District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2311754224
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380
Contact Name Garrett Green	Contact Telephone 575-200-0729
Contact email garrett.green@exxonmobil.com	Incident # (assigned by OCD)
Contact mailing address 3104 E. Greene Street, Carlsbad, New Mexico, 88220	

Location of Release Source

Latitude 32.12912

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Muy Wayno 18 104H	Site Type Production Well
Date Release Discovered 04/20/2023	API# (if applicable)

Unit Letter	Section	Township	Range	County
L	18	258	30E	Eddy

Surface Owner: State 🗵 Federal 🗌 Tribal 🗌 Private (Name: _

Nature and Volume of Release

Materia	l(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
▼ Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Foamer (FOAM00500A)	9.56 BBLS	7.62 BBLS
Cause of Release A crew was moving a chemical tank containing Foamer and its containment. During the procedure, a leg on the stand supporting the tank failed, causing the tank to fall and release fluids. No injuries and no chemical exposure were reported. A third-party contractor has been retained for remediation purposes.		

	Page 2 of 8
Incident ID	NAPP2311754224
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	N/A
19.15.29.7(A) NMAC?	
🗌 Yes 🗶 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
N/A	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

★ The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

▲ All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: Satt Suler	Date: $\frac{4/27/2023}{575,200,0720}$
email:	Telephone:
OCD Only	
Received by: Jocelyn Harimon	Date:04/28/2023

NA

Location:	Muy Wayno 18 104H		
Spill Date:	4/20/2023		
	Area 1		
Approximate A	rea =	39.81	cu.ft.
	VOLUME OF LEAK		-
Total Chemical	=	7.09	bbls
Total Produced	Water =	0.00	bbls
	Area 2		
Approximate A	rea =	870.00	sq. ft.
Average Satura	tion (or depth) of spill =	5.00	inches
Average Porosi	ty Factor =	0.03	

VOLUME OF LEAK		
Total Chemical =	2.47	bbls
Total Produced Water =	0.00	bbls

TOTAL VOLUME OF LEAK			
Total Chemical =	9.56	bbls	
Total Produced Water =	0.00	bbls	
TOTAL VOLUME RECOVERED			
Total Chemical = 7.62 bbls			
otal Produced Water = 0.00 bbls			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

	5380 Action Number:
Midland, TX 79707	211432 Action Type: [C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jharimon	None	4/28/2023

Page 440f 86

Action 211432

Received by OCD: 7/19/2023 1:18:18 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 5 of 8
Incident ID	NAPP2311754224
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🔀 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data

Page 3

- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCI	D: 7/19/2023 1:18:18 PM State of New Mexico		Page			
			Incident ID	NAPP2311754224		
Page 4	Oil Conservation Division	L	District RP			
			Facility ID			
			Application ID			
regulations all o public health or failed to adequa addition, OCD a and/or regulation Printed Name: Signature:	that the information given above is true and complete to the perators are required to report and/or file certain release not the environment. The acceptance of a C-141 report by the tely investigate and remediate contamination that pose a the cceptance of a C-141 report does not relieve the operator of as. <u>Garrett Green</u> <u>Garrett Green</u> <u>.green@exxonmobil.com</u>	otifications and perform co OCD does not relieve the reat to groundwater, surfa	prrective actions for rele e operator of liability sho ce water, human health liance with any other feo inator	ases which may endanger ould their operations have or the environment. In		
OCD Only						
Received by: _	Shelly Wells	Date: <u>7/20/</u>	2023			

Page 6

Oil Conservation Division

Incident ID	NAPP2311754224
District RP	
Facility ID	
Application ID	

Page 7 of 86

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Garrett Green Title: Environmental Coordinator Date: 07/17/2023 Signature: _______ Telephone: 575-200-0729 email: garrett.green@exxonmobil.com **OCD Only** Received by: _Shelly Wells Date: 7/20/2023 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date: Title: Printed Name:

ENSOLUM

July 17, 2023

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Muy Wayno 18 104H Incident Number NAPP2311754224 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared this Closure Request to document site assessment, excavation, and soil sampling activities performed at the Muy Wayno 18 104H (Site). The purpose of the site assessment, excavation, and soil sampling activities was to address impacts to soil resulting from a release from a chemical tank at the Site. Based on the excavation activities and laboratory analytical results from the soil sampling events, XTO is submitting this Closure Request, describing remediation that has occurred and requesting closure for Incident Number NAPP2311754224.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit L, Section 18, Township 25 South, Range 30 East, in Eddy County, New Mexico (32.12912°, -103.92596°) and is associated with oil and gas exploration and production operations on federal land managed by the Bureau of Land Management.

On April 20, 2023, while moving a chemical tank, the tank fell and released approximately 9.56 barrels (bbls) of Foamer FOAM00500A (foamer). A vacuum truck was dispatched to the Site and approximately 7.62 bbls of foamer were recovered. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) and submitted a Release Notification Form C-141 (Form C-141) on April 27, 2023. The release was assigned Incident Number NAPP2311754224.

The safety data sheet (SDS) information for the foamer is included as Appendix A. Based on review of the SDS information, Ensolum identified the following applicable analyses for source characterization:

Product	Туре	Ingredients	Proposed Chemical Analysis
FOAM00500A	Foamer	Ethylene Glycol Alkylamine betaine	pH VOCs BTEX

Notes:

VOCs: volatile organic compounds

BTEX: benzene, toluene, ethylbenzene, and total xylenes

XTO Energy, Inc. Closure Request Muy Wayno 18 104H

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well with depth to groundwater data is New Mexico Office of the State Engineer (NMOSE) permitted soil boring (C-4529), located approximately 0.3 miles northwest of the Site. The soil boring was drilled to a total depth of 101 feet bgs and no groundwater was encountered. Following a 72-hour waiting period to allow for the slow infill of groundwater the soil boring was confirmed to be dry and was backfilled following proper NMOSE procedures. All wells used for depth to groundwater determination are presented on Figure 1. The referenced well records are included in Appendix B.

The closest continuously flowing or significant watercourse to the Site is a dry wash, located approximately 4,230 feet south of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is not within a 100-year floodplain or overlying a subsurface mine. The Site is lessthan 1,000 feet to a freshwater well or spring. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- BTEX: 50 mg/kg
- Total petroleum hydrocarbons (TPH)- diesel range organics (DRO) and gasoline range organics (GRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

SITE ASSESSMENT, EXCAVATION, AND SOIL SAMPLING ACTIVITIES

On August 26, 2022, site assessment activities were conducted to evaluate the release extent based on information provided on the Form C-141 and visual observations. The visible release extent was mapped utilizing a handheld Global Positioning System (GPS) unit. Excavation activities were performed using track-mounted backhoe and transport vehicles. The excavation was completed to a depth of 0.5 feet bgs. Photographic documentation of the excavation activities is included in Appendix C.

Following removal of the impacted soil, 5-point composite soil samples were collected every 200 square feet from the floor of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS04 were collected from the floor of the excavation at a depth of 0.5 feet bgs. Due to the shallow depth of the excavation, soil from the sidewalls was incorporated into the floor samples. The excavation extent and excavation soil sample locations are presented on Figure 2.

XTO Energy, Inc. Closure Request Muy Wayno 18 104H

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following chemicals of concern (COCs): VOCs following United States Environmental Protection Agency (EPA) Method 8260D; BTEX following EPA Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; chloride following EPA Method 300.0; and pH following EPA Method 9045D.

The excavation measured approximately 790 square feet in areal extent. A total of approximately 15 cubic yards of impacted soil was removed during the excavation activities. The impacted soil was transported and properly disposed of by a licensed waste disposal facility.

ANALYTICAL RESULTS

Laboratory analytical results for excavation floor samples FS01 through FS04 indicated no hydrocarbons were detected. Chloride concentrations were compliant with the Table I Closure Criteria. Analytical results for pH ranged from 8.4 to 8.7, indicating normal to slightly alkaline soil. Laboratory analytical results for BTEX, TPH-GRO/ TPH-DRO, TPH, chloride, and pH are summarized in Table 1. Complete laboratory analytical reports are included as Appendix D.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the April 20, 2023, chemical release. Laboratory analytical results for the excavation soil samples, collected from the final excavation extent, indicated all COC concentrations were compliant with the Closure Criteria. Based on the soil sample analytical results, no further remediation was required. XTO will backfill the excavation with material purchased locally and recontour the Site to match pre-existing site conditions.

Excavation of impacted soil has mitigated impacts at this Site. XTO believes the remedial actions are protective of human health, the environment, and groundwater. As such, XTO respectfully requests closure for Incident Number NAPP2311754224.

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Sincerely, **Ensolum, LLC**

Thoussey

Tacoma Morrissey Senior Geologist

cc: Garrett Green, XTO Shelby Pennington, XTO BLM

Appendices:

Figure 1 Site Location Map

Ushley L. ager

Ashley Ager, MS, PG Principal

XTO Energy, Inc. Closure Request Muy Wayno 18 104H

Figure 2	Excavation Soil Sample Locations
Table 1	Soil Sample Analytical Results
Appendix A	Safety Data Sheet for Foamer FOAM005005A
Appendix B	Referenced Well Records
Appendix C	Photographic Log
A D	

Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation

.

FIGURES

•

Received by OCD: 7/19/2023 1.18.18 PM

Released to Imaging: 1/4/2024 2:13:09 PM

TABLES

.

Released to Imaging: 1/4/2024 2:13:09 PM

ENSOLUM

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Muy Wayno 18 104H XTO Energy, Inc. Eddy County, New Mexico										
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)	рН
NMOCD Table I C	losure Criteria (I	NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000	NE
					Excavation	Soil Samples				I	
FS01	04/26/2023	0.5	<0.00100	<0.00200	<49.9	<49.9	<49.9	<49.9	<49.9	383	8.4
FS02	04/26/2023	0.5	<0.000996	<0.00199	<49.9	<49.9	<49.9	<49.9	<49.9	539	8.7
FS03	04/26/2023	0.5	<0.000996	<0.00199	<49.9	<49.9	<49.9	<49.9	<49.9	774	8.7
FS04	04/26/2023	0.5	<0.000994	<0.00199	<49.8	<49.8	<49.8	<49.8	<49.8	370	8.7

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation

requirement where applicable.

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMAC: New Mexico Administrative Code

.

APPENDIX A

Safety Data Sheet for Foamer FOAM005005A

Released to Imaging: 1/4/2024 2:13:09 PM

CHAMPIONX

FOAM00500A

Section: 1. PRODUCT AND COMPANY IDENTIFICATION

Product name	:	FOAM00500A
Other means of identification	:	Not applicable.
Recommended use	:	FOAMER
Restrictions on use	:	Refer to available product literature or ask your local Sales Representative for restrictions on use and dose limits.
Company	:	ChampionX LLC 11177 S. Stadium Drive Sugar Land, Texas 77478 USA TEL: (281) 632-6500
Emergency telephone number	:	(800) 424-9300 (24 Hours) CHEMTREC
Issuing date	:	07/29/2022

Section: 2. HAZARDS IDENTIFICATION

GHS Classification

Acute toxicity (Oral)	:	Category 4
Serious eye damage	:	Category 1
Specific target organ toxicity	:	Category 2 (Kidney)
 repeated exposure 		

GHS Label element

Hazard pictograms	:	
Signal Word	:	Danger
Hazard Statements	:	Harmful if swallowed. Causes serious eye damage. May cause damage to organs (Kidney) through prolonged or repeated exposure.
Precautionary Statements	:	 Prevention: Do not breathe dust/fume/gas/mist/vapours/spray. Wash skin thoroughly after handling. Do not eat, drink or smoke when using this product. Wear eye protection/face protection. Response: IF SWALLOWED: Call a POISON CENTER or doctor/ physician if you feel unwell. Rinse mouth. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER or doctor/ physician. Disposal:

FOAM00500A					
Other hazards	:	Dispose of contents/ container to an approved waste disposal plant.			
		ORMATION ON INGREDIENTS			
Pure substance/mixture	:	Mixture			
<u>Chemical Name</u> Ethylene Glycol Alkylamine betaine		CAS-No.Concentration: (%)107-21-130 - 60Proprietary10 - 30			
Section: 4. FIRST AID MEAS	SUR	RES			
In case of eye contact	:	Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get medical attention immediately.			
In case of skin contact	:	Wash off with soap and plenty of water. Get medical attention if symptoms occur.			
If swallowed	:	Rinse mouth. Get medical attention if symptoms occur.			
If inhaled	:	Remove to fresh air. Treat symptomatically. Get medical attention if symptoms occur.			
Protection of first-aiders	:	In event of emergency assess the danger before taking action. Do not put yourself at risk of injury. If in doubt, contact emergency responders. Use personal protective equipment as required.			
Notes to physician	:	Treat symptomatically.			
Most important symptoms and effects, both acute and delayed	:	See Section 11 for more detailed information on health effects and symptoms.			
Section: 5. FIREFIGHTING					
Suitable extinguishing media	:	Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.			
Unsuitable extinguishing media	:	None known.			
Specific hazards during firefighting	:	Not flammable or combustible.			

Hazardous combustion

products

for firefighters

: Carbon oxides nitrogen oxides (NOx)

Special protective equipment : Use personal protective equipment.

FOAM00500A		

Specific extinguishing	:	Fire residues and contaminated fire extinguishing water must be disposed of in
methods		accordance with local regulations. In the event of fire and/or explosion do not
		breathe fumes.

Section: 6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures	:	Ensure adequate ventilation. Keep people away from and upwind of spill/leak. Avoid inhalation, ingestion and contact with skin and eyes. When workers are facing concentrations above the exposure limit they must use appropriate certified respirators. Ensure clean-up is conducted by trained personnel only. Refer to protective measures listed in sections 7 and 8.
Environmental precautions	:	Do not allow contact with soil, surface or ground water.
Methods and materials for containment and cleaning up	:	Stop leak if safe to do so. Contain spillage, and then collect with non- combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). For large spills, dike spilled material or otherwise contain material to ensure runoff does not reach a waterway. Flush away traces with water.

Section: 7. HANDLING AND STORAGE

Advice on safe handling	:	Do not ingest. Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Wash hands thoroughly after handling. Use only with adequate ventilation.
Conditions for safe storage	:	Keep out of reach of children. Keep container tightly closed. Store in suitable labelled containers.
Suitable material	:	Keep in properly labelled containers.
Unsuitable material	:	not determined

Section: 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	CAS-No.	Form of exposure	Permissible concentration	Basis
Ethylene Glycol	107-21-1	TWA (Vapour.)	25 ppm	ACGIH
		STEL (Vapour.)	50 ppm	ACGIH
		STEL (Inhalable fraction, Aerosol only)	10 mg/m3	ACGIH

Engineering measures : Good general ventilation should be sufficient to control worker exposure to airborne contaminants.

Personal protective equipment

Eye protection	:	Safety goggles
		Face-shield

3/10

FOAM00500A

Hand protection	:	Wear impervious chemical-resistant gloves when handling this product. The following glove types are recommended based on our review of glove manufacturer information and/or other available sources. Nitrile-rubber, Butyl-Rubber, or Neoprene gloves. Other glove types may be used for short term, incidental contact if determined by testing to provide adequate worker protection. Gloves should be discarded and replaced if there is any indication of degradation or chemical breakthrough.
Skin protection	:	Wear suitable protective clothing.
Respiratory protection	:	Use local exhaust ventilation or other engineering controls as necessary to control airborne vapour and mist. Where concentrations in air may exceed the limits given in this section or when significant vapours are generated, use an approved air purifying respirator fitted with a gas and vapour cartridge. Use a particulate pre-filter where operations generate significant mists or aerosols. Recommended gas and vapour cartridge: Organic vapour type In event of emergency or planned entry into unknown concentrations a positive pressure, full-facepiece SCBA or supplied-air respirator should be used.
Hygiene measures	:	Handle in accordance with good industrial hygiene and safety practice. Remove and wash contaminated clothing before re-use. Wash face, hands and any exposed skin thoroughly after handling. Provide suitable facilities for quick drenching or flushing of the eyes and body in case of contact or splash hazard.

