District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Chevron USA			OGRID: 4323				
Contact Name: Amy Barnhill			Contact Telephone: 432-687-7108				
Contact email: ABarnhill@chevron.com			Incident # (assigned by OCD): nAPP2205633098				
Contact mailing	address:	6301 Deauville B	lvd Midland, Tx	79706	•		
			Location	n of R	elease S	ource	
Latitude 32.400	539		(NAD 83 in a	lecimal de	Longitude - grees to 5 decin	-103.562422 nal places)	
Site Name: DL 2 Dagger Lake Na		15/22 Pad 219, Pl	kg 3		Site Type: Produced Water		
Date Release Di					API# (if app	plicable)	
Unit Letter	Section	Township	Range		Cour	nty	
N 1	0	22S	33E	Lea			
			Nature an	d Vol		justification for tl	he volumes provided below)
Crude Oil		Volume Release					covered (bbls)
Produced W	ater	Volume Release	` /				covered (bbls) 1
		Is the concentrate produced water		chloride	in the	⊠ Yes □	No
Condensate		Volume Release				Volume Rec	covered (bbls)
Natural Gas		Volume Release	d (Mcf)			Volume Rec	covered (Mcf)
Other (descr	ibe)	Volume/Weight	Released (providence)	de units))	Volume/We	ight Recovered (provide units)
Cause of Releas	e: a failu	re on the body o	of the layflat ho	se			

Received by OCD: 8/23/2023 11:38:07 AM
State of New Mexico
Page 2
Oil Conservation Division

Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC? ☐ Yes ☒ No	If YES, for what reason(s) does the respon	sible party consider this a major release?
If YES, was immediate no	tice given to the OCD? By whom? To wh	om? When and by what means (phone, email, etc)?
	Initial Ro	esponse
The responsible p	party must undertake the following actions immediatel	unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
☐ The impacted area ha	s been secured to protect human health and	the environment.
Released materials ha	we been contained via the use of berms or c	ikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and	I managed appropriately.
		emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred
		lease attach all information needed for closure evaluation.
regulations all operators are public health or the environr failed to adequately investig	required to report and/or file certain release noti ment. The acceptance of a C-141 report by the C ate and remediate contamination that pose a thre	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name: Amy Barn		Title: Water Specialist
Signature:	2 Dhill	Date: 2-7-22
email: ABarnhill@chevro	1	Telephone: 432-687-7108
OCD Only		
Received by: Ramona	Marcus	Date: 3/1/2022

Received by OCD: 8/23/2023 11:38:07 AM
State of New Mexico
Page 3
Oil Conservation Division

Page 3 of 89

	1 188 2 1
Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Spill Calculations:

4.76	free- fluid
0.24	in soil
5.00	total

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 84315

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd Midland, TX 79706	Action Number: 84315
	Action Type: [C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
rmarcus	None	3/1/2022

	Page 5 of 8
Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no taler than 20 days after the release discovery date.	
What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	⊠ Yes □ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	

Characterization Report Checklist: Each of the following items must be included in the report.
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
☐ Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
☐ Topographic/Aerial maps
Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 8/23/2023 11:38:07 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 6 of	89
Incident ID	nAPP2205633098	
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a the addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	tifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have reat to groundwater, surface water, human health or the environment. In
Printed Name: Amy Barnhill	Title: Environmental Advisor
Signature: Thile	Date:8-23-23
email: ABarnhill@chevron.com	Telephone: 432-687-7108
OCD Only	
Received by: Shelly Wells	Date: 8/24/2023

Page 7 of 89

	- 18
Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

☐ A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODG	C District office must be notified 2 days prior to final sampling)
□ Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of	ntions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in
OCD Only	
Received by: Shelly Wells	Date: 8/24/2023
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by: Nelson Velez Printed Name: Nelson Velez	Date: 12/06/2023
Printed Name: Nelson Velez	Title: Environmental Specialist - Adv
l <u>—</u>	

Operator did not meet 19.15.29.12D (1a) NMAC. Forbearance given to Etech on 10/06/2023. Release resolved.

CLOSURE REQUEST REPORT

Dagger Lake Narwhal Pad
Lea County, New Mexico
Incident Number nAPP2205633098

Prepared For: Chevron USA, Inc. 6301 Deauville Blvd. Midland, TX 79706

Carlsbad • Midland • San Antonio • Lubbock • Hobbs • Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc. (Chevron), presents the following Closure Request Report (CRR) detailing excavation activities and subsequent soil sampling activities in accordance with an approved Remediation Work Plan (RWP) for an inadvertent release of produced water at the DL 22 33 Sec 15/22 Pad 219, Pkg 3 Dagger Lake Narwhal Pad also referred to as Dagger Lake Narwhal Pad (Site). Based on completed remedial actions and laboratory analytical results from recent soil sampling events, Chevron is requesting No Further Action (NFA) at the Site.

SITE LOCATION AND BACKGROUND

The Site is located in Unit N, Section 10, Township 22 South, Range 33 East, in Lea County, New Mexico (32.400539 N, 103.562422° W) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management. (**Figure 1** in **Appendix A**).

On February 9, 2022, a lay flat hose failure caused the release of approximately 5 barrels (bbls) of produced water between two production pads. Vacuum trucks recovered approximately 1 bbl of free-standing fluid. Chevron reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on February 25, 2022, and was subsequently assigned Incident Number nAPP2205633098. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

Between August 10, 2022, and September 6, 2022, Etech conducted site assessment and delineation soil sampling activities to assess the presence and/or absence of impacts associated with the subject release. A RWP was prepared by Etech to address residual impacts based on laboratory analytical results from delineation activities that exceeded the Site Closure Criteria. The RWP was approved by the NMOCD on November 18, 2022 with the following condition:

• "Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination (<50'). Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Sidewall/Floor samples should represent no more than 200 ft²."

SITE CHARACTERIZATION AND CLOSURE CRITERIA

As previously described in the approved RWP, the Site was characterized according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

Closure Request Report Incident Number nAPP2205633098 Dagger Lake Narwhal Pad

pg. 2

Depth to groundwater was determined to be greater than 100 feet below ground surface (bgs) in the RWP and is further supported by New Mexico Office of the State Engineer (NMOSE) permitted soil boring C-01899 (TW-1) that was drilled by Atkins Engineering Associates, Inc. for Marathon between February 9 and February 24, 2022, located approximately 1.4 miles west of the Site. The soil boring location may be referenced on **Figure 1** in **Appendix A**. Using a truck mounted drill rig equipped with hollow stem auger, the soil boring was advanced to a total depth of 101 feet bgs. No fluids were observed throughout the drilling process nor after an observation period exceeding 72 hours. Following the observation period, the boring was plugged and abandoned according to the appropriate regulations. The boring log is provided in **Appendix B**.

Based on the desktop review of the current BLM Carlsbad Field Office (CFO) karst cave potential map, this Site is located in a low potential karst area. All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details and sources used to determine the site characterization is included in **Figure 1** in **Appendix A**.

Based on the desktop review for depth to groundwater, surrounding wells are greater than a 0.5-mile from the Site which resulted in the application of the following Closure Criteria as per NMOCD depth to groundwater determination requirements:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria
Chloride	(Environmental Protection Agency) EPA 300.0	600 milligrams per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	100 mg/kg
Benzene	EPA 8021B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8021B	50 mg/kg

EXCAVATION SOIL SAMPLING ACTIVITIES

On May 1, 2023, Etech conducted excavation of identified impacts based on laboratory analytical results and visual observations via mechanical equipment. Excavation activities were driven by field screening soil samples for volatile organic hydrocarbons using a photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips.

Following the removal of soil, Etech collected 5-point composite confirmation excavation soil samples at a sampling frequency of 200 square feet from the excavation floor and sidewalls. The 5-point composite samples were comprised of five equivalent aliquots homogenized in a 1-gallon, resealable plastic bag. Each sidewall sample depth represents the approximate average depth from which the five aliquots were collected. Floor samples were collected from a depth of approximately 5 feet bgs. The samples were then placed into lab provided pre-cleaned glass jars, packaged with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas, for analysis of COCs. The location of confirmation excavation soil samples is shown in **Figure 2** in **Appendix A**.

Impacted soil was removed from the Site and transported to a licensed and approved New Mexico landfill. Upon receipt of the final confirmation excavation soil samples results, the excavation was backfilled with clean, locally sourced soil and the Site was restored to "as close to its original state" as possible. Photographic documentation of excavation activities is included in **Appendix C**.

Closure Request Report Incident Number nAPP2205633098 Dagger Lake Narwhal Pad

LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for all final confirmation excavation soil samples indicated all analyzed COCs were below the Site Closure Criteria. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

SITE CLOSURE REQUEST

Based on laboratory analytical results for confirmation excavation soil samples, Chevron believes residual soil impacts associated with the inadvertent release have been excavated and removed from the Site. Concentrations of COCs for all final excavation confirmation soil samples were below the Site Closure Criteria. As such, NFA appears warranted at this time and Incident Number nAPP2205633098 should be respectfully considered for Closure by the NMOCD. Chevron believes the completed remedial actions have mitigated impacts at the Site and the requirements set forth in NMAC guidelines and be protective of human health, the environment, and groundwater.

If you have any questions or comments, please do not hesitate to contact Blake Estep at (432) 894-6038 or blake@etechenv.com. Previous remediation activities and soil sample analytical results for the subject release can be referenced in the original RWP in **Appendix F**.

Sincerely,

Etech Environmental and Safety Solutions, Inc.

Blake Estep Project Manager

cc: Amy Barnhill, Chevron

New Mexico Oil Conservation Division

Bureau of Land Management

Appendices:

Appendix A: Figure 1: Site Map

Figure 2: Excavation Soil Sample Locations

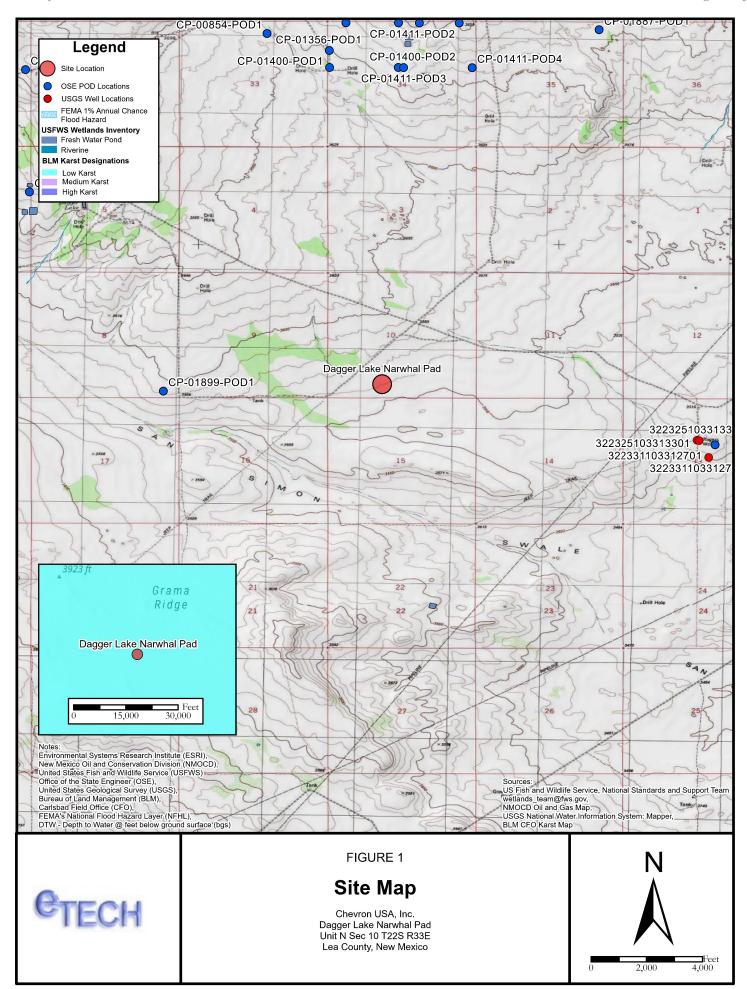
Appendix B: Referenced Well Records

Appendix C: Photographic Log

Appendix D: Tables

Appendix E: Laboratory Analytical Reports & Chain-of-Custody Documentation

Appendix F: Approved Remediation Work Plan


Closure Request Report Incident Number nAPP2205633098 Dagger Lake Narwhal Pad

APPENDIX A

Figures

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

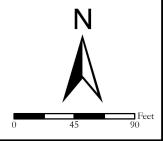


FIGURE 2

Excavation Soil Sample Locations

Chevron USA, Inc. Dagger Lake Narwhal Pad Unit N Sec 10 T22S R33E Lea County, New Mexico

