	Solid	5035	
880-32215-A-3-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Page 59 of 177

5 6

QC Association Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

5

Job ID: 890-5121-1 SDG: 03C1558263

GC VOA

Analysis Batch: 61267

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-5121-1	SS01	Total/NA	Solid	Total BTEX	
890-5121-2	SS02	Total/NA	Solid	Total BTEX	
890-5121-3	SS03	Total/NA	Solid	Total BTEX	
890-5121-4	SS04	Total/NA	Solid	Total BTEX	
890-5121-5	SS05	Total/NA	Solid	Total BTEX	
890-5121-6	SS06	Total/NA	Solid	Total BTEX	
890-5121-7	SS07	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 61031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5121-1	SS01	Total/NA	Solid	8015NM Prep	
890-5121-2	SS02	Total/NA	Solid	8015NM Prep	
890-5121-3	SS03	Total/NA	Solid	8015NM Prep	
890-5121-4	SS04	Total/NA	Solid	8015NM Prep	
890-5121-5	SS05	Total/NA	Solid	8015NM Prep	
890-5121-6	SS06	Total/NA	Solid	8015NM Prep	
890-5121-7	SS07	Total/NA	Solid	8015NM Prep	
MB 880-61031/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-61031/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-61031/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5113-A-21-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5113-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 61042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5121-1	SS01	Total/NA	Solid	8015B NM	61031
890-5121-2	SS02	Total/NA	Solid	8015B NM	61031
890-5121-3	SS03	Total/NA	Solid	8015B NM	61031
890-5121-4	SS04	Total/NA	Solid	8015B NM	61031
890-5121-5	SS05	Total/NA	Solid	8015B NM	61031
890-5121-6	SS06	Total/NA	Solid	8015B NM	61031
890-5121-7	SS07	Total/NA	Solid	8015B NM	61031
MB 880-61031/1-A	Method Blank	Total/NA	Solid	8015B NM	61031
LCS 880-61031/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	61031
LCSD 880-61031/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	61031
890-5113-A-21-C MS	Matrix Spike	Total/NA	Solid	8015B NM	61031
890-5113-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	61031

Analysis Batch: 61402

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5121-1	SS01	Total/NA	Solid	8015 NM	
890-5121-2	SS02	Total/NA	Solid	8015 NM	
890-5121-3	SS03	Total/NA	Solid	8015 NM	
890-5121-4	SS04	Total/NA	Solid	8015 NM	
890-5121-5	SS05	Total/NA	Solid	8015 NM	
890-5121-6	SS06	Total/NA	Solid	8015 NM	
890-5121-7	SS07	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Page 61 of 177

Job ID: 890-5121-1 SDG: 03C1558263

HPLC/IC

Leach Batch: 60728

each Batch: 60728					
_ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
390-5121-1	SS01	Soluble	Solid	DI Leach	
390-5121-2	SS02	Soluble	Solid	DI Leach	
390-5121-3	SS03	Soluble	Solid	DI Leach	
390-5121-4	SS04	Soluble	Solid	DI Leach	
390-5121-5	SS05	Soluble	Solid	DI Leach	
390-5121-6	SS06	Soluble	Solid	DI Leach	
390-5121-7	SS07	Soluble	Solid	DI Leach	
/IB 880-60728/1-A	Method Blank	Soluble	Solid	DI Leach	
CS 880-60728/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-60728/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5121-4 MS	SS04	Soluble	Solid	DI Leach	
390-5121-4 MSD	SS04	Soluble	Solid	DI Leach	

Analysis Batch: 60835

890-5121-7	SS07	Soluble	Solid	DI Leach	-	
MB 880-60728/1-A	Method Blank	Soluble	Solid	DI Leach		8
LCS 880-60728/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-60728/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		9
890-5121-4 MS	SS04	Soluble	Solid	DI Leach		
890-5121-4 MSD	SS04	Soluble	Solid	DI Leach		
Analysis Batch: 60835						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-5121-1	SS01	Soluble	Solid	300.0	60728	
890-5121-2	SS02	Soluble	Solid	300.0	60728	
890-5121-3	SS03	Soluble	Solid	300.0	60728	
890-5121-4	SS04	Soluble	Solid	300.0	60728	13
890-5121-5	SS05	Soluble	Solid	300.0	60728	
890-5121-6	SS06	Soluble	Solid	300.0	60728	
890-5121-7	SS07	Soluble	Solid	300.0	60728	
MB 880-60728/1-A	Method Blank	Soluble	Solid	300.0	60728	
LCS 880-60728/2-A	Lab Control Sample	Soluble	Solid	300.0	60728	
LCSD 880-60728/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	60728	
890-5121-4 MS	SS04	Soluble	Solid	300.0	60728	
890-5121-4 MSD	SS04	Soluble	Solid	300.0	60728	

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: SS01 Date Collected: 08/17/23 09:50

Date Received: 08/17/23 13:43

	Batch Batch Di		Dil	Initial	Final	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	61153	08/25/23 15:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61205	08/28/23 01:11	SM	EET MID
Total/NA	Analysis	Total BTEX		1			61267	08/28/23 10:04	SM	EET MID
Total/NA	Analysis	8015 NM		1			61402	08/28/23 22:20	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	61031	08/24/23 16:34	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	61042	08/26/23 00:14	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	60728	08/21/23 11:57	SMC	EET MID
Soluble	Analysis	300.0		50	50 mL	50 mL	60835	08/22/23 22:15	СН	EET MID

Client Sample ID: SS02

Date Collected: 08/17/23 09:55

Date Received: 08/17/23 13:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	61153	08/25/23 15:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61205	08/28/23 01:31	SM	EET MID
Total/NA	Analysis	Total BTEX		1			61267	08/28/23 10:04	SM	EET MID
Total/NA	Analysis	8015 NM		1			61402	08/28/23 22:20	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	61031	08/24/23 16:34	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	61042	08/26/23 00:35	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	60728	08/21/23 11:57	SMC	EET MID
Soluble	Analysis	300.0		50	50 mL	50 mL	60835	08/22/23 22:21	СН	EET MID

Client Sample ID: SS03

Date Collected: 08/17/23 10:00

Date Received: 08/17/23 13:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	61153	08/25/23 15:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61205	08/28/23 01:51	SM	EET MID
Total/NA	Analysis	Total BTEX		1			61267	08/28/23 10:04	SM	EET MID
Total/NA	Analysis	8015 NM		1			61402	08/28/23 22:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	61031	08/24/23 16:34	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	61042	08/25/23 23:53	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	60728	08/21/23 11:57	SMC	EET MID
Soluble	Analysis	300.0		50	50 mL	50 mL	60835	08/22/23 22:26	СН	EET MID

Client Sample ID: SS04 Date Collected: 08/17/23 10:05 Date Received: 08/17/23 13:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	61153	08/25/23 15:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61205	08/28/23 02:12	SM	EET MID
Total/NA	Analysis	Total BTEX		1			61267	08/28/23 10:04	SM	EET MID

Matrix: Solid

Eurofins Carlsbad

Page 62 of 177

Job ID: 890-5121-1 SDG: 03C1558263

Lab Sample ID: 890-5121-1 Matrix: Solid

Lab Sample ID: 890-5121-2

Lab Sample ID: 890-5121-3

Lab Sample ID: 890-5121-4

Matrix: Solid

Matrix: Solid

5 6 9

Job ID: 890-5121-1

SDG: 03C1558263

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-5121-4

Lab Sample ID: 890-5121-5

Lab Sample ID: 890-5121-6

Lab Sample ID: 890-5121-7

Lab Chronicle

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: SS04

Date Collected: 08/17/23 10:05 Date Received: 08/17/23 13:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			61402	08/28/23 22:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	61031	08/24/23 16:34	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	61042	08/26/23 00:56	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	60728	08/21/23 11:57	SMC	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	60835	08/22/23 22:32	СН	EET MID

Client Sample ID: SS05 Date Collected: 08/17/23 10:10

Date Received: 08/17/23 13:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	61153	08/25/23 15:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61205	08/28/23 02:32	SM	EET MID
Total/NA	Analysis	Total BTEX		1			61267	08/28/23 10:04	SM	EET MID
Total/NA	Analysis	8015 NM		1			61402	08/28/23 22:20	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	61031	08/24/23 16:34	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	61042	08/26/23 01:17	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	60728	08/21/23 11:57	SMC	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	60835	08/22/23 22:49	СН	EET MID

Client Sample ID: SS06

Date Collected: 08/17/23 10:20 Date Received: 08/17/23 13:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	61214	08/26/23 17:44	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61199	08/27/23 20:14	SM	EET MID
Total/NA	Analysis	Total BTEX		1			61267	08/28/23 11:47	SM	EET MID
Total/NA	Analysis	8015 NM		1			61402	08/28/23 22:20	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	61031	08/24/23 16:34	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	61042	08/26/23 01:38	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	60728	08/21/23 11:57	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	60835	08/22/23 22:55	CH	EET MID

Client Sample ID: SS07 Date Collected: 08/17/23 10:15

Date	Received:	08/17/23 13:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	61214	08/26/23 17:44	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61199	08/27/23 20:35	SM	EET MID
Total/NA	Analysis	Total BTEX		1			61267	08/28/23 11:47	SM	EET MID
Total/NA	Analysis	8015 NM		1			61402	08/28/23 22:20	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	61031	08/24/23 16:34	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	61042	08/26/23 02:21	SM	EET MID

Lab Chronicle

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: SS07 Date Collected: 08/17/23 10:15

Date Received: 08/17/23 13:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	60728	08/21/23 11:57	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	60835	08/22/23 23:12	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-5121-1 SDG: 03C1558263

Lab Sample ID: 890-5121-7 Matrix: Solid

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-5121-1 Project/Site: Hudson 1 Fed Com 9H SDG: 03C1558263 Laboratory: Eurofins Midland Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority **Identification Number** Expiration Date Program T104704400-23-26 06-30-24 Texas NELAP The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 8015 NM Solid Total TPH Total BTEX Solid Total BTEX

Eurofins Carlsbad

Page 65 of 177

5

10

Method Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5121-1 SDG: 03C1558263

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	Environmental Protection Agency		
	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	tion November 1986 And Its Undates	
	= TestAmerica Laboratories, Standard Operating Procedure		
	eferences: = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Sample Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

_ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
390-5121-1	SS01	Solid	08/17/23 09:50	08/17/23 13:43	0.5	_
390-5121-2	SS02	Solid	08/17/23 09:55	08/17/23 13:43	0.5	
390-5121-3	SS03	Solid	08/17/23 10:00	08/17/23 13:43	0.5	4
390-5121-4	SS04	Solid	08/17/23 10:05	08/17/23 13:43	0.5	
390-5121-5	SS05	Solid	08/17/23 10:10	08/17/23 13:43	0.5	
390-5121-6	SS06	Solid	08/17/23 10:20	08/17/23 13:43	0.5	
390-5121-7	SS07	Solid	08/17/23 10:15	08/17/23 13:43	0.5	
						1

h ID: 800 5121 1

Page 67 of 177

Job ID: 890-5121-1 SDG: 03C1558263

Coder Clarody Selfs Yes No. International control And Self Self And Self Self Self Self Self Self Self Self	Date/Time Rel	Sample Identification Matrix Date Sampled Time Sampled Depth Comp Grab/ Comp Ford Ford Ford SSO1 SO1 Splin/J3 0950 0.5 G Splin/Comp Cont Ford	Sampled Sampled Sampled Sampled Sampled D950 8/i1/23 0950 1000 1000 1000 1005 1005 1005 1005	Sample Identification Matrix Samu SSO1 SSO1 SO1 SSO3 SSO4 SSO4 SSO4 SSO4 SSO4 SSO5 SSO5 Circle Method(s) and Metal(s) to be analyzed teurofins Xenco will be lable only for the cost of samples and of servec. Eurofins Xenco will be lable only for the cost of samples and setting SSO will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of feurofins Xenco. A minimum charge of S85.00 will be applied to each of the feurofins Xenco. A minimum applied to each of the feurofins Xenco. A minimum applied to each of the feurofins Xenco. A minimum applied to each of the feurofins Xenco. A min	SSO1 SSO3 SSO3 SSO4 SSO4 SSO4 SSO4 SSO4 SSO4
li K Se Ag SiO ₂ Na Sr T Hg: 1631/245.1/	D As Ba Be B Cd Ca C Sb As Ba Be Cd Ca C Sb As Ba Be Cd Ca	Time Depth Grab/ # o mpled Depth Comp Con 1950 0.5 G I 900 000 015 V V 015 V V	Sampled Sampled Sampled Sampled Sampled Samples constitutes a valid pulsed Samples constitutes a valid pulsed to each project and a d	ification Mat 01 S 02 02 04 04 06 06 06 06 06 06 06 06 06 06 06 06 06	SSC SS SS SS SS SS SS SS SS SS SS SS SS
li K Se Ag SiO ₂ Na Sr T	Sb As Ba Be Cd Cr Co	Time Depth Grab/ # o mpled Depth comp Comp <td< td=""><td>sampled sa Shin/23 0 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>ification Mat 01 S 03 S 04 S 06 S 06 S 06 S 06 S 06 S 06 S 06 S 06</td><td>SSC SSS SS SS SS SS SS SS SS SS SS SS SS</td></td<>	sampled sa Shin/23 0 10 10 10 10 10 10 10 10 10 10 10 10 10	ification Mat 01 S 03 S 04 S 06 S 06 S 06 S 06 S 06 S 06 S 06 S 06	SSC SSS SS SS SS SS SS SS SS SS SS SS SS
Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr		Time Depth Grab/ # o mpled Depth comp Comp Comp 955 0.5 G 1 9 0	8RCR	ification Mat 01 S 02 Mat 02 S 04 S 04 S 04 S 04 S 04 S 04 S 04 S 04	SSC SSC SSC SSC SSC SSC SSC SSC SSC SSC
	X BTEX Chio, X Chio,	Depth Grab	Sampled		SS 55 55 55 55 55 55 55 55 55 55 55 55 5
	X BTEX Chio, X Chio,	Depth Grab	Sampled		SS 555 555 555 555 555 555 555
	K BTEX Chio,	Depth Grab	Sampled		555 555 555 555 555
	X BTEX Chio,	Depth Grab/ Comp	Sampled		155 155 155 155 155 155
	X BTEX Chio	Depth Grab/ D.5	Sampled		555 555 555
	X BTEX Chio,	Depth Comp	5 2/17/23		155 155 155
	-X BTEX Chio,	Depth Grab/ O.5 G	5/17/23		SSC SSC
	X BTEX X Chio,	Depth Grab/ O.5	Sampled		SSC
	BTEX	Depth Comp	sampled		
	Ex	4	Date		Sample Identification
	,	erature:	Corrected Temperature:		Total Containers:
	-	iding:	Temperature Reading:	S: Yes NO N/A	Sample Custody Seals:
	Je	6.0-1	Correction Factor:	Ye	Cooler Custody Seals:
890-5121 Chain of Custody		2 Man	eter		Samples Received Intact:
		Wet Ice: Yes No	Yes No W	Temp Blank:	SAMPLE RECEIPT
42		the lab, if received by 4:30pm		CI Damini Manual	PO #:
		Due Date:		N	Project Location:
		Routine Rush Code		03CISS 8 463	Project Number:
ervative		m Around	Con 9H	Hudson I F	Project Name:
Deliverables: EDD ADaPT Other:	bein Censorum. um	Email: bocii	P580	987-854	Phone:
NM 88.22.0 Reporting: Level II Level III PST/UST TRRP Level IV	Carisbad, N	Jみつ City, State ZIP:	NM 88	Carlsback	City, State ZIP:
State of Project:	3104 E Greene	Harry Address:	1 Parks	3122 Nat	Address:
	XTO Energy	Company Name:	M, LLC	12	Company Name:
Green Work Order Comments	Garrett	Bill to: (if different)	11	Ben Belill	Project Manager:
6) 794-1296 75) 988-3199 www.xenco.com Page of 1	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	EL Paso, TX Hobbs, NM	0	Xenco	
4) 902-0300 210) 509-3334 Work Order No:	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334		Environment Testing		the euronns

5

13

8/28/2023

Released to Imaging: 11/28/2023 10:28:31 AM

Page 28 of 30

14

Job Number: 890-5121-1 SDG Number: 03C1558263

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5121 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Job Number: 890-5121-1 SDG Number: 03C1558263

List Source: Eurofins Midland

List Creation: 08/21/23 08:51 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5121 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 9/14/2023 11:14:24 AM

JOB DESCRIPTION

Hudson 1 Fed Com 9H SDG NUMBER 03C1558263

JOB NUMBER

890-5226-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 9/14/2023 11:28:26 AM

JOB DESCRIPTION

Hudson 1 Fed Com 9H SDG NUMBER 03C1558263

JOB NUMBER

890-5227-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 9/14/2023 11:28:26 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Laboratory Job ID: 890-5227-1 SDG: 03C1558263

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

- 141

Page 75 of 177

	Definitions/Glossary		
Client: Ensolur	-	Job ID: 890-5227-1	
Project/Site: H	udson 1 Fed Com 9H	SDG: 03C1558263	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
S1-	Surrogate recovery exceeds control limits, low biased.		
S1+	Surrogate recovery exceeds control limits, high biased.		5
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA	L Contraction of the second		
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		8
HPLC/IC			
Qualifier	Qualifier Description		9
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		4 9
CNF	Contains No Free Liquid		R
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		

Presumptive Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

PRES

QC RER

RL

RPD TEF

TEQ TNTC

Case Narrative

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Job ID: 890-5227-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5227-1

Receipt

The samples were received on 9/8/2023 1:36 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: PH01 (890-5227-1), PH02 (890-5227-2) and PH03 (890-5227-3).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: PH02 (890-5227-2), PH03 (890-5227-3) and (890-5226-A-1-D). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (890-5226-A-1-B MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (890-5230-A-1-A), (890-5230-A-1-B MS) and (890-5230-A-1-C MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: PH01 (890-5227-1), PH02 (890-5227-2) and PH03 (890-5227-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-62304/20), (CCV 880-62304/31) and (CCV 880-62304/5). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike duplicate (MSD) recoveries for preparation batch 880-62270 and analytical batch 880-62304 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Released to Imaging: 11/28/2023 10:28:31 AM

4

Job ID: 890-5227-1 SDG: 03C1558263 **Client Sample Results**

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: PH01

Date Collected: 09/07/23 10:00 Date Received: 09/08/23 13:36

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201	mg/Kg		09/12/23 11:43	09/13/23 04:05	
Toluene	<0.00201	U	0.00201	mg/Kg		09/12/23 11:43	09/13/23 04:05	
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		09/12/23 11:43	09/13/23 04:05	
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		09/12/23 11:43	09/13/23 04:05	
o-Xylene	<0.00201	U	0.00201	mg/Kg		09/12/23 11:43	09/13/23 04:05	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		09/12/23 11:43	09/13/23 04:05	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	77		70 - 130			09/12/23 11:43	09/13/23 04:05	
1,4-Difluorobenzene (Surr)	76		70 - 130			09/12/23 11:43	09/13/23 04:05	
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402	mg/Kg			09/13/23 12:14	
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.5	U	50.5	mg/Kg			09/14/23 11:16	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		09/12/23 11:33	09/13/23 16:37	
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5	mg/Kg		09/12/23 11:33	09/13/23 16:37	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		09/12/23 11:33	09/13/23 16:37	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	135	S1+	70 - 130			09/12/23 11:33	09/13/23 16:37	
o-Terphenyl	113		70 - 130			09/12/23 11:33	09/13/23 16:37	
Method: EPA 300.0 - Anions, Ior	n Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	713		4.99	mg/Kg			09/14/23 00:40	
Client Sample ID: PH02						Lab Sar	nple ID: 890-	5227-
ate Collected: 09/07/23 10:35							Matri	x: Soli
ate Received: 09/08/23 13:36								
ample Depth: 2								
Method: SW846 8021B - Volatile	organic Comp	ounds (GC))					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00202	U	0.00202	mg/Kg		09/12/23 11:43	09/13/23 04:26	
				5.2				

4-Bromofluorobenzene (Surr)	88		70 - 130		09/12/23 11:43	09/13/23 04:26	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00404	U	0.00404	mg/Kg	09/12/23 11:43	09/13/23 04:26	1
o-Xylene	<0.00202	U	0.00202	mg/Kg	09/12/23 11:43	09/13/23 04:26	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg	09/12/23 11:43	09/13/23 04:26	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg	09/12/23 11:43	09/13/23 04:26	1
Toluene	<0.00202	U	0.00202	mg/Kg	09/12/23 11:43	09/13/23 04:26	1
Benzene	< 0.00202	U	0.00202	mg/Kg	09/12/23 11:43	09/13/23 04:26	1

Page 77 of 177

Job ID: 890-5227-1 SDG: 03C1558263

Lab Sample ID: 890-5227-1

Matrix: Solid

9/14/2023

5

Page 78 of 177

Client Sample Results

Job ID: 890-5227-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5227-2

Client Sample ID: PH02

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/07/23 10:35 Date Received: 09/08/23 13:36

Sample Depth: 2

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	64	S1-	70 - 130			09/12/23 11:43	09/13/23 04:26	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			09/13/23 12:14	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1	mg/Kg			09/14/23 11:16	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	50.1	mg/Kg		09/12/23 11:33	09/13/23 16:59	1
Diesel Range Organics (Over C10-C28)	<50.1	U	50.1	mg/Kg		09/12/23 11:33	09/13/23 16:59	1
Oll Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		09/12/23 11:33	09/13/23 16:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	133	S1+	70 - 130			09/12/23 11:33	09/13/23 16:59	1
o-Terphenyl	111		70 - 130			09/12/23 11:33	09/13/23 16:59	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	57.9		4.99	mg/Kg			09/14/23 00:59	1
lient Sample ID: PH03						Lah Sar	nple ID: 890-	5227-3

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 04:46	1
Toluene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 04:46	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 04:46	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/13/23 04:46	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 04:46	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/13/23 04:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	147	S1+	70 - 130			09/12/23 11:43	09/13/23 04:46	1
1,4-Difluorobenzene (Surr)	86		70 - 130			09/12/23 11:43	09/13/23 04:46	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			09/13/23 12:14	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
				•• •	-			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 890-5227-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5227-3

Client Sample Results

Client: Ensolum	
Project/Site: Hudson 1 Fed Com 9H	

Client Sample ID: PH03

Date Collected: 09/07/23 10:55 Date Received: 09/08/23 13:36

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		09/12/23 11:33	09/13/23 17:21	1
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5	mg/Kg		09/12/23 11:33	09/13/23 17:21	1
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		09/12/23 11:33	09/13/23 17:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	158	S1+	70 - 130			09/12/23 11:33	09/13/23 17:21	1
o-Terphenyl	138	S1+	70 - 130			09/12/23 11:33	09/13/23 17:21	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Surrogate Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-5226-A-1-B MS	Matrix Spike	132 S1+	108		1
890-5226-A-1-C MSD	Matrix Spike Duplicate	125	116		
890-5227-1	PH01	77	76		- 2
890-5227-2	PH02	88	64 S1-		
890-5227-3	PH03	147 S1+	86		
LCS 880-62272/1-A	Lab Control Sample	121	118		
LCSD 880-62272/2-A	Lab Control Sample Dup	128	112		
MB 880-62129/5-A	Method Blank	70	95		
MB 880-62272/5-A	Method Blank	70	88		
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-5227-1	PH01	135 S1+	113		
890-5227-2	PH02	133 S1+	111		
890-5227-3	PH03	158 S1+	138 S1+		
890-5230-A-1-B MS	Matrix Spike	133 S1+	102		
890-5230-A-1-C MSD	Matrix Spike Duplicate	149 S1+	116		
LCS 880-62270/2-A	Lab Control Sample	108	105		
LCSD 880-62270/3-A	Lab Control Sample Dup	107	99		
MB 880-62270/1-A	Method Blank	130	111		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Job ID: 890-5227-1