The Personal Protective Equipment (PPE) recommendations provided above have been made in good faith based on typical expected conditions of use. PPE selection should always be completed in conjunction with a proper risk assessment and in accordance with a PPE management program.

Section: 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	:	Liquid
Colour	:	Clear Light yellow
Odour	:	Mild, Glycol
Flash point	:	> 110 °C
рН	:	10.3, (20 °C)
Odour Threshold	:	no data available
Melting point/freezing point	:	Pour point: -25 °C
Initial boiling point and boiling range	:	100 °C
Evaporation rate	:	no data available
Flammability (solid, gas)	:	Not applicable.
Upper explosion limit	:	no data available
Lower explosion limit	:	no data available

FOAM00500A

Vapour pressure	:	42.75 hPa, (37.8 °C),
Relative vapour density	:	no data available
Relative density	:	1.082, (15.6 °C),
Density	:	no data available
Water solubility	:	Dispersible
Solubility in other solvents	:	no data available
Partition coefficient: n- octanol/water	:	no data available
Auto-ignition temperature	:	no data available
Thermal decomposition	:	no data available
Viscosity, dynamic	:	no data available
Viscosity, kinematic	:	9 mm2/s (40 °C)
Molecular weight	:	no data available
VOC	:	no data available

Section: 10. STABILITY AND REACTIVITY

Reactivity	:	No dangerous reaction known under conditions of normal use.
Chemical stability	:	Stable under normal conditions.
Possibility of hazardous reactions	:	No dangerous reaction known under conditions of normal use.
Conditions to avoid	:	None known.
Incompatible materials	:	None known.
Hazardous decomposition products	:	In case of fire, hazardous decomposition products may be produced such as: Carbon oxides nitrogen oxides (NOx)

Section: 11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure	:	Inhalation, Eye contact, Skin contact
Potential Health Effects		
Eyes	:	Causes serious eye damage.
Skin	:	Health injuries are not known or expected under normal use.
Ingestion	:	Harmful if swallowed.
Inhalation	:	Health injuries are not known or expected under normal use.
Chronic Exposure	:	Health injuries are not known or expected under normal use.
		5 / 10

Released to Imaging: 1/4/2024 2:13:09 PM

FOAM00500A

Experience with human exposure

Eye contact	:	Redness, Pain, Corrosion
Skin contact	:	No symptoms known or expected.
Ingestion	:	No information available.
Inhalation	:	No symptoms known or expected.
Toxicity		
<u>Product</u>		
Acute oral toxicity	:	Acute toxicity estimate: 1,330 mg/kg
Acute inhalation toxicity	:	no data available
Acute dermal toxicity	:	no data available
Skin corrosion/irritation	:	no data available
Serious eye damage/eye irritation	:	no data available
Respiratory or skin sensitization	:	no data available
Carcinogenicity	:	no data available
Reproductive effects	:	no data available
Germ cell mutagenicity	:	no data available
Teratogenicity	:	no data available
STOT - single exposure	:	no data available
STOT - repeated exposure	:	no data available
Aspiration toxicity	:	no data available
Components		
Acute dermal toxicity	:	Ethylene Glycol LD50 rabbit: 10,600 mg/kg

Section: 12. ECOLOGICAL INFORMATION

Toxicity	
Environmental Effects	: Harmful to aquatic life.
Components	
Toxicity to fish	: Ethylene Glycol LC50: 72,860 mg/l Exposure time: 96 h
Components	
Toxicity to daphnia and other	: Ethylene Glycol

6/10

	EC50 : > 100 mg/l Exposure time: 48 h
:	Ethylene Glycol EC50 : 6,500 mg/l Exposure time: 96 h
	Alkylamine betaine EC50 Desmodesmus subspicatus (green algae): 1.01 mg/l
:	Ethylene Glycol > 1,995 mg/l
:	Ethylene Glycol NOEC: 15,380 mg/l Exposure time: 7 d
:	Ethylene Glycol NOEC: 8,590 mg/l Exposure time: 7 d
t y	
	:

no data available

Section: 13. DISPOSAL CONSIDERATIONS

The information presented only applies to the material as supplied. It is the responsibility of the waste generator to determine the toxicity and physical properties of the material generated at the time of disposal to determine the proper waste identification and disposal methods in compliance with applicable regulations.

Disposal methods : The product should not be allowed to enter drains, water courses or the soil. Where possible recycling is preferred to disposal or incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in an approved waste disposal facility.

FOAM00500A	
Disposal considerations	: Dispose of as unused product. Empty containers should be

- taken to an approved waste handling site for recycling or
- disposal. Do not re-use empty containers.

Section: 14. TRANSPORT INFORMATION

The shipper/consignor/sender is responsible to ensure that the packaging, labeling, and markings are in compliance with the selected mode of transport.

This product is not classified as a DOT hazardous material if the RQ quantity is not met or exceeded in the specific shipping container.

Land transport (DOT)

For packages less than or equal to 119 Gallons:

Proper shipping name : PRODUCT IS NOT REGULATED DURING TRANSPORTATION

For packages greater than 119 Gallons:

Proper shipping name Technical name(s) UN/ID No. Transport hazard class(es) Packing group Reportable Quantity (per package) RQ Component	 ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. UN 3082 9 III 13,290 lbs Ethylene Glycol
Air transport (IATA) Proper shipping name	: PRODUCT IS NOT REGULATED DURING TRANSPORTATION
Sea transport (IMDG/IMO) Proper shipping name	: PRODUCT IS NOT REGULATED DURING TRANSPORTATION
Section: 15. REGULATORY	
TSCA list	: No substances are subject to a Significant New Use Rule. No substances are subject to TSCA 12(b) export notification

EPCRA - Emergency Planning and Community Right-to-Know Act

requirements.

CERCLA Reportable Quantity

Components	CAS-No.	Component RQ (lbs)	Calculated product RQ (lbs)
Ethylene Glycol	107-21-1	5000	13290

SARA 304 Extremely Hazardous Substances Reportable Quantity

This material does not contain any components with a section 304 EHS RQ.

 SARA 311/312 Hazards
 : Acute toxicity (any route of exposure)

 Serious eye damage or eye irritation

 Specific target organ toxicity (single or repeated exposure)

•

FOAM00500A			
SARA 302	: This material does not conta EHS TPQ.	ain any components with	a section 302
SARA 313	: The following components a by SARA Title III, Section 37		evels established
	<u>Components</u> Ethylene Glycol	<u>CAS-No.</u> 107-21-1	Weight percent 30 - 60 %
California Prop. 65	ductive Harm - www.P65Warnings.ca.g Ethylene Glycol	ov 107-21-1	
INTERNATIONAL CHE	MICAL CONTROL LAWS :		
United States TSCA Ir On or in compliance wit	ventory h the active portion of the TSCA invent	ory.	
	ndustrial Chemicals Introduction Scl compliance with the inventory.	heme (AICIS)	
	g and New Chemical Substances Inv compliance with the inventory.	ventory	
	g Chemicals Inventory (KECI) compliance with the inventory.		
	of Chemicals and Chemical Substan compliance with the inventory.	ces (PICCS)	
	isting Chemical Substances compliance with the inventory.		
Taiwan Chemical Sub not determined	stance Inventory		

3*

1

0

SAFETY DATA SHEET

Revision Date	:	07/29/2022
Version Number	:	1.6
Prepared By	:	Regulatory Affairs

REVISED INFORMATION: Significant changes to regulatory or health information for this revision is indicated by a bar in the left-hand margin of the SDS.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

APPENDIX B

Referenced Well Records

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

ION	ose pod no POD1 (M		0.)		WELL TAG ID NO. n/a			OSE FILE NO(3 C-4529	5).	· · · · · ·			
OCATI	WELL OWN							PHONE (OPTIC	ONAL)				
MELL I	WELL OWN 6401 Holid		ig address Dr.					CTTY STATE ZIP Midland TX 79707					
GENERAL AND WELL LOCATION							7" <u>N</u>	ACCURACY REQUIRED: ONE TENTH OF A SECOND DATUM REQUIRED: WGS 84					
1. GENI													
	LICENSE NO 124		NAME OF LICENSED		Jackie D. Atkins				NAME OF WELL DRI Atkins Eng	ILLING COMPANY tineering Associates,	ínc.		
	DRILLING S 05/14/		DRILLING ENDED 05/14/2021		MPLETED WELL (FI rary well materia			le depth (ft) 101	DEPTH WATER FIRS	ST ENCOUNTERED (FT n/a)		
N	COMPLETED WELL IS: ARTESIAN I DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COMPLETED WELL (FT) n/a						ELL (FT)						
VIIC	DRILLING F	LUID:	🗹 AIR	MUD	ADDITIV	'ES – SPEC	CIFY:		· · · · · · · · · · · · · · · · · · ·				
RM	DRILLING M	IETHOD:	ROTARY	HAMMER CABLE TOOL COTHER - SPECIFY: Hollow				w Stem Auger					
2. DRILLING & CASING INFORMATION	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM (inches)	(include	MATERIAL AND GRADE each casing string, sections of screen)	and	CONI	ASING NECTION TYPE ling diameter)	CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)		
& C/	0	101	±6.5		Boring- HSA		(-		
B N				l	·								
ILLL													
.DR													
7				}									
											<u> </u>		
. 1	DEPTH	(feet bgl)	BORE HOLE		IST ANNULAR SI				AMOUNT	METHO			
RIAI	FROM	TO	DIAM. (inches)	GRA	VEL PACK SIZE	-RANGE	E BY INTE	RVAL	(cubic feet)	PLACE	MEN I		
ATE													
RM							<u> </u>						
ANNULAR MATERIAL				1									
INN													
3. A													
EOD	OSE INTER	NAT TIC	8					11/0 0	WELL RECORD	A LOG Marrian Of	0/170		

TOROBEINTERING OBE			WIC-20 WL		version ou/so/17
FILE NO. (-45	29	POD NO.	TRN NO.	492934	[
LOCATION F.X.	255.30E	. K. 131	WELL TAG ID NO		PAGE 1 OF 2

•

	DEPTH (1 FROM	TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL R-BEARING CAVITIES plemental sheets to fully	S OR F	FRAC	TURE ZONE:	5	WA BEAF (YES		ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	4	4	SAND, poorly graded	, fine-very grained, calic	he grav	vel, R	ddish-brown	, dry	Y	√ N	
	4	29	25	CALICHE, poorly con	solidated, with sand med	ium gr	rained,	tan-off white	, dry	Y	√ N	
	29	39	10	SAND, poorly graded,	fine-very grained, some	calich	e grav	el, Tan-browr	ı, dry	Y	√ N	
	39	54	15	SILTY SAND, p	oorly graded, very- fine g	grained	d, Ligh	t brown, dry		Y	√ N	
	54	59	5	SILTY SAND, poorly	graded, very- fine grained	l, calic	he gra	vel Light brow	vn, dr	Y	√ N	
L	59	73	14	SANDY CLAY, very-f	ine grained sand, low plas	sticity,	, Brow	n- Red Brown	n, moi	Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL	73	79	6	CLAYEY SAND, low	plasticity, very-fine grain	ned sar	nd, Br	own/Red Brow	vn, mo	Y	√ N	
OF V	79	83	4	SANDY CLAY, very-f	ine grained sand, low plas	sticity,	, Brow	n- Dark Brov	vn, mo	Y	√ N	
0C	83	94	9	SANDY CLAY, very-	fine grained sand, low pla	asticity	y, Red	dish Brown, n	noist	Y	√ N	
ICL	94	99	5	SANDY CLAY, very-f	ine grained sand, low plas	sticity,	, Brow	n-Dark Brow	n, dry	Y	√ N	
DO	99	101	2	SANDY CLAY, ve	ry-fine grained sand, low	plastic	city, E	arth Brown, d	ry	Y	√ N	
EOI						<u> </u>			·	Y	N	
Rog										Y	N	
QYI										Y	N	
4. F										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
			· · · · · · · · · ·							Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING	G STRATA:				TOTA	AL ESTR	/ATED	
	PUM		IR LIFT	BAILER OT	HER - SPECIFY:				WEL	L YIELI) (gpm):	0.00
NO	WELL TES				A COLLECTED DURIN IOWING DISCHARGE A							
NOISI	MISCELLA	NEOUS INF	ORMATION: T									
ER			10		ils removed and the soi ce, then hydrated bento							
TEST; RIG SUPERV				ogs adapted from WSI			-mp:			. Broan		
RIG												
ST;												
5. TH					VIDED ONSITE SUPER	VISIO	JN OF	WELL CON	STRUC	CTION 0	THER TH	IAN LICENSEE:
	Shane Eldrig	ige, Carme	lo Trevino, Car	neron Pruitt								
					EST OF HIS OR HER K							
SIGNATURE					D THAT HE OR SHE W PLETION OF WELL DR			HIS WELL F	ECOR	D WITH	THE ST	TE ENGINEER
IATI	<u> </u>											
SIG	Jack A	tkins		Jac	kie D. Atkins					06/0	9/2021	
<u>و</u> .	<u> </u>	SIGNAT		R / PRINT SIGNEE							DATE	
		JUNAI									DAIE	
FOF	OSE INTER	NAL USE						WR-20 WE	LL REO	CORD &	LOG (Ve	rsjon 06/30/2017)
FIL	E NO.	<u> </u>	1525		POD NO.			TRN NO.	$-\mathcal{U}$	920	734	<u> </u>
LOC	CATION				·	W	VELL ·	TAG ID NO.		-		PAGE 2 OF 2

.

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	United States	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 320857103553301

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320857103553301 25S.30E.07.112331

Eddy County, New Mexico Latitude 32°08'57", Longitude 103°55'33" NAD27 Land-surface elevation 3,169 feet above NAVD88 The depth of the well is 385 feet below land surface. This well is completed in the Pecos River Basin alluvial aquifer (N100PCSRVR) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer. **Output formats**

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source (measur(
1959-02-05		D	62610		2903.75	NGVD29	1	Z		
1959-02-05		D	62611		2905.37	NAVD88	1	Z		
1959-02-05		D	72019	263.63			1	Z		
1959-03-07		D	62610		2904.08	NGVD29	1	Z		
1959-03-07		D	62611		2905.70	NAVD88	1	Z		
1959-03-07		D	72019	263.30			1	Z		
1987-10-20		D	62610		2903.13	NGVD29	1	Z		
1987-10-20		D	62611		2904.75	NAVD88	1	Z		
1987-10-20		D	72019	264.25			1	Z		
1992-11-06		D	62610		2904.38	NGVD29	1	S		
1992-11-06		D	62611		2906.00	NAVD88	1	S		
1992-11-06		D	72019	263.00			1	S		
1998-01-28		D	62610		2903.26	NGVD29	1	V		
1998-01-28		D	62611		2904.88	NAVD88	1	V		
1998-01-28		D	72019	264.12			1	V		

Explanation							
Section	Code	Description Date is accurate to the Day					
Water-level date-time accuracy	D						
Parameter code	62610	Groundwater level above NGVD 1929, feet					
Parameter code	62611	Groundwater level above NAVD 1988, feet					
Parameter code	72019	Depth to water level, feet below land surface					
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988					
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929					
Status	1	Static					
Method of measurement	S	Steel-tape measurement.					
Method of measurement	V	Calibrated electric-tape measurement.					
Method of measurement	Z	Other.					
Measuring agency		Not determined					
Source of measurement		Not determined					
Water-level approval status	А	Approved for publication Processing and review completed.					