APPENDIX B

Referenced Well Records

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

NO	OSE POD NO POD1 (TW		NO.)			WELL TAG ID NO.				OSE FILE NO(S	5).				
OCAT	WELL OWN Marathon		E(S)							PHONE (OPTIONAL)					
GENERAL AND WELL LOCATION	WELL OWN 4111 S Tid			DDRESS						CITY Carlsbad			STAT		ZIP
B	WELL	T		DE	DEGREES MINUTES SECONDS										
LA	LOCATIO	N I	LATIT	UDE	32	_N	* ACCURACY	REQUIRED:	ONE TEN	TH OF	A SECOND				
ERA	(FROM GF	PS)		ITUDE	103	w	* DATUM REC	UIRED: WG	S 84						
EN	DESCRIPTION			WELL LOCATION TO	STREET ADDI	RESS AND COMMON	RKS –	PLSS	S (SECTION, TO	WNSHJIP, RA	NGE) WH	ERE A	VAILABLE		
1.0	ı			S R33E, NMPM								,			
	LICENSE NO		1	NAME OF LICENSED							NAME OF	WELL DR	ILLING	COMPANY	
	124	49				Jackie D. Atkins					Α	tkins Eng	ineeri	ng Associates,	Inc.
	DRILLING ST 2/9/2		I							E DEPTH (FT) :101	DEPTH W	ATER FIR		COUNTERED (FT 1/a)
z	COMPLETE	D WELL IS	S:	ARTESIAN	ARTESIAN P DRY HOLE SHALLOW (UNCONFINED)						WATER LEV PLETED WEI		/a	DATE STATIC 2/24/22,	
TIO	DRILLING F	LUID:		AIR	MUD	ADDITIV	ES – SPEC	IFY:							
2. DRILLING & CASING INFORMATION	DRILLING M	ÆTHOD:	R	OTARY HAMN	MER CAB	LE TOOL 🕡 OTHE	ER – SPEC	IFY:	Н	ollow Stem A	Auger	CHECK INSTAL	HERE LED	IF PITLESS ADA	PTER IS
INF	DEPTH	(feet bgl)	BORE HOLE	CASING	CASING MATERIAL AND/OR				SING	CASI	NG	CA	SING WALL	SLOT
NG	FROM	то)	DIAM	(include	GRADE each casing string,	and		NN	ECTION	INSIDE	DIAM.		HICKNESS	SIZE
ASI				(inches)		sections of screen)		(add co		YPE ing diameter)	(inch	es)		(inches)	(inches)
8	0	101	l	±8.5		Boring									-
ING															
III															
DR.													_		-
7							-						-		-
			-				-				Spling has been	II MAR	H H Y		
					 		$\overline{}$					11 (4)-15		2022 pm814	-
									_						
,	DEPTH	(feet bgl))	BORE HOLE	LI	ST ANNULAR SE	AL MA	ERIA	LA	ND	AM	OUNT		METHO	
ANNULAR MATERIAL	FROM	то		DIAM. (inches)	GRA	VEL PACK SIZE-	RANGE	BY IN	TE	RVAL	(cut	oic feet)		PLACE	MENT
TER															
MA															
AR															
N													_		
			_										-		
e,			-										\dashv		
					L										
	OSE INTER			000		BODATO						ECORD	& LOC	G (Version 01/2	28/2022)
	ATION	P-			0 0	POD NO	35	シレ	T-	TRNN		1+1	-1	DACE	1 OF 2
LUC	ATION	2r	2	252	8 2	60 0	2			WELL TAG II	NO.	JA		PAGE	1 OF 2

	DEPTH (feet bgl)		COLORA	ND TVDE OF N	AATEDIAI EI	NCOUNTERED -		WATER	ESTIMATED
	FROM	то	THICKNESS (feet)	INCLUDE WAT	ER-BEARING	CAVITIES O	R FRACTURE ZON escribe all units)	IES	WATER BEARING? (YES / NO)	YIELD FOR WATER- BEARING ZONES (gpm)
	0	9	9	Sand, Fir	ne-grained, poor	ly graded with	caliche, Brown		Y ✓N	(B p)
	9	19	10	Sand, F	ine-grained, po	orly graded wit	th caliche, Tan		Y ✓N	
	19	34	15	Sand, Fine-gr	ained, poorly g		Y ✓N			
	34	44	10	S	and, Fine-grain	ed, poorly grad	led, Tan		y ✓n	
	44	49	5	Sand, Fine-gra	ined, poorly gra	ded with sub-a	ingular gravel, Brow	n	Y ✓N	
Ţ	49	101	52		Clay, with	and ,Dry, Bro	wn		Y ✓N	
4. HYDROGEOLOGIC LOG OF WELL									Y N	
OF									Y N	
90									Y N	
5									Y N	
20									Y N	
GEO									Y N	
RO									Y N	
HXI									Y N	
4.									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARI	NG STRATA:			1	AL ESTIMATED	
	PUM	P A	IR LIFT	BAILER	THER - SPEC	IFY:		WEI	LL YIELD (gpm):	0.00
NO	WELL TES			ACH A COPY OF DA						
VISION	MISCELLA	NEOUS INF	ORMATION:	emporary well mater	ials removed	and he soil he	ring bookfilled w	ina drill	cuttings from total	l donth to tan
PER			fe	et below ground sur	face, then hyd	rated bentoni	te chips ten feet b	elow gro	ound surface to sur	face.
TEST; RIG SUPER										
; RIC								neen	III MAR 1 1 202	Ф sм0+51
EST	PRINT NAM	(E(S) OF DI	RILL RIG SUPER	RVISOR(S) THAT PR	OVIDED ONSI	TE SUPERVI	SION OF WELL CO	NSTRU	the state of the s	dec last the last
5. T	Shane Eldri	150								
TURE	CORRECT I	RECORD O	F THE ABOVE I	FIES THAT, TO THE DESCRIBED HOLE A 30 DAYS AFTER CO	ND THAT HE	OR SHE WIL	L FILE THIS WELI			
6. SIGNATURE	Jack A	tkins		J	ackie D. Atkir	ıs			3/10/2022	
•		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEI	ENAME				DATE	
FO	R OSE INTER	NAI IICE					W/D 20 U	TEII DE	CORD & LOG (Ver	sion 01/28/2022)
	ENO.		1899		POD NO.	PODI	TRN NO.	71	7713	51011 V1/20/2U22)
LO	CATION		SESE	8	225	33 E	WELL TAG ID N	D	NA	PAGE 2 OF 2

Mike A. Hamman, P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 717713 File Nbr: CP 01899

Well File Nbr: CP 01899 POD1

Mar. 22, 2022

MELODIE SANJARI MARATHON OIL 4111 S TIDWELL RD CARLSBAD, NM 88220

Greetings:

The above numbered permit was issued in your name on 01/31/2022.

The Well Record was received in this office on 03/11/2022, stating that it had been completed on 02/24/2022, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 01/31/2023.

If you have any questions, please feel free to contact us.

Sincerely,

Megen Telles (575)622-6521

drywell

APPENDIX C

Photographic Log

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

PHOTOGRAPHIC LOG

Chevron USA, Inc.
Dagger Lake Narwhal Pad
Incident Number nAPP2205633098

La Inmited States

Linited States

Photograph 1 Date: 05/01/2023

Description: Southwestern view of excavation activities

Photograph 2 Date: 05/01/2023

Description: Southwestern view of continued excavation activities

Photograph 3 Date: 05/01/2023

Description: Northwestern view of the final excavation extent

Photograph 4 Date: 05/01/2023

Description: Northeastern view of the final excavatation extent

PHOTOGRAPHIC LOG

Chevron USA, Inc.
Dagger Lake Narwhal Pad
Incident Number nAPP2205633098

Photograph 5 Date: 05/24/2023

Description: Northern view of backfilled

excavation

Photograph 6 Date: 05/24/2023

Description: Southwestern view of backfilled excavation

Photograph 7 Date: 05/24/2023

Description: Southeastern view of backfilled

excavation

Photograph 8 Date: 05/24/2023

Description: Southern view of backfilled

excavation

APPENDIX D

Tables

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Table 1 SOIL SAMPLE ANALYTICAL RESULTS

Chevron USA, Inc. - Dagger Lake Narwhal Pad Lea County, New Mexico

Etech Project No. #16450

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)			
NMOCD Table I Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29)			10	50	NE	NE	NE	100	600			
	Excavation Soil Samples - Incident Number nAPP2205633098											
Bottom Hole 1	05/01/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	1.91			
Bottom Hole 2	05/01/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	<1.00			
South Wall 1	05/01/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	<1.00			
South Wall 2	05/01/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	4.18			
West Wall	05/01/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	2.25			
North Wall 1	05/01/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	7.53			
North Wall 2	05/01/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	4.09			
East Wall	05/01/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	4.92			

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division NMAC: New Mexico Administrative Code

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Dagger Lake
Project Number: 16450
Location: New Mexico

Lab Order Number: 3E04010

Current Certification

Report Date: 05/15/23

13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake

Project Number: 16450 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole 1 @ 5'	3E04010-01	Soil	05/01/23 13:30	05-04-2023 09:45
Bottom Hole 2 @ 5'	3E04010-02	Soil	05/01/23 13:35	05-04-2023 09:45
South Wall - 1 @ 3'	3E04010-03	Soil	05/01/23 13:40	05-04-2023 09:45
South Wall - 2 @ 3'	3E04010-04	Soil	05/01/23 13:45	05-04-2023 09:45
West Wall @ 3'	3E04010-05	Soil	05/01/23 14:05	05-04-2023 09:45
North Wall - 1 @ 3'	3E04010-06	Soil	05/01/23 13:50	05-04-2023 09:45
North Wall - 2 @ 3'	3E04010-07	Soil	05/01/23 13:55	05-04-2023 09:45
East Wall @ 3'	3E04010-08	Soil	05/01/23 14:00	05-04-2023 09:45

Odessa TX, 79765

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100

Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

Bottom Hole 1 @ 5' 3E04010-01 (Soil)