SDG: 03C1558263

Page 80 of 177

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-62129/5 Matrix: Solid	- A							Client Sa	imple ID: Metho Prep Type: 1	
Analysis Batch: 62238									Prep Batc	h: 62129
	MB	MB								
Analyte	Result	Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200)	mg/Kg	9	0	9/11/23 09:25	09/12/23 11:40	1
Toluene	<0.00200	U	0.00200)	mg/Kg	9	0	9/11/23 09:25	09/12/23 11:40	1
Ethylbenzene	<0.00200	U	0.00200)	mg/Kg	9	0	9/11/23 09:25	09/12/23 11:40	1
m-Xylene & p-Xylene	<0.00400	U	0.00400)	mg/Kg	3	0	9/11/23 09:25	09/12/23 11:40	1
o-Xylene	<0.00200	U	0.00200)	mg/Kg	9	0	9/11/23 09:25	09/12/23 11:40	1
Xylenes, Total	<0.00400	U	0.00400)	mg/Kg	9	0	9/11/23 09:25	09/12/23 11:40	1
	МВ	МВ								
Surrogate	мь %Recovery		Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130	-				9/11/23 09:25	09/12/23 11:40	1
1,4-Difluorobenzene (Surr)	95		70 - 130 70 - 130					9/11/23 09:25	09/12/23 11:40	1
	30		70 - 130				0	9/11/23 09.23	09/12/23 11.40	1
Lab Sample ID: MB 880-62272/5	-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid									Prep Type:	
Analysis Batch: 62238									Prep Batc	
-	MB	MB								
Analyte	Result	Qualifier	RL	-	Unit		D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg]	0	9/12/23 11:43	09/12/23 22:17	1
Toluene	<0.00200	U	0.00200)	mg/Kg	3	0	9/12/23 11:43	09/12/23 22:17	1
Ethylbenzene	<0.00200	U	0.00200)	mg/Kg	3	0	9/12/23 11:43	09/12/23 22:17	1
m-Xylene & p-Xylene	<0.00400	U	0.00400)	mg/Kg]	0	9/12/23 11:43	09/12/23 22:17	1
o-Xylene	<0.00200	U	0.00200)	mg/Kg	3	0	9/12/23 11:43	09/12/23 22:17	1
Xylenes, Total	<0.00400	U	0.00400)	mg/Kg		0	9/12/23 11:43	09/12/23 22:17	1
	MB									
Surrogate	%Recovery		Limits	-			_	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	70		70 - 130					9/12/23 11:43	09/12/23 22:17	1
1,4-Difluorobenzene (Surr)	88		70 - 130				0	9/12/23 11:43	09/12/23 22:17	1
Lab Sample ID: LCS 880-62272/	1-A						Clie	ent Sample I	ID: Lab Control	Sample
Matrix: Solid							•		Prep Type:	
Analysis Batch: 62238									Prep Batc	
Analysis Baton. 62200			Spike	LCS	LCS				%Rec	
Analyte			Added		Qualifier	Unit	1	D %Rec	Limits	
Benzene			0.100	0.09610		mg/Kg		96	70 - 130	
Toluene			0.100	0.09660		mg/Kg		97	70 - 130	
Ethylbenzene			0.100	0.1043		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene			0.200	0.2233		mg/Kg		112	70 - 130	
o-Xylene			0.100	0.1130		mg/Kg		113	70 - 130	
			01100	011100					10 - 100	
	LCS LCS									
Surrogate	%Recovery Qua	lifier	Limits							
4-Bromofluorobenzene (Surr)	121		70 - 130							
1,4-Difluorobenzene (Surr)	118		70 - 130							
- Lab Sampla ID: LCSD 990 6337						0	ant C	ample ID: L	ab Control Sam	
Lab Sample ID: LCSD 880-62272	4 2- A					CII	ent Sa	ample ID: La	ab Control Sam	
Matrix: Solid									Prep Type:	
Analysis Batch: 62238			Spike	1.000					Prep Batc	
			Spike	LCSD	LCSD				%Rec	RPD

Analysis Batch: 62238			Batch:	62272					
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09581		mg/Kg		96	70 - 130	0	35

Eurofins Carlsbad

Job ID: 890-5227-1

SDG: 03C1558263

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5227-1 SDG: 03C1558263

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

112

Lab Sample ID: LCSD 880-622 Matrix: Solid Analysis Batch: 62238	272/2-A					Clie	nt Sam	ple ID:		I Sample Type: Tot Batch:	tal/NA
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.1011		mg/Kg		101	70 - 130	5	35
Ethylbenzene			0.100	0.1096		mg/Kg		110	70 - 130	5	35
m-Xylene & p-Xylene			0.200	0.2327		mg/Kg		116	70 - 130	4	35
o-Xylene			0.100	0.1177		mg/Kg		118	70 - 130	4	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	128		70 - 130								

70 - 130

Lab Sample ID: 890-5226-A-1-B MS	
Matrix: Solid	

Analysis Batch: 62238

1,4-Difluorobenzene (Surr)

								Prep Batch	62
Sample	Sample	Spike	MS	MS				%Rec	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
<0.00200	U	0.0998	0.07731		mg/Kg		77	70 - 130	
<0.00200	U	0.0998	0.08191		mg/Kg		82	70 - 130	
<0.00200	U	0.0998	0.09084		mg/Kg		91	70 - 130	
<0.00401	U	0.200	0.1915		mg/Kg		96	70 - 130	
<0.00200	U	0.0998	0.09648		mg/Kg		97	70 - 130	
	Result <0.00200	Sample Sample Result Qualifier <0.00200	Result Qualifier Added <0.00200	Result Qualifier Added Result <0.00200	Result Qualifier Added Result Qualifier <0.00200	Result Qualifier Added Result Qualifier Unit <0.00200	Result Qualifier Added Result Qualifier Unit D <0.00200	Result Qualifier Added Result Qualifier Unit D %Rec <0.00200	Result Qualifier Added Result Qualifier Unit D %Rec Limits <0.00200

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: 890-5226-A-1-C MSD Matrix: Solid Analysis Batch: 62238

1,4-Difluorobenzene (Surr)

Analysis Batch: 62238									Prep	Batch:	62272
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0990	0.08297		mg/Kg		84	70 - 130	7	35
Toluene	<0.00200	U	0.0990	0.08431		mg/Kg		85	70 - 130	3	35
Ethylbenzene	<0.00200	U	0.0990	0.09286		mg/Kg		94	70 - 130	2	35
m-Xylene & p-Xylene	<0.00401	U	0.198	0.1940		mg/Kg		98	70 - 130	1	35
o-Xylene	<0.00200	U	0.0990	0.09744		mg/Kg		98	70 - 130	1	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	125		70 - 130								

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

116

Lab Sample ID: MB 880-62270/1-A Matrix: Solid Analysis Batch: 62304	мв	МВ				Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte Gasoline Range Organics	Result <50.0	Qualifier	RL	Unit mg/Kg	<u>D</u>	Prepared 09/12/23 11:33	Analyzed 09/13/23 08:10	Dil Fac
(GRO)-C6-C10								

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-6227	0/1-4									Client Sa	mple ID: N	lethod	Blank
Matrix: Solid	0/1-A									onent oc	Prep Ty		
Analysis Batch: 62304		мв	MD								Prepi	Batch:	02270
Analyte	R		Qualifier	RL			Init	D	Р	repared	Analyze	d	Dil Fac
Diesel Range Organics (Over		50.0					ng/Kg	_		2/23 11:33	09/13/23 08		1
C10-C28)	-	00.0	0	00.0			19/119		00/1	2/20 11:00	00/10/20 00	5.10	·
Oll Range Organics (Over C28-C36)	<	50.0	U	50.0		n	ng/Kg		09/1	2/23 11:33	09/13/23 08	3:10	1
	a. -		MB						_		. .		
Surrogate	%Reco	-	Qualifier	Limits						Prepared	Analyze		Dil Fac
1-Chlorooctane		130		70 - 130 70 - 130						2/23 11:33	09/13/23 0		1
o-Terphenyl		111		70 - 130					09/1	2/23 11:33	09/13/23 0	8:10	1
Lab Sample ID: LCS 880-622	70/2-4							C	liont	Sample	ID: Lab Co	ntrol S	amnlo
Matrix: Solid								Ŭ	nem	oumpic	Prep Ty		
Analysis Batch: 62304												Batch:	
A line buton of buton				Spike	LCS	LCS					%Rec		
Analyte				Added		Qualifi	er Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	1056		mg/Kg			106	70 - 130		
(GRO)-C6-C10													
Diesel Range Organics (Over				1000	986.8		mg/Kg			99	70 - 130		
C10-C28)													
	LCS	LCS											
Surrogate		Qual	ifier	Limits									
1-Chlorooctane	108			70 - 130									
o-Terphenyl	105			70 - 130									
Lab Sample ID: LCSD 880-62	270/3-A						Cli	ent	Sam	nple ID: L	ab Control	Samp	e Dup
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 62304											Prep I	Batch:	62270
				Spike	LCSD	LCSD					%Rec		RPD
Analyte													
Gasoline Range Organics				Added		Qualifi	er Unit		D	%Rec	Limits	RPD	Limit
(GRO)-C6-C10				Added		Qualifi	er Unit mg/Kg		<u>D</u>	%Rec	Limits 70 - 130	RPD 2	Limit 20
. ,				1000	Result 1081	Qualifi	mg/Kg		<u>D</u>	108	70 - 130	2	20
Diesel Range Organics (Over					Result	Qualifi			<u>D</u>				
. ,				1000	Result 1081	Qualifi	mg/Kg		<u>D</u>	108	70 - 130	2	20
Diesel Range Organics (Over	LCSD			1000	Result 1081	Qualifi	mg/Kg		<u>D</u>	108	70 - 130	2	20
Diesel Range Organics (Over	%Recovery			1000	Result 1081	Qualifi	mg/Kg		<u>D</u>	108	70 - 130	2	20
Diesel Range Organics (Over C10-C28)	%Recovery 107			1000 1000 <i>Limits</i> 70 - 130	Result 1081	Qualifi	mg/Kg		<u>D</u>	108	70 - 130	2	20
Diesel Range Organics (Over C10-C28) Surrogate	%Recovery			1000 1000 <i>Limits</i>	Result 1081	Qualifi	mg/Kg		<u>D</u>	108	70 - 130	2	20
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 107 99			1000 1000 <i>Limits</i> 70 - 130	Result 1081	Qualifi	mg/Kg		<u>D</u>	108 98	70 - 130 70 - 130	2	20
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1	%Recovery 107 99			1000 1000 <i>Limits</i> 70 - 130	Result 1081	Qualifi	mg/Kg		<u> </u>	108 98	70 - 130 70 - 130 Sample ID:	2 1 Matrix	20 20 Spike
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1 Matrix: Solid	%Recovery 107 99			1000 1000 <i>Limits</i> 70 - 130	Result 1081	Qualifi	mg/Kg			108 98	70 - 130 70 - 130 Sample ID: Prep Ty	2 1 Matrix rpe: To	20 20 Spike tal/NA
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1		Qual	ifier	1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result 1081 980.9		mg/Kg		<u>D</u>	108 98	70 - 130 70 - 130 Sample ID: Prep Ty Prep I	2 1 Matrix	20 20 Spike tal/NA
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1 Matrix: Solid Analysis Batch: 62304		<u>Qual</u>	ifier	1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike	Result 1081 980.9 MS	MS	mg/Kg mg/Kg			108 98 Client \$	70 - 130 70 - 130 Sample ID: Prep Ty Prep I %Rec	2 1 Matrix rpe: To	20 20 Spike tal/NA
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1 Matrix: Solid Analysis Batch: 62304 Analyte	-B MS Sample Result	Qual Samı Quali	ifier	1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result 1081 980.9 MS Result		mg/Kg mg/Kg er Unit		<u>D</u> <u>D</u>	108 98 Client \$	70 - 130 70 - 130 Sample ID: Prep Ty Prep I %Rec Limits	2 1 Matrix rpe: To	20 20 Spike tal/NA
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1 Matrix: Solid Analysis Batch: 62304 Analyte Gasoline Range Organics		Qual Samı Quali	ifier	1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike	Result 1081 980.9 MS	MS	mg/Kg mg/Kg			108 98 Client \$	70 - 130 70 - 130 Sample ID: Prep Ty Prep I %Rec	2 1 Matrix rpe: To	20 20 Spike tal/NA
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1 Matrix: Solid Analysis Batch: 62304 Analyte Gasoline Range Organics (GRO)-C6-C10	-B MS Sample Result	Quali Samı Quali	ifier	1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result 1081 980.9 MS Result	MS	mg/Kg mg/Kg er Unit			108 98 Client \$	70 - 130 70 - 130 Sample ID: Prep Ty Prep I %Rec Limits	2 1 Matrix rpe: To	20 20 Spike tal/NA
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1 Matrix: Solid Analysis Batch: 62304 Analyte Gasoline Range Organics	-BMS -BMS Sample Result <49.6	Quali Samı Quali	ifier	1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 1010	Result 1081 980.9 MS Result 950.2	MS	er Unit mg/Kg			108 98 Client S %Rec 93	70 - 130 70 - 130 Sample ID: Prep Ty Prep I %Rec Limits 70 - 130	2 1 Matrix rpe: To	20 20 Spike tal/NA
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1 Matrix: Solid Analysis Batch: 62304 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	- %Recovery 107 99 -B MS Sample Result <49.6	Quali Samı Quali U U F1	ifier	1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 1010	Result 1081 980.9 MS Result 950.2	MS	er Unit mg/Kg			108 98 Client S %Rec 93	70 - 130 70 - 130 Sample ID: Prep Ty Prep I %Rec Limits 70 - 130	2 1 Matrix rpe: To	20 20 Spike tal/NA
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5230-A-1 Matrix: Solid Analysis Batch: 62304 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	-BMS -BMS Sample Result <49.6	Quali Samı Quali U U F1 MS	ifier	1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 1010	Result 1081 980.9 MS Result 950.2	MS	er Unit mg/Kg			108 98 Client S %Rec 93	70 - 130 70 - 130 Sample ID: Prep Ty Prep I %Rec Limits 70 - 130	2 1 Matrix rpe: To	20 20 Spike tal/NA

Page 83 of 177

Job ID: 890-5227-1

SDG: 03C1558263

Eurofins Carlsbad

133 S1+

102

1-Chlorooctane

o-Terphenyl

70 - 130

70 - 130

Zoho Sign Document ID: 316041F4-GPEVSVEA JYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-5230-A-	1-C MSD					CI	ient Sa	ample ID	: Matrix Sp	oike Dup	licate
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 62304									Prep	Batch:	62270
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.6	U	1010	1027		mg/Kg		100	70 - 130	8	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.6	U F1	1010	1392	F1	mg/Kg		135	70 - 130	11	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	149	S1+	70 - 130								
o-Terphenyl	116		70 - 130								

Lab Sample ID: MB 880-62349/1-A												Client S	Sample ID	: Method	Blank
Matrix: Solid													Prej	o Type: S	oluble
Analysis Batch: 62394															
		MB	MB												
Analyte	Re	esult	Qualifier		RL		I	Unit		D	Pr	epared	Anal	yzed	Dil Fac
Chloride	<	5.00	U		5.00		1	mg/Kg					09/13/2	3 22:26	1
- Lab Sample ID: LCS 880-62349/2-4	4									Cli	ent	Sample	D: Lab (Control S	ample
Matrix: Solid													Pre	o Type: S	oluble
Analysis Batch: 62394															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qualif	fier	Unit		D	%Rec	Limits		
Chloride				250		250.8			mg/Kg			100	90 - 110		
Lab Sample ID: LCSD 880-62349/3	-A								Cli	ent S	Sam	ple ID: I	Lab Conti	ol Samp	le Dup
Matrix: Solid														o Type: S	
Analysis Batch: 62394															
-				Spike		LCSD	LCSD						%Rec		RPD
Analyte				Added		Result	Qualif	fier	Unit		D	%Rec	Limits	RPD	Limit
Chloride				250		248.6			mg/Kg			99	90 _ 110	1	20
Lab Sample ID: 890-5226-A-12-D M	IS											Client	Sample I	D: Matrix	Spike
Matrix: Solid													Pre	o Type: S	oluble
Analysis Batch: 62394															
	Sample	Sam	ple	Spike		MS	MS						%Rec		
Analyte	Result	Qual	ifier	Added		Result	Qualif	fier	Unit		D	%Rec	Limits		
Chloride	245			251		519.1			mg/Kg			110	90 - 110		
Lab Sample ID: 890-5226-A-12-E N	ISD								(Clien	t Sa	mple IC): Matrix S	Spike Du	plicate
Matrix: Solid														o Type: S	
Analysis Batch: 62394															
-	Sample	Sam	ple	Spike		MSD	MSD						%Rec		RPD
Analyte	Result	Qual	ifier	Added		Result	Qualif	ier	Unit		D	%Rec	Limits	RPD	Limit

0

245

Chloride

251

516.5

mg/Kg

109

90 - 110

20

Page 84 of 177

5

Job ID: 890-5227-1 SDG: 03C1558263

QC Association Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5227-1 SDG: 03C1558263

Page 85 of 177

GC VOA

Prep Batch: 62129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
MB 880-62129/5-A	Method Blank	Total/NA	Solid	5035		
nalysis Batch: 62238						
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
90-5227-1	PH01	Total/NA	Solid	8021B	62272	
90-5227-2	PH02	Total/NA	Solid	8021B	62272	
90-5227-3	PH03	Total/NA	Solid	8021B	62272	
B 880-62129/5-A	Method Blank	Total/NA	Solid	8021B	62129	
3 880-62272/5-A	Method Blank	Total/NA	Solid	8021B	62272	
CS 880-62272/1-A	Lab Control Sample	Total/NA	Solid	8021B	62272	
SD 880-62272/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	62272	
0-5226-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	62272	
0-5226-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	62272	
ep Batch: 62272						
b Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
0-5227-1	PH01	Total/NA	Solid	5035		
0-5227-2	PH02	Total/NA	Solid	5035		
0-5227-3	PH03	Total/NA	Solid	5035		
3 880-62272/5-A	Method Blank	Total/NA	Solid	5035		
0000000000	Lab Cantral Canada	T	0	5005		

890-5227-2	PH02	Total/NA	Solid	5035
890-5227-3	PH03	Total/NA	Solid	5035
MB 880-62272/5-A	Method Blank	Total/NA	Solid	5035
LCS 880-62272/1-A	Lab Control Sample	Total/NA	Solid	5035
LCSD 880-62272/2-A	Lab Control Sample Dup	Total/NA	Solid	5035
890-5226-A-1-B MS	Matrix Spike	Total/NA	Solid	5035
890-5226-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035
_				

Analysis Batch: 62356

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5227-1	PH01	Total/NA	Solid	Total BTEX	
890-5227-2	PH02	Total/NA	Solid	Total BTEX	
890-5227-3	PH03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 62270

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5227-1	PH01	Total/NA	Solid	8015NM Prep	
890-5227-2	PH02	Total/NA	Solid	8015NM Prep	
890-5227-3	PH03	Total/NA	Solid	8015NM Prep	
MB 880-62270/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-62270/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-62270/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5230-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5230-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 62304

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5227-1	PH01	Total/NA	Solid	8015B NM	62270
890-5227-2	PH02	Total/NA	Solid	8015B NM	62270
890-5227-3	PH03	Total/NA	Solid	8015B NM	62270
MB 880-62270/1-A	Method Blank	Total/NA	Solid	8015B NM	62270
LCS 880-62270/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	62270

QC Association Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

GC Semi VOA (Continued)

Analysis Batch: 62304 (Continued)

Lab Sample ID LCSD 880-62270/3-A	Client Sample ID Lab Control Sample Dup	Prep Type Total/NA	Matrix	Method 8015B NM	Prep Batch 62270
890-5230-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	62270
890-5230-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	62270
Analysis Batch: 62425					
Lab Sample ID	Client Sample ID	Bron Tuno	Matrix	Mothod	Bron Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5227-1 890-5227-2	PH01 PH02	Total/NA Total/NA	Solid Solid	8015 NM 8015 NM	
890-5227-3	PH03	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 62349

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5227-1	PH01	Soluble	Solid	DI Leach	
890-5227-2	PH02	Soluble	Solid	DI Leach	
890-5227-3	PH03	Soluble	Solid	DI Leach	
MB 880-62349/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-62349/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62349/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5226-A-12-D MS	Matrix Spike	Soluble	Solid	DI Leach	
890-5226-A-12-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 62394

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5227-1	PH01	Soluble	Solid	300.0	62349
890-5227-2	PH02	Soluble	Solid	300.0	62349
890-5227-3	PH03	Soluble	Solid	300.0	62349
MB 880-62349/1-A	Method Blank	Soluble	Solid	300.0	62349
LCS 880-62349/2-A	Lab Control Sample	Soluble	Solid	300.0	62349
LCSD 880-62349/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	62349
890-5226-A-12-D MS	Matrix Spike	Soluble	Solid	300.0	62349
890-5226-A-12-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	62349

Page 86 of 177

5

8

Job ID: 890-5227-1 SDG: 03C1558263 Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: PH01

Date Collected: 09/07/23 10:00 Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 04:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62356	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62425	09/14/23 11:16	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	62270	09/12/23 11:33	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62304	09/13/23 16:37	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/14/23 00:40	СН	EET MID

Client Sample ID: PH02

Date Collected: 09/07/23 10:35

Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 04:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62356	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62425	09/14/23 11:16	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	62270	09/12/23 11:33	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62304	09/13/23 16:59	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/14/23 00:59	СН	EET MID

Client Sample ID: PH03

Date Collected: 09/07/23 10:55 Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 04:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62356	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62425	09/14/23 11:16	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	62270	09/12/23 11:33	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62304	09/13/23 17:21	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/14/23 01:05	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 87 of 177

Job ID: 890-5227-1 SDG: 03C1558263

Lab Sample ID: 890-5227-1 Matrix: Solid

Lab Sample ID: 890-5227-2 Matrix: Solid

Lab Sample ID: 890-5227-3

Matrix: Solid

trix: Solid

Page 88 of 177

	A	Accreditation/C	ertification Summary	
client: Ensolum Project/Site: Hudson 1	Fed Com 9H			Job ID: 890-5227-1 SDG: 03C1558263
aboratory: Eurofi		ere covered under each acc	reditation/certification below.	
Authority		ogram	Identification Number	Expiration Date
exas	NE	ELAP	T104704400-23-26	06-30-24
The following analytes	are included in this report, bu	it the laboratory is not certil	fied by the governing authority. This list ma	ay include analytes for which
the agency does not of				
Analysis Method 8015 NM	Prep Method	Matrix Solid	Analyte Total TPH	
Total BTEX		Solid	Total BTEX	

Method Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5227-1 SDG: 03C1558263

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 - '	'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E	dition November 1986 And Its Undates	

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 11/28/2023 10:28:31 AM

Job ID: 890-5227-1

SDG: 03C1558263

Sample Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5227-1	PH01	Solid	09/07/23 10:00	09/08/23 13:36	2
890-5227-2	PH02	Solid	09/07/23 10:35	09/08/23 13:36	2
890-5227-3	PH03	Solid	09/07/23 10:55	09/08/23 13:36	2

S	
ij	
L 0	
9	
-	

Released to Imaging: 11/28/2023 10:28:31 AM

Environment Testing

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Chain of Custody

Work Order No:

I Bills of fedirensity Company Name Y TO Enclose Company Name Non Code Comments Rec ATX Starts 1 Hwy Company Name 310 H E Email 310 H E Revealed Revea
Company Name: XTO Enconnelds RRC Address: 3,0,4 E. Gurzene St Iste of Project: Reventeds city Carystand, NIM 82:220 Deliverables: EDD AbaPT Other: alt bis.e1it(Cenceller: Carystand, NIM 82:220 Deliverables: EDD AbaPT Other: alt bis.e1it(Cenceller: Carystand, NIM 82:220 Deliverables: EDD AbaPT Other: alt bis. Constrained by Constrained by Analrysts REOLET Presenvative City None: NO alt Desk Analrysts REOLET Analrysts REOLET Analrysts REOLET None: NO Deliverables: alt Desk Cost Cost None: NO None: NO None: NO alt Desk F None: NO None: NO None: NO None: NO alt Desk F None: NO None: NO None: NO None: NO alt Desk F None: NO None: NO None: NO None: NO alt Desk F None: NO None: NO None: NO None: NO alt Desk F None: NO None: NO None: NO None: NO </th
Address 3UA E Greece St State of Project: Int: bis.clille Bis.clille Int:
III: City. State ZIP: Cart Stab di, NM & 86 220 Reporting: Level III _ Level III _ PS III: bis.ctitute Cart Stab di, NM & 86 220 Deptiverables: EDD _ ADaPT III: bis.ctitute Cart Stab di, NM & 86 220 Deptiverables: EDD _ ADaPT III: Pass ANALYSIS REQUEST ANALYSIS REQUEST III: Pass ANALYSIS REQUEST ADaPT III: Costs B00-5227 Chain of Custody ANALYSIS REQUEST III: Costs B00-5227 Chain of Custody ANALYSIS REQUEST III: Costs B00-5227 Chain of Custody ANALYSIS REQUEST
ait: bbc1itt@cnstitum.com Im Atound Im Ato
ANALYSIS REQUEST Reserved by received by the day
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
it the day received by the
the day received by received by 430pm received by 430pm received by 430pm (es) No (es) (es) No (es) (es) No (es) (es) No (es) (es) No (es) (es) (es) (es) (es) (es) (es) (es)
Beech Control
Bepth Control Custody
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Depth Graty # of # of 2' G I X X 2' G I X X 1 I V X I 2' G I X X 1 I V X 1 I V X 1 I V V 1 I V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V V 1 V V 1 V V 1 V V 1 V V
2' G 1 X X X 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J
1139091001 1139091001 1139091001 1139091001
mobarts@ensolum
moberts@ensolum

Page 20 of 22

9/14/2023

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5227 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

14

Job Number: 890-5227-1 SDG Number: 03C1558263

List Source: Eurofins Midland

List Creation: 09/12/23 11:10 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5227 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 9/14/2023 11:14:24 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Laboratory Job ID: 890-5226-1 SDG: 03C1558263

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	17
QC Sample Results	19
QC Association Summary	24
Lab Chronicle	28
Certification Summary	32
Method Summary	33
Sample Summary	34
Chain of Custody	35
Receipt Checklists	36

	Deminitoris/Glossary		
Client: Ensolum Project/Site: Hu	n idson 1 Fed Com 9H	Job ID: 890-5226-1 SDG: 03C1558263	2
Qualifiers			3
GC VOA Qualifier	Qualifier Description		Δ
<u>S1-</u>	Surrogate recovery exceeds control limits, low biased.		
S1+	Surrogate recovery exceeds control limits, high biased.		5
U	Indicates the analyte was analyzed for but not detected.		3
GC Semi VOA			
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
			0
HPLC/IC Qualifier	Qualifier Description		0
	Indicates the analyte was analyzed for but not detected.		
0			9
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		12
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		

Eurofins Carlsbad

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

NEG

POS

PQL

PRES QC

RER

RPD TEF

TEQ

TNTC

RL

Case Narrative

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Job ID: 890-5226-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5226-1

Receipt

The samples were received on 9/8/2023 1:36 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: FS01 (890-5226-1), FS02 (890-5226-2), FS03 (890-5226-3), FS04 (890-5226-4), FS05 (890-5226-5), FS06 (890-5226-6), FS07 (890-5226-7), FS08 (890-5226-8), FS09 (890-5226-9), FS10 (890-5226-10), FS11 (890-5226-11), SW01 (890-5226-12) and SW02 (890-5226-13).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS01 (890-5226-1), FS02 (890-5226-2), FS03 (890-5226-3), FS05 (890-5226-5), FS07 (890-5226-7), FS08 (890-5226-8), FS10 (890-5226-10) and SW01 (890-5226-12). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (890-5226-A-1-B MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (890-5224-A-11-D MS) and (890-5224-A-11-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: FS01 (890-5226-1), FS02 (890-5226-2), FS03 (890-5226-3) and FS04 (890-5226-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: FS05 (890-5226-5), FS06 (890-5226-6), FS07 (890-5226-7), FS08 (890-5226-8), FS09 (890-5226-9), FS10 (890-5226-10), FS11 (890-5226-11), SW01 (890-5226-12) and SW02 (890-5226-13). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-62229/20), (CCV 880-62229/31) and (CCV 880-62229/5). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Released to Imaging: 11/28/2023 10:28:31 AM

Job ID: 890-5226-1 SDG: 03C1558263 **Client Sample Results**

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: FS01

Date Collected: 09/08/23 10:25 Date Received: 09/08/23 13:36

Sample Depth: 2'

Method: SW846 8021B - Volatile Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/12/23 22:38	
Toluene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/12/23 22:38	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/12/23 22:38	
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		09/12/23 11:43	09/12/23 22:38	
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/12/23 22:38	
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		09/12/23 11:43	09/12/23 22:38	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130			09/12/23 11:43	09/12/23 22:38	
1,4-Difluorobenzene (Surr)	65	S1-	70 - 130			09/12/23 11:43	09/12/23 22:38	
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			09/13/23 12:14	
Method: SW846 8015 NM - Diese	I Panga Organ		60)					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	54.6		50.4	mg/Kg			09/13/23 10:49	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.4 54.6	U	50.4 50.4	mg/Kg mg/Kg		09/12/23 11:26 09/12/23 11:26	09/12/23 15:00 09/12/23 15:00	
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		09/12/23 11:26	09/12/23 15:00	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	136	S1+	70 - 130			09/12/23 11:26	09/12/23 15:00	
o-Terphenyl	115		70 - 130			09/12/23 11:26	09/12/23 15:00	
Method: EPA 300.0 - Anions, Ion	• •	-	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	895		4.99	mg/Kg			09/14/23 06:20	
lient Sample ID: FS02						Lab Sar	nple ID: 890-	5226-
ate Collected: 09/08/23 10:30							Matri	x: Soli
ate Received: 09/08/23 13:36								
ample Depth: 2'								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 22:59	
Toluene	<0.00199		0 00199	ma/Ka		09/12/23 11:43	09/12/23 22:59	

Analyte	Result	Quaimer		Unit	U	Flepaleu	Analyzeu	DirFac
Benzene	< 0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 22:59	1
Toluene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 22:59	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 22:59	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/12/23 22:59	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 22:59	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/12/23 22:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			09/12/23 11:43	09/12/23 22:59	1

Eurofins Carlsbad

Job ID: 890-5226-1

SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5226-1

Page 99 of 177

Client Sample Results

Job ID: 890-5226-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5226-2

Client Sample ID: FS02

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/08/23 10:30 Date Received: 09/08/23 13:36

Sample Depth: 2'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	60	S1-	70 - 130			09/12/23 11:43	09/12/23 22:59	1
Method: TAL SOP Total BTEX - 1	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			09/13/23 12:14	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5	mg/Kg			09/13/23 10:49	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5	mg/Kg		09/12/23 11:26	09/12/23 15:22	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.5	U	50.5	mg/Kg		09/12/23 11:26	09/12/23 15:22	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		09/12/23 11:26	09/12/23 15:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	138	S1+	70 - 130			09/12/23 11:26	09/12/23 15:22	1
o-Terphenyl	117		70 - 130			09/12/23 11:26	09/12/23 15:22	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	498		5.04	mg/Kg			09/13/23 22:45	1
lient Sample ID: FS03						Lob Son	nple ID: 890-	5006 5

Sample Depth: 2'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 23:19	1
Toluene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 23:19	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 23:19	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/12/23 23:19	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/12/23 23:19	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/12/23 23:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130			09/12/23 11:43	09/12/23 23:19	1
1,4-Difluorobenzene (Surr)	57	S1-	70 - 130			09/12/23 11:43	09/12/23 23:19	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			09/13/23 12:14	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte								

Page 100 of 177

Matrix: Solid

5

Client Sample Results

Job ID: 890-5226-1 SDG: 03C1558263

Lab Sample ID: 890-5226-3

Lab Sample ID: 890-5226-4

Matrix: Solid

Client Sample ID: FS03

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/08/23 10:35 Date Received: 09/08/23 13:36

Sample Depth: 2'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7	mg/Kg		09/12/23 11:26	09/12/23 15:44	1
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7	mg/Kg		09/12/23 11:26	09/12/23 15:44	1
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		09/12/23 11:26	09/12/23 15:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	133	S1+	70 - 130			09/12/23 11:26	09/12/23 15:44	1
o-Terphenyl	114		70 - 130			09/12/23 11:26	09/12/23 15:44	1

method. El A 300.0 - Amons, fon onromatography - Soluble								
	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	212	5.02	mg/Kg			09/13/23 23:04	1

Client Sample ID: FS04

Date Collected: 09/08/23 10:40

Date Received: 09/08/23 13:36

Sample Depth: 2'

1-Chlorooctane

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/12/23 23:40	1
Toluene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/12/23 23:40	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/12/23 23:40	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		09/12/23 11:43	09/12/23 23:40	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/12/23 23:40	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		09/12/23 11:43	09/12/23 23:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		70 - 130			09/12/23 11:43	09/12/23 23:40	1
1,4-Difluorobenzene (Surr)	75		70 - 130			09/12/23 11:43	09/12/23 23:40	1
Method: SW846 8015 NM - Diese								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			09/13/23 10:49	1
Method: SW846 8015B NM - Die								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 16:06	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 16:06	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 16:06	1

70 - 130

70 - 130

139 S1+

116

09/12/23 11:26 09/12/23 16:06

09/12/23 16:06

09/12/23 11:26

1

Zoho Sign Document ID: 316041E4-GPEVSVEAJYBB7OZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

Page 101 of 177

Client Sample Results

				Suits				
Client: Ensolum Project/Site: Hudson 1 Fed Com 9H							Job ID: 890 SDG: 03C1	
Client Sample ID: FS04						Lah Sar	nple ID: 890-	5226-4
Date Collected: 09/08/23 10:40						Lub Oui	-	x: Solic
Date Received: 09/08/23 13:36							Wath	x. 30iit
Sample Depth: 2'								
Method: EPA 300.0 - Anions, Ion Chro	omatograp	ohy - Solubl	le					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	114		5.05	mg/Kg			09/13/23 23:10	
Client Sample ID: FS05						Lab Sar	nple ID: 890-	5226-5
Date Collected: 09/08/23 10:45							Matri	x: Solic
Date Received: 09/08/23 13:36								
Sample Depth: 2'								
- Method: SW846 8021B - Volatile Orga	nic Comp	ounds (GC)					
Analyte		Qualifier	, RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		09/12/23 11:43	09/13/23 00:00	
Toluene	<0.00201	U	0.00201	mg/Kg		09/12/23 11:43	09/13/23 00:00	
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		09/12/23 11:43	09/13/23 00:00	
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		09/12/23 11:43	09/13/23 00:00	
o-Xylene	<0.00201	U	0.00201	mg/Kg		09/12/23 11:43	09/13/23 00:00	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		09/12/23 11:43	09/13/23 00:00	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		70 - 130			09/12/23 11:43	09/13/23 00:00	
1,4-Difluorobenzene (Surr)	60	S1-	70 - 130			09/12/23 11:43	09/13/23 00:00	1
- Method: TAL SOP Total BTEX - Total	BTEX Cal	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			09/13/23 12:14	
-								
Method: SW846 8015 NM - Diesel Rai				11-14		Drenered	Analyzad	
Analyte Total TPH	<49.9	Qualifier		Unit	<u>D</u>	Prepared	Analyzed 09/13/23 10:49	Dil Fac
	<49.9	U	49.9	mg/Kg			09/13/23 10:49	
Method: SW846 8015B NM - Diesel R	ange Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 16:50	
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 16:50	
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 16:50	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	-	S1+	70 - 130			09/12/23 11:26	09/12/23 16:50	
o-Terphenyl	113		70 - 130			09/12/23 11:26	09/12/23 16:50	
Method: FPA 300.0 - Anions, Ion Chr	omatoorar	hy - Solubl	le					
Method: EPA 300.0 - Anions, Ion Chro Analyte		o <mark>hy - Solubl</mark> Qualifier	le RL	Unit	D	Prepared	Analyzed	Dil Fa

Page 102 of 177

Client Sample Results

Job ID: 890-5226-1 SDG: 03C1558263

Client Sample ID: FS06

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/08/23 10:50 Date Received: 09/08/23 13:36

Sample Depth: 2'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 00:21	1
Toluene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 00:21	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 00:21	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		09/12/23 11:43	09/13/23 00:21	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 00:21	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		09/12/23 11:43	09/13/23 00:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		70 - 130			09/12/23 11:43	09/13/23 00:21	1
1,4-Difluorobenzene (Surr)	76		70 - 130			09/12/23 11:43	09/13/23 00:21	1
- Method: TAL SOP Total BTEX - ⁻	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00401	U	0.00401	mg/Kg			09/13/23 12:14	1
Method: SW846 8015 NM - Diese	al Rango Organ	ice (DRO) (30)					
Method: SW846 8015 NM - Diese Analyte		<mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total TPH	Result <49.6	Qualifier U	RL 49.6		<u>D</u>	Prepared		
Analyte	Result <49.6	Qualifier U	RL 49.6		<u>D</u> 	Prepared		
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	Result <49.6	Qualifier U nics (DRO) Qualifier	(GC)	mg/Kg			09/13/23 10:49	1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.6 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	(GC)	mg/Kg Unit		Prepared	09/13/23 10:49 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 49.6 sel Range Orga Result 	Qualifier U nics (DRO) Qualifier U U	RL 49.6 (GC) RL 49.6	mg/Kg Unit mg/Kg		Prepared 09/12/23 11:26	09/13/23 10:49 Analyzed 09/12/23 17:13	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.6	Qualifier U nics (DRO) Qualifier U U U	RL 49.6 (GC) RL 49.6 49.6	mg/Kg Unit mg/Kg mg/Kg		Prepared 09/12/23 11:26 09/12/23 11:26	09/13/23 10:49 Analyzed 09/12/23 17:13 09/12/23 17:13	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.6	Qualifier U nics (DRO) Qualifier U U U	RL 49.6 (GC) RL 49.6 49.6 49.6	mg/Kg Unit mg/Kg mg/Kg		Prepared 09/12/23 11:26 09/12/23 11:26 09/12/23 11:26	Analyzed 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.6	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 49.6 (GC) RL 49.6 49.6 49.6 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 09/12/23 11:26 09/12/23 11:26 09/12/23 11:26 Prepared	O9/13/23 10:49 Analyzed 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.6	Qualifier U nics (DRO) Qualifier U U U Qualifier S1+	RL 49.6 (GC) RL 49.6 49.6 49.6 20.6 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 09/12/23 11:26 09/12/23 11:26 09/12/23 11:26 Prepared 09/12/23 11:26	O9/13/23 10:49 Analyzed 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.6	Qualifier U nics (DRO) Qualifier U U U Qualifier S1+	RL 49.6 (GC) RL 49.6 49.6 49.6 20.6 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 09/12/23 11:26 09/12/23 11:26 09/12/23 11:26 Prepared 09/12/23 11:26	O9/13/23 10:49 Analyzed 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13 09/12/23 17:13	1 Dil Fac 1 1 1 Dil Fac

Client Sample ID: FS07 Date Collected: 09/08/23 10:55

Date Received: 09/08/23 13:36

Sample Depth: 2'

Method: SW846 8021B - Volat	le Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 00:41	1
Toluene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 00:41	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 00:41	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/13/23 00:41	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 00:41	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/13/23 00:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			09/12/23 11:43	09/13/23 00:41	1

Eurofins Carlsbad

Lab Sample ID: 890-5226-7

Matrix: Solid

Lab Sample ID: 890-5226-6 Matrix: Solid

5

Page 103 of 177

Client Sample Results

Job ID: 890-5226-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5226-7

Client Sample ID: FS07

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/08/23 10:55 Date Received: 09/08/23 13:36

Sample Depth: 2'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	51	S1-	70 - 130			09/12/23 11:43	09/13/23 00:41	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			09/13/23 12:14	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.5	U	49.5	mg/Kg			09/13/23 10:49	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.5	U	49.5	mg/Kg		09/12/23 11:26	09/12/23 17:35	
(GRO)-C6-C10 Diesel Range Organics (Over	<49.5		49.5	mg/Kg		09/12/23 11:26	09/12/23 17:35	
C10-C28)	\$49.5	0	49.5	ilig/Kg		09/12/23 11.20	09/12/23 17:35	
Oll Range Organics (Over C28-C36)	<49.5	U	49.5	mg/Kg		09/12/23 11:26	09/12/23 17:35	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	134	S1+	70 - 130			09/12/23 11:26	09/12/23 17:35	
o-Terphenyl	115		70 - 130			09/12/23 11:26	09/12/23 17:35	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	354		4.99	mg/Kg			09/13/23 23:42	
lient Sample ID: FS08						Lab San	nple ID: 890-	5226 0

Sample Depth: 2'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 01:01	1
Toluene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 01:01	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 01:01	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/13/23 01:01	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 01:01	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/13/23 01:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			09/12/23 11:43	09/13/23 01:01	1
1,4-Difluorobenzene (Surr)	50	S1-	70 - 130			09/12/23 11:43	09/13/23 01:01	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			09/13/23 12:14	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
		• ···		11	D	- ·	A sea h sea al	
Analyte	Result	Qualifier	RL	Unit	U	Prepared	Analyzed	Dil Fac

Page 104 of 177

Client Sample Results

Job ID: 890-5226-1 SDG: 03C1558263

Matrix: Solid

Lab Sample ID: 890-5226-8

Lab Sample ID: 890-5226-9

Matrix: Solid

Client Sample ID: FS08

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/08/23 11:00 Date Received: 09/08/23 13:36

Sample Depth: 2'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	50.3	mg/Kg		09/12/23 11:26	09/12/23 17:56	1
Diesel Range Organics (Over C10-C28)	<50.3	U	50.3	mg/Kg		09/12/23 11:26	09/12/23 17:56	1
Oll Range Organics (Over C28-C36)	<50.3	U	50.3	mg/Kg		09/12/23 11:26	09/12/23 17:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	134	S1+	70 - 130			09/12/23 11:26	09/12/23 17:56	1
o-Terphenyl	117		70 - 130			09/12/23 11:26	09/12/23 17:56	1

welliou. EPA 300.0 - Allions, Ion C	momatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	146	4.97	mg/Kg			09/13/23 23:49	1

Client Sample ID: FS09

Date Collected: 09/08/23 11:05

Date Received: 09/08/23 13:36

Sample Depth: 2'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 01:22	1
Toluene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 01:22	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 01:22	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		09/12/23 11:43	09/13/23 01:22	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 01:22	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		09/12/23 11:43	09/13/23 01:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130			09/12/23 11:43	09/13/23 01:22	1
1,4-Difluorobenzene (Surr)	72		70 - 130			09/12/23 11:43	09/13/23 01:22	1
Method: TAL SOP Total BTEX - T Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result <0.00399	Qualifier U ics (DRO) (0.00399	mg/Kg		<u> </u>	09/13/23 12:14	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	Result <0.00399 I Range Organ Result	Qualifier U ics (DRO) (Qualifier	0.00399 GC) RL	mg/Kg Unit	D	Prepared Prepared	09/13/23 12:14 Analyzed	
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese	I Range Organ Result <0.00399 I Range Organ <pre>csol</pre>	Qualifier U ics (DRO) (Qualifier U nics (DRO)	0.00399 GC) RL 50.2 (GC)	mg/Kg Unit mg/Kg	D	Prepared	09/13/23 12:14 Analyzed 09/13/23 10:49	1 Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte	I Range Organ Result <50.2 Sel Range Orga Result Result	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	0.00399 GC) RL 50.2 (GC) RL	mg/Kg Unit mg/Kg Unit		Prepared	09/13/23 12:14 Analyzed 09/13/23 10:49 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	I Range Organ Result <50.2 Sel Range Orga Result <50.2	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier U	0.00399 GC) RL 50.2 (GC) RL 50.2	mg/Kg Unit mg/Kg Unit unit mg/Kg	D	Prepared Prepared 09/12/23 11:26	Analyzed 09/13/23 12:14 Analyzed 09/13/23 10:49 Analyzed 09/12/23 18:18	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	I Range Organ Result <50.2 Sel Range Orga Result Result	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier U	0.00399 GC) RL 50.2 (GC) RL	mg/Kg Unit mg/Kg Unit	D	Prepared	09/13/23 12:14 Analyzed 09/13/23 10:49 Analyzed	Dil Fac

%Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 70 - 130 09/12/23 11:26 09/12/23 18:18 1-Chlorooctane 134 S1+ 1 o-Terphenyl 115 70 - 130 09/12/23 11:26 09/12/23 18:18 1

Eurofins Carlsbad

0 5226 1

5

Zoho Re

f 177

5

		Client	Sample Re	sults				
Client: Ensolum							Job ID: 890	-5226-
Project/Site: Hudson 1 Fed Com 9H							SDG: 03C1	155826
lient Sample ID: FS09						Lab San	nple ID: 890-	5226-
ate Collected: 09/08/23 11:05							Matri	x: Soli
ate Received: 09/08/23 13:36								
ample Depth: 2'								
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Soluble	•					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Chloride	126		5.02	mg/Kg			09/13/23 23:55	
lient Sample ID: FS10						Lab Sam	ple ID: 890-5	226-1
ate Collected: 09/08/23 11:10							-	x: Sol
ate Received: 09/08/23 13:36								
ample Depth: 2'								
Mothod: SW946 9021B Volatila	Organic Comp	ounde (CC)						
Method: SW846 8021B - Volatile (Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Benzene	<0.00201		0.00201	mg/Kg		09/12/23 11:43	09/13/23 01:42	
Toluene	< 0.00201		0.00201	mg/Kg		09/12/23 11:43	09/13/23 01:42	
Ethylbenzene	< 0.00201		0.00201	mg/Kg		09/12/23 11:43	09/13/23 01:42	
n-Xylene & p-Xylene	< 0.00402		0.00402	mg/Kg		09/12/23 11:43	09/13/23 01:42	
p-Xylene	< 0.00201		0.00201	mg/Kg		09/12/23 11:43	09/13/23 01:42	
Xylenes, Total	<0.00402		0.00402	mg/Kg		09/12/23 11:43	09/13/23 01:42	
• • •	<i></i>	0 115				_ /		
Surrogate	% Recovery 	Qualifier	<u>Limits</u> 70 - 130			Prepared 09/12/23 11:43	Analyzed 09/13/23 01:42	Dil F
4-Bromofluorobenzene (Surr)	78 70					09/12/23 11:43	09/13/23 01:42	
1,4-Difluorobenzene (Surr)	70		70 - 130			09/12/23 11.43	09/13/23 01.42	
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00402	U	0.00402	mg/Kg			09/13/23 12:14	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (O	C)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	<50.1	U	50.1	mg/Kg			09/13/23 10:49	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics	<50.1		50.1	mg/Kg		09/12/23 11:26	09/12/23 18:39	
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.1	U	50.1	mg/Kg		09/12/23 11:26	09/12/23 18:39	
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		09/12/23 11:26	09/12/23 18:39	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil I
1-Chlorooctane	148	S1+	70 - 130			09/12/23 11:26	09/12/23 18:39	
o-Terphenyl	121	S1+	70 - 130			09/12/23 11:26	09/12/23 18:39	