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2023-04-25 20:07:45 EDT 0.29 0.26 nadww02 USA.gov

.

APPENDIX C

Photographic Log

Released to Imaging: 1/4/2024 2:13:09 PM

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 7/19/2023 1:18:18 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 5/2/2023 4:48:03 PM

JOB DESCRIPTION

Muy Wayno 104H SDG NUMBER 03C1558212

JOB NUMBER

890-4583-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.
Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 5/2/2023 4:48:03 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4583-1 SDG: 03C1558212

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	27

2

.

Estimated Detection Limit (Dioxin)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

EDL

LOD

LOQ

MCL

MDA MDC

MDL

MPN

MQL

NC

ND

NEG

POS

PQL

PRES QC

RER

RPD

TEF

TEQ TNTC

RL

ML

Page 39 of 86

eceived by OC.	D: 7/19/2023 1:18:18 PM	Page 39 of	86
	Definitions/Glossary		1
Client: Ensolu	m Ja	b ID: 890-4583-1	
Project/Site: N	/luy Wayno 104H	DG: 03C1558212	
Qualifiers			3
GC/MS VOA			
Qualifier	Qualifier Description		
*+	LCS and/or LCSD is outside acceptance limits, high biased.		
F1	MS and/or MSD recovery exceeds control limits.		5
U	Indicates the analyte was analyzed for but not detected.		
General Cher	nistry		
Qualifier	Qualifier Description		
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.		
Glossary			0
Abbreviation	These commonly used abbreviations may or may not be present in this report.		0
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		Q
%R	Percent Recovery		3
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		

Page 40 of 86

4

Job ID: 890-4583-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4583-1

Receipt

The samples were received on 4/26/2023 4:25 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

GC/MS VOA

Method 8260C: Sample received in a bulk jar.FS01 (890-4583-1), FS02 (890-4583-2), FS03 (890-4583-3), FS04 (890-4583-4) and (880-27647-B-1-A)

Method 8260C: The continuing calibration verification (CCV) associated with batch 860-101268 recovered above the upper control limit for 1,2,3-Trichlorobenzene and Naphthalene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 860-101268/6).

Method 8260C: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 860-101268 recovered outside control limits for the following analytes: 1,2,3-Trichlorobenzene. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The matrix spike (MS) recoveries for preparation batch 860-101265 and analytical batch 860-101268 were outside control limits. Sample matrix interference is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-4583-1 SDG: 03C1558212

Lab Sample ID: 890-4583-1

Matrix: Solid

Client Sample ID: FS01 Date Collected: 04/26/23 14:10 Date Received: 04/26/23 16:25

Project/Site: Muy Wayno 104H

Sample Depth: 0.5

Client: Ensolum

Method: SW846 8260C - Volatile Org	ganic Comp	ounds by G	C/MS						5
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00100	U	0.00100	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Bromobenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Bromochloromethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Bromodichloromethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Bromoform	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	8
Bromomethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
2-Butanone	<0.0500	U	0.0500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	Q
Carbon tetrachloride	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Chlorobenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Chloroethane	<0.0100	U	0.0100	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Chloroform	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Chloromethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
4-Chlorotoluene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
cis-1,2-Dichloroethene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
cis-1,3-Dichloropropene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Dibromochloromethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,2-Dibromo-3-Chloropropane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,2-Dibromoethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,2-Dichlorobenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,3-Dichlorobenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,4-Dichlorobenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Dichlorodifluoromethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,1-Dichloroethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,2-Dichloroethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,1-Dichloroethene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,2-Dichloropropane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,3-Dichloropropane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
2,2-Dichloropropane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,1-Dichloropropene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Ethylbenzene	<0.00100	U	0.00100	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Hexachlorobutadiene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Isopropylbenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Methylene Chloride	<0.0200	U	0.0200	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
m,p-Xylenes	<0.00200	U	0.00200	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
МТВЕ	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Naphthalene	<0.0100	U	0.0100	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
n-Butylbenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
N-Propylbenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
o-Xylene	<0.00100	U	0.00100	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
p-Cymene (p-Isopropyltoluene)	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
sec-Butylbenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Styrene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
tert-Butylbenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,1,1,2-Tetrachloroethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
1,1,2,2-Tetrachloroethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Tetrachloroethene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
Toluene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	
trans-1,2-Dichloroethene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1	

Job ID: 890-4583-1 SDG: 03C1558212

Lab Sample ID: 890-4583-1

Matrix: Solid

5

Client Sample ID: FS01 Date Collected: 04/26/23 14:10 Date Received: 04/26/23 16:25

Project/Site: Muy Wayno 104H

Sample Depth: 0.5

Client: Ensolum

Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
1,2,3-Trichlorobenzene	<0.00500	U *+	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
1,2,4-Trichlorobenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
1,1,1-Trichloroethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
1,1,2-Trichloroethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
Trichloroethene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
Trichlorofluoromethane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
1,2,3-Trichloropropane	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
1,2,4-Trimethylbenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
1,3,5-Trimethylbenzene	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
Vinyl chloride	<0.00500	U	0.00500	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		05/01/23 15:53	05/02/23 07:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		56 - 150			05/01/23 15:53	05/02/23 07:18	1
4-Bromofluorobenzene (Surr)	95		68 - 152			05/01/23 15:53	05/02/23 07:18	1
Dibromofluoromethane (Surr)	101		53 - 142			05/01/23 15:53	05/02/23 07:18	1
Toluene-d8 (Surr)	95		70 - 130			05/01/23 15:53	05/02/23 07:18	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00200	U	0.00200	mg/Kg			05/02/23 14:57	1

General Chemistry - Soluble								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.4	HF		SU			05/02/23 16:33	1
Temperature (SW846 9045D)	20.1	HF		Deg. C			05/02/23 16:33	1

Client Sample ID: FS02

Lab Sample ID: 890-4583-2

Matrix: Solid

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000996	U	0.000996	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Bromobenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Bromochloromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Bromodichloromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Bromoform	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Bromomethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
2-Butanone	<0.0498	U	0.0498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Carbon tetrachloride	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Chlorobenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Chloroethane	<0.00996	U	0.00996	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Chloroform	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
Chloromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
4-Chlorotoluene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
cis-1,2-Dichloroethene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1
cis-1,3-Dichloropropene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:38	1

Date Collected: 04/26/23 14:50 Date Received: 04/26/23 16:25 Sample Depth: 0.5

Job ID: 890-4583-1 SDG: 03C1558212

Lab Sample ID: 890-4583-2

Matrix: Solid

5

Client Sample ID: FS02 Date Collected: 04/26/23 14:50 Date Received: 04/26/23 16:25

Project/Site: Muy Wayno 104H

Sample Depth: 0.5

Client: Ensolum

Analyte		Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
Dibromochloromethane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2-Dibromo-3-Chloropropane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2-Dibromoethane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2-Dichlorobenzene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,3-Dichlorobenzene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,4-Dichlorobenzene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Dichlorodifluoromethane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,1-Dichloroethane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2-Dichloroethane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,1-Dichloroethene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2-Dichloropropane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,3-Dichloropropane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
2,2-Dichloropropane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,1-Dichloropropene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Ethylbenzene	<0.000996	U	0.000996	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Hexachlorobutadiene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Isopropylbenzene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Methylene Chloride	<0.0199	U	0.0199	mg/Kg	05/01/23 15:53	05/02/23 07:38	
m,p-Xylenes	<0.00199	U	0.00199	mg/Kg	05/01/23 15:53	05/02/23 07:38	
МТВЕ	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Naphthalene	<0.00996	U	0.00996	mg/Kg	05/01/23 15:53	05/02/23 07:38	
n-Butylbenzene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
N-Propylbenzene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
o-Xylene	<0.000996	U	0.000996	mg/Kg	05/01/23 15:53	05/02/23 07:38	
p-Cymene (p-Isopropyltoluene)	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
sec-Butylbenzene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Styrene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
tert-Butylbenzene	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,1,1,2-Tetrachloroethane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,1,2,2-Tetrachloroethane	<0.00498	U	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Tetrachloroethene	<0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Toluene	<0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
trans-1,2-Dichloroethene	< 0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
trans-1,3-Dichloropropene	<0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2,3-Trichlorobenzene	<0.00498	U *+	0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2,4-Trichlorobenzene	< 0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,1,1-Trichloroethane	<0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,1,2-Trichloroethane	< 0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Trichloroethene	< 0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Trichlorofluoromethane	< 0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2,3-Trichloropropane	<0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,2,4-Trimethylbenzene	< 0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
1,3,5-Trimethylbenzene	<0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Vinyl chloride	< 0.00498		0.00498	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Xylenes, Total	<0.00199		0.00199	mg/Kg	05/01/23 15:53	05/02/23 07:38	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	75		56 - 150		05/01/23 15:53	05/02/23 07:38	
4-Bromofluorobenzene (Surr)	89		68 - 152		05/01/23 15:53	05/02/23 07:38	

Job ID: 890-4583-1 SDG: 03C1558212

Client Sample ID: FS02

Project/Site: Muy Wayno 104H

Date Collected: 04/26/23 14:50 Date Received: 04/26/23 16:25

Sample Depth: 0.5

Client: Ensolum

Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	92		53 - 142	05/01/23 15:53	05/02/23 07:38	1
Toluene-d8 (Surr)	99		70 - 130	05/01/23 15:53	05/02/23 07:38	1

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier Total BTEX <0.00199 U

				0 0				
General Chemistry - Soluble								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.7	HF		SU			05/02/23 16:33	1
Temperature (SW846 9045D)	20.1	HF		Deg. C			05/02/23 16:33	1

RL

0.00199

Client Sample ID: FS03

Date Collected: 04/26/23 14:15 Date Received: 04/26/23 16:25 Sample Depth: 0.5

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000996	U	0.000996	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Bromobenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Bromochloromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Bromodichloromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Bromoform	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Bromomethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
2-Butanone	<0.0498	U	0.0498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Carbon tetrachloride	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Chlorobenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Chloroethane	<0.00996	U	0.00996	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Chloroform	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Chloromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
4-Chlorotoluene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
cis-1,2-Dichloroethene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
cis-1,3-Dichloropropene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Dibromochloromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2-Dibromo-3-Chloropropane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2-Dibromoethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2-Dichlorobenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,3-Dichlorobenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,4-Dichlorobenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Dichlorodifluoromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,1-Dichloroethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2-Dichloroethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,1-Dichloroethene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2-Dichloropropane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,3-Dichloropropane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
2,2-Dichloropropane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,1-Dichloropropene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Ethylbenzene	<0.000996	U	0.000996	mg/Kg		05/01/23 15:53	05/02/23 07:59	1

Eurofins Carlsbad

Lab Sample ID: 890-4583-2

Unit

mg/Kg

D

Prepared

Matrix: Solid

5

Dil Fac

Matrix: Solid

Analyzed

05/02/23 14:57

Lab Sample ID: 890-4583-3

Page 45 of 86

Job ID: 890-4583-1 SDG: 03C1558212

Lab Sample ID: 890-4583-3

Matrix: Solid

5

Client Sample ID: FS03 Date Collected: 04/26/23 14:15 Date Received: 04/26/23 16:25

Project/Site: Muy Wayno 104H

Sample Depth: 0.5

Client: Ensolum

Method: SW846 8260C - Volatile Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Isopropylbenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	
Methylene Chloride	<0.0199		0.0199	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
m,p-Xylenes	<0.00199		0.00199	mg/Kg		05/01/23 15:53	05/02/23 07:59	
MTBE	< 0.00498		0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Naphthalene	<0.00996	U	0.00996	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
n-Butylbenzene	<0.00498		0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
N-Propylbenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
o-Xylene	<0.000996	U	0.000996	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
p-Cymene (p-lsopropyltoluene)	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
sec-Butylbenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Styrene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
tert-Butylbenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,1,1,2-Tetrachloroethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,1,2,2-Tetrachloroethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Tetrachloroethene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Toluene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
trans-1,2-Dichloroethene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
trans-1,3-Dichloropropene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2,3-Trichlorobenzene	<0.00498	U *+	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2,4-Trichlorobenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,1,1-Trichloroethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,1,2-Trichloroethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Trichloroethene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Trichlorofluoromethane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2,3-Trichloropropane	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,2,4-Trimethylbenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
1,3,5-Trimethylbenzene	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Vinyl chloride	<0.00498	U	0.00498	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Xylenes, Total	<0.00199	U	0.00199	mg/Kg		05/01/23 15:53	05/02/23 07:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		56 - 150			05/01/23 15:53	05/02/23 07:59	1
4-Bromofluorobenzene (Surr)	89		68 - 152			05/01/23 15:53	05/02/23 07:59	1
Dibromofluoromethane (Surr)	95		53 - 142			05/01/23 15:53	05/02/23 07:59	1
Toluene-d8 (Surr)	100		70 - 130			05/01/23 15:53	05/02/23 07:59	1
Method: TAL SOP Total BTEX - 1								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00199	U	0.00199	mg/Kg			05/02/23 14:57	1
General Chemistry - Soluble								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.7	HF		SU			05/02/23 16:33	1
Temperature (SW846 9045D)	20.1	HF		Deg. C			05/02/23 16:33	1

Released to Imaging: 1/4/2024 2:13:09 PM

Job ID: 890-4583-1 SDG: 03C1558212

Lab Sample ID: 890-4583-4

Matrix: Solid

Client Sample ID: FS04 Date Collected: 04/26/23 14:55 Date Received: 04/26/23 16:25

Project/Site: Muy Wayno 104H

Sample Depth: 0.5

Client: Ensolum

Method: SW846 8260C - Volatile	Organic Comp	ounds by G	C/MS						5
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.000994	U	0.000994	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Bromobenzene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Bromochloromethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Bromodichloromethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Bromoform	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	8
Bromomethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
2-Butanone	<0.0497	U	0.0497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	Q
Carbon tetrachloride	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Chlorobenzene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Chloroethane	<0.00994	U	0.00994	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Chloroform	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Chloromethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
4-Chlorotoluene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
cis-1,2-Dichloroethene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
cis-1,3-Dichloropropene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Dibromochloromethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,2-Dibromo-3-Chloropropane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,2-Dibromoethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,2-Dichlorobenzene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,3-Dichlorobenzene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,4-Dichlorobenzene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Dichlorodifluoromethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,1-Dichloroethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,2-Dichloroethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,1-Dichloroethene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,2-Dichloropropane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,3-Dichloropropane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
2,2-Dichloropropane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,1-Dichloropropene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Ethylbenzene	<0.000994		0.000994	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Hexachlorobutadiene	<0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Isopropylbenzene	<0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Methylene Chloride	<0.0199		0.0199	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
m,p-Xylenes	<0.00199		0.00199	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
MTBE	<0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Naphthalene	<0.00994		0.00994	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
n-Butylbenzene	<0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
N-Propylbenzene	<0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
o-Xylene	<0.000994		0.000994	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
p-Cymene (p-Isopropyltoluene)	< 0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
sec-Butylbenzene	< 0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Styrene	< 0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
tert-Butylbenzene	< 0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,1,1,2-Tetrachloroethane	< 0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
1,1,2,2-Tetrachloroethane	< 0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Tetrachloroethene	< 0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
Toluene	< 0.00497		0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	
trans-1,2-Dichloroethene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19	1	