Analyte		Reporting					A 1 7	M (1 1	3. T ·
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:11	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:11	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:11	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:11	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P3E0511	05/05/23 16:18	05/06/23 10:11	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.5 %	80-120		P3E0511	05/05/23 16:18	05/06/23 10:11	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 00:31	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 00:31	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 00:31	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-130		P3E0811	05/08/23 13:00	05/14/23 00:31	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P3E0811	05/08/23 13:00	05/14/23 00:31	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	05/08/23 13:00	05/14/23 00:31	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	1.91	1.00	mg/kg dry	1	P3E0506	05/05/23 13:45	05/08/23 20:53	EPA 300.0	
% Moisture	ND	0.1	%	1	P3E0505	05/05/23 09:32	05/05/23 09:38	ASTM D2216	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765

Project Number: 16450

Project: Dagger Lake

Project Manager: Blake Estep

Bottom Hole 2 @ 5' 3E04010-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:31	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:31	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:31	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:31	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:31	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		100 %	80-120		P3E0511	05/05/23 16:18	05/06/23 10:31	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P3E0511	05/05/23 16:18	05/06/23 10:31	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 00:56	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 00:56	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 00:56	TPH 8015M	
Surrogate: 1-Chlorooctane		95.0 %	70-130		P3E0811	05/08/23 13:00	05/14/23 00:56	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-130		P3E0811	05/08/23 13:00	05/14/23 00:56	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	05/08/23 13:00	05/14/23 00:56	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	ND	1.00	mg/kg dry	1	P3E0506	05/05/23 13:45	05/08/23 21:07	EPA 300.0	
% Moisture	ND	0.1	%	1	P3E0505	05/05/23 09:32	05/05/23 09:38	ASTM D2216	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Dagger Lake
13000 West County Road 100 Project Number: 16450

Odessa TX, 79765 Project Manager: Blake Estep

South Wall - 1 @ 3' 3E04010-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
<u> </u>	Result	Lillit		Direction	Datell	1 repared			1100
		P	ermian Ba	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:52	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:52	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:52	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:52	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 10:52	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3E0511	05/05/23 16:18	05/06/23 10:52	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.5 %	80-120		P3E0511	05/05/23 16:18	05/06/23 10:52	EPA 8021B	
Fotal Petroleum Hydrocarbons C6-	.C35 by FD/	Method	8015M						
C6-C12	-C33 by E17 ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 01:20	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 01:20	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 01:20	TPH 8015M	
Surrogate: 1-Chlorooctane		95.6 %	70-130		P3E0811	05/08/23 13:00	05/14/23 01:20	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-130		P3E0811	05/08/23 13:00	05/14/23 01:20	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	05/08/23 13:00	05/14/23 01:20	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	ND	1.00	mg/kg dry	1	P3E0506	05/05/23 13:45	05/08/23 21:21	EPA 300.0	
% Moisture	ND	0.1	%	1	P3E0505	05/05/23 09:32	05/05/23 09:38	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

South Wall - 2 @ 3' 3E04010-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:12	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:12	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:12	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:12	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:12	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3E0511	05/05/23 16:18	05/06/23 11:12	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P3E0511	05/05/23 16:18	05/06/23 11:12	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 01:44	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 01:44	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 01:44	TPH 8015M	
Surrogate: 1-Chlorooctane		85.6 %	70-130		P3E0811	05/08/23 13:00	05/14/23 01:44	TPH 8015M	
Surrogate: o-Terphenyl		90.7 %	70-130		P3E0811	05/08/23 13:00	05/14/23 01:44	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	05/08/23 13:00	05/14/23 01:44	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	4.18	1.00	mg/kg dry	1	P3E0506	05/05/23 13:45	05/08/23 21:36	EPA 300.0	
% Moisture	ND	0.1	%	1	P3E0505	05/05/23 09:32	05/05/23 09:38	ASTM D2216	

Project: Dagger Lake

13000 West County Road 100 Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

West Wall @ 3' 3E04010-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian R	asin Envi	ronmental I	ah L.P			
DEEL L OOAAD		•	criman B		ommentar 1	200, 12.11.			
BTEX by 8021B	ND.	0.00100	mg/kg dry	, 1	D2E0511	05/05/22 16 10	05/06/22 11 22	EDA 0021D	
Benzene	ND	0.00100			P3E0511	05/05/23 16:18	05/06/23 11:33	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry		P3E0511	05/05/23 16:18	05/06/23 11:33	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:33	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:33	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:33	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P3E0511	05/05/23 16:18	05/06/23 11:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		100 %	80-120		P3E0511	05/05/23 16:18	05/06/23 11:33	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	1 8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:09	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:09	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:09	TPH 8015M	
Surrogate: 1-Chlorooctane		75.8 %	70-130		P3E0811	05/08/23 13:00	05/14/23 02:09	TPH 8015M	
Surrogate: o-Terphenyl		80.6 %	70-130		P3E0811	05/08/23 13:00	05/14/23 02:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	05/08/23 13:00	05/14/23 02:09	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	2.25	1.00	mg/kg dry	1	P3E0506	05/05/23 13:45	05/08/23 21:50	EPA 300.0	
% Moisture	ND	0.1	%	1	P3E0505	05/05/23 09:32	05/05/23 09:38	ASTM D2216	

Permian Basin Environmental Lab, L.P.

 $The \ results \ in \ this \ report \ apply \ to \ the \ samples \ analyzed \ in \ accordance \ with \ the \ samples$ received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Dagger Lake

13000 West County Road 100 Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

North Wall - 1 @ 3' 3E04010-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:53	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:53	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:53	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:53	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 11:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		100 %	80-120		P3E0511	05/05/23 16:18	05/06/23 11:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.6 %	80-120		P3E0511	05/05/23 16:18	05/06/23 11:53	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:33	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:33	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:33	TPH 8015M	
Surrogate: 1-Chlorooctane		74.6 %	70-130		P3E0811	05/08/23 13:00	05/14/23 02:33	TPH 8015M	
Surrogate: o-Terphenyl		79.0 %	70-130		P3E0811	05/08/23 13:00	05/14/23 02:33	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	05/08/23 13:00	05/14/23 02:33	calc	
General Chemistry Parameters by	EPA / Stanc	lard Met	hods						
Chloride	7.53	1.00	mg/kg dry	1	P3E0506	05/05/23 13:45	05/08/23 22:05	EPA 300.0	
% Moisture	ND	0.1	%	1	P3E0505	05/05/23 09:32	05/05/23 09:38	ASTM D2216	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake Project Number: 16450

Project Manager: Blake Estep

North Wall - 2 @ 3' 3E04010-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		n	oumica D	asin Enri	wonmental l		<u> </u>		
		P	ermian Ba	ASIN ENVI	ronmental l	Lau, L.r.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:14	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:14	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:14	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:14	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P3E0511	05/05/23 16:18	05/06/23 12:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3E0511	05/05/23 16:18	05/06/23 12:14	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:57	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:57	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 02:57	TPH 8015M	
Surrogate: 1-Chlorooctane		74.1 %	70-130		P3E0811	05/08/23 13:00	05/14/23 02:57	TPH 8015M	
Surrogate: o-Terphenyl		77.6 %	70-130		P3E0811	05/08/23 13:00	05/14/23 02:57	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	05/08/23 13:00	05/14/23 02:57	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	4.09	1.00	mg/kg dry	1	P3E0507	05/05/23 13:47	05/08/23 23:31	EPA 300.0	
% Moisture	ND	0.1	%	1	P3E0505	05/05/23 09:32	05/05/23 09:38	ASTM D2216	

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake Project Number: 16450

Project Manager: Blake Estep

East Wall @ 3' 3E04010-08 (Soil)

Analyte	D 1	Reporting	** **	D.11	D . 1	ъ	A 1	M-41 1	Mada
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:35	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:35	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:35	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:35	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3E0511	05/05/23 16:18	05/06/23 12:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.5 %	80-120		P3E0511	05/05/23 16:18	05/06/23 12:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3E0511	05/05/23 16:18	05/06/23 12:35	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP/	\ Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 03:21	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 03:21	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3E0811	05/08/23 13:00	05/14/23 03:21	TPH 8015M	
Surrogate: 1-Chlorooctane		77.1 %	70-130		P3E0811	05/08/23 13:00	05/14/23 03:21	TPH 8015M	
Surrogate: o-Terphenyl		82.1 %	70-130		P3E0811	05/08/23 13:00	05/14/23 03:21	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	05/08/23 13:00	05/14/23 03:21	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	4.92	1.00	mg/kg dry	1	P3E0507	05/05/23 13:47	05/08/23 23:45	EPA 300.0	
% Moisture	ND	0.1	%	1	P3E0505	05/05/23 09:32	05/05/23 09:38	ASTM D2216	

13000 West County Road 100

Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

> **BTEX by 8021B - Quality Control** Permian Basin Environmental Lab, L.P.

Project: Dagger Lake

	D. I	Reporting	TT '	Spike	Source	0/DEC	%REC	DDD	RPD	NI.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3E0511 - *** DEFAULT PREP ***										
Blank (P3E0511-BLK1)				Prepared: (05/05/23 A1	nalyzed: 05	/06/23			
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	80-120			
LCS (P3E0511-BS1)				Prepared: ()5/05/23 Aı	nalyzed: 05	/06/23			
Benzene	0.116	0.00100	mg/kg	0.100		116	80-120			
Toluene	0.112	0.00100	"	0.100		112	80-120			
Ethylbenzene	0.115	0.00100	"	0.100		115	80-120			
Xylene (p/m)	0.212	0.00200	"	0.200		106	80-120			
Xylene (o)	0.104	0.00100	"	0.100		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.2	80-120			
LCS Dup (P3E0511-BSD1)				Prepared: (05/05/23 A1	nalyzed: 05	/06/23			
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120	2.95	20	
Toluene	0.116	0.00100	"	0.100		116	80-120	3.54	20	
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120	3.44	20	
Xylene (p/m)	0.218	0.00200	"	0.200		109	80-120	2.50	20	
Xylene (o)	0.107	0.00100	"	0.100		107	80-120	3.35	20	
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	80-120			
Calibration Blank (P3E0511-CCB1)				Prepared: (05/05/23 Aı	nalyzed: 05	/06/23			
Benzene	0.00	<u></u>	ug/kg	<u> </u>	·	·		·		
Toluene	0.00		"							
Ethylbenzene	0.110		"							
Xylene (p/m)	0.140		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.5	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

BTEX by 8021B - Quality Control

Project: Dagger Lake

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3E0511 - *** DEFAULT PREP ***										
Calibration Blank (P3E0511-CCB2)				Prepared: 0	05/05/23 Aı	nalyzed: 05	/06/23			
Benzene	0.00		ug/kg	1		J 30				
Toluene	0.00		"							
Ethylbenzene	0.140		"							
Xylene (p/m)	0.170		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.4	80-120			
Calibration Blank (P3E0511-CCB3)				Prepared: 0	05/05/23 Aı	nalyzed: 05	/06/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.6	80-120			
Calibration Check (P3E0511-CCV1)				Prepared: 0	05/05/23 Aı	nalyzed: 05	/06/23			
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			<u> </u>
Toluene	0.115	0.00100	"	0.100		115	80-120			
Ethylbenzene	0.112	0.00100	"	0.100		112	80-120			
Xylene (p/m)	0.217	0.00200	"	0.200		108	80-120			
Xylene (o)	0.108	0.00100	"	0.100		108	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.4	75-125			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	75-125			
Calibration Check (P3E0511-CCV2)				Prepared: 0	05/05/23 A1	nalyzed: 05	/06/23			
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.111	0.00100	"	0.100		111	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.195	0.00200	"	0.200		97.7	80-120			
Xylene (o)	0.104	0.00100	"	0.100		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.8	75-125			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake Project Number: 16450