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	184		4.96	mg/Kg			09/14/23 00:02	1

Page 106 of 177

Client Sample Results

Job ID: 890-5226-1 SDG: 03C1558263

Client Sample ID: FS11

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/08/23 11:15 Date Received: 09/08/23 13:36

Sample Depth: 2'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 03:04	
Toluene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 03:04	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 03:04	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/13/23 03:04	
o-Xylene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 03:04	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		09/12/23 11:43	09/13/23 03:04	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	76		70 - 130			09/12/23 11:43	09/13/23 03:04	
1,4-Difluorobenzene (Surr)	77		70 - 130			09/12/23 11:43	09/13/23 03:04	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg		. <u> </u>	09/13/23 12:14	
Method: SW846 8015 NM - Diese	l Panga Organ		60)					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.5	U	50.5	mg/Kg			09/13/23 10:49	· · · ·
0 0	_ Result <50.5	Qualifier U	RL	Unit mg/Kg	<u>D</u>	Prepared 09/12/23 11:26	Analyzed 09/12/23 19:01	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg				
Diesel Range Organics (Over C10-C28)	<50.5		50.5	mg/Kg		09/12/23 11:26	09/12/23 19:01	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		09/12/23 11:26	09/12/23 19:01	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	134	S1+	70 - 130			09/12/23 11:26	09/12/23 19:01	
o-Terphenyl	113		70 - 130			09/12/23 11:26	09/12/23 19:01	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	121		4.97	mg/Kg			09/14/23 00:08	
lient Sample ID: SW01						Lab Sam	ple ID: 890-5	226-12
ate Collected: 09/08/23 11:20							-	x: Solic
ate Received: 09/08/23 13:36								
ample Depth: 0-2'								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		09/12/23 11:43	09/13/23 03:25	

4-Bromofluorobenzene (Surr)	92		70 _ 130		09/12/23 11:43	09/13/23 03:25	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00398	U	0.00398	mg/Kg	09/12/23 11:43	09/13/23 03:25	1
o-Xylene	<0.00199	U	0.00199	mg/Kg	09/12/23 11:43	09/13/23 03:25	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg	09/12/23 11:43	09/13/23 03:25	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg	09/12/23 11:43	09/13/23 03:25	1
Toluene	<0.00199	U	0.00199	mg/Kg	09/12/23 11:43	09/13/23 03:25	1
Benzene	< 0.00199	U	0.00199	mg/Kg	09/12/23 11:43	09/13/23 03:25	1

4-Bromofluorobenzene (Surr)

Eurofins Carlsbad

Released to Imaging: 11/28/2023 10:28:31 AM

9/14/2023

Lab Sample ID: 890-5226-11 Matrix: Solid **Client Sample Results**

Job ID: 890-5226-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5226-12

Client Sample ID: SW01

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/08/23 11:20

Date Received: 09/08/23 13:36 Sample Depth: 0-2'

Client: Ensolum

1	
	Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

1,4-Difluorobenzene (Surr) 54 \$1- Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier Total BTEX <0.00398 U Image: Colored colo	RL 50.0	Unit mg/Kg Unit mg/Kg Unit mg/Kg	D D	09/12/23 11:43 Prepared Prepared Prepared	09/13/23 03:25 Analyzed 09/13/23 12:14 Analyzed 09/13/23 10:49 Analyzed	Dil Far Dil Far
AnalyteResultQualifierTotal BTEX<0.00398UMethod: SW846 8015 NM - Diesel Range Organics (DRO) (GC)AnalyteResultQualifierTotal TPH71.1Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)AnalyteResultQualifierGasoline Range Organics<50.0U(GRO)-C6-C10UUDiesel Range Organics (Over71.1C10-C28)<50.0UOll Range Organics (Over C28-C36)<50.0USurrogate%RecoveryQualifier1-Chlorooctane142S1+	0.00398	Unit mg/Kg mg/Kg Unit	D	Prepared	09/13/23 12:14 Analyzed 09/13/23 10:49	Dil Fa
Total BTEX <0.00398	0.00398	Unit mg/Kg mg/Kg Unit	D	Prepared	09/13/23 12:14 Analyzed 09/13/23 10:49	Dil Fa
Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier Total TPH 71.1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier Gasoline Range Organics <50.0	RL 50.0	Unit mg/Kg Unit		Prepared	Analyzed 09/13/23 10:49	
Analyte Result Qualifier Total TPH 71.1 71.1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (Ge Analyte Result Qualifier Gasoline Range Organics <50.0	RL 50.0	mg/Kg Unit		Prepared	09/13/23 10:49	
Analyte Result Qualifier Total TPH 71.1 71.1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (Ge Analyte Result Qualifier Gasoline Range Organics <50.0	RL 50.0	mg/Kg Unit		Prepared	09/13/23 10:49	
Method: SW846 8015B NM - Diesel Range Organics (DRO) (Gr Analyte Result Qualifier Gasoline Range Organics <50.0	C) RL	Unit	D	· · · · · · · · · · · · · · · · · · ·		Dil F
Analyte Result Qualifier Gasoline Range Organics <50.0	RL		<u>D</u>	· · · · · · · · · · · · · · · · · · ·	Analyzed	Dil F
AnalyteResultQualifierGasoline Range Organics<50.0	RL		D	· · · · · · · · · · · · · · · · · · ·	Analyzed	Dil F
Gasoline Range Organics <50.0			<u> </u>	· · · · · · · · · · · · · · · · · · ·	Analyzed	Dil F
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) <50.0	50.0	mg/Kg				-
Diesel Range Organics (Over 71.1 C10-C28) <50.0				09/12/23 11:26	09/12/23 19:22	
C10-C28)<50.0UOll Range Organics (Over C28-C36)<50.0						
Oll Range Organics (Over C28-C36) <50.0	50.0	mg/Kg		09/12/23 11:26	09/12/23 19:22	
Surrogate%RecoveryQualifier1-Chlorooctane142\$1+	50.0			00/40/00 44 00	00/40/00 40 00	
1-Chlorooctane 142 S1+	50.0	mg/Kg		09/12/23 11:26	09/12/23 19:22	
	Limits			Prepared	Analyzed	Dil F
o-Terphenyl 122	70 - 130			09/12/23 11:26	09/12/23 19:22	
	70 - 130			09/12/23 11:26	09/12/23 19:22	
Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier		Unit	P	Draparad	Apolyzod	Dil F
Analyte Result Qualifier Chloride 245	RL	Unit	D	Prepared	Analyzed	

Client Sample ID: SW02

Date Collected: 09/08/23 11:25 Date Received: 09/08/23 13:36 Sample Depth: 0-2'

Lab Sample ID: 890-5226-13

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 03:45	1
Toluene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 03:45	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 03:45	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		09/12/23 11:43	09/13/23 03:45	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/12/23 11:43	09/13/23 03:45	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		09/12/23 11:43	09/13/23 03:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130			09/12/23 11:43	09/13/23 03:45	1
1,4-Difluorobenzene (Surr)	74		70 - 130			09/12/23 11:43	09/13/23 03:45	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			09/13/23 12:14	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		U	49.9	mg/Kg			09/13/23 10:49	

Client Sample Results

Job ID: 890-5226-1 SDG: 03C1558263

Matrix: Solid

5

Lab Sample ID: 890-5226-13

Client Sample ID: SW02

Project/Site: Hudson 1 Fed Com 9H

Date Collected: 09/08/23 11:25

Date Received: 09/08/23 13:36 Sample Depth: 0-2'

Client: Ensolum

Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 19:43	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 19:43	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		09/12/23 11:26	09/12/23 19:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
		21						
1-Chlorooctane	138	S1+	70 - 130			09/12/23 11:26	09/12/23 19:43	1
1-Chlorooctane o-Terphenyl	138 119	\$1+	70 - 130 70 - 130			09/12/23 11:26 09/12/23 11:26	09/12/23 19:43 09/12/23 19:43	1
	119		70 - 130					1
o-Terphenyl	119 Chromatograp		70 - 130	Unit	D			ז 1 Dil Fac
Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-5226-1	FS01	110	65 S1-		
890-5226-1 MS	FS01	132 S1+	108		
890-5226-1 MSD	FS01	125	116		
890-5226-2	FS02	98	60 S1-		
890-5226-3	FS03	81	57 S1-		
890-5226-4	FS04	80	75		
890-5226-5	FS05	92	60 S1-		
890-5226-6	FS06	80	76		
890-5226-7	FS07	91	51 S1-		
890-5226-8	FS08	100	50 S1-		
890-5226-9	FS09	82	72		
890-5226-10	FS10	78	70		
890-5226-11	FS11	76	77		
890-5226-12	SW01	92	54 S1-		
890-5226-13	SW02	78	74		
LCS 880-62272/1-A	Lab Control Sample	121	118		
LCSD 880-62272/2-A	Lab Control Sample Dup	128	112		
MB 880-62129/5-A	Method Blank	70	95		
MB 880-62272/5-A	Method Blank	70	88		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Re
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-5224-A-11-D MS	Matrix Spike	132 S1+	102	· · · · · · · · · · · · · · · · · · ·
890-5224-A-11-E MSD	Matrix Spike Duplicate	133 S1+	103	
890-5226-1	FS01	136 S1+	115	
890-5226-2	FS02	138 S1+	117	
890-5226-3	FS03	133 S1+	114	
890-5226-4	FS04	139 S1+	116	
890-5226-5	FS05	132 S1+	113	
890-5226-6	FS06	134 S1+	114	
890-5226-7	FS07	134 S1+	115	
890-5226-8	FS08	134 S1+	117	
890-5226-9	FS09	134 S1+	115	
890-5226-10	FS10	148 S1+	131 S1+	
890-5226-11	FS11	134 S1+	113	
890-5226-12	SW01	142 S1+	122	
890-5226-13	SW02	138 S1+	119	
LCS 880-62268/2-A	Lab Control Sample	105	103	
LCSD 880-62268/3-A	Lab Control Sample Dup	106	100	
	Method Blank	123	109	

1CO = 1-Chlorooctane

Eurofins Carlsbad

Prep Type: Total/NA

Page 109 of 177

Job ID: 890-5226-1 SDG: 03C1558263

Prep Type: Total/NA

Zoho Sign Document ID: 316041F4-GPEVSVEA.JYBB7OZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

Surrogate Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H OTPH = o-Terphenyl Job ID: 890-5226-1 SDG: 03C1558263

Page 110 of 177

Eurofins Carlsbad

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-62129/5- Matrix: Solid	-A							Client Sa	mple ID: Metho Prep Type:	
Analysis Batch: 62238									Prep Batc	
		МВ								
Analyte		Qualifier		RL	Unit			Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.002		mg/Kg			11/23 09:25	09/12/23 11:40	
Toluene	<0.00200		0.002		mg/Kg			11/23 09:25	09/12/23 11:40	
Ethylbenzene	<0.00200	U	0.002	:00	mg/Kg		09/	11/23 09:25	09/12/23 11:40	
m-Xylene & p-Xylene	<0.00400	U	0.004	00	mg/Kg		09/	11/23 09:25	09/12/23 11:40	
o-Xylene	<0.00200	U	0.002	:00	mg/Kg		09/	11/23 09:25	09/12/23 11:40	
Xylenes, Total	<0.00400	U	0.004	00	mg/Kg		09/	11/23 09:25	09/12/23 11:40	
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits				I	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	70		70 - 13	0			09/	11/23 09:25	09/12/23 11:40	
1,4-Difluorobenzene (Surr)	95		70 - 13	0			09/	11/23 09:25	09/12/23 11:40	
Lab Sample ID: MB 880-62272/5-	-A							Client Sa	mple ID: Metho	od Blan
Matrix: Solid									Prep Type:	
Analysis Batch: 62238									Prep Batc	
	MB	МВ								
Analyte	Result	Qualifier		RL	Unit		DF	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.002	.00	mg/Kg		09/	12/23 11:43	09/12/23 22:17	
Toluene	<0.00200	U	0.002	00	mg/Kg		09/	12/23 11:43	09/12/23 22:17	
Ethylbenzene	<0.00200		0.002		mg/Kg			12/23 11:43	09/12/23 22:17	
m-Xylene & p-Xylene	<0.00400		0.004		mg/Kg			12/23 11:43	09/12/23 22:17	
o-Xylene	<0.00200	U	0.002		mg/Kg			12/23 11:43	09/12/23 22:17	
Xylenes, Total	<0.00400		0.002		mg/Kg			12/23 11:43	09/12/23 22:17	
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits				I	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	70		70 - 13	0			09/	12/23 11:43	09/12/23 22:17	
1,4-Difluorobenzene (Surr)	88		70 - 13	0			09/	12/23 11:43	09/12/23 22:17	
Lab Sample ID: LCS 880-62272/1	1-A						Clien	t Sample	ID: Lab Control	Sample
Matrix: Solid									Prep Type:	Total/N/
Analysis Batch: 62238									Prep Batc	h: 62273
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier I	Jnit	D	%Rec	Limits	
Benzene			0.100	0.09610	r	ng/Kg		96	70 - 130	
Toluene			0.100	0.09660	r	ng/Kg		97	70 - 130	
Ethylbenzene			0.100	0.1043	r	ng/Kg		104	70 - 130	
m-Xylene & p-Xylene			0.200	0.2233	r	ng/Kg		112	70 - 130	
o-Xylene			0.100	0.1130	r	ng/Kg		113	70 - 130	
	LCS LCS									
Surrogate		lifier	Limits							
4-Bromofluorobenzene (Surr)	121		70 - 130							
1,4-Difluorobenzene (Surr)	118		70 - 130							
Lab Sample ID: LCSD 880-62272	2/2-A					Clie	ent Sar	nple ID: L	ab Control Sam	iple Dur
Matrix: Solid									Prep Type:	
Analysis Batch: 62238									Prep Batc	
analysis Batom 02200			Spike	LCSD	LCSD				%Rec	RPI
Analyta			Added	2000	Qualifier I		_		/intec	

RPD

0

5

Job ID: 890-5226-1

SDG: 03C1558263

Analyte

Benzene

Result Qualifier

0.09581

Unit

mg/Kg

D

%Rec

96

Limits

70 - 130

Added

0.100

Limit

35

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5226-1 SDG: 03C1558263

Page 112 of 177

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-62	272/2-A					Clier	nt Sam	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 62238									Prep	Batch:	62272
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.1011		mg/Kg		101	70 - 130	5	35
Ethylbenzene			0.100	0.1096		mg/Kg		110	70 _ 130	5	35
m-Xylene & p-Xylene			0.200	0.2327		mg/Kg		116	70 - 130	4	3
o-Xylene			0.100	0.1177		mg/Kg		118	70 - 130	4	3
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	128		70 - 130								
1,4-Difluorobenzene (Surr)	112		70 - 130								
,											
Lab Sample ID: 890-5226-1 M	IS								Client Sa	nple ID:	FS01
Matrix: Solid										ype: To	
Analysis Batch: 62238									Prep	Batch:	62272
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00200	U	0.0998	0.07731		mg/Kg		77	70 - 130		
Toluene	<0.00200	U	0.0998	0.08191		mg/Kg		82	70 - 130		
Ethylbenzene	<0.00200	U	0.0998	0.09084		mg/Kg		91	70 - 130		
m-Xylene & p-Xylene	<0.00401	U	0.200	0.1915		mg/Kg		96	70 - 130		
o-Xylene	<0.00200	U	0.0998	0.09648		mg/Kg		97	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	108		70 - 130								
Lab Sample ID: 890-5226-1 M Matrix: Solid	ISD								Client Sa	mple ID: ype: To	
Analysis Batch: 62238										Batch:	
Analysis Datell. 02230	Sample	Sample	Spike	MSD	MSD				%Rec	Daten.	RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene	<0.00200	U	0.0990	0.08297		mg/Kg		84	70 - 130	7	35
Toluene	< 0.00200	U	0.0990	0.08431		mg/Kg		85	70 - 130	3	35
Ethylbenzene			0.0990	0.09286		mg/Kg		94	70 - 130	2	35
m-Xylene & p-Xylene	< 0.00401	U	0.198	0.1940		mg/Kg		98	70 - 130	· · · · ·	35
o-Xylene			0.0990	0.09744		mg/Kg		98	70 - 130 70 - 130	1	35
			0.0000	0.00144				00			00
	MSD	MSD									
Surrogate	%Recovery		Limits								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

125

116

Lab Sample ID: MB 880-62268/1-A Matrix: Solid Analysis Batch: 62229						Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batol	Total/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		09/12/23 08:00	09/12/23 08:26	1
(GRO)-C6-C10								

70 - 130

70 - 130

Eurofins Carlsbad

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Job ID: 890-5226-1

SDG: 03C1558263

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-62268	/1 -A									Client Sa	ample ID: N		
Matrix: Solid											Prep T		
Analysis Batch: 62229											Prep	Batch	: 62268
	1	МВ МВ	3										
Analyte	Res	sult Qua	alifier	RL		Un	it	D	P	repared	Analyze	ed	Dil Fac
Diesel Range Organics (Over	<5	60.0 U		50.0		mg	/Kg	_	09/1	2/23 08:00	09/12/23 0	08:26	1
C10-C28)				50.0			117		00/4		00/40/00 0		
Oll Range Organics (Over C28-C36)	<5	60.0 U		50.0		mg	/Kg		09/1	2/23 08:00	09/12/23 0	18:20	1
	1	мв мв	3										
Surrogate	%Recov	ery Qu	alifier	Limits					P	repared	Analyz	ed	Dil Fac
1-Chlorooctane		123		70 - 130					09/1	2/23 08:00	09/12/23 (08:26	1
o-Terphenyl		109		70 - 130					09/1	2/23 08:00	09/12/23 (08:26	1
Lab Sample ID: LCS 880-6226	9/2 A							~	liont	Sample		ntrol	Sampla
Matrix: Solid	5/2-A							U	ment	Sample	ID: Lab Co Prep T		-
Analysis Batch: 62229				Spike	LCS	LCS					%Rec	Datch	: 62268
Analyte				Added		Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	1005		mg/Kg			101	70 - 130		
(GRO)-C6-C10				1000	1000		mg/ixg			101	70-100		
Diesel Range Organics (Over				1000	963.8		mg/Kg			96	70 - 130		
C10-C28)							0.0						
	LCS I	LCS											
Surrogate	%Recovery	Qualifier	r	Limits									
1-Chlorooctane	105			70 - 130									
o-Terphenyl	103			70 - 130									
Matrix: Solid Analysis Batch: 62229				Spiko		LCSD					Prep T Prep %Rec		otal/NA : 62268 RPD
Analista				Spike					_	0/ Dee		000	
Analyte Gasoline Range Organics				Added	1016	Qualifier	· Unit mg/Kg		_ <u>D</u>		Limits 70 - 130	1	
(GRO)-C6-C10				1000	1010		mg/rtg			102	70 - 100	i	20
Diesel Range Organics (Over				1000	976.3		mg/Kg			98	70 - 130	1	20
C10-C28)													
	LCSD I	LCSD											
Surrogate	%Recovery		-	Limits									
1-Chlorooctane	106			70 - 130									
o-Terphenyl	100			70 - 130									
Lab Sample ID: 890-5224-A-11	-D MS									Client	Sample ID:		
Matrix: Solid													otal/NA
Amelia Detaile Acces				Call		ме						Batch	: 62268
Analysis Batch: 62229		. .			MS	MS					%Rec		
	Sample S	-		Spike	Deerste	0	11			0/ D-c	Lincita		
Analyte	Result (Qualifier		Added		Qualifier			_ <u>D</u>	%Rec	Limits		
Analyte Gasoline Range Organics	-	Qualifier		-	Result 946.3	Qualifier	· Unit mg/Kg		_ <u>D</u>	% Rec	Limits 70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result (Qualifier U		Added		Qualifier			_ <u>D</u>				
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result (<49.6	Qualifier U		Added 999	946.3	Qualifier	mg/Kg		_ <u>D</u>	95	70 - 130		
Analysis Batch: 62229 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	<u>Result</u> <49.6 <49.6 MS	Qualifier U U MS		Added 999	946.3	Qualifier	mg/Kg		_ <u>D</u>	95	70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result (<49.6 (<49.6 ()	Qualifier U U MS Qualifier	 ,	Added 999 999	946.3	Qualifier	mg/Kg		_ <u>D</u>	95	70 - 130		

Eurofins Carlsbad

102

o-Terphenyl

70 - 130

Zoho Sign Document ID: 316041F4-GPEVSVEA JYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid										Prep	Type: To	tal/NA
Analysis Batch: 62229										Prep	Batch:	62268
	Sample	Sample	Spike	М	SD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Res	ult	Qualifier	Unit	[0 %Rec	Limits	RPD	Limi
Gasoline Range Organics	<49.6	U	999	95	6.5		mg/Kg		96	70 - 130	1	20
GRO)-C6-C10												
Diesel Range Organics (Over	<49.6	U	999	12	296		mg/Kg		130	70 - 130	1	20
C10-C28)												
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	133	S1+	70 - 130	-								
o-Terphenyl	103		70 - 130									
ethod: 300.0 - Anions, Lab Sample ID: MB 880-623 Matrix: Solid Analysis Batch: 62394		ograph	y						Client S	Sample ID: Prep	Method Type: S	
		МВ МВ										
Analyte	Re	sult Qua	lifier	RL		Unit		D	Prepared	Analyz	zed	Dil Fa
		5.00 U		5.00		mg/Kg				09/13/23		

Lab Sample ID: LCS 880-62349/2-A	
Matrix: Solid	
Analysis Batch: 62394	

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	250.8		mg/Kg		100	90 - 110	

Lab Sample ID: LCSD 880-62349/3-A Matrix: Solid Analysis Batch: 62394				Clier	nt San	nple ID:	Lab Contro Prep	l Sampl Type: So	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	248.6		mg/Kg		99	90 - 110	1	20
Lab Sample ID: 890-5226-2 MS							Client Sa	mple ID:	FS02

Lab Sample ID: 890-5226-2 MS Matrix: Solid									Client Sample Prep Typ	e ID: FS02 e: Soluble
Analysis Batch: 62394										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	498		252	729.1		mg/Kg		92	90 - 110	
Lab Sample ID: 890-5226-2 MSD Matrix: Solid Analysis Batch: 62394)								Client Sample Prep Typ	e ID: FS02 e: Soluble

	Analysis Batch: 62394											
		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
l	Chloride	498		252	725.4		mg/Kg		90	90 - 110	1	20

Page 114 of 177

Job ID: 890-5226-1 SDG: 03C1558263

Prep Type: Soluble

Zoho Sign Document ID: 316041F4-GPEVSVEA JYBB7OZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