Job ID: 890-4583-1 SDG: 03C1558212

Lab Sample ID: 890-4583-4

Matrix: Solid

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Dil Fac

5

Project/Site: Muy Wayno 104H **Client Sample ID: FS04**

Date Collected: 04/26/23 14:55 Date

Client: Ensolum

Method: SW846 8260C - Volati	le Organic Comp	ounds by G	C/MS (Continued)			
Analyte	•	Qualifier	RL	, Unit	D	Prepared	Analyzed
trans-1,3-Dichloropropene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
1,2,3-Trichlorobenzene	<0.00497	U *+	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
1,2,4-Trichlorobenzene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
1,1,1-Trichloroethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
1,1,2-Trichloroethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
Trichloroethene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
Trichlorofluoromethane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
1,2,3-Trichloropropane	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
1,2,4-Trimethylbenzene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
1,3,5-Trimethylbenzene	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
Vinyl chloride	<0.00497	U	0.00497	mg/Kg		05/01/23 15:53	05/02/23 08:19
Xylenes, Total	<0.00199	U	0.00199	mg/Kg		05/01/23 15:53	05/02/23 08:19
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed
1,2-Dichloroethane-d4 (Surr)	77		56 - 150			05/01/23 15:53	05/02/23 08:19
4-Bromofluorobenzene (Surr)	88		68 - 152			05/01/23 15:53	05/02/23 08:19
Dibromofluoromethane (Surr)	100		53 - 142			05/01/23 15:53	05/02/23 08:19
Toluene-d8 (Surr)	100		70 - 130			05/01/23 15:53	05/02/23 08:19
Method: TAL SOP Total BTEX	- Total BTEX Cald	ulation					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Total BTEX	< 0.00199	U	0.00199	mg/Kg			05/02/23 14:57

General Chemistry - Soluble								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.7	HF		SU			05/02/23 16:33	1
Temperature (SW846 9045D)	20.1	HF		Deg. C			05/02/23 16:33	1

Eurofins Carlsbad

Released to Imaging: 1/4/2024 2:13:09 PM

Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Solid

				Percent Su	rogate Recover	(Acceptance	Limits)	
		DCA	BFB	DBFM	TOL			
Lab Sample ID	Client Sample ID	(56-150)	(68-152)	(53-142)	(70-130)			
880-27647-B-1-A MS	Matrix Spike	94	97	101	99			
890-4583-1	FS01	85	95	101	95			
890-4583-2	FS02	75	89	92	99			
890-4583-3	FS03	87	89	95	100			
890-4583-4	FS04	77	88	100	100			
LCS 860-101268/12	Lab Control Sample	95	93	103	98			
LCSD 860-101268/13	Lab Control Sample Dup	97	95	98	99			
MB 860-101268/18	Method Blank	86	98	101	99			
Surrogate Legend								
DCA = 1,2-Dichloroetha	ne-d4 (Surr)							
BFB = 4-Bromofluorobe	nzene (Surr)							
DBFM = Dibromofluoror	methane (Surr)							
TOL = Toluene-d8 (Surr)							

Page 48 of 86

Job ID: 890-4583-1 SDG: 03C1558212

Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: 880-27647-B-1-A MS

Matrix: Solid Analysis Batch: 101268

Matrix: Solid									Prep Type: Total/M	
Analysis Batch: 101268	Comula	Comula	Califo	ме	ме				Prep Batch: 1012	65
Amelute		Sample	Spike	MS		11			%Rec	
Analyte		Qualifier	Added	0.04107	Qualifier	Unit	<u>D</u>	%Rec	Limits	
Benzene Bromobenzene	<0.000990 <0.00495		0.0495		E1	mg/Kg		83 78		
Bromochloromethane	<0.00495		0.0495 0.0495	0.03869 0.04461	ГІ	mg/Kg mg/Kg		90	84 - 123 71 - 120	
Bromodichloromethane	<0.00495					mg/Kg		88		
Bromodichioromethane	<0.00495		0.0495 0.0495	0.04354 0.04587				00 93	78 - 126 63 - 136	
Bromomethane						mg/Kg				
2-Butanone	< 0.00495		0.0495	0.04987		mg/Kg		101	73 - 126	
	<0.0495		0.248	0.2125		mg/Kg		86	75 - 125	
Carbon tetrachloride	< 0.00495		0.0495	0.04924		mg/Kg		99	63 - 135	
Chlorobenzene	< 0.00495		0.0495	0.04413		mg/Kg		89	83 - 121	
Chloroethane	< 0.00990		0.0495	0.03717		mg/Kg		75	57 - 122	
Chloroform	< 0.00495		0.0495	0.04548		mg/Kg		92	74 - 118	
Chloromethane	<0.00495		0.0495	0.04302		mg/Kg		87	58 - 110	
4-Chlorotoluene	<0.00495		0.0495	0.04154		mg/Kg		84	83 - 125	
cis-1,2-Dichloroethene	<0.00495		0.0495	0.04125		mg/Kg		83	72 - 131	
cis-1,3-Dichloropropene	<0.00495		0.0495	0.04094		mg/Kg		83	74 - 135	
Dibromochloromethane	<0.00495		0.0495	0.04398		mg/Kg		89	77 - 130	
1,2-Dibromo-3-Chloropropane	<0.00495	U	0.0495	0.04508		mg/Kg		91	58 - 133	
1,2-Dibromoethane	<0.00495	U	0.0495	0.04625		mg/Kg		93	73 - 125	
1,2-Dichlorobenzene	<0.00495	U F1	0.0495	0.04020	F1	mg/Kg		81	84 - 121	
1,3-Dichlorobenzene	<0.00495	U F1	0.0495	0.03939	F1	mg/Kg		80	84 - 124	
1,4-Dichlorobenzene	<0.00495	U	0.0495	0.04091		mg/Kg		83	82 - 120	
Dichlorodifluoromethane	<0.00495	U	0.0495	0.04298		mg/Kg		87	54 - 122	
1,1-Dichloroethane	<0.00495	U	0.0495	0.04458		mg/Kg		90	73 - 124	
1,2-Dichloroethane	<0.00495	U	0.0495	0.03490		mg/Kg		71	70 - 123	
1,1-Dichloroethene	<0.00495	U	0.0495	0.04913		mg/Kg		99	68 - 119	
1,2-Dichloropropane	<0.00495	U	0.0495	0.04186		mg/Kg		85	75 - 122	
1,3-Dichloropropane	<0.00495	U	0.0495	0.04257		mg/Kg		86	82 - 131	
2,2-Dichloropropane	<0.00495	U	0.0495	0.04379		mg/Kg		88	67 - 137	
1,1-Dichloropropene	<0.00495	U	0.0495	0.04341		mg/Kg		88	72 - 118	
Ethylbenzene	<0.000990	U	0.0495	0.04521		mg/Kg		91	80 - 123	
Hexachlorobutadiene	<0.00495	U F1	0.0495	0.03689	F1	mg/Kg		75	77 - 130	
Isopropylbenzene	<0.00495	U	0.0495	0.04784		mg/Kg		97	55 - 155	
Methylene Chloride	<0.0198	U	0.0495	0.04946		mg/Kg		100	57 - 134	
m,p-Xylenes	<0.00198	U	0.0495	0.04312		mg/Kg		87	78 - 127	
MTBE	<0.00495		0.0495	0.04558		mg/Kg		92	64 - 148	
Naphthalene	<0.00990	U	0.0495	0.05450		mg/Kg		110	53 - 162	
n-Butylbenzene	<0.00495		0.0495	0.04219		mg/Kg		85	82 - 127	
N-Propylbenzene	< 0.00495		0.0495	0.04398		mg/Kg		89	84 - 131	
o-Xylene	<0.000990		0.0495	0.04293		mg/Kg		87	79 - 125	
p-Cymene (p-lsopropyltoluene)	< 0.00495		0.0495	0.04460		mg/Kg		90	84 - 130	
sec-Butylbenzene	< 0.00495		0.0495	0.04603		mg/Kg		93	84 - 131	
Styrene	<0.00495		0.0495	0.04003		mg/Kg		93 86	80 - 126	
	<0.00495		0.0495					87		
tert-Butylbenzene	<0.00495		0.0495	0.04331		mg/Kg			83 - 132 81 - 127	
1,1,1,2-Tetrachloroethane				0.04350		mg/Kg		88 82		
1,1,2,2-Tetrachloroethane	<0.00495		0.0495	0.04049		mg/Kg		82	75 - 133	
Tetrachloroethene	<0.00495		0.0495	0.04538		mg/Kg		92	79 - 124	
Toluene	< 0.00495		0.0495	0.04422		mg/Kg		89	74 - 122	
trans-1,2-Dichloroethene	<0.00495	U	0.0495	0.04630		mg/Kg		94	63 - 110	

Job ID: 890-4583-1

Page 49 of 86

SDG: 03C1558212

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Eurofins Carlsbad

Released to Imaging: 1/4/2024 2:13:09 PM

Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 880-27647-B-1-A MS

Matrix: Solid Analysis Batch: 101268

									Trop Batom Tonato
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
trans-1,3-Dichloropropene	< 0.00495	U	0.0495	0.04114		mg/Kg		83	73 - 125
1,2,3-Trichlorobenzene	<0.00495	U *+	0.0495	0.05325		mg/Kg		108	75 - 131
1,2,4-Trichlorobenzene	<0.00495	U F1	0.0495	0.03795	F1	mg/Kg		77	79 - 128
1,1,1-Trichloroethane	<0.00495	U	0.0495	0.04598		mg/Kg		93	71 - 124
1,1,2-Trichloroethane	<0.00495	U	0.0495	0.04271		mg/Kg		86	75 - 131
Trichloroethene	<0.00495	U	0.0495	0.04722		mg/Kg		95	78 - 119
Trichlorofluoromethane	<0.00495	U	0.0495	0.05123		mg/Kg		103	71 - 148
1,2,3-Trichloropropane	<0.00495	U	0.0495	0.03782		mg/Kg		76	75 - 131
1,2,4-Trimethylbenzene	<0.00495	U	0.0495	0.04237		mg/Kg		86	60 - 159
1,3,5-Trimethylbenzene	<0.00495	U	0.0495	0.04357		mg/Kg		88	61 - 160
Vinyl chloride	<0.00495	U	0.0495	0.04973		mg/Kg		100	60 - 123
	MS	MS							
Surrogate	%Pecoverv	Qualifier	Limite						

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		56 - 150
4-Bromofluorobenzene (Surr)	97		68 - 152
Dibromofluoromethane (Surr)	101		53 - 142
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: MB 860-101268/18 Matrix: Solid

Analysis Batch: 101268

	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/Kg			05/02/23 03:32	1
Bromobenzene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Bromochloromethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Bromodichloromethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Bromoform	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Bromomethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
2-Butanone	<0.0500	U	0.0500	mg/Kg			05/02/23 03:32	1
Carbon tetrachloride	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Chlorobenzene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Chloroethane	<0.0100	U	0.0100	mg/Kg			05/02/23 03:32	1
Chloroform	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Chloromethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
4-Chlorotoluene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
cis-1,2-Dichloroethene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
cis-1,3-Dichloropropene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Dibromochloromethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
1,2-Dibromo-3-Chloropropane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
1,2-Dibromoethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
1,2-Dichlorobenzene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
1,3-Dichlorobenzene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
1,4-Dichlorobenzene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
Dichlorodifluoromethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
1,1-Dichloroethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
1,2-Dichloroethane	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1
1,1-Dichloroethene	<0.00500	U	0.00500	mg/Kg			05/02/23 03:32	1

Eurofins Carlsbad

Client Sample ID: Method Blank Prep Type: Total/NA

Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 860-101268/18

Matrix: Solid Analysis Batch: 101268

Analysis Batch. 101200	МВ	мв					
Analyte		Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
1,3-Dichloropropane	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
2,2-Dichloropropane	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
1,1-Dichloropropene	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
Ethylbenzene	<0.00100	U	0.00100	mg/Kg		05/02/23 03:32	1
Hexachlorobutadiene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	
Isopropylbenzene	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
Methylene Chloride	<0.0200		0.0200	mg/Kg		05/02/23 03:32	1
m,p-Xylenes	<0.00200	U	0.00200	mg/Kg		05/02/23 03:32	
MTBE	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
Naphthalene	<0.0100	U	0.0100	mg/Kg		05/02/23 03:32	1
n-Butylbenzene	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	
N-Propylbenzene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
o-Xylene	<0.00100		0.00100	mg/Kg		05/02/23 03:32	1
p-Cymene (p-Isopropyltoluene)	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	
sec-Butylbenzene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
Styrene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
tert-Butylbenzene	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	
1,1,1,2-Tetrachloroethane	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
1,1,2,2-Tetrachloroethane	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
Tetrachloroethene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	
Toluene	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
trans-1,2-Dichloroethene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
trans-1,3-Dichloropropene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
1,2,3-Trichlorobenzene	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
1,2,4-Trichlorobenzene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
1,1,1-Trichloroethane	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
1,1,2-Trichloroethane	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
Trichloroethene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
Trichlorofluoromethane	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
1,2,3-Trichloropropane	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
1,2,4-Trimethylbenzene	<0.00500	U	0.00500	mg/Kg		05/02/23 03:32	1
1,3,5-Trimethylbenzene	<0.00500		0.00500	mg/Kg		05/02/23 03:32	1
Vinyl chloride	< 0.00500		0.00500	mg/Kg		05/02/23 03:32	1
Xylenes, Total	<0.00200		0.00200	mg/Kg		05/02/23 03:32	1
Sume mate	MB % Basawamy	MB	Limite		Drenews of	Anglungs	
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery 86	Qualifier	Limits 56 - 150		Prepared	Analyzed 05/02/23 03:32	Dil Fac
	80		56 - 150			05/02/23 03:32	1

Lab Sample	ID: LCS	860-101268/12	

Matrix: Solid Analysis Batch: 101268

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Datch. 101200									
		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	 	0.0500	0.04746		mg/Kg		95	66 - 142	