Project Number: 16450
Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3E0511 - *** DEFAULT PREP ***										
Calibration Check (P3E0511-CCV3)				Prepared: (05/05/23 A	nalyzed: 05	/06/23			
Benzene	0.120	0.00100	mg/kg	0.100		120	80-120			
Toluene	0.117	0.00100	"	0.100		117	80-120			
Ethylbenzene	0.110	0.00100	"	0.100		110	80-120			
Xylene (p/m)	0.212	0.00200	"	0.200		106	80-120			
Xylene (o)	0.109	0.00100	"	0.100		109	80-120			
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.4	75-125			
Matrix Spike (P3E0511-MS1)	Sou	rce: 3E04009	-10	Prepared: (05/05/23 At	nalyzed: 05	/06/23			
Benzene	0.103	0.00111	mg/kg dry	0.111	ND	93.0	80-120			
Toluene	0.0889	0.00111	"	0.111	ND	80.0	80-120			
Ethylbenzene	0.0764	0.00111	"	0.111	ND	68.8	80-120			QM-0
Xylene (p/m)	0.150	0.00222	"	0.222	ND	67.6	80-120			QM-0
Xylene (o)	0.0794	0.00111	"	0.111	ND	71.5	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.143		"	0.133		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.131		"	0.133		98.6	80-120			
Matrix Spike Dup (P3E0511-MSD1)	Sou	rce: 3E04009	-10	Prepared: (05/05/23 Aı	nalyzed: 05	/06/23			
Benzene	0.115	0.00111	mg/kg dry	0.111	ND	104	80-120	11.0	20	
Toluene	0.0966	0.00111	"	0.111	ND	86.9	80-120	8.29	20	
Ethylbenzene	0.0841	0.00111	"	0.111	ND	75.7	80-120	9.53	20	QM-0
Xylene (p/m)	0.166	0.00222	"	0.222	ND	74.7	80-120	10.0	20	QM-0
Xylene (o)	0.0919	0.00111	"	0.111	ND	82.7	80-120	14.6	20	
Surrogate: 1,4-Difluorobenzene	0.132		"	0.133		99.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.142		"	0.133		106	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3E0811 - TX 1005										
Blank (P3E0811-BLK1)				Prepared: (05/08/23 Aı	nalyzed: 05	/13/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	84.2		"	100		84.2	70-130			
Surrogate: o-Terphenyl	46.7		"	50.0		93.4	70-130			
LCS (P3E0811-BS1)				Prepared: (05/08/23 At	nalyzed: 05	/13/23			
C6-C12	976	25.0	mg/kg	1000		97.6	75-125			
>C12-C28	871	25.0	"	1000		87.1	75-125			
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	53.4		"	50.0		107	70-130			
LCS Dup (P3E0811-BSD1)				Prepared: (05/08/23 At	nalyzed: 05	/13/23			
C6-C12	966	25.0	mg/kg	1000		96.6	75-125	1.00	20	
>C12-C28	873	25.0	"	1000		87.3	75-125	0.305	20	
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	52.5		"	50.0		105	70-130			
Calibration Check (P3E0811-CCV1)				Prepared: (05/08/23 At	nalyzed: 05	/13/23			
C6-C12	485	25.0	mg/kg	500		97.0	85-115			
>C12-C28	460	25.0	"	500		92.1	85-115			
Surrogate: 1-Chlorooctane	94.6		"	100		94.6	70-130			
Surrogate: o-Terphenyl	47.7		"	50.0		95.3	70-130			
Calibration Check (P3E0811-CCV2)				Prepared: (05/08/23 At	nalyzed: 05	/14/23			
C6-C12	487	25.0	mg/kg	500		97.3	85-115			
>C12-C28	498	25.0	"	500		99.5	85-115			
Surrogate: 1-Chlorooctane	96.8		"	100		96.8	70-130			
Surrogate: o-Terphenyl	46.7		"	50.0		93.4	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3E0811 - TX 1005										
Matrix Spike (P3E0811-MS1)	Sour	ce: 3E05006	-12	Prepared: (05/08/23 A	nalyzed: 05	/14/23			
C6-C12	881	26.3	mg/kg dry	1050	10.5	82.7	75-125			
>C12-C28	814	26.3	"	1050	17.4	75.6	75-125			
Surrogate: 1-Chlorooctane	85.2		"	105		80.9	70-130			
Surrogate: o-Terphenyl	39.9		"	52.6		75.8	70-130			
Matrix Spike Dup (P3E0811-MSD1)	Sour	ce: 3E05006	-12	Prepared: (05/08/23 A	nalyzed: 05	/14/23			
C6-C12	951	26.3	mg/kg dry	1050	10.5	89.4	75-125	7.78	20	
>C12-C28	894	26.3	"	1050	17.4	83.3	75-125	9.64	20	
Surrogate: 1-Chlorooctane	92.9		"	105		88.3	70-130			
Surrogate: o-Terphenyl	40.7		"	52.6		77.3	70-130			

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Project Number: 16450

Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Dagger Lake

		Reporting		Spike	Source Result	%REC	%REC		RPD	
Analyte	Result	Limit	Units	Level	Limits	RPD	Limit	Notes		
Batch P3E0505 - *** DEFAULT PREP ***										
Blank (P3E0505-BLK1)				Prepared &	Analyzed:	05/05/23				
% Moisture	ND	0.1	%							
Blank (P3E0505-BLK2)				Prepared &	Analyzed:	05/05/23				
% Moisture	ND	0.1	%							
Blank (P3E0505-BLK3)				Prepared &	Analyzed:	05/05/23				
% Moisture	ND	0.1	%							
Blank (P3E0505-BLK4)				Prepared &	Analyzed:	05/05/23				
% Moisture	ND	0.1	%							
Duplicate (P3E0505-DUP1)	Source: 3E04005-03			Prepared &	Analyzed:	05/05/23				
% Moisture	13.0	0.1	%		13.0			0.00	20	
Duplicate (P3E0505-DUP2)	Sou	rce: 3E04005-1	13	Prepared &	Analyzed:	05/05/23				
% Moisture	13.0	0.1	%		13.0			0.00	20	
Duplicate (P3E0505-DUP3)	Sou	rce: 3E04011-0)5	Prepared &	Analyzed:	05/05/23				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P3E0505-DUP4)	Sour	rce: 3E04011-1	15	Prepared &	Analyzed:	05/05/23				
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P3E0505-DUP5)	Sou	rce: 3E04009-0)9	Prepared &	Analyzed:	05/05/23				
% Moisture	1.0	0.1	%		2.0			66.7	20	R3
Duplicate (P3E0505-DUP6)	Sou	rce: 3E04009-1	19	Prepared &	Analyzed:	05/05/23				
% Moisture	3.0	0.1	%		4.0			28.6	20	R3

Project: Dagger Lake

13000 West County Road 100 Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3E0505 - *** DEFAULT PREP ***										
Duplicate (P3E0505-DUP7)	Sou	rce: 3E04015-	06	Prepared &	Analyzed	: 05/05/23				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Batch P3E0506 - *** DEFAULT PREP ***										
Blank (P3E0506-BLK1)				Prepared: (05/05/23 A	analyzed: 05	5/08/23			
Chloride	ND	1.00	mg/kg							
LCS (P3E0506-BS1)				Prepared: (05/05/23 A	analyzed: 05	5/08/23			
Chloride	19.1		mg/kg	20.0		95.6	90-110			
LCS Dup (P3E0506-BSD1)				Prepared: (05/05/23 A	analyzed: 05	5/08/23			
Chloride	18.6		mg/kg	20.0		92.9	90-110	2.82	10	
Calibration Check (P3E0506-CCV1)				Prepared: (05/05/23 A	nalyzed: 05	5/08/23			
Chloride	18.3		mg/kg	20.0		91.7	90-110			
Calibration Check (P3E0506-CCV2)				Prepared: (05/05/23 A	nalyzed: 05	5/08/23			
Chloride	19.0		mg/kg	20.0		94.8	90-110			
Matrix Spike (P3E0506-MS1)	Sou	rce: 3E04009-	12	Prepared: (05/05/23 A	analyzed: 05	5/08/23			
Chloride	96.7		mg/kg	50.0	40.7	112	80-120			
Matrix Spike (P3E0506-MS2)	Sou	rce: 3E04009-	17	Prepared: (05/05/23 A	analyzed: 05	5/08/23			
Chloride	93.6		mg/kg	100	8.12	85.5	80-120			
Matrix Spike Dup (P3E0506-MSD1)	Sou	rce: 3E04009-	12	Prepared: (05/05/23 A	nalyzed: 05	5/08/23			
Chloride	97.2		mg/kg	50.0	40.7	113	80-120	0.474	20	

13000 West County Road 100 Odessa TX, 79765 Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

127

Permian Basin Environmental Lab, L.P.											
	Reporting	Spike	Source	%REC	RPD						

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3E0506 - *** DEFAULT PREP ***										
Matrix Spike Dup (P3E0506-MSD2)	Sour	ce: 3E04009-	17	Prepared: (05/05/23 A	nalyzed: 05	5/08/23			
Chloride	93.6		mg/kg	100	8.12	85.4	80-120	0.0363	20	
Batch P3E0507 - *** DEFAULT PREP ***										
Blank (P3E0507-BLK1)				Prepared: (05/05/23 A	nalyzed: 05	5/08/23			
Chloride	ND	1.00	mg/kg							
LCS Dup (P3E0507-BSD1)				Prepared: (05/05/23 A	nalyzed: 05	5/08/23			
Chloride	18.8		mg/kg	20.0		93.9	90-110	200	10	
Calibration Check (P3E0507-CCV1)				Prepared: (05/05/23 A	nalyzed: 05	5/08/23			
Chloride	19.0		mg/kg	20.0		94.8	90-110			
Calibration Check (P3E0507-CCV2)				Prepared: (05/05/23 A	nalyzed: 05	5/09/23			
Chloride	19.9		mg/kg	20.0		99.6	90-110			
Matrix Spike (P3E0507-MS1)	Sour	ce: 3E04011-	02	Prepared: (05/05/23 A	nalyzed: 05	5/09/23			
Chloride	110		mg/kg	100	13.5	96.9	80-120			
Matrix Spike (P3E0507-MS2)	Sour	ce: 3E04011-	09	Prepared: ()5/05/23 A	nalyzed: 05	5/09/23			
Chloride	126		mg/kg	100	23.5	102	80-120			
Matrix Spike Dup (P3E0507-MSD1)	Sour	ce: 3E04011-	02	Prepared: ()5/05/23 A	nalyzed: 05	5/09/23			
Chloride	114		mg/kg	100	13.5	100	80-120	2.92	20	
Matrix Spike Dup (P3E0507-MSD2)	Sour	ce: 3E04011-	09	Prepared: (05/05/23 A	nalyzed: 05	5/09/23			
				_						

mg/kg

100

23.5

Chloride

104

80-120

1.25

20

E Tech Environmental & Safety Solutions, Inc. [1] Project: Dagger Lake 13000 West County Road 100 Project Number: 16450
Odessa TX, 79765 Project Manager: Blake Estep

Notes and Definitions

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darlor		
Report Approved By:			Date:	5/15/2023

P AR

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Dagger Lake 13000 West County Road 100 Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Permian Basin Environmental Lab, LP

1 100 Rankin Hwy

Midland Texas 79701

Phone: 432-686-7235

Drois	act NA:	20200	٠.
PIOI	SCE IVI	anage	Ι.