Job ID: 890-5226-1

SDG: 03C1558263

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-5226-12 MS												Client San	nple ID:	SW01
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 62394														
	Sample	Sample	e	Spike		MS	MS					%Rec		
Analyte	Result	Qualifi	er	Added		Result	Qualifier	Unit		D	%Rec	Limits		
Chloride	245			251		519.1		mg/Kg		_	110	90 - 110		
Lab Sample ID: 890-5226-12 MSD												Client San	nple ID:	SW01
Matrix: Solid													· Type: S	
Analysis Batch: 62394														
	Sample	Sample	e	Spike		MSD	MSD					%Rec		RPI
Analyte	-	Qualifi		Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride	245			251		516.5		mg/Kg		_	109	90 - 110	0	20
Lab Sample ID: MB 880-62266/1-A											Client	Sample ID:	Mothod	Blani
											Cheffit			
Matrix: Solid												Frep	Type: S	
Analysis Batch: 62407			в											
	_	MB N							_	_				
Analyte		esult C			RL		Unit		D	PI	repared	Analyz		Dil Fa
Chloride	<	<5.00 U	1		5.00		mg/Kg					09/14/23	03:13	
Lab Sample ID: LCS 880-62266/2-A									Cli	ent	Sample	e ID: Lab Co	ontrol S	ampl
Matrix: Solid													Type: S	
Analysis Batch: 62407														
				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
Chloride				250		243.2		mg/Kg			97	90 - 110		
								01				Lab Cantur		I. D
Lab Sample ID: LCSD 880-62266/3-/	4							CI	ent S	am	pie iD:	Lab Contro		
Matrix: Solid												Prep	Type: S	Idulo
Analysis Batch: 62407														
				• •								~ -		
				Spike		LCSD				_		%Rec		
Analyte				Added		Result	LCSD Qualifier	Unit		D	%Rec	Limits	RPD	Limi
								Unit mg/Kg		D	%Rec 99		2	Lim
Analyte Chloride Lab Sample ID: 890-5224-A-7-E MS				Added		Result				<u>D</u>	99	Limits	2	Lim i 2
Chloride				Added		Result				<u>D</u>	99	Limits 90 - 110 t Sample ID	2 2: Matrix	Limi 2 c Spik
Chloride Lab Sample ID: 890-5224-A-7-E MS				Added		Result				<u>D</u>	99	Limits 90 - 110 t Sample ID	2	Limi 20 c Spike
Chloride Lab Sample ID: 890-5224-A-7-E MS Matrix: Solid	Sample	Sample	 9	Added		Result 248.3				<u>D</u>	99	Limits 90 - 110 t Sample ID	2 2: Matrix	Limi 20 c Spike
Chloride Lab Sample ID: 890-5224-A-7-E MS Matrix: Solid	-	Sample Qualifi		Added 250		Result 248.3 MS	Qualifier			D	99	Limits 90 - 110 t Sample ID Prep	2 2: Matrix	Limi 20 c Spike
Chloride Lab Sample ID: 890-5224-A-7-E MS Matrix: Solid Analysis Batch: 62407 Analyte	-	-		Added 250 Spike		Result 248.3 MS	Qualifier	mg/Kg			99 Client	Limits 90 - 110 t Sample ID Prep %Rec	2 2: Matrix	Limi 20 c Spike
Chloride Lab Sample ID: 890-5224-A-7-E MS Matrix: Solid Analysis Batch: 62407 Analyte Chloride	Result 507	-		Added 250 Spike Added		Result 248.3 MS Result	Qualifier	mg/Kg Unit mg/Kg			99 Client %Rec 109	Limits 90 - 110 t Sample ID Prep %Rec Limits 90 - 110	2 : Matrix Type: S	Limi 20 Soluble
Chloride Lab Sample ID: 890-5224-A-7-E MS Matrix: Solid Analysis Batch: 62407 Analyte Chloride Lab Sample ID: 890-5224-A-7-F MSI	Result 507	-		Added 250 Spike Added		Result 248.3 MS Result	Qualifier	mg/Kg Unit mg/Kg			99 Client %Rec 109	Limits 90 - 110 t Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	2 2: Matrix Type: S pike Du	Limi 20 Soluble
Chloride Lab Sample ID: 890-5224-A-7-E MS Matrix: Solid Analysis Batch: 62407 Analyte Chloride Lab Sample ID: 890-5224-A-7-F MSI Matrix: Solid	Result 507	-		Added 250 Spike Added		Result 248.3 MS Result	Qualifier	mg/Kg Unit mg/Kg			99 Client %Rec 109	Limits 90 - 110 t Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	2 : Matrix Type: S	Limi 20 Spike Soluble
Chloride Lab Sample ID: 890-5224-A-7-E MS Matrix: Solid Analysis Batch: 62407 Analyte Chloride Lab Sample ID: 890-5224-A-7-F MSI	Result 507	Qualifi	er	Added 250 Spike Added 250		Result 248.3 MS Result 778.8	Qualifier MS Qualifier	mg/Kg Unit mg/Kg	 Client		99 Client %Rec 109	Limits 90 - 110 t Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp Prep	2 2: Matrix Type: S pike Du	Limi 20 Soluble plicate Soluble
Chloride Lab Sample ID: 890-5224-A-7-E MS Matrix: Solid Analysis Batch: 62407 Analyte Chloride Lab Sample ID: 890-5224-A-7-F MSI Matrix: Solid	Result 507 D Sample	Qualifi	er	Added 250 Spike Added		Result 248.3 MS Result 778.8	Qualifier MS Qualifier	mg/Kg Unit mg/Kg			99 Client %Rec 109	Limits 90 - 110 t Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	2 2: Matrix Type: S pike Du	plicate

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Job ID: 890-5226-1 SDG: 03C1558263

GC VOA

Prep Batch: 62129

Lab Sample ID MB 880-62129/5-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
Analysis Batch: 62238					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5226-1	FS01	Total/NA	Solid	8021B	62272
890-5226-2	FS02	Total/NA	Solid	8021B	62272
890-5226-3	FS03	Total/NA	Solid	8021B	62272
890-5226-4	FS04	Total/NA	Solid	8021B	62272
890-5226-5	FS05	Total/NA	Solid	8021B	62272
890-5226-6	FS06	Total/NA	Solid	8021B	62272
890-5226-7	FS07	Total/NA	Solid	8021B	62272
890-5226-8	FS08	Total/NA	Solid	8021B	62272
890-5226-9	FS09	Total/NA	Solid	8021B	62272
890-5226-10	FS10	Total/NA	Solid	8021B	62272
890-5226-11	FS11	Total/NA	Solid	8021B	62272
890-5226-12	SW01	Total/NA	Solid	8021B	62272
890-5226-13	SW02	Total/NA	Solid	8021B	62272
MB 880-62129/5-A	Method Blank	Total/NA	Solid	8021B	62129
MB 880-62272/5-A	Method Blank	Total/NA	Solid	8021B	62272
LCS 880-62272/1-A	Lab Control Sample	Total/NA	Solid	8021B	62272
LCSD 880-62272/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	62272
890-5226-1 MS	FS01	Total/NA	Solid	8021B	62272
890-5226-1 MSD	FS01	Total/NA	Solid	8021B	62272

Prep Batch: 62272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5226-1	FS01	Total/NA	Solid	5035	
890-5226-2	FS02	Total/NA	Solid	5035	
890-5226-3	FS03	Total/NA	Solid	5035	
890-5226-4	FS04	Total/NA	Solid	5035	
890-5226-5	FS05	Total/NA	Solid	5035	
890-5226-6	FS06	Total/NA	Solid	5035	
890-5226-7	FS07	Total/NA	Solid	5035	
890-5226-8	FS08	Total/NA	Solid	5035	
890-5226-9	FS09	Total/NA	Solid	5035	
890-5226-10	FS10	Total/NA	Solid	5035	
890-5226-11	FS11	Total/NA	Solid	5035	
890-5226-12	SW01	Total/NA	Solid	5035	
890-5226-13	SW02	Total/NA	Solid	5035	
MB 880-62272/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-62272/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-62272/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5226-1 MS	FS01	Total/NA	Solid	5035	
890-5226-1 MSD	FS01	Total/NA	Solid	5035	

Analysis Batch: 62355

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method Prep B	Batch
890-5226-1	FS01	Total/NA	Solid	Total BTEX	
890-5226-2	FS02	Total/NA	Solid	Total BTEX	
890-5226-3	FS03	Total/NA	Solid	Total BTEX	
890-5226-4	FS04	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

5

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

GC VOA (Continued)

Analysis Batch: 62355 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5226-5	FS05	Total/NA	Solid	Total BTEX	
890-5226-6	FS06	Total/NA	Solid	Total BTEX	
890-5226-7	FS07	Total/NA	Solid	Total BTEX	
890-5226-8	FS08	Total/NA	Solid	Total BTEX	
890-5226-9	FS09	Total/NA	Solid	Total BTEX	
890-5226-10	FS10	Total/NA	Solid	Total BTEX	
890-5226-11	FS11	Total/NA	Solid	Total BTEX	
890-5226-12	SW01	Total/NA	Solid	Total BTEX	
890-5226-13	SW02	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 62229

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5226-1	FS01	Total/NA	Solid	8015B NM	62268
890-5226-2	FS02	Total/NA	Solid	8015B NM	62268
890-5226-3	FS03	Total/NA	Solid	8015B NM	62268
890-5226-4	FS04	Total/NA	Solid	8015B NM	62268
890-5226-5	FS05	Total/NA	Solid	8015B NM	62268
890-5226-6	FS06	Total/NA	Solid	8015B NM	62268
890-5226-7	FS07	Total/NA	Solid	8015B NM	62268
890-5226-8	FS08	Total/NA	Solid	8015B NM	62268
890-5226-9	FS09	Total/NA	Solid	8015B NM	62268
890-5226-10	FS10	Total/NA	Solid	8015B NM	62268
890-5226-11	FS11	Total/NA	Solid	8015B NM	62268
890-5226-12	SW01	Total/NA	Solid	8015B NM	62268
890-5226-13	SW02	Total/NA	Solid	8015B NM	62268
MB 880-62268/1-A	Method Blank	Total/NA	Solid	8015B NM	62268
LCS 880-62268/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	62268
LCSD 880-62268/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	62268
890-5224-A-11-D MS	Matrix Spike	Total/NA	Solid	8015B NM	62268
890-5224-A-11-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	62268

Prep Batch: 62268

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5226-1	FS01	Total/NA	Solid	8015NM Prep	
890-5226-2	FS02	Total/NA	Solid	8015NM Prep	
890-5226-3	FS03	Total/NA	Solid	8015NM Prep	
890-5226-4	FS04	Total/NA	Solid	8015NM Prep	
890-5226-5	FS05	Total/NA	Solid	8015NM Prep	
890-5226-6	FS06	Total/NA	Solid	8015NM Prep	
890-5226-7	FS07	Total/NA	Solid	8015NM Prep	
890-5226-8	FS08	Total/NA	Solid	8015NM Prep	
890-5226-9	FS09	Total/NA	Solid	8015NM Prep	
890-5226-10	FS10	Total/NA	Solid	8015NM Prep	
890-5226-11	FS11	Total/NA	Solid	8015NM Prep	
890-5226-12	SW01	Total/NA	Solid	8015NM Prep	
890-5226-13	SW02	Total/NA	Solid	8015NM Prep	
MB 880-62268/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-62268/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-62268/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 117 of 177

Job ID: 890-5226-1

SDG: 03C1558263

2 3 4 5 6 7 8 9

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

GC Semi VOA (Continued)

Prep Batch: 62268 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5224-A-11-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5224-A-11-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 62339

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5226-1	FS01	Total/NA	Solid	8015 NM	
390-5226-2	FS02	Total/NA	Solid	8015 NM	
390-5226-3	FS03	Total/NA	Solid	8015 NM	
390-5226-4	FS04	Total/NA	Solid	8015 NM	
390-5226-5	FS05	Total/NA	Solid	8015 NM	
390-5226-6	FS06	Total/NA	Solid	8015 NM	
390-5226-7	FS07	Total/NA	Solid	8015 NM	
390-5226-8	FS08	Total/NA	Solid	8015 NM	
390-5226-9	FS09	Total/NA	Solid	8015 NM	
890-5226-10	FS10	Total/NA	Solid	8015 NM	
890-5226-11	FS11	Total/NA	Solid	8015 NM	
890-5226-12	SW01	Total/NA	Solid	8015 NM	
890-5226-13	SW02	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 62266

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5226-1	FS01	Soluble	Solid	DI Leach	
MB 880-62266/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-62266/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62266/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5224-A-7-E MS	Matrix Spike	Soluble	Solid	DI Leach	
890-5224-A-7-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 62349

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5226-2	FS02	Soluble	Solid	DI Leach	
890-5226-3	FS03	Soluble	Solid	DI Leach	
890-5226-4	FS04	Soluble	Solid	DI Leach	
890-5226-5	FS05	Soluble	Solid	DI Leach	
890-5226-6	FS06	Soluble	Solid	DI Leach	
890-5226-7	FS07	Soluble	Solid	DI Leach	
890-5226-8	FS08	Soluble	Solid	DI Leach	
890-5226-9	FS09	Soluble	Solid	DI Leach	
890-5226-10	FS10	Soluble	Solid	DI Leach	
890-5226-11	FS11	Soluble	Solid	DI Leach	
890-5226-12	SW01	Soluble	Solid	DI Leach	
890-5226-13	SW02	Soluble	Solid	DI Leach	
MB 880-62349/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-62349/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62349/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5226-2 MS	FS02	Soluble	Solid	DI Leach	
890-5226-2 MSD	FS02	Soluble	Solid	DI Leach	
890-5226-12 MS	SW01	Soluble	Solid	DI Leach	
890-5226-12 MSD	SW01	Soluble	Solid	DI Leach	

Page 118 of 177

4 5

Job ID: 890-5226-1 SDG: 03C1558263

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

HPLC/IC

Analysis Batch: 62394

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5226-2	FS02	Soluble	Solid	300.0	62349
890-5226-3	FS03	Soluble	Solid	300.0	62349
890-5226-4	FS04	Soluble	Solid	300.0	62349
890-5226-5	FS05	Soluble	Solid	300.0	62349
890-5226-6	FS06	Soluble	Solid	300.0	62349
890-5226-7	FS07	Soluble	Solid	300.0	62349
890-5226-8	FS08	Soluble	Solid	300.0	62349
890-5226-9	FS09	Soluble	Solid	300.0	62349
390-5226-10	FS10	Soluble	Solid	300.0	62349
390-5226-11	FS11	Soluble	Solid	300.0	62349
890-5226-12	SW01	Soluble	Solid	300.0	62349
390-5226-13	SW02	Soluble	Solid	300.0	62349
MB 880-62349/1-A	Method Blank	Soluble	Solid	300.0	62349
_CS 880-62349/2-A	Lab Control Sample	Soluble	Solid	300.0	62349
_CSD 880-62349/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	62349
390-5226-2 MS	FS02	Soluble	Solid	300.0	62349
390-5226-2 MSD	FS02	Soluble	Solid	300.0	62349
890-5226-12 MS	SW01	Soluble	Solid	300.0	62349
890-5226-12 MSD	SW01	Soluble	Solid	300.0	62349

Analysis Batch: 62407

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5226-1	FS01	Soluble	Solid	300.0	62266
MB 880-62266/1-A	Method Blank	Soluble	Solid	300.0	62266
LCS 880-62266/2-A	Lab Control Sample	Soluble	Solid	300.0	62266
LCSD 880-62266/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	62266
890-5224-A-7-E MS	Matrix Spike	Soluble	Solid	300.0	62266
890-5224-A-7-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	62266

Job ID: 890-5226-1 SDG: 03C1558263

Lab Chronicle

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: FS01

Date Collected: 09/08/23 10:25 Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/12/23 22:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	62268	09/12/23 11:26	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 15:00	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	62266	09/12/23 10:26	AG	EET MID
Soluble	Analysis	300.0		1			62407	09/14/23 06:20	СН	EET MID

Client Sample ID: FS02

Date Collected: 09/08/23 10:30

Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/12/23 22:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	62268	09/12/23 11:26	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 15:22	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/13/23 22:45	СН	EET MID

Client Sample ID: FS03

Date Collected: 09/08/23 10:35

Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/12/23 23:19	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	62268	09/12/23 11:26	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 15:44	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/13/23 23:04	CH	EET MID

Client Sample ID: FS04 Date Collected: 09/08/23 10:40 Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/12/23 23:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID

Matrix: Solid

Page 120 of 177

Job ID: 890-5226-1 SDG: 03C1558263

Lab Sample ID: 890-5226-1 Matrix: Solid

5 6 9

Lab Sample ID: 890-5226-2 Matrix: Solid

Lab Sample ID: 890-5226-3

Lab Sample ID: 890-5226-4

Matrix: Solid

Job ID: 890-5226-1

SDG: 03C1558263

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-5226-4

Lab Sample ID: 890-5226-5

Lab Chronicle

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: FS04

Date Collected: 09/08/23 10:40 Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	62268	09/12/23 11:26	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 16:06	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/13/23 23:10	СН	EET MID

Client Sample ID: FS05 Date Collected: 09/08/23 10:45

Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 00:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	62268	09/12/23 11:26	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 16:50	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/13/23 23:17	СН	EET MID

Client Sample ID: FS06

Date Collected: 09/08/23 10:50 Date Received: 09/08/23 13:36

Batch Batch Dil Initial Final Batch Prepared Ргер Туре Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 4.99 g 5 mL 62272 09/12/23 11:43 MNR EET MID Total/NA 8021B 5 mL 5 mL 62238 09/13/23 00:21 MNR EET MID Analysis 1 Total/NA Analysis Total BTEX 1 62355 09/13/23 12:14 SM EET MID Total/NA Analysis 8015 NM 62339 09/13/23 10:49 SM EET MID 1 Total/NA Prep 8015NM Prep 10.08 g 10 mL 62268 09/12/23 11:26 TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 62229 09/12/23 17:13 SM EET MID 1 Soluble Leach DI Leach 4.97 g 50 mL 62349 09/13/23 12:06 AG EET MID Soluble Analysis 300.0 62394 09/13/23 23:23 СН EET MID 1

Client Sample ID: FS07 Date Collected: 09/08/23 10:55

Date Received: 09/08/23 13:36

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 00:41	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.10 g 1 uL	10 mL 1 uL	62268 62229	09/12/23 11:26 09/12/23 17:35	TKC SM	EET MID EET MID

Eurofins Carlsbad

Lab Sample ID: 890-5226-6

Matrix: Solid

Lab Sample ID: 890-5226-7 Matrix: Solid

Job ID: 890-5226-1 SDG: 03C1558263

Lab Sample ID: 890-5226-7

Lab Sample ID: 890-5226-8

Lab Sample ID: 890-5226-9

Client Sample ID: FS07

Project/Site: Hudson 1 Fed Com 9H

Client: Ensolum

Date Collected: 09/08/23 10:55 Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/13/23 23:42	СН	EET MID

Lab Chronicle

Client Sample ID: FS08

Date Collected: 09/08/23 11:00 Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 01:01	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	62268	09/12/23 11:26	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 17:56	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/13/23 23:49	СН	EET MID

Client Sample ID: FS09 Date Collected: 09/08/23 11:05

Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 01:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	62268	09/12/23 11:26	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 18:18	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/13/23 23:55	СН	EET MID

Client Sample ID: FS10 Date Collected: 09/08/23 11:10 Date Received: 09/08/23 13:36

Lab Sample ID: 890-5226-10

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 01:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	62268	09/12/23 11:26	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 18:39	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/14/23 00:02	СН	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: FS11 Date Collected: 09/08/23 11:15

Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 03:04	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	62268	09/12/23 11:26	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 19:01	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/14/23 00:08	СН	EET MID

Client Sample ID: SW01

Date Collected: 09/08/23 11:20

Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 03:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	62268	09/12/23 11:26	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 19:22	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/14/23 00:14	СН	EET MID

Client Sample ID: SW02

Date Collected: 09/08/23 11:25 Date Received: 09/08/23 13:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	62272	09/12/23 11:43	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62238	09/13/23 03:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62355	09/13/23 12:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			62339	09/13/23 10:49	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	62268	09/12/23 11:26	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62229	09/12/23 19:43	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	62349	09/13/23 12:06	AG	EET MID
Soluble	Analysis	300.0		1			62394	09/14/23 00:34	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 123 of 177

Job ID: 890-5226-1 SDG: 03C1558263

Lab Sample ID: 890-5226-11

Lab Sample ID: 890-5226-12

Lab Sample ID: 890-5226-13

Matrix: Solid

Matrix: Solid

Matrix: Solid

> 10 11

Page 124 of 177

		Accreditation/C	ertification Summary		
lient: Ensolum roject/Site: Hudson 1	Fed Com 9H			Job ID: 890-5226-1 SDG: 03C1558263	j
aboratory: Eurofinless otherwise noted, all a		vere covered under each acc	reditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas	1	NELAP	T104704400-23-26	06-30-24	Ì
The following analytes	are included in this report,	but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which	
the agency does not of					
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM Total BTEX		Solid Solid	Total TPH Total BTEX		
		Cond			

Eurofins Carlsbad

Method Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5226-1 SDG: 03C1558263

B021B Volatile Organic Compounds (GC) Total BTEX Total BTEX Calculation	SW846	
Total RTEX Total RTEX Calculation		EET MID
	TAL SOP	EET MID
B015 NM Diesel Range Organics (DRO) (GC)	SW846	EET MID
B015B NM Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0 Anions, Ion Chromatography	EPA	EET MID
5035 Closed System Purge and Trap	SW846	EET MID
3015NM Prep Microextraction	SW846	EET MID
DI Leach Deionized Water Leaching Procedure	ASTM	EET MID
Protocol References:		
ASTM = ASTM International		
EPA = US Environmental Protection Agency		
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition	on, November 1986 And Its Updates.	