68 - 152

53 - 142

70 - 130

1

1

1

Eurofins Carlsbad

Page 51 of 86

Job ID: 890-4583-1 SDG: 03C1558212

Prep Type: Total/NA

Client Sample ID: Method Blank

5

98

101

99

Client Sample ID: Lab Control Sample Prep Type: Total/NA

05/02/23 03:32

05/02/23 03:32

05/02/23 03:32

Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-101268/12

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
romobenzene	0.0500	0.04563		mg/Kg		91	75 - 130	
romochloromethane	0.0500	0.04957		mg/Kg		99	71 - 130	
romodichloromethane	0.0500	0.05158		mg/Kg		103	78 - 130	
romoform	0.0500	0.05194		mg/Kg		104	63 - 136	
romomethane	0.0500	0.05946		mg/Kg		119	60 - 140	
Butanone	0.250	0.2047		mg/Kg		82	75 - 130	
arbon tetrachloride	0.0500	0.04887		mg/Kg		98	63 - 135	
hlorobenzene	0.0500	0.05163		mg/Kg		103	83 - 130	
hloroethane	0.0500	0.04042		mg/Kg		81	57 - 130	
hloroform	0.0500	0.05106		mg/Kg		102	74 - 130	
hloromethane	0.0500	0.04647		mg/Kg		93	58 - 130	
-Chlorotoluene	0.0500	0.05017		mg/Kg		100	83 - 130	
s-1,2-Dichloroethene	0.0500	0.04372		mg/Kg		87	72 - 131	
s-1,3-Dichloropropene	0.0500	0.04980		mg/Kg		100	74 - 135	
ibromochloromethane	0.0500	0.05250		mg/Kg		105	77 _ 130	
2-Dibromo-3-Chloropropane	0.0500	0.05057		mg/Kg		101	58 - 133	
,2-Dibromoethane	0.0500	0.05884		mg/Kg		118	73 - 130	
2-Dichlorobenzene	0.0500	0.05067		mg/Kg		101	84 - 130	
,3-Dichlorobenzene	0.0500	0.04739		mg/Kg		95	84 - 130	
4-Dichlorobenzene	0.0500	0.04966		mg/Kg		99	82 - 130	
ichlorodifluoromethane	0.0500	0.04091		mg/Kg		82	54 - 130	
1-Dichloroethane	0.0500	0.04637		mg/Kg		93	73 - 130	
,2-Dichloroethane	0.0500	0.04146		mg/Kg		83	70 - 130	
1-Dichloroethene	0.0500	0.05125		mg/Kg		102	68 - 130	
2-Dichloropropane	0.0500	0.04903		mg/Kg		98	75 - 130	
3-Dichloropropane	0.0500	0.04804		mg/Kg		96	82 - 131	
2-Dichloropropane	0.0500	0.04543		mg/Kg		91	67 - 137	
,1-Dichloropropene	0.0500	0.04695		mg/Kg		94	72 - 130	
thylbenzene	0.0500	0.05140		mg/Kg		103	80 - 130	
exachlorobutadiene	0.0500	0.04935		mg/Kg		99	77 - 130	
sopropylbenzene	0.0500	0.05494		mg/Kg		110	55 - 155	
lethylene Chloride	0.0500	0.05269		mg/Kg		105	57 - 134	
n,p-Xylenes	0.0500	0.05209		mg/Kg		103	78 - 134 78 - 130	
ι,μ-λγιεπες ITBE	0.0500	0.03150		mg/Kg		98	64 - 148	
	0.0500	0.04893				90 135	53 - 150	
aphthalene -Butylbenzene	0.0500	0.06730		mg/Kg		105	82 - 130	
	0.0500	0.05082		mg/Kg		103	84 - 131	
-Propylbenzene Xylene	0.0500	0.05082		mg/Kg		102	79 - 130	
				mg/Kg				
-Cymene (p-Isopropyltoluene)	0.0500	0.05296		mg/Kg		106	84 - 130 84 - 131	
ec-Butylbenzene	0.0500 0.0500	0.05261 0.05175		mg/Kg mg/Kg		105 103	84 - 131 80 - 130	
tyrene				mg/Kg		103	80 - 130	
rt-Butylbenzene	0.0500	0.04997		mg/Kg		100	83 - 132	
1,1,2-Tetrachloroethane	0.0500	0.05226		mg/Kg		105	81 - 130 75 - 133	
1,2,2-Tetrachloroethane	0.0500	0.04860		mg/Kg		97	75 - 133	
etrachloroethene	0.0500	0.04850		mg/Kg		97	79 - 130	
oluene	0.0500	0.05215		mg/Kg		104	74 - 130	
ans-1,2-Dichloroethene	0.0500	0.05100		mg/Kg		102	63 - 130	
ans-1,3-Dichloropropene	0.0500	0.04759		mg/Kg		95	73 - 130	
,2,3-Trichlorobenzene	0.0500	0.06972	*+	mg/Kg		139	75 - 131	

Job ID: 890-4583-1 SDG: 03C1558212

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Eurofins Carlsbad

5 7

Client: Ensolum Project/Site: Muy Wayno 104H Job ID: 890-4583-1 SDG: 03C1558212

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-101268/12

Matrix: Solid Analysis Batch: 101268

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	0.0500	0.05512		mg/Kg		110	79 - 130
1,1,1-Trichloroethane	0.0500	0.04775		mg/Kg		95	71 - 130
,1,2-Trichloroethane	0.0500	0.05088		mg/Kg		102	75 - 131
richloroethene	0.0500	0.05102		mg/Kg		102	78 - 130
ichlorofluoromethane	0.0500	0.04977		mg/Kg		100	71 - 148
2,3-Trichloropropane	0.0500	0.04632		mg/Kg		93	75 - 131
2,4-Trimethylbenzene	0.0500	0.04974		mg/Kg		99	60 - 159
3,5-Trimethylbenzene	0.0500	0.04972		mg/Kg		99	61 _ 160
/inyl chloride	0.0500	0.04958		mg/Kg		99	60 - 130

	LCS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		56 - 150
4-Bromofluorobenzene (Surr)	93		68 - 152
Dibromofluoromethane (Surr)	103		53 - 142
Toluene-d8 (Surr)	98		70 - 130

Lab Sample ID: LCSD 860-101268/13 Matrix: Solid Analysis Batch: 101268

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.04749		mg/Kg		95	66 - 142	0	25
Bromobenzene	0.0500	0.04588		mg/Kg		92	75 - 130	1	25
Bromochloromethane	0.0500	0.05396		mg/Kg		108	71 - 130	8	25
Bromodichloromethane	0.0500	0.05080		mg/Kg		102	78 - 130	2	25
Bromoform	0.0500	0.05057		mg/Kg		101	63 - 136	3	25
Bromomethane	0.0500	0.06028		mg/Kg		121	60 - 140	1	25
2-Butanone	0.250	0.2462		mg/Kg		98	75 - 130	18	25
Carbon tetrachloride	0.0500	0.05371		mg/Kg		107	63 - 135	9	25
Chlorobenzene	0.0500	0.05013		mg/Kg		100	83 - 130	3	25
Chloroethane	0.0500	0.04222		mg/Kg		84	57 - 130	4	25
Chloroform	0.0500	0.05486		mg/Kg		110	74 - 130	7	25
Chloromethane	0.0500	0.05574		mg/Kg		111	58 - 130	18	25
4-Chlorotoluene	0.0500	0.04925		mg/Kg		99	83 - 130	2	25
cis-1,2-Dichloroethene	0.0500	0.04525		mg/Kg		91	72 - 131	3	25
cis-1,3-Dichloropropene	0.0500	0.05122		mg/Kg		102	74 - 135	3	25
Dibromochloromethane	0.0500	0.05289		mg/Kg		106	77 _ 130	1	25
1,2-Dibromo-3-Chloropropane	0.0500	0.04904		mg/Kg		98	58 - 133	3	25
1,2-Dibromoethane	0.0500	0.05579		mg/Kg		112	73 - 130	5	25
1,2-Dichlorobenzene	0.0500	0.04990		mg/Kg		100	84 - 130	2	25
1,3-Dichlorobenzene	0.0500	0.04472		mg/Kg		89	84 - 130	6	25
1,4-Dichlorobenzene	0.0500	0.04828		mg/Kg		97	82 - 130	3	25
Dichlorodifluoromethane	0.0500	0.03720		mg/Kg		74	54 - 130	10	25
1,1-Dichloroethane	0.0500	0.05024		mg/Kg		100	73 - 130	8	25
1,2-Dichloroethane	0.0500	0.04302		mg/Kg		86	70 - 130	4	25
1,1-Dichloroethene	0.0500	0.05512		mg/Kg		110	68 - 130	7	25
1,2-Dichloropropane	0.0500	0.05003		mg/Kg		100	75 - 130	2	25
1,3-Dichloropropane	0.0500	0.05023		mg/Kg		100	82 - 131	4	25

Eurofins Carlsbad

5

7

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-101268/13

Matrix: Solid Analysis Batch: 101268

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
2,2-Dichloropropane	0.0500	0.05005		mg/Kg		100	67 - 137	10	25	
1,1-Dichloropropene	0.0500	0.04712		mg/Kg		94	72 - 130	0	25	
Ethylbenzene	0.0500	0.05093		mg/Kg		102	80 - 130	1	25	
Hexachlorobutadiene	0.0500	0.04961		mg/Kg		99	77 _ 130	1	25	
Isopropylbenzene	0.0500	0.05165		mg/Kg		103	55 - 155	6	25	
Methylene Chloride	0.0500	0.05413		mg/Kg		108	57 _ 134	3	25	
m,p-Xylenes	0.0500	0.04839		mg/Kg		97	78 - 130	6	25	
МТВЕ	0.0500	0.05174		mg/Kg		103	64 - 148	6	25	
Naphthalene	0.0500	0.06800		mg/Kg		136	53 - 150	1	25	
n-Butylbenzene	0.0500	0.05105		mg/Kg		102	82 - 130	2	25	
N-Propylbenzene	0.0500	0.04947		mg/Kg		99	84 - 131	3	25	
o-Xylene	0.0500	0.05042		mg/Kg		101	79 - 130	1	25	
p-Cymene (p-Isopropyltoluene)	0.0500	0.05065		mg/Kg		101	84 - 130	4	25	
sec-Butylbenzene	0.0500	0.05209		mg/Kg		104	84 - 131	1	25	
Styrene	0.0500	0.05197		mg/Kg		104	80 - 130	0	25	2
tert-Butylbenzene	0.0500	0.04848		mg/Kg		97	83 - 132	3	25	
1,1,1,2-Tetrachloroethane	0.0500	0.05236		mg/Kg		105	81 - 130	0	25	2
1,1,2,2-Tetrachloroethane	0.0500	0.05100		mg/Kg		102	75 - 133	5	25	
Tetrachloroethene	0.0500	0.04780		mg/Kg		96	79 - 130	1	25	
Toluene	0.0500	0.04940		mg/Kg		99	74 - 130	5	25	
trans-1,2-Dichloroethene	0.0500	0.05248		mg/Kg		105	63 - 130	3	25	
trans-1,3-Dichloropropene	0.0500	0.04703		mg/Kg		94	73 - 130	1	25	
1,2,3-Trichlorobenzene	0.0500	0.06880	*+	mg/Kg		138	75 - 131	1	25	
1,2,4-Trichlorobenzene	0.0500	0.05338		mg/Kg		107	79 - 130	3	25	
1,1,1-Trichloroethane	0.0500	0.05006		mg/Kg		100	71 - 130	5	25	
1,1,2-Trichloroethane	0.0500	0.05157		mg/Kg		103	75 - 131	1	25	
Trichloroethene	0.0500	0.05026		mg/Kg		101	78 - 130	2	25	
Trichlorofluoromethane	0.0500	0.04811		mg/Kg		96	71 - 148	3	25	
1,2,3-Trichloropropane	0.0500	0.04545		mg/Kg		91	75 - 131	2	25	
1,2,4-Trimethylbenzene	0.0500	0.04814		mg/Kg		96	60 - 159	3	25	
1,3,5-Trimethylbenzene	0.0500	0.04912		mg/Kg		98	61 - 160	1	25	
Vinyl chloride	0.0500	0.05116		mg/Kg		102	60 - 130	3	25	
	LCSD LCSD									

	LUSD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		56 - 150
4-Bromofluorobenzene (Surr)	95		68 - 152
Dibromofluoromethane (Surr)	98		53 - 142
Toluene-d8 (Surr)	99		70 - 130

Method: 9045D - pH

Lab Sample ID: 890-4583-1 DU Matrix: Solid Analysis Batch: 101463	U						C	Client Sample ID: Prep Type: S	
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
рН	8.4	HF	8.4		SU			0.2	20
Temperature	20.1	HF	20.1		Deg. C			0	25

Page 54 of 86

SDG: 03C1558212

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA 5 6 7 8 9 10 11 12

QC Association Summary

Client: Ensolum Project/Site: Muy Wayno 104H 10.000 4500 4

5

Job ID: 890-4583-1 SDG: 03C1558212

GC/MS VOA

Prep Batch: 101265

Lab Sample ID 890-4583-1	Client Sample ID	Prep Type Total/NA	Matrix	Method	Prep Bate
890-4583-2	FS02	Total/NA	Solid	5035	
890-4583-3	FS03	Total/NA	Solid	5035	
890-4583-4	FS04	Total/NA	Solid	5035	
880-27647-B-1-A MS	Matrix Spike	Total/NA	Solid	5035	

Analysis Batch: 101268

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	8
890-4583-1	FS01	Total/NA	Solid	8260C	101265	
890-4583-2	FS02	Total/NA	Solid	8260C	101265	9
890-4583-3	FS03	Total/NA	Solid	8260C	101265	
890-4583-4	FS04	Total/NA	Solid	8260C	101265	10
MB 860-101268/18	Method Blank	Total/NA	Solid	8260C		
LCS 860-101268/12	Lab Control Sample	Total/NA	Solid	8260C		44
LCSD 860-101268/13	Lab Control Sample Dup	Total/NA	Solid	8260C		
880-27647-B-1-A MS	Matrix Spike	Total/NA	Solid	8260C	101265	12
Analysis Batch: 101433	3					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	13
890-4583-1	FS01	Total/NA	Solid	Total BTEX		4.4
890-4583-2	FS02	Total/NA	Solid	Total BTEX		14

Total/NA

Total/NA

Solid

Solid

Total BTEX

Total BTEX

890-4583-4

FS03

FS04

General Chemistry

890-4583-3

Leach Batch: 101455

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4583-1	FS01	Soluble	Solid	DI Leach	
890-4583-2	FS02	Soluble	Solid	DI Leach	
890-4583-3	FS03	Soluble	Solid	DI Leach	
890-4583-4	FS04	Soluble	Solid	DI Leach	
890-4583-1 DU	FS01	Soluble	Solid	DI Leach	

Analysis Batch: 101463

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4583-1	FS01	Soluble	Solid	9045D	101455
890-4583-2	FS02	Soluble	Solid	9045D	101455
890-4583-3	FS03	Soluble	Solid	9045D	101455
890-4583-4	FS04	Soluble	Solid	9045D	101455
890-4583-1 DU	FS01	Soluble	Solid	9045D	101455

Job ID: 890-4583-1 SDG: 03C1558212

Lab Sample ID: 890-4583-1 Matrix: Solid

Date Collected: 04/26/23 14:10 Date Received: 04/26/23 16:25

Project/Site: Muy Wayno 104H **Client Sample ID: FS01**

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	101265	05/01/23 15:53	MTMG	EET HOU
Total/NA	Analysis	8260C		1	5 mL	5 mL	101268	05/02/23 07:18	MTMG	EET HOU
Total/NA	Analysis	Total BTEX		1			101433	05/02/23 14:57	KLV	EET HOU
Soluble	Leach	DI Leach			20.05 g	20 mL	101455	05/02/23 16:09	TL	EET HOU
Soluble	Analysis	9045D		1	20.05 g	20 mL	101463	05/02/23 16:33	TL	EET HOU

Client Sample ID: FS02

Date Collected: 04/26/23 14:50 Date Received: 04/26/23 16:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	101265	05/01/23 15:53	MTMG	EET HOU
Total/NA	Analysis	8260C		1	5 mL	5 mL	101268	05/02/23 07:38	MTMG	EET HOU
Total/NA	Analysis	Total BTEX		1			101433	05/02/23 14:57	KLV	EET HOU
Soluble	Leach	DI Leach			20.02 g	20 mL	101455	05/02/23 16:09	TL	EET HOU
Soluble	Analysis	9045D		1	20.02 g	20 mL	101463	05/02/23 16:33	TL	EET HOU

Client Sample ID: FS03

Date Collected: 04/26/23 14:15

Date Received: 04/26/23 16:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	101265	05/01/23 15:53	MTMG	EET HOU
Total/NA	Analysis	8260C		1	5 mL	5 mL	101268	05/02/23 07:59	MTMG	EET HOU
Total/NA	Analysis	Total BTEX		1			101433	05/02/23 14:57	KLV	EET HOU
Soluble	Leach	DI Leach			20.05 g	20 mL	101455	05/02/23 16:09	TL	EET HOU
Soluble	Analysis	9045D		1	20.05 g	20 mL	101463	05/02/23 16:33	TL	EET HOU

Client Sample ID: FS04

Date Collected: 04/26/23 14:55

Date Received: 04/26/23 16:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	101265	05/01/23 15:53	MTMG	EET HOU
Total/NA	Analysis	8260C		1	5 mL	5 mL	101268	05/02/23 08:19	MTMG	EET HOU
Total/NA	Analysis	Total BTEX		1			101433	05/02/23 14:57	KLV	EET HOU
Soluble	Leach	DI Leach			20.04 g	20 mL	101455	05/02/23 16:09	TL	EET HOU
Soluble	Analysis	9045D		1	20.04 g	20 mL	101463	05/02/23 16:33	TL	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Lab Sample ID: 890-4583-4

Matrix: Solid

Accreditation/Certification Summary

Client: Ensolum Project/Site: Muy Wayno 104H

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	P	rogram	Identification Number	Expiration Date
xas	N	IELAP	T104704215-23-50	06-30-23
The following analytes	are included in this report. b	out the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for wh
the agency does not of	fer certification.			, ,
the agency does not of Analysis Method	•	Matrix	Analyte	
the agency does not of	fer certification.			