Blake Estep

Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

City/State/Zip:

Midland, Texas, 79711

Sampler Signature:

email:

blake@etechenv.com

CHAIN OF	CUSTODY RECORD	AND ANALYS	IS REOLIEST

Project Loc:

Page 21 of 21

Area:

PO#: 16450

☑Bill Etech

	- I ARVI SV		_										Re	port l	Forma	t: S I	AND	ARD): <u> </u>	Т	RRP:				DES:[
Ziek we een a																Ļ			TO	5 1			-	ze Fo	r:	_		-	-	<u> </u>
(lab use only) ORDER#: ろ	E04010															F			TCI	_				뷔		- [717	
ORDER#: 9	CUTUID															\perp			TOT	AL :					4	4	\perp	4		
	Г			Pr	eservation & # o	f Containers T	· ·							+	Matr	×	1006				Se			09	ļ	ŀ			48, 7.	90
LAB# (lab use only)	FIELD (CODE	Start Danth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO ₃	HCI H ₂ SO₄	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	otableSpecify Other	92	Cations (Ca, Mg, Na, K)	Anions (CI, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semi volatiles	BTEX 8021B 8030 or BTEX 8260	RCI	N.O.R.M.	Chlorides		RUSH TAT(Pre-Schedule) 24,	STANDARD TAT
- 1	Bottom Hole	. 1		5'	5-1-23	1:30em	1	X						可	$\overline{\varsigma}$	T	K)							X		1	Ø [] [10	X
ع ا	Bottom Hol		N. T. T.	5'	5.1-23	1:35pm		X				可		寸	5	1	X	可	口				_	-+		7	9 [-
3	South Wal		1	3'	5.1.23	1:40pm	 	U		訂				計	5	_		寸					口	K			K [j	¥
4	South Wa			3'	5.1.23	1:45 PO	$\overline{}$	X		10				丁	3			寸	口			口		K		7	r [] [X
5	West Wo			3,	5.1.23	2:05PM	_	X		10				可	5	_		寸						X		1	18 [J E		IX
lo	North Wal	1		3'	5.1.23	1:50pm	Ħ	Z.		寸		古		σt	<u> </u>	_	_				口			X		7	RI C		ī	K
7	North Wa	11 2		3,	5.1.23	1:55em		凤							5	_	_	<u> </u>			ᆸ	ᅵ		K I		5	X C	1		K
В	East Wa			3,	5.1.23	2:00pm		$\overline{}$		10			-		5	_	_	5			古			18		-	Ø C] [
~							Ħ			10		ᆸ				_		計			ㅁ					_			jo	
										510				計		1	517	寸	古		ᆸ					1		1		同
	, , , , , , , , , , , , , , , , , , ,	-						_	ata	10		-	_	古		\dashv	-+-	-+	╗		古					+	ata	+=	10000	뒴
										10				=		T_{I}	517	5			ᆸ		古		古口	<u> </u>	<u> </u>			同
							\Box		ata					寸		T	51	=		ᆸ	ᆎ	ᆸ				1	ale	1		Ħ
							-	-+	ata	5		-+	-+-			1	_	_	一	ᆔ	ᆸ		\rightarrow	\rightarrow		=	alc	+	5 ta 2000	目
Special Instruc	tions:	·								<u> </u>	يت.		<u></u>				_1.	La Sa	bora mple	Cor	y Co itaine	om m ers l	nent ntact	:s: t?			ſŸ		N N	
Relinquished by:		Date	Time	Receiv	red by:		or and a superior	Arrana sector to	ve encadada to o	an memberasa a	In Discharge and	Owner of San	E	ate	.c	Tir	ne	Cu	stod	y se	als c	n co		ner(s	s)		Y	1	N	
Relinquished by:	ne engelmentas (1800 m. e.	5/4/23 Date	9.45 Time	Receiv	red by:	A A-MAN TENNESSEE TO THE TENNESSEE THE TENNE	energy of the control of	SPOR VEGENINA LIPO	Constitution (Constitution (Co	Objects of the con-	makin ngangang ng mga	74		ate		Tir	ne	Sa Sa	mple r by	Har Sam	id De pler/	elive: Clier	red nt Re	p. ?			\\Y\Y\	/	N N N	
Relinquished by:		Date	Time	29	Mas	ledn	ve/						5,)atg 4/	מל	GV.	ne B		rby mper		SECTION .	March 1	UPS Recei	ipt: Č	DHL 5-8	270004	-e ∂ D	N 2 L	one S 3 ℃	tar

APPENDIX F

Approved Remediation Work Plan

Received by OCD: 8/23/2023 11:38:07 AM State of New Mexico
Page 5 Oil Conservation Division

	Page 47 of	82
Incident ID		
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	included in the plan
□ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation points □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29.12 □ Proposed schedule for remediation (note if remediation plan time	(C)(4) NMAC
Deferral Requests Only: Each of the following items must be conf	irmed as part of any request for deferral of remediation
Deletral Requests Only: Each of the following tiems must be conf	irmea as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around prodeconstruction.	duction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file ce which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD acresponsibility for compliance with any other federal, state, or local large.	rtain release notifications and perform corrective actions for releases ce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, eceptance of a C-141 report does not relieve the operator of
Printed Name:	Title:
Signature: Thile	Date: _10-23-22
email:	Telephone:
OCD Only	
OCD Only	
Received by:	Date:10/24/2022
Approved	pproval
Signature: Jennifer Nobui I	Date: 11/18/2022

October 18, 2022

Robert Hamlet
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
PH #: 575-748-1283
Robert.Hamlet@state.nm.us

Re: Soil Remediation Workplan

Chevron USA

Dagger Lake Narwhal Pad Release (nAPP2205633098)

GPS: N 32.40054° W 103.56251°

Unit Letter "N", Section 10, Township 22 South, Range 33 East

Lea County, New Mexico

Dear Mr. Hamlet,

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA (Chevron), has prepared this *Soil Remediation Workplan* for the Dagger Lake Narwhal Pad Release (Release Site). The legal description of the Release Site is Unit Letter "N", Section 10, Township 22 South, Range 33 East, in Lea County, New Mexico. The GPS coordinates for the site are N 32.40054° W 103.56251°. A Site Location Topographic Map and Aerial Proximity Map are provided as Figure 1 and Figure 2, respectively.

INTRODUCTION

On February 9, 2022, a reportable release occurred at the Release Site. The release was the result of a failure on the body of the layflat hose. Approximately five (5) barrels (bbls) of produced water was released with approximately one (1) bbl of produced water recovered via vacuum truck, for a net loss of four (4) bbls of produced water. The initial Form C-141 is provided in Appendix A.

NMOCD SITE CLASSIFICATION

New Mexico Oil Conservation Division (NMOCD) assessment and cleanup levels for hydrocarbon and produced water releases are based on depth to groundwater and karst status and follow the criteria in the revised August 2018 Title 19 Chapter 15 part 29 New Mexico Administrative Code (19.15.29 NMAC) regulations. Groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE), New Mexico Bureau of Geology & Mineral Resources (NMBGMR), and United States Geological Survey (USGS) were accessed to determine if any registered water wells were located within a half-mile of the site. The databases identified zero (0) water wells within a ½-mile radius. The closest water well (USGS Well# 322325103313301) is 2.16 miles southeast of the release site with a depth to water of three hundred ninety-one (391) feet below ground surface (bgs). In addition, the site is listed as being in a low Karst Topography region. See Appendix B for maps, along with water well data, detailing the site relative to groundwater locations. Based on the NMOCD site classification system and with no pertinent groundwater data located within ½ miles of the site, the following soil remediation clean up levels were assigned to the Release Site:

- Benzene 10 mg/Kg (ppm)
- Total BTEX 50 mg/Kg (ppm)
- Total TPH 100 mg/Kg (ppm)
- Chloride 600 mg/Kg (ppm)

INITIAL ASSESSMENT AND DELINEATION ACTIVITIES

On August 10, 2022, Etech was onsite to perform the initial assessment of the release. On September 6, 2022, one (1) auger hole (Auger Hole 1) was installed in the spill area to depth of forty-eight (48) inches bgs. Samples were collected in every twelve (12) inch intervals and submitted to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas for analysis of Benzene, Toulene, Ethylbenzene, and Xylenes (BTEX) by EPA method 8021B, Total Petroleum Hydrocarbons (TPH) by EPA method 8015M, and Chlorides by EPA method E300.0. Analytical concentrations for chloride were above the NMOCD remediation standards in Auger Hole 1 in the two (2) foot, three (3) foot, and four (4) foot intervals and were not vertically delineated. All other analysis were below both the NMOCD Closure Criteria or Reclamation Standards. See Table 1 for analytical results. See Appendix C for attached photos detailing release and impact to pad. See Figure 3 for Site and Sample Location map.

SOIL DELINEATION AND REMEDIATION WORKPLAN

Etech proposes to complete delineation and remediation in accordance with NMOCD rules and regulations which will entail the following:

- Impacted soils will be excavated to appropriate depths based on field and laboratory delineation data and stockpiled on plastic awaiting disposal.
- During excavation activities, soils will be field screened utilizing chloride test kits and a PID meter for determination of laboratory sampling and additional excavation, if warranted.
- Upon completion of the excavation, confirmation soil samples will be collected every two hundred (200) square feet from the base and sidewalls of the excavated areas. Additional, discrete grab samples will be collected from wet or visibly stained areas inferred to have been affected by the release, as necessary. Samples will be submitted to Permian Basin Environmental Labs of Texas (PBELAB) for analysis of BTEX by EPA Method 8021B, TPH by EPA Method 8015M, and Chlorides by EPA method E300.0.
- The impacted soils will be transported off-site for disposal at an NMOCD approved disposal facility.
- Upon completion of additional delineation/remediation and requisite soil sampling, the site will be backfilled with locally sourced, non-impacted "like" material from an approved off-site facility and brought back to grade.
- A closure report with final C-141 will be submitted to the NMOCD upon completion of remediation activities.

Once the soil remediation work plan has been approved by the NMOCD, Chevron will commence and complete remediation activities within ninety (90) days and submit a "Remediation Summary and Site Closure Request Report" to the NMOCD.

If you have any questions, or if additional information is required, please feel free to call me at 432-563-2200 (office) or 432-894-6038 (cell).

Thank you,

Blake Estep Project Manager

Black Film

Etech Environmental & Safety Solutions, Inc.

Jeffrey Kindley, P.G.

Senior Project Manager/Geologist

Hy Kndley

Etech Environmental & Safety Solutions, Inc.