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 11/28/2023 10:28:31 AM

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
90-5226-1	FS01	Solid	09/08/23 10:25	09/08/23 13:36	2'	
90-5226-2	FS02	Solid	09/08/23 10:30	09/08/23 13:36	2'	
90-5226-3	FS03	Solid	09/08/23 10:35	09/08/23 13:36	2'	P
90-5226-4	FS04	Solid	09/08/23 10:40	09/08/23 13:36	2'	•••••••••••••••••••••••••••••••••••••••
90-5226-5	FS05	Solid	09/08/23 10:45	09/08/23 13:36	2'	
90-5226-6	FS06	Solid	09/08/23 10:50	09/08/23 13:36	2'	
90-5226-7	FS07	Solid	09/08/23 10:55	09/08/23 13:36	2'	
90-5226-8	FS08	Solid	09/08/23 11:00	09/08/23 13:36	2'	
90-5226-9	FS09	Solid	09/08/23 11:05	09/08/23 13:36	2'	
0-5226-10	FS10	Solid	09/08/23 11:10	09/08/23 13:36	2'	
0-5226-11	FS11	Solid	09/08/23 11:15	09/08/23 13:36	2'	
0-5226-12	SW01	Solid	09/08/23 11:20	09/08/23 13:36	0-2'	
0-5226-13	SW02	Solid	09/08/23 11:25	09/08/23 13:36	0-2'	
						•

Page 126 of 177

Job ID: 890-5226-1 SDG: 03C1558263

ork Order No:	Work Order Comments RRC Superfund PRP Brownfields RRC Superfund Level III PST/UST TRRP Level IV ADaPT Other: Other:	Preservative Codes None: NO DI Water: H ₂ O Cool: Cool MeOH: Me HCL: HC HNO 3; HN H ₂ SO 4; H ₂ NaOH: Na	H ₃ PO ₄ : HP NaHSO ₄ : NABIS Na ₂ S ₂ O ₃ : NaSO ₃ Zh Acetate+NaOH: Zh NaOH+Ascorbic Acid: SAPC Sample Comments	Incident #: NAPP2322645119 Cost Center: 1139091001 Missberts@ensolum.com	Ag SiO ₂ Na Sr TI Sn U V Zn Hg: 1631 / 245.1 / 7470 / 7471 ved by: (Signature) Date/Time
Work Order No: www.xenco.com	Work Orde Program: UST/PST Program: UST/PST State of Project: Reporting: Reporting: Level III Deliverables: EDD	JEST	Abol		li K Se Ag Hg: Received
Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	n: XTO Energy 1: XTO Energy 3104 E Greene St Cartshad, NM 88220 bbclill@ensolum.com	ANALYSIS REQUEST	TPH	X>	Total 200.7 / 6010 200.8 / 6020: BRCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 : BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco. Its affiliates and subcontractors. It assigns standard terms and conditions of service. Anihumun charge of 585 to reach sample submitted to Eurofins Xenco. Anihumun charge of 585 constitutes) BR Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Relinquished by: (Signature) Relinquisheet to each project and a charge of 56 for each sample submitted to Eurofins Xenco. Just affiliates and subcontractors. It assigns standard terms and conditions of service. Anihumun charge of 585 constitutes) Relinquished by: (Signature) Relinquished by: (Signature) 1 Cm Q Cr Co Mut 07.8 - 23 13'3'2 4 3 4 4 4 4 4 4
Chain Houston, TX (281) 24 Midland, TX (432) 704-5 EL Paso, TX (915) 585- Hobbs, NM (575) 392-	Bill to: (if different) Company Name: Address: City, State ZIP: DC4111(2)	à p	Parameters 2.6 Pepth Grab / Comp Cont Cont br>Cont Con		Texas 11 AI Sb As Ba Be P 6010 : 8RCRA Sb As Ba Be form client company to Eurofins Xenco, its affilat bility for any losses or expenses incurred by the each sample submitted to Eurofins Xenco, butr Date/Time Q-8 - 23
Environment Testing Xenco	4711 M. LLC 1 Parks Hwy NM 88220 0852 Email:	Turn Ar Turn Ar Tal starts the da the lab, if receiv	Control Wet Ice: Thermometer ID: Correction Factor: Correction Factor: Correction Factor: Temperature Reading: Corrected Temperature: Corrected Temperature: Time Ix Date Time	m	20: BRCRA 13PPM Texas be analyzed TCLP/SPLP 6010 at of samples constitutes a valid purchase order from client to ost of samples and shall not assume any responsibility for any be applied to each project and a charge of 55 for resch sampl Received by: (Signature)
🞲 eurofins 🔤	Project Manager:Ben BelïllCompany Name:En soluum, LlAddress:3122 Naf'l PaAddress:3122 Naf'l PaCity, State ZIP:Carlsbad, NMPhone:989.854.085	Name: . Number: Location: r's Name:	PLE RECEIPT Temp BI es Received Intact: Yes es Received Intact: Yes custody Seals: Yes Containers: Yes Sample Identification	FS01 FS02 FS03 FS04 FS05 FS06 FS06 FS00 FS00 FS10	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed Motice: Signature of this document and relinquishment of samples const of service. Eurofins Xenco will be lable only for the cost of samples and s of Eurofins Xenco. A minimum charge of 585 00 will be applied to each Relinquished by: (Signature) Rece 1 TODOL NC 3 WL 4 3 3

Page 35 of 37

5

12 13

14

Job Number: 890-5226-1 SDG Number: 03C1558263

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5226 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-5226-1 SDG Number: 03C1558263

List Source: Eurofins Midland

List Creation: 09/12/23 11:10 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5226 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 9/28/2023 2:45:12 PM Revision 2

JOB DESCRIPTION

Hudson 1 Fed Com 9H SDG NUMBER 03C1558263

JOB NUMBER

890-5271-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 9/28/2023 2:45:12 PM Revision 2

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Laboratory Job ID: 890-5271-1 SDG: 03C1558263

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
-	19

Definitions/Glossary

Page 133 of 177

	Definitions/Glossary		
Client: Ensolu	um	Job ID: 890-5271-1	
Project/Site: I	Hudson 1 Fed Com 9H	SDG: 03C1558263	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		5
GC Semi VO	A		
Qualifier	Qualifier Description		
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		8
U	Indicates the analyte was analyzed for but not detected.		
Glossary			9
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		49
Dil Fac	Dilution Factor		13
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		

- RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Zoho Sign Document ID: 316041E4-GPEVSVEAJYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

Case Narrative

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Job ID: 890-5271-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5271-1

REVISION

The report being provided is a revision of the original report sent on 9/21/2023. The report (revision 2) is being revised due to Per client email, requesting sample depth correction.

Report revision history

Revision 1 - 9/27/2023 - Reason - Per client email, requesting TPH re run on SW03.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 9/14/2023 4:40 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.2°C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SW03 (890-5271-1).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-62674 and analytical batch 880-62672 was outside the control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-63318/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The continuing calibration verification (CCV) associated with batch 880-63276 recovered below the lower control limit for Diesel Range Organics (Over C10-C28). An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-63276/31).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-5271-1 SDG: 03C1558263

Client Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: SW03 Date Collected: 09/14/23 02:43

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		09/18/23 15:08	09/19/23 00:18	1
Toluene	<0.00199	U	0.00199	mg/Kg		09/18/23 15:08	09/19/23 00:18	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		09/18/23 15:08	09/19/23 00:18	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		09/18/23 15:08	09/19/23 00:18	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		09/18/23 15:08	09/19/23 00:18	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		09/18/23 15:08	09/19/23 00:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			09/18/23 15:08	09/19/23 00:18	1
1,4-Difluorobenzene (Surr)	78		70 - 130			09/18/23 15:08	09/19/23 00:18	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			09/19/23 00:18	1

Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	96.6		49.6	mg/Kg			09/26/23 16:05	1	

Method: SW846 8015B NM - D	Diesel Range	• Organics	(DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6	mg/Kg		09/26/23 10:59	09/26/23 16:05	1
Diesel Range Organics (Over C10-C28)	96.6		49.6	mg/Kg		09/26/23 10:59	09/26/23 16:05	1
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		09/26/23 10:59	09/26/23 16:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			09/26/23 10:59	09/26/23 16:05	1
o-Terphenyl	117		70 - 130			09/26/23 10:59	09/26/23 16:05	1
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

4.95

mg/Kg

09/20/23 20:19

1

5

Job ID: 890-5271-1 SDG: 03C1558263

Lab Sample ID: 890-5271-1 Matrix: Solid

Page 6 of 20

539

Released to Imaging: 11/28/2023 10:28:31 AM

Chloride

Surrogate Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

			Per	cent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Sample ID	Client Sample ID	(70-130)	(70-130)	
71-1	SW03	96	78	
274-A-21-A MS	Matrix Spike	102	115	
274-A-21-B MSD	Matrix Spike Duplicate	99	106	
80-62599/1-A	Lab Control Sample	100	115	
380-62599/2-A	Lab Control Sample Dup	100	106	
30-62599/5-A	Method Blank	71	98	
80-62674/5-A	Method Blank	69 S1-	97	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

			Percent	Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	1CO1 (70-130)	OTPH1 (70-130)	
880-33630-A-15-D MS	Matrix Spike	107	110	
880-33630-A-15-E MSD	Matrix Spike Duplicate	109	108	
890-5271-1	SW03	109	117	
LCS 880-63318/2-A	Lab Control Sample	67 S1-	79	
LCSD 880-63318/3-A	Lab Control Sample Dup	76	84	
MB 880-63318/1-A	Method Blank	74	89	

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Job ID: 890-5271-1 SDG: 03C1558263

Page 136 of 177

Prep Type: Total/NA

Prep Type: Total/NA

Eurofins Carlsbad

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-62599/5-A Matrix: Solid Analysis Batch: 62672

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		09/18/23 15:08	09/18/23 21:54	1
Toluene	<0.00200	U	0.00200	mg/Kg		09/18/23 15:08	09/18/23 21:54	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/18/23 15:08	09/18/23 21:54	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		09/18/23 15:08	09/18/23 21:54	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/18/23 15:08	09/18/23 21:54	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		09/18/23 15:08	09/18/23 21:54	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71		70 - 130			09/18/23 15:08	09/18/23 21:54	1
1,4-Difluorobenzene (Surr)	98		70 - 130			09/18/23 15:08	09/18/23 21:54	1

Lab Sample ID: LCS 880-62599/1-A Matrix: Solid **Analysis Batch: 62672**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07810		mg/Kg		78	70 - 130	
Toluene	0.100	0.08476		mg/Kg		85	70 - 130	
Ethylbenzene	0.100	0.08259		mg/Kg		83	70 - 130	
m-Xylene & p-Xylene	0.200	0.1713		mg/Kg		86	70 - 130	
o-Xylene	0.100	0.08671		mg/Kg		87	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	115		70 - 130

Lab Sample ID: LCSD 880-62599/2-A Matrix: Solid

Analysis Batch: 62672

Analysis Batch: 62672						Prep E	Batch: 6	32599
	Spike	LCSD LCS	SD			%Rec		RPD
Analyte	Added	Result Qua	alifier Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08604	mg/Kg		86	70 - 130	10	35
Toluene	0.100	0.08846	mg/Kg		88	70 - 130	4	35
Ethylbenzene	0.100	0.08613	mg/Kg		86	70 - 130	4	35
m-Xylene & p-Xylene	0.200	0.1791	mg/Kg		90	70 - 130	4	35
o-Xylene	0.100	0.09090	mg/Kg		91	70 - 130	5	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 890-5274-A-21-A MS Matrix: Solid

Matrix: Solid Analysis Batch: 62672									Prep Type: Total/NA Prep Batch: 62599
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00199	U	0.0998	0.08115		mg/Kg		81	70 - 130
Toluene	<0.00199	U	0.0998	0.08570		mg/Kg		86	70 - 130

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 62599

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep B

Batch: 62599	

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Released to Imaging: 11/28/2023 10:28:31 AM

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Toluene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

lo organi	oompo			maoaj							
A-21-A MS						C	lient Sa	Prep Ty	pe: Tot	al/NA	4
Sample	Sample	Spike	MS	MS				%Rec			5
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
< 0.00199	U	0.0998	0.08302		mg/Kg		83	70 - 130			
<0.00398	U	0.200	0.1706		mg/Kg		85	70 - 130			
<0.00199	U	0.0998	0.08580		mg/Kg		86	70 - 130			7
MS	MS										
%Recovery	Qualifier	Limits									8
102		70 - 130									
115		70 - 130									9
A-21-B MSC)				Client S	Samp	ole ID: N	Aatrix Spi	ke Dup	licate	4.0
									-		
Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
<0.00199	U	0.0996	0.07875		mg/Kg		79	70 - 130	3	35	
	A-21-A MS Sample Result 0.00199 0.00398 0.00199 <i>MS</i> <i>%Recovery</i> 102 115 A-21-B MSD Sample Result	Sample Sample Result Qualifier <0.00199	Sample Sample Spike Result Qualifier Added <0.00199	Sample Sample Spike MS Result Qualifier Added Result <0.00199	Sample Result Sample Qualifier Spike Added MS Result MS Qualifier <0.00199	A-21-A MS Sample Sample Result Qualifier Spike Added MS MS MS Qualifier Added Result Qualifier Unit mg/Kg <0.00199	A-21-A MS C Sample Result Qualifier Spike Added MS MS MS Result Qualifier Added Result Qualifier Unit D <0.00199	A-21-A MS Client Sample Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D %Rec <0.00199	A-21-A MS A-21-A MS Sample Sample Spike MS MS Client Sample ID: Prep Ty Prep T Prep T Prep T Prep T MS MS Client Sample ID: Prep T MS MS Client Sample ID: Prep T MS MS Client Sample ID: MS MS MS MS MS MS MS MS	A-21-A MS Client Sample ID: Matrix Prep Type: Tot Prep Batch: 0 Sample Sample Spike MS MS MS %Rec Prep Type: Tot Prep Batch: 0 Qualifier Added Result Qualifier Unit D %Rec Limits	A-21-A MS Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 62599 Sample Sample (0.00199) Spike U MS MS 0.0998 MS MS 0.08302 D mg/Kg %Rec 83 Limits <0.00398

Ethylbenzene	<0.00199	U	0.0996	0.07757
m-Xylene & p-Xylene	<0.00398	U	0.199	0.1592
o-Xylene	<0.00199	U	0.0996	0.07997
	MSD	MSD		
Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene (Surr)	99		70 - 130	
1,4-Difluorobenzene (Surr)	106		70 - 130	

MR MR

<0.00199 U

Lab Sample ID: MB 880-62674/5-A **Matrix: Solid** Analysis Batch: 62672

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 62674

70 - 130

70 - 130

70 - 130

70 - 130

5

7

7

7

35

35

35

35

82

78

80

80

mg/Kg

mg/Kg

mg/Kg

mg/Kg

		INIB					
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg	09/18/23 08:50	09/18/23 11:16	1
Toluene	<0.00200	U	0.00200	mg/Kg	09/18/23 08:50	09/18/23 11:16	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	09/18/23 08:50	09/18/23 11:16	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg	09/18/23 08:50	09/18/23 11:16	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	09/18/23 08:50	09/18/23 11:16	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg	09/18/23 08:50	09/18/23 11:16	1
	MB	MB					
Surrogate %	Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130		09/18/23 08:50	09/18/23 11:16	1
1,4-Difluorobenzene (Surr)	97		70 - 130		09/18/23 08:50	09/18/23 11:16	1

0.0996

0.08119

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-63318/1-A Matrix: Solid Analysis Batch: 63276							le ID: Method Prep Type: To Prep Batch:	otal/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		09/26/23 08:00	09/26/23 08:35	1

Page 138 of 177

Job ID: 890-5271-1 SDG: 03C1558263

Eurofins Carlsbad

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-633 Matrix: Solid Analysis Batch: 63276	318/1-A								Cli	ient Sam	ple ID: M Prep Ty Prep E	pe: To	
		мв	мв										
Analyte			Qualifier	RL		Ur	it	D		Prepared	Analy	zed	Dil Fac
Diesel Range Organics (Over		50.0		50.0			J/Kg			26/23 08:0			1
C10-C28)													
Oll Range Organics (Over C28-C36)) <5	50.0	U	50.0		mę	J/Kg		09/	26/23 08:0	0 09/26/23	08:35	1
•			МВ										
Surrogate	%Recov		Qualifier	Limits						Prepared	Analy		Dil Fac
1-Chlorooctane		74		70 - 130						/26/23 08:0			1
o-Terphenyl _		89		70 - 130					09/	26/23 08:0	0 09/26/23	08:35	1
Lab Sample ID: LCS 880-63	318/2-A						Ċ	Clien	it Sa	ample ID	: Lab Cor	trol S	ample
Matrix: Solid											Prep Ty		
Analysis Batch: 63276												-	63318
·				Spike	LCS	LCS					%Rec		
Analyte				Added		Qualifie	er Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	915.7		mg/ł			92	70 - 130		
(GRO)-C6-C10							0	0					
Diesel Range Organics (Over C10-C28)				1000	731.3		mg/ł	٢g		73	70 - 130		
	LCS	LCS											
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	67	S1-		70 - 130									
o-Terphenyl	79			70 - 130									
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 63276				Spike	LCSD	LCSD					Control Prep Ty Prep E %Rec	pe: To	
Analyte				Added	Result	Qualifie	er Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1000	902.3		mg/ł	٢g		90	70 - 130	1	20
(GRO)-C6-C10													
Diesel Range Organics (Over				1000	808.4		mg/ł	٢g		81	70 - 130	10	20
C10-C28)													
	LCSD	LCS	D										
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	76			70 - 130									
o-Terphenyl	84			70 - 130									
_ Lab Sample ID: 880-33630-/									~	liont So		Motrix	Spike
Matrix: Solid									U U	ment Sa	mple ID: Prep Ty		
Analysis Batch: 63276													63318
Analysis Daton. 03210	Sample	Sam	nle	Spike	MS	MS					%Rec	aton.	00010
Analyte	Result			Added		Qualifie	er Unit		р	%Rec	Limits		
Gasoline Range Organics	<50.3			997	856.8		mg/ł			84	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.3	U		997	870.9		mg/ł	۶g		85	70 - 130		
	MS	MS											
Surrogate	%Recovery		lifier	Limits									
1-Chlorooctane	107			70 - 130									

Eurofins Carlsbad

Job ID: 890-5271-1

SDG: 03C1558263

110

o-Terphenyl

70 - 130

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-3363 Matrix: Solid Analysis Batch: 63276	0-A-15-E MS	D					Client	Saı	mp	le ID: N	latrix Spi Prep Ty Prep F	pe: To	
Analysis Datch. 00210	Sample	Sample	Spike	M	SD I	MSD					%Rec	Jaton.	RPD
Analyte	•	Qualifier	Added			Qualifier	Unit		D	%Rec	Limits	RPD	
Gasoline Range Organics	<50.3		997	899		quainter	mg/Kg		_	88	70 - 130	5	
(GRO)-C6-C10	-00.0	0	001	000	0.0		mg/ng			00	10-100	0	, 20
Diesel Range Organics (Over C10-C28)	<50.3	U	997	86	7.3		mg/Kg			85	70 - 130	0	20
	MSD	MSD											
Surrogate	%Recovery		Limits										
1-Chlorooctane		Quaimer	70 - 130	-									
o-Terphenyl	108		70 - 130										
/lethod: 300.0 - Anion	is, Ion Chro	omatogra											
Lab Sample ID: MB 880-6								C	Clie	nt Sam	nple ID: M	ethod	Blank
Matrix: Solid											Prep T	vpe: S	oluble
Analysis Batch: 62902													
		MB MB											
Analyte	Re	esult Qualifie	r	RL		Unit		D	Pi	repared	Analy	zed	Dil Fac
Chloride		5.00 U		5.00		mg/K	a				09/20/23		1
Analysis Batch: 62902			Spike	L	cs i	LCS					%Rec		
Analyte			Added	Res	ult	Qualifier	Unit		D	%Rec	Limits		
Chloride			250	240	6.9		mg/Kg			99	90 - 110		
Lab Sample ID: LCSD 88	0-62713/3-A					C	Client S	amp	ole	ID: Lab	o Control	Samp	le Dup
Matrix: Solid											Prep T	ype: S	Soluble
Analysis Batch: 62902													
			Spike	LC	SD I	LCSD					%Rec		RPD
Analyte			Added	Res	ult	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride			250	240	6.8		mg/Kg			99	90 - 110	0	20
Lab Sample ID: 880-3333 Matrix: Solid	3-A-11-B MS								CI	ient Sa	mple ID:		Spike Soluble
											перт	ype. o	olubie
Analysis Batch: 62902	Sample	Sample	Spike	,	MS I	MS					%Rec		
Analyte		Qualifier	Added			Qualifier	Unit		D	%Rec	Limits		
Chloride	103		250	35		quamor	mg/Kg		-	100	90 - 110		
Lab Sample ID: 880-3333 Matrix: Solid Analysis Batch: 62902	3-A-11-C MS	D					Client	Sai	mp	le ID: N	latrix Spi Prep T		plicate Soluble
Analysis Baton 02002	Sample	Sample	Spike	м	SD I	MSD					%Rec		RPD
Analyte	-	Qualifier	Added			Qualifier	Unit		D	%Rec	Limits	RPD	
Analyte			Audeu			Quaimer			_	/01.00			

Page 140 of 177

5

6 7 8

Job ID: 890-5271-1 SDG: 03C1558263

Eurofins Carlsbad

0

20

90 - 110

100

mg/Kg

Chloride

103

250

352.8

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

GC VOA

Prep Batch: 62599

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5271-1	SW03	Total/NA	Solid	5035	
MB 880-62599/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-62599/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-62599/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5274-A-21-A MS	Matrix Spike	Total/NA	Solid	5035	
890-5274-A-21-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
Analysis Batch: 6267	'2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5271-1	SW03	Total/NA	Solid	8021B	62599
MB 880-62599/5-A	Method Blank	Total/NA	Solid	8021B	62599
MB 880-62674/5-A	Method Blank	Total/NA	Solid	8021B	62674
LCS 880-62599/1-A	Lab Control Sample	Total/NA	Solid	8021B	62599
LCSD 880-62599/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	62599
890-5274-A-21-A MS	Matrix Spike	Total/NA	Solid	8021B	62599
890-5274-A-21-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	62599
Prep Batch: 62674					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-62674/5-A	Method Blank	Total/NA	Solid	5035	
Analysis Batch: 6279	19				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5271-1	SW03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 62826

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5271-1	SW03	Total/NA	Solid	8015 NM	
Analysis Batch: 63276	6				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5271-1	SW03	Total/NA	Solid	8015B NM	63318
MB 880-63318/1-A	Method Blank	Total/NA	Solid	8015B NM	63318
LCS 880-63318/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	63318
LCSD 880-63318/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	63318
880-33630-A-15-D MS	Matrix Spike	Total/NA	Solid	8015B NM	63318
880-33630-A-15-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	63318

Prep Batch: 63318

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5271-1	SW03	Total/NA	Solid	8015NM Prep	
MB 880-63318/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-63318/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-63318/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-33630-A-15-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-33630-A-15-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 141 of 177

Job ID: 890-5271-1 SDG: 03C1558263

Page 12 of 20

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

HPLC/IC

Leach Batch: 62713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	4
890-5271-1	SW03	Soluble	Solid	DI Leach		
MB 880-62713/1-A	Method Blank	Soluble	Solid	DI Leach		5
LCS 880-62713/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-62713/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		6
880-33333-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach		
880-33333-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		7
Analysis Batch: 6290	2					8

Analysis Batch: 62902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	_
890-5271-1	SW03	Soluble	Solid	300.0	62713	Ç
MB 880-62713/1-A	Method Blank	Soluble	Solid	300.0	62713	
LCS 880-62713/2-A	Lab Control Sample	Soluble	Solid	300.0	62713	
LCSD 880-62713/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	62713	
880-33333-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	62713	
880-33333-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	62713	

Job ID: 890-5271-1 SDG: 03C1558263

Lab Chronicle

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: SW03 Date Collected: 09/14/23 02:43 Date Received: 09/14/23 16:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	62599	09/18/23 15:08	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62672	09/19/23 00:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62799	09/19/23 00:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			62826	09/26/23 16:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	63318	09/26/23 10:59	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	63276	09/26/23 16:05	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	62713	09/18/23 11:01	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	62902	09/20/23 20:19	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 143 of 177

Job ID: 890-5271-1 SDG: 03C1558263

Lab Sample ID: 890-5271-1 Matrix: Solid

Eurofins Carlsbad

٨٨ ditation/Cortification Summary Page 144 of 177

): 890-5271-1 03C1558263
03C1558263
es for which

Eurofins Carlsbad
Method Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5271-1 SDG: 03C1558263

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5271-1	SW03	Solid	09/14/23 02:43	09/14/23 16:40	0 - 2.5'