Job ID: 890-4583-1

SDG: 03C1558212

Page 57 of 86

10

Method Summary

Client: Ensolum Project/Site: Muy Wayno 104H Job ID: 890-4583-1 SDG: 03C1558212

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET HOU
Total BTEX	Total BTEX Calculation	TAL SOP	EET HOU
9045D	рН	SW846	EET HOU
5035	Closed System Purge and Trap	SW846	EET HOU
DI Leach	Deionized Water Leaching Procedure	ASTM	EET HOU
Protocol Re	ferences:		
ASTM =	ASTM International		
SW846	= "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E	dition, November 1986 And Its Updates.	
TAL SO	P = TestAmerica Laboratories, Standard Operating Procedure		
-	References:		
EET HC	U = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-420	0	

Protocol References:

Laboratory References:

Eurofins Carlsbad

Released to Imaging: 1/4/2024 2:13:09 PM

Client: Ensolum Project/Site: Muy Wayno 104H Job ID: 890-4583-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4583-1	FS01	Solid	04/26/23 14:10	04/26/23 16:25	0.5
890-4583-2	FS02	Solid	04/26/23 14:50	04/26/23 16:25	0.5
890-4583-3	FS03	Solid	04/26/23 14:15	04/26/23 16:25	0.5
890-4583-4	FS04	Solid	04/26/23 14:55	04/26/23 16:25	0.5

Page 59 of 86

Work Order No: www.xenco.com Page of	Work Order Comments	PRP Brownfields RC Superfund		Level III PST/UST TRRP Level IV	ADaPT Other:	Preservative Codes	None: NO DI Water: H ₂ O	-		H ₂ S0 4: H ₂ NaOH: Na	H ₃ PO 4: HP	NaHSO 4: NABIS	Na 25 203: NaSO 3	Zn Acetate+NaOH: Zn	INAUTH+ASCOFOIC ACID: SAPC	Sample Comments	Shill Date:	4120172	4	Cast Center.	1 44 -	maparti Censolum. Jom	 Labered w/ "Jar 212		Ag SiO ₂ Na Sr TI Sn U V Zn Hg: 1631/245.1/7470 /7471		0. Donoirud hur (Gionatrira) Data/Tima				Revised Date: 08/25/2020 Rev. 2020 2
Mo		Program: UST/PST	State of Project:	2.0 Reporting: Level II Level III	Deliverables: EDD	ANALYSIS REQUEST							aon. 4583 Chain of Custody	-											Mo Ni K Se TI U		red uness previously negotiated.	_			
Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	Giarcht Green	XTOE REMAY, INC	3104 E Greene St	Cartsbad, NM 8821	ssere ensolum.com	ANALYSIS		(0'	778	2 -	((17 (17)	09	1	2	elov IT8					2 4				Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn I Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag	ns Xenco, its affiliates and subcontractors. It assigns stan es Incurred by the client if such losses are due to circums	rofins Xenco, but not analyzed. These terms will be enfor	ime	-d(e'a) (c'a)	4 4	٩
 Houston, TX (2) Midland, TX (432) EL Paso, TX (915) Hobbs, NM (57) 	Bill to: (if different)		Address:	City, State ZIP:	mont	Turn Around	Rush Code		TAT starts the day received by	the lab, if received by 4:30pm	Ves No	TOOMN	2d	1	4.0	Depth Grab/ # of Comp Cont	0.5 6.1			7 1 1	>				8RCRA 13PPM Texas 11 AI Sb TCIP/SPIP6010 : 8RCRA SF	der from client company to Eurofi sossibility for any losses or expense	for each sample submitted to Eu				_
fins Environment Testing Xenco	Tacoma Morrissen	1 1	3122 Nar'l Parks Hun	bid, NM 89	33'1-357-830'T Email:	Mun Wanon 104 H	Meon	32.1283.710 3.926817 Due Date:			Temp Blank: Vyes No Wet Ice:	(Yes No	Yes No N/A Correction Factor:	Yes No NVA Temperature Reading:	Corrected Temperature:	ication Matrix Date Time	< 4131/32	2 1 2							200.8 / 6020: 8RCR	CHICK PRESENCE ON STATUTE ACCURSY OT OF OUT ON YOU OF OUT	00 will be applied t	0	URE Vecupo	-	
🞲 eurofins	Project Manader	Company Name:	Address:	City, State ZIP:	Phone:	Name.	ber:			PO #:	SAMPLE RECEIPT	Samples Received Intact:	Cooler Custody Seals:	Sample Custody Seals:	Total Containers:	Sample Identification	ECAL		- F304	CUCH .	FULL			\backslash	Total 200.7 / 6010	Notice: Signature of this docu of service. Eurofins Xenco will	of Eurofins Xenco. A minimun	Relinguished by: (Signature)	1 A	B	5

5/2/2023

Released to Imaging: 1/4/2024 2:13:09 PM

Page 25 of 28

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Phone: 575-988-3199 Fax: 575-988-3199	0	chain o	Chain of Custody Record	dy Re	cord	_			-8-7 -				🔅 eurofins	ins Environment Testing	nt Testing
Client Information (Sub Contract Lab)	Sampler			Lab PM: Kramer	lessic:				<u>8</u>	rtier Trac	Carrier Tracking No(s);	}	COC No: BBD-1256 1		
	Phone:		ļ	E-Mail: Jessice	Kramer	@et er	E-Mail: Lessica.Kramer@et.eurofinsus.com		<u>tă</u> Ż	State of Origin: New Mexico			Page: Page 1 of 1		
Company Eurofins Environment Testing South Centr				o <mark>∦</mark> Z	reditation	s Requin exas	Accreditations Required (See note) NELAP Texas	(i					Job #: Ron 4583.		
Address: 4145 Greenbriar Dr	Due Date Requestad: 5/2/2023	ä		<u> </u>			Ř	Analysis	Requested	ested				n Codes: M Hexane	
City: Stafford	TAT Requested (da	/s):		}			[-						B NaOH	zo	
State, Zp TX, 77477											-		D Nitric Acid E NaHSO4	P Na204S Q Na2SO3 R Na2SO3	<u> </u>
Phone 281-240-4200(Tel)	но #				· · ·			<u> </u>					MeOH Amchlor Ascorbio	S H2SO4 T TSP Dodecahydrate	ahydrate
Email:	₩OM			010	(0)								I Ice J DI Water	⊃>3	
Project Name. Muy Wayno 104H	Project #: 89000093			<u>507) 0</u>) Jo st	н							-	Y Trizma Z other (specify)	
Sile:	:#MOSS			gduuas) as	1 - NP							Other Other		
			Sample M Tvpe (w	Matrix (verwater	м/SM т 6036FP_C	יסאבראכו	X3T8) iedmi		
Sample Identification Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, 0-v G=grab) BT-Th	-	loheq		=							Special Instructions/Note:	ote:
	\mathbb{N}		Preservation Code:		X										
FS01 (890-4583-1)	4/26/23	14.10 Mountain		Solid	×	×	×	<u> </u>							
FS02 (890-4583-2)	4/26/23	14:50 Mountain		Solid	×	×	×						-		
FS03 (890-4583-3)	4/26/23	14.15 Mountain	-	Solid	×	×	×	-					-		
FS04 (890-4583-4)	4/26/23	14.55 Mountain		Salid	×	×	×				-				
											-	-			
					-+										
				-+-											
Net the state and the state and the state of	ent Testing South Centra above for analysis/tests/ Central, LLC attention im	al, LLC places th matrix being and mediately if all	e ownership of me alyzed, the sample: requested accredit	thod, analyte s must be shi tations are cu	& accredil sped back Tent to da	to the Eum	npliance up trofins Envi	on our su conment	bcontract esting Sc Custody :	laborator with Cent titesting t	tes. This s rai, LLC lat o said com	ample ship oratory or (bliance to E	nent is forwarded u nther instructions wi urofins Environmen	nder chain-of-custody. I be provided. Any cha t Testing South Central	If the ages to LLC.
Possible Hazard Identification					Sample	e Dispo	sal (A fi	se may	be ass	i passe	f sample	s are ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	an 1 month)	T
Uncommed Deliverable Requested: I, II, II, IV Other (specify)	Primary Deliverable Rank: 2	ible Rank: 2			Special	linstruc	Precial Instructions/QC Requirements	Requir	ements	<i>Disposal By Lab</i> ents:	(Lab		Archive For	Months	T
Empty Kit Relinquished by	ſ	Date:		Ē	Time			ł		Metho	Method of Shipment:	at:			T
Relinquished by:	Date/Time:	ļ	Company	any	Reci	Received by:		FedEX	$ _{\times}$	4	Date/Time.	Time:		Company	
}	Date/Time:		Company	any		Received by:	Þ	Cherch	a la	5	Date/	Date/Time: 4/2	4/28/2023 9-02	Company	<u>کا</u>
Relinquished by:	Date/Time.		Company	any	Reci	Received by:				1	Date/Time	te/Time: Temp:	Ι.	IR ID:HOU-344	
Custody Seals Intact: Custody Seal No. Δ Yes Δ No					S C	ler Temp	Cooler Temperature(s) °C and Other Remarks:	C and Ot	ler Rema:			С/F0.2 \. Солестеd Т	etuba	(Control)	
															174

.

Job Number: 890-4583-1 SDG Number: 03C1558212

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4583 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4583-1 SDG Number: 03C1558212

List Source: Eurofins Houston

List Creation: 04/28/23 01:06 PM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4583 List Number: 2 Creator: Canadilla, Surelis

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Received by OCD: 7/19/2023 1:18:18 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 5/2/2023 2:24:21 PM

JOB DESCRIPTION

Muy Wayno 104H SDG NUMBER 03C1558212

JOB NUMBER

890-4584-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 5/2/2023 2:24:21 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4584-1 SDG: 03C1558212

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	21

	Definitions/Glossary		
	-		
Client: Ensolun Project/Site: Mi	n uy Wayno 104H	Job ID: 890-4584-1 SDG: 03C1558212	
-			
Qualifiers			
GC Semi VOA			
Qualifier	Qualifier Description		
=1	MS and/or MSD recovery exceeds control limits.		÷
51-	Surrogate recovery exceeds control limits, low biased.		
S1+	Surrogate recovery exceeds control limits, high biased.		1
J	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
J	Indicates the analyte was analyzed for but not detected.		ł
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
a	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		i
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

MPN

MQL

NC

ND NEG

POS

PQL

PRES

QC RER

RL RPD

TEF

TEQ

TNTC

Page 68 of 86

Job ID: 890-4584-1 SDG: 03C1558212

Job ID: 890-4584-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4584-1

Receipt

The samples were received on 4/26/2023 4:23 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: FS01 (890-4584-1), FS02 (890-4584-2), FS03 (890-4584-3) and FS04 (890-4584-4).

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-52174/2-A) and (LCSD 880-52174/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: FS03 (890-4584-3), (890-4584-A-3-C MS) and (890-4584-A-3-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-52174 and analytical batch 880-52247 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-52286 and analytical batch 880-52249 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (880-27756-A-4-C). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

-1 12 3

Job ID: 890-4584-1 SDG: 03C1558212

Lab Sample ID: 890-4584-1

Client Sample ID: FS01

Project/Site: Muy Wayno 104H

Date Collected: 04/26/23 14:10 Date Received: 04/26/23 16:23

Client: Ensolum

Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			05/02/23 10:40	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(6C)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		05/01/23 10:35	05/01/23 14:00	
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9		49.9	mg/Kg		05/01/23 10:35	05/01/23 14:00	
C10-C28)	\$40.0	0	40.0	ing/itg		03/01/23 10:33	03/01/23 14:00	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/01/23 10:35	05/01/23 14:00	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	102		70 - 130			05/01/23 10:35	05/01/23 14:00	
o-Terphenyl	108		70 - 130			05/01/23 10:35	05/01/23 14:00	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	383		5.03	mg/Kg			05/02/23 00:54	
client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5						Lab San	nple ID: 890- Matri	
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23		ics (DRO) (GC)			Lab San	-	
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (Qualifier	GC) RL	Unit	D	Lab San	-	x: Soli
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5	el Range Organ	Qualifier			<u>D</u>		Matri	x: Solio
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result 	Qualifier U	RL 49.9	Unit	<u>D</u>		Matri Analyzed	x: Soli
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte	el Range Organ 	Qualifier U	RL 49.9	Unit	<u>D</u>		Matri Analyzed	x: Soli Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ 	Qualifier U nics (DRO) Qualifier	(GC)	Unit mg/Kg		Prepared	Matri Analyzed 05/02/23 10:40	x: Soli Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese	el Range Organ Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	RL 49.9 (GC) RL	Unit mg/Kg		Prepared Prepared	Analyzed 05/02/23 10:40 Analyzed	X: Soli Dil Fa Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <49.9 sel Range Orga Result <49.9	Qualifier U nics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9	Unit mg/Kg Unit mg/Kg		Prepared Prepared 05/01/23 10:35	Matri <u>Analyzed</u> 05/02/23 10:40 <u>Analyzed</u> 05/01/23 14:21	X: Soli Dil Fa Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Organ Result <49.9 sel Range Orga Result <49.9	Qualifier U nics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9	Unit mg/Kg Unit mg/Kg		Prepared Prepared 05/01/23 10:35	Matri <u>Analyzed</u> 05/02/23 10:40 <u>Analyzed</u> 05/01/23 14:21	Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <49.9 sel Range Orga 	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 05/01/23 10:35 05/01/23 10:35 05/01/23 10:35 Prepared	Matri Analyzed 05/02/23 10:40 Analyzed 05/01/23 14:21 05/01/23 14:21 05/01/23 14:21 Analyzed	x: Soli Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	el Range Organ Result <49.9 sel Range Orga sel Range Orga <49.9 <49.9 <49.9 <49.9 <49.9 <106	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 05/01/23 10:35 05/01/23 10:35 05/01/23 10:35 Prepared 05/01/23 10:35	Matri Analyzed 05/02/23 10:40 Analyzed 05/01/23 14:21 05/01/23 14:21 05/01/23 14:21 Analyzed 05/01/23 14:21	X: Soli Dil Fa Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	el Range Organ Result <49.9 sel Range Orga sel Range Orga <49.9 <49.9 <49.9 <49.9 <49.9	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 05/01/23 10:35 05/01/23 10:35 05/01/23 10:35 Prepared	Matri Analyzed 05/02/23 10:40 Analyzed 05/01/23 14:21 05/01/23 14:21 05/01/23 14:21 Analyzed	x: Soli Dil Fa Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ 	Qualifier U nics (DRO) Qualifier U U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 70.130 70.130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 05/01/23 10:35 05/01/23 10:35 05/01/23 10:35 Prepared 05/01/23 10:35	Matri Analyzed 05/02/23 10:40 Analyzed 05/01/23 14:21 05/01/23 14:21 05/01/23 14:21 Analyzed 05/01/23 14:21	X: Solid Dil Fa Dil Fa
Client Sample ID: FS02 ate Collected: 04/26/23 14:50 ate Received: 04/26/23 16:23 ample Depth: 0.5 Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	el Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 <49.9 <19.9 <106 115 Chromatograp	Qualifier U nics (DRO) Qualifier U U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 70.130 70.130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 05/01/23 10:35 05/01/23 10:35 05/01/23 10:35 Prepared 05/01/23 10:35	Matri Analyzed 05/02/23 10:40 Analyzed 05/01/23 14:21 05/01/23 14:21 05/01/23 14:21 Analyzed 05/01/23 14:21	4584-2 x: Solic Dil Fa Dil Fa