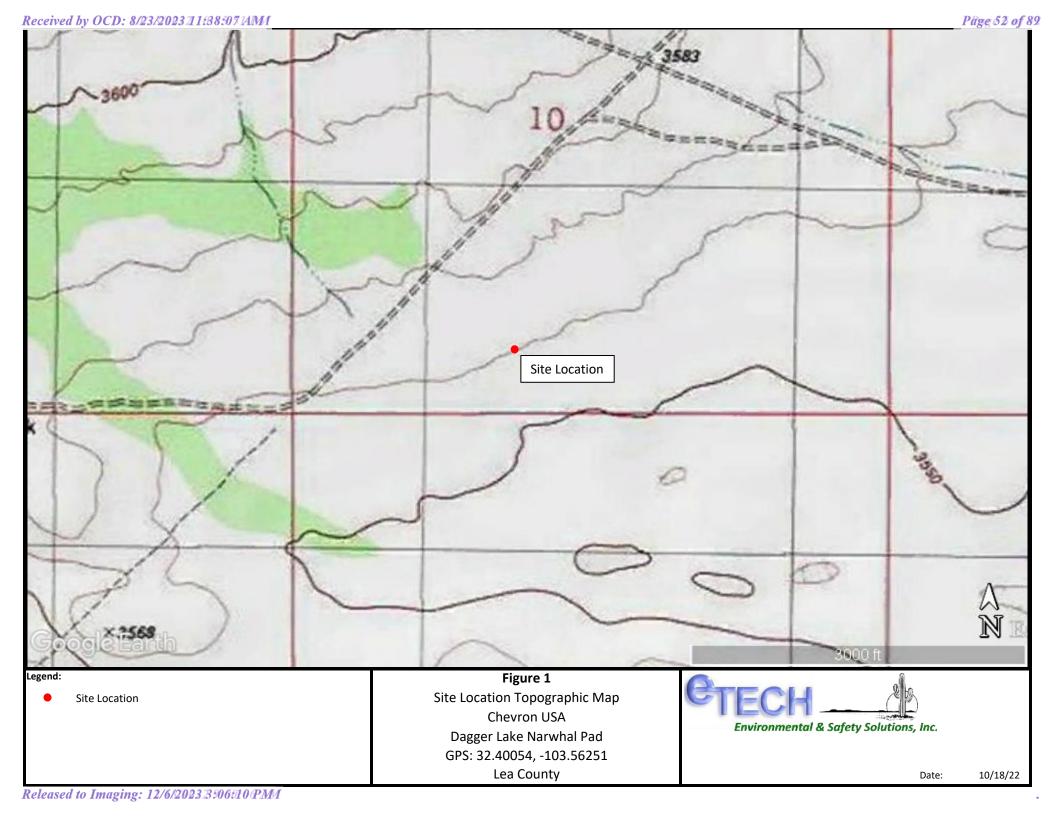
Attachments:

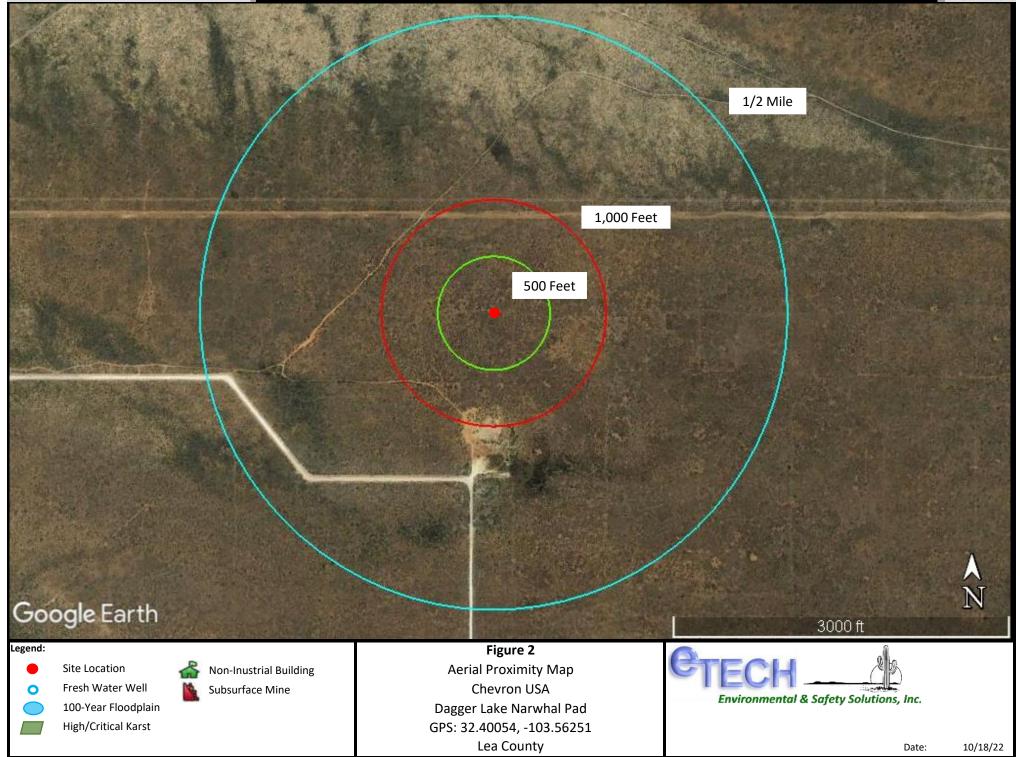
Figure 1 – Site Location Topographic Map

Figure 2 – Aerial Proximity Map

Figure 3 – Site and Sample Location Map

Table 1 – Concentrations of Benzene, BTEX, TPH, and Chloride in Soil - Delineation


Appendix A: Initial Release Notification and Corrective Action Form C-141


Appendix B: Groundwater Data Maps and Supporting Water Well Data

Appendix C: Photographic Documentation

Appendix D: Laboratory Analytical

cc: File

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL - DELINEATION

CHEVRON USA

DAGGER LAKE NARWHAL PAD

LEA COUNTY, NEW MEXICO
All concentrations are reported in mg/Kg

				METHODS: SW 846-80			V 846-8021B			METHOD: SW 8015M			E 300.0	
SAMPLE LOCATION	DEPTH	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₀	TPH DRO C ₁₀ -C ₂₈	TPH ORO C ₂₈ -C ₃₆	TOTAL TPH C ₆ -C ₃₆	CHLORIDE
NMOCD I	RRAL		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
						Bottom	Hole Sample	Results						
Auger Hole 1	12"	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.2
Auger Hole 1	24"	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,520
Auger Hole 1	36"	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,620
Auger Hole 1	48''	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,530

Bold and Yellow Highlighted indicates Analyte Above NMOCD Regulatory Limit

ND - Analyte Not Detected at or above the laboratory reporting limit

Appendix A

Initial Release Notification and Corrective Action Form C-141

Received by OCD: 8/23/2023 11:38:07 AM State of New Mexico
Page 3 Oil Conservation Division

	Page 57 of 89
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)				
Did this release impact groundwater or surface water?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No				
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No				
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?					
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No				
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?					
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No				
Are the lateral extents of the release overlying a subsurface mine?					
Are the lateral extents of the release overlying an unstable area such as karst geology?					
Are the lateral extents of the release within a 100-year floodplain?					
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No				
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.					
Characterization Report Checklist: Each of the following items must be included in the report.					
Characterization Report Checklist: Each of the following items must be included in the report. Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody					

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 8/23/2023 11:38:07 AM State of New Mexico
Page 4 Oil Conservation Division

Page 58 of 89

Incident ID		
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	oCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	_ Title:
Signature: Thile	Date: 10-23-22
email:	Telephone:
OCD Only	
Received by:	Date:

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Chevron USA					OGRID: 4323			
Contact Name:	Amy Barr	nhill			Contact Te	elephone: 432-687-7108		
Contact email: ABarnhill@chevron.com					Incident # (assigned by OCD)			
Contact mailing address: 6301 Deauville Blvd Midland, Tx 79706					I			
			Location	of R	elease So	ource		
Latitude 32.400	539				Longitude -	103.562422		
(NAD 83 in decimal degrees to 5 decimal places)								
Site Name: DL 2	22 33 Sec	15/22 Pad 219, Pl	kg 3		Site Type:	Produced Water		
Dagger Lake Na	rwhal Pad	1	8 -		71			
Date Release Di	scovered:	2-9-22			API# (if applicable)			
Unit Letter	Section	Township	Dongo		Coun	fty		
	0	Township Range 22S 33E Lea			Coun			
	U		JJL	Lea				
Surface Owner:	Surface Owner: State Federal Tribal Private (Name:)							
			Nature an	d Vol	ume of I	Release		
	Material	(s) Released (Select al	ll that apply and attacl	h calculat	ions or specific	justification for the volumes provided below)		
Crude Oil		Volume Release			1	Volume Recovered (bbls)		
Produced W	ater	Volume Release	ed (bbls) 5			Volume Recovered (bbls) 1		
		Is the concentrate produced water	tion of dissolved	chloride	e in the	☐ Yes ☐ No		
Condensate		Volume Release				Volume Recovered (bbls)		
Natural Gas		Volume Release	ed (Mcf)			Volume Recovered (Mcf)		
Other (descr	ribe)	Volume/Weight	Released (provid	le units))	Volume/Weight Recovered (provide units)		
Cause of Releas	se: a failu	re on the body o	of the layflat hos	e				

Received by OCD: 8/23/2023 11:38:07 AM State of New Mexico
Page 2 Oil Conservation Division

Page 60 of 89

Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

release as defined by 19.15.29.7(A) NMAC? Yes No If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
If YES, was immediate notice given to the OCD? By whom? To whom? when and by what means (phone, email, etc)?
Initial Response
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
☐ The source of the release has been stopped.
☐ The impacted area has been secured to protect human health and the environment.
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and recoverable materials have been removed and managed appropriately.
If all the actions described above have <u>not</u> been undertaken, explain why:
Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurr within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurr
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurre within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurre within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurre within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurre within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Amy Barnhill Title: Water Specialist Date: 2-7-22
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurre within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Amy Barnhill Title: Water Specialist Date: 2-7-22

Received by OCD: 8/23/2023/11:38:07 AM State of New Mexico
Page 3 Oil Conservation Division

Page 61 of 89

Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Spill Calculations:

	free-
4.76	fluid
0.24	in soil
5.00	total

Appendix B

Groundwater Data Maps and Supporting Water Well Data

Received by OCD: 8/23/2023 11 t38:07 IAM1

New Mexico Office of the State Engineer Wells with Well Log Information

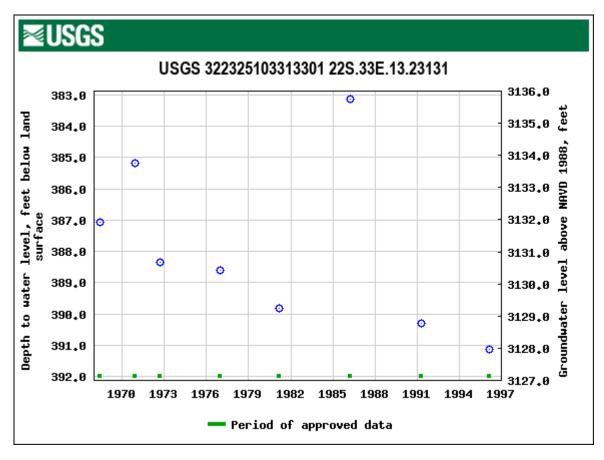
No wells found.

UTMNAD83 Radius Search (in meters):

Easting (X): 635199.74 Northing (Y): 3585742.45 Radius: 804

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Site Location


USGS Water Well

USGS Well Proximity Map Chevron USA Dagger Lake Narwhal Pad GPS: 32.40054, -103.56251 Lea County

Date:

10/18/22

Appendix C Photographic Documentation

Photographic Documentation

Project Name: Dagger Lake

Project No: 16450

Photo No:

Direction Taken:

East

Description:

View of the impacted area.

Photo No: 2.

Direction Taken:

West

Description:

View of the impacted area.