Job ID: 890-5271-1 SDG: 03C1558263

Page 146 of 177

eurotins		Environment Testing	nt Testing	2	Houston, TX () fidland, TX (432	281) 240-4200, E 1) 704-5440, San.	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midiand, TX (432) 704-5440, San Antonio, TX (210) 509-3334	5	Work Order No:	
	Xe	Xenco			EL Paso, TX (9	15) 585-3443, Lu	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296			-
					Hobbs, NM (57	5) 392-7550, Car	Hobbs, NM (575) 392-7550, Carisbad, NM (575) 988-3199		www.xenco.com Pa	Page (of /
Project Manager: Be	Ben Befill			Bill to: (if different)		Garrett Green			Work Order Comments	lents
	Ensolum			Company Name:		XTO Energy		Program: UST/PS	3T	Program: UST/PST PRP Brownfields RRC Superfund
	3122 National Parks Hwy	arks Hwy		Address:		3104 E. Green St	st	State of Project:		1
le ZIP:	Carlsbad, NM 88220	8220		City, State ZIP:		Carlsbad, NM 88220	8220	Reporting: Level II	Reporting: Level II Clevel III PST/UST TRRP	
	303-887-2946			Email: Garrett.Green@ExxonMobil.com	reen@Exxo	nMobil.com		Deliverables: EDD		Other:
Project Name:	Hudson 1	Hudson 1 Fed Com 9H	I	Turn Around			ANALYSIS RE	REQUEST		Preservative Codes
Project Number:	030	03C1558263	Routine	utine	Pres. Code				None: NO	E NO DI Water: H ₂ O
Project Location:			Due Date:)ate:					Cool: Cool	⊻
Sampler's Name:	Conno	Connor Whitman	TAT st	TAT starts the day received by	ed by				HCL: HC	
PO#	-				<u> </u>)				
Samples Received Intact			hermometer ID:		rame	000.0	890-5271 Chain of Custody	tody	NaHS	NaHSO4: NABIS
Cooler Custody Seals:	Yes No	NIA Corre	Correction Factor:	-02		PA: :	-	-	Na ₂ S	Na ₂ S ₂ O ₃ : NaSO ₃
Sample Custody Seals:	Yes No	Temp	Temperature Reading:	+)				Zn Acetate+NaOH: Zn
Sample Identification	Ication	Matrix D		Depth	Grab/ # of	HLORIE PH (801				Sample Comments
51102		< 0/	0/4/17 7:43	0-1		1			Incid	Incident ID:
		-								
									2	
		\parallel	A					-		
									AFE:	
			_		/	A	2			
		-								
							Z			
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed) 200.8 / 6020: Metal(s) to be an)20:) analyzed	8RCRA TCLI	13PPM Texas 11 P / SPLP 6010: 8R	8RCRA S	As Ba Be B b As Ba Be	Cd Ca Cr Co Cu Fe Cd Cr Co Cu Pb Mn	Pb Mg Mn Mo Ni K Mo Ni Se Ag Ti U	Mg Mn Mo Ni K Se Ag SiO2 Na Sr Ti Sn U Z Ni Se Ag Ti U Hg: 1631 / 245.1 / 7470 / 7471	TI Sn U V Zn 1/7470 /7471
Notice: Signature of this doc of service. Eurofins Xenco w of Eurofins Xenco. A minimu	ument and relinqui vill be liable only fo	shment of sampl r the cost of sam 0 will be applied	les constitutes a va nples and shall not to each project and	ilid purchase order f assume any respon d a charge of \$5 for i	rom client comp sibility for any lo each sample sub	any to Eurofins Xe sses or expenses i mitted to Eurofins	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$55.00 will be apolled to each project and a charge of \$55 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	It assigns standard term re due to circumstances b s will be enforced unless (ns and conditions xeyond the control previously negotlated.	
Relinquished by: (Signature)	Signature)	R	Received by: (Signature)	ignature)	_	Date/Time	Relinquished by: (Signa	ignature) Rece	Received by: (Signature)	Date/Time
1 Utitar		60			9-1-1	16:	VO ²			
3							4			
5							n			-

Page 18 of 20

9/28/2023 (Rev. 2)

13

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5271 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-5271-1 SDG Number: 03C1558263

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 5271 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-5271-1 SDG Number: 03C1558263

List Source: Eurofins Midland

List Creation: 09/18/23 08:43 AM

5 6

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 9/26/2023 9:06:51 AM Revision 1

JOB DESCRIPTION

Hudson 1 Fed Com 9H SDG NUMBER 03C1558263

JOB NUMBER

890-5281-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 9/26/2023 9:06:51 AM Revision 1

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Laboratory Job ID: 890-5281-1 SDG: 03C1558263

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
	22
	23
-	

Definitions/Glossary

Client: Ensolum	
Project/Site: Hudson	1 Fed Com 9H

(

Qualifiers		3
GC VOA Qualifier	Qualifier Description	4
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	5
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VC	A	
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	4.0
CNF	Contains No Free Liquid	13

	, ,
CNF	Contains No Free Liqu
DER	Duplicate Error Ratio

DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Carlsbad

Page 153 of 177

Job ID: 890-5281-1 SDG: 03C1558263 Zoho Sign Document ID: 316041E4-GPEVSVEA JYBB70ZFTMWZ922FZD87C_AVKL7SR5QG00U Received by OCD: 10/27/2023 1:00:47 PM

Case Narrative

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Job ID: 890-5281-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5281-1

REVISION

The report being provided is a revision of the original report sent on 9/22/2023. The report (revision 1) is being revised due to Per client email, requesting sample dpeth correction on final report.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/15/2023 1:14 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: FS01A (890-5281-1), FS12 (890-5281-2), FS13 (890-5281-3) and SW04 (890-5281-4).

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-62964 recovered above the upper control limit for m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported

Method 8021B: Surrogate recovery for the following sample was outside control limits: (890-5273-A-1-F MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS01A (890-5281-1), FS12 (890-5281-2) and SW04 (890-5281-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (890-5282-A-8-C), (890-5282-A-8-D MS) and (890-5282-A-8-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: FS12 (890-5281-2), FS13 (890-5281-3) and SW04 (890-5281-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-5281-1 SDG: 03C1558263 Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

<0.00200 U

Client Sample Results

RL

0.00200

0.00200

Unit

mg/Kg

mg/Kg

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: FS01A Date Collected: 09/15/23 09:55 Date Received: 09/15/23 13:14 Sample Depth: 2.5

Analyte

Benzene

Toluene

Lab Sample ID: 890-5281-1
SDG: 03C1558263
Job ID: 890-5281-1

D

Prepared

09/19/23 09:19 09/22/23 00:09

09/19/23 09:19 09/22/23 00:09

Analyzed

890-5281-1 Matrix: Solid

Dil Fac

1

1

IUIUEIIE	~0.00200	0	0.00200	mg/ng		03/13/23 03.13	03/22/23 00.03	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/19/23 09:19	09/22/23 00:09	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		09/19/23 09:19	09/22/23 00:09	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/19/23 09:19	09/22/23 00:09	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		09/19/23 09:19	09/22/23 00:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130			09/19/23 09:19	09/22/23 00:09	1
1,4-Difluorobenzene (Surr)	62	S1-	70 - 130			09/19/23 09:19	09/22/23 00:09	1
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	tion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			09/22/23 00:09	1
Method: SW846 8015 NM - Die	esel Range	Organics ((DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5	mg/Kg			09/19/23 20:16	1
Method: SW846 8015B NM - D)iesel Range	e Organics	s (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		09/19/23 12:28	09/19/23 20:16	1
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5	mg/Kg		09/19/23 12:28	09/19/23 20:16	1
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		09/19/23 12:28	09/19/23 20:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130			09/19/23 12:28	09/19/23 20:16	1
o-Terphenyl	114		70 - 130			09/19/23 12:28	09/19/23 20:16	1
Method: EPA 300.0 - Anions, I	lon Chroma	tography -	 Soluble 					
		tography - Qualifier	- Soluble RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte				Unit mg/Kg	D	Prepared	Analyzed 09/19/23 17:40	Dil Fac
Analyte Chloride	Result		RL		<u>D</u>		09/19/23 17:40	1
Analyte Chloride Client Sample ID: FS12	Result		RL		<u>D</u>		09/19/23 17:40	1
Method: EPA 300.0 - Anions, I Analyte Chloride Client Sample ID: FS12 Date Collected: 09/15/23 11:15 Date Received: 09/15/23 13:14	Result		RL		<u>D</u>		09/19/23 17:40	1 5 281-2
Analyte Chloride Client Sample ID: FS12 Pate Collected: 09/15/23 11:15 Pate Received: 09/15/23 13:14	Result		RL		<u>D</u>		09/19/23 17:40	1 5 281-2
Analyte Chloride Client Sample ID: FS12 Pate Collected: 09/15/23 11:15 Pate Received: 09/15/23 13:14 Pample Depth: 2	Result 50.5	Qualifier	<u>RL</u> 4.97		<u>D</u>		09/19/23 17:40	1 5 281-2
Analyte Chloride Client Sample ID: FS12 ate Collected: 09/15/23 11:15 ate Received: 09/15/23 13:14 ample Depth: 2 Method: SW846 8021B - Volat	Result 50.5	Qualifier	<u>RL</u> 4.97		D		09/19/23 17:40	1 5 281-2
Analyte Chloride Client Sample ID: FS12 Date Collected: 09/15/23 11:15 Date Received: 09/15/23 13:14 Gample Depth: 2 Method: SW846 8021B - Volat Analyte	Result 50.5	Qualifier Compoun Qualifier	4.97	mg/Kg		Lab Samp	09/19/23 17:40 le ID: 890-5 Matrix	1 281-2 :: Solid
Analyte Chloride Client Sample ID: FS12 Date Collected: 09/15/23 11:15	Result 50.5	Qualifier Compoun Qualifier U	RL 4.97	mg/Kg		Lab Samp <u>Prepared</u> 09/19/23 09:19	09/19/23 17:40 le ID: 890-5 Matrix Analyzed	1 281-2 :: Solid Dil Fac

Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 93	Qualifier	Limits 70 - 130		Prepared 09/19/23 09:19	Analyzed 09/22/23 00:30	Dil Fac
Xylenes, Total	<0.00401	U	0.00401	mg/Kg	09/19/23 09:19	09/22/23 00:30	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	09/19/23 09:19	09/22/23 00:30	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg	09/19/23 09:19	09/22/23 00:30	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	09/19/23 09:19	09/22/23 00:30	1

Eurofins Carlsbad

Released to Imaging: 11/28/2023 10:28:31 AM

9/26/2023 (Rev. 1)

Page 155 of 177

Client Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: FS12

Date Collected: 09/15/23 11:15 Date Received: 09/15/23 13:14

Sample Depth: 2

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	65	S1-	70 - 130			09/19/23 09:19	09/22/23 00:30	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			09/22/23 00:30	
Method: SW846 8015 NM - Die	esel Range (Organics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.6	U	49.6	mg/Kg			09/19/23 20:38	
Method: SW846 8015B NM - D)iesel Range	organics	(DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.6	U	49.6	mg/Kg		09/19/23 12:28	09/19/23 20:38	
GRO)-C6-C10 Diesel Range Organics (Over	<49.6		49.6	mg/Kg		09/19/23 12:28	09/19/23 20:38	
C10-C28)	\$49.0	0	45.0	iiig/itg		09/19/25 12:20	09/19/23 20.30	
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		09/19/23 12:28	09/19/23 20:38	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	120		70 - 130			09/19/23 12:28	09/19/23 20:38	
p-Terphenyl	134	S1+	70 - 130			09/19/23 12:28	09/19/23 20:38	
Method: EPA 300.0 - Anions, I	on Chroma	tography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	42.8		4.99	mg/Kg			09/19/23 17:57	
lient Sample ID: FS13						Lab Samp	le ID: 890-5	281-
ate Collected: 09/15/23 11:20							Matrix	

Client Sample ID: FS1 Date Collected: 09/15/23 1						Lab Samp	le ID: 890-5 Matrix	281-3
Date Received: 09/15/23 13 Sample Depth: 2.5							Width /	. oonu
Method: SW846 8021B - 1	Volatile Organic	Compound	ds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		09/19/23 09:19	09/22/23 00:50	1
Toluene	<0.00199	U	0.00199	mg/Kg		09/19/23 09:19	09/22/23 00:50	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		09/19/23 09:19	09/22/23 00:50	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		09/19/23 09:19	09/22/23 00:50	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		09/19/23 09:19	09/22/23 00:50	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		09/19/23 09:19	09/22/23 00:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Method: TAL SOP Total B	TEX - Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			09/22/23 00:50	1
Method: SW846 8015 NM	- Diesel Range	Organics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

94

70

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3	mg/Kg			09/19/23 21:01	1

Eurofins Carlsbad

1

1

09/19/23 09:19 09/22/23 00:50

09/19/23 09:19 09/22/23 00:50

Page 156 of 177

5

Job ID: 890-5281-1 SDG: 03C1558263

Lab Sample ID: 890-5281-2

Matrix: Solid

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: FS13 Date Collected: 09/15/23 11:20

Date Received: 09/15/23 13:14 Sample Dopth: 2.5

Method: SW846 8015B NM - Analyte	-	Organics Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3		50.3	mg/Kg		09/19/23 12:28		1
GRO)-C6-C10								
Diesel Range Organics (Over	<50.3	U	50.3	mg/Kg		09/19/23 12:28	09/19/23 21:01	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.3	U	50.3	mg/Kg		09/19/23 12:28	09/19/23 21:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	127		70 - 130			09/19/23 12:28	09/19/23 21:01	1
o-Terphenyl	145	S1+	70 - 130			09/19/23 12:28	09/19/23 21:01	1
Method: EPA 300.0 - Anions	Ion Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	187		5.00	mg/Kg			09/19/23 18:03	1
ate Collected: 09/15/23 11:2 ate Received: 09/15/23 13:14						Lab Samp		
ate Collected: 09/15/23 11:2 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5'	4	Compound	ds (GC)					
ate Collected: 09/15/23 11:2 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola	4 atile Organic	Compound Qualifier	ds (GC) RL	Unit	D	Prepared		: Solid
ate Collected: 09/15/23 11:23 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte	4 atile Organic	Qualifier		Unit mg/Kg	<u>D</u>		Matrix Analyzed	281-4 :: Solid
ate Collected: 09/15/23 11:23 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte Benzene	4 atile Organic Result	Qualifier U			D	Prepared	Matrix Analyzed 09/22/23 01:11	:: Solid
ate Collected: 09/15/23 11:2 ate Received: 09/15/23 13:1 ample Depth: 0 - 2.5 Method: SW846 8021B - Vola Analyte Benzene Toluene	4 atile Organic Result <0.00199	Qualifier U U	RL 0.00199	mg/Kg	D	Prepared 09/19/23 09:19	Matrix Analyzed 09/22/23 01:11 09/22/23 01:11	Dil Fac
ate Collected: 09/15/23 11:23 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene	4 atile Organic Result <0.00199 <0.00199	Qualifier U U U	RL 0.00199 0.00199	mg/Kg mg/Kg	<u>D</u>	Prepared 09/19/23 09:19 09/19/23 09:19	Matrix <u>Analyzed</u> 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11	Dil Fac
ate Collected: 09/15/23 11:2 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	4 atile Organic Result <0.00199 <0.00199 <0.00199	Qualifier U U U U	RL 0.00199 0.00199 0.00199	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19	Matrix <u>Analyzed</u> 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11	Dil Fac
ate Collected: 09/15/23 11:23 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	4 atile Organic Result <0.00199 <0.00199 <0.00199 <0.00398	Qualifier U U U U U U	RL 0.00199 0.00199 0.00199 0.00199 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19	Matrix Analyzed 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11	Dil Fac
ate Collected: 09/15/23 11:22 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	4 atile Organic Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U U U U U U	RL 0.00199 0.00199 0.00199 0.00398 0.00199	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19	Matrix Analyzed 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11	Dil Fac 1 1
ate Collected: 09/15/23 11:22 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	4 atile Organic Result <0.00199 <0.00199 <0.00398 <0.00398 <0.00398	Qualifier U U U U U U U	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 0.00398	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19	Matrix Analyzed 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11	Dil Fac
ate Collected: 09/15/23 11:22 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	4 atile Organic Result <0.00199 <0.00199 <0.00398 <0.00199 <0.00398 <0.00398 %Recovery 92	Qualifier U U U U U U U	RL 0.00199 0.00199 0.00199 0.00398 0.00398 Limits	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19	Matrix <u>Analyzed</u> 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11	Dil Fac
ate Collected: 09/15/23 11:22 ate Received: 09/15/23 13:14 ample Depth: 0 - 2.5' Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	4 atile Organic Result <0.00199 <0.00199 <0.00398 <0.00199 <0.00398 <0.00398 <i>%Recovery</i> 92 63	Qualifier U U U U U U U Qualifier S1-	RL 0.00199 0.00199 0.00199 0.00398 0.00398 0.00398 <u>Limits</u> 70 - 130 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19	Matrix <u>Analyzed</u> 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11	.: Solid
Client Sample ID: SW04 Date Collected: 09/15/23 11:2: Date Received: 09/15/23 13:14 Date Received: 09/15/23 11:2: Date Receive	4 atile Organic Result <0.00199 <0.00199 <0.00398 <0.00199 <0.00398 <0.00398 %Recovery 92 63 X - Total BTE	Qualifier U U U U U U U Qualifier S1-	RL 0.00199 0.00199 0.00199 0.00398 0.00398 0.00398 <u>Limits</u> 70 - 130 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19 09/19/23 09:19	Matrix <u>Analyzed</u> 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11 09/22/23 01:11	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Total BTEX <0.00398 U 0.00398 09/22/23 01:11 mg/Kg Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL Unit Dil Fac п Prepared Analyzed

I	Analyte	Result	Quaimer	RL	Unit	U	Frepareu	Analyzeu	DIFAC
	Total TPH	<49.9	U	49.9	mg/Kg			09/19/23 21:24	1
	 Method: SW846 8015B NM - D	iesel Range	Organics	(DRO) (GC)					
I	Amalyta	Desult	Qualifian	DI	11	D	Droporod	Analyzad	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		09/19/23 12:28	09/19/23 21:24	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		09/19/23 12:28	09/19/23 21:24	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		09/19/23 12:28	09/19/23 21:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	60	S1-	70 - 130			09/19/23 12:28	09/19/23 21:24	1
o-Terphenyl	51	S1-	70 - 130			09/19/23 12:28	09/19/23 21:24	1

Eurofins Carlsbad

Page 157 of 177

Job ID: 890-5281-1 SDG: 03C1558263

Lab Sample ID: 890-5281-3 Matrix: Solid

5

Page 158 of 177

		Client S	Sample Re	sults					1
Client: Ensolum Project/Site: Hudson 1 Fed Com 9H	ł		-				Job ID: 890- SDG: 03C1		2
Client Sample ID: SW04 Date Collected: 09/15/23 11:25						Lab Samp	ole ID: 890-5 Matrix	5281-4 c: Solid	
Date Received: 09/15/23 13:14 Sample Depth: 0 - 2.5'									4
Method: EPA 300.0 - Anions, Ion Analyte		tography - S Qualifier	Soluble RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	50.4		4.98	mg/Kg		Fiepalea	09/19/23 18:09	<u>1</u>	
									8
									9
									13

Eurofins Carlsbad

Surrogate Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_			Pe
		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-5273-A-1-F MS	Matrix Spike	134 S1+	93
890-5273-A-1-G MSD	Matrix Spike Duplicate	127	98
890-5281-1	FS01A	94	62 S1-
890-5281-2	FS12	93	65 S1-
890-5281-3	FS13	94	70
890-5281-4	SW04	92	63 S1-
LCS 880-62786/1-A	Lab Control Sample	128	100
LCSD 880-62786/2-A	Lab Control Sample Dup	130	97
MB 880-62786/5-A	Method Blank	73	90
MB 880-62886/5-A	Method Blank	72	94
Surrogate Legend			

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

_			Perc
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-5281-1	FS01A	104	114
890-5281-2	FS12	120	134 S1+
890-5281-3	FS13	127	145 S1+
890-5281-4	SW04	60 S1-	51 S1-
890-5282-A-8-D MS	Matrix Spike	137 S1+	140 S1+
890-5282-A-8-E MSD	Matrix Spike Duplicate	140 S1+	142 S1+
LCS 880-62823/2-A	Lab Control Sample	101	115
LCSD 880-62823/3-A	Lab Control Sample Dup	93	106
MB 880-62823/1-A	Method Blank	77	88

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

OTPH - 0-Terpheny

9/26/2023 (Rev. 1)

Page 159 of 177

Job ID: 890-5281-1 SDG: 03C1558263

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-62786/5-A **Matrix: Solid** Analysis Batch: 62964

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		09/19/23 09:19	09/21/23 21:45	1
Toluene	<0.00200	U	0.00200	mg/Kg		09/19/23 09:19	09/21/23 21:45	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/19/23 09:19	09/21/23 21:45	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		09/19/23 09:19	09/21/23 21:45	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/19/23 09:19	09/21/23 21:45	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		09/19/23 09:19	09/21/23 21:45	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130			09/19/23 09:19	09/21/23 21:45	1
1,4-Difluorobenzene (Surr)	90		70 - 130			09/19/23 09:19	09/21/23 21:45	1

Lab Sample ID: LCS 880-62786/1-A Matrix: Solid Analysis Batch: 62964

· ····· ······························	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.07199		mg/Kg		72	70 - 130
Toluene	0.100	0.08136		mg/Kg		81	70 - 130
Ethylbenzene	0.100	0.09307		mg/Kg		93	70 - 130
m-Xylene & p-Xylene	0.200	0.1937		mg/Kg		97	70 - 130
o-Xylene	0.100	0.09886		mg/Kg		99	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	128		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-62786/2-A Matrix: Solid

Analysis Batch: 62964

Analysis Batch: 62964							Prep E	Batch: 6	62786
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08444		mg/Kg		84	70 - 130	16	35
Toluene	0.100	0.09277		mg/Kg		93	70 - 130	13	35
Ethylbenzene	0.100	0.1113		mg/Kg		111	70 - 130	18	35
m-Xylene & p-Xylene	0.200	0.1928		mg/Kg		96	70 - 130	0	35
o-Xylene	0.100	0.1158		mg/Kg		116	70 - 130	16	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	130		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: 890-5273-A-1-F MS Matrix: Solid

Matrix: Solid Analysis Batch: 62964									Prep Type: To Prep Batch:	
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0998	0.09211		mg/Kg		92	70 - 130	
Toluene	<0.00200	U	0.0998	0.1089		mg/Kg		109	70 - 130	

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Client Sample ID: Lab Control Sample P

Prep	Type:	Total/NA	

Prep Batch: 62786

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Released to Imaging: 11/28/2023 10:28:31 AM

QC Sample Results

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Lab Sample ID: 890-5273-A-1-F MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 62964

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

MS MS

134 S1+

MR MR

%Recovery Qualifier

93

<0.00200 U

<0.00401 U

<0.00200 U

Result Qualifier

nds (GC) (Conti	nued)					
				CI	ient Sa	mple ID: Matrix Spike Prep Type: Total/NA Prep Batch: 62786	
Spike	MS	MS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.0998	0.1241		mg/Kg		124	70 - 130	
0.200	0.2561		mg/Kg		128	70 - 130	
0.0998	0.1259		mg/Kg		126	70 - 130	
Limits							
70 - 130							T
70 - 130							
			Client S	Samp	le ID: N	Atrix Spike Duplicate Prep Type: Total/NA Prep Batch: 62786	

Lab Sample ID: 890-5273-A-1-G MSD Matrix: Solid Analysis Batch: 62964

Allalysis Daluli. 02304									Fieh D	balth.	JZ / 00	
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00200	U	0.0990	0.08842		mg/Kg		89	70 - 130	4	35	
Toluene	<0.00200	U	0.0990	0.09962		mg/Kg		101	70 - 130	9	35	ī
Ethylbenzene	<0.00200	U	0.0990	0.1120		mg/Kg		113	70 - 130	10	35	
m-Xylene & p-Xylene	<0.00401	U	0.198	0.2284		mg/Kg		115	70 - 130	11	35	Ē
o-Xylene	<0.00200	U	0.0990	0.1117		mg/Kg		113	70 - 130	12	35	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	127		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: MB 880-62886/5-A Matrix: Solid Analysis Batch: 62964

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 62886

	IVID	INIB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		09/20/23 10:13	09/21/23 11:12	1
Toluene	<0.00200	U	0.00200	mg/Kg		09/20/23 10:13	09/21/23 11:12	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		09/20/23 10:13	09/21/23 11:12	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		09/20/23 10:13	09/21/23 11:12	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		09/20/23 10:13	09/21/23 11:12	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		09/20/23 10:13	09/21/23 11:12	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	72		70 - 130			09/20/23 10:13	09/21/23 11:12	1
1,4-Difluorobenzene (Surr)	94		70 - 130			09/20/23 10:13	09/21/23 11:12	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-62823/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 62775 Prep Batch: 62823 MB MB **Result Qualifier** RL Unit Analyte D Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 mg/Kg 09/19/23 08:00 09/19/23 08:41 1 (GRO)-C6-C10