Date Collected: 04/26/23 14:15 Date Received: 04/26/23 16:23

Sample Depth: 0.5

Method: SW846 8015 NM - Diesel F	Range Organi	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			05/02/23 09:55	1

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

5

Job ID: 890-4584-1 SDG: 03C1558212

Lab Sample ID: 890-4584-4

Matrix: Solid

Client Sample ID: FS03

Project/Site: Muy Wayno 104H

Date Collected: 04/26/23 14:15 Date Received: 04/26/23 16:23

Sample Depth: 0.5

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		04/28/23 09:16	05/01/23 11:49	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U F1	49.9	mg/Kg		04/28/23 09:16	05/01/23 11:49	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		04/28/23 09:16	05/01/23 11:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130			04/28/23 09:16	05/01/23 11:49	1
o-Terphenyl	67	S1-	70 - 130			04/28/23 09:16	05/01/23 11:49	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	774	4.98	mg/Kg			05/02/23 01:04	1

Client Sample ID: FS04

Date Collected: 04/26/23 14:55

Date Received: 04/26/23 16:23

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			05/02/23 09:55	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		04/28/23 09:16	05/01/23 12:54	1
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		04/28/23 09:16	05/01/23 12:54	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		04/28/23 09:16	05/01/23 12:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130			04/28/23 09:16	05/01/23 12:54	1
o-Terphenyl	74		70 - 130			04/28/23 09:16	05/01/23 12:54	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubl	e					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	370		5.00	mg/Kg			05/02/23 01:09	1

Lab Sample ID: 890-4584-3 Matrix: Solid Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-27756-A-4-D MS	Matrix Spike	83	81		
880-27756-A-4-E MSD	Matrix Spike Duplicate	84	84		6
890-4584-1	FS01	102	108		
890-4584-2	FS02	106	115		
890-4584-3	FS03	88	67 S1-		
890-4584-3 MS	FS03	84	61 S1-		9
890-4584-3 MSD	FS03	88	63 S1-		
890-4584-4	FS04	96	74		6
LCS 880-52174/2-A	Lab Control Sample	82	61 S1-		ž
LCS 880-52286/2-A	Lab Control Sample	98	104		
LCSD 880-52174/3-A	Lab Control Sample Dup	84	62 S1-		
LCSD 880-52286/3-A	Lab Control Sample Dup	114	120		
MB 880-52174/1-A	Method Blank	100	83		
MB 880-52286/1-A	Method Blank	113	134 S1+		
Surrogate Legend					
1CO = 1-Chlorooctane					

OTPH = o-Terphenyl

Job ID: 890-4584-1

Prep Type: Total/NA

Page 71 of 86

Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

	- A									Client Sa	ample ID: N		
Matrix: Solid													otal/NA
Analysis Batch: 52247											Prep	Batch	: 52174
		MB											
Analyte			Qualifier		RL		nit	D		repared	Analyz		Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<5	50.0	U	50).0	m	g/Kg		04/2	8/23 09:16	05/01/23 0	08:56	1
Diesel Range Organics (Over	<5	50.0	U	50).0	m	g/Kg		04/2	8/23 09:16	05/01/23 0)8·56	1
C10-C28)	·		0				9,9		02	0,20 00110	00/01/2010		
Oll Range Organics (Over C28-C36)	<5	50.0	U	50	0.0	m	g/Kg		04/2	8/23 09:16	05/01/23 0	08:56	1
		мв	МВ										
Surrogate	%Recov		Qualifier	Limits					Р	repared	Analyz	ed	Dil Fa
1-Chlorooctane		100		70 - 130)					8/23 09:16	05/01/23 (
o-Terphenyl		83		70 - 130)					8/23 09:16	05/01/23 (
Lab Sample ID: LCS 880-52174/	2-A							С	lient	Sample	ID: Lab Co		
Matrix: Solid											Prep T		
Analysis Batch: 52247												Batch	: 52174
				Spike		LCS			_		%Rec		
Analyte				Added		Qualifie			<u>D</u>	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000	981.7		mg/Kg			98	70 - 130		
Diesel Range Organics (Over				1000	986.5		mg/Kg			99	70 - 130		
C10-C28)													
	LCS	I CS											
Surrogate		Qual		Limits									
1-Chlorooctane	82			70 - 130									
	82 61	S1-		70 - 130 70 - 130									
o-Terphenyl	61	S1-											
o-Terphenyl Lab Sample ID: LCSD 880-5217	61	S1-					CI	ient	Sam	ıple ID: L	ab Contro		
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-5217 Matrix: Solid	61	S1-					CI	ient	Sam	ple ID: L	Prep T	ype: T	otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247	61	S1-		70 - 130		1000	CI	ient	Sam	iple ID: L	Prep T Prep	ype: T	otal/NA : 52174
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247	61	S1-		70 - 130 Spike		LCSD		ient		-	Prep T Prep %Rec	ype: T Batch	otal/NA : 52174 RPD
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte	61	S1-		70 - 130 Spike Added	Result	LCSD Qualifie	er Unit	ient	Sam	%Rec	Prep T Prep %Rec Limits	ype: T Batch RPD	otal/N/ : 52174 RPI Limi
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics	61	S1-		70 - 130 Spike				ient		-	Prep T Prep %Rec	ype: T Batch	otal/N/ : 52174 RPI Limi
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10	61	S1-		70 - 130 Spike Added	Result		er Unit	ient		%Rec	Prep T Prep %Rec Limits	ype: T Batch RPD	otal/N/ : 52174 RPI Limi
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte	61	S1-		70 - 130 Spike Added 1000	Result 1051		er <u>Unit</u> mg/Kg	ient		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: T Batch RPD 7	otal/NA : 52174 RPI Limi 20
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	61			70 - 130 Spike Added 1000	Result 1051		er <u>Unit</u> mg/Kg	ient		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: T Batch RPD 7	otal/NA : 52174 RPE Limi 20
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	61 -	LCSI		70 - 130 Spike Added 1000	Result 1051		er <u>Unit</u> mg/Kg	ient		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: T Batch RPD 7	otal/NA : 52174 RPD Limit
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	61 4/3-A	LCSI		70 - 130 Spike Added 1000	Result 1051		er <u>Unit</u> mg/Kg	ient		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: T Batch RPD 7	otal/NA : 52174 RPE Limi
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	61 4/3-A LCSD %Recovery	LCSI Qual		70 - 130 Spike Added 1000 1000 Limits	Result 1051		er <u>Unit</u> mg/Kg	ient		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: T Batch RPD 7	otal/NA : 52174 RPI Limi 20
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	61 4/3-A <i>LCSD</i> %Recovery 84	LCSI Qual		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1051		er <u>Unit</u> mg/Kg	ient		%Rec 105 104	Prep T %Rec Limits 70 - 130 70 - 130	ype: T Batch RPD 7 5	Cotal/NA : 52174 RPE <u>Limi</u> 20
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4584-3 MS	61 4/3-A <i>LCSD</i> %Recovery 84	LCSI Qual		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1051		er <u>Unit</u> mg/Kg	ient		%Rec 105 104	Prep T Prep %Rec Limits 70 - 130 70 - 130	ype: T Batch RPD 7 5	Cotal/NA RPI Limi 20 C: FS03
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4584-3 MS Matrix: Solid	61 4/3-A <i>LCSD</i> %Recovery 84	LCSI Qual		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1051		er <u>Unit</u> mg/Kg	ient		%Rec 105 104	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ype: T Batch RPD 7 5 5 nple II ype: T	Cotal/NA : 52174 RPE Limi 20 20 Cotal/NA
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4584-3 MS	61 4/3-A <i>LCSD</i> %Recovery 84 62	LCSI Qual S1-	ifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130	Result 1051 1041	Qualifie	er <u>Unit</u> mg/Kg	ient		%Rec 105 104	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Client Sar Prep T Prep	ype: T Batch RPD 7 5 5 nple II ype: T	Cotal/NA RPE Limi 20 Cotal/NA Cotal/NA
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4584-3 MS Matrix: Solid Analysis Batch: 52247	61	LCSI Qual S1-	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike	Result 1051 1041 MS	Qualifie	e <mark>r Unit</mark> mg/Kg mg/Kg	ient	<u>D</u>	%Rec 105 104	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 1	ype: T Batch RPD 7 5 5 nple II ype: T	Cotal/NA : 52174 RPE Limi 20 20 Cotal/NA
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4584-3 MS Matrix: Solid Analysis Batch: 52247 Analyte	61 4/3-A <i>LCSD</i> %Recovery 84 62 Sample Result	LCSI Qual S1- Samı Qual	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike Added Added	Result 1051 1041 MS Result	Qualifie MS Qualifie	er Unit	ient		%Rec 105 104	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: T Batch RPD 7 5 5 nple II ype: T	Cital/NA : 52174 RPC Limin 20 20 Cital/NA
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4584-3 MS Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics	61	LCSI Qual S1- Samı Qual	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike	Result 1051 1041 MS	Qualifie MS Qualifie	e <mark>r Unit</mark> mg/Kg mg/Kg	ient	<u>D</u>	%Rec 105 104	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 100 70 - 1	ype: T Batch RPD 7 5 5 nple II ype: T	iotal/NA 52174 RPD Limit 20
o-Terphenyl Lab Sample ID: LCSD 880-5217 Matrix: Solid Analysis Batch: 52247 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4584-3 MS Matrix: Solid Analysis Batch: 52247 Analyte	61 4/3-A <i>LCSD</i> %Recovery 84 62 Sample Result	LCSI Qual S1- Samı Qual U	ifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike Added Added	Result 1051 1041 MS Result	Qualifie MS Qualifie	er Unit	ient	<u>D</u>	%Rec 105 104	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: T Batch RPD 7 5 5 nple II ype: T	Cital/NA : 52174 RPC Limin 20 20 Cital/NA
QC Sample Results

Client: Ensolum Project/Site: Muy Wayno 104H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4584-3 MS Matrix: Solid Analysis Batch: 52247											Client Sample Prep Type: Prep Bato	Total	/NA
	MS	мs											
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	84			70 - 130									
o-Terphenyl	61	S1-		70 - 130									
Lab Sample ID: 890-4584-3 MS Matrix: Solid Analysis Batch: 52247		Som	nlo	Spike	MSD	MED					Client Sample Prep Type: Prep Bato	Total h: 52	/NA 174
Analysia	Sample			Spike Added	MSD		11		_	% Dee	%Rec Limits RF		RPD
Analyte	Result <49.9		inter		765.4	Qualifier	Unit		D	%Rec		-D L 6	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U		999	765.4		mg/Kg			74	70 - 130	0	20
Diesel Range Organics (Over C10-C28)	<49.9	U F1		999	618.1	F1	mg/Kg			60	70 - 130	4	20
	MSD	MSD)										
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	88			70 - 130									
o-Terphenyl	63	S1-		70 - 130									
Lab Sample ID: MB 880-52286/ Matrix: Solid Analysis Batch: 52249	1-A	МВ	МВ							Client Sa	ample ID: Meth Prep Type: Prep Bato	Total	/NA
Analyte	Re		Qualifier	RL		Unit	t	D	Pr	epared	Analyzed	Dil	Fac
Gasoline Range Organics		50.0		50.0		mg/	Kg	0		1/23 08:35	05/01/23 10:23		1
(GRO)-C6-C10													
Diesel Range Organics (Over	<	50.0	U	50.0		mg/	Kg	0	05/01	1/23 08:35	05/01/23 10:23		1
C10-C28) Oll Range Organics (Over C28-C36)	<	50.0	U	50.0		mg/	Kg	0	05/01	1/23 08:35	05/01/23 10:23		1
		MВ	МВ										
Surrogate	%Reco		Qualifier	Limits					Pr	repared	Analyzed	Dil	l Fac
1-Chlorooctane		113	quamer	70 - 130				0		1/23 08:35	05/01/23 10:23		1
o-Terphenyl			S1+	70 - 130						1/23 08:35	05/01/23 10:23		1
Lab Sample ID: LCS 880-52286 Matrix: Solid Analysis Batch: 52249	/ 2-A							Clie	ent	Sample	ID: Lab Contro Prep Type: Prep Bato	Total	/NA
Andiysis Datell. 32243				Spike	1.06	LCS					Preр Бац	.11. 32	200
Analyte				Added		Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	829.8		mg/Kg		<u> </u>	83	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)				1000	764.3		mg/Kg			76	70 - 130		
/													
,	100	100											
Surrogate	LCS %Recovery			Limits									

SDG: 03C1558212

QC Sample Results

_

Job ID: 890-4584-1 SDG: 03C1558212

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-52	2286/3-A					Clier	nt Sam	ple ID: I	ab Contro		-
Matrix: Solid										ype: To	
Analysis Batch: 52249										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	902.4		mg/Kg		90	70 - 130	8	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	899.4		mg/Kg		90	70 - 130	16	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	114		70 - 130								
o-Terphenyl	120		70 - 130								
Lab Sample ID: 880-27756-A	-4-D MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 52249									Prep	Batch:	52286
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<50.0	U	998	1054		mg/Kg		106	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	998	773.6		mg/Kg		76	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	83		70 - 130								
o-Terphenyl	81		70 - 130								
	-4-E MSD					Cli	ent Sa	mple ID	: Matrix Sp		
Matrix: Solid	-4-E MSD					Cli	ent Sa	mple ID		oike Dup Type: To	
Matrix: Solid						Cli	ent Sa	mple ID	Prep T		tal/NA
Matrix: Solid		Sample	Spike	MSD	MSD	Cli	ent Sa	imple ID	Prep T	ype: To	tal/NA
Matrix: Solid	Sample	Sample Qualifier	Spike Added		MSD Qualifier	Cli	ent Sa	%Rec	Prep T Prep	ype: To	tal/NA 52286
Matrix: Solid Analysis Batch: 52249 Analyte Gasoline Range Organics	Sample	Qualifier	•					-	Prep T Prep %Rec	ype: To Batch:	tal/NA 52286 RPD
Matrix: Solid Analysis Batch: 52249 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Result	Qualifier U	Added	Result		Unit		%Rec	Prep T Prep %Rec Limits	Batch:	tal/NA 52286 RPD Limit
Matrix: Solid Analysis Batch: 52249 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <50.0	Qualifier U	Added997	Result 1184		- Unit mg/Kg		%Rec 119	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 12	tal/NA 52286 RPD Limit
Matrix: Solid Analysis Batch: 52249 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample Result <50.0 <50.0 <i>MSD</i>	Qualifier U U	Added	Result 1184		- Unit mg/Kg		%Rec 119	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 12	tal/NA 52286 RPD Limit
Analysis Batch: 52249	Sample 	Qualifier U U	Added997	Result 1184		- Unit mg/Kg		%Rec 119	Prep T Prep %Rec Limits 70 - 130	ype: To Batch: RPD 12	tal/NA 52286 RPD Limit