Appendix D Laboratory Analytical

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Dagger Lake Project Number: 16450 Location: New Mexico

Lab Order Number: 2I06020

Current Certification

Report Date: 09/15/22

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake Project Number: 16450

Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Auger Hole 1 (1')	2I06020-01	Soil	09/06/22 11:15	09-06-2022 16:24
Auger Hole 1 (2')	2I06020-02	Soil	09/06/22 11:20	09-06-2022 16:24
Auger Hole 1 (3')	2106020-03	Soil	09/06/22 11:25	09-06-2022 16:24
Auger Hole 1 (4')	2I06020-04	Soil	09/06/22 11:30	09-06-2022 16:24

E Tech Environmental & Safety Solutions, Inc. [1] Project: Dagger Lake 13000 West County Road 100 Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

Auger Hole 1 (1') 2I06020-01 (Soil)

Analyte	ъ.	Reporting	TT	D.11	D . 1	D 1	A	M-dd	NI - 4
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Toluene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	19.2	1.15	mg/kg dry	1	P2I0804	09/08/22 10:00	09/09/22 09:29	EPA 300.0	
% Moisture	13.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons Co	5-C35 by EPA	A Method	8015M						
C6-C12	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
>C12-C28	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
Surrogate: 1-Chlorooctane		120 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
Surrogate: o-Terphenyl		133 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	S-GO
Total Petroleum Hydrocarbon C6-C35	ND	28.7	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 22:33	calc	

E Tech Environmental & Safety Solutions, Inc. [1] Project: Dagger Lake 13000 West County Road 100 Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

Auger Hole 1 (2') 2106020-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Result	1,111111	Cints	Dilution	Buten	Tioparoa			
		P	ermian B	asin Envii	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.5 %	80-120		P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
General Chemistry Parameters by	FPA / Stand	lard Met	hods						
Chloride	4520	11.1	mg/kg dry	10	P2I0811	09/08/22 11:54	09/09/22 02:23	EPA 300.0	
% Moisture	10.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
Surrogate: 1-Chlorooctane		124 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
Surrogate: o-Terphenyl		136 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	S-GC
Total Petroleum Hydrocarbon	ND	27.8	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 22:56	calc	
C6-C35									

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Auger Hole 1 (3') 2I06020-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asın Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	2620	10.9	mg/kg dry	10	P2I0811	09/08/22 11:54	09/09/22 02:36	EPA 300.0	
% Moisture	8.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
Surrogate: 1-Chlorooctane		125 %	70-130		P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
Surrogate: o-Terphenyl		136 %	70-130		P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	S-G
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 23:19	calc	

Permian Basin Environmental Lab, L.P.

Auger Hole 1 (4') 2I06020-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	1100011		- Cinto	211411011	Button	Tropulou	,		
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.4 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Metl	hods						
Chloride	1530	5.38	mg/kg dry	5	P2I0906	09/09/22 11:55	09/09/22 23:41	EPA 300.0	
% Moisture	7.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP.	A Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
Surrogate: 1-Chlorooctane		127 %	70-130		P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
Surrogate: o-Terphenyl		138 %	70-130		P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	S-G
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	09/07/22 14:30	09/10/22 00:28	calc	

Permian Basin Environmental Lab, L.P.

Project Number: 16450

Project: Dagger Lake 13000 West County Road 100 Odessa TX, 79765 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	resuit	Liiiit	J11113	Level	resuit	, victor	Ziiiits	10.17	Limit	110103
Batch P2I0803 - *** DEFAULT PREP ***										
Blank (P2I0803-BLK1)				Prepared: 0	09/08/22 A1	nalyzed: 09	/09/22			
Benzene	ND	0.00100	mg/kg							
Гоluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.8	80-120			
LCS (P2I0803-BS1)				Prepared: 0	09/08/22 At	nalyzed: 09	/09/22			
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.211	0.00200	"	0.200		105	80-120			
Xylene (o)	0.117	0.00100	"	0.100		117	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.0	80-120			
LCS Dup (P2I0803-BSD1)				Prepared: 0	09/08/22 Ar	nalyzed: 09	/09/22			
Benzene	0.115	0.00100	mg/kg	0.100		115	80-120	1.92	20	
Toluene	0.110	0.00100	"	0.100		110	80-120	5.68	20	
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120	0.490	20	
Xylene (p/m)	0.217	0.00200	"	0.200		108	80-120	2.88	20	
Xylene (o)	0.113	0.00100	"	0.100		113	80-120	3.05	20	
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.0	80-120			
Calibration Check (P2I0803-CCV1)				Prepared: 0	09/08/22 Aı	nalyzed: 09	/09/22			
Benzene	0.108	0.00100	mg/kg	0.102		106	80-120			
Toluene	0.110	0.00100	"	0.102		108	80-120			
Ethylbenzene	0.114	0.00100	"	0.102		112	80-120			
Xylene (p/m)	0.206	0.00200	"	0.204		101	80-120			
Kylene (o)	0.117	0.00100	"	0.102		115	80-120			
urrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	75-125			
urrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.6	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		iiaii Dasiii	Liiviioi			•				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0803 - *** DEFAULT PREP ***										
Calibration Check (P2I0803-CCV2)				Prepared: ()9/08/22 Aı	nalyzed: 09	/09/22			
Benzene	0.113	0.00100	mg/kg	0.102		111	80-120			
Toluene	0.116	0.00100	"	0.102		114	80-120			
Ethylbenzene	0.112	0.00100	"	0.102		110	80-120			
Xylene (p/m)	0.232	0.00200	"	0.204		114	80-120			
Xylene (o)	0.120	0.00100	"	0.102		118	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.9	75-125			
Matrix Spike (P2I0803-MS1)	Sou	rce: 2106020-	-02	Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Benzene	0.0967	0.00111	mg/kg dry	0.111	ND	87.0	80-120			
Toluene	0.0996	0.00111	"	0.111	ND	89.6	80-120			
Ethylbenzene	0.105	0.00111	"	0.111	ND	94.9	80-120			
Xylene (p/m)	0.185	0.00222	"	0.222	ND	83.1	80-120			
Xylene (o)	0.101	0.00111	"	0.111	ND	91.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.140		"	0.133		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.133		"	0.133		99.8	80-120			
Matrix Spike Dup (P2I0803-MSD1)	Sou	rce: 2I06020-	-02	Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Benzene	0.0970	0.00111	mg/kg dry	0.111	ND	87.3	80-120	0.252	20	
Toluene	0.101	0.00111	"	0.111	ND	91.3	80-120	1.91	20	
Ethylbenzene	0.108	0.00111	"	0.111	ND	97.1	80-120	2.31	20	
Xylene (p/m)	0.187	0.00222	"	0.222	ND	83.9	80-120	0.964	20	
Xylene (o)	0.100	0.00111	"	0.111	ND	90.4	80-120	0.651	20	
Surrogate: 4-Bromofluorobenzene	0.142		"	0.133		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.133		98.8	80-120			
Batch P2I1201 - *** DEFAULT PREP ***										
Blank (P2I1201-BLK1)				Prepared &	z Analyzed:	09/12/22				
Benzene	ND	0.00100	mg/kg					<u> </u>		
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.6	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

> BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Project: Dagger Lake

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I1201 - *** DEFAULT PREP ***										
LCS (P2I1201-BS1)				Prepared &	Analyzed:	09/12/22				
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.196	0.00200	"	0.200		97.9	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
LCS Dup (P2I1201-BSD1)				Prepared &	Analyzed:	09/12/22				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120	1.01	20	
Toluene	0.106	0.00100	"	0.100		106	80-120	3.69	20	
Ethylbenzene	0.117	0.00100	"	0.100		117	80-120	5.22	20	
Xylene (p/m)	0.206	0.00200	"	0.200		103	80-120	4.90	20	
Xylene (o)	0.110	0.00100	"	0.100		110	80-120	3.05	20	
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	80-120			
Calibration Blank (P2I1201-CCB1)				Prepared &	Analyzed:	09/12/22				
Benzene	0.00		ug/kg							
Toluene	0.280		"							
Ethylbenzene	0.110		"							
Xylene (p/m)	0.210		"							
Xylene (o)	0.180		"							
Surrogate: 4-Bromofluorobenzene	0.100		"	0.120		83.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		93.8	80-120			
Calibration Blank (P2I1201-CCB2)				Prepared &	Analyzed:	09/12/22				
Benzene	0.00		ug/kg							
Toluene	0.230		"							
Ethylbenzene	0.180		"							
Xylene (p/m)	0.250		"							
Xylene (o)	0.180		"							
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.8	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I1201 - *** DEFAULT PREP ***										
Calibration Check (P2I1201-CCV1)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.112	0.00100	mg/kg	0.102		110	80-120			
Toluene	0.114	0.00100	"	0.102		112	80-120			
Ethylbenzene	0.116	0.00100	"	0.102		114	80-120			
Xylene (p/m)	0.208	0.00200	"	0.204		102	80-120			
Xylene (o)	0.117	0.00100	"	0.102		115	80-120			
Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		86.1	75-125			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	75-125			
Calibration Check (P2I1201-CCV2)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.107	0.00100	mg/kg	0.102		105	80-120			
Toluene	0.110	0.00100	"	0.102		107	80-120			
Ethylbenzene	0.114	0.00100	"	0.102		111	80-120			
Xylene (p/m)	0.209	0.00200	"	0.204		103	80-120			
Xylene (o)	0.114	0.00100	"	0.102		111	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Calibration Check (P2I1201-CCV3)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.118	0.00100	mg/kg	0.102		115	80-120			
Toluene	0.116	0.00100	"	0.102		113	80-120			
Ethylbenzene	0.117	0.00100	"	0.102		115	80-120			
Xylene (p/m)	0.215	0.00200	"	0.204		106	80-120			
Xylene (o)	0.116	0.00100	"	0.102		114	80-120			
Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		103	75-125			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	75-125			
Matrix Spike (P2I1201-MS1)	Sou	ırce: 2I08010-	-04	Prepared &	: Analyzed:	09/12/22				
Benzene	0.0867	0.00108	mg/kg dry	0.108	ND	80.6	80-120			
Toluene	0.0865	0.00108	"	0.108	ND	80.4	80-120			
Ethylbenzene	0.0922	0.00108	"	0.108	ND	85.8	80-120			
Xylene (p/m)	0.165	0.00215	"	0.215	ND	76.9	80-120			QM-0
Xylene (o)	0.0893	0.00108	"	0.108	ND	83.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.131		"	0.129		101	80-120			
Surrogate: 4-Bromofluorobenzene	0.145		"	0.129		112	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Dagger Lake Project Number: 16450

Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2I1201 - *** DEFAULT PREP ***

Matrix Spike Dup (P2I1201-MSD1)	Source: 2108010-04 Prepared & Analyzed: 09/12/22									
Benzene	0.0871	0.00108	mg/kg dry	0.108	ND	81.0	80-120	0.544	20	
Toluene	0.0869	0.00108	"	0.108	ND	80.8	80-120	0.434	20	
Ethylbenzene	0.0933	0.00108	"	0.108	ND	86.8	80-120	1.18	20	
Xylene (p/m)	0.167	0.00215	"	0.215	ND	77.5	80-120	0.706	20	QM-05
Xylene (o)	0.0903	0.00108	"	0.108	ND	84.0	80-120	1.14	20	
Surrogate: 1,4-Difluorobenzene	0.134		"	0.129		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.150		"	0.129		116	80-120			

E Tech Environmental & Safety Solutions, Inc. [1] Project: Dagger Lake 13000 West County Road 100 Project Number: 16450