Eurofins Carlsbad

Job ID: 890-5281-1 SDG: 03C1558263 **QC Sample Results**

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-62 Matrix: Solid	2823/1-A						С	lier	nt Samp	ole ID: N Prep Ty		
Analysis Batch: 62775												62823
Analysis Baton. ozrro	N	IB MB								Ticp	Duton.	
Analyte	Resu	ult Qualifier	RL		Unit		D	Pre	epared	Analy	zed	Dil Fac
Diesel Range Organics (Over	<50	0.0 U	50.0		mg/K	g	09		/23 08:00			1
C10-C28) Oll Range Organics (Over C28-C3	6) <50	0.0 U	50.0		mg/K	a	09	9/19	/23 08:00	09/19/23	3 08:41	1
		IB MB			0	5						
Surrogate		ry Qualifier	Limits					Pre	epared	Analy	zed	Dil Fac
1-Chlorooctane		77	70 - 130				09	9/19	/23 08:00	09/19/23	3 08:41	1
o-Terphenyl	ä	88	70 - 130				09	9/19	/23 08:00	09/19/23	3 08:41	1
Lab Sample ID: LCS 880-6	2823/2-A					Clie	nt S	am	ple ID:	Lab Co	ntrol S	Sample
Matrix: Solid										Prep Ty		
Analysis Batch: 62775			• "								Batch:	62823
			Spike		LCS			_	~ -	%Rec		
Analyte			Added		Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics			1000	918.8		mg/Kg			92	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over			1000	991.0		mg/Kg			99	70 - 130		
C10-C28)			1000	00110		ing/itg			00	10-100		
	LCS L											
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	101		70 - 130									
o-Terphenyl	115		70 - 130									
Lab Sample ID: LCSD 880	-62823/3-A				C	Client Sa	mp	le l	D: Lab			
Matrix: Solid										Prep Ty		
Analysis Batch: 62775			0		1.000						Batch	62823 RPD
Apolyto			Spike Added		LCSD Qualifier	Unit		D	%Rec	%Rec Limits	RPD	
Analyte Gasoline Range Organics			1000	934.1	Quaimer	mg/Kg		<u> </u>	93	70 - 130	2	
(GRO)-C6-C10			1000	554.1		mg/itg			00	70-100	2	20
Diesel Range Organics (Over			1000	914.9		mg/Kg			91	70 - 130	8	3 20
C10-C28)		000										
Surrogata	LCSD L %Recovery Q		Limito									
Surrogate 1-Chlorooctane	<u>93</u>		Limits 70 - 130									
o-Terphenyl	93 106		70 - 130 70 - 130									
	100		10-100									
Lab Sample ID: 890-5282-	A-8-D MS							Clie	ent San	ple ID:		
Matrix: Solid										Prep Ty		
Analysis Batch: 62775	0		Omilier		MO						Batch:	62823
Analyto	Sample S Result C		Spike Added		MS Qualifier	Unit	1	п	%Rec	%Rec Limits		
Analyte Gasoline Range Organics			997	910.8		Unit mg/Kg		D _	% кес 87	70 - 130	·	
(GRO)-C6-C10						0 0						
Diesel Range Organics (Over C10-C28)	57.6		997	1124		mg/Kg			107	70 - 130		
	MS N	IS										
Surrogate	%Recovery	Qualifier	Limits									
Surrogate 1-Chlorooctane		Qualifier	Limits 70 - 130 70 - 130									

Eurofins Carlsbad

Job ID: 890-5281-1

SDG: 03C1558263

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-5282-/ Matrix: Solid Analysis Batch: 62775	A-8-E MSD					Client S	amp	le ID: N	latrix Spil Prep Ty Prep E	pe: To	tal/NA
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.6	U	997	948.4		mg/Kg		91	70 - 130	4	20
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)	57.6		997	1137		mg/Kg		108	70 - 130	1	20
010-028)											
		MSD									
Surrogate	%Recovery		Limits	_							
1-Chlorooctane	140	S1+	70 - 130								
o-Terphenyl	142	S1+	70 - 130								
Method: 300.0 - Anions	, Ion Chro	omatogra	phy								
Lab Sample ID: MB 880-62 Matrix: Solid	809/1-A						Clie	ent Sam	ple ID: M Prep Ty		
Analysis Batch: 62854									i top ij	, pc. C	orabic
Analysis Baten. 02004		МВ МВ									
Analyte	Po	sult Qualifier		RL	Unit	D	Б	repared	Analyz	od.	Dil Fac
Chloride		5.00 U		5.00	0m/ mg/K		<u> </u>	repared			1
						3					
Lab Sample ID: LCS 880-6 Matrix: Solid	2809/2-A					Clien	t Sai	mple ID	: Lab Cor Prep Ty		
Analysis Batch: 62854			0		1.00				0/ D		
A we had a			Spike	-	LCS	11	-	0/ D = =	%Rec		
Analyte Chloride			Added 250	245.4	Qualifier	Unit mg/Kg	D	%Rec 98	Limits 90 - 110		
			200	240.4		ilig/itg		50	50-110		
Lab Sample ID: LCSD 880-	-62809/3-A				C	Client Sar	nple	ID: Lab	Control	Sampl	e Dup
Matrix: Solid									Prep Ty	pe: S	oluble
Analysis Batch: 62854											
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	245.3		mg/Kg		98	90 - 110	0	20
Lab Sample ID: 900 5290							C 1	liont So		Motrix	Spike
Lab Sample ID: 890-5280-/	4-1-D 1VI3							lient Sa	mple ID: I		
Matrix: Solid									Prep Ty	/pe: S	elquio
Analysis Batch: 62854	•	. .							~·-		
		Sample	Spike				_		%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	_ <u>D</u>	%Rec	Limits		
Chloride	217		253	449.5		mg/Kg		92	90 - 110		
Lab Sample ID: 890-5280-/ Matrix: Solid Analysis Batch: 62854	A-1-C MSD					Client S	amp	le ID: N	latrix Spil Prep T		
· • • • • • • • • • • • • • • • • • • •	Sample	Sample	Spike	MSD	MSD				%Rec		RPD

Allalysis Dalch. 02004											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	217		253	449.6		mg/Kg		92	90 - 110	0	20

Eurofins Carlsbad

5

7

Job ID: 890-5281-1

SDG: 03C1558263

QC Association Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

GC VOA

Prep Batch: 62786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5281-1	FS01A	Total/NA	Solid	5035	
890-5281-2	FS12	Total/NA	Solid	5035	
890-5281-3	FS13	Total/NA	Solid	5035	
890-5281-4	SW04	Total/NA	Solid	5035	
MB 880-62786/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-62786/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-62786/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5273-A-1-F MS	Matrix Spike	Total/NA	Solid	5035	
890-5273-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
Prep Batch: 62886					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
MB 880-62886/5-A	Method Blank	Total/NA	Solid	5035		

Analysis Batch: 62964

Lab Sample ID 890-5281-1	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 62786
890-5281-2	FS12	Total/NA	Solid	8021B	62786
890-5281-3	FS13	Total/NA	Solid	8021B	62786
890-5281-4	SW04	Total/NA	Solid	8021B	62786
MB 880-62786/5-A	Method Blank	Total/NA	Solid	8021B	62786
MB 880-62886/5-A	Method Blank	Total/NA	Solid	8021B	62886
LCS 880-62786/1-A	Lab Control Sample	Total/NA	Solid	8021B	62786
LCSD 880-62786/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	62786
890-5273-A-1-F MS	Matrix Spike	Total/NA	Solid	8021B	62786
890-5273-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	62786

Analysis Batch: 63051

Lab Sample ID 890-5281-1	Client Sample ID FS01A	Prep Type Total/NA	Matrix Solid	Method Total BTEX	Prep Batch
890-5281-2	FS12	Total/NA	Solid	Total BTEX	
890-5281-3	FS13	Total/NA	Solid	Total BTEX	
890-5281-4	SW04	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 62775

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5281-1	FS01A	Total/NA	Solid	8015B NM	62823
890-5281-2	FS12	Total/NA	Solid	8015B NM	62823
890-5281-3	FS13	Total/NA	Solid	8015B NM	62823
890-5281-4	SW04	Total/NA	Solid	8015B NM	62823
MB 880-62823/1-A	Method Blank	Total/NA	Solid	8015B NM	62823
LCS 880-62823/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	62823
LCSD 880-62823/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	62823
890-5282-A-8-D MS	Matrix Spike	Total/NA	Solid	8015B NM	62823
890-5282-A-8-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	62823
Prep Batch: 62823					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5281-1	FS01A	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 164 of 177

Job ID: 890-5281-1 SDG: 03C1558263

QC Association Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

GC Semi VOA (Continued)

Prep Batch: 62823 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5281-2	FS12	Total/NA	Solid	8015NM Prep	
390-5281-3	FS13	Total/NA	Solid	8015NM Prep	
890-5281-4	SW04	Total/NA	Solid	8015NM Prep	
MB 880-62823/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
_CS 880-62823/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-62823/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
390-5282-A-8-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5282-A-8-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 62893

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
890-5281-1	FS01A	Total/NA	Solid	8015 NM	
890-5281-2	FS12	Total/NA	Solid	8015 NM	
890-5281-3	FS13	Total/NA	Solid	8015 NM	
890-5281-4	SW04	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 62809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5281-1	FS01A	Soluble	Solid	DI Leach	
890-5281-2	FS12	Soluble	Solid	DI Leach	
890-5281-3	FS13	Soluble	Solid	DI Leach	
890-5281-4	SW04	Soluble	Solid	DI Leach	
MB 880-62809/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-62809/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62809/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5280-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-5280-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 62854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5281-1	FS01A	Soluble	Solid	300.0	62809
890-5281-2	FS12	Soluble	Solid	300.0	62809
890-5281-3	FS13	Soluble	Solid	300.0	62809
890-5281-4	SW04	Soluble	Solid	300.0	62809
MB 880-62809/1-A	Method Blank	Soluble	Solid	300.0	62809
LCS 880-62809/2-A	Lab Control Sample	Soluble	Solid	300.0	62809
LCSD 880-62809/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	62809
890-5280-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	62809
890-5280-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	62809

Job ID: 890-5281-1 SDG: 03C1558263

Eurofins Carlsbad

Lab Chronicle

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: FS01A Date Collected: 09/15/23 09:55 Date Received: 09/15/23 13:14

Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Prep	5035			5.00 g	5 mL	62786	09/19/23 09:19	MNR	EET MID
Analysis	8021B		1	5 mL	5 mL	62964	09/22/23 00:09	MNR	EET MID
Analysis	Total BTEX		1			63051	09/22/23 00:09	SM	EET MID
Analysis	8015 NM		1			62893	09/19/23 20:16	SM	EET MID
Prep	8015NM Prep			9.90 g	10 mL	62823	09/19/23 12:28	TKC	EET MID
Analysis	8015B NM		1	1 uL	1 uL	62775	09/19/23 20:16	SM	EET MID
Leach	DI Leach			5.03 g	50 mL	62809	09/19/23 11:36	SMC	EET MID
Analysis	300.0		1	50 mL	50 mL	62854	09/19/23 17:40	СН	EET MID
	Type Prep Analysis Analysis Analysis Prep Analysis Leach	TypeMethodPrep5035Analysis8021BAnalysisTotal BTEXAnalysis8015 NMPrep8015NM PrepAnalysis8015B NMLeachDI Leach	TypeMethodRunPrep5035Analysis8021BAnalysisTotal BTEXAnalysis8015 NMPrep8015NM PrepAnalysis8015B NMLeachDI Leach	TypeMethodRunFactorPrep50351Analysis8021B1AnalysisTotal BTEX1Analysis8015 NM1Prep8015NM PrepAnalysis8015B NM1LeachDI Leach	TypeMethodRunFactorAmountPrep50355.00 gAnalysis8021B15 mLAnalysisTotal BTEX11Analysis8015 NM11Prep8015NM Prep9.90 gAnalysis8015B NM11 uLLeachDI Leach5.03 g	TypeMethodRunFactorAmountAmountPrep503550355.00 g5 mLAnalysis8021B15 mL5 mLAnalysisTotal BTEX15 mLAnalysis8015 NM1-Prep8015NM Prep9.90 g10 mLAnalysis8015B NM11 uLLeachDI Leach5.03 g50 mL	TypeMethodRunFactorAmountAmountNumberPrep50355.00 g5 mL62786Analysis8021B15 mL5 mL62964AnalysisTotal BTEX1-63051Analysis8015 NM1-62893Prep8015NM Prep9.90 g10 mL62823Analysis8015B NM11 uL1 uLLeachDI Leach5.03 g50 mL62809	Type Method Run Factor Amount Amount Number or Analyzed Prep 5035 1 5.00 g 5 mL 5 mL 62786 09/19/23 09:19 Analysis 8021B 1 5 mL 5 mL 62964 09/22/23 00:09 Analysis Total BTEX 1 - 63051 09/22/23 00:09 Analysis 8015 NM 1 - 62893 09/19/23 20:16 Prep 8015NM Prep 9.90 g 10 mL 62823 09/19/23 20:16 Analysis 8015B NM 1 1 uL 1 uL 62775 09/19/23 20:16 Leach DI Leach 5.03 g 50 mL 62809 09/19/23 11:36	Type Method Run Factor Amount Amount Number or Analyzed Analyst Prep 5035 5035 500 g 5 mL 5 mL 62786 09/19/23 09:19 MNR Analysis 8021B 1 5 mL 5 mL 62964 09/22/23 00:09 MNR Analysis Total BTEX 1 5 mL 63051 09/22/23 00:09 SM Analysis 8015 NM 1 - 62893 09/19/23 20:16 SM Prep 8015NM Prep 9.90 g 10 mL 62823 09/19/23 12:28 TKC Analysis 8015B NM 1 1 uL 1 uL 62775 09/19/23 12:26 SM Leach DI Leach 5.03 g 50 mL 62809 09/19/23 11:36 SMC

Date Collected: 09/15/23 11:15 Date Received: 09/15/23 13:14

Client Sample ID: FS12

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			4.99 g	5 mL	62786	09/19/23 09:19	MNR	EET MID	
Total/NA	Analysis	8021B		1	5 mL	5 mL	62964	09/22/23 00:30	MNR	EET MID	
Total/NA	Analysis	Total BTEX		1			63051	09/22/23 00:30	SM	EET MID	
Total/NA	Analysis	8015 NM		1			62893	09/19/23 20:38	SM	EET MID	
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	62823	09/19/23 12:28	TKC	EET MID	
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62775	09/19/23 20:38	SM	EET MID	
Soluble	Leach	DI Leach			5.01 g	50 mL	62809	09/19/23 11:36	SMC	EET MID	
Soluble	Analysis	300.0		1	50 mL	50 mL	62854	09/19/23 17:57	СН	EET MID	

Client Sample ID: FS13 Date Collected: 09/15/23 11:20 Date Received: 09/15/23 13:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	62786	09/19/23 09:19	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62964	09/22/23 00:50	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			63051	09/22/23 00:50	SM	EET MID
Total/NA	Analysis	8015 NM		1			62893	09/19/23 21:01	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	62823	09/19/23 12:28	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62775	09/19/23 21:01	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	62809	09/19/23 11:36	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	62854	09/19/23 18:03	СН	EET MID

Client Sample ID: SW04 Date Collected: 09/15/23 11:25 Date Received: 09/15/23 13:14

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Pre	р Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Tota	al/NA	Prep	5035			5.03 g	5 mL	62786	09/19/23 09:19	MNR	EET MID
Tota	al/NA	Analysis	8021B		1	5 mL	5 mL	62964	09/22/23 01:11	MNR	EET MID
Tota	al/NA	Analysis	Total BTEX		1			63051	09/22/23 01:11	SM	EET MID

Eurofins Carlsbad

Page 166 of 177

Job ID: 890-5281-1 SDG: 03C1558263

Lab Sample ID: 890-5281-1 Matrix: Solid

5 9

Lab Sample ID: 890-5281-2 **Matrix: Solid**

Lab Sample ID: 890-5281-3

Lab Sample ID: 890-5281-4

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Client Sample ID: SW04 Date Collected: 09/15/23 11:25 Date Received: 09/15/23 13:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			62893	09/19/23 21:24	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	62823	09/19/23 12:28	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62775	09/19/23 21:24	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	62809	09/19/23 11:36	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	62854	09/19/23 18:09	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-5281-1 SDG: 03C1558263

Lab Sample ID: 890-5281-4 Matrix: Solid

Eurofins Carlsbad

Accreditation/Certification Summary

Page 168 of 177

Client: Ensolum Project/Site: Hudson	1 Fed Com 9H		-		Job ID: 890-5281-1 SDG: 03C1558263
Laboratory: Euro	fins Midland				
Unless otherwise noted, all	analytes for this labor	atory were covered under e	each accreditation/certification below.		
Authority		Program	Identification Number	Expiration Date	
Texas		NELAP	T104704400-23-26	06-30-24	
The following analytes the agency does not c		port, but the laboratory is n	not certified by the governing authority.	This list may includ	le analytes for which
	mer certification.				
Analysis Method	Prep Method	Matrix	Analyte		
Analysis Method 8015 NM		Matrix Solid	Analyte Total TPH		

Eurofins Carlsbad

Method Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H Job ID: 890-5281-1 SDG: 03C1558263

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum Project/Site: Hudson 1 Fed Com 9H

Lab Sample ID 890-5281-1	Client Sample ID	Matrix Solid	Collected	Received	Depth
890-5281-1	FS12	Solid		09/15/23 13:14	
890-5281-3	FS13	Solid	09/15/23 11:20	09/15/23 13:14	2.5
890-5281-4	SW04	Solid	09/15/23 11:25	09/15/23 13:14	0 - 2.5'

Page 170 of 177

Job ID: 890-5281-1 SDG: 03C1558263

ork Order No: www.xenco.com Page of	Work Order Comments	PRP Brownfields RRC Superfund		vel III PST/UST TRRP Level IV	ADaPT	Preservative Codes	None: NO DI Water: H ₂ O			H ₂ S04:H ₂ NaOH: Na	H₃PO ₄: HP	NaHSO 4: NABIS	Na 2 2 2 03: Na SO 3	Zn Acetate+NaOH: Zn	NaOH+Ascorbic Acid: SAPC	Sample Comments	Incident #:	NAPP1372145119		Cost Center:	1139091001			_	SiO ₂ Na Sr Tl Sn U V Zn 1631/2451/7470/7471	101-11-0-21		(Signature) Date/Time			
Work Order No: www.xenco.con	Mor	Program: UST/PST P	State of Project:	Reporting: Level II Level II	Deliverables: EDD	QUEST						stody	-												vi K Se Ag		terms and conditions s beyond the control nless previously negotlated.	ature) Received by: (Signature)			
Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5400, Dallas, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	Except Green	1 4	L	Carlshad, NH 88220		ANALYSIS REQUEST						890-5281 Chain of Custody		_	10	1978 197	X				MA				S Cd Ca Cr Co	D AS DA DE LA LI LO LU PD MIL MO M	is Xenco, its affiliates and subcontractors. It assigns standard t is incurred by the client if such losses are due to circumstances rofins Xenco, but not analyzed. These terms will be enforced ur	Date/Time Relinquished by: (Signature)	W 9.15-2	4	9
Houston, TX (2 Midland, TX (432 EL Paso, TX (91: Hobbs, NM (57:	Bill to: (if different)	Company Name:	Address:	City, State ZIP:		Turn Around	Rush Code		TAT starts the day received by		No No	Three?	2.0	3.0	2.6	Depth Grab/ # of Comp Cont	2.51 C.	-	2.5/	1.3	1				Texas 11 Al Sb	ICLP/SPLP010 : SKLKA 30 AS Dd De	rder from client company to Eurofi consibility for any losses or expense 5 for each sample submitted to Eu	re) (ə	S.		
Fins Environment Testing Xenco	Res Rout	1 1	3122 Nat'l Parks Hwu	88 MN 10FM	989-854-0853 Email:	Hudson I Fed Cein 9 H Tum	Rout	32.3334 L-103. 8314 2 Due Date:	-	the lab, if rec	Temp Blank: (Yes) No Wet Ice:		Yes No (N/A) Correction Factor:	Yes No NA Temperature Reading:		cation Matrix Sampled Sampled	119		SC11	>					8RCR	Circle Method(s) and Metal(s) to be analyzed	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns samaard terms and conditions of service. Signatured to the control of service is a service of service is a service is a service is a service of service of service is a serv	Signature) Received by: (Signature)	R& albert		
🞲 eurofins	Designet Manager	Company Name.	Company Name: Address:	City, State ZIP:	Phone:	Proiect Name	Project Number:			PO #:	SAMPLE RECEIPT	Samples Received Intact:	Cooler Custody Seals:	Sample Custody Seals:	Total Containers:	Sample Identification	FSALA		7121	5005					Total 200.7 / 6010	Circle Method(s) ar	Notice: Signature of this docun of service. Eurofins Xenco will of Eurofins Xenco. A minimum	Relinquished by: (Signature)	, KOOKY,	3	5

13

9/26/2023 (Rev. 1)

Released to Imaging: 11/28/2023 10:28:31 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5281 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-5281-1 SDG Number: 03C1558263

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 5281 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-5281-1 SDG Number: 03C1558263

List Source: Eurofins Midland

List Creation: 09/19/23 10:55 AM

APPENDIX E

NMOCD Notifications

From:	Collins, Melanie
To:	Green, Garrett J; Ben Belill; Ashley Ager
Subject:	FW: [EXTERNAL] XTO - Sampling Notification (Week of 9/5/23 - 9/8/23)
Date:	Thursday, August 31, 2023 11:05:43 AM
Attachments:	image001.png

[**EXTERNAL EMAIL**]

Time of sampling requested.....again. ugh.

Environmental Technician <u>melanie.collins@exxonmobil.com</u> 432-556-3756

From: Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>
Sent: Thursday, August 31, 2023 10:01 AM
To: Collins, Melanie <melanie.collins@exxonmobil.com>
Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Hamlet, Robert, EMNRD
<Robert.Hamlet@emnrd.nm.gov>
Subject: RE: [EXTERNAL] XTO - Sampling Notification (Week of 9/5/23 - 9/8/23)

External Email - Think Before You Click

Hi Melanie,

The OCD has received your notification. When reporting sampling at multiple locations it is required to provide the date and time for each location. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive | Santa Fe, NM 87505 (505)469-7520_Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/ From: Collins, Melanie <<u>melanie.collins@exxonmobil.com</u>>
Sent: Thursday, August 31, 2023 8:49 AM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>; <u>spills@slo.state.nm.us</u>
Cc: <u>bbelill@ensolum.com</u>; Green, Garrett J <<u>garrett.green@exxonmobil.com</u>>
Subject: [EXTERNAL] XTO - Sampling Notification (Week of 9/5/23 - 9/8/23)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

XTO plans to complete final sampling activities at the sites listed below for the week of September 5, 2023.

Tuesday

• PLU 18 TWR Sat Battery / nAPP2230551957

Wednesday

- PLU 18 TWR Sat Battery / nAPP2230551957
- James Ranch Unit 19 Tank Battery / NAPP2322348507 (SLO)

Thursday

- PLU 18 TWR Sat Battery / nAPP2230551957
- James Ranch Unit 2 702H / nAPP2211654411
- JRU 108 / nAPP2217931599
- Hudson 1 Fed Com 9H / nAPP2322645119

Friday

- PLU 18 TWR Sat Battery / nAPP2230551957
- JRU 108 / nAPP2217931599
- Hudson 1 Fed Com 9H / nAPP2322645119

Thank you,

Melaníe Collíns

ENERGY

Environmental Technician <u>melanie.collins@exxonmobil.com</u> 432-556-3756

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:		OGRID:	
XT	O ENERGY, INC	5380	
64	01 Holiday Hill Road	Action Number:	
Mi	dland, TX 79707	280339	
		Action Type:	
		[C-141] Release Corrective Action (C-141)	
CONDITIONS			
Created By	Condition	Conditio	on Date

Created By Condition None amaxwell

Action 280339

11/28/2023