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-52098/1-A Matrix: Solid Analysis Batch: 52352						Client Sa	ample ID: Metho Prep Type:	
-	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			05/01/23 22:44	1

Project/Site: Muy Wayno 104H

Client: Ensolum

Job ID: 890-4584-1 SDG: 03C1558212

Method: 300.0 - Anions, Ion Chromatography (Continued)

						Client	Comula		entrel C	
2096/2-A						Client	Sample			
								гіер	Type. 5	oluble
		Snike	LCS	LCS				%Rec		
		•			Unit	п	%Rec			
				Quanner						
		200	200.0		iiig/itg		100	50 - 110		
-52098/3-A					Clier	nt Sam	ple ID:	Lab Contro	ol Sampl	e Dup
									2.	
		Spike	LCSD	LCSD				%Rec		RPD
		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
		250	248.5		mg/Kg		99	90 - 110	4	20
A-31-B MS							Client	Sample ID	: Matrix	Spike
								Prep	Type: S	oluble
Sample	Sample	Spike	MS	MS				%Rec		
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
78.3		249	312.2		mg/Kg		94	90 _ 110		
4-31-C MSD					Cli	ient S	amnle IF): Matrix Si	nike Dur	olicate
									.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	010010
Sample	Sample	Spike	MSD	MSD				%Rec		RPD
•	-	Added			Unit	D	%Rec	Limits	RPD	Limit
		249			mg/Kg		91	90 - 110	2	
	A-31-C MSD Sample Result Result	A-31-B MS Sample Sample Result Qualifier 78.3 A-31-C MSD Sample Sample Result Qualifier	A-31-C MSD Sample Sample Sample Spike Added 250 A-31-C MSD Sample Sample Spike Added 249 A-31-C MSD	Spike LCS Added Result 250 258.0 52098/3-A Spike LCSD Added Result 250 Added Result 250 A-31-B MS Sample Spike MS Result Qualifier Added Result 78.3 249 312.2 A-31-C MSD Sample Spike MSD Result Qualifier Added Result Qualifier Added Result	Spike AddedLCS ResultLCS Qualifier250258.0258.052098/3-ASpike AddedLCSD ResultLCSD QualifierA-31-B MSSample QualifierSpike Added AddedMS Result QualifierSample 78.3Sample QualifierSpike Added Added 249MS QualifierA-31-C MSDSample QualifierSpike Added QualifierMSD QualifierSample Result QualifierSpike Added Added Result QualifierMSD Qualifier	Spike LCS LCS Added Result Qualifier Unit 250 258.0 mg/Kg -52098/3-A Clien Added Result Qualifier Unit Added Result Qualifier Unit Added Result Qualifier Unit Added Result Qualifier Unit Ar-31-B MS Sample Spike MS MS Result Qualifier Added Result Qualifier Unit 78.3 249 312.2 MSD mg/Kg A-31-C MSD Cl Sample Spike MSD MSD Sample Sample Spike MSD MSD MSD	Spike LCS LCS Added Result Qualifier Unit D 250 258.0 mg/Kg D D-52098/3-A Client Sam Spike LCSD LCSD Added Result Qualifier Unit D Madded Added Result Qualifier Unit D A-31-B MS Sample Spike MS MS MS Result Qualifier Added Result Qualifier D 78.3 Qualifier Added Result Qualifier Unit D A-31-C MSD Client Si Spike MSD MSD Client Si Sample Sample Spike MSD MSD D Result Qualifier Added Result Qualifier Unit D	Spike LCS LCS LCS Added Result Qualifier Unit D %Rec 250 258.0 Qualifier Unit D %Rec 52098/3-A Client Sample ID: Spike LCSD LCSD Added Result Qualifier Unit D %Rec Added Result Qualifier Unit D %Rec Added Result Qualifier Unit D %Rec A-31-B MS Client Client Client Sample Sample Spike MS MS Result Qualifier Added Result Qualifier D %Rec 78.3 Qualifier Added Result Qualifier Unit D %Rec A-31-C MSD Client Sample ID Sample Spike MSD MSD MSD Result Qualifier Added Result Qualifier Unit D %Rec	Spike LCS LCS LCS mit D %Rec Limits 90 - 110 250 250 258.0 Unit D %Rec Limits 90 - 110 P-52098/3-A Client Sample ID: Lab Contro Prep Client Sample ID: Lab Contro Prep	Spike LCS Limits PED MS <

QC Association Summary

Client: Ensolum Project/Site: Muy Wayno 104H

GC Semi VOA

Prep Batch: 52174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4584-3	FS03	Total/NA	Solid	8015NM Prep	
890-4584-4	FS04	Total/NA	Solid	8015NM Prep	
MB 880-52174/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-52174/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-52174/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4584-3 MS	FS03	Total/NA	Solid	8015NM Prep	
890-4584-3 MSD	FS03	Total/NA	Solid	8015NM Prep	

Analysis Batch: 52247

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4584-3	FS03	Total/NA	Solid	8015B NM	52174
890-4584-4	FS04	Total/NA	Solid	8015B NM	52174
MB 880-52174/1-A	Method Blank	Total/NA	Solid	8015B NM	52174
LCS 880-52174/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	52174
LCSD 880-52174/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	52174
890-4584-3 MS	FS03	Total/NA	Solid	8015B NM	52174
890-4584-3 MSD	FS03	Total/NA	Solid	8015B NM	52174

Analysis Batch: 52249

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4584-1	FS01	Total/NA	Solid	8015B NM	52286
890-4584-2	FS02	Total/NA	Solid	8015B NM	52286
MB 880-52286/1-A	Method Blank	Total/NA	Solid	8015B NM	52286
LCS 880-52286/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	52286
LCSD 880-52286/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	52286
880-27756-A-4-D MS	Matrix Spike	Total/NA	Solid	8015B NM	52286
880-27756-A-4-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	52286

Prep Batch: 52286

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4584-1	FS01	Total/NA	Solid	8015NM Prep	
890-4584-2	FS02	Total/NA	Solid	8015NM Prep	
MB 880-52286/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-52286/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-52286/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-27756-A-4-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-27756-A-4-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 52372

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4584-1	FS01	Total/NA	Solid	8015 NM	
890-4584-2	FS02	Total/NA	Solid	8015 NM	
890-4584-3	FS03	Total/NA	Solid	8015 NM	
890-4584-4	FS04	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 52098

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4584-1	FS01	Soluble	Solid	DI Leach	
890-4584-2	FS02	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Page 76 of 86

Job ID: 890-4584-1 SDG: 03C1558212

OC Association Summary

Client: Ensolum Project/Site: Muy Wayno 104H

HPLC/IC (Continued)

LCSD 880-52098/3-A

890-4570-A-31-B MS

890-4570-A-31-C MSD

Lab Control Sample Dup

Matrix Spike Duplicate

Matrix Spike

Leach Batch: 52098 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4584-3	FS03	Soluble	Solid	DI Leach	
890-4584-4	FS04	Soluble	Solid	DI Leach	
MB 880-52098/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-52098/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-52098/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4570-A-31-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-4570-A-31-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batch: 52352 - Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
890-4584-1	FS01	Soluble	Solid	300.0	52098
890-4584-2	FS02	Soluble	Solid	300.0	52098
890-4584-3	FS03	Soluble	Solid	300.0	52098
890-4584-4	FS04	Soluble	Solid	300.0	52098
MB 880-52098/1-A	Method Blank	Soluble	Solid	300.0	52098
LCS 880-52098/2-A	Lab Control Sample	Soluble	Solid	300.0	52098

Soluble

Soluble

Soluble

QU	AS	50	LIA	uoi	า อน	

Job ID: 890-4584-1 SDG: 03C1558212

300.0

300.0

300.0

Solid

Solid

Solid

Page 77 of 86

52098

52098

52098

Eurofins Carlsbad

Job ID: 890-4584-1 SDG: 03C1558212

Lab Sample ID: 890-4584-1 Matrix: Solid

Date Collected: 04/26/23 14:10 Date Received: 04/26/23 16:23

Client Sample ID: FS01

Project/Site: Muy Wayno 104H

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			52372	05/02/23 10:40	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	52286	05/01/23 10:35	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	52249	05/01/23 14:00	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	52098	04/27/23 10:18	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	52352	05/02/23 00:54	SMC	EET MID

Client Sample ID: FS02

Date Collected: 04/26/23 14:50

Date Received: 04/26/23 16:23

—	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			52372	05/02/23 10:40	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	52286	05/01/23 10:35	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	52249	05/01/23 14:21	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	52098	04/27/23 10:18	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	52352	05/02/23 00:59	SMC	EET MID

Client Sample ID: FS03

Date Collected: 04/26/23 14:15

Date Received: 04/26/23 16:23

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			52372	05/02/23 09:55	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	52174	04/28/23 09:16	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	52247	05/01/23 11:49	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	52098	04/27/23 10:18	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	52352	05/02/23 01:04	SMC	EET MID

Client Sample ID: FS04

Date Collected: 04/26/23 14:55 Date Received: 04/26/23 16:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			52372	05/02/23 09:55	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	52174	04/28/23 09:16	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	52247	05/01/23 12:54	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	52098	04/27/23 10:18	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	52352	05/02/23 01:09	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 890-4584-2 9 Matrix: Solid

Lab Sample ID: 890-4584-3 Matrix: Solid

Lab Sample ID: 890-4584-4

Matrix: Solid

Accreditation/Certification Summary

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Texas		NELAP	T104704400-22-25	06-30-23
The fellowing enclytee	are included in this report	hut the leherater (is not cortif	ind by the anyorning outbority. This list m	av induda andutaa t
the agency does not of	1 /	but the laboratory is not certin	ied by the governing authority. This list ma	ay include analytes i
0,	1 /	Matrix	Analyte	ay include analytes

Eurofins Carlsbad

Page 79 of 86

10

Job ID: 890-4584-1

SDG: 03C1558212

Released to Imaging: 1/4/2024 2:13:09 PM

Method Summary

Client: Ensolum Project/Site: Muy Wayno 104H Job ID: 890-4584-1 SDG: 03C1558212

Method	Method Description	Protocol	Laboratory
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	erences:		
	STM International		
EPA = US	Environmental Protection Agency		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ec	lition, November 1986 And Its Updates.	
Laboratory R	eferences:		
EET MID :	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Carlsbad

Page 80 of 86

Client: Ensolum Project/Site: Muy Wayno 104H Job ID: 890-4584-1 SDG: 03C1558212

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
0-4584-1	FS01	Solid	04/26/23 14:10	04/26/23 16:23	0.5	_
0-4584-2	FS02	Solid	04/26/23 14:50	04/26/23 16:23	0.5	
0-4584-3	FS03	Solid	04/26/23 14:15	04/26/23 16:23	0.5	
0-4584-4	FS04	Solid	04/26/23 14:55	04/26/23 16:23	0.5	

	Xenco	Houston, TX Midland, TX (4: EL Paso, TX (5 Hobbs, NM (5	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	10) 509-3334) 794-1296 5) 988-3199	Work Order No: www.xenco.com	ork Order No:	of
Project Manager:	Tacomo Morrissed	Bill to: (if different)	Giarrett (Green	Worl	Work Order Comments	
Company Name:	PI	Company Name:	ō	No.	Program: UST/PST PRP	Brownfields	RRC Superfund
Address:	3122 Natil Parks Hwy	Address:	ഹ	ne St.	State of Project:		
City, State ZIP:	38 MN , brd	City, State ZIP:	Carisbad, NM		Reporting: Level II Level III		RP 🗌 Level IV 🗌
Phone:	337-257 8307 Email		tmorrissey@ensolum.com	63	Deliverables: EDD	ADaPT D Other:	er:
Project Name:	Muy Wayno 104H / Tu	Turn Around	-	ANALYSIS REQUEST	ST	Preserva	Preservative Codes
Project Number:	2 Rout	Rush Code	M			None: NO	DI Water: H ₂ O
	32.1283, -103.926817 Due Date:		;) Э			Cool: Cool	MeOH: Me
	h Roberts	TAT starts the day received by				HCL: HC	HNO 3: HN
			80 80			H ₂ S0 ₄ : H ₂	NaOH: Na
SAMPLE RECEIPT	Temp Blank: (Yes) No Wet Ice:	(Yes) No				H ₃ PO ₄ : HP	
Samples Received Intact:	6	Thin and the second	_			NaHSO 4: NABIS	SI
Cooler Custody Seals:	Yes No (NTA Correction Factor:	50-2 Pa	es	o =	hain of Custody	Na 2S 2O3: NaSO 3	0 3
Sample Custody Seals:	Yes No N/A Temperature Reading:	9.6	X	080-4004		Zn Acetate+NaOH: Zn	aOH: Zn
Total Containers:	Corrected Temperature:	2.4				NaUH+Ascorbic Acid: SAPC	NC ACIO: SAPC
Sample Identification	fication Matrix Date Time Sampled Sampled	Depth Grab/ # of Comp Cont	BT Chi			Sample	Sample Comments
FSOI	S 4/26/23 1410	0.5' C 12	XXX			Spill Date	te
F\$02	1 1450						20123
F303	1415						
FSO4	1455	* * *	* * *			Cost Ce	enter:
			1 200			1653	1001253211001
						mashout	mahartaanoina
							111111
						Lore los w	M
Total 200.7 / 6010 Circle Method(s) ar	200.8 / 6020: 8RCR, nd Metal(s) to be analyzed	A 13PPM Texas 11 AI Sb TCLP/SPLP 6010 : 8RCRA SI	11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo N 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	r Co Cu Fe Pb Mg Cu Pb Mn Mo Ni Se	vi K Se	Na Sr Tl Sn U V / 245.1 / 7470 / 747	Zn 71
Notice: Signature of this docur of service. Eurofins Xenco will of Eurofins Xenco. A minimum	Notce: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	xder from client company to Euro ponsibility for any losses or expen 55 for each sample submitted to E	ofins Xenco, its affiliates and subcontr nses incurred by the client if such loss Eurofins Xenco, but not analyzed. The	actors. It assigns standard terms es are due to circumstances beyo ise terms will be enforced unless.	terms and conditions s beyond the control inless previously negotiated.		
Rynnquished by: (Signature	(Signature) A Received by: (Signature)	ıre)	Date/Time Rel	Relinquished by: (Signature)	e) Received by: (Signature)		Date/Time
Anuc			4.26.32.1623				
3	0		+				

5/2/2023

Page 82 of 86

eurofins

5

13

Chain of Custody

Job Number: 890-4584-1 SDG Number: 03C1558212

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4584 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 4584 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-4584-1 SDG Number: 03C1558212 List Source: Eurofins Midland 5 6 7 8 9 10 11 12 13 List Creation: 04/28/23 10:06 AM

14

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: 0	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	242158
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By	Condition	Condition Date
rhamlet	We have received your Remediation Closure Report for Incident #NAPP2311754224 MUY WAYNO 18 104H, thank you. This Remediation Closure Report is approved. Areas reasonably needed for production or subsequent drilling operations will need to be reclaimed and revegetated as soon as they are no longer reasonably needed. A report for reclamation and revegetation including pictures of the contoured backfilled excavation surface and a thorough discussion on reseeding mixture, vegetation ratio, timelines, etc, will need to be submitted and approved prior to this incident receiving the final status of "Restoration Complete".	1/4/2024

CONDITIONS

Page 86 of 86

Action 242158