Odessa TX, 79765 Project Manager: Blake Estep

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0804 - *** DEFAULT PREP ***										
Blank (P2I0804-BLK1)				Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	ND	1.00	mg/kg							
LCS (P2I0804-BS1)				Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	38.5		mg/kg	40.0		96.3	90-110			
LCS Dup (P2I0804-BSD1)				Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	38.7		mg/kg	40.0		96.7	90-110	0.373	10	
Calibration Blank (P2I0804-CCB1)				Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	0.00		mg/kg	-		-				
Calibration Blank (P2I0804-CCB2)				Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	0.00		mg/kg	*		-				
Calibration Check (P2I0804-CCV1)				Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	19.9		mg/kg	20.0		99.7	90-110			
Calibration Check (P2I0804-CCV2)				Prepared: ()9/08/22 Aı	nalyzed: 09	/09/22			
Chloride	20.3		mg/kg	20.0		101	90-110			
Calibration Check (P2I0804-CCV3)				Prepared: (09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	19.5		mg/kg	20.0		97.5	90-110			
Matrix Spike (P2I0804-MS1)	Sou	rce: 2106008-	-01	Prepared: ()9/08/22 Aı	nalyzed: 09	/09/22			
Chloride	1990	28.1	mg/kg dry	1400	717	90.7	80-120			
Matrix Spike (P2I0804-MS2)	Sou	rce: 2I06018-	-04	Prepared: ()9/08/22 Aı	nalyzed: 09	/09/22			
Chloride	780	10.9	mg/kg dry	543	336	81.8	80-120			

E Tech Environmental & Safety Solutions, Inc. [1] Project: Dagger Lake 13000 West County Road 100 Project Number: 16450

Odessa TX, 79765 Project Manager: Blake Estep

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I0804 - *** DEFAULT PREP ***										
Matrix Spike Dup (P2I0804-MSD1)	Sou	rce: 2106008-	01	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	1930	28.1	mg/kg dry	1400	717	86.4	80-120	3.05	20	
Matrix Spike Dup (P2I0804-MSD2)	Sou	rce: 2106018-	04	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	793	10.9	mg/kg dry	543	336	84.1	80-120	1.59	20	
Batch P2I0811 - *** DEFAULT PREP ***										
Blank (P2I0811-BLK1)				Prepared &	: Analyzed:	09/08/22				
Chloride	ND	1.00	mg/kg							
LCS (P2I0811-BS1)				Prepared &	Analyzed:	09/08/22				
Chloride	38.5		mg/kg	40.0		96.3	90-110			
LCS Dup (P2I0811-BSD1)				Prepared &	: Analyzed:	09/08/22				
Chloride	38.1		mg/kg	40.0		95.3	90-110	1.00	10	
Calibration Blank (P2I0811-CCB1)				Prepared &	Analyzed:	09/08/22				
Chloride	0.00		mg/kg							
Calibration Blank (P2I0811-CCB2)				Prepared &	: Analyzed:	09/08/22				
Chloride	0.00		mg/kg	- F	5					
Calibration Check (P2I0811-CCV1)				Prepared &	: Analyzed:	09/08/22				
Chloride	19.6		mg/kg	20.0		97.9	90-110			
Calibration Check (P2I0811-CCV2)				Prepared &	: Analyzed:	09/08/22				
Chloride	19.9		mg/kg	20.0		99.3	90-110			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I0811 - *** DEFAULT PREP ***										
Calibration Check (P2I0811-CCV3)				Prepared:	09/08/22 A	nalyzed: 09	/09/22			
Chloride	19.9		mg/kg	20.0		99.7	90-110			
Matrix Spike (P2I0811-MS1)	Sou	rce: 2108001-	21	Prepared &	& Analyzed:	09/08/22				
Chloride	12400	26.3	mg/kg dry	1320	11300	88.3	80-120			
Matrix Spike (P2I0811-MS2)	Sou	rce: 2108001-	31	Prepared:	09/08/22 A	nalyzed: 09	/09/22			
Chloride	12100	26.9	mg/kg dry	1340	11000	85.3	80-120			
Matrix Spike Dup (P2I0811-MSD1)	Sou	rce: 2I08001-	21	Prepared &	& Analyzed:	09/08/22				
Chloride	12600	26.3	mg/kg dry	1320	11300	101	80-120	1.34	20	
Matrix Spike Dup (P2I0811-MSD2)	Sou	rce: 2I08001-	31	Prepared:	09/08/22 A	nalyzed: 09	/09/22			
Chloride	12100	26.9	mg/kg dry	1340	11000	82.9	80-120	0.265	20	
Batch P210902 - *** DEFAULT PREP ***										
Blank (P2I0902-BLK1)				Prepared &	& Analyzed:	09/09/22				
% Moisture	ND	0.1	%							
Blank (P2I0902-BLK2)				Prepared &	& Analyzed:	09/09/22				
% Moisture	ND	0.1	%	•						
Duplicate (P2I0902-DUP1)	Sou	rce: 2107002-	.03	Prepared &	& Analyzed:	09/09/22				
% Moisture	13.0	0.1	%		5.0			88.9	20	R
Duplicate (P2I0902-DUP2)	Sou	rce: 2I08001-	-06	Prepared &	& Analyzed:	09/09/22				
% Moisture	9.0	0.1	%		9.0			0.00	20	

Project: Dagger Lake

13000 West County Road 100 Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0902 - *** DEFAULT PREP ***										
Duplicate (P2I0902-DUP3)	Sou	rce: 2108001-2	21	Prepared &	: Analyzed:	09/09/22				
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P2I0902-DUP4)	Sour	rce: 2108001-3	31	Prepared &	Analyzed:	09/09/22				
% Moisture	7.0	0.1	%		7.0			0.00	20	
Batch P2I0906 - *** DEFAULT PREP ***										
Blank (P2I0906-BLK1)				Prepared &	Analyzed:	09/09/22				
Chloride	ND	1.00	mg/kg							
LCS (P2I0906-BS1)				Prepared &	Analyzed:	09/09/22				
Chloride	37.1		mg/kg	40.0		92.7	90-110			
LCS Dup (P2I0906-BSD1)				Prepared &	: Analyzed:	09/09/22				
Chloride	37.0		mg/kg	40.0		92.5	90-110	0.240	10	
Calibration Blank (P2I0906-CCB1)				Prepared &	: Analyzed:	09/09/22				
Chloride	0.00		mg/kg							
Calibration Blank (P2I0906-CCB2)				Prepared &	: Analyzed:	09/09/22				
Chloride	0.00		mg/kg							
Calibration Check (P2I0906-CCV1)				Prepared &	: Analyzed:	09/09/22				
Chloride	19.3		mg/kg	20.0		96.5	90-110			
Calibration Check (P2I0906-CCV2)				Prepared &	: Analyzed:	09/09/22				
Chloride	19.4		mg/kg	20.0		97.0	90-110			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0906 - *** DEFAULT PREP ***										
Calibration Check (P210906-CCV3)				Prepared: (09/09/22 A	nalyzed: 09	/10/22			
Chloride	19.6		mg/kg	20.0		98.2	90-110			
Matrix Spike (P2I0906-MS1)	Sour	ce: 2I08013-	-17	Prepared &	repared & Analyzed: 09/09/22					
Chloride	11500	28.1	mg/kg dry	1400	10100	97.9	80-120			
Matrix Spike (P2I0906-MS2)	Sour	ce: 2I08013-	-27	Prepared &	Prepared & Analyzed: 09/09/22					
Chloride	9160	28.4	mg/kg dry	1420	7950	85.4	80-120			
Matrix Spike Dup (P2I0906-MSD1)	Sour	ce: 2I08013-	-17	Prepared &	ኔ Analyzed:	09/09/22				
Chloride	11500	28.1	mg/kg dry	1400	10100	98.0	80-120	0.00981	20	
Matrix Spike Dup (P2I0906-MSD2)	Source: 2108013-27		Prepared &	Prepared & Analyzed: 09/09/22						
Chloride	9000	28.4	mg/kg dry	1420	7950	74.2	80-120	1.76	20	QM-05

Notes and Definitions

ROI Received on Ice R3 The RPD exceeded the acceptance limit due to sample matrix effects. QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable. BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit ND

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

Sample results reported on a dry weight basis RPD Relative Percent Difference

LCS Laboratory Control Spike

Not Reported

MS Matrix Spike Dup Duplicate

S-GC

NR

dry

	Drew	Darlor		
Report Approved By:			Date:	9/15/2022

D AR

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Released to Imaging: 12/6/2023 3:06:110 PMA

Permian Basin Environmental Lab, LP

1400 Rankin Hwy

Midland Texas 79701

Phone: 432-686-7235

Pro	jecτ	ivianag	er:
_			

Blake Estep

Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

City/State/Zip:

Midland, Texas 79711

Sampler Signature

email: blake@etechenv.com

CLIAINIO	C CLICTODY	RECORD AND	ANIAIVCIC	DECLIECT
"HAIN OI	F CUSTODY	KECUKU ANU	ANALYSIS	KEUUESI

Project Name:	Daga	c lake	
Project #: 164	50	Project Loc:	New Mexico
Area: Lea		PO#:	

☐Bill Etech

Sampler Signature											Re	port	Format	STAI	NDAR	D:□	Т	RRP				DES:					
														\vdash						nalyz	e Fo	r:			_		_
(lab use only)														-	,		LP:				븼	ı		İ			
ORDER#: 2I/U02D														<u> </u>	_	TOT	AL:				믜	4	\dashv	_	\bot	- 2 hrs	
		Pre	servation & # of	Containers	- т				_		- т	_	Matrix	1006		_		Se		ıl	9					48, 7	ĺ
LAB # (tab useconiv))	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO ₃	HCI H,SO ₄	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Soild	TPH: 418.1 (8015) 1005 1	5, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	BIEX 8021B 5030 or BTEX 8260	RCI		Chlorides		RUSH TAT(Pre-Schedule) 24, 48, 72 hrs	STANDARD TAT
1) Augrhole I	_	1	9/6/22	11:15	1									K							¥			\mathbf{Z}][ķ
VZ Augenie 1		2	1	11:20	1	Ø								×							Ŋ						6
13 Sugarole 1		3		11:25	П									K							à						
14 Auduna I		4		11:30	1	Z								K							¥			\mathbf{Z}] [N
2V Frags Viviz		•	F																								
(2) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3														T													
					П																	回				1 🗓	
4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4					П																				⊒[⊑		
(2015) : 2013 (2015) : 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1														T													
	<u> </u>										口			TE								回					
	 				\vdash				10					1								口			3 E		\Box
		<u> </u>			T				10		-			1								口			Ī		口
									10	\Box				1											10		
(2) 12 전 12		 -		16 2.7		H				+-				1][10	盲
Special Instructions:	L		<u> </u>		1		لت	ئات		二				1_		abo	rato	ry C	omr	nen	ts:			77.2			450
Relinquished by: Relinquished by: Relinquished by: Date Tin	14	Receiv Receiv	and the second s		and the latter	er fersen sta				na es es es	200000	Date		Tim	9 9	Sampl VOCs Custo Custo Sampl Sar by Sar by	Fred dys dys le Ha / Sar	e of I eals eals nd E nplei	Head on c on c Delive /Clie	dspa onta oolei ered	ce? iiner(r(s) ep. ?	(s)		FedE	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	N N N N N o⊓e S	Xar
Relinquished by: Date Tin	ne	Receiv	d by: L	100	10	W		K			91	Date g	22	Tim L	jų	Tempe	eratu	ire U	pon	Rece	eipt:	<u>a4</u>	<u>.</u>	<u> 41</u>	<u>as</u>	-%c	L

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 152767

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	152767
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved with Conditions. Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination (<50'). Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Sidewall/Floor samples should represent no more than 200 ft2.	11/18/2022

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 255908

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	255908
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvele	Operator did not meet 19.15.29.12D (1a) NMAC. Forbearance given to Etech on 10/06/2023. Release resolved.	12/6/